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A B S T R A C T   

The integration of Artificial Intelligence offers transformative solutions to modern-day challenges, especially in 
sectors like agriculture that are pivotal for human sustenance. This study underscores the profound impact of 
Artificial Intelligence in conditioned agricultural practices within greenhouses, based on data from an agricul
tural competition where teams optimized greenhouse performance using Artificial Intelligence-driven mecha
nisms. Results indicate that Artificial Intelligence-enhanced control strategies can drastically reduce energy 
consumption, particularly heating loads, without compromising crop yield, quality, or profitability. In some 
instances, performance even surpassed conventional methods. However, there are areas like Carbon Dioxide 
emissions and water usage where enhancements are still essential. Building on these insights, the study further 
ventures into AI’s potential to predict greenhouse production outcomes. Through rigorous assessment of various 
machine learning models, the Radial Basis Function model exhibited commendable performance, achieving an 
Root Mean Squared Error of 0.8 and an R-squared value of 0.98 post-optimization. This establishes the feasibility 
of precisely forecasting greenhouse production rates in terms of kg/m2. While this research predominantly 
centers on production volume, it lays a strong foundation for the predictive potential of AI in greenhouse op
erations and underlines the benefits of input optimization. It paves the way for future research focused on both 
the quality and quantity of greenhouse production.   

1. Introduction 

The persistent rise in the global population and the subsequent food 
demands have intensified the need for optimizing agricultural produc
tion. As available arable land diminishes, there has been a surge in the 
adoption of agricultural greenhouses to counter the overuse of natural 
resources. Within these controlled environments, the pivotal de
terminants for optimal plant growth encompass indoor air temperature, 
humidity, soil temperature, light intensity, and carbon dioxide concen
tration [1]. By fine-tuning these parameters, it is possible to create a 
sustainable solution that meets our escalating food needs while 
conserving natural resources. This, along with the unconscious use of 
chemicals in farming, creates mounting pressure on natural resources 
and harms the environment [2,3]. 

Agricultural producers consume non-renewable energy, leading to a 
decline in environmental quality [4]. Agriculture can significantly 

reduce and manage energy use [5]. Many environmental issues relating 
to food safety, climate change, carbon emissions, and waste created 
throughout the supply chain are raised worldwide due to inadequate 
ecological care [6]. Renewable energy is gaining significance as the 
world strives towards a more sustainable future by minimizing carbon 
emissions. Embracing renewable energy sources can diminish depen
dence on fossil fuels and curtail greenhouse gas emissions, thus aiding in 
mitigating the effects of climate change [7,8]. 

One of the practical solutions is to control the amount of energy 
consumption by the greenhouse structure [9]. Greenhouse farming can 
influence energy consumption, particularly water consumption [10]. 
The EU is estimated to have 405,000 ha of greenhouses, including glass 
and plastic-covered structures, as reported by the FAO [11]. Greenhouse 
farming plays a crucial role in energy consumption and decreasing 
reliance on non-renewable energy sources [12]. A review of energy 
consumption data for Spain, Greece, Italy, The Netherlands, and 
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Germany, along with tomato production in the EU, was reported. The 
findings revealed that irrigation and fertilizer account for the highest 
energy usage, ranging from 1 to 19% and 1–27%, respectively [11]. 
Nonetheless, technological advancements in agriculture have aided in 
meeting consumers’ ever-changing requirements [6]. Utilizing Artificial 
Intelligence (AI) efficiently decreases energy consumption in agricul
ture, particularly in greenhouse farming, while it can increase yields 
[13]. Furthermore, technologies such as AI, data-driven, machine 
learning, robots, and other systems can contribute optimization of 
greenhouse farming [14]. At the same time, it can reduce and control the 
amount of energy usage [15]. AI can be applied to control the envi
ronment, monitor crops, predict products, optimize resources, and 
automate processes [13,16]. The potential for AI to revolutionize 
greenhouse farming is significant, as it can enhance efficiency, minimize 
waste, increase crop yields, and ultimately lead to more sustainable and 
productive food systems [2,17,18]. 

Forecasting the efficiency of a greenhouse, especially regarding its 
indoor conditions or product quality, poses difficulties due to its reliance 
on several external elements [19]. In certain conditions, the natural 
environment might not favor ideal crop growth, given that factors such 
as temperature, relative humidity, the level of photosynthetically active 
radiation (PAR), and carbon dioxide concentrations influence plant 
progression [20]. The evolution of automation and AI has fueled the rise 
of intelligent greenhouses. These greenhouses incorporate tools and 
systems designed to boost product quantity and quality while curbing 
energy use [21]. The main objective of these instruments is to deploy 
smart control algorithms that regulate indoor climate factors, such as 
humidity, temperature, CO2, and light, to streamline and economize 
energy use. 

Therefore, this study aims to explore two interconnected areas 
related to the application of AI in sustainable greenhouse farming. 
Firstly, the impact of using AI-based technologies on the performance of 
the greenhouse is studied. Secondly, the capability of machine learning 

algorithms for prediction of this impact is explored. Investigated data 
belongs to a case installed Autonomous Greenhouses International 
Challenge (AGIC) organized by Wageningen University & Research 
(WUR) in 2019. The objective of AGIC was to employ a data-driven 
approach and a data-management platform to materialize the concept 
of an autonomous greenhouse. The teams comprising AGIC were tasked 
with remotely producing a cherry tomato harvest within the duration of 
the test. WUR facilitated this project by providing each interdisciplinary 
team with a controlled greenhouse space and equipment at their agri
cultural research facility in the Dutch town of Bleiswijk. The project 
aimed to explore the application of machine learning techniques in 
greenhouse farming and its potential impact on crop cultivation. This 
experiment took over six months to prove AI control in 6 months. The 
data that will be analyzed in the following is taken from the results of all 
teams. They integrated AI methods to test software and sensors in 
greenhouse farming. 

2. Objectives, hypotheses and contribution 

2.1. Objectives and hypotheses 

Building upon the outlined challenges and opportunities within the 
realm of sustainable greenhouse farming, this study sets forth a clear and 
comprehensive objective. At the heart of our investigation is the 
assessment of the applicability and efficacy of AI predictive models in 
transforming greenhouse agriculture. Specifically, the study aims to 
evaluate how AI-aided strategies can significantly enhance resource 
consumption optimization and production improvements within these 
controlled environments. The focus extends beyond mere technological 
application; we seek to understand the nuanced interplay between AI- 
driven interventions and their tangible impacts on agricultural effi
ciency and output. 

By leveraging advanced AI algorithms, the study’s objective is to 

Fig. 1. Research workflow.  
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dissect and analyze the multifaceted effects of these technologies on 
reducing energy and water use, while simultaneously boosting crop 
yield and quality. This dual-focus approach not only addresses the 
critical need for resource conservation but also aligns with the broader 
goals of sustainable agricultural practices. Through a detailed exami
nation of AI’s role in predictive analysis and operational optimization, 
our study endeavors to provide a holistic view of the potential benefits 
and limitations of integrating AI into greenhouse farming. This explo
ration is pivotal in laying the groundwork for future innovations and 
strategies that could redefine the standards of agricultural productivity 
and environmental stewardship. 

The study hypothesizes that AI can fulfill dual objectives within 
sustainable greenhouse farming. Firstly, AI has the potential to optimize 
resource use, not only enhancing energy and water efficiency but also 
ensuring higher quality produce. Secondly, AI can serve as a tool for 
comprehensive impact assessments, evaluating the effectiveness of AI 
implementations from various perspectives. Such assessments could 
provide invaluable insights for decision-makers in the field, aiding in the 
strategic deployment of AI technologies to meet both economic and 
environmental goals. This hypothesis underscores the multifaceted 
value of AI in agriculture, suggesting a transformative role in advancing 
sustainable practices and informed decision-making. 

2.2. Contribution and innovation 

The study’s innovation is deeply holistic, extending aI-driven ap
proaches to not only enhance energy efficiency in greenhouse farming 
but also to significantly improve water conservation and reduce envi
ronmental impacts while improving the production in terms of quality 
and quantity. This comprehensive strategy ensures that the AI solutions 
proposed not only optimize resource use but also set new benchmarks 
for environmental sustainability in agriculture with higher standards for 
productions. By integrating considerations for crops, energy, water, and 
ecological well-being, this work pioneers a new era of eco-conscious 
agricultural practices, where technology serves as a bridge to more 
sustainable and responsible farming methodologies. 

The contribution of this work is multifaceted, initially showcasing 
the efficacy of AI in enhancing greenhouse operations through advanced 
control strategies. It then extends to a novel secondary application of AI 
for conducting predictive impact assessments, enabling a detailed 
evaluation of the economic and environmental benefits versus the costs 
of AI adoption in agriculture. This dual application provides critical 
insights into the feasibility and long-term sustainability of integrating 
sophisticated AI technologies into agricultural practices, highlighting 
the potential for significant advancements in efficiency and eco- 
friendliness. 

3. Materials and methods 

This study initially examines the impact of AI technology on green
house farming. This case study involved multiple research teams con
ducting a real-life experiment using new technologies, such as AI, to 
cultivate plants in greenhouses. The data obtained from the challenge 
was used to evaluate the impact of various technologies in the study. 
Experimental research and field studies on plants (either cultivated or 
wild), including the collection of plant material, complies with relevant 
institutional, national, and international guidelines and legislation. 

To analyze the performance of the different stages of data analysis 
were performed to preprocess the data. Then, the results were subjected 
to a comparative analysis to study the effectiveness of AI technology in 
improving the performance of greenhouse farming through different 
perspectives Finally, using ML algorithms, the capability of AI for pre
diction of this impact is assessed as shown in Fig. 1 to reach the main 
goal which was the impact prediction of AI in sustainable greenhouse 
farming. 

"Impact prediction of AI" within this scholarly discourse signifies a 

methodical forecast of the comprehensive outcomes and benefits 
attributable to the deployment of AI-enhanced strategies within the 
domain of greenhouse agriculture. This prognostic evaluation extends to 
a thorough examination of a spectrum of critical factors, notably re
ductions in water and energy utilization, the diminution of environ
mental footprints through decreased CO2 emissions, and the 
amplification in both the caliber and volume of agricultural produce. 
The core objective of such predictive endeavors is to establish an 
analytical foundation for the execution of nuanced cost-benefit analyses, 
thereby furnishing policymakers and practitioners with the requisite 
empirical evidence to make well-informed decisions concerning the 
incorporation and execution of AI-based methodologies in greenhouse 
settings. 

This anticipatory analytical process is pivotal in delineating the po
tential scope and scale of AI’s transformative impact on greenhouse 
agriculture, offering a strategic vantage point from which stakeholders 
can evaluate the viability, efficiency, and sustainability implications of 
adopting AI-driven innovations. By systematically forecasting the 
multifaceted impacts of AI applications, this approach provides a robust 
platform for decision-makers to assess the strategic value and opera
tional feasibility of integrating advanced AI technologies into green
house farming practices, thereby facilitating a data-driven, strategic 
decision-making paradigm that enhances the resilience, productivity, 
and environmental sustainability of agricultural systems. 

To explain the research workflow, the “Autonomous Greenhouse 
Challenge” has been selected as a case study where different teams 
employed “Different Sensors and Control Systems”. For each time 
“Resource Consumption”, “Environmental Impacts”, ”Climate Moni
toring”, and “Product Assessment” analyses were conducted. Then in 
order to study the impacts of AI in greenhouse farming one “Reference 
case” confront some “AI-assisted cases” where different “AI-assisted 
climate control”, “AI- assisted energy and water control”, and “AI- 
assisted growth monitor” systems were deployed. After 6 months of this 
experiment “Extracted data” was subjected to “Stationary test” and 
“Decomposition analysis” to have “Seasonality removal” and “Trend 
extraction”. Then, the outcomes were subjected to the “Comparative 
analysis” to fully understand the impacts of AI methods in greenhouse 
performance. On the final stage, the extracted and processed data, then 
used as the input for ML algorithm for prediction and according to 
standard procedure, after fine tuning the model performance assessment 
was conducted to study the accuracy of the model. 

4. Case study 

In this section, detailed information about the case study is presented 
to have a comprehensive insight about it. Data related to the case study 
is open access under CC0 1.0 license and plants (either cultivated or 
wild), including the collection of plant material, complies with relevant 
institutional, national, and international guidelines and legislation. 
Therefore, the permission to collect cherry tomato. Have been granted 
according to the license and also information on the voucher specimen 
and who identified it is included in the data repository and 4TU. 
Federation is responsible for that. 

4.1. Smart machines and control systems 

5 compartments of greenhouse with the area of 96 m2 and 76.8 m2 of 
growing space was monitored during the experiment. The crop, a single 
tomato variety, was planted in the middle of December 2019. The sub
strate is particular slabs (Grodan’s slab) used by each team. These slabs 
are exceptionally uniform in both quality and absorbency. This provides 
a considerable benefit for the roots and plant health by allowing for 
much more accurate regulation of the water content level and EC in the 
root zone. Also, the slabs do not emit any dirt, keeping the greenhouse 
spotless. 

To give slab data and monitor crop growth, GroSens sensors were 
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fitted. It is an FDR-based sensor that measures the electrical character
istics of the slab alone as well as how much moisture is present in it. The 
greenhouse environment (temperature and relative humidity), and the 
plant profile, were acquired (the plant height, how many leaves, how 
many fruits per truss, and the stem thickness). Various sensors were 
utilized in this greenhouse to accomplish best the intended plant fea
tures, such as a sensor to assess leaf temperature. 

4.2. Monitoring systems 

The sensors used by the team not only measure the slab temperature 
and EC but also detect its weight to determine the water content, which 
is crucial for assessing the health of the plant, its foliage, and its fruits. 
However, GroSens plays a critical role in providing additional data that 
is equally important. By combining the weight data obtained from the 
slab with the information gathered by GroSens, the team can get a 
precise and comprehensive picture of the plant’s condition. It is not 
merely a matter of acquiring more data but instead of obtaining more 
insightful and valuable data. 

Data collected by sensors and webcams is transmitted almost 
continuously to servers. Every morning, this data is reviewed. The 
amount of irrigated water (L/m2) is verified, and the drainage (L/m2) is 
used to determine the drainage percentage. The trend of the slab water 
content (measured by the Grodan sensor) and slab weight (measured by 
the ioCrops sensor) is analyzed through a graph. The difference between 
the minimum and maximum values of slab water content and signifi
cance is evaluated to determine the necessary adjustments to the irri
gation strategy, such as when to initiate or terminate irrigation, the 
amount and duration of irrigation, and the length of time between 
irrigation sessions. 

4.3. Product and resources 

An experiment was carried out using an unspecified variety of cherry 
tomato crop. On October 19, 2019, seedlings of the cv. "Axiany" (Axia 
Seeds, The Netherlands) were sown and then grafted onto Maxifort 
rootstock. The seedlings were planted in rock wool cubes and later 

transplanted to greenhouse compartments on December 16, 2019. 
Remote control of the experiment was assumed by the teams on 
December 20, 2019. The parameters which include Stem growth per 
week (m/week), Stem thickness (mm), umulative number of new set 
trusses on the stem (number/stem), Stem density (Stems/m2), and Plant 
density (Plants/m2) were checked weekly. 

Resource energy consumption was calculated according to measured 
data for tomatoes: heat energy consumption (MJ/m2) and electricity 
(kWh/kg) (artificial light) during pick-hours (7.00–23.00) and Elec
tricity consumption (artificial light) during off-pick-hours kWh/m2, CO2 
emission (kg/m2), drain water (L/m2), irrigation water (L/m2) was 
measured. These measurements are validated by by Wageningen Uni
versity & Research (WUR) through actual metrics (resource metrics) 
after finishing the challenge. 

5. Results and discussion 

In this section, the results of analyses divided into two sections are 
presented. In the first section the impact of using AI technologies on the 
performance of greenhouse farming is studied. Secondly, the capability 
of ML algorithms for the prediction of this impact is assessed. 

5.1. Impact of AI in sustainable greenhouse farming 

To study the impact of AI technology on the performance of the 
greenhouse during the experiments, different teams tried to improve the 
performance of the greenhouse by applying different methods, algo
rithms, control systems to reach better results than the reference 
greenhouse which used the most common methods. The results are 
presented in this section which shows the average of team performance 
compared to the reference case. Indeed, irrespective of the applied 
method or control strategy or the machine learning algorithms, the 
critical point here is the fact that by using all these technologies what 
would be the outcomes. The real question here is that the implementa
tion of these methods can lead to better results or not. At the first stage 
the quality of productions of AI-assisted greenhouse (all five team) 
where compared to the reference case. 

Fig. 2. Average AI-assisted greenhouse performance compared to the reference case.  
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In the context of the "Autonomous Greenhouse Challenge," it was 
ensured that the experimental setups, both for the reference case and 
those involving AI-assisted strategies, were uniformly standardized with 
respect to their physical dimensions. Each greenhouse was allocated an 
identical surface area, and the introduction of tomato plants into these 
environments was consistent across all experimental conditions. This 
uniformity was crucial to establish a level field for the comparative 
analyses between the AI-augmented cases and the reference scenario, 
eliminating any potential discrepancies in spatial or quantitative vari
ables that could influence the outcomes. The variations in growth met
rics observed, such as stem thickness, fruit yield per truss, and total 
production, were attributed to the strategic spatial arrangements of the 
tomato plants within the allocated areas. Decisions regarding the 
placement and spacing of plants, informed by data-driven insights from 
the challenge, were optimized to enhance environmental conditions 
conducive to plant growth. These included optimal light distribution, 
efficient air circulation, and effective resource utilization, all of which 
are fundamental to the healthy development of crops. 

The differential outcomes in plant growth and yield across the 
various setups underscore the significant impact that AI-driven in
terventions can have on agricultural practices. By leveraging predictive 
analytics and data-driven insights, the challenge participants were able 
to make informed decisions that potentially improved the productivity 
and efficiency of greenhouse farming. This approach not only demon
strates the value of integrating AI into agricultural methodologies but 
also highlights the potential for such technologies to usher in advance
ments in sustainable and precision agriculture. Finally, since the size of 
tomatoes in the class A has the size range, and the fact that the number of 
tomatoes has not been specified in the public dataset, the choice of using 
stem thickness and length was the only available logical parameters that 

could reflect the growth parameters. 
As it is depicted in Fig. 2, in terms of growth length of tomato stem 

during the whole experiment the reference case mainly showed a better 
performance. Nevertheless, in terms of steam thickness AI-assisted cases 
saw a meaningful better performance compared to the reference case. 
Having said that, there are other metrics that must be taken into account 
while assessing the product of each greenhouse. In here, the number of 
trusses was another metric that has been measured. Unexpectedly, none 
of team could reach a higher number of trusses compared to the refer
ence case, while some teams during the experiments had higher number 
of tomatoes per square meters. This clearly means that the thicker stems 
have led to higher tomato per truss because while the average number of 
trusses for teams where less than the reference case, the total number of 
tomatoes were higher. The next step is to consider the density of stems 
and in order to do that at the same time with the number of tomatoes and 
their size, the weight of tomatoes per square meters could be an 
appropriate metric to consider. 

The rationale for comparing the weight of tomatoes per square meter 
rather than the weight of the same number of tomatoes from each farm is 
multifaceted, taking into consideration both the methodological 
approach of the study and the nature of the dataset from the "Autono
mous Greenhouse Challenge." Firstly, the classification of tomatoes into 
Class A, which includes tomatoes suitable for commercial trade within a 
specified size range, inherently minimizes the variability in tomato sizes 
across the farms. This classification ensures a relative uniformity in size, 
allowing for an equitable comparison of weight per square meter as an 
indicator of productivity. Furthermore, the study aims to assess the 
overall productivity of the greenhouse space, which is particularly 
relevant in agricultural practices where optimizing the use of limited 
space is crucial. By focusing on weight per square meter, the study 

Fig. 3. Tomato weight per square meter of AI-assisted cases compared to the reference case.  
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provides insights into how efficiently each square meter of greenhouse 
space is used to produce commercial-grade tomatoes. Additionally, the 
absence of specific data on the number of tomatoes produced in the 
"Autonomous Greenhouse Challenge" dataset necessitated an alternative 
approach. The weight of tomatoes per square meter offers a compre
hensive metric that reflects the outcomes of strategic decisions regarding 
stem density and plant management practices influenced by AI-driven 
strategies. 

This approach not only aligns with the objectives of maximizing 
greenhouse space utilization but also adheres to commercial agricultural 
standards, making the findings applicable to real-world agricultural 
operations. It captures the balance between the quantity and quality of 
the produce, crucial for commercial viability and sustainability in 

Fig. 4. Resource consumption and Environmental Impacts of cases.  

Table 1 
ADF results of resource data.  

Resource Type of 
case 

ADF p- 
value 

Stationary 
Data 

Not Stationary 
data 

Heating load AI-assisted 0.26068  X 
Reference 0.34892  X 

Electrical 
load 

AI-assisted 0.91805  X 
Reference 0.15630  X 

Water usage AI-assisted 0.71840  X 
Reference 0.01908 X  

CO2 
emission 

AI-assisted 0.01486 X  
Reference 0.12259  X  
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greenhouse farming. Therefore, the decision to compare the weight of 
tomatoes per square meter, given the dataset limitations and the study’s 
objectives, provides a holistic view of greenhouse productivity. This 
methodological choice is aligned with the overarching goals of precision 
agriculture and enhancing the commercial quality of agricultural 
output, within the constraints of available space and the commercial 
standards set for Class A tomatoes. 

Fig. 3 shows that while on some stages of the experiment the prod
ucts of AI-assisted cases where higher than the reference case, as the data 
is cumulative, at the end of the experiment the results were almost the 
same. It means that the wight of tomato products of reference case and 
the AI-assisted cases were the same. Considering the lower number of 
tomatoes in AI-assisted cases, it can be concluded that bigger and 
heavier tomatoes were achieved in AI-assisted greenhouses, but in 
general the total production weight is the same. 

In the next stage of performance analysis of AI-assisted greenhouses 
compared to the reference case in terms of resources consumption were 
observed. Regarding heating load, by considering the extracted data 
from sensors it is clear that the average heating load of AI-assisted 
greenhouses is meaningfully lower than the average case that is 
shown in Fig. 4. This figure for water and electrical consumption shows 
very close figures. This means that AI technology showed a distin
guishable advantage over the traditional methods for lowering the range 
of heating load in greenhouse farming. If the impacts of climate change 
in the form global warming is being taken into account here, it can be 
concluded that this energy load would have a lower importance. Having 

said that, extreme weather events as another possible consequence of 
climate change can add the significance of heating load. Therefore, there 
is no fixed and fast rule about the future of heating load in this respect. 
Regarding electrical load and water usage, in contrast to the expectation 
all sophisticated AL methods, control systems. Climate strategies could 
not reasonably add to the efficiency of the greenhouse. However, it 
should be noted that by monitoring cases with longer period of time the 
effectiveness of these strategies could be more analyzed and discussed. 

Finally, in terms of environmental impacts of greenhouse, while at 
the beginning of the experiment it looed that the AI-assisted showed 
weaker performance in their environmental impacts, gradually the dif
ferences started to fade and the results became more similar. 

The heating system utilized in both the reference and the experi
mental compartments comprised a rail pipe system at the floor level and 
an additional pipe heating system at crop height, predominantly pow
ered by gas, although such systems can also operate on electricity. The 
preference for gas heating in greenhouse operations stems from its 
ability to deliver the significant thermal energy required to maintain 
temperatures conducive to optimal plant growth. Additionally, gas 
heating systems can contribute to increased CO2 levels within the 
greenhouse environment, fostering enhanced plant development. Gas 
heating is particularly prevalent in extensive or commercial greenhouse 
settings, where its efficiency and cost-effectiveness are paramount, 
especially in regions where gas is a more economically feasible option 
than electricity. The capability for independent control of these heating 
systems provides the necessary flexibility for precise thermal regulation, 

Fig. 5. Decomposition analysis of resource consumption and Environmental Impacts of cases.  
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catering to the varying temperature requirements essential for different 
stages of crop growth. 

Understanding the distinction between heating load and electricity 
consumption is essential in the context of greenhouse operations. The 
heating load is directly associated with the energy needed to sustain 
suitable temperature levels for plant cultivation, managed by the gas- 
powered heating systems. Conversely, electricity consumption within 
greenhouses is primarily linked to lighting requirements, with systems 
such as High-Pressure Sodium (HPS) and LED lights playing a crucial 
role in supplementing or replacing natural sunlight in controlled agri
cultural environments. These lighting systems represent a significant 
component of the total electrical load, independent of the energy used 
for heating. 

Therefore, any fluctuations in electricity consumption within the 
greenhouse shown in Fig. 4 b are not directly correlated with the 
operation of the heating systemsdepicted in in Fig. 4 a. Since the heating 
mechanisms are primarily gas-powered, variations in the electrical load 
are more likely attributed to other energy-consuming systems, such as 
the lighting apparatus. This distinction is crucial for accurately inter
preting energy usage patterns in greenhouse operations, where separate 
systems contribute to the overall energy footprint, each with its distinct 
energy source and function. 

As the data here is a time series data, some preprocessing and time 
series analysis here can be helpful for better understanding the trend of 
the data. To deal with this type of data a common technique is decom
position analysis, which attempts to dissect a time series into its 
component parts. A pattern, a seasonal component, and a residual 
component are examples of these components. While the seasonal 
component captures the recurring patterns or cycles that occur within 

the time series, the trend component reflects the time series’ long-term 
movement [22].The time series’ random or erratic changes that cannot 
be explained by the trend or the seasonal components are represented by 
the residual component. 

It would be useful to understand the structure of the data without 
seasonality and possible noises, perform better forecasting with higher 
reliability, and finally identify anomalies much easier in the trend. To 
perform the decomposition analysis, a deep understanding of the data is 
important, because depending on the type of time series an additive or 
multiplicative model should be chosen for decomposition model [23, 
24]. The seasonal and trend components of the series are combined 
together to create the observed values in an additive model, which 
makes the assumption that they remain stable over time. Alternatively 
said, regardless of the level of the series, the seasonal swings have a 
consistent amplitude. When seasonal fluctuations have a magnitude that 
is unrelated to trends or series levels, this kind of model is applicable. 

In contrast, a multiplicative model presupposes that the observed 
values are the result of multiplying the seasonal and trend components 
of the series together rather than keeping them constant. In this instance, 
the level of the series determines whether the seasonal swings are higher 
or lower. When the size of seasonal swings is proportional to the level of 
the series, this kind of model is suitable. 

One way to choose between additive and multiplicative model is 
checking if the data is stationary. The statistical characteristics of the 
time series, such as mean and variance, are consistent over time if the 
data is stationary. Use of an additive model for time series decomposi
tion in these situations is frequently preferable than a multiplicative 
model. Therefore, checking if the data is stationary is an integral part of 
decomposition analysis. In several disciplines, including economics, 

Fig. 5. (continued). 
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finance, and engineering, the Adfuller stationary test is a crucial tool for 
determining if time series data are stationary [25]. The results of ADF 
test for the resource data are presented in Table 1. 

After choosing an appropriate model for each data, the decomposi
tion analysis was performed. The results of decomposition analysis in 
Fig. 5 for the resource consumption and environmental impact variables 
are presented. 

Results of decomposition analysis showed that the performance of 
the greenhouses, both AI-assisted ones and the reference one, were 
heavily seasonal. In other words, the behavior of cases in terms of 
resource consumption and environmental impacts had a fixed pattern 

over time which is visible in seasonal section of Fig. 6. After identifying 
seasonality in the data and removing the seasonality and white errors, 
the remaining ones would be the actual trends. 

Trends revealed that the most influence of AI technology was on the 
heating load which was notable lower for AI-assisted cases and during 
the whole experiment time it was always lower than the reference case. 
Having said that, it is important to note that the difference between 
heating load of AI-assisted greenhouses and the reference case started 
with a high amount and ended with the lower amount. This means that 
there is a possibility that if the experiments continue, there might be 
situations where the heating load of the reference case happens to be 

Fig. 6. Trends of resource consumption and environmental impacts of greenhouses after seasonality removal.  
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Table 2 
Input and output of the dataset.  

Variable Description Unit Interval dataset Input/ 
Output 

Tair Greenhouse Air 
temperature 

◦C 5 min Climate 
condition 

Input 

Rhair Greenhouse 
relative 
humidity 

% 5 min 

CO2air CO2 greenhouse ppm 5 min 
HumDef Greenhouse 

humidity deficit 
g/m3 5 min 

VentLee Leeward vents 
opening 

% 5 min 

Ventwind Windward vents 
opening 

% 5 min 

AssimLight HPS lamps 
status (on-off) 

% 5 min 

EnScr Energy curtain 
opening 

% 5 min 

BlackScr Blackout curtain 
opening 

% 5 min 

PipeLow Rail pipe 
Temperature 
(Lower circuit) 

◦C 5 min 

PipeGrow Crop pipe 
Temperature 
(Growth circuit) 

◦C 5 min 

co2_dos CO2 dosing kg/ha 
hour 

5 min 

Tot_PAR Total inside PAR 
(Sun + HPS +
LED) 

μmol/ 
m2 s 

5 min 

ot_PAR_Lamps PAR sum from 
HPS and LED 
lamps 

μmol/ 
m2 s 

5 min 

EC_drain_PC Drain EC dS/m 5 min 
pH_drain_PC Drain pH [− ] 5 min 
Water_sup Cumulative 

number of 
minutes of 
irrigation in a 
day 

minutes 5 min 

Cum_irr Cumulative 
number of litres 
of irrigation in a 
day 

L/m2 

day 
5 min  

Variable Description Unit Interval dataset Input/ 
Output 

irr_PH pH of irrigation 
water 

[− ] bi- 
weekly 

Lab 
analysis 

Input 

irr_EC EC of irrigation 
water 

[dS/m] bi- 
weekly 

irr_NH4 Ammonium 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_K Potassium 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

rr_Na Sodium 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Ca Calcium 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Mg Magnesium 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Si Silicon 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_NO3 Nitrate 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly  

Table 2 (continued ) 

Variable Description Unit Interval dataset Input/ 
Output 

rr_Cl Chlorine 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_SO4 Sulphate 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_HCO3 Bicarbonate Ion 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_PO4 Phosphate 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Fe Iron 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Mn Manganese 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Zn Zinc 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_B Boron 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Cu Copper 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

irr_Mo Molybdenum 
concentration in 
irrigation water 

[mmol/ 
l] 

bi- 
weekly 

drain_PH pH of drainage 
water 

[− ] bi- 
weekly 

drain_EC EC of drainage 
water 

[dS/m] bi- 
weekly 

drain_NH4 Ammonium 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_K Potassium 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Na Sodium 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Ca Calcium 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Mg Magnesium 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Si Silicon 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_NO3 Nitrate 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Cl Chlorine 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_SO4 Sulphate 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_HCO3 Bicarbonate Ion 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_PO4 Phosphate 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Fe Iron 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Mn Manganese 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Zn Zinc 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

(continued on next page) 
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lower than AI-assisted. Surely, this is just a hunch and it needs deeper 
study to discuss it. Regarding electricity consumption, AI-assisted cases 
had almost similar behavior to the reference case, with some fluctua
tions. This similarity continued to happen for water usage as well where 
even in most days the water usage of the reference case was lower than 
the average of AI-assisted greenhouses. 

Environmental impacts of AI-assisted greenhouses, however, had a 
different behavior where up to the middle of the experiment AI-assisted 
cases were weaker than the reference case but in the second half of the 
experiment, the average of their performance was quite close to the 
reference case. 

5.2. AI impact prediction 

5.2.1. Pre-processing 
In the next stage of analysis, pre-processed data from the case study 

has been used to train ML algorithms in order to predict the performance 
of the AI-aided greenhouse in terms of the production that it can yield. In 
this process, 2 sets of data were used as the input to predict the 

prediction. Input datasets belong to indoor climate condition, and lab 
analysis of the irrigation and drain samples shown in Table 2). 

There are some tasks that must be done before model deployment as 
depicted in Fig. 7. After importing different dataset and joining them 
with respect to the time series and the time interval of each dataset that 
are different. In pre-processing stage after checking and removing null 
values and outliers, normality check performed which results in an 
additional stage of normalization with MinMax scaler. 

5.2.2. Feature engineering 
Upon completing the data normalization process, we embarked on 

an in-depth analysis of the dataset’s intricate inter-relationships. This 
was crucial in our pursuit to condense its dimensions and make the data 
more manageable for subsequent analysis. This comprehensive study 
involved examining the correlations between various data variables. We 
identified and eliminated those variables that demonstrated an 
exceedingly strong correlation, which is evident in Figs. 8–9. A specific 
correlation threshold was set at 0.75, and any variables that exceeded 
this limit were judiciously excluded, ensuring a streamlined and more 
manageable dataset. 

To further refine the data, we undertook a meticulous sensitivity 
analysis. In this step, we compared each variable against the output 
variables. Variables that displayed correlations lower than 0.6 were 
deemed less influential and were subsequently removed to maintain 
only the most impactful data. From our dedicated efforts, we observed 
notable reductions in variable counts. Specifically, from the climate 
dataset, out of an initial 26 variables, only 6 were retained for in-depth 
subsequent analysis and for the eventual model deployment. Similarly, 
in the case of the laboratory analysis dataset, by adhering to the same 
correlation criteria, we saw a reduction from 38 variables down to a 
concise set of 8. 

Such rigorous data refinement ensures that the input data for our 
machine learning algorithms remains not only precise and effective but 
also limited in scope. This approach holds significant advantages. A 
limited set of impactful variables not only boosts the algorithms’ effi
ciency but also substantially reduces computational demands. This 
strategy paves the way for quicker processing times and ensures that 
computational resources are judiciously utilized, leading to significant 
cost savings. 

Fig. 8 illustrates the interconnectedness of climate-related variables 
within the dataset through a correlation matrix, offering insights into 
their interdependent behaviors. This matrix facilitates a comparative 
analysis of different variables to discern any relationships, whether 
direct or inverse. For example, the correlation between the status of 
lamps (AssimLight) and CO2 levels (co2_vip) suggests a synchronous 
relationship; an increase in lamp activity typically coincides with a rise 
in CO2 levels, indicating that these variables behave in tandem. 
Conversely, a robust inverse relationship is observed between the rela
tive humidity inside the greenhouse (Rhair) and the status of the 
ventilation systems (t_ventlee_vip, t_ventwind_vip). This indicates that 
enhanced ventilation is likely to decrease the relative humidity, aligning 
with expectations of greenhouse climate control. 

Furthermore, accompanying density plots augment the correlation 
matrix by providing visual cues about the nature of the relationships 
between variables. They help in distinguishing whether the relation
ships are linear, suggesting a consistent rate of change between vari
ables, or non-linear, which could imply more complex interactions that 
may vary under different conditions. This level of detail is particularly 
crucial for cause-effect studies, where understanding the nature of the 
relationship between variables is essential for drawing accurate con
clusions about their interactions and impacts within the greenhouse 
environment. The combined use of correlation matrices and density 
plots thereby equips researchers with a nuanced understanding neces
sary for constructing and refining predictive models, ensuring that these 
models are based on accurate representations of the underlying data 
relationships. 

Table 2 (continued ) 

Variable Description Unit Interval dataset Input/ 
Output 

drain_B Boron 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Cu Copper 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

drain_Mo Molybdenum 
concentration in 
drainage water 

[mmol/ 
l] 

bi- 
weekly 

Prod Total tomato 
Production 
quality 

kg/m2 at date 
(harvest) 

Production Output  

Fig. 7. ML deployment stages.  
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Upon examining the laboratory data through the lens of correlation 
coefficients and density plots, it is evident that a subset of variables 
exhibits substantial positive and negative correlations. This statistical 
interdependence in Fig. 9, implies that during the feature engineering 
phase, such variables may be redundant and could thus be considered 
for removal to enhance model efficiency and manageability. The prin
ciple of dimensionality reduction comes into play here, advocating for a 
focus on variables that demonstrate varied behaviors to avoid multi
collinearity, which could otherwise distort the predictive model’s out
comes. For groups of variables that manifest strong correlations, the 
selection of a single representative variable for each group is suggested. 
This representative would encapsulate the shared information content of 
the group, thereby streamlining the dataset for further analysis and AI 
implementation. The aim is to distill the dataset to its most informative 
elements, eschewing superfluous data that does not contribute to the 
predictive power of the AI algorithms. 

In the process of feature selection, density plots serve a dual purpose. 
First, they help confirm the linearity or non-linearity of the relationships 
between variables. Second, they assist in visualizing the distribution and 
overlap of data points, further informing which variables may be 
redundant. By implementing this rigorous approach to data refinement, 
the number of variables can be effectively reduced, easing the compu
tational load and enhancing the clarity of the dataset. This meticulous 
method of variable categorization and reduction is critical for 

developing a robust AI framework capable of delivering accurate and 
insightful predictions. 

Through an in-depth sensitivity analysis, we systematically assessed 
the features considering both their correlation with the intended 
outcome and their intricate inter-relationships. This rigorous process 
allowed us to distill our selections meticulously. From the vast array of 
variables in the climate cluster, only 6 were deemed paramount and thus 
retained. Similarly, from the laboratory analysis data, a selection of 8 
stood out as especially relevant, as illustrated in Fig. 10. Consequently, 
our model has been refined and streamlined to incorporate only these 14 
judiciously chosen input variables, all aimed at predicting a singular, 
focused output. This optimized approach not only ensures a more tar
geted predictive trajectory but also potentially enhances the model’s 
overall efficiency and accuracy. 

5.2.3. Model selection 
Finally, in order to employ ML algorithms different traditional re

gressions models have been used at a basic level to compare and have an 
initial insight about selecting top models for further analyses. ′Therefore, 
through Lazy Regressor package for python different models have been 
tested with default settings and hyper parameters. Results of the top 10 
models are depicted in Fig. 11 where there are three models with R- 
squared higher than 0.4 and RMSE less than two. These models are the 
optimum models for further analyses in this study. 

Fig. 8. Climate data correlation matrix and density plot.  
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In this part in order to have a deeper insight about what are the 
optimum models, each of them are briefly introduced.  

• Radial Basis Function: The Artificial Neural Network (ANN) model, 
recognized for its predictive prowess, generally consists of at least 
three distinct layers. The inaugural layer, termed the input layer, 
corresponds in size to the total number of model inputs. Within this 
framework, every input possesses a corresponding weight. The sub
sequent hidden layer is populated with several neurons. Their col
lective presence amplifies the efficacy of the ANN by maintaining an 
adequate neuron count within. Matching the network’s output, the 
number of neurons in the final, output layer is set. Since in this work 
the final goal is to predict the product weight per square meter of the 
greenhouse a singular neuron is designated for the output layer. 
Conversely, the Radial Basis Function (RBF) approach sees each 
neuron in its hidden layer governed by a distinct nonlinear activation 

function. During the RBF network’s training phase, the bias 
component is harnessed to guide the network towards a global 
minimum [26]. Here, a singular hidden layer model has been used 
while crafting the RBF model. The RBF’s was optimized by altering 
the neuron count in the hidden layer between three and thrity five, 
culminating in the selection of the most optimal setup.  

• Support Vector Machine: Support Vector Machines (SVMs) have 
gained considerable recognition for their effectiveness in solving 
classification problems, where the aim is to categorize data into 
distinct classes. While they are primarily known for this role, their 
application extends into regression analysis as well, albeit less 
commonly. In the context of regression, these models go by the name 
of Support Vector Regression (SVR). SVR models aim to predict 
continuous outcomes as opposed to discrete classes, and they share 
many of the same foundational principles with their classification 
counterparts. Despite being less documented, SVRs are gaining 

Fig. 8. (continued). 
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traction for their ability to handle complex, high-dimensional data in 
predictive modeling. SVR seeks to minimize prediction error by 
identifying the optimal hyperplane and narrowing the gap between 
predicted and observed values. In the equation provided, reducing 
the value of ’w’ is equivalent to maximizing the margin. 

• Gaussian Process Regressor: This model is a non-parametric sta
tistical method designed to model intricate data distributions, 
particularly when dealing with noisy or incomplete data. GPR 
operates by forming a prior distribution over potential functions 
fitting the data and then updating this as new observations emerge. 
Within GPR, this distribution is illustrated through a Gaussian pro
cess, characterized by a set of jointly Gaussian distributed random 
variables [27]. The covariance among data points indicates their 
similarity and guides the prediction process. Important parameters 
like length scale and amplitude dictate the characteristics of these 
functions [28]. Once the data is observed, GPR produces a posterior 
distribution, which then facilitates predictions and uncertainty 
evaluations for unfamiliar data points. GPR’s strengths lie in its 
capability to handle nonlinear relationships, its adaptive nature 
concerning covariance functions, and its provision for uncertainty 
predictions. 

5.2.4. Model deployment 
Upon narrowing down to three optimal models using the outcomes 

from the lazy regressor, the next step involved a meticulous manual 
setup for each of these models. The authors took charge of every aspect 
of training and evaluation to gain a preliminary insight into the model’s 
performance, ensuring a more informed decision for the final model 
selection. Once these three models were fully operational, a compre
hensive evaluation was conducted. This assessment utilized key per
formance metrics such as MAPE, RMSE, TSSE, and EF, details of which 
are elaborated upon as follows. 

• MAPE (Mean Absolute Percentage Error): It measures the pre
diction accuracy in forecasting methods. It calculates the average 
percentage error between the actual and the predicted values. 
Therefore, a lower MAPE value indicates better fit of the data by the 
model. 

MAPE=
100%

n
∑ |Actural − Forecast|

|Actural|

• RMSE (Root Mean Square Error): It is a frequently used measure of 
the differences between values predicted by a model and the values 

Fig. 9. Lab analysis data correlation matrix and density plot.  
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observed. Therefore, a lower RMSE value indicates a better fit of the 
data. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

(Actual − Forecast)2
√

• TSSE (Total Sum of Squared Error): It measures the total discrep
ancy between the predicted and actual values, squared. It is the basis 
for many statistical tests and measures in regression. Therefore, a 
lower TSSE indicates a model that better fits the data. 

TSSE =
∑

(Actual − Forecast)2    

• EF (Efficiency Factor): It is not as standard as the other metrics, and 
its definition might vary across disciplines. Generally, in the context 

of hydrological modeling, it is also known as the Nash-Sutcliffe ef
ficiency coefficient. It determines the relative magnitude of the re
sidual variance compared to the measured data variance. An EF of 1 
indicates perfect predictions, an EF of 0 indicates that the model 
predictions are as accurate as the mean of the observed data, and an 
EF less than 0 indicates that the mean of the observed data is a better 
predictor than the model. 

EF = 1 −

∑
(Actual − Forecast)2

∑
(Actual − Forecasted Mean )

2 

Results, showed the better performance of RBF model with 0.80 
RMSE followed by with 1 and GPR with 1.3 in Table 3. From this result, 
it can be undertood that firstly, the order of the most optimum models 
are still the same in terms of the most important metric (RMSE). Sec
ondly, RBF and GPR showed better results than lazy regressor, while 

Fig. 9. (continued). 
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Fig. 10. Sensitivity analysis of input variables a. climate data, b. lab analysis data.  

Fig. 11. Initial model comparison result based on lazy regressor.  
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GPR showed even worse results than basic models comparison. 

5.2.5. Final model tunning and evaluation 
To finalize a single model as the preferred choice and further refine 

it, an in-depth comparison becomes imperative. The evaluation results, 
as presented in Table 2, highlight that the RBF model excels in terms of 
assessment metrics on the training dataset. However, the margin of su
periority is not overwhelmingly vast, suggesting that with adjustments, 
other models might surpass the RBF. Viewing it from another angle, both 
the SVM and GPR models displayed suboptimal performances when 
subjected to the rain dataset. This suggests that while their performance 
on the training dataset is commendable, their efficacy diminishes 
considerably with test data. An overfitted model, such as these, can be 
deemed unreliable for predicting data points not encompassed within 
the training dataset. Consequently, given its consistent performance 
across training and test datasets, only the RBF model will advance to 
subsequent stages of analysis and refinement. To optimize RBF model 
there are three areas that can have impacts on the performance of the 
model which are the focus of this part. 

Firstly, choosing the optimal training algorithm for the RBF neural 
network model is crucial for its accuracy and performance. While 
various training algorithms exist, each comes with its own advantages 
and pitfalls in terms of convergence speed, computational demands, and 
potential for overfitting. The backpropagation algorithm, often 
employed for RBF neural networks, adjusts weights and biases itera
tively but might converge slowly and risk landing in local minima. In 
contrast, the Levenberg-Marquardt algorithm adjusts its learning rate 
depending on the error surface’s curvature, leading to quicker conver
gence. In this research, 5 top training algorithms for the RBF neural 
network based on the background studies were assessed (CFG, CGB, BR, 
LM, BFG) at Fig. 12. 

As it is depicted in Fig. 12, the LM algorithm emerged as the most 
effective, outperforming others in accuracy metrics. Its faster conver
gence and reduced overfitting risks make it a favored choice for many. 
This algorithm is anticipated to enhance the RBF neural network’s 
predictions for greenhouse indoor temperatures, especially with exten
sive datasets. 

The next stage of optimization, hidden layer was subjected to 

optimization as it is crucial in converting input data into a space more 
amenable to linear analysis. It deals with nonlinear input patterns by 
mapping them to a higher dimension via the hidden layer. Cover’s 
theorem suggests that the nonlinear patterns can be made linearly 
separable in this higher dimension. Therefore, having more neurons in 
the hidden layer than input neurons enhance the model’s ability to 
understand nonlinear relationships. However, the optimal neuron count 
in the hidden layer varies based on data complexity. Too few might lead 
to under-fitting, causing the model to be oversimplified, while too many 
might cause overfitting, where the model over-learns from the training 
data and struggles with new data. Through a sensitivity analysis, where 
the RBF model is trained with varied neuron counts, one can determine 
the ideal number to avoid both overfitting and under-fitting. In this 
study, the impact of varying neuron counts in the hidden layer, from 
three to thirty five, on predicting the performance of the greenhouse in 
terms of its production was examined. 

In the analysis depicted by Fig. 13, a critical observation was made 
regarding the configuration of the neural network. It was discerned that 
when thirty four neurons were utilized in the hidden layer, the model’s 
performance reached an optimal level. This specific setup resulted in a 
MAPE of approximately 1.3% and an RMSE of roughly 0.9, which was 
consistent across both the training and testing datasets. Such findings 
underscore the significance of appropriately configuring the hidden 
layer, as it can greatly influence the accuracy and reliability of pre
dictions made by the model. 

Finally, the last stage of fine-tuning the RBF model is the spread 
factor optimization as an essential component in the RBF model 
whichholds significant influence over both its accuracy and overall ef
ficiency. It specifically sets the width of the RBF kernel function. This 
width, in turn, plays a pivotal role in shaping the overlap of the RBF 
functions and how the input data is spatially represented. To pinpoint 
the most suitable spread factor for optimal model performance, a 
meticulous sensitivity analysis is necessary. This involves experimenting 
with different values of the spread factor and then methodically evalu
ating the results of the model performance against various statistical 
metrics in Fig. 14. It is worth noting that the ideal spread factor can vary 
based on the inherent characteristics of the input data and the intricacy 
of the relationships between input and output variables. For instance, in 

Table 3 
Selected model performance.  

Model Train Test 

RMSE MAPE TSSE EF RMSE MAPE TSSE EF 

RBF 0.80 1.21 350 0.98 0.83 1.30 230 0.97 
SVM 1.00 2.37 2041 0.95 2.60 3.74 1473 0.92 
GPR 1.30 1.80 920 0.97 4.20 4.39 1639 0.90  

Fig. 12. Performance of RBF model with different training algorithms.  
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situations dealing with complex, nonlinear systems, a smaller spread 
factor might be preferable. Conversely, simpler systems might benefit 
from a larger spread factor. In the context of this study, the explored 
range for the spread factor was between 0.1 and 1. 

Upon fine-tuning the spread factor to a value of 0.25 for the exam
ined RBF model, a distinct improvement in the model’s precision was 
observed. This advancement in accuracy was underscored by the MAPE 
and RMSE metrics, which yielded values of approximately 1.33 and 
0.76, respectively. It is noteworthy that these metrics remained consis
tent across both training and test datasets, further reinforcing the 
effectiveness of the optimization. This suggests that the model’s per
formance was considerably bolstered by the specific adjustments made 
to the spread factor. 

Following the comprehensive process of adjustments and calibra
tions, the model was primed for its ultimate performance evaluation, 
specifically to analyze the discrepancy between the predicted and actual 
outcomes. The difference in performance of the final model, both pre 
and post-refinement, underscores the efficacy of the optimization ef
forts. This significant enhancement in the model’s proficiency was 
achieved through systematic fine-tuning across three critical stages: the 
training algorithm, the count of neurons, and the spread factor, as 

illustrated in Fig. 15. A deeper dive into the results reveals that the re
siduals, which represent the variance between the actual and forecasted 
values, have notably diminished. In addition to the RMSE metric dis
cussed in the preceding section, the heightened R-squared value, which 
rose from 0.92 to 0.98, serves as a testament to the model’s augmented 
accuracy and the success of the refinement process. 

6. Challenges 

6.1. Limitations 

The study’s reliance on third-party data from the “Autonomous 
Greenhouse Challenge” presents a notable limitation due to the lack of 
control over data quality and scope. This constraint might affect the 
predictive models’ performance and the AI-aided strategies’ effective
ness, as they were designed based on the available, unmodifiable data. 
The variance in the effectiveness of these AI strategies across different 
studies underscores the need for further investigation into optimization 
and control strategies that are specifically tailored to individual green
house environments, ensuring more precise and applicable results. 

Beyond the study’s reliance on third-party data from the 

Fig. 13. Performance of RBF model with different number of neurons a. MAPE, b. RMSE.  
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"Autonomous Greenhouse Challenge," several other constraints merit 
attention. The findings, while significant, may not be universally 
applicable due to the unique nature of each greenhouse environment, 
including variations in climate, crop types, and technological infra
structure. The complexity of the AI models used poses another chal
lenge, as their deployment requires substantial computational resources 
and expertise, potentially limiting their use in less advanced agricultural 
settings. Despite efforts to streamline the dataset, the interpretability of 
the remaining variables and their influence on model predictions re
mains a concern, which is crucial for practical applications. Integrating 
AI technologies with existing greenhouse systems could be particularly 
challenging, especially in operations that are technologically outdated. 
The study also does not fully explore the broader environmental and 
ethical implications of AI integration in agriculture, such as the potential 
impact on labor markets and the ecological consequences of increased 
technological reliance. The long-term sustainability of AI-driven stra
tegies, their effects on soil health, crop diversity, and the ecological 
balance within and around greenhouses, is another area that remains 
uncertain. Furthermore, the dynamic nature of agricultural environ
ments, subject to changing weather patterns, pest populations, and crop 

varieties, may challenge the adaptability and resilience of AI systems 
without continuous updates and adaptations. 

These considerations underscore the complexity of implementing AI 
in agriculture and highlight the need for comprehensive future research 
to ensure that technological advancements contribute positively to 
sustainable and resilient farming practices. 

6.2. Potential sources of errors and dealing with them 

Potential errors in this analysis may arise from inaccuracies in 
greenhouse data collection, sensor inaccuracies for environmental and 
crop monitoring, and biases from competition participants. The study 
also notes the need for improvements in managing CO2 emissions and 
water use, indicating possible limitations in the current AI optimization 
strategies for greenhouse operations. 

Enhancing the foundational assumptions of this analysis could 
extend to a more thorough process of calibration and validation for the 
sensors gathering data, ensuring the precision and dependability of their 
measurements. This step is crucial for establishing a robust dataset that 
reflects true environmental conditions and crop growth metrics. 

Fig. 14. Performance of RBF model with different values for spread factor a. MAPE, b. RMSE.  
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Furthermore, broadening the scope of participation in the agricultural 
competition to include a diverse range of independent teams or re
searchers could significantly reduce potential biases. Such inclusivity 
would not only enrich the dataset with a variety of approaches and in
sights but also bolster the robustness and generalizability of the research 
findings, providing a more comprehensive understanding of the effec
tiveness of AI-driven strategies in different agricultural contexts. The 
potential errors and inaccuracies could skew the study’s results and 
conclusions, possibly leading to an overestimation of AI’s efficacy in 
enhancing greenhouse efficiency, particularly in energy reduction and 
crop yield improvement. Such discrepancies might impact decision- 
making by policymakers and scientists, especially in setting and 
achieving climate-related goals. Therefore, it’s crucial for these stake
holders to critically assess the study’s assumptions and limitations to 
ensure informed and accurate decisions based on the research outcomes. 

The presence of errors could lead to overestimated benefits of AI in 
greenhouse enhancements. Addressing this requires critical evaluation 
of the data and methodologies used. Potential solutions include applying 
regularization techniques to the predictive model to prevent overfitting, 
normalizing input data to ensure consistent scale across variables, and 
removing outliers to mitigate their undue influence on the model’s 
performance. These steps can help refine the accuracy of the findings, 
offering a more reliable basis for decision-making by policymakers and 
scientists in the context of climate change and agricultural policies. 

7. Conclusion 

In conclusion, this study has highlighted the transformative potential 
of artificial intelligence (AI) in refining agricultural practices, particu
larly within the controlled environments of greenhouses. Our 

exploration was anchored in a robust dataset derived from an agricul
tural competition that leveraged AI to optimize greenhouse operations. 
The empirical evidence presented herein underscores the efficacy of AI 
in reducing energy consumption, notably heating, thereby contributing 
to more sustainable agricultural practices without sacrificing crop yield, 
quality, or financial gain. Nonetheless, it is evident that the integration 
of AI in managing other critical aspects such as CO2 emissions and water 
usage requires further advancement. This research provides a founda
tional understanding of AI’s benefits in greenhouse farming and paves 
the way for future innovations to address these remaining challenges. 

This study extends beyond the operational optimization of green
houses, venturing into the realm of predictive analytics. It examines the 
capability of artificial intelligence (AI) to forecast the outcomes of its 
integration within greenhouse operations. A critical assessment of 
various machine learning (ML) models culminated in the identification 
of the Radial Basis Function (RBF) model as particularly efficacious 
following meticulous optimization. The model achieved a notable Root 
Mean Square Error (RMSE) of 0.8 and an R-squared value of 0.98, 
demonstrating a high level of accuracy in predicting greenhouse pro
duction quantified in kg/m2. This breakthrough underscores the 
remarkable potential of AI in not only facilitating day-to-day greenhouse 
management but also in forecasting production outcomes with a high 
degree of precision. 

The study primarily focuses on the quantitative aspects of produc
tion, showcasing the effectiveness of machine learning (ML) in fore
casting outcomes in AI-enhanced greenhouse operations. The findings 
highlight the critical role of input variable optimization in maximizing 
output, which bears significant implications for engineering design by 
emphasizing the importance of integrating precise control systems and 
sensors in greenhouse infrastructure. Additionally, the study’s emphasis 

Fig. 15. Performance of RBF model a. Before fine-tuning, b. after fine-tuning.  
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on output optimization aligns with regulatory standards and energy 
policies aimed at promoting sustainable agricultural practices, poten
tially informing policy development and regulatory frameworks to 
support eco-efficient farming. From an energy systems perspective, the 
insights gained could guide the design and implementation of energy- 
efficient solutions in greenhouse management, contributing to broader 
energy conservation efforts. Financially, the optimization of inputs 
versus outputs underlines the economic benefits of adopting AI in 
agriculture, which could influence investment decisions and financial 
planning in the agricultural sector. Lastly, the study’s focus on efficient 
production through AI integration touches upon Environmental, Social, 
and Governance (ESG) criteria by potentially reducing environmental 
impacts and supporting sustainable agricultural practices, thus 
contributing to the broader ESG goals of minimizing ecological foot
prints and fostering responsible resource management. 

Future studies should focus on conducting comparative analyses 
across various case studies to validate and broaden the applicability of 
the findings. Exploring AI’s effectiveness in different environmental and 
operational settings can deepen understanding of its adaptability. 
There’s also potential in combining AI with technologies like IoT and 
edge computing for improved control in greenhouse farming. Further
more, merging AI with environmental science could advance sustainable 
agricultural practices. 
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