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Abstract In solid mechanics, the defects and imperfections of materials
(e.g., cracks, dislocations, etc.) play a key role on the overall mechanical be-
haviour of the structure despite their localized character. In this paper, the
phenomenon of crack propagation under tension (Mode I) has been investi-
gated considering two different approaches: linear elastic fracture mechanics
(LEFM) and bond-based peridynamics (PD). For the former, the progression
of crack path is simulated with the aid of extended finite element method
(XFEM), which eliminates the need to have conforming mesh with crack
geometry by locally enriching the nodes located in the influence domain of
discontinuity and singularity. For the latter, a classical continuum mechanics-
peridynamics (CCM-PD) coupling strategy is utilized to combine the ability
of peridynamics to handle displacement fields discontinuity with the compu-
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tational efficiency of continuum-based modeling approaches. All the formula-
tions are developed within two-dimensional (2D) linearized framework, and
implemented through in-house codes. The correspondence between LEFM
based XFEM and CCM-PD coupled models is discussed through a benchmark
problem of practical importance: a uniaxially deformed finite plate with an
edge crack, focusing on the variation of fracture parameters and comparing
the computational efficiency of the approaches.

1 Introduction

Fracture refers to new material surface formation in an irreversible manner,
which can take place on different scale levels (i.e., from atomistic to contin-
uum), and is generally categorized as brittle (i.e., sudden failure, low energy
dissipation) and ductile (i.e., progressive degradation, high energy dissipa-
tion) depending on the amount of plastic deformation that occurs at the
process zone as a result of either static or dynamic loads.

Understanding fracture mechanism (i.e. initiation/nucleation, propaga-
tion/growth, coalescence, resting of cracks) is of vital importance for the
reliable application of materials since cracks have a deteriorating effect on
the strength of structures, particularly pronounced in brittle (non-ductile)
case (Inglis, 1913; Gdoutos, 2006). Given the high costs and time constraints
associated with experimental testing, various methods with each one having
its own set of advantages and limitations, are exploited. Depending on the
principles followed while modeling the structure under investigation, the ap-
proaches can be categorized in three different groups as listed below.
(i) Continuum-based: linear elastic fracture mechanics (LEFM) (Griffith,
1921; Irwin, 1968), cohesive zone model (CZM) (Dugdale, 1960; Barenblatt,
1962), nonlocal and gradient-enhanced damage models (DM) (Pijaudier-
Cabot and Bažant, 1987; Peerlings et al., 1996; de Borst et al., 1996; Moës
et al., 2011), phase field method (PFM) (Francfort and Marigo, 1998; Bour-
din et al., 2008; Miehe et al., 2010), peridynamics (PD) (Silling, 2000; Silling
and Askari, 2005; Silling et al., 2007),
(ii) Discontinuum-based: discrete element method (DEM) (Cundall and
Strack, 1979; Zhao et al., 2022), lattice model (Chiaia et al., 1997; Mariano
and Trovalusci, 1999; Topin et al., 2007), particle model (Ostoja-Starzewski
and Wang, 2006),
(iii) Partitioned-domain multi-scale: coupled atomistic-continuum models
(Tadmor and Miller, 2011), coupled continuum-peridynamics approaches
(Shojaei et al., 2016; Galvanetto et al., 2016; Zaccariotto et al., 2018; Chen
et al., 2022), etc.

Among those, the linear elastic fracture mechanics (LEFM) and peridy-
namics (PD), forms the basis of this work following their wide range of appli-
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cations in modeling cracked structures, about which a brief literature review
is provided in the following subsections.

1.1 Linear Elastic Fracture Mechanics (LEFM)

The foundation of LEFM dates back to Griffith (1921) in which the strength
of scratched glass specimens is investigated under uniaxial tension by reveal-
ing the inverse relation between rupture stress and crack length for the first
time. Accordingly, the crack is suggested to propagate when the rate of po-
tential energy decrease (also known as strain energy release rate) equals to
or is greater than the rate of the energy consumed/absorbed in the gener-
ation of new material surfaces. Here the former part refers to driving force,
whereas the latter part, which quantifies the disruption of the bonds, is a ma-
terial property defining the resistance force. The Griffith’s theory was later
extended by Irwin (1948) and Orowan (1949) to cover the effect of plastic
dissipation that is confined to a very small process zone adjacent to the crack
front as in quasi-brittle materials. The establishment of the concept of stress
intensity factor (SIF), which expresses the amplitude of stress singularity at
the crack tip, and displaying its connection with energy release rate (ERR),
allowed utilization of the near crack tip local fields to study the response
of cracked materials (Irwin, 1957). Moreover, the basic fracture parameters
(e.g., near crack-tip stress and displacement fields, crack opening displace-
ment, SIF, ERR) describes the damage characteristics of the structures under
investigation by treating any loading state as a combination of Mode I (open-
ing), Mode II (shearing) and Mode III (tearing) cases. These parameters, that
can be determined experimentally, analytically or numerically (e.g., finite el-
ement method (FEM), extended finite element method (XFEM), boundary
element method (BEM), virtuel element method (VEM), meshless methods
(MM)) with the aid of path independent line or domain integrals; J-integral,
I-integral (Cherepanov, 1967; Rice, 1968; Eshelby, 1974; Stern et al., 1976;
Moran and Shih, 1987), are then substituted into employed fracture crite-
rion (e.g., the maximum tangential/circumferential stress (Erdogan and Sih,
1963; Smith et al., 2006), the minimum strain energy density (Sih, 1974; Ay-
atollahi et al., 2015), the maximum energy release rate (Hussain et al., 1973;
Nuismer, 1975; Hou et al., 2019), etc.) in order to predict the direction of
crack propagation. At this point, it should be mentioned that the most cri-
teria endorse each other in the case of Mode I, yet deviate under Mode II
dominated loading conditions. In such a case, the discrepancy is attributed
to the omission of higher order terms, hence the inconsistency between the-
oretical predictions and experimental results are claimed to be alleviated by
generalizing the calculations via including the non-singular terms. Neverthe-
less, as the focus herein is on the Mode I case, further details related to Mode
II dominated loading conditions are avoided. As in LEFM, it is essential to
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obtain the basic fracture parameters, the present study conducts extended
finite element method (XFEM), that is developed by Belytschko and Black
(1999); Dolbow (1999); Moes et al. (1999); Daux et al. (2000) following its ef-
ficiency in modeling the discontinuities without the need to have conforming
mesh with crack geometry and/or material interface (Sukumar and Prevost,
2003; Huang et al., 2003).

1.2 Peridynamics (PD) and local-to-nonlocal coupling

Peridynamics (PD) theory was proposed by Silling (2000) and later extended,
culminating in its final form referred to as state-based version, as detailed
in Silling et al. (2007). The theory emerges as a nonlocal reformulation of
classical continuum mechanics (CCM) in which the body is assumed to be
comprised of material points capable of interacting within a finite distance,
referred to as horizon. The horizon represents the region where nonlocal in-
teractions occur hence serves as a characteristic length scale (Bobaru and
Hu, 2012). As the theory relies on integro-differential equations, the equation
of motion is defined by replacing the divergence of the stress tensor with an
integral operator. This makes the governing equations of PD to be applica-
ble even in the presence of discontinuous displacement fields allowing for the
natural treatment of fracture and failure as material responses (Silling, 2000;
Bobaru et al., 2016) without necessitating predefined criteria for crack prop-
agation phenomenon (Ongaro et al., 2021). The distinctive features of PD
leads to a surge in the exploration and implementation of innovative compu-
tational methods grounded on it for analyzing different materials (Hu et al.,
2012; Zhu et al., 2016; Hermann et al., 2022; Sheikhbahaei et al., 2023) across
various length scales, from macro to nanoscales (Askari et al., 2008; Ongaro
et al., 2022, 2023a). Nevertheless, despite its efficiency PD model comes with
a computational cost due to its nonlocal nature, which leads to computation-
ally expensive analysis compared to CCM-based approaches (Bobaru et al.,
2016), hence impedes its application in large-scale, geometrically complex
simulations (Shojaei et al., 2020). Moreover, PD numerical implementations
encounter challenges related to nonlocal boundary conditions (Silling, 2000),
where boundaries appear fuzzy, requiring displacement or load conditions to
be imposed in finite volumetric regions rather than on boundary surfaces
(Aksoylu and Parks, 2011; Seleson et al., 2013b; Scabbia et al., 2021, 2023).
Another aspect to consider is the so called surface effect, which is related
to the emergence of spurious effects near the boundary of a finite domain
due to assumptions made for material points close to the boundary and that
impact the numerical solution of PD models (Ha and Bobaru, 2011; Le and
Bobaru, 2018). To address these challenges, it becomes advantageous to ex-
plore the coupling of PD and CCM models, leveraging the strengths of both
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models while mitigating their respective drawbacks (Galvanetto et al., 2016;
Zaccariotto et al., 2018, 2021; Ongaro et al., 2021).

In the coupling of CCM and PD, it is customary to describe small regions
within a domain, potentially impacted by the presence of discontinuities,
using a PD model. The remaining portions of the domain are then efficiently
represented through a CCMmodel (Galvanetto et al., 2016; Zaccariotto et al.,
2018, 2021; Ongaro et al., 2021). Specifically, a common approach involves
coupling PD models based on the meshfree discretization outlined in Silling
and Askari (2005) with CCM models discretized using the FEM. Extensive
research efforts have been devoted to the investigation of local-to-nonlocal
coupling, with a significant focus on coupling CCM and PD models (Macek
and Silling, 2007; D’Elia et al., 2021; Ongaro et al., 2021). This has led to
the development of various techniques, including optimization-based (D’Elia
and Bochev, 2015, 2021), partitioned (Yu et al., 2018; You et al., 2020),
Arlequin (Han and Lubineau, 2012), morphing (Lubineau et al., 2012; Han
et al., 2016), quasi-nonlocal (Jiang and Shen, 2022), blending (Seleson et al.,
2013a, 2015), splice (Silling et al., 2015), variable horizon (Silling et al., 2015),
and partial stress (Silling et al., 2015) methods, while in this work, our focus
is on the coupling technique proposed in a series of papers (Shojaei et al.,
2016; Galvanetto et al., 2016; Shojaei et al., 2017; Zaccariotto et al., 2018),
that can be regarded as an application of the splice method.

The study is organized as follows. In the first part of Section 2, the XFEM
formulation, derived within the linearized kinematical framework under plane
strain assumption considering isotropy, is presented in a detailed way to en-
sure the reproducibility of the results. In the second part, an overview of
the bond-based version of PD theory and its discretization is provided to-
gether with a brief description of the CCM-PD coupling strategy exploited
in the present work. In Section 3, with the aid of in-house codes, developed
in Wolfram Mathematica and Matlab-Mathworks environments, for XFEM
and CCM-PD coupled models, respectively, a parametric study is performed
regarding a finite plate with an edge crack. The variation of crack mouth
opening displacement and axial force are investigated while the domain is sub-
jected to a prescribed uniform vertical displacement promoting crack opening
(Mode I fracture). In Section 4, the study is concluded by comparing the re-
sults of the two approaches with a focus on their computational efficiency
according to which future developments are suggested.

2 Material and Methods

In the first part of this section, the basics of XFEM are summarized for two-
dimensional (2D) cases under plane strain assumption, while, in the second
part, the PD theory is briefly outlined together with an overview of the key
features of the CCM-PD coupling strategy exploited to study 2D systems un-
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der plane strain conditions. Here the PD model is given by a two-dimensional
linear bond-based isotropic model (Silling, 2000, 2010), while in both ap-
proaches, the formulations for classical continuum parts are presented for
linearized kinematical framework by considering the domain as elastic, homo-
geneous, and isotropic. For the classical continuum parts, the models are uni-
formly discretized with 4-node (linear) quadrilateral extended and standard
finite elements, while, for the PD portion, the model is uniformly discretized
employing the meshfree standard discretization scheme (Silling and Askari,
2005). The formulations are implemented through in-house codes built in
Wolfram Mathematica and Matlab-Mathworks environments, for XFEM and
CCM-PD coupled models, respectively.

2.1 Extended Finite Element Method (XFEM)

XFEM (Belytschko and Black, 1999; Dolbow, 1999; Moes et al., 1999; Daux
et al., 2000) is an efficient numerical tool for modeling discontinuities without
the need to have conforming mesh with crack geometry and/or material in-
terface (Sukumar and Prevost, 2003; Huang et al., 2003) by locally enriching
the nodes located in the influence domain of discontinuity and/or singularity
through adding special functions in the standard FE approximation field(s).
As in this case only the homogenized medium is considered, the nodes of
element(s), that entirely split by crack and containing crack tip(s), are en-
dowed with Heaviside-step and crack-tip related degrees of freedom (DOFs)
respectively, which is illustrated in Fig. 1 considering a straight crack.

 

Standard node:  

 Heaviside enriched node:  

 

 
Crack-tip enriched node:  

 

Blending element 

partially crack-

tip enriched 

Fully Heaviside 

enriched element 

Coupled crack-tip and 

Heaviside enriched 

element 

Fully crack-tip 

enriched element 

Standard element 

 

crack 

 

Fig. 1: The element and node types in extended finite element method illus-
trated through a domain with straight crack.
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As well known, Heaviside step function, H (x), is used in modeling the
strong discontinuity across the element that is caused by the crack split where
x is the global Cartesian coordinate of the point under investigation which
could either be node or Gauss sampling point. Basically, for points above and
below the crack, Heaviside function takes the values of +1 and -1, respectively
with having a discontinuity at the interface, which allows simulation of the
crack partition:

H (x) =

{
+1 if (x− x∗) .n > 0
−1 otherwise

}
. (1)

Here x∗ lies on the crack face and refers to the coordinate of the closest point
to x with a unit normal vector n. Meanwhile, crack tip enrichment functions,
Φ (r), are used to model the singularity around the crack tip in an efficient
manner by mimicking the asymptotic behaviour of displacement field with r
referring to the local polar coordinates of the point (r, θ). Accordingly, the
branch functions obtained for the near crack-tip asymptotic fields are used
to cover the singularity (Fleming et al., 1997):

Φ (r) =
{
Φ1, Φ2, Φ3, Φ4

}
=

{
√
rSin

θ

2
,
√
rCos

θ

2
,
√
rSin

θ

2
Sinθ,

√
rCos

θ

2
Sinθ

}
.

(2)

As the current form of Heaviside step and crack-tip branch functions lead to
violation of Kronecker-δ property, the formulation is modified through the
shifting functions:

H (x)− H̄ (xi), Φ (r)− Φ̄ (ri) , i = 1, . . . , 4 (3)

where H̄ (xi) and Φ̄ (ri) refer to values of Heaviside-step and crack-tip branch
functions at ith node of the element.

Before moving to the formulation, the formation of the lists including the
node sets for enrichment should be explained. First, the nodes of element(s)
that contains the crack tip(s) is enriched with branch functions. In this case,
the number of nodes can be increased via fixed enrichment area scheme, which
is proposed by Laborde et al. (2005) to avoid mesh dependency for very fine
discretization. Second, the nodes of element(s) that is intersected by the crack
is enriched with the step function while following exceptions must be kept in
mind. For instance, the node(s) that belong to the element(s) containing the
crack-tip(s) must be excluded as the discontinuity has already been accounted
for through the first branch function. Moreover, one needs to pay attention
to the ratio between partitioned areas and support domain of the Heavi-
side enriched node, as lower values result in ill-conditioned stiffness matrices
(Moes et al., 1999; Daux et al., 2000), where the total area of the elements
containing the corresponding node, and split into two parts (i.e., partitioned
areas) by the crack, is known as support domain. For the present study, this
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condition is automatically satisfied as crack always cuts the elements into
two equal pieces.

2.1.1 Standard element

The standard formulation is employed for the elements that do not contain
any enriched node or for those that contain only Heaviside enriched node but
not split by crack as illustrated in Fig. 1. The latter case can be justified
through the fact that H (x)− H̄ (xi) equals to zero hence vanishes when the
element is located above or below the crack. Accordingly, for a standard ele-
ment m, the nodal unknown vector including the displacement related DOFs
of nodes along horizontal and vertical axes; dx and dy takes the following
form as seen from Fig. 2(a):

dm =
{
dx1

dy1
. . . dx4

dy4

}T
m
. (4)

where subscripts from 1 to 4 refers to node number. The approximate dis-
placement field, um, is calculated as:

um = N (ξ)dm,

{
u1

u2

}
m

=

[
N1 (ξ)

0
0

N1 (ξ)
. . .

N4 (ξ)
0

0
N4 (ξ)

]


dx1

dy1

...
dx4

dy4


m

,
(5)

with the aid of linear shape functions, represented in terms of natural coor-
dinates; ξ = {ξ, η} ∈ [−1,+1]:

N1 (ξ) =
(1− ξ) (1− η)

4
, N2 (ξ) =

(1 + ξ) (1− η)

4
,

N3 (ξ) =
(1 + ξ) (1 + η)

4
, N4 (ξ) =

(1− ξ) (1 + η)

4
.

(6)

In such a case, the corresponding strain field is calculated as

εstdm = Lmum = Bstd
m dm, (7)

where Lm refers to differential operator
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Lm =



∂

∂x1
0

0
∂

∂x2

∂

∂x2

∂

∂x1

 =



∂

∂ξ
JGN
11 +

∂

∂η
JGN
21 0

0
∂

∂ξ
JGN
12 +

∂

∂η
JGN
22

∂

∂ξ
JGN
12 +

∂

∂η
JGN
22

∂

∂ξ
JGN
11 +

∂

∂η
JGN
21


m

, (8)

and Bstd
m is the strain matrix including the derivatives of shape functions

with respect to global coordinates; x = (x1, x2):

Bstd
m = LmN (ξ) . (9)

As this procedure requires the use of chain rule, the inverse of Jacobian
matrix JNG

m , that gives the direct mapping between natural (N) and global
(G) coordinates is utilized:

JNG−1

m = JGN
m =

[
JGN
11 JGN

12

JGN
21 JGN

22

]
m

=


∂x1 (ξ)

∂ξ

∂x1 (ξ)

∂η

∂x2 (ξ)

∂ξ

∂x2 (ξ)

∂η


−1

m

, (10)

where x1 (ξ) and x2 (ξ) are the components of coordinate vector for an ele-
ment m with x1i and x2i referring to physical coordinates of node i:

x1 (ξ) =

4∑
i=1

Ni (ξ)x1i , x2 (ξ) =

4∑
i=1

Ni (ξ)x2i . (11)

Finally, the stiffness matrix of a standard element m takes the form:

kstd
m = h

∫ +1

−1

∫ +1

−1

BstdT

m DBstd
m

∣∣JNG
m

∣∣dξdη, (12)

with following element formulation;

f stdm = kstd
m dm. (13)

Here f stdm is the standard load vector and D is the elasticity matrix which
takes the below-given form for plane strain assumption:

D =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 , (14)

where λ and µ are the Lame’s constants.
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Fig. 2: (a) Standard element, (b) coupled enriched element with correspond-
ing sub-quads, nsub = 16, required for numerical integration, (c) zoom-in
look of a sub-quad.

2.1.2 Enriched element

Heaviside, khvs
m , and crack-tip, kctp

m , enriched formulations are required for the
element(s) that are completely split by crack and for those having at least
one crack-tip enriched node. In such a case, new nodal unknown vectors, hm

and cm are emerged, in addition to the standard one dm:

hm =
{
hx1

hy1
. . . hx4

hy4

}T
m
,

cm =
{
c1x1

c1y1
. . . c4y1

. . . c1x4
c1y4

. . . c4y4

}T
m
.

(15)

Here the former is related to Heaviside enrichment and has the same dimen-
sions as the standard nodal unknown vector for a fully endowed element.
The latter, on the other hand, corresponds to the crack-tip enrichment for
which each enriched node possesses eight DOFs (four per each translational
DOF following four branch functions) where superscript from 1 to 4 refers to
branch functions. It should be reminded that, as this study does not account
for fixed area enrichment scheme, each node can be endowed either with heav-
iside or crack-tip related DOFs. Hence for an enriched element m, NH

m and
NC

m give the lists of nodes associated with Heaviside and crack-tip enrich-
ments, respectively. Following this fact, one could define the corresponding
shape function matrices in a more convenient manner:

Nhvs
m =

[
NI (ξ)

(
H (x)− H̄ (xI)

)
0

0
NI (ξ)

(
H (x)− H̄ (xI)

) . . .

]
2×2H

I ∈ NH
m , (16)

and

Nctp
m =

[
NJ (ξ)

(
Φ1 (r)− Φ̄1 (rJ)

)
0

. . .
0

NJ (ξ)
(
Φ4 (r)− Φ̄4 (rJ)

) . . .

]
2×8C

J ∈ NC
m , (17)
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where H and C are the number of nodes in sets NH
m and NC

m , respectively.
Thereupon, the approximate displacement field within an element m takes
the following form:

um = N (ξ)du
m +Nhvs

m (ξ)hm +Nctp
m (ξ, r) cm, (18)

for which the explicit expressions of second and third terms are;

Nhvs
m (ξ)hm =

∑
I∈NH

m

NI (ξ)
(
H (x)− H̄ (xI)

){hxI

hyI

}
m

,

Nctp
m (ξ, r) cm =

∑
J∈NC

m

4∑
f=1

NJ (ξ)
(
Φf (r)− Φ̄f (rJ)

){ cfxJ

cfyJ

}
m

.

(19)

Accordingly, for an endowed element, the strain field is written as

εstdm = Bstd
m dm +Bhvs

m hm +Bctp
m cm, (20)

where the strain matrices, Bhvs
m , Bctp

m , include the derivatives of shape, Heav-
iside and branch functions owing to differential operator matrix Lm.

Bhvs
m = LmNhvs

m (ξ) , Bctp
m = LmNctp

m (ξ, r). (21)

Hence, considering Eq. (19), one needs to perform following differentiation
operations:

∂NI (ξ)

∂xj

(
H (x)− H̄ (xI)

)
+

∂H (x)

∂xj
NI (ξ),

∂NJ (ξ)

∂xj

(
Φf (r)− Φ̄f (rJ)

)
+

∂Φf (r)

∂xj
NJ (ξ),

j = 1, 2 (22)

for which chain rule must be utilized with j varying from 1 to 2:

∂H (x)

∂xj
= δ (x) =

{
∞ x on the crack
0 other

}
,

∂Φf (r)

∂xj
=

(
∂Φf (r)

∂r
JLP
11 +

∂Φf (r)

∂θ
JLP
21

)
JGL
1j

+

(
∂Φf (r)

∂r
JLP
12 +

∂Φf (r)

∂θ
JLP
22

)
JGL
2j .

(23)

Here δ (x) denotes Dirac delta function which is zero everywhere except for
crack interface, hence vanishes as the elemental integration operations will be
performed on Gauss points. Moreover JGL and JLP are the well-known ma-
trices, used for transformation between global Cartesian (G) - local Cartesian
(L) and local Cartesian (L) - local polar (P) coordinate systems, respectively:
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JGL =

[
JGL
11 JGL

12

JGL
21 JGL

22

]
=


∂x̃1

∂x1

∂x̃1

∂x2

∂x̃2

∂x1

∂x̃2

∂x2

 =

[
cosα sinα
− sinα cosα

]
,

JLP =

[
JLP
11 JLP

12

JLP
21 JLP

22

]
=


∂x̃1

∂r

∂x̃1

∂θ

∂x̃2

∂r

∂x̃2

∂θ


−1

=

[
cos θ −r sin θ
sin θ r cos θ

]−1

,

(24)

where α refers to counter-clockwise angle from global horizontal (x1) to local
horizontal (x̃1) axes.

Consequently, considering the most general case, the element formulation
consists of six different sub matrices:

f stdm

fhvsm

f ctpm

 =

 kstd−std
m kstd−hvs

m kstd−ctp
m

khvs−std
m khvs−hvs

m khvs−ctp
m

kstd−hvs
m kctp−hvs

m kctp−ctp
m




dm

hm

cm

 , (25)

with

ka−b
m = h

∫ +1

−1

∫ +1

−1

BaT

m DBb
m

∣∣JNG
m

∣∣dξdη, a,b : std,hvs, ctp, (26)

while it is clear that ka−b
m = kb−aT

m .

2.1.3 Extraction of fracture parameters

Within the framework of LEFM, SIFs (the amplitude of stress singularity at
the crack-tip), ERR (the strain energy release rate) and COD (the Eucledian
distance between the crack surfaces at the tip) are generally considered as
basic fracture parameters, that are later implemented into the developed
fracture criterion to answer the fundamental question of “When and along
which direction the crack starts to propagate?”.

In XFEM, the SIFs are generally extracted using the domain form of
interaction integral (I-integral) (Chen and Shield, 1977; Yau et al., 1980),
exploiting following equality between SIFs (KI ,KII) and I-integral :

I =
∑
s∈N I

+1∫
−1

+1∫
−1

Fs

(
ξqp , ηqr

)
q,̃i
∣∣JGL

∣∣ ∣∣JNG
s

∣∣dξdη =
2
(
1− ν2

)
E

(KIK
a
I +KIIK

a
II),

(27)
with Fs being;

Fs

(
ξqp , ηqr

)
= σ̃a

ij ũj,1̃
+ σ̃ij ũ

a
j,1̃

− σ̃a
mnε̃mnδi1, (28)
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where N I contains the lists of the elements that are cut by the domain circle
centered at the crack tip with a radius of rI , while the smooth weight function
q, is defined as:

q (ξ) =

4∑
i=1

Ni (ξ) qi
qi = 1 for nodes inside the circle,
qi = 0 for nodes outside the circle.

(29)

As previously mentioned, the over tilde symbol denotes that, the stress σ̃,
strain ϵ̃ and displacement ũ fields and corresponding derivatives are rep-
resented in terms of crack-tip local Cartesian coordinate system, while the
superscript a indicating the auxiliary state. As different from the real state,
which is calculated through nodal displacements, the auxiliary state is ob-
tained from the analytical expression of near crack-tip fields (Sun and Jin,
2012):

ua
1 =

√
r

2π

(
Ka

I

2µ
cos

θ

2
(3− 4ν − Cosθ) +

Ka
II

2µ
sin

θ

2
(5− 4ν +Cosθ)

)
,

ua
2 =

√
r

2π

(
Ka

I

2µ
sin

θ

2
(3− 4ν − Cosθ) +

Ka
II

2µ
cos

θ

2
(4ν − 1− Cosθ)

)
.

(30)
Here Ka

I and Ka
II are the auxiliary SIFs for Mode I and II, which take

the values of either unity or zero to extract the real ones using below-given
relations:

KI =
I(I)E

2 (1− ν2)
, KII =

I(II)E

2 (1− ν2)
, (31)

where I(I) = I (Ka
I = 1,Ka

II = 0) and I(II) = I (Ka
I = 0,Ka

II = 1).
Meanwhile, the ERR, denoted by G is obtained through J-integral (Stern

et al., 1976) considering the equality in-between; J = G, for which J-integral
can be calculated either by substituting the extracted values of SIFs into the
following relation:

J =
1− ν2

E

(
K2

I +K2
II

)
, (32)

or through its definition:

J =
∑
s∈N I

Js =

+1∫
−1

+1∫
−1

(
σ̃ij ũj,1̃

− σ̃mnε̃mnδi1

)
s
q,̃i
∣∣JGL

∣∣ ∣∣JNG
s

∣∣dξdη. (33)

2.1.4 Numerical integration

One of the main challenges in XFEM arises during calculation of integrals as
endowed elements include discontinuous and singular basis functions. Since
in such a case employing Gauss quadrature rule over the whole element will
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cause substantial loss in accuracy, Dolbow (1999) proposed the sub-division
approach (dividing elements into sub-quads or sub-triangles). This method
allows the numerical integrations to be performed separately for smaller por-
tions in the elements where the integrands can still be considered as continu-
ous polynomials. Following its ease at implementation, present study utilizes
sub-quads for division (Fig. 1(b)) with 2 × 2 Gauss sampling points (Fig.
1(c)). Accordingly, for an enriched element divided into nsub sub-quads, one
can calculate stiffness matrix as follows:

ka−b
m =

nsub∑
q=1

2∑
p=1

2∑
r=1

hBaT

m

(
ξqp , ηqr

)
DBb

m

(
ξqp , ηqr

) ∣∣JNG
m

∣∣wqpwqr , (34)

with ξqp , ηqr , wqp and wqr being the components of ξq,ηq and wq vectors,
that includes natural coordinates and weights of Gauss sampling points in
the sub quad q:

ξq =
ξql2 − ξql1

2

{
+1/

√
3

−1/
√
3

}
+

ξql2 + ξql1
2

, wq =
ξql2 − ξql1

2

ηql2 − ηql1
2

{
1.0
1.0

}
,

ηq =
ηql2 − ηql1

2

{
+1/

√
3

−1/
√
3

}
+

ηql2 + ηql1
2

,

(35)
while ξql1 , ξql2 , ηql1 , ηql2 are the limits as illustrated in Fig. 1(c). One can cal-
culate the numerical integration of I-integral (and/or J-integral) in a similar
manner:

I(a,r) =
∑
s∈N I

(
nsub∑
q=1

2∑
p=1

2∑
r=1

Fs

(
ξqp , ηqr

) ∣∣JGL
∣∣ ∣∣JNG

s

∣∣wqpwqr

)
. (36)

2.2 Classical continuum mechanics-peridynamics
(CCM-PD) coupling strategy

The proposed coupling method builds upon the concept outlined in Gal-
vanetto et al. (2016), where a coupled stiffness matrix is introduced and
applied to address linear static problems in bond-based PD models. This ap-
proach is later expanded to address dynamic problems in Zaccariotto et al.
(2018). Furthermore, an additional extension of this coupling method is dis-
cussed in Ni et al. (2021), specifically applied to state-based PD models.

To better elucidate the key characteristics of the proposed CCM–PD cou-
pling strategy, a brief overview of the PD theory is necessary. For a more
in-depth understanding, readers can refer to Silling (2000) for the bond-
based PD theory, to Silling et al. (2007) for a comprehensive introduction
to the more general state-based PD theory, and to Ongaro et al. (2021) for a



Computational Approaches for Crack Propagation 15

thorough analysis of the overall static equilibrium issues affecting CCM-PD
coupled systems.

2.2.1 Overview of bond-based peridynamics

x′

x

ξ

δ

Hx

∂Ω

Ω

x′

x

∂Ω

η + ξ

u(x, t)

u(x′, t)

Reference configuration Deformed configuration

η

Ω

Fig. 3: Schematic representation of a generic PD domain Ω before and after
deformation; the relative position vectors (initial and current) and the relative
displacement vector between the material points x and x′ are also depicted.
Redrawn with modifications from Ongaro et al. (2023b).

In a spatial domain Ω ⊂ Rp, where p represents the spatial dimension,
characterized by a PD model, each material point x ∈ Ω interacts with
all other material points situated within a finite neighborhood, Hx, of that
specific material point (see Fig. 3). The equation of motion for any material
point x ∈ Ω at time t ⩾ 0, based on the bond-based PD formulation, is
provided by Silling (2000):

ρ(x)ü(x, t) =

∫
Hx

f (u(x′, t)− u(x, t),x′ − x) dVx′ + b(x, t), (37)

where ρ represents the mass density, ü signifies the second time derivative
of the displacement field u, f denotes the pairwise force function, indicating
the force per unit volume squared (or micro-force density) exerted by the
material point x′ on the material point x, and b stands for a prescribed
body force density field. The neighborhood Hx is defined by:

Hx := {x′ ∈ Ω : ∥x′ − x∥ ≤ δ} , (38)
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where δ > 0 represents the horizon. For material points within the body’s
bulk, specifically material points x ∈ Ω located more than δ away from the
body’s boundary, ∂Ω, the neighborhood Hx is the integration region taken
to be a line segment in one dimension, a disc in two dimensions, and a ball in
three dimensions, all centered at x. As depicted in Fig. 3, the representation
of the initial relative position vector or the relative position vector of the two
material points x and x′ in the reference configuration is indicated by:

ξ := x′ − x, (39)

which, in turn, indicates the standard PD notation for a bond. In the de-
formed configuration, at time t > 0, the displacement of the two material
points x and x′ would be u(x, t) and u(x′, t), respectively. The relative dis-
placement vector corresponding to this is defined by the following relation
(see Fig. 3):

η := u(x′, t)− u(x, t). (40)

The relative position vector of the two material points in the deformed con-
figuration (or current relative position vector) is then denoted as (η+ξ). The
force vector f (i.e., bond force), which contains all the constitutive informa-
tion of the material, acts in the direction of (η+ ξ). The general form of the
pairwise force function f can be written as:

f(η, ξ) = f(η, ξ)
η + ξ

∥η + ξ∥
. (41)

Here, f(η, ξ) represents a scalar-valued even function defined according to the
material type. For the prototype microelastic brittle (PMB) material model
introduced in Silling and Askari (2005), f(η, ξ) is obtained from a differen-
tiable scalar-valued function w, known as the pairwise potential function, in
a manner that:

f(η, ξ) =
∂w(η, ξ)

∂η
, (42)

where the function w is expressed by the following relation:

w(η, ξ) =
cs2∥ξ∥

2
. (43)

In this expression, c is known as the micromodulus constant, signifying the
elastic stiffness of the bond, while s stands for the bond stretch and is for-
mulated as:

s =
∥η + ξ∥ − ∥ξ∥

∥ξ∥
. (44)

For the PMB material model (Silling and Askari, 2005), (42) is therefore
given by:

f(η, ξ) = cs. (45)
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f

ss0

c

µ = 1

µ = 0

Fig. 4: Scalar bond force versus bond stretch for the PMB material model.
Redrawn, with modifications, from Silling and Askari (2005).

For small deformations, considering (45) and assuming ∥η∥ ≪ δ, the lin-
earized form of (41) can be expressed as:

f(η, ξ) = c
ξ ⊗ ξ

∥ξ∥3
η. (46)

As thoroughly discussed in Silling and Askari (2005); Gerstle et al. (2005);
Bobaru et al. (2009); Ha and Bobaru (2010), the micromodulus constant c
can be linked to measurable macroscopic parameters, such as the Young’s
modulus E and the Poisson’s ratio ν of the material. It’s essential to em-
phasize that, due to the bond-based PD formulation relying on pairwise in-
teractions, the Poisson’s ratio is confined to a specific value depending on
the scenario, namely, two-dimensional (plane stress or plane strain condi-
tions) or three-dimensional case. Specifically, for three-dimensional and two-
dimensional plane strain cases, the Poisson’s ratio is fixed at ν = 1/4, while
for the two-dimensional plane stress case, it is constrained to ν = 1/3 (Silling,
2000; Gerstle et al., 2005). Notably, this limitation has been overcome in the
state-based version of the theory presented in Silling et al. (2007). The mi-
cromodulus constant, calculated using the correction factor γ introduced in
Ongaro et al. (2021), which is utilized for the two-dimensional plane strain
models considered in the present study can be computed as follows (Gerstle
et al., 2005):

c =
48E

5πhδ3
γ, (47)

where h indicates the plate thickness. In the PMB model, failure is introduced
by setting a predetermined limit for the bond stretch s0, commonly known as
the critical stretch. A bond is considered broken when its current stretch sur-
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passes this limit value, which can be correlated with measurable macroscopic
quantities like the critical energy release rate of the material G0 (Silling and
Askari, 2005). For the two-dimensional plane strain models considered in the
present work, the critical stretch can be computed as follows:

s0 =

√
5πG0

12Eδ
. (48)

In the case of mode I crack opening displacement, G0 can be expressed as a
function of the fracture toughness KIc, which is also a material property, by
(Griffith, 1921; Irwin, 1957):

G0 =
K2

Ic

E′ , (49)

where E′ assumes either of the following two values:

E′ =


E, plane stress condition,

E
1−ν2 , plane strain condition.

(50)

The breaking of a bond is an irreversible process, meaning that once a bond
fails, the interaction between the two material points at its ends cannot be
restored. Consequently, no tensile force can be sustained by the bond (see
Fig. 4), and the contribution of this bond is no longer considered in the
computation. In the PMB material model, the previously defined pairwise
force function f(η, ξ) (cf. (41)) can be rewritten as follows (Silling, 2000):

f(η, ξ) = µ(ξ, t)cs
η + ξ

∥η + ξ∥
, (51)

where µ(ξ, t) is a scalar-valued function which introduces the history-dependence
of the PMB material constitutive model and is therefore exploited as a bond-
breaking parameter as follows (see Fig. 4):

µ(ξ, t) =

1 if s(t′) < s0, 0 < t′ < t,

0 otherwise.
(52)

To conclude, the damage level at a material point x at time t is quantified
through a local damage index, φ(x, t), which is defined as (Silling and Askari,
2005):

φ(x, t) := 1−
∫
Hx

µ(ξ, t)dVx′∫
Hx

dVx′
. (53)

The damage index is determined by the ratio of broken bonds to the total
number of bonds initially linked to the material point x. This index ranges
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between 0 and 1, where φ(x, t) = 0 signifies the undamaged state of the
material, while φ(x, t) = 1 indicates the complete disconnection of material
point x from all neighboring material points (Silling and Askari, 2005).

Adopting the meshfree standard scheme introduced in Silling and Askari
(2005), the discretized version of (37) can be written as follows:

ρiü
n
i =

∑
j

f(un
j − un

i ,xj − xi)β(ξ)Vj + bn
i ∀xj ∈ Hxi

, (54)

where the integral in (37) is replaced by a finite sum taken over all nodes j,
referred to as family nodes, such that ∥xj − xi∥ ≤ δ, f is the pairwise force
function that the family node j exerts on the source node i, n represents the
time step number, subscripts refer to the node number, e.g., un

i = u(xi, t
n),

Vj is the discretized volume associated to the family node j, and β(ξ) is
a partial-volume correction factor used to evaluate the portion of Vj that
falls within the neighborhood of the source node i, Hxi , as recommended
in Seleson (2014); Seleson and Littlewood (2016). The use of this correction
factor is a consequence of the fact that the volumes associated to family nodes
located close to the boundary of the neighborhood of i have only a partial
overlapping with Hxi

. The introduction of this factor helps to improve the
accuracy of the spatial integration, which is performed by adopting the one-
point Gauss quadrature rule. In this study, we adopt the assumption of small
strains and displacements, allowing us to express the linearized version of
(54) in accordance with Silling and Askari (2005):

ρiü
n
i =

∑
j

C(xj − xi)(u
n
j − un

i )β(ξ)Vj + bn
i ∀xj ∈ Hxi , (55)

where C is the material’s micromodulus function, a second-order tensor of
the force vector f which is defined by the following relation (Silling, 2000):

C(ξ) :=
∂f

∂η
(0, ξ) =



∂f1
∂η1

(0, ξ)
∂f1
∂η2

(0, ξ)
∂f1
∂η3

(0, ξ)

∂f2
∂η1

(0, ξ)
∂f2
∂η2

(0, ξ)
∂f2
∂η3

(0, ξ)

∂f3
∂η1

(0, ξ)
∂f3
∂η2

(0, ξ)
∂f3
∂η3

(0, ξ)


. (56)

In this study, the spatial integration of the model domain is performed by
implementing the standard meshfree scheme (Silling and Askari, 2005) and
considering a uniform distribution of nodes, where the distance between two
nearest neighboring nodes is referred to as grid spacing. We employ a uniform
grid with ∆x = ∆y, where ∆x and ∆y are the grid spacings in the x- and
y-directions, respectively. The discretized representation of the PD horizon δ
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is described by the following relationship:

δ = m∆x, (57)

where m represents the ratio of the PD horizon δ to the grid spacing ∆x
and is commonly known as the m-ratio. The specific value of the m-ratio is
associated with the count of family nodes situated within the neighborhood
Hxi

of a source node i. Hence, the PD horizon δ and the m-ratio are the
two parameters influencing the number of interactions to be accounted for in
each node within a discretized PD model.

2.2.2 CCM-PD coupling approach for brittle fracture modeling

1 2 3 4 5 6 7 8 9 ...

a b c d

Fig. 5: Representation of the CCM-PD coupled model in a one-dimensional
system. FEM nodes are denoted by blue diamonds, PD nodes by green circles,
FEM elements by blue thick straight lines, and PD bonds by green thin curved
lines. Adapted from Galvanetto et al. (2016).

In the CCM-PD coupling strategy proposed in Galvanetto et al. (2016);
Zaccariotto et al. (2018), the domain Ω is described partially using a CCM
model discretized with the FEM, while the remaining part utilizes a PD
model discretized with a meshfree standard scheme based on Silling and
Askari (2005). Effective coupling between the two regions is essential for
ensuring proper force transfer. Fig. 5 illustrates the CCM-PD coupled model
in a one-dimensional system, with diamonds representing FEM nodes, circles
representing PD nodes, thick straight lines indicating FEM elements, and
curved thin lines representing PD bonds.

Nodes are categorized as FEM or PD types, ensuring no overlapping region
in terms of node nature. In the provided example (see Fig. 5), the horizon
δ is twice the grid spacing (i.e., δ = 2∆x). Each PD node is connected by
PD bonds to four other nodes, such as nodes 5, 6, 8, and 9 interacting with
node 7, referred to as its family nodes. FEM nodes connect through FEM
elements, while PD nodes connect through PD bonds.

At the CCM-PD transition, the last FEM node (node 4 in Fig. 5) is as-
sumed to connect to the PD region through a single FEM element (element
d in Fig. 5). Simultaneously, the first PD node (node 5 in Fig. 5) is nonlo-
cally connected by PD bonds to all nodes, whether FEM or PD nodes, within
its neighborhood. All PD nodes with neighborhoods containing FEM nodes
nonlocally interact through PD bonds with those FEM nodes.
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The proposed CCM-PD coupling technique operates under the assumption
that internal forces acting on a node correspond to the nature of that node.
Specifically, FEM nodes experience internal forces computed using the FEM
approach, while PD nodes exclusively encounter internal forces determined
through the PD formulation. A designated coupling zone facilitates force
exchange between the CCM and PD sections of the domain.

In the illustrated example, the coupling zone comprises FEM nodes 3 and
4, PD nodes 5 and 6, PD bonds 3 − 5, 4 − 5, and 4 − 6, along with FEM
element d. The coupling method ensures that the internal force exerted by
FEM element d exclusively affects FEM node 4. Similarly, the internal forces
from PD bonds 3 − 5 and 4 − 5, as well as 4 − 6, exclusively impact PD
nodes 5 and 6, respectively. This approach guarantees that the assembly of
the global stiffness matrix maintains equilibrium equations for FEM nodes
with terms solely from the FEM approach, while equilibrium equations for
PD nodes include terms derived exclusively from the PD formulation.

The case of Fig. 5 leads to the formulation of the following system of
equations (see Ongaro et al. (2021)):

l −l 0 0 0 0 0 0 0
...

−l 2l −l 0 0 0 0 0 0
...

0 −l 2l −l 0 0 0 0 0
...

0 0 −l 2l −l 0 0 0 0
...

0 0 − 1
4p −p 5

2p −p − 1
4p 0 0

...

0 0 0 − 1
4p −p 5

2p −p − 1
4p 0

...

0 0 0 0 − 1
4p −p 5

2p −p − 1
4p

...

0 0 0 0 · · · · · · · · ·
. . .

...
...

· · · · · · · · · · · · · · · · · · · · · · · ·
. . .

...





u1

u2

u3

u4

u5

...

...

...

uN



=



F1

F2

F3

F4

F5

...

...

...

FN



, (58)

where l is defined as EA/∆x (Zienkiewicz and Taylor, 2005), p is cA2∆x (Bo-
baru et al., 2009), N represents the total number of nodes (including FEM
and PD nodes), {ui}i=1,...,N denotes the nodal displacements, {Fi}i=1,...,N

signifies the external nodal forces, E is Young’s modulus, c is the micromod-
ulus constant, and the cross-sectional area A is assumed to be A = 1. The
meshfree PD discretization in (58) utilizes a partial-volume correction (Se-
leson and Littlewood, 2016), applying a factor of 1

2 to the contribution of
second-nearest neighbors. While the solution of a single equation ensures
node equilibrium, achieving overall equilibrium for the entire structure re-
quires that the sum of external nodal forces equals zero. The interested reader
may refer to Ongaro et al. (2021) for an in-depth analysis of the overall equi-
librium issues which affect the proposed approach even if it precisely meets
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the criteria of standard numerical tests for static coupling problems, includ-
ing scenarios with imposed rigid body motions and uniform or linear strain
distributions (Galvanetto et al., 2016; Zaccariotto et al., 2018).

3 Numerical Simulation

In this section, the results obtained from LEFM based XFEM and CCM-
PD coupled models are compared for the benchmark problem of uniaxially
deformed finite plate with an edge crack, promoting self-similar (Mode I)
crack growth.

 

H 

L a0 

u0 

 

 

 

 

(a) 

(b) (c) 

Fig. 6: (a) Schematic of the case study and corresponding discretization
at the vicinity of the crack tip for (b) XFEM, (c) CCM-PD models. In
the CCM-PD model, green circles are PD nodes, light blue (empty) squares
are FEM elements, whereas yellow (empty) squares represents hybrid FEM
elements, i.e., FEM elements characterized by at least one PD node within
its 4 constitutive nodes.

The dimensions of the model are arranged as;

H = 11 (mm), L = 21 (mm), a0 = 0.1H, (59)

where L, H, and a0 refer to height, width, and initial crack length, respec-
tively, as illustrated in Fig. 6(a) while the analyses are performed for following
material parameters;
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E = 10 (MPa), ν = 0.25, G0 = 0.367 (MPa mm), (60)

with G0 being the fracture energy that is responsible for bond breaking in
PD approach and crack propagation in LEFM. The upper and lower edges
of the plate are subjected to a uniform and opposite prescribed displacement
field of u0;

u2 (x1, L) = −u2 (x1, 0) = u0 = 0.01(mm). (61)

For XFEM model, the domain is uniformly discretized into 44 × 83 quadri-
lateral elements. The enriched elements are sub-divided into 4×4 quads with
each one having 2× 2 Gauss-sampling points for numerical integration. Here
the number of elements along horizontal and vertical directions are selected
in such a way to ensure that the crack passes through the middle of the el-
ements and crack tip lies at the edge of the element, as illustrated in Fig.
6(b). For CCM-PD approach, on the other hand, the model is discretized by
considering an internal PD region as schematically shown in Fig. 6(c). The
PD portion of the domain is a rectangle of edge lengths LPDx = 2.73 (mm)
and LPDy = 1.67 (mm), and its centre has coordinates (1.70, 10.5) (mm).
The remaining part of the domain, the CCM region, is discretized using
four-node square plane strain FEM elements. The stiffness matrix for these
elements is computed using exact integration (Zienkiewicz and Taylor, 2005).
The domain is discretized using a uniform grid with ∆x = ∆y = 0.067 (mm).
We assume a CCM model given by the classical linear elasticity plane strain
isotropic model and a PD model given by a linear bond-based isotropic model.
The PD horizon is taken as δ = 0.267 (mm) (i.e., m = 4) and the micromod-
ulus constant c has been evaluated through (47) by considering a value of the
correction factor γ equal to 0.988895997195466 (see Ongaro et al. (2021) for
details on γ computation). The PD portion of the domain employs a meshfree
discretization with a partial-volume correction (Seleson, 2014).

For coupled CCM-PD model, the quasi-static fracture analysis is per-
formed by exploiting the sequentially linear analysis (SLA) procedure, as
accurately discussed in Ni et al. (2019). This involves assembling the coupled
stiffness matrix and subsequently applying boundary conditions. Given the
linear-brittle constitutive behavior of the PD bonds in this study, a struc-
ture subjected to an increasing load (either applied force or displacement)
exhibits linear behavior until the first bond breaks. The PD portion of the
coupled stiffness matrix must then be adjusted by removing the contribution
of the broken bond. Subsequently, the structure, with slightly reduced stiff-
ness, resumes linear behavior until the next PD bond breakage. Using the
SLA procedure (Ongaro et al., 2022), the structural problem is solved to ob-
tain the vertical nodal reaction forces of the system, which are then exploited
to compute the resulting uniaxial stresses at the upper and lower edges of
the plate, similar to XFEM model.

As the first step, the resulting stress intensity factor (SIF) (KI) is com-
pared with the analytical one given in the literature for the validation of
the XFEM in-house code. According to Tada et al. (2000), the SIF can be
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calculated using following formulation for the considered case study:

KI = SF (a0/H)σ0
√
πa0. (62)

Here SF is an empirical formulation that is used to account for the scale factor
related to the geometry, which takes the value of 1.17 for the considered ratio
between a0 and H, while σ0 is the uniform uniaxial stress applied at the top
and bottom edges. As in our case, the model is deformed through a prescribed
displacement rather than load, the stress that is emerged at the edges should
be calculated as a post-processing data, which turns out to be 9.993 MPa for
XFEM model. Accordingly, the analytical value of SIF is:

KAnalytical
I = 20.79MPa

√
mm. (63)

Meanwhile the SIF that is detected from the XFEM model using the domain
form of I-integral with a radius of rI = 2.5lx is as follows:

KXFEM
I = 19.85MPa

√
mm. (64)

As one can see, the error between analytical and numerical SIF is about
4.75%, while this variation can be attributed to the non-uniform stress field
along the edges. In fact, if the prescribed displacements are replaced with a
stress of σ0 = 9.993 MPa and the simulation is re-run for XFEM model, one
can obtain the resulting SIF as 20.71MPa

√
mm, for which the difference is

less than 0.4%.
So far the accuracy of the XFEM model is justified, now the consistency

between the outputs of LEFM based XFEM and CCM-PD methodologies
should be checked. For this purpose, the crack mouth opening displacements
(CMOD) and resulting uniaxial stresses are compared for the initial state
before crack starts to propagate. It can be seen that, there is a very good
agreement between results of CCM-PD and LEFM/XFEM as CMOD and σ22

values are attained as; 0.005374− 0.005317 (mm), and 9.992− 9.993 (MPa),
respectively.

Finally, as the scope of this study, the variation of fracture parameters
(CMOD, σ22) with crack evaluation are investigated for both approaches to
check the possibility of having a one to one correspondence between LEFM
and bond-based PD models. In doing so, the outputs obtained from LEFM
based XFEM and coupled CCM-PD are plotted on the same graph as illus-
trated in Fig. 7. As one can see, a perfect agreement is attained between the
two methodologies that are based on different principles; although in both,
the domain is treated as a continuum, LEFM exploits the advantages of field
descriptions while PD accounts for interaction in-between each material point
within a finite distance. Accordingly, in latter, the crack and its propagation
can be modeled inherently as a material response that depends on the failure
of interactions between material points constituting the continuum, whereas
in the former, a pre-defined fracture criterion is required to detect the direc-
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Fig. 7: Variation of crack mouth opening displacement (CMOD) vs uniaxial
stress during crack propagation plotted for XFEM and CCM-PD models.

tion of propagation. Nevertheless, as in the present study, the domain with a
straight crack is under uniaxial tension, all of the fracture criteria will pro-
vide same output; self similar crack growth (i.e., Mode I). This straight crack
trajectory is also evident from Fig. 8 that shows the damage map (cf. (53))
for CCM-PD model (Fig. 8(a)) and two steps of crack evaluation for XFEM
model (Fig. 8(b)), respectively.

As the consistency between the CCM-PD and XFEM models is verified,
one should examine their efficiency in terms of computational cost by com-
paring the simulation run times which are 1999.71 and 1919.62 seconds, and
performed on two different computers; Intel(R) Core(TM) i7-8750H CPU @
2.20GHz 2.21 GHz processor with 16 GB RAM and Intel(R) Core(TM) i5-
8250U CPU @ 1.60GHz 1.80 GHz processor with 8 GB RAM, respectively.
Although the computational expense is almost the same, one should acknowl-
edge the simple nature of the case study under consideration, as for mixed
mode case accurate detection of the direction of crack propagation might
require a more refined analysis procedure.
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(a) (b) 
 

Fig. 8: Crack trajectory of models (a) CCM-PD model: Damage map derived
after performing 500 steps of the SLA procedure (To enhance clarity, only the
PD portion of the domain is depicted in the figure), (b) XFEM model: Zoom-
in looks of two steps during propagation (The deformation is exaggerated 50
times for visual purposes).

4 Conclusions

Accurately modeling material response possesses a significant challenge in
characterizing the crack propagation phenomenon for which various analyt-
ical and numerical methods have been employed. Among those the linear
elastic fracture mechanics (LEFM) and bond-based peridynamics (PD) are
employed in this study following their popularity in the field of fracture me-
chanics.

Both approaches treat the domain as continuum, yet LEFM exploits the
advantages of field description, whereas PD explicitly accounts for the in-
teractions between each material point located within a finite neighborhood.
Accordingly, in LEFM, the real crack topology is modeled as a discontinuity
and the crack path is tracked based on the implemented fracture criterion
without following actual interactions between particles. On the other hand,
in PD, crack nucleation and propagation are represented by the irreversible
breaking of the bonds connecting different material points, through which the
evaluation of the crack path is traced directly without having to define any
ad hoc criteria. The corresponding numerical analyses are performed through
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LEFM based XFEM model and a CCM-PD coupling approach, respectively,
for computational ease.

For comparison, an uniformly deformed finite rectangular plate with a
straight edge crack, promoting self similar crack growth (i.e. Mode I), is
examined exploiting both approaches. The results reveal the promising nature
of correspondence between those methodologies, as a perfect agreement is
achieved regarding crack mouth opening displacements and resulting uniaxial
stresses. For the considered benchmark problem, no significant difference in
terms of computational time is encountered, yet it should be kept in mind
that a more comprehensive examination should be made including shearing
and mixed mode cases.

This output motivates the Authors to extend the work to the structures
represented within non-classical theories such as micropolar model (Tuna and
Trovalusci, 2020; Tuna et al., 2020) in which the material particles is assumed
to be interacted not only by forces but also by couple of forces, requiring a
more enhanced PD model.
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