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Abstract

In this thesis, we examine the question of fixation for zero-temperature
stochastic Ising model on some connected quasi-transitive graphs. The initial
spin configuration is distributed according to a Bernoulli product measure
with parameter p ∈ (0, 1). Each vertex, at rate 1, changes its spin value if it
disagrees with the majority of its neighbours and determines its spin value
by a fair coin toss in case of a tie between the spins of its neighbours.

Depending on the graph where the process evolves and the initial density,
the behavior of the model can be of three distinct types: if no vertex fixates
the model is of type I; if all vertices fixate the model is of type F , and if
there are vertices that fixate and vertices that do not, the model is called of
type M. We prove that the shrink property for the underlying graph is a
necessary condition in order for the zero-temperature Ising model to be of
type I. This property requires that each finite set of vertices has at least one
vertex whose neighborhood falls mostly outside of this set.

Our main result shows that if p = 1/2 and the graph is connected, quasi-
transitive, invariant under rotations and translations, then a strenghening
of the shrink property, called the planar shrink property, implies that the
model is of type I. Finally we prove that for one-dimensional translation
invariant graphs, the shrink property is a necessary and sufficient condition
for the model to be of type I.
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Chapter 1

Introduction

In this thesis, we study the zero-temperature stochastic Ising model (σt)t≥0

on a graph G with homogeneous ferromagnetic interactions (see e.g. [19, 29]).

The initial spin configuration is distributed according to a Bernoulli prod-
uct measure with parameter p ∈ (0, 1), see e.g. [18, 28, 29]. The dynamic
evolves in the following way: each vertex, at rate 1, changes its spin value if
it disagrees with the majority of its neighbours and determines its spin value
by a fair coin toss in case of a tie between the spins of its neighbours. This
process is often referred to as domain coarsening or majority dynamics and
it is sometimes used as an opinion model.

A question of particular relevance is whether for each vertex v its spin
flips only finitely many times almost surely, i.e. in other words whether σt
has an almost sure limit. We say that a vertex v fixates if the spin at v
flips only finitely many times. According to the classification given in [19],
a model is of type I if no site fixates almost surely, i.e all sites flip infinitely
often a.s.; a model is of type F if all sites fixate almost surely, i.e. all sites
flip only finitely many times a.s. and it is said of type M if there are both
vertices that fixate and vertices that do not fixate almost surely. Whether a
model is type I, F , or M depends on the initial configuration and on the
structure of the underlying graph G.

The literature, in order to investigate this question, in the early years
focused on the case G = Zd and mainly with d = 2. It is known that the zero-
temperature stochastic Ising model on Z with homogeneous ferromagnetic
interactions is of type I for any initial density p ∈ (0, 1) (see [1, 29]).

The disordered model on Zd, if the interactions Jx,y are independent ran-
dom variables with continuous distribution, is of type F (see [15, 29]). More-
over, in d = 2 and in the case of the homogeneous ferromagnet, the model
is of type I (see [29]). An important consequence of the methods used in
[29] is that σt has an almost sure limit (i.e. the model is of type F) if G

1



2 CHAPTER 1. INTRODUCTION

has all vertices with odd degree, such as for example the hexagonal lattice
and the homogeneous tree of degree K with K odd. In [19], an analysis
of the zero-temperature stochastic Ising model on Zd with nearest-neighbour
interactions distributed according to a measure µJ (disordered model) is per-
formed. In particular, it is proved that if the interactions are i.i.d. taking
only the values ±J then in d = 2 the model is of type M. An analogous
result for d > 2 with a temperature fast decreasing to zero is obtained in [7].
On the cubic lattice Zd, if the initial configuration is distributed according to
a Bernoulli product measure with parameter p sufficiently close to 1 (i.e. if
p > p?d), then the model is of type F , in particular each vertex fixates at the
value +1 (see [18]). Moreover in [28] it is shown that p?d → 1/2 as d → ∞.
For homogeneous trees of degree at least 3 and p sufficiently close to 1, it has
been shown that the model is of type F (see [6, 17]).

In [10, 12], the case in which one or infinitely many vertices are frozen,
i.e. their spins are not allowed to flip, is studied. The main result of the first
paper is that for d = 2 the model, with infinitely many frozen vertices, is
of type F . On the contrary, in the second paper the authors show that the
model in d = 2 is of type I when only one spin is frozen.

For articles on the stochastic Ising model on graphs other than Zd see
for example [5, 7, 8, 11, 14, 20, 21]; in particular in [5] it is shown that the
zero-temperature Ising model on the hexagonal lattice is of type F and in
[7] it is proved that it is not of type F if simultaneous spin flips are allowed.
Inspired by the fact that on Zd for d = 2 the model is of type I and that
the discussion for d = 3 is an open problem, in [11] the authors studied zero-
temperature Ising Glauber dynamics on 2D slabs of thickness k ≥ 2, i.e. on
Sk = Z2 × {0, . . . , k − 1}, with free or periodic boundary conditions in the
third coordinate. They proved that the model is of type F if k = 2 under
free boundary conditions and for k = 2 or k = 3 under periodic boundary
conditions; for thicker slabs they proved that the model is of type M. In
[20] the authors studied the Dilute Curie–Weiss Model, i.e. the Ising Model
on a dense Erdős Rényi random graph, and proved that depending on the
distribution of interactions there are different behaviors.

The graphs G we consider are mainly connected planar quasi-transitive
graphs. These graphs will be defined in Chapter 2. The quasi-transivity of
the graph will be given by the invariance under translations and rotations.
We will show that, under mild assumptions, the only rotations to consider are
those of an angle θ ∈

{
π
3
, π

2
, 2

3
π, π

}
(see Lemma 2.1 and Proposition 2.1). For

reasons that will become clear in the following, we do not deal with θ = π.
Such a class of graphs includes, for instance, the square, the triangular and
the hexagonal lattice.

Our first result (Theorem 3.1) shows that a necessary condition for the
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model to be of type I is that underlying graph has the shrink property. This
property, as we will see, requires that each finite set of vertices has at least
one vertex whose neighborhood falls mostly outside of this set. Indeed, for
example, the hexagonal lattice does not have the shrink property and the
model on the hexagonal lattice is not of type I (it is of type F) (see [29]).
Thus, we will focus on a class of graphs having also the shrink property.
Actually, for technical reasons, we will use a potentially stronger definition
of the shrink property that is the planar shrink property.

Our main result (Theorem 3.2) shows that if p = 1/2 and the graph is
invariant under rotations, translations and has the planar shrink property,
then the model is of type I.

Here we briefly present the general strategy to prove this achievement.
First we show two preliminary results on general attractive spin systems with
initial density p ∈ (0, 1] (see Lemmas 1.1-1.2 in Section 1.1 ). More precisely
we show that, for an attractive system, if a spin fixates to +1 with positive
probability then the probability that it is constantly equal to +1 for all
times t ∈ [0,∞) is positive. After this general analysis, we specifically study
the zero-temperature stochastic Ising model. First we show that, under the
shrink property and the translation-ergodicity, the cardinality of any cluster
grows to infinity almost surely (Proposition 4.1). By this preliminary result,
we are able to show that the cluster at the origin will intersect the boundary
of any finite region infinitely often almost surely. As already mentioned, we
consider a planar graph that is invariant under translations and a rotation
of θ ∈

{
π
3
, π

2
, 2

3
π
}

. Then, we construct a planar regular region centered at
the origin that has the same rotation invariance of the graph. By the FKG
inequality and the rotation invariance of the region, the cluster in the origin
will intersect all sides of the regular region with a positive probability larger
or equal to a quantity, denoted by pcross. We stress that, for t growing to
infinity, pcross does not depend on the size of the region. By these properties
and by the previous results, we show that any ball centered in the origin has
its spins equal to +1 infinitely often with a probability larger of pcross (see
Lemmas 4.3-4.7). Thus, with probability at least pcross no site will be able
to fixate at the value −1. Finally, by considering the initial density p = 1/2
and by Lemma 1.2 and Lemmas 4.2-4.7, we show that all sites flip infinitely
often almost surely (see Theorem 3.2).

We emphasize again that, by Theorem 3.1, a necessary condition for the
model to be of type I is that underlying graph has the shrink property. If the
underlying graph G is planar and invariant under rotations and translations,
in order to have a sufficient condition we have to introduce a potentially
stronger property, the planar shrink property. Our last result (Theorem
3.3) shows that for one-dimensional translation invariant graphs, the shrink
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property is a necessary and sufficient condition for the model to be of type
I.

The set of results, presented in this thesis, was done in collaboration with
my advisor E. De Santis (see [13]). The plan of the thesis is the following.
In Section 1.1, we define the Markov process by the infinitesimal generator
and by the Harris’ graphical representation. Moreover, we state two general
lemmas (Lemma 1.1 and Lemma 1.2) for Glauber attractive dynamics. In
Section 1.2, we describe in detail the zero-temperature stochastic Ising model
I(G, p), where G is the underlying graph and p is the initial density. In
Chapter 2, we introduce some notation on graphs, define the collection of
graphs in which we are interested in and present an infinite class of graphs
having the planar shrink property (see Proposition 2.3). We also provide
examples of graphs that have and do not have the shrink property, cases
where the Ising model is of type I in the first case, and of type either M or
F , in the latter. In Chapter 3, we present Theorem 3.1, which, as already
said, provides a necessary condition for the model to be of type I. Moreover,
we state the two main results of the thesis, Theorem 3.2 and Theorem 3.3.
In Chapter 4, Theorem 3.2 is proved through some lemmas. In Chapter 5,
we provide the ideas for the proof of Theorem 3.3 that, as we will see, is
similar to that of the Theorem 3.2.

1.1 Attractive spin systems

We now introduce the spin systems referring mainly to [26, Chapter 3]. We
consider a spin system (σt)t≥0, which describes ±1 spin flips dynamics on a
countable set of vertices V . The state space is Σ = {+1,−1}V . The value of
the spin at vertex v ∈ V at time t will be denoted by σt(v). We introduce
the usual order relation ≤ on Σ: given two configurations σ, σ′ ∈ Σ, we say
that σ ≤ σ′ if for each v ∈ V , σ(v) ≤ σ′(v). The system evolves as a Markov
process on the state space Σ with infinitesimal generator Lt, which acts on
local functions f , and defined as

(Ltf)(σ) =
∑
v∈V

ct(v, σ)
(
f(σv)− f(σ)

)
, (1.1)

where t ≥ 0, ct(v, σ) is the flip rate of the spin at vertex v, and σv is defined
in the following way:

σv(u) =

{
σ(u) if u 6= v

−σ(u) if u = v.
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We assume that ct(v, σ) is a uniformly bounded non-negative function, which
is continuous on σ and satisfies the condition

sup
v∈V

∑
w∈V

sup
σ∈Σ
|ct(v, σ)− ct(v, σw)| <∞, (1.2)

where the behavior on t of the rates is arbitrary. The condition in (1.2)
guarantees the existence of the Markov process with infinitesimal generator
Lt and determined by the flip rates ct(v, σ) (see in detail [26, p.122-123]).
Moreover the condition in (1.2) implies that this spin system is a Feller
process (see in detail [26, p.122-123] and the theorems referred to therein).
We take the process (σt)t≥0 right continuous.

We say that a spin system is attractive if ct(v, σ) is increasing in σ when
σ(v) = −1 and decreasing in σ when σ(v) = +1. We are in particular
interested to study Glauber dynamics, for which the relation

ct(v, σ) = 1− ct(v, σv) (1.3)

holds for each v ∈ V , σ ∈ Σ and t ≥ 0. If the relation (1.3) holds, then
0 ≤ ct(v, σ) ≤ 1. We write the flip rates in the form

ct(v, σ) = c̃t(v, (σ(u))u∈Av), (1.4)

where Av is a subset of V . Under assumptions supv∈V |Av| < ∞ and (1.3),
the process defined in (1.1) can be constructed by the Harris’ graphical rep-
resentation, which we now describe (see e.g. [22, 24, 25, 26]). We consider a
collection (Pv)v∈V of independent Poisson processes with rate 1 interpreted
as counting processes. For each v ∈ V , let Tv = (τv,n : n ∈ N) be the ordered
sequence of arrivals of the Poisson process Pv, associated with the vertex v.
The probability that there is a flip at vertex v at time t (conditioning on the
event {t ∈ Tv}) is equal to ct(v, σt−), where σt− := lims→t− σs. For conve-
nience, to describe these events in more detail, we can use a family of i.i.d.
random variables (Uv,n : v ∈ V, n ∈ N) distributed according to a uniform
random variable in [0, 1] and such that if Uv,n < cτv,n(v, στ−v,n), then the spin

at v flips at time τv,n (see [24] and [26]).
Lemma 1.1 is well known, but we present a proof in order to construct

the coupling that will be used in the proof of Lemma 1.2.

Lemma 1.1. Given two Glauber attractive dynamics (σt)t≥0 and (σ′t)t≥0 hav-
ing the same generator and such that σ0 ≤ σ′0, there exists a coupling such
that σt ≤ σ′t for each t ≥ 0.

Proof. By hypothesis the order relation is satisfied at the initial time. Hence,
it is sufficient to consider a single arrival of the Poisson process, i.e. only a
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possible spin flip, in order to show that the order relation is maintained.
Let us explicitly construct the desired coupling. We use the same Poisson
processes for the two systems, but different families of i.i.d. uniform random
variables (Uv,n : v ∈ V, n ∈ N) and (U ′v,n : v ∈ V, n ∈ N) for (σt)t≥0 and (σ′t)t≥0

respectively. For each v, v′ ∈ V and n ∈ N, let us consider the stopping time
τv,n. Moreover, for v′ ∈ V \ {v} let us define

N(n, v, v′) := sup{` ∈ N : τv′,` ≤ τv,n}.

We notice that N(n, v, v) = n, moreover for v′ 6= v one has τv′,N(n,v,v′) < τv,n
almost surely.

If στ−v,n(v) = σ′
τ−v,n

(v) then we define U ′v,n = Uv,n, if στ−v,n(v) = −1 <

σ′
τ−v,n

(v) = +1 then we define U ′v,n = 1 − Uv,n. Hence, the random variable

U ′v,n is a function of
(Uv,1, . . . , Uv,n−1) (1.5)

and of the independent sequences (Uv′,` : v′ ∈ V \ {v}, ` ≤ N(n, v, v′)) and
(Pv′(t) : v′ ∈ V, t ≤ τv,n).

If U ′v,n = Uv,n, by construction, U ′v,n is independent from U ′v,1, . . . , U
′
v,n−1,

which altogether are functions of Uv,1, . . . , Uv,n−2, of {Uv′,` : v′ ∈ V \ {v}, ` ≤
N(n− 1, v, v′)} and (Pv′(t) : v′ ∈ V, t ≤ τv,n−1). Otherwise, if U ′v,n = 1−Uv,n
independence follows by:

P(U ′v,n ∈ [a, b]|Uv,1 = u1, . . . , Uv,n−1 = un−1) =

= P(Uv,n ∈ [1− b, 1− a]|Uv,1 = u1, . . . , Uv,n−1 = un−1) =

= P(Uv,n ∈ [1− b, 1− a]) = b− a = P(U ′v,n ∈ [a, b]),

where 0 < a < b < 1 and u1, . . . un−1 ∈ (0, 1). This implies that the distri-
bution of U ′v,n and the conditional distribution of U ′v,n given U ′v,1, . . . , U

′
v,n−1

coincide, hence U ′v,n is independent from U ′v,1, . . . , U
′
v,n−1 and U ′v,n is a uni-

form random variable on [0, 1]. The independence of different sequences of
uniform random variables can be proved in a similar way.

Whenever there is an arrival of a Poisson process, for example at time t
for a vertex v (i.e. t ∈ Tv ), the following situations can arise:

Case στ−v,n(v) = σ′
τ−v,n

(v) = −1.

Since Uv,n = U ′v,n and cτv,n(v, στ−v,n) is increasing in σ, we have the following

three situations: if Uv,n < cτv,n(v, στ−v,n) ≤ cτv,n(v, σ′
τ−v,n

) then both systems

change the spin value at v; if cτv,n(v, στ−v,n) ≤ Uv,n < cτv,n(v, σ′
τ−v,n

) then in

the system (σt)t≥0 the spin at v does not change its value, while in (σ′t)t≥0

the spin flip occurs at v; if cτv,n(v, στ−v,n) ≤ cτv,n(v, σ′
τ−v,n

) ≤ Uv,n then both
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systems do not have the spin flip at v. In all these three situations the order
relation is maintained.

Case στ−v,n(v) = σ′
τ−v,n

(v) = +1.

Since Uv,n = U ′v,n and cτv,n(v, στ−v,n) is decreasing in σ, we have the following

three situations: if Uv,n < cτv,n(v, σ′
τ−v,n

) ≤ cτv,n(v, στ−v,n) then both systems

change the spin value at v; if cτv,n(v, σ′
τ−v,n

) ≤ Uv,n < cτv,n(v, στ−v,n) then in the

system (σt)t≥0 the spin at v change its value, while in (σ′t)t≥0 the spin flip
does not occur at v; if cτv,n(v, σ′

τ−v,n
) ≤ cτv,n(v, στ−v,n) ≤ Uv,n then both systems

do not have the spin flip at v. In all these three situations the order relation
is maintained.

Case στ−v,n(v) = −1 < σ′
τ−v,n

(v) = +1.

If Uv,n < cτv,n(v, στ−v,n) then, since in this case U ′v,n = 1 − Uv,n, by using the

relation (1.3) for Glauber dynamics and by attractivity, one has that

U ′v,n = 1− Uv,n > 1− cτv,n(v, στ−v,n) = cτv,n(v, σv
τ−v,n

) ≥ cτv,n(v, σ′
τ−v,n

).

Thus, in the system (σt)t≥0 the spin at v changes its value, while in (σ′t)t≥0

the spin flip does not occur at v, maintaining the order relation. If Uv,n ≥
cτv,n(v, στ−v,n), the spin at v in (σt)t≥0 does not change and therefore the order
relation is maintained.

By previous cases and since σ0 ≤ σ′0, one deduces that the order relation
is maintained at any time. Hence στ−v,n(v) = +1 and σ′

τ−v,n
(v) = −1 does not

occur.

Now, we give the following definition.

Definition 1.1. We say that a vertex v fixates if the spin at v flips only
finitely many times and we say that a vertex fixates from time zero if its
spin never flips.

In the following Lemma 1.2, for Glauber attractive dynamics, we compare
the probability that a spin fixates or fixates from time zero.

Lemma 1.2. Consider a Glauber attractive dynamics (σt)t≥0 where σ0 has
density p ∈ (0, 1]. If a vertex w fixates at the value +1 with positive proba-
bility, then the vertex w fixates at the value +1 from time zero with positive
probability.

Proof. We define Tw := inf{s ≥ 0 : σt(w) = +1 ∀t ≥ s}, where inf ∅ = +∞.
We assume that P(Tw <∞) = ρ > 0 and choose t̄ such that P(Tw < t̄) ≥ ρ/2.
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We consider a spin system (σt)t≥0, described through the Harris’ graphical
representation with the independent Poisson processes of rate 1 (Pv : v ∈ V )
and the i.i.d. uniform random variables (Uv,n : v ∈ V, n ∈ N), with initial
configuration σ0 distributed according to a Bernoulli product measure with
parameter p. Now, we construct another system (σ′t)t≥0 with the same distri-
bution. We make a resampling (indipendently by all other random variables
already introduced) of the spin at vertex w in the initial configuration, such
that

σ′0(w) =

{
+1 with probability p

−1 with probability 1− p,

and σ′0(u) = σ0(u), for each u 6= w.
We define a new Poisson process P ′w that after time t̄ has the same arrivals

of Pw. In the interval [0, t̄], P ′w is a Poisson process of rate 1 indipendent
by Pw. This new process, by independent increments property, is still a
Poisson process of rate 1. With positive probability one has P ′w(t̄) = 0.
Thus, by independence, with probability at least ρ

2
pe−t̄, the following three

events occur:

{Tw < t̄}, {σ′0(w) = +1}, {P ′w(t̄) = 0}. (1.6)

Whenever these three independent events occur, we define (U ′v,n : v ∈ V, n ∈
N) as follows:

� for v 6= w, U ′v,n = Uv,n when στ−v,n(v) = σ′
τ−v,n

(v), otherwise U ′v,n =

1− Uv,n;

� for v = w, U ′w,n = Uw,n+Pw(t̄) when στ−
w,n+Pw(t̄)

(w) = σ′
τ−w,n

(w), otherwise

U ′w,n = 1− Uw,n+Pw(t̄).

If one of the three events in (1.6) does not occur, the uniform random vari-
ables (U ′v,n : v ∈ V, n ∈ N) will be defined as U ′v,n = Uv,n for each v ∈ V and
n ∈ N.

Now, we suppose that the three events in (1.6) occur. By construction,
we have that σ0 ≤ σ′0. We show that for t ∈ [0, t̄], one has σt ≤ σ′t. Since
P ′w(t̄) = 0, then in the process (σ′t)t≥0 the spin at w remains equal to +1
until time t̄; hence σt(w) ≤ σ′t(w) for all t ≤ t̄. When there is an arrival
of a Poisson process Pv with v 6= w, by using the same coupling of Lemma
1.1, it follows that the desired order relation is maintained until time t̄. In
particular σt̄ ≤ σ′t̄. Now, applying the result of Lemma 1.1 by considering t̄ as
initial time, it follows that σt ≤ σ′t for each t ≥ 0. Hence, the vertex w fixates
from time zero with probability at least ρ

2
pe−t̄, concluding the proof.
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1.2 The I(G,p)-model

We consider the stochastic process (σt)t≥0, which describes ±1 spin flips
dynamics on an infinite graph G = (V,E) with ∆(G) < ∞, where ∆(G) is
the maximum degree of G (which will be defined in detail in Section 2.1). The
state space is Σ = {+1,−1}V and the initial state is distributed according to
a Bernoulli product measure (denoted by µp) with density p ∈ [0, 1] of spins
+1 and 1− p of spins −1. The process corresponds to the zero-temperature
limit of Glauber dynamics for an Ising model with formal Hamiltonian

H(σ) = −
∑
u,v∈V :
{u,v}∈E

σ(u)σ(v), (1.7)

where σ ∈ Σ. The definition (1.7) is not well posed for infinite graphs. For
this reason, we introduce the changes in energy at vertex v ∈ V as

∆Hv(σ) = 2
∑
u∈V :
{u,v}∈E

σ(u)σ(v).

The process (σt)t≥0 is a Markov process on Σ with infinitesimal generator
having as flip rates

ct(v, σ) =


0 if ∆Hv(σ) > 0
1
2

if ∆Hv(σ) = 0

1 if ∆Hv(σ) < 0.

(1.8)

It is immediate to notice that this stochastic process is well defined, indeed
the supremum in (1.2) is bounded by ∆(G) (see [26]). We note that the
process is a Glauber attractive dynamics. Furthermore, since ∆(G) <∞, the
flip rates in (1.8) satisfy the condition in (1.4) with Av = NV (v), where NV (v)
is the set of neighbours of v in G. Therefore, this process can be constructed
by the Harris’ graphical representation (see [22, 24, 25, 26]). In the following,
we will refer to this model as I(G, p)-model where G is the underlying graph
and p is the density of the Bernoulli product measure. Let Pdyn be the
probability measure for the realization of clock rings and tie-breaking coin
tosses. Moreover, we denote by Pp = µp×Pdyn the joint probability measure
on the space Ω of the initial configurations and realizations of the dynamics.
An element of the sample space Ω will be denoted by ω.
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Chapter 2

Underlying graphs

2.1 Some notation on graphs

We begin this section by presenting Lemma 2.1 that holds in general for sub-
sets of R2 that are invariant by translations and rotations with the purpose of
applying it to connected planar infinite quasi-transitive graphs. Later in the
subsection, we introduce some definitions and notation on the graphs (see
e.g [16] and [21]) and we present the graphs on which the stochastic Ising
model will be constructed.

Let us denote by ‖·‖ the Euclidean norm and by B(x, r) the ball of radius
r > 0 centered in x. For any S ⊂ R2 and x̄ ∈ R2, we define the translation
of a set as

S + x̄ := {x+ x̄ : x ∈ S}.

Given θ ∈ (0, π], we say that S is invariant under rotation of θ if there exists
a point O ∈ R2, which we assume to be the origin, such that Rθ(S) ⊂ S,
where Rθ is the rotation in the plane with center O and angle θ.

Lemma 2.1. Given a non-zero vector x̄ ∈ R2 and a rotation in the plane Rθ

with center O and angle θ ∈ (0, π]. Let S ⊂ R2 be a non-empty set such that

� S has a finite number of points in any ball;

� S + x̄ ⊂ S;

� Rθ(S) ⊂ S.

Then S + x̄ = S, Rθ(S) = S and θ ∈
{
π
3
, π

2
, 2

3
π, π

}
.

Proof. By hypothesis S is non-empty. Thus, by S + x̄ ⊂ S, there exists a
point v ∈ S, with v 6= O. Regarding the rotation, we write θ = 2πα where

11
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α ∈ R. Now, if α ∈ R \ Q the set {Rn
θ (v) : n ∈ N} ⊂ S is dense in ‖v‖S1

that contradicts the property that each ball in R2 contains a finite number
of points of S. Hence, α necessarily belongs to Q.

Let α ∈ Q, we write α = m
n

with m,n ∈ N coprime. By Bézout’s lemma,
there exist a, b ∈ Z such that am+bn = 1. Let us select an integer k ∈ N such
that a + kn ∈ N. One has Ra+kn

θ = R 2π
n
−2π(b−km) = R 2π

n
. Thus R 2π

n
(S) ⊂ S.

Hence, we can consider only the angles of the form θ = 2π 1
n
, for n ∈ N.

By applying (n − 1) times the rotation R 2π
n

one obtains R− 2π
n

(S) ⊂ S,
therefore the rotations with rational α are surjective onto S and consequently
also invertible on S. In particular, R2πα(S) = S for any α ∈ Q.

Now we define

r := min{||w|| : w ∈ R2, S + w ⊂ S}.

that is well-posed because, by hypothesis, there exists x̄ ∈ R2 such that
S + x̄ ⊂ S and S has a finite number of points in any ball.

Therefore there exists v̄0 ∈ R2 such that S+v̄0 ⊂ S with ||v̄0|| = r. Notice
that, without loss of generality, one can assume that r = 1 and v̄0 = (1, 0).
Let us observe that, by R2π 1

n
(S) = S, it follows

S + v̄k ⊂ S,

where v̄k =
(
cos(2πk

n
), sin(2πk

n
)
)

for k = 0, . . . , n− 1. From the fact that

−v̄0 =
n−1∑
k=1

v̄k,

one has that S − v̄0 ⊂ S. Therefore the translation with respect to v̄0 is
surjective onto S and being also injective it is invertible on S. Therefore
S ± v̄k = S for k = 0, . . . , n− 1. Hence, one has

S + v̄1 − v̄0 = S.

The norm of v̄1 − v̄0 is
√

2− 2 cos(2π
n

). Since v̄0 is a minimal norm vector

such that S + v̄0 = S, one has

‖v̄1 − v̄0‖ =

√
2− 2 cos

(
2π

n

)
≥ 1. (2.1)

By (2.1) one obtains that cos
(

2π
n

)
≤ 1

2
, which gives n ∈ {2, 3, 4, 5, 6}.
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In order to get the result, we need to show that n = 5 contradicts r = 1.
In this regard, we consider

S + v̄0 + v̄2 = S

where v̄2 = (cos(4π/5), sin(4π/5)). Notice that ‖v̄0+v̄2‖ =
√

2 + 2 cos
(

4
5
π
)
<

1, which contradicts r = 1. Therefore θ ∈
{
π
3
, π

2
, 2

3
π, π

}
and this concludes

the proof.

Remark 2.1. We note that a set S satisfying the hypotheses of Lemma 2.1
must be countable. Notice that for x̄ = (0, 1) and θ ∈

{
π
3
, π

2
, 2

3
π, π

}
there

exist examples of sets S such that S + x̄ = S and Rθ(S) = S. Moreover,
there are examples where R2π/3(S) = S but Rπ/3(S) 6= S and examples such
that Rπ(S) = S but Rπ/2(S) 6= S (see e.g. the graphs on the right in Figures
2.1 and 2.4, the graph in Figure 2.6 and related comments in Section 2.3).

Let us now recall some definitions and notation on graph theory (see e.g.
[16, 21]).

Let G = (V,E) be a graph, where V is the set of its vertices (or sites)
and E, the set of its edges, is a set of unordered pairs {u, v} ⊂ V . The
degree of a vertex v ∈ V , denoted by deg(v), is the number of neighbours
of v, i.e. deg(v) := |

{
u ∈ V : {u, v} ∈ E

}
|. The maximum degree of G

is ∆(G) := sup{deg(v) : v ∈ V }. Given v ∈ V and S ⊂ V , we denote by
NS(v) the set of neighbours of v in S, i.e. NS(v) :=

{
u ∈ S : {u, v} ∈ E

}
and we define the degree of v in S as degS(v) := |NS(v)|. Given U ⊂ V ,
the induced subgraph G[U ] is the graph whose vertex set is U and whose
edge set consists precisely of the edges {u, v} ∈ E with u, v ∈ U . A path
connecting a vertex v to a vertex u is a non-empty graph P = (V (P ), E(P )),
where V (P ) = {v0 = v, v1, . . . , vm−1, vm = u}, the vertices vi are all distinct
and E(P ) = {{vi, vi+1} ∈ E : i = 0, . . . ,m − 1}; m is the length of the
path P . If P = (V (P ), E(P )) is a path connecting v to u, then the graph
C := (V (P ), E(P )∪{{u, v}}) is called a cycle. A graph G = (V,E) is said to
be connected if for any two vertices u, v ∈ V there exists a path connecting
them. We say U ⊂ V is connected if the induced subgraph G[U ] is connected.
We denote by dG(u, v) the distance in G of two vertices u and v defined as
the length of a shortest path connecting u to v. Given a subset U ⊂ V , we
define the external boundary of U as the set ∂extU := {v ∈ V \ U : ∃u ∈
U s.t. {v, u} ∈ E}. Now, we provide the following definitions (see e.g. [21]).

Definition 2.1 (Graph automorphism). Let G = (V,E) be a graph. A
bijective map φ : V → V is said to be a graph automorphism if {u, v} ∈
E ⇐⇒ {φ(u), φ(v)} ∈ E.
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Definition 2.2 (Transitive graph). A graph G = (V,E) is called transitive
if for any u, v ∈ V there is a graph automorphism mapping u on v.

Definition 2.3 (Quasi-transitive graph). A graph G = (V,E) is said to be
quasi-transitive if V can be partitioned into a finite number of vertex sets
V1, . . . , VN such that for any i = 1, . . . , N and any u, v ∈ Vi, there exists a
graph automorphism mapping u on v.

Now we introduce planar graphs, which play a central role in our thesis.
An arc is a subset of R2 that is the union of finitely many segments and is
homeomorphic to the closed interval [0, 1]. The images of 0 and 1 under such
a homeomorphism are the endpoints of this arc. If A is an arc with endpoints
x and y, the interior of A is A \ {x, y} (see [16]).

A plane graph is a pair G = (V,E) that satisfies the following properties:

1. V ⊂ R2 is at most countable;

2. every edge is an arc between two vertices;

3. different edges have different sets of endpoints;

4. the interior of an edge contains no vertex and no point of any other
edge.

A graph G = (V,E) is said to be planar if it can be embedded in the plane,
i.e. it is isomorphic to a plane graph G̃. The plane graph G̃ is called a drawing
of G or embedding of G in the plane R2. We can identify a planar graph with
its embedding in R2. Similarly, we say that G = (V,E) is embedded in Rd if
V ⊂ Rd is at most countable and (2)-(4) hold.

Given a plane graph G = (V,E) and a set S ⊂ V , let ConvG(S) :=
Conv(S) ∩ V , where Conv(S) denotes the convex hull of S. We now define
the shrink and planar shrink property, which are important for our discussion.

Definition 2.4 (Shrink property). Given a graph G = (V,E), we say that
G has the shrink property if for each subset S ⊂ V with finite cardinality,
there exists u ∈ S such that degV \S(u) ≥ degS(u).

Given a line ` ∈ R2, we denote by H`
1 ⊂ R2 and H`

2 ⊂ R2 the closed
half-planes having ` as boundary. Given a non-empty subset S ⊂ V and a
line `, we define S`1 = S ∩H`

1 and S`2 = S ∩H`
2; clearly S = S`1 ∪ S`2.

Definition 2.5 (Planar shrink property). For a plane graph G = (V,E),
we say that G has the planar shrink property when, for any non-empty set
S ⊂ V and for any line `, one has:
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for i = 1, 2, if S`i is non-empty and has finite cardinality, then there
exists u ∈ S`i such that degV \S(u) ≥ degS(u).

We say that a planar graph G has the planar shrink property if there exists
an embedding of G in the plane for which such a property holds.

For a planar graph, it is immediate to note that the planar shrink property
implies the shrink property.

2.2 Definition of the graph classes of interest

We are interested in a connected planar infinite graph G = (V,E) with a
specified embedding in R2 such that the following conditions hold:

(C1) There exists a non-zero vector x̄ such that V + x̄ ⊂ V and for any
u, v ∈ V ,

{u, v} ∈ E ⇐⇒ {u+ x̄, v + x̄} ∈ E.
Then we say that G is translation invariant with respect to the vector
x̄.

(C2) There exists a point O ∈ R2 and θ ∈ (0, π] such that Rθ(V ) ⊂ V and
for any u, v ∈ V ,

{u, v} ∈ E ⇐⇒ {Rθ(u), Rθ(v)} ∈ E.

Then we say that G is rotation invariant with respect to Rθ.

(C3) Each ball in R2 contains a finite number of vertices of G.

By Lemma 2.1, it follows that a graph satisfying conditions (C1), (C2) and
(C3) has θ ∈

{
π
3
, π

2
, 2

3
π, π

}
and the translations and rotations in (C1), (C2)

are graph automorphisms. For reasons that will become clear in the following,
we do not deal with θ = π. The translations and rotations provide a partition
of V in classes, in any case this partition can be finer than the partition
given in Definitions 2.2 and 2.3. For θ = π, it is straightforward to exhibit
an example where the number of classes is infinite. For example, we can
consider G = (V,E) where V = Z2 and the edge set is

E =
{
{(i, j), (i, j + 1)} : i, j ∈ Z

}
∪
{
{(i, 0), (i+ 1, 0)} : i ∈ Z

}
.

It is immediate to note that G is invariant under translation with respect
to the vector (1, 0) and is invariant under rotation of π but not of π/2.
Moreover, the classes of G are Cn = {(i,±n) : i ∈ Z} for n ∈ N0 (see Figure
2.6 in Section 2.3). In any case we have the following result.
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Figure 2.1: The graph on the left belongs to G(4), hence it is invariant under
rotation of π/2. The graph on the right is only invariant under rotation of
π.

Proposition 2.1. If G is a plane graph satisfying the conditions (C1), (C2)
and (C3), then θ ∈

{
π
3
, π

2
, 2

3
π, π

}
. Moreover if θ ∈

{
π
3
, π

2
, 2

3
π
}

then the plane
graph G is either transitive or quasi-transive.

Proof. The first part of the statement has already been discussed above. It
is sufficient to prove that for θ ∈

{
π
3
, π

2
, 2

3
π
}

the number of classes is finite.
Let θ ∈

{
π
3
, π

2
, 2

3
π
}

, the plane graph G is translation invariant with respect to
the linear independent vectors x̄ and ȳ := Rθx̄. The number of classes is at
most the number of vertices belonging to the closed parallelogram spanned
by vectors x̄ and ȳ. By (C3) follows that the number of vertices in this
parallelogram is finite.

Now, we introduce the class of plane graphs G(a) with a ∈ {3, 4, 6} that
is the collection of connected infinite graphs with finite maximal degree sat-
isfying conditions (C1)-(C3) with θ = θ(a) = 2π/a. It is immediate to notice
that G(6) ⊂ G(3). Let, furthermore, G := G(3) ∪ G(4).

Now, we introduce a class of one-dimensional graphs which are the graphs
underlying the model considered in our second main result, Theorem 3.3.

Let G = (Z, E) be a connected graph satisfying the following properties:

(A1) There exists L ∈ Z such that for any x, y ∈ Z

{x, y} ∈ E ⇐⇒ {x+ L, y + L} ∈ E.

Then we say that G is translation invariant with respect to L.

(A2) ∆(G) <∞.
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Proposition 2.2. If G = (Z, E) is a connected graph satisfying the properties
(A1) and (A2) then

(a) G is quasi-transitive;

(b) There exists K <∞ such that |x− y| < K for each {x, y} ∈ E.

Proof. The translation invariance with respect to L provides a partition of
Z in classes and the number of classes is at most L. This implies (a).
Finally, since G is translation invariant and ∆(G) <∞, to show (b) it suffices
to consider K = maxx,y∈Z:{x,y}∈E |x− y|.

2.3 Construction of a class of graphs having

the planar shrink property and examples

We begin by introducing a class of graphs that have the planar shrink prop-
erty, as we show in Proposition 2.3. Let H be the collection of infinite plane
graphs G = (V,E) satisfying the following properties:

(P1) every edge is a closed line segment, i.e. a line segment which includes
its two end-points;

(P2) for each e ∈ E, let us consider the unique straight line ` which contains
e. Then for any x ∈ ` there exists f ∈ E such that x ∈ f .

(P3) ∆(G) <∞.

Figure 2.2: In black the vertices in S and in white those in V \S. This figure
illustrates a graph G ∈ H and the vertex u used in the proof of Proposition
2.3.
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Figure 2.3: Examples of graphs in G(4) that do not have the shrink property.

Proposition 2.3. If G ∈ H, then G has the planar shrink property.

Proof. Given a non-empty subset S ⊂ V and a straight line `, suppose
without loss of generality that 0 < |S`1| < ∞ (see Definition 2.5). We need
to prove that there exists u ∈ S`1 such that degV \S(u) ≥ degS(u). First, we
note that by property (P2) every vertex has a degree that is even. Without
loss of generality, we can consider the line ` coincident with the axis x (by
applying a translation and a rotation) such that the vertices in S`1 have a
non-negative ordinate. We write every vertex v ∈ V as v = (vx, vy) ∈ R2 and
let ry := maxv∈S`1 vy and rx := max{vx ∈ R : (vx, ry) ∈ S`1}.

We consider the vertex u = (rx, ry) ∈ V . Given w = (wx, wy) ∈ NS(u),
there are two cases to consider (see Figure 2.2). If wy = ry then, by property
(P2), there exists a vertex w′ = (w′x, w

′
y) ∈ NV \S(u) with w′y = ry and

w′x > rx. If instead wy < ry then, by property (P2), there exists a vertex
w′ ∈ NV \S(u) with w′y > ry. In both cases, w′ belongs to the linear extension
of edge {u,w} out of S. In other words, it is possible to define an injective
function

fu : w ∈ NS(u) 7→ w′ ∈ NV \S(u),

where the vertices u, w and w′ are aligned. This implies that degV \S(u) ≥
degS(u).

We note that the shrink property holds even if we replace H with a class
of graphs embedded in Rd having the properties (P1), (P2) and (P3), i.e.
they are obtained by intersection of lines. The proof of this fact is analogous
to the proof of Proposition 2.3.

We want to provide some explicit examples here.
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The square lattice Z2, the triangular lattice (see Figure 2.4) and the
graphs in Figures 2.1, 2.4 and 2.5 belong to class H and therefore, by Propo-
sition 2.3, have the planar shrink property. In particular, we note that the
graph on the right in Figure 2.4 belongs to G(3) \ G(6), i.e. it is invariant
under rotation of an angle of 2π/3, but not of π/3. Indeed, if we consider O
a vertex of the blue triangular lattice or the barycenter of suitable triangles
of the black triangular lattice, then the graph is invariant under rotation of
2π/3 with center O. However, it is not possible to identify points O on the
plane for which the graph is invariant under rotation of π/3 with center O.

In Figure 2.3 we give two examples of graphs that do not have the shrink
property

In Figure 2.6 we show a graph G with infinite classes that is invariant by
a rotation of π but not invariant under a rotation of π/2.

Figure 2.4: On the left the triangular lattice, example of a graph G ∈ G(6)∩
H. On the right a double triangular lattice, example of a graph G ∈ (G(3) \
G(6)) ∩H.

Figure 2.5: Modified double lattice Z2: example of a graph G ∈ G(4) ∩H.
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Figure 2.6: Example of a graph G ∈ H that is invariant under translation
and rotation of π, but not of π/2. The number of classes of G is infinite.

Figure 2.7: Examples of connected graphs G = (Z, E) satisfying the proper-
ties (A1) and (A2). The top graph does not have the shrink property, but
the bottom graph does.
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2.4 Construction of graphs in d = 1

In this section, we show a simple way to construct one-dimensional graphs
G = (Z, E) satisfying the properties (A1) and (A2) (see [9]). Given G? =
(V ?, E?, f) a directed graph with integer weights associated with the edges,
we define the graph G̃ = (Ṽ , Ẽ) in the following way:

Ṽ =
{

(x, v) : x ∈ Z, v ∈ V ?
}
,

Ẽ =
{
{(x, u), (x+ f({u, v}), v)} : {u, v} ∈ E?

}
.

It is immediate to notice that G is isomorphic to a graph having G = (Z, E)
satisfying the properties (A1) and (A2). This way of constructing graphs can
be very useful for visually verifying some properties of the graph.

Figure 2.8: Example of a graph G̃ = (Ṽ , Ẽ) constructed as above starting
from a weighted directed graph G? = (V ?, E?, f), where V ? = {u, v, w}, E? =
{{w, v}, {w, u}, {v, u}, {w,w}}, f({w, v}) = f({v, u}) = 0, f({w, u}) = −1
and f({w,w}) = +1.
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Chapter 3

Statements of main results

In this chapter, we state the two main results. We recall that we deal with the
zero-temperature stochastic Ising model, where the initial spin configuration
is distributed according to a Bernoulli product measure µp with parameter
p ∈ (0, 1). It is possible to notice that all our results remain valid if µp is
replaced by any measure satisfying the following conditions: invariance and
mixing under translations for which the graph is invariant; invariance under
rotation for which the graph is invariant; the FKG property; symmetry under
global spin flips.

First, we present Theorem 3.1, which show that the shrink property is a
necessary condition to obtain that the I(G, p)-model is of type I.

Theorem 3.1. Let G = (V,E) be a graph with ∆(G) < ∞. If G does not
have the shrink property then for any p ∈ [0, 1] the I(G, p)-model is not of
type I.

Proof. First let us consider the case p ∈ (0, 1]. Since G does not have the
shrink property then there exists a finite subset S ⊂ V such that degV \S(u) <
degS(u) for any u ∈ S. Moreover, one has

Pp
(⋂
u∈S

{σ0(u) = +1}
)

= p|S| > 0. (3.1)

Since degV \S(u) < degS(u) for every u ∈ S, no site in S can change the value
of its spin if σ0(u) = +1 for each u ∈ S.

This fact implies that

P
(
each vertex in S fixates at the value +1 from time zero

)
≥ p|S| > 0.

Thus, for any p ∈ (0, 1] the I(G, p)-model is not of type I.
Let us now consider p = 0. In this case, all sites fixate from time 0 at the

value −1 almost surely and the I(G, 0)-model is of type F .

23
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Remark 3.1. Note that Theorem 3.1 does not imply that the I(G, p)-model
is of type F or M.

If G does not have the shrink property, it is possible to show examples
in which the I(G, p)-model is respectively of type F or M. It is known (see
[5, 29]) that if G is the hexagonal lattice then the I(G, p)-model is of type
F . Now, we show in Example 3.1 that if we consider G ∈ G(4) as in Figure
3.1 then for any p ∈ (0, 1) the I(G, p)-model is of type M.

Figure 3.1: Example of a graph G ∈ G(4) that does not have the shrink
property and, for p ∈ (0, 1), the I(G, p)-model is of type M.

Example 3.1. Let G ∈ G be the graph in Figure 3.1. For any p ∈ (0, 1) the
I(G, p)-model is of type M.
Now, we show this statement. Let ui ∈ V with deg(ui) = 3 for i = 1, . . . , 8 as
in Figure 3.1. Let S = {u1, . . . , u4}. Since degV \S(u1) = 1 < 2 = degS(u1),
it is immediate to notice that

Pp
(
u1 fixates at the value +1

)
≥ Pp

(
∀i = 1, . . . , 4 σ0(ui) = +1

)
= p4 > 0.

(3.2)
Hence, by ergodicity (see [27, 29]), there exist vertices that fixate at the value
+1 almost surely. Now, let z, wi ∈ V be the vertices such that deg(z) = 4
and deg(wi) = 3 for i = 1, . . . , 8 as in Figure 3.1. Let Ez be the event
that the vertices ui and wi fixate respectively at the value +1 and −1 for
each i = 1, . . . , 8. With the same argument used in (3.2), we deduce that
Pp(Ez) ≥ p8(1− p)8 > 0. Moreover, conditioning on the event Ez, whenever
there is an arrival of the Poisson process Pz the spin flip at z occurs with
probability 1/2. Thus, by Lévy’s extension of the Borel-Cantelli Lemmas,
z flips infinitely often with positive probability. By ergodicity (see [27, 29])
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again, it follows that there exist vertices that flip infinitely often almost surely.
Therefore, the I(G, p)-model is of type M.

In light of Theorem 3.1, for the two main results we focus on a class of
graphs having also the shrink property. Recall that G is the class of graphs
introduced in Section 2.2, which consists of planar graphs invariant under
translations and rotations of θ ∈

{
π
3
, π

2
, 2

3
π
}

. Now, we are ready to state our
main result, Theorem 3.2, whose proof is given in Chapter 4.

Theorem 3.2. If G = (V,E) ∈ G has the planar shrink property, then the
I(G, 1/2)-model is of type I, i.e., all sites flip infinitely often almost surely.

Now, we state Theorem 3.3, whose proof is given in Chapter 5.

Theorem 3.3. If G = (Z, E) is a connected graph satisfying the properties
(A1) and (A2), then the I(G, 1/2)-model is of type I if and only if G has the
shrink property.

We note that, unlike the graphs belonging to the class G, for a connected
graph G = (Z, E) satisfying the properties (A1) and (A2) the shrink prop-
erty is a necessary and sufficient condition for the model to be of type I.
This depends on the one-dimensionality of the graphs considered. Indeed in
proving Theorem 3.2, we use the planar shrink property to make all sites
belonging to a suitable two-dimensional convex hull have spin equal to +1.
It is immediate to understand that this planar shrink property is no longer
useful for one-dimensional graphs since trivially we have no two-dimensional
convex hull to consider. For the graphs considered in Theorem 3.3, the fol-
lowing simple idea can be used. Given Ir(0) a symmetric interval centered
at 0, for each graph it is possible to identify two disjoint subsets of fixed
cardinality {r + 1, . . . , r + K} and {−r − K, . . . ,−r − 1} so that if all the
vertices in these two sets have spin equal to +1 at time t then the shrink
property implies that all the vertices in Ir(0) have spin equal to +1 in some
time s ∈ (t, t + 1) with positive probability. The probability that this event
occurs infinitely often is positive and does not depend on the size r of the
interval since the two disjoint sets considered have fixed cardinality. Once a
lower bound on this probability has been obtained, the continuation of the
proof is analogous to the proof of Theorem 3.2. For details on the strategy
of this proof, as already mentioned, refer to Chapter 5. This simple idea,
however, would not work to prove Theorem 3.2, because if all the vertices
of the boundary of a finite region have spin equal to +1 at time t then we
would obtain a lower bound on the probability that all the sites of the region
have spin equal to +1 infinitely often that depends on the size of the region.
This size-dependent lower bound could not be used in the proof of Theorem
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3.2, as instead we will do using the lower bound that comes from Lemmas
4.6-4.7 (see Chapter 4).



Chapter 4

Proof of Theorem 3.2

In the following, given σ ∈ Σ and v ∈ V , we denote by Cv(σ) the cluster
at site v for σ, defined as the maximal connected subset of V such that
v ∈ Cv(σ) and for any u ∈ Cv(σ) one has σ(u) = σ(v).

First, we state the following known result (see [7, 29]), which will be
useful to prove Proposition 4.1.

Lemma 4.1 ([7, 29]). For d ∈ N, take a I(G, p)-model, where p ∈ [0, 1] and
G is a graph embedded in Rd with ∆(G) <∞. If in addition G is translation
invariant with respect to d linearly independent vectors, then for each vertex
there are finitely many energy-lowering spin flips almost surely.

We do not provide the proof of Lemma 4.1 here, but refer to the proof of
Theorem 3 in [29] (as emphasized in the related remark) or to Lemma 5 in
[7].

Now, we are ready to present the following proposition, which is an ex-
tension of Proposition 3.1 in [4].

Proposition 4.1. For d ∈ N, take a I(G, p)-model, where p ∈ [0, 1] and G is
a graph embedded in Rd that is translation invariant with respect to d linearly
independent vectors. Moreover, suppose that G has the shrink property and
∆(G) < ∞. Then, the size of the cluster at a vertex v ∈ V diverges almost
surely as t→∞, i.e.

∀v ∈ V, lim
t→∞
|Cv(σt)| =∞ almost surely.

Proof. We prove the proposition by contradiction. Hence, for a vertex v ∈ V ,
let us define the event

A := {ω ∈ Ω : lim inf
t→∞

|Cv(σt)| <∞}.

27
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By contradiction assumption we suppose P(A) > 0. By continuity of the
measure there exists M > 0 such that P(AM) > 0, where

AM := {ω ∈ Ω : lim inf
t→∞

|Cv(σt)| < M}.

Then, for any ω ∈ AM , one can define (Tk(ω))k∈N such that

T1(ω) = inf{t ≥ 0 : |Cv(σt)| < M},

and, for k ∈ N, one recursively defines

Tk+1(ω) = inf{t ≥ Tk(ω) + 1 : |Cv(σt)| < M}.

Let F be the σ-algebra generated by the process (σt)t≥0 and Ft be the σ-
algebra generated by the process up to time t. It is immediate to note that
Tk is a stopping time with respect to the filtration (Ft)t≥0 for any k ∈ N. We
consider FTk for any k ∈ N. We notice that for ω ∈ AM , since ∆(G) < ∞
and |Cv(σTk)| < M , the cluster Cv(σTk) can be equal only to a finite number
of sets of vertices. For each of these sets of vertices, by the shrink property
there is an ordered finite sequence of clock rings and outcomes of tie-breaking
coin tosses inside a fixed finite ball that would cause the cluster to shrink
to a single site w ∈ V with dG(w, v) < M (w could, in principle, depend on
Cv(σTk)). Then, since the vertex w would have all neighbours with opposite
spins, it could have an energy-lowering spin flip (with change in energy equal
to −2deg(w)) and the cluster would vanish with positive probability. We
define

BM,k :=
⋃
w∈V :

dG(w,v)<M

{
spin at w flips at time t ∈ (Tk, Tk + 1) with ∆Hw(σt) ≤ −1

}
.

From the previous statements in this proof, one has that there exists δ > 0
such that

Pp
(
BM,k|σTk

)
≥ δ.

Now, by the Strong Markov property of the process, for any k ∈ N we have
the following lower bound

ξk(ω) := Pp
(
BM,k|FTk

)
(ω) = Pp

(
BM,k|σTk

)
≥ δ,

for almost every ω ∈ AM . Thus
∑∞

k=1 ξk(ω) =∞, for almost every ω ∈ AM .
Now, by using the Lévy’s extension of Borel-Cantelli Lemmas (see e.g. [30])
with the sequence of events (BM,k)k∈N and the filtration (FTk)k∈N, we have
that {

ω ∈ Ω :
∞∑
k=1

ξk(ω) =∞

}
⊂

{
ω ∈ Ω :

∞∑
k=1

1BM,k(ω) =∞

}
∪ C
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where C ∈ F is a set of zero measure. Then

Pp
(
lim sup
k→∞

BM,k

)
≥ Pp

(
AM

)
> 0.

Thus, there exists a vertex w̃ with dG(w̃, v) < M such that energy-
lowering spin flips occur at w̃ infinitely many times with positive probability.
By translation invariance with respect to d linearly independent vectors and
ergodicity, there exists a positive density of vertices for which energy-lowering
spin flips occur infinitely often almost surely. This fact contradicts Lemma
4.1. This concludes the proof.

Remark 4.1. Proposition 4.1 is a generalization of Proposition 3.2 in [4]
for graphs G having the shrink property. In [4], the result was given only for
the cubic lattice Zd that in particular has the shrink property.

In the following, we consider the I(G, p)-model having G ∈ G(a) for
a ∈ {3, 4} and it is invariant under translation with respect to x̄. Without loss
of generality we take x̄ = (1, 0). Let us consider a vertex ṽ having minimal
Euclidean distance from the origin O. Clearly, ṽ = O when O belongs to
V . In the case ṽ 6= O we consider the two distinct vertices ṽ, Rθ(ṽ); since G
is a connected graph, we can select a connected finite set S ⊂ V such that
ṽ, Rθ(ṽ) ∈ S. Finally we define the set of vertices

U =

{
{O} if O ∈ V⋃a−1
k=0Rkθ(a)(S) otherwise,

(4.1)

where θ(a) = 2π/a. By construction U is connected and Rθ(a)(U) = U .

For a ∈ {3, 4} we construct a region of size L ∈ R+ centered in O as
follows. Let us consider the point P1(L, a) = (L tan(θ(a)/2), L) ∈ R2 and let

Pi+1(L, a) = Riθ(a)(P1),

for i = 1, . . . , a − 1. We define the region of size L ∈ R+ centered in O as
follows

TL(a) := Conv({P1(L, a), . . . , Pa(L, a)}).

For a = 3, 4 one respectively obtains that TL(a) is an equilateral triangle or
a square.

Now, let us consider the class V1 ⊆ V (see Proposition 2.1 and Definition
2.3). If the graph G = (V,E) is transitive then V1 = V . We write every
vertex v ∈ V as v = (vx, vy) ∈ R2 and let v0,y := maxv∈V1∩TL(a) vy and
v0,x := min{vx ∈ R : (vx, vy) ∈ V1 ∩ TL(a) and vy = v0,y}. We define v0 =
(v0,x, v0,y) ∈ V1 ∩ TL(a). By translation invariance of G with respect to
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x̄ = (1, 0), one has v0 + x̄ ∈ V1. Now we can select a connected set of
vertices U0 such that V1 ∩B(v0, 2) ⊂ U0. Finally we choose r1 ≥ 2 such that
U0 ⊂ B(v0, r1). We are ready to present the following lemma.

Lemma 4.2. For any G ∈ G(a) with a ∈ {3, 4} and for any L ∈ R+ there
exists a connected set of vertices WL ⊂ (TL+2r1(a) \ TL−2r1(a)) such that
Rθ(a)(WL) = WL.

Proof. For k ∈ N, let
vk := v0 + kx̄.

We define kmax = max{k ∈ N : vk ∈ TL(a)}. The set of vertices

S =
kmax⋃
k=0

(U0 + kx̄)

is connected because for any k = 0, . . . , kmax− 1 it turns out that G[U0 +kx̄]
is connected and vk, vk+1 ∈ U0 + kx̄.

We define the set of vertices WL =
⋃a−1
i=0 Riθ(a)(S). Now, we show that

WL is connected. Since

||v0 − P2(L, a)|| ≤ 1, ||P1(L, a)− vkmax|| ≤ 1

and by using the triangle inequality, one obtains

||v0 −Rθ(a)(vkmax)|| ≤ ||v0 − P2(L, a)||+ ||P2(L, a)−Rθ(a)(vkmax)|| =
= ||v0 − P2(L, a)||+ ||P1(L, a)− vkmax || ≤ 2.

The previous inequality and V1 ∩B(v0, 2) ⊂ U0 imply that WL is connected.
Clearly WL ⊂ (TL+2r1(a) \ TL−2r1(a)) and Rθ(a)(WL) = WL.

Let WL as in Lemma 4.2. One can select a cycle UL ⊂ WL; we call fL,∞
its outer face and fL,0 its inner face.

Remark 4.2. We notice that, by translational invariance with respect to the
vectors x̄ = (1, 0) and ȳ = (cos θ(a), sin θ(a)), one has

|WL| � L and |V ∩ fL,0| � L2,

where we write an � bn to mean that there exist two positive constants c1

and c2 such that c1 ≤ an
bn
≤ c2 for all n ∈ N. This implies that G ∈ G(a)

is amenable for any a ∈ {3, 4, 6}. Under the assumptions of amenability of
the graph, the translation invariance of the measure µ and finite-energy of
the measure µ, it is known that the infinite cluster is at most one almost
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surely (see [2, 3, 21]). For the zero-temperature stochastic Ising model, it is
not known whether the measure induced at time t has finite-energy property.
Therefore, we are not able to prove the uniqueness of the infinite cluster at
time t. Instead, if the temperature is positive and decreases to zero, one
has the property of finite-energy (see [7]). In this last case one obtains the
uniqueness of the infinite cluster.

Now, given an integer q ∈ N and δ < 1
2q

, we consider T1+δ(a) \ T1−δ(a)

and we show that there exists a collection of balls (B(ci, 4/q) : i = 1, . . . , aq)
such that:

a. T1+δ(a) \ T1−δ(a) ⊂
⋃aq
i=1 B(ci, 4/q);

b. for any i = 1, . . . , aq, the center ci belongs to ∂T1(a);

c. for any i = 1, . . . , q and m = 0, . . . , a − 1 one has ci+mq = Rmθ(a)(ci).
In particular, Rθ(a)(

⋃aq
i=1B(ci, 4/q)) =

⋃aq
i=1B(ci, 4/q).

It is clear that such a construction exists, for example by taking the centers
of the balls almost equally spaced. The chosen balls in this construction will
be maintained also in the sequel.

Figure 4.1: The distance between the segment having u0 ∈ B(ci, 4/q) and
u1 ∈ B(ci+q, 4/q) as its endpoints and O can decrease at most of 4/q (the
length of the radius) with respect to the distance between the segment having
endpoins ci and ci+q and O.

Lemma 4.3 (Geometric Lemma). Let a ∈ {3, 4}, q ≥ 10 and δ < 1
2q

and

consider the cover of T1+δ(a)\T1−δ(a) introduced in items a, b, and c. Then,
for any (uk)k=0,...,a−1 such that uk ∈ B(ci+kq, 4/q) for k = 0, . . . , a − 1, one
has Conv({u0, . . . , ua−1}) ⊃ B(O, 1

2
− 4

q
).
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Proof. For a fixed i = 1, . . . , q, let us consider (ci+kq)k=0,...,a−1. For a = 3, 4,
we note that Conv({ci+kq : k = 0, . . . , a − 1}) is an equilateral triangle or a
square. Therefore, since ci+kq ∈ ∂T1(a) one has Conv({ci+kq : k = 0, . . . , a−
1}) ⊃ B(O, 1

2
). Let us now consider the segment having u0 ∈ B(ci, 4/q)

and u1 ∈ B(ci+q, 4/q) as its endpoints. The distance between this segment
and the origin O can decrease at most of 4/q with respect to the distance
between O and the segment having endpoins ci, ci+q (see Figure 4.1). Then
one obtains that Conv({u0, . . . , ua−1}) ⊃ B(O, 1

2
− 4

q
).

As already announced, we do not deal with θ = π. Indeed if we con-
sider a=2 which corresponds to θ(a) = π, this statement is false because
Conv({u0, u1}) would be a segment and there is no ball contained in it.
From now on we take q ≥ 24 and hence 1

2
− 4

q
≥ 1

3
.

Now, we present the following definition.

Figure 4.2: Example of a realization of an L-cross.

Definition 4.1 (L-Cross). Given G ∈ G(a) with a ∈ {3, 4}, we say that an
L-cross of +1 occurs at time t if there exists a cluster C̃(σt) of G[V ∩TL+2r1(a)]
such that

� σt(v) = +1 for each v ∈ C̃(σt);

� C̃(σt) ⊃ U , where U is defined in (4.1);

� there exists i ∈ {1, . . . , q} such that C̃(σt) ∩ B(Lci+kq, 4L/q) 6= ∅ for
each k = 0, . . . , a− 1.

We denote by Et
L with t ∈ R+

0 the event that an L-cross of +1 occurs at time
t. Moreover, we define

AL := lim sup
t→∞

Et
L.
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We define the set of vertices SL(t) := C̃(σt) ∩WL, where the properties
of WL are given in Lemma 4.2. The previous Lemma 4.3 shows that for each
time t ∈ R+

0 in which an L-cross of +1 occurs (see Figure 4.2), one has

Conv(SL(t)) ⊃ B (O, rL) where rL =
1

3
L. (4.2)

In other words, Lemma 4.3 says that |ConvG(SL(t))| � L2.

Lemma 4.4. Consider the I(G, p)-model, where p ∈ [1
2
, 1) and G ∈ G. If G

has the shrink property, then

Pp(AL) ≥ pcross :=
1

(aq)a

(
1

2

)a|U |
.

We now explain the strategy for proving Lemma 4.4. Let U ⊂ V as
defined in (4.1). If the initial density p ≥ 1/2, then U is contained in a cluster
of +1 with probability at least (1/2)|U |, at any time t. By Proposition 4.1, the
size of this cluster diverges almost surely as t→∞. Now, by FKG inequality
and by rotation invariance, one obtains that lim inft→∞ Pp(Et

L) > 0, i.e. the
cluster satisfies the properties in Definition 4.1 with positive probability.
Note that this lower bound does not depend on L. By Reverse Fatou Lemma,
we obtain the same lower bound on Pp(AL). We are now ready to prove the
lemma.

Proof of Lemma 4.4. Let Ut be the event that all vertices in U have spin
equal to +1 at time t. By Lemma 1.1, FKG inequality and Harris’ inequality
(see [23, 26]), it follows that

Pp(Ut) ≥
(

1

2

)|U |
. (4.3)

If Ut occurs, then, since U is connected, at time t all vertices in U belong
to a same cluster, we call it CU(σt). Moreover, let C̃(σt) be the cluster of
G[V ∩ TL+2r1(a)] that contains U . We denote by CWL

(t) the event that the
cluster C̃(σt) intersects WL, i.e. CWL

(t) := {C̃(σt)∩WL 6= ∅}. By Proposition
4.1, we have that limt→∞ |CU(σt)| =∞ almost surely. Thus, by planarity of
G and V ∩ fL,0 has finite cardinality (see Remark 4.2), we get

lim
t→∞

Pp
(
CWL

(t)
)

= 1. (4.4)

By (4.3) and (4.4), it follows that

lim inf
t→∞

Pp
(
CWL

(t) ∩ Ut
)

= lim inf
t→∞

Pp(Ut) ≥
(

1

2

)|U |
. (4.5)
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Now, we write WL = ∪qi=1 ∪a−1
k=0 P

i
L,k where P i

L,k := WL ∩ B(Lci+kq, 4L/q)
for i = 1, . . . , q and k = 0, . . . , a − 1. We define the event CL,i,k(t) :=
{C̃(σt) ∩ P i

L,k 6= ∅} for i = 1, . . . , q and k = 0, . . . , a− 1. Hence, we have

CWL
(t) ∩ Ut =

q⋃
i=1

a−1⋃
k=0

CL,i,k(t) ∩ Ut.

Thus, by rotation invariance and by the union bound, we have

Pp
(
CWL

(t)∩Ut
)

= Pp
( q⋃
i=1

a−1⋃
k=0

(
CL,i,k(t)∩Ut

))
≤

q∑
i=1

a−1∑
k=0

Pp
(
CL,i,k(t)∩Ut

)
≤

≤ aqPp
(
CL,̄i,0(t) ∩ Ut

)
, (4.6)

where ī ∈ {1, . . . , q} is such that Pp
(
CL,̄i,0(t)∩ Ut

)
= maxi=1,...,q Pp

(
CL,i,0(t)∩

Ut
)
. We note that CL,̄i,k(t) ∩ Ut is an increasing event for k = 0, . . . , a − 1;

therefore

Pp
(a−1⋂
k=0

(
CL,̄i,k(t) ∩ Ut

))
≥
(
Pp
(
CL,̄i,0(t) ∩ Ut

))a
≥
(

1

aq
Pp
(
CWL

(t) ∩ Ut
))a

,

(4.7)
where the first inequality follows by FKG inequality and by rotation in-
variance, and the last inequality follows by (4.6). We also notice that, by
definition of P i

L,k, one has

CL,i,k(t) = {C̃(σt) ∩ P i
L,k 6= ∅} ⊂ {C̃(σt) ∩B(Lci+kq, 4L/q) 6= ∅}.

Thus, by Definition 4.1, we have

Et
L =

q⋃
i=1

a−1⋂
k=0

{
C̃(σt) ∩B(Lci+kq, 4L/q) 6= ∅

}
∩ Ut ⊇

⊇
q⋃
i=1

a−1⋂
k=0

CL,i,k(t) ∩ Ut ⊇
a−1⋂
k=0

CL,̄i,k(t) ∩ Ut,

and hence

Pp(Et
L) ≥ Pp

(a−1⋂
k=0

CL,̄i,k(t) ∩ Ut
)
. (4.8)

Now, by (4.5), (4.7) and (4.8), we obtain the following lower bound

lim inf
t→∞

Pp(Et
L) ≥ lim inf

t→∞

(
1

aq
Pp
(
CWL

(t) ∩ Ut
))a
≥ 1

(aq)a

(
1

2

)a|U |
.
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Finally, by Reverse Fatou Lemma we get

Pp(AL) ≥ lim sup
t→∞

Pp(Et
L) ≥ lim inf

t→∞
Pp(Et

L) ≥ 1

(aq)a

(
1

2

)a|U |
> 0

that concludes the proof.

Now we give a simple definition that will be useful when related to Et
L

through Lemma 4.3. For t ∈ R+
0 , let F t

L be the event that all sites belonging
to B(O, L

3
) have spin equal to +1 at some time s ∈ (t, t+ 1).

Lemma 4.5. Consider the I(G, p)-model, where p ∈ [1
2
, 1) and G ∈ G. If G

has the planar shrink property, then there exists εL > 0 such that

Pp(F t
L|σt = σ) ≥ εL

for any σ ∈ Σ such that {σt = σ} ⊂ Et
L.

Proof. Let σ ∈ Σ and (σs)s≥0 be the I(G, p)-model such that {σt = σ} ⊂
Et
L. We define another zero-temperature stochastic Ising model (σ′s)s≥t with

infinitesimal generator having the flip rates as in (1.8) and such that

σ′t(v) =

{
+1 for each v ∈ C̃(σt)

−1 otherwise,

where C̃(σt) is the cluster of G[V ∩ TL+2r1(a)] in the configuration σ, as
in Definition 4.1. By definition of σ′t and Et

L, C̃(σt) ⊃ U is the unique
cluster of +1 sites in the configuration σ′t. In configuration σ′t, we have that(
V ∩TL+2r1(a)

)
\ C̃(σt) = D1(σ′t)t· · ·tDk(σ

′
t), where Di(σ

′
t) for i = 1, . . . , k

are clusters of −1 sites (we stress that k < ∞ because V ∩ TL+2r1(a) has
finite cardinality).

We notice that, by planarity of G, for each i = 1, . . . , k we have that
∂extDi(σ

′
t) ⊂ C̃(σt). By planar shrink property, for each i = 1, . . . , k there

exists an ordered finite sequence of updates (i.e. of clock rings and outcomes
of tie-breaking coin tosses inside V ∩ TL+2r1(a)) that would cause all sites of
Di(σ

′
t)∩ConvG(SL(t)) (see definition above formula (4.2)) to have spin equal

to +1 in some time s ∈ (t, t+ 1) with positive probability. Therefore, we get
an ordered finite sequence of updates inside V ∩ TL+2r1(a) that would cause
all sites of ConvG(SL(t)) to have spin equal to +1 in σ′s (with s ∈ (t, t+ 1)),
but since σ′t ≤ σt this sequence of updates works, by the coupling in Lemma
1.1, in the same way for the original process (σs : s ∈ (t, t + 1)). Moreover,
by Lemma 4.3, one has V ∩B(O, L

3
) ⊂ ConvG(SL(t)).
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Thus, there exists εL > 0 such that

Pp(F t
L|σt = σ) ≥ εL

for any σ ∈ Σ having {σt = σ} ⊂ Et
L.

We recall thatAL := lim supt→∞E
t
L. Now, we defineBL := lim supt→∞ F

t
L.

We are ready to present the following lemma.

Lemma 4.6. Consider the I(G, p)-model, where p ∈ [1
2
, 1) and G ∈ G. If G

has the planar shrink property, then Pp(BL) ≥ pcross > 0.

Proof. First, let ω ∈ AL, i.e. an L-cross of +1 occurs infinitely often. Then
one can define (Tk(ω))k∈N such that

T1(ω) = inf{t ≥ 0 : Et
L occurs},

and, for k ∈ N, we recursively define

Tk+1(ω) = inf{t ≥ Tk + 1 : Et
L occurs}.

Let F be the σ-algebra generated by the process (σt)t≥0 and Ft be the σ-
algebra generated by the process up to time t. It is immediate to note that
Tk is a stopping time with respect to the filtration (Ft)t≥0 for any k ∈ N. We
consider FTk for any k ∈ N. By the Strong Markov property of the process
and by Lemma 4.5, for any k ∈ N we have the following lower bound

ξk(ω) := Pp
(
F Tk
L |FTk

)
(ω) = Pp

(
F Tk
L |σTk

)
≥ εL > 0,

for almost every ω ∈ AL. Thus
∑∞

k=1 ξk(ω) = ∞, for almost every ω ∈ AL.
Now, by using the Lévy’s extension of Borel-Cantelli Lemmas (see e.g. [30])
with the sequence of events (F Tk

L )k∈N and the filtration (FTk)k∈N, we have
that {

ω ∈ Ω :
∞∑
k=1

ξk(ω) =∞

}
⊂

{
ω ∈ Ω :

∞∑
k=1

1
F
Tk
L

(ω) =∞

}
∪ C,

where C ∈ F is a set of zero measure. Then, by Lemma 4.4, we get

Pp
(
BL

)
≥ Pp

(
AL
)
≥ 1

(aq)a

(
1

2

)a|U |
= pcross > 0.

This concludes the proof.
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Now, for any time t2 > t1 + 1 we define

D(L; t1, t2) :=
⋃

s∈[t1,t2−1]

F s
L and D(L; t1,∞) :=

⋃
s≥t1

F s
L.

Lemma 4.7. For any L ∈ R+ and t1 ≥ 0, one has

Pp
(
D(L; t1,∞)

)
≥ pcross.

Moreover, for any ε > 0 there exists a time s > t1 + 1 such that

Pp
(
D(L; t1, s)

)
≥ (1− ε)pcross.

Proof. We observe that D(L; t1,∞) ⊃ BL. In particular, by Lemma 4.6,

Pp
(
D(L; t1,∞)

)
≥ pcross.

Now, we note that for t2 ≤ t′2 one has D(L; t1, t2) ⊂ D(L; t1, t
′
2). Thus, by

continuity of measure

lim
t2→∞

Pp
(
D(L; t1, t2)

)
= Pp

(⋃
s≥t1

D(L; t1, s)

)
= Pp

(
D(L; t1,∞)

)
≥ pcross.

Hence for all ε > 0 there exists a time s > t1 + 1 such that

Pp
(
D(L; t1, s)

)
≥ (1− ε)pcross.

Let F be the σ-algebra generated by the process (σt)t≥0. All the events
introduced belong to F . Given a configuration σ ∈ Σ = {+1,−1}V and a
non-zero vector v̄ such that G is translation invariant with respect to v̄, we
define the configuration translated τv̄σ with respect to v̄ as

τv̄σ(v) := σ(v + v̄) for any v ∈ V .

Let X be a F -measurable random variable. Then X = f((σt)t≥0) where f is
a measurable function. We define

X + v̄ := f((τ−v̄σt)t≥0). (4.9)

If X is an indicator function then f takes only the values 0 or 1. Let A ∈ F ,
one can define

1A + v̄ = f((τ−v̄σt)t≥0) =: 1A+v̄,
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that defines A+ v̄ for any A ∈ F .
In the following result we will apply the ergodic theorem. We note

that these processes are ergodic with respect to the translation if the ini-
tial conditions are given for instance by a Bernoulli product measure, see e.g.
[22, 26, 27] and references therein.

Now, we introduce some notation, which we will use in the proof of The-
orem 3.2. For v ∈ V and t ∈ R+, let

A+
v (t) := {σs(v) = +1, ∀s ∈ [0, t]}, A−v (t) := {σs(v) = −1, ∀s ∈ [0, t]}.

We denote by A+
v (∞) (resp. A−v (∞)) the event that the vertex v fixates

at the value +1 (resp. −1) from time zero. Clearly, A±v (t) ⊂ A±v (t′), for
any t′ ≤ t. We recall that {V1, . . . , VN} is the partition of the vertex set V
that comes from the quasi-transitivity of G ∈ G, see Proposition 2.1. We
note that, since G is quasi-transitive, P(A±v (t)) depends only on the class
to which the vertex v belongs and does not depend explicitly on the vertex
itself. Thus, for p = 1/2, for each i = 1, . . . , N , v ∈ Vi, and t ∈ R+ ∪ {∞},
we set

ρi(t) := P1/2(A+
v (t)) = P1/2(A−v (t)).

The last equality follows by symmetry under the global spin flip for p = 1/2.
Now, we are ready to prove our main result.

Proof of Theorem 3.2. We will prove the theorem by contradiction. Suppose
that there exists j ∈ {1, . . . , N} such that ρj(∞) > 0 that by Lemma 1.2 is
equivalent to have a site that fixates with positive probability. We fix the
following constants: ε = 1

3
pcrossρj(∞), ε1 =

ρj(∞)

5
, ε2 = 1

4
pcross and ε̃ = 1

8
.

We notice that, by continuity of the measure, the limit of ρi(t) as t→∞
exists and is equal to

lim
t→∞

ρi(t) = lim
t→∞

P1/2(A+
v (t)) = P1/2

( ∞⋂
m=1

A+
v (m)

)
= P1/2(A+

v (∞)) = ρi(∞),

for each v ∈ Vi. This implies that there exists a time tε > 0 such that

0 ≤ ρj(tε)− ρj(∞) < ε. (4.10)

Since G ∈ G, there exist two linearly independent vectors x̄1 and x̄2 such
that G is translation invariant with respect to them. We want to construct
on the graph G disjoint regions of a suitable size L0 centered in n1x̄1 + n2x̄2

with n1, n2 ∈ Z. By ergodicity (see [22, 27, 29]), one has

lim
r→∞

1

n(r, j)

∑
v∈B(O,r)∩Vj

1A−v (tε)
= ρj(tε) > 0 almost surely, (4.11)
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where n(r, j) := |B(O, r)∩Vj|. Thus, (4.11) implies that there exists r̃ ∈ R+

such that

P1/2

(
1

n(r̃, j)

∑
v∈B(O,r̃)∩Vj

1A−v (tε)
/∈ [ρj(tε)− ε1, ρj(tε) + ε1]

)
≤ ε2.

Then, in particular

P1/2

( ∑
v∈B(O,r̃)∩Vj

1A−v (tε)
< n(r̃, j)

(
ρj(tε)− ε1

))
≤ ε2. (4.12)

Now, we construct disjoint regions of size L0 on the graph G in the following
way. Let L0 = 3r̃, where L0 and r̃ play the same role of L and rL in (4.2).
We define the event

G(L; t, η) :=

{ ∑
v∈B(O,L/3)∩Vj

1A−v (t) ≥ n(L/3, j)
(
ρj(t)− η

)}
,

where L, t, η > 0. By (4.12), one has

P1/2

(
G(L0; tε, ε1)

)
≥ 1− ε2. (4.13)

Now, let

YL0(t) :=
∑

v∈B(O,L0/3)∩Vj

1A−v (t).

Let n0 ∈ N such that TL0+2r1(a) ∩ (TL0+2r1(a) + n0x̄i) = ∅ for i = 1, 2. We
define YL0,m1,m2(t) := YL0(t) +m1n0x̄1 +m2n0x̄2 with m1,m2 ∈ Z (see (4.9)).
By ergodicity, it follows that for any t ∈ R+

lim
M→∞

1

(2M + 1)2

∑
m1,m2∈Z:
|m1|,|m2|≤M

1

n(L0/3, j)
YL0,m1,m2(t) = ρj(t), a. s. (4.14)

We define the translated events

D(L;m1,m2; t1, t2) := D(L; t1, t2) +m1n0x̄1 +m2n0x̄2

and
G(L;m1,m2; t, η) := G(L; t, η) +m1n0x̄1 +m2n0x̄2.

Now, by Lemma 4.7 and by translation invariance, there exists a time
tε̃ > tε + 1 such that

P1/2

(
D(L0;m1,m2; tε, tε̃)

)
≥ (1− ε̃)pcross. (4.15)
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By ergodicity, (4.13) and (4.15), it follows that

lim
M→∞

1

(2M + 1)2

∑
m1,m2∈Z:
|m1|,|m2|≤M

1G(L0;m1,m2;tε,ε1)∩D(L0;m1,m2;tε,tε̃) =

= P1/2

(
G(L0;m1,m2; tε, ε1) ∩D(L0;m1,m2; tε, tε̃)

)
≥

≥ P1/2

(
D(L0;m1,m2; tε, tε̃)

)
−P1/2

(
G(L0;m1,m2; tε, ε1)c

)
≥ (1−ε̃)pcross−ε2 a.s.

(4.16)

Over the event G(L0;m1,m2; tε, ε1) one has

YL0,m1,m2(tε) ≥ n(L0/3, j)
(
ρj(tε)− ε1

)
. (4.17)

By (4.14), we get

ρj(tε)−ρj(tε̃) = lim
M→∞

1

(2M + 1)2

∑
m1,m2∈Z:
|m1|,|m2|≤M

1

n(L0/3, j)

[
YL0,m1,m2(tε)−YL0,m1,m2(tε̃)

]
≥

≥ lim
M→∞

1

(2M + 1)2

∑
m1,m2∈Z:
|m1|,|m2|≤M

1

n(L0/3, j)
YL0,m1,m2(tε)1G(L0;m1,m2;tε,ε1)∩D(L0;m1,m2;tε,tε̃).

(4.18)

The inequality in (4.18) follows by

YL0,m1,m2(tε)− YL0,m1,m2(tε̃) ≥ YL0,m1,m2(tε)1D(L0;m1,m2;tε,tε̃) ≥
≥ YL0,m1,m2(tε)1G(L0;m1,m2;tε,ε1)∩D(L0;m1,m2;tε,tε̃).

Indeed if D(L0;m1,m2; tε, tε̃) occurs then YL0,m1,m2(tε̃) = 0 and one has an
equality. Otherwise, ifD(L0;m1,m2; tε, tε̃) does not occur then YL0,m1,m2(tε)−
YL0,m1,m2(tε̃) ≥ 0 since YL0,m1,m2(t) is a decreasing function in t. Now, by
(4.16) and (4.17), the last term in (4.18) is lower bounded by(

ρj(tε)− ε1
)

lim
M→∞

1

(2M + 1)2

∑
m1,m2∈Z:
|m1|,|m2|≤M

1G(L0;m1,m2;tε,ε1)∩D(L0;m1,m2;tε,tε̃) ≥

≥
(
ρj(tε)− ε1

)(
(1− ε̃)pcross − ε2

)
a.s. (4.19)

Combining (4.10) with (4.18) and (4.19) and recalling the value of the con-
stants ε, ε1, ε2 and ε̃, we obtain

1

3
pcrossρj(∞) = ε > ρj(tε)− ρj(∞) ≥ ρj(tε)− ρj(tε̃) ≥

≥
(
ρj(tε)− ε1

)(
(1− ε̃)pcross − ε2

)
≥
(
ρj(∞)− ε1

)(
(1− ε̃)pcross − ε2

)
=

=
1

2
pcrossρj(∞),
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which is obviously false when ρj(∞) > 0. Thus, for each i ∈ {1, . . . , N} we
have that ρi(∞) = 0, i.e., each site fixates at the value +1 (or −1) from time
0 with zero probability. This implies, by Lemma 1.2, that each site fixates
at the value +1 (or −1) with zero probability. Hence, all sites flip infinitely
often almost surely, i.e., the model is of type I.
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Chapter 5

Proof of Theorem 3.3

By Theorem 3.1, if the I(G, 1/2)-model is of type I then G has the shrink
property. Therefore, it remains to prove the converse implication, i.e. that
the shrink property of G is also a sufficient condition to obtain that the
I(G, 1/2)-model is of type I. In this chapter, we provide details of the
strategy to prove the converse implication. In particular, we show how,
starting from the idea already mentioned in Chapter 3, the proof of Theorem
3.3 consists in a simple and immediate revisiting of some of the proofs of
Chapter 4.

From now on, as in the proof of Proposition 2.2, we set

K = max
x,y∈Z:{x,y}∈E

|x− y|.

Now, we define the following subsets of Z:

Ir(0) :=
{
x ∈ Z : |x| ≤ r

}
and

Ur,K(0) := Ir+K(0) \ Ir(0) =
{
−r − 1, . . . ,−r −K

}
t
{
r + 1, . . . , r +K

}
.

We define the event

Ut,K :=
⋂

x∈Ur,K(0)

{
σt(x) = +1

}
.

By Lemma 1.1 and FKG inequality, it follows that

P1/2(Ut,K) ≥
(

1

2

)2K

> 0. (5.1)

43
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Moreover, by Reverse Fatou Lemma and (5.1) we get

P1/2(lim sup
t→∞

Ut,K) ≥ lim sup
t→∞

P1/2(Ut,K) ≥
(

1

2

)2K

> 0. (5.2)

For t ≥ 0, we define the event

F t
r,K :=

⋃
s∈(t,t+1)

⋂
x∈Ir+K(0)

{
σs(x) = +1

}
.

Now, we are ready to prove Lemma 5.1, which is nothing more than a simple
revisitation of the proof of Lemma 4.5 for these one-dimensional graphs that
we are considering in this chapter.

Lemma 5.1. Consider the I(G, 1/2)-model, where G = (Z, E) is a connected
graph satisfying the properties (A1) and (A2). If G has the shrink property,
then there exists δr > 0 such that

P1/2(F t
r,K |σt = σ) ≥ δr (5.3)

for any σ ∈ Σ such that {σt = σ} ⊂ Ut,K.

Proof. Let σ ∈ Σ and (σs)s≥0 be the I(G, 1/2)-model such that {σt = σ} ⊂
Ut,K . We define another zero-temperature stochastic Ising model (σ′s)s≥t with
infinitesimal generator having the same flip rates and such that

σ′t(x) =

{
+1 for each x ∈ Ur,K(0)

−1 otherwise.

By definition of σ′t and K, one has that Ir(0) is a cluster of −1 sites in
configuration σ′t and ∂ext

(
Ir(0)

)
⊂ Ur,K(0). Since σ′t(x) = +1 for each x ∈

Ur,K(0), by shrink property there exists an ordered finite sequence of updates
(i.e. of clock rings and outcomes of tie-breaking coin tosses inside Ir+K(0))
that would cause all sites of Ir(0) to have spin equal to +1 in σ′s for some
s ∈ (t, t + 1), but since σ′t ≤ σt this sequence of updates works in the same
way for the original process (σs : s ∈ (t, t + 1)). Thus, there exists δr > 0
such that

P1/2(F t
r,K |σt = σ) ≥ δr

for any σ ∈ Σ having {σt = σ} ⊂ Ut,K .

Now, we define Br,K := lim supt→∞ F
t
r,K . We are ready to present the

following lemma (analogous to Lemma 4.6).
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Lemma 5.2. We consider the I(G, 1/2)-model, where G = (Z, E) is a con-
nected graph satisfying the properties (A1) and (A2). If G has the shrink
property, then

P1/2(Br,K) ≥
(

1

2

)2K

=: p̃ > 0.

Proof. See proof of Lemma 4.6.

Finally, repeating in an almost identical way the proofs of Lemma 4.7
and Theorem 3.2, Theorem 3.3 is proved.
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