
Sapienza University of Rome

Department of Computer, Control, and Management Engineering

Antonio Ruberti

Ph.D. in Computer Science

Thesis For The Degree Of Doctor Of Philosophy

Conversational Agents in
Human-Machine Interaction

Reinforcement Learning and Theory of Mind in Language Modeling

Thesis Advisor

Prof. Luca Iocchi

Correlatore

Prof. Roberto Navigli

Candidate

Nicolo’ Brandizzi
1643869

XXXVI cycle

Conversational Agents in Human-Machine Interaction: Reinforcement Learning and Theory of Mind in
Language Modeling © 2024 by Nicolo’ Brandizzi is licensed under CC BY-SA 4.0



Dedication

Alla mia famiglia, che mi ha sempre supportato e sopportato durante
tutti questi anni di studi. Dedico questo lavoro a voi, per la pazienza
infinita e il vostro amore incondizionato. Alla mia partner, compagna
in questi mesi di studio matto e disperatissimo, grazie per essere stata
la mia roccia e il mio rifugio. Ai miei amici e a tutte le persone che
mi sono state vicine, che hanno condiviso con me il viaggio della vita
e mi hanno sempre sostenuto.

E infine, a mio padre, che se n’è andato troppo presto. Non ho avuto
il tempo di ringraziarti per tutto ciò che hai fatto per me. Questa
dedica è per te, per renderti immortale nella memoria e nel cuore.

Questo lavoro è il frutto dell’amore, del sostegno e delle lezioni apprese
da ognuno di voi.



Abstract

This doctoral thesis addresses the challenges and advancements in the realm of Human-Machine In-
teraction, specifically focusing on the agency and misalignment of modern Large Language Models.
Initially, we examined the potential for artificial agents to manifest agency within an environment
inspired by Social Deduction Games, where Multi-Agent System and Reinforcement Learning shape
the interactions. Our findings revealed that introducing a communication channel significantly im-
proved agents’ performance, indicative of emergent decision-making abilities. Subsequently, the in-
vestigation shifted to the capability of machines to convey information in a manner comprehensible
to humans. Through a Referential Game, we identified that agents, while capable of collaboration,
struggled with performance when faced with knowledge asymmetry. To address this, we imple-
mented a Multi-Agent Reinforcement Learning approach, aligning with contemporary solutions in
the literature and show how it ultimately culminated in the issue of misalignment. In response, our
final approach integrated elements from psychology and linguistics to propose a solution to both
issues of agency and misalignment. We showed how our method improved communication accura-
cies solving the agency issue and mitigating the misalignment problem. Moreover, we highlight the
environmental and interpretability advantages of our solution. We conclude by stressing the impor-
tance of interdisciplinary approaches to refine and understand the capabilities of artificial agents in
communication-centric tasks.

Keywords: Human-Machine Communication, Reinforcement Learning, Agency, Misalignment,
Large Language Models, Theory of Mind
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πU Unified policy as described in Equation 4.7.

vctx Visual context vector in model architecture (see §4.1.2).



Acronyms

A-Ref Game Asymmetric Referential Game: A variation of the Referential Game that introduces
asymmetry, often in the roles, knowledge, or capabilities of the players, to create distinct
speaking and listening dynamics (see §6.2.2).

agency Agency: The capacity of an entity, particularly an AI system, to act autonomously and
make decisions based on its intentions (see §3.2.2).

AI Artificial Intelligence: The study of creating machines or software that can perform tasks that
typically require human intelligence.

AoA Age of Acquisition: Pertains to the age at which a word is typically learned (see §7.2.2).

ApL Apprenticeship Learning: A form of machine learning where the agent learns to perform tasks
by observing an expert, typically with the use of Inverse Reinforcement Learning (see §3.2.1).

CE Cross-entropy: A measure of the difference between two probability distributions for a given
random variable or set of events.

CIRL Cooperative Inverse Reinforcement Learning: A strategy where two agents engage cooper-
atively, sharing the objective of inferring and optimizing a reward function through inverse
reinforcement learning (see §3.2.3).

CV Computer Vision: A scientific field that trains computers to interpret and make decisions based
on visual data.

EmeCom Emergent Communication: The field that studies how language emerges in interactive
games between artificial agents (see §2.2.2).

FCN Fully Connected Network: A neural network architecture where each node is connected to
every other node.

FFNN Feed-Forward Neural Network: A type of artificial neural network wherein connections
between nodes do not form a cycle, and information moves in only one direction, from the
input layer, through any hidden layers, to the output layer, without looping back.

G-Speak General Speaker: A baseline or standard speaker model used for comparison with other
specialized or adapted speaker models (see §6).

HMC Human-Machine Communication: A sub filed of Human-Machine Interaction focused on the
communication (usually linguistic) between humans and machines.

HMI Human-Machine Interaction: The study and design of interfaces that facilitate effective ex-
changes between humans and computers (see §2.1).
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Hum-EmeCom Human-centered Emergent Communication: The sub field of Emergent Commu-
nication focused on human natural emergent language (see Brandizzi [2023]).

ImC Image Captioning: A task in computer vision and natural language processing where a system
generates textual descriptions of images (see §3.3.3).

IND IN-Domain: In the context of domain-specific words, IND refers to words which are present
in that specific domain (see §6.2.3).

IRD Inverse Reward Design: A framework for learning a reward function from human-designed
rewards, considering that the designer might have had limitations or made approximations
while specifying the reward (see §3.2.1).

IRL Inverse Reinforcement Learning: A machine learning framework that seeks to infer the reward
function of an agent by observing its behavior, rather than using a pre-defined reward function
(see §3.2.1).

KL-Divergence Kullback-Leibler Divergence: A measure used in information theory to quantify
the divergence between two probability distributions (see §6.2.2).

LD Language Drift: The gradual evolution and change in linguistic conventions and usage within
a communication system, whether in human languages or artificially emergent languages in
machines (see §2.2.2).

LLM Large Language Model: Advanced machine learning models designed for tasks involving
natural language understanding and generation.

LSTM Long-Short Term Memory: A type of recurrent neural network architecture optimized for
long-term dependencies.

MARL Multi-Agent Reinforcement Learning: An extension of reinforcement learning where mul-
tiple agents learn to act in an environment, often with or against each other (see §2.3.3).

MAS Multi-Agent System: Systems composed of multiple interacting agents, which can be either
computational entities, like software processes, or physical entities, such as robots.

MBRL Model-Based Reinforcement Learning: A subtype of reinforcement learning where the
agent develops a model of the environment to predict future states, thereby aiding in decision-
making (see §2.3).

MDP Markov Decision Process: A mathematical model used in decision-making problems, rep-
resenting the relationships between states, actions, and rewards in a stochastic environment
(see §2.3).

MFRL Model-Free Reinforcement Learning: A subtype of reinforcement learning that does not
require an explicit model of the environment, relying instead on direct experience to make
decisions (see §2.3).

misalignment Misalignment: The discrepancy that arises when an AI’s objectives or actions do
not align with human intentions, values, or expected outcomes (see §3.2.1).

MRR Mean Reciprocal Rank: A measure used to evaluate systems that return a ranked list of
answers to queries.

NLP Natural Language Processing: A branch of AI focused on enabling computers to understand,
interpret, and generate human language.



NMT Neural Machine Translation: Utilizing neural network models, particularly sequence-to-
sequence models, to perform language translation tasks by learning to map input sequences
to output sequences (see §3.2.3).

ObS Observation Space: The set of all possible observations an agent can perceive in an environ-
ment.

OOD Out-of-Distribution: In the context of domain-specific words, OOD refers to words which
are not present in that specific domain (see §6.2.3).

PoS Part of Speech: Refers to categories into which words are classified based on their syntactic
roles and functions, such as nouns, verbs, adjectives, etc (see §6.1.4).

PPO Proximal Policy Optimization: An algorithm used in reinforcement learning to optimize
control policies.

Ref Game Referential Game: A communicative game wherein players, often modeled as agents,
communicate about objects or concepts within a predefined referential domain (see §3.1.3).

RefEx Referring Expression: Linguistic expressions that identify a particular entity, often within
a context where many entities could be referenced (see §6.1.1).

ReLU Rectified Linear Unit: A type of activation function for neural networks (see [Agarap, 2018]).

RL Reinforcement Learning: A type of machine learning where an agent learns to behave in an
environment by performing actions and receiving rewards.

RL-FT Reinforcement Learning Fine-Tuning: The process of tweaking the parameters of a model
with Reinforcement Learning to optimize it for a specific task (see §6).

RL-Speak Reinforcement Learning Fine-Tuning Speaker: A speaker model that has been fine-
tuned using reinforcement learning methodologies (see §6).

RLHF Reinforcement Learning from Human Feedback: A framework wherein reinforcement learn-
ing is enhanced using feedback derived directly from human interactions and observations (see
§3.2.3).

RNN Recurrent Neural Networks: Neural networks designed for sequential data processing, useful
in tasks like time series forecasting or language modeling

RSA Rational Speech Act: A framework that models communication between speakers and listen-
ers as a form of rational action under uncertainty (see §3.3.2).

SDG Social Deduction Game: Games where players take on hidden roles and must deduce each
other’s identities (see §3.1.3).

Tanh Hyperbolic Tangent Function: The Tanh activation is an activation function used in neural
networks.

ToM Theory of Mind: A concept from cognitive science which refers to the ability of an individual
to ascribe mental states, like beliefs and desires, to oneself and to others (see §3.3.1).

TTR Type-Token Ratio: A linguistic metric that calculates the diversity of vocabulary used in a
text by dividing the number of different words (types) by the number of total words (tokens)
(see §6.1.4).

TUR Type-Utterance Ratio: A measure of lexical diversity within spoken discourse, determined
by the ratio of distinct word types to the total number of utterances (see §7.2.2).



Chapter 1

Introduction and Overview

In the early stages of AI research, there was excitement surrounding the potential of machines to
outperform human expertise in a multitude of domains. The focus was distinctively AI-centric,
prioritizing the advancement of the machine’s capability over human-AI collaboration.

In 1997, the world witnessed a historical moment in Artificial Intelligence as IBM’s Deep Blue
supercomputer defeated world chess champion Garry Kasparov [Campbell et al., 2002]. This mile-
stone marked a new era where machines began challenging human intellect in areas once believed to
be exclusively human domains. Building on this success, IBM introduced Watson in 2013 [Ferrucci
et al., 2013], which showcased its broad knowledge by winning the quiz show Jeopardy! against top
competitors. As AI research progressed, the challenges addressed became even more complex. By
2016, Google’s AlphaGo stood out by defeating Lee Sedol, a leading figure in Go [Silver et al., 2016],
a game known for its vast complexity. Further advancements came from researchers at DeepMind
who built an AI system mastering the real-time strategy game StarCraft II [Vinyals et al., 2019],
which exhibited superhuman decision-making and strategic thinking. These achievements, while
initially confined to the realm of games and competitions, had profound implications. The under-
lying message was clear: AI was not just a tool to assist humans; it had the potential to surpass
and replace us. This set a precedent, leading many industries and research domains to explore
avenues where AI could replace human effort, aiming for efficiency and precision that was, until
then, unimaginable.

However, over the past decade, the research community has shifted from viewing AI as a re-
placement for human tasks to one that emphasizes a symbiotic relationship. This human-centric
approach focuses on leveraging AI to augment human capacities, assisting in everyday tasks, and
mitigating repetitive responsibilities [Riedl, 2019, Shneiderman, 2021, Xu, 2019]. Davenport and
Kirby [2016] describes this shift with the notion of augmentation, emphasizing that AI’s role is to
enhance, not replace, human efforts. In the labor market, Bessen [2018] provides empirical insights,
revealing that AI often leads to role evolution and a spike in overall productivity when paired
with humans. Thus, the overall sentiment suggests a future wherein human-AI collaborations yield
results surpassing what either could achieve separately.

The interaction between humans and machines is a crucial aspect of human-centric AI, and
it should take place in domains where humans are already familiar and require little to no train-
ing. Given the universality of language in daily human experiences, the focus has been shifted
toward language-based applications rather than specialized tasks such as coding and mathematics.
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1.1. Context and Motivation

In particular, Human-Machine Interaction must be grounded in natural language, which presents
a challenge of teaching artificial agents to communicate, most often in English. Recent advances
in Natural Language Processing have led to the emergence of the transformer architecture, which
has become the preferred approach for language-based applications. However, current architec-
tures present a challenge in their reliance on predicting the next word in a sentence rather than
understanding the context and purpose behind language usage, as humans do. While humans use
language as a tool for coordinating and communicating to survive in a shared environment, Artificial
Intelligence may struggle to grasp the intricacies of language. For instance, a sentence like "That
apple is..." could be completed with multiple options such as "red", "tasty", or "bad", but the AI
may lack the ability to question the underlying meaning and context behind the sentence, which
could limit its ability to truly understand the world and communicate effectively with humans.

This challenge of learning mismatch remains unsolved due to the difficulty of expressing values
and intentions as a set of rules or formulas. A prominent example can be found in OpenAI’s
ChatGPT, which was released in December 2022. This Large Language Model rapidly captured
global attention, becoming the fastest-growing application in history to reach 100 million monthly
active users [Hu, 2023]. Its success spans from the novel application of a training methodology
to such a large-scale model. ChatGPT was trained using feedback from human annotators with
Reinforcement Learning. More specifically, its objective was to generate responses most likely to
be positively rated [Bai et al., 2022a]. While effective in many scenarios, this method encourages
the AI to make up factual information instead of admitting ignorance. As long as the human
annotator lacks the knowledge or expertise to recognize the incorrect information, the AI may
receive positive feedback despite generating inaccurate or misleading responses. This results in
a lack of accountability and trustworthiness in the AI’s responses, as well as potentially harmful
consequences for those who rely on the information provided by the AI.

1.1 Context and Motivation

The year 2023 has witnessed an exponential surge in the deployment of Large Language Models
across diverse fields, including medicine, chemistry, and economics [Clusmann et al., 2023, Sallam,
2023]. In financial terms, the LLM market is predicted to grow from 10.5 Billion USD in 2022 to
40.8 Billion USD by 2029 [Reports, 2023]. This financial trajectory mirrors the expected increased
adoption of LLMs in the coming years.

Given the widespread impact of this technology on society, escalating issues emerge about its
reliability. Beyond pressing ethical debates, such as the malicious use of LLMs for disinformation, a
crucial concern revolves around these models’ comprehension of their societal impact and alignment
with human values. These concerns touch upon concepts of agency and misalignment, key topics in
our discussions. At their core, they question how autonomously models can act while aligning with
our desired outcomes and societal context.

While philosophical debates around the definition of agency span decades, a practical perspective
allows us to view agency as a system’s capability to foresee its environmental actions. LLMs’
learning framework inhibits their ability to measure their influence on users and broader societal
ramifications. A case in point is the noticeable societal impact across political, economic, and
educational spheres by models such as ChatGPT [Farina and Lavazza, 2023]. However, AI’s impact
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1.2. Problem Identification: Enhancing Human-Machine Interaction Through Language

on society is not new to history, especially when considering negative outcomes. An unfortunate
example is the use of predictive policing algorithms like COMPAS [State of, 2008], operational
from 2010 to 2016. Trained on biased data, COMPAS exhibited persistent discrimination against
minorities, intensifying policing efforts and subsequently reinforcing data biases. The tangible fallout
from COMPAS, affecting thousands of lives, underscores the human consequences of deploying such
tools without necessary care.

COMPAS’s biases also emphasize the broader misalignment problem, which can be described
as the mismatch between human values and machine goals. In COMPAS’s case, the system’s goal
(to predict future criminal activity based on historical data) did not account for the deeply rooted
societal biases in that data. Instead of providing impartial assessments, the system perpetuated and
amplified those very biases, resulting in judgments that further marginalized certain populations.
This misalignment not only failed to promote justice but actively worked against it, underscor-
ing the inherent risks of letting automated systems dictate decisions without adequate oversight
and understanding. In general, when complex human behaviors are abstracted into mathematical
formulations, we often encounter a radical deviation from reality. Our contemporary era offers
numerous instances of misaligned AIs, which, when applied in real-world settings, inadvertently
amplify existing biases [Gabriel, 2020, Yudkowsky, 2016].

1.2 Problem Identification: Enhancing Human-Machine Interac-
tion Through Language

Large Language Models, as we have seen, possess the potential to profoundly affect a significant part
of humanity, bringing both benefits and drawbacks. However, in their current state, they grapple
with challenges related to understanding their societal role and human values. As researchers,
our objective should be to address this issue by enhancing LLMs with the awareness of how their
communications influence their surroundings and facilitate a deeper comprehension of humans. This
multidisciplinary problem intersects various fields, but our primary focus is on Human-Machine
Interaction. Within this domain, the recent advancements in Natural Language Processing have led
to the emergence of a subfield where we can engage in direct dialogues with machines. This area
of study is known as Human-Machine Communication (HMC) with dedicated periodicals (such as
Human-Machine Communication) and journal issues [Etzrodt et al., 2022]. Though it emphasizes
linguistic interactions, it remains receptive to future multimodal communications, encompassing
domains like vision and sound.

Our ambition in this direction is to develop machines capable of adapting to diverse contexts
and individuals. Consider an AI virtual assistant designed to facilitate online learning for students
worldwide. One student, based in New York, uses colloquial language, slang and refers to cultural
phenomena unique to the region. Another student, from rural India, might communicate in English
but with different sentence structures and references. If the virtual assistant rigidly adheres to a
standard language model, it could misinterpret the intent of these students. The consequence being
frustration, miscommunication, and an ineffective learning experience. From a broader perspec-
tive, adaptability encompasses more than the ability to transition between languages or cultural
differences. It also pertains to recognizing and adjusting to an individual’s evolving communication
style. Analogous to a teacher who discerns each student’s learning style and adjusts instruction
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1.3. Navigating the Thesis: A Structural Overview

accordingly, a sophisticated AI should continuously learn and adapt to each user’s distinctive com-
municative patterns.

In essence, an AI system lacking this adaptability remains limited, failing to capture the full
spectrum of human interaction. A question then arises: How can we build AI conversational agents
to be adaptable? And how can we ensure it understands not just words but also the intentions behind
them? Addressing these questions is fundamental to our pursuit for improved Human-Machine
Communication.

1.3 Navigating the Thesis: A Structural Overview

We have identified two primary challenges in the domain of Human-Machine Communication: the
lack of agency and misalignment in modern Large Language Models. This work aims to address
these challenges systematically.

Our introduction starts by equipping the reader with essential foundational knowledge. Chapter
2 elucidates key concepts, such as Human-Machine Interaction (§2.1) , Computational Linguistics
(§2.2), and Reinforcement Learning (§2.3). Throughout this chapter, we maintain an emphasis on
interactions: between humans, between machines, and, crucially, between humans and machines.

Subsequently, Chapter 3 offers a literature review, laying the groundwork for our methodologi-
cal approach. We examine the dynamics of cooperation and competition on artificial agents (§3.1),
particularly focusing on emergent languages. The exploration centers on Social Deduction Games
(§3.1.3), where The Werewolf and the Referential Game (Ref Game) stand out. The next Section
§3.2 focuses on the interplay between language modeling and RL. Here, topics like the misalign-
ment problem (§3.2.1), the role of agency in RL (§3.2.2), and the current uses of Reinforcement
Learning in language modeling (§3.2.3) are discussed. Our review then moves towards adaptability
solutions for language models (§3.3), where we discuss the Theory of Mind (§3.3.1), its integration
in computational linguistics (§3.3.2), and associated tasks (§3.3.3).

Equipped with a robust understanding of the landscape and its challenges, we introduce our
unique problem definition and proposed solution in Chapter 4. A mathematical foundation for The
Werewolf (§4.1) and the Referential Game (§4.1.2) sets the stage for the introduction of our solution
framework (§4.2). Two distinct solution frameworks emerge: one emphasizes communication as
the sole action, leading to a unified action policy (§4.2.1), while the other envisions agents with
diverse roles, both communicative and interactive, resulting in what we term the disjoint action
policy (§4.2.2). Building upon this, we propose an extended version of the disjoint action policy
through the lens of the previously discussed Theory of Mind (§4.3). This perspective envisions non-
communicative actions as predictors of other agents’ behaviors. This approach paves the way for
our primary contribution: a prediction policy combined with an iterative communication refinement
process.

1.3.1 Methodological Approach and Contributions

Our research methodology systematically addresses the challenges of agency and misalignment. The
approach is structured into three distinct phases, each building upon the findings of the previous
one. Each of these phases is grounded in peer-reviewed materials published during my Doctoral
period. Specifically, phase 1 is informed by Rlupus: Cooperation through emergent communication in
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the werewolf social deduction game [Brandizzi et al., 2021] and Emergent communication in human-
machine games [Brandizzi and Iocchi, 2022], phase 2 draws from both Speaking the language of
your listener: Audience-aware adaptation via plug-and-play theory of mind1 [Brandizzi et al., 2023]
and Towards more human-like ai communication: A review of emergent communication research
[Brandizzi, 2023], and phase 3 is based on Brandizzi et al. [2023].

Moreover, according to the solution framework introduced previously, phase 1 is based on the
unified action policy, phase 2 on the disjoint action policy, and phase 3 on the Theory of Mind
version of the disjoint action policy.

Understanding AI Agency through Game-Based Dynamics

In the initial phase, we deal with a fundamental question: Can agency manifest in artificial systems
given an adequate learning framework? Inspired by the literature, we resolve to Reinforcement
Learning and Multi-Agent Systems to answer this question. Chapter 5 tackles this issue through
an artificial game environment inspired by The Werewolf Social Deduction Game.

Starting, we detail the game’s mechanics and dynamics in §5.1, breaking down the environment
(§5.1.1) and discussing the roles of the two teams involved, villagers and werewolves (§5.1.2). We
then measure the game dynamics in (§5.2). First, we focus on the outcome’s analysis under ran-
domized behaviors (§5.2.1). Our findings highlight a significant disadvantage for one group (the
villagers), who achieve victory 4% of the time without communication. This outcome sets our
baseline, against which we assess these agents’ learning and communicative capabilities.

Next, we show that without communication, the use of RL does not improve the villagers’
chances of winning. We posit that: if agents can leverage a communication channel for cooperative
intent, it serves as evidence of their emergent agency, i.e., using communication to influence the
game outcome. To assess our hypothesis, we introduce a communication channel in the game
without incentivizing agents to use it. Our hypothesis is proven when we analyze how villagers’ win
rates increase from 4% to 40% upon the introduction of communication. We validate these findings
across two player configurations: nine and twenty-one players. Drawing from subsequent research
by Lipinski et al. [2022], we uncover how the villagers craft a strategy resembling a Turing test
to pinpoint the werewolf (§5.2.2). Yet, a challenge remains: the evolved language, while efficient,
consists of bits and numbers, making it non-interpretable by humans. Our exploration ends with the
awareness that while the right learning paradigm can indeed spark agency, the resultant language
must resonate with humans.

Enhancing Language Model Agency with Reinforcement Learning

Building upon our earlier findings, the subsequent portion of this work (§6) shifts to agents that
communicate in a human-interpretable manner. We introduce two agents, a speaker and a listener
(§6.1), set to play a Ref Game. We detail their training dataset (§6.1.1), the framework in play
(§6.1.2), and the structural design of the models (§6.1.3).

This chapter revolves around a central research question: Can agents, trained independently
from each other, collaboratively solve a game? We put this to the test in §6.1.4 and subsequently

1The content and solution proposed in this chapter has been developed in collaboration with the Dialogue Mod-
elling Group at the University of Amsterdam.
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dissect their performance metrics and communication strategies. Our findings are promising; the
agents surpass random success rates, which we attribute to their shared expertise in both linguistic
and visual domains (§6.1.5). Yet, an issue emerges. This success leans heavily on the agents sharing
complete knowledge, an idealistic scenario not reflected in real-world dynamics, where knowledge
disparities are common.

To simulate these disparities, Section 6.2 introduces a different version of the Referential Game.
Here, game data is split across various domains, laying the groundwork for an Asymmetric Referen-
tial Game (§6.2.1). With the speaker retaining a complete knowledge base, we build listeners limited
to specific domains. As anticipated, this setup severely impairs game outcomes, with some perfor-
mances decreasing to random chance when a listener confronts unfamiliar domains. The primary
challenge arises from the speaker’s limited exposure to other agents during training, suggesting a
lack of agency.

Taking inspiration from the previous chapter, we turn to Reinforcement Learning, finetuning the
speaker to adapt to a designated listener (§6.2.2). The outcomes, documented in §6.2.3, show the
adapted speaker outperforming its original version. Yet, a deeper analysis of the speaker’s lexicon
uncovers a reliance on select keywords that trigger specific listener reactions. We relate this trend
to the misalignment problem in §6.3 where higher game performances do not inherently translate
to better communication. In §6.3.1, we critique the constraints of our approach, particularly in the
context of contemporary Large Language Models training. While we can address the agency issue
by adjusting training methods, the misalignment problem requires a different solution.

Beyond Finetuining: Theory of Mind for Improved Communication

In our final methodology Chapter 7, we address both the issue of agency and misalignment. We
present our novel solution (§7.1), and introduce an auxiliary model, termed the simulator (§7.1.1).
The simulator’s primary function is to learn the listener’s behavior during interaction rounds. Once
the simulator demonstrates proficiency in predicting listener actions based on the environment,
we implement a unique adaptation mechanism (§7.1.2). This mechanism leverages the simulator’s
insights to guide the speaker’s responses, ensuring they resonate more effectively with the listener.

To validate our approach, we perform a comprehensive analysis in (§7.2). Initially, we demon-
strate how our adaptation strategy enables the speaker to adjust to various listeners, enhancing
game performance (§7.2.1). Subsequently, we examine the evolved language (§7.2.2). Our findings
indicate a noticeable improvement in terms of vocabulary diversity (avoiding the previous issue of
distribution collapse) and enhanced human interpretability.

Furthermore, in §7.3, we emphasize the advantages of our method. Notably, our approach
avoids retraining the speaker’s model, a particularly resource-intensive process for LLMs. We also
revisit the agency dilemma, which we believe is effectively addressed by employing the simulator.
Moreover, the misalignment issue is now alleviated, thanks to the improved understanding between
the speaker and listener. Nonetheless, our method is not without limitations. In §7.3.2, we discuss
potential ethical implications, particularly concerning the potential of LLMs to influence human
decisions.
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1.3.2 Conclusions: Summarizing Insights and Ethical Dilemmas

In Section 8, we conclude our journey with a summary of our key findings (§8.1). The explo-
ration acknowledges certain limitations due to resource constraints impacting the use of LSTM
over transformer models, affecting the quality of language generation, and the exclusion of human
participants, which may limit the depth of insights into human-AI dynamics. These limitations are
further discussed in Section 8.2.

Looking forward, Section 8.3 outlines the expected impact of our contributions across various
domains. We explore the theoretical implications (§8.3.1), where our novel approach could redefine
how language models are trained and adapted. In the industrial area (§8.3.2), we speculate on the
potential of our research in shaping future AI products, particularly in terms of personalization and
on-device functionality. On the societal front (§8.3.3), we contemplate our work’s role in promoting
a more inclusive, environmentally-conscious, and ethically-aware AI landscape.

More importantly, we delve into the realm of ethical questioning in §8.4. Here, we examine
the extent to which AI should mirror human characteristics (§8.4.1), ponder the future landscape
of our working lives in the wake of AI advancements (§8.4.2), and explore the often overlooked
considerations in the race towards AI supremacy (§8.4.3).

By concluding with these inquiries, our goal is to ignite a discourse on the ethical ramifications of
modern AI development, emphasizing the importance of discussion even in the absence of definitive
answers.
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Chapter 2

Interaction and Language in AI:
Theoretical Background and Context

In this chapter, we lay the foundational knowledge for comprehending the content of this work.
Specifically, we start with an exploration of the evolution of human interactions (§2.1), detailing

the characteristics of human-to-human communication (§2.1.2), including aspects like contextual
adaptation. Subsequently, we explore the proprieties of Human-Machine Interaction, examining the
necessity of tailoring communication to suit different audiences (§2.1.1).

Section §2.2 continues this exploration, focusing on language and computational linguistics. Our
interest lies in the progression of language modeling in AI (§2.2.1), tracing its journey from classical
Feed-Forward Neural Network to contemporary transformer models. We then shift to Emergent
Communication frameworks (§2.2.2), where language is evolved in artificial contexts under specific
environmental pressures. Here, we examine the application of this framework in HMI and introduce
the concept of Language Drift, a phenomenon that will later be linked to the issue of misalignment.

Finally, in Section §2.3, we discuss the fundamental principles of Reinforcement Learning, such
as Markov Decision Processes (§2.3.1). The chapter concludes by differentiating between model-free
and model-based RL approaches (§2.3.2) and discussing their applications in Multi-Agent System
(§2.3.3). This sets the stage for a deeper understanding of the interplay between AI and human
communication, which is central to our work.

2.1 Exploring Human-Machine Interaction

The concept of Human-Machine Interaction (HMI) first emerged in 1976, introduced by Carlisle
[1976] initially as man-machine interaction. Carlisle [1976] underscored the need for design solutions
that integrate both human and machine elements during an automation revolution. However, the
work of Card [2018] largely popularized the term Human-Machine Interaction by establishing its
first scientific foundations. They asserted, «Our purpose in this book is to help lay a scientific
foundation for an applied psychology concerned with the human users of interactive computer
systems», highlighting the necessity for a symbiotic relationship between psychology and computer
science to formulate systems that incorporate computers into human activities. HMI has sustained
its multidisciplinary nature over decades, encompassing varied fields like social sciences and, more
recently, ethics, in light of the pervasive integration of computational devices in our daily lives. A
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central question often arising in the field is whether machines should be crafted to perfectly mimic
humans, becoming indistinguishable from us, or whether they should complement us, maintaining
a clear distinction.

While this question remains open-ended, it prompts contemplation about our expectations from
machines. What human attributes should be emulated, and which should remain uniquely ours? To
explore these questions, we must first identify the human qualities that are important to us and
explore how they can shape HMI.

In this section, our objective is to examine the properties of human interaction, providing the
reader with a broad understanding of the field and, crucially, the knowledge needed to grasp the
scope of this work. Subsequently, we will focus on human communication interactions and the
properties that define them. Throughout the section, we will explore questions about the nature of
these properties and the feasibility and appropriateness of enabling machines to emulate them.

2.1.1 Properties of Human Communication

In our exploration of communication, we focus on two-person interactions, the simplest unit wherein
interesting communication properties emerge, especially within the broader context of Human-
Machine Interaction. While this exploration is also relevant to human-robot interaction, our atten-
tion is primarily captured by non-embodied computer interaction.

Contextual Adaptation in Communication

When discussing the importance of context awareness, we might examine a scenario where a person
is tasked with sharing project updates with a colleague and a close friend. The communication
format, language, and depth of detail would likely be adjusted based on the recipient, displaying
our skill in adapting to different conversational contexts. Making machines as contextually skilled
as humans becomes a hard challenge. Understanding humor, for instance, demands awareness of
what is appropriate and where, questions that even humans sometimes clash with. What makes
a joke fitting in one scenario but offensive in another? How do we comprehend which comments
about workloads might be light-hearted in friendly circles but improper in a professional meeting?
How has the acceptance of certain jokes shifted with evolving societal perspectives? Translating
this awareness to machines brings forward a dilemma: How do we approach understanding and
generating context-aware communication?

Symbolic vs. Machine Learning Approaches

Strategizing communication behavior in machines generally employs two methodologies: symbolic
reasoning and machine learning. In symbolic reasoning, we might set explicit rules for a robot,
defining appropriate behaviors and statements in a workplace. Yet, creating a rule for every possible
scenario is a monumental, perhaps impossible task, especially given the dynamic nature of societal
norms. Alternatively, a machine learning approach may involve exposing a system to data derived
from various social interactions, allowing it to recognize patterns and, thus, learn how to emulate
similar behaviors. However, this too comes with its own set of challenges related to ensuring
the derived behaviors align with ethical and societal expectations. The question of alignment, in
particular, is critical (discussed in §3.2). For example, a machine learning model might infer patterns

N. Brandizzi 9



2.1. Exploring Human-Machine Interaction

and adopt behaviors from its training data that are incongruent with ethical or societal expectations,
such as reinforcing stereotypes or exhibiting bias. While each approach carries its respective merits
and pitfalls, this work leans more toward utilizing machine learning, albeit advocating for a blend
of both methodologies as a more plausible solution.

Defining and Exploring ‘Context’

Context is a multifaceted concept, embracing temporal, spatial, and event-based dimensions, each
of which can significantly influence interaction. For example, a chat in a busy office would naturally
differ from a whispered conversation in that same space after most have gone home. Likewise, a
discussion during a team project meeting would adhere to different norms than a discussion during
a workplace emergency. The depth and complexity of context go far beyond these simple examples,
presenting numerous challenges when trying to enable machine understanding in this domain. By
exploring this topic, we aim to reveal its complexity and breadth, highlighting the challenges of
instilling this level of understanding in machines.

2.1.2 Communication in Human-Machine Interaction

Communication is essentially a social
affair.

Cherry [1966]

In this work, our exploration focuses primarily on verbal communication signals, namely words,
although it is essential to acknowledge that a significant portion of human communication is non-
verbal [Mehrabian et al., 1971]. Despite this, the increasing digitization of our age positions verbal
communication as a central element deserving scrutiny.

This work introduces a specialized sub-field within HMI, termed Human-Machine Communica-
tion (HMC). This area, evolving from advancements in language modeling and the development
of chatbots like ChatGPT [OpenAI, 2023], Claude [Bai et al., 2022b], and Bard [Manyika, 2023],
essentially leans on machine learning. Here, vast amounts of data are processed by statistical pre-
dictors to identify and replicate patterns. While this methodology is the basis of today’s Large
Language Models and will be discussed in further detail later, it remains largely incomprehensible
to the average user. Nonetheless, the proliferation of consumer-oriented chatbots, engaging millions
of users simultaneously, has shifted the paradigm in HMI. Where the focus was once on developing
methodologies that simplified Human-Machine Interaction, we now explore the potential of express-
ing our intentions to machines using language. Given the technology’s wide-reaching implications
and use by a significant portion of the global population, navigating a research direction into this
emerging area is fundamental in HMI.

Adjusting Communication to Audience

Returning to our previous discussion on communication context, this work focuses on a unique type
influenced by the speaker’s intentions. My writing here, for example, assumes a fundamental under-
standing of AI from you, the reader. A conversation with my niece would require a shift to simpler,
more accessible language. This adjustment in communication, dependent on the knowledge and
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intentions of the audience, is known by different names across various fields of study. In linguistics,
it is referred to as the Rational Speech Act (RSA) (discussed in section §3.3.2), where the focus is
on reasoning through communication. In contrast, within computer science, and particularly in Re-
inforcement Learning, Opponent Modeling mainly focuses on modeling the actions and behaviors of
entities within specific environments, often in the context of games. From a psychological perspec-
tive, the phenomenon is associated with the Theory of Mind (ToM), highlighting humans’ inherent
capability to reason about others. Given its broader focus, encompassing view of communication
and action, ToM will be a focal point in our discussions and is introduced in Section §3.3.1.

In conclusion, the role of communication, especially language, is central in our discussions,
subsequently leading us to an introduction to computational linguistics through the combined per-
spectives of computer science and linguistics.

2.2 Language and Computational Linguistics

Language has been a constant companion to humanity since its origin [Arcadi, 2000]. The unique
capability to convey complex ideas through language sets us apart from other species. Thus, the
origins of language have intrigued human beings for millennia, initially through religious contexts
and later, through philosophical and scientific inquiries in ancient Greece [Bowie, 2007] and the
scientific methods that took root in the 18th century.

Historically, language studies have primarily taken an anthropological approach, probing into
language evolution, development, and acquisition to understand its dynamism across various timescales.
The surge in computational power has given rise to a new interdisciplinary field, computational lin-
guistics, which melds linguistics and computer science together. Computational linguistics began in
the 1950s with U.S. initiatives to automatically translate foreign texts, particularly from Russian to
English [Hutchins, 1999]. Initially, it employed a rule-based method, an approach bearing similarity
to the symbolic reasoning discussed previously. Over time, it evolved into what is broadly known
today as Natural Language Processing (NLP).

The following section explores the general mechanisms of language modeling and its recent
advancements, while keeping the discussion broad.

2.2.1 Mechanics of Computational Language Modeling

Computational language modeling is the field that focuses on understanding and generating human
language through computational means. The fundamental concept involves modeling how humans
acquire and manipulate language by replicating human-like learning and processing capabilities
through computational algorithms. Language models subsequently undergo exposure to inputs
akin to those encountered by humans, with the model’s responses being analyzed and compared
with human data. One such learning methodology is understanding the distribution over sequences
of words, utilizing statistical approaches to comprehend a language’s grammar and structure. The
standard training modality involves predicting obscured words within a sentence [Goodman, 2001,
Mikolov et al., 2011], enabling them to adapt to large text corpora even without the necessity of
labels.

N. Brandizzi 11



2.2. Language and Computational Linguistics

Evolving Neural Language Models

The evolution of LMs has been pronounced, especially over the past three decades. In the early
2000s, classical Natural Language Processing approaches were ported to Feed-Forward Neural Net-
works (FFNNs) [Bengio et al., 2000, Morin and Bengio, 2005]. The FFNNs performed better than
classical NLP approaches due to their non-linearity. Still, the architecture was limited to fixed input
sizes, disregarding contextual information. This issue was addressed by Mikolov et al. [2013], where
words were converted to low-dimensional vectors, mitigating the curse of dimensionality. However,
the context size remained limited.

Incorporating Recurrent Neural Networks

In 2010, a new architectural development was introduced in the form of the Recurrent Neural
Networks (RNN) [Mikolov et al., 2010, 2011]. RNNs, structurally designed to maintain a hidden
state that captures information about previous steps in a sequence, was fundamental in tasks where
context or sequential order are critical, such as machine translation and speech recognition. However,
RNNs experience limitations during training, such as the vanishing and exploding gradient problems
[Hochreiter, 1998]. These issues, characterized by the gradients tending toward zero or escalating
towards infinity during backpropagation, hampered the model’s learning capability and subsequently
slowed down training or led to unbounded parameter values.

Introduction to Long-short Term Memory Units

Sundermeyer et al. [2012] introduced the Long-Short Term Memory (LSTM) as a solution to the
vanishing and exploding gradient problems prevalent in conventional RNNs. An LSTM is designed
to better handle different types of memory data through the interplay of its three distinct gating
mechanisms:

• Input Gate: Dictates which values in the input matrix should be updated.

• Forget Gate: Examines prior context and current input, yielding a value between 0 (complete
forgetfulness) and 1 (total recall).

• Output Gate: Determines which parts of the input and preceding context will constitute
the cell output.

While LSTMs have been successful in stabilizing the learning process by providing a more refined
control over information flow compared to traditional RNNs. However, the optimization of training
algorithms remains a challenge, given their inherent sequential processing nature.

The Rise of Transformers

Recent technological advances and attention-based architectures [Vaswani et al., 2017] have paved
the way for the predominance of transformer models, which supplant RNN cells with self-attention
and fully connected layers that are highly parallelizable and consequently more computationally
economical. This enables transformers to scale with more data and resources, thus replacing LSTMs
in various domains. While transformers have advanced NLP, they are not without criticism and
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challenges, including their resource-intensive nature and potential to perpetuate biases in training
data. Ethical implications of their application necessitate careful consideration within the academic
and practitioner communities. In this regard, innovations in LSTMs often provide valuable insights
applicable to transformer models due to shared similarities.

Self-Developing Language in Computers

Thus far, our exploration has primarily focused on the history of how computers emulate human
language. Yet, an equally intriguing question arises: Can language spontaneously emerge between
machines? This question is at the basis of a field known as Emergent Communication that will be
the focus of the next section.

2.2.2 Examining Emergent Communication

Emergent Communication (EmeCom) has gained momentum as a framework that explores the
emergence of language in artificial environments, focusing «learning to communicate by interacting
with other agents to solve collaborative tasks in complex and diverse environments» [Brandizzi,
2023]. It originates at the intersection of language modeling and Multi-Agent Reinforcement Learn-
ing (MARL). While MARL techniques emulate social interactions and coordination, Reinforcement
Learning mirrors human-like learning and decision-making, thereby creating a promising approach
for simulating facets of human society and cognitive processes within AI systems. Simultaneously,
language modeling equips the system with the requisite knowledge to emerge language and to ana-
lyze it with a set of metrics within the domain.

EmeCom’s adaptability has facilitated its application across various domains, answering different
research questions. For instance, it has been leveraged in the study of language evolution to analyze
the emergence of natural language properties by varying the number of agents in the environment;
and in language development and acquisition to understand the influence of vocabulary selection
on learned languages.

Applications in Computer Science

In applications closely related to computer science, EmeCom has been employed for enhancing
team collaboration. A subset of EmeCom, termed Human-centered Emergent Communication
(Hum-EmeCom) by Brandizzi [2023], involves using pretrained Large Language Models as agents
in games, enabling them to interact with each other. The objective is to examine the impact of
inter-agent interactions, particularly when guided by a reward function in a traditional RL manner.
However, utilizing both supervised learning (for language model pretraining) and Reinforcement
Learning introduces unique challenges, one of them being the adept balancing of the two. When
RL is more prevalent, agents tend to deviate significantly from their initial word distribution and
neglect the appropriate usage of natural language. In such instances, words can detach from their
original meanings, adopting new ones in a manner reminiscent of language variation observed in
sociolinguistics. This phenomenon, known as Language Drift, is often deemed undesirable when the
goal is to enhance machines’ proficiency with natural languages.
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Language drift

Language Drift (LD), a phenomenon present both in human and machine language evolution, can
be described as the gradual shift and adaptation in communicative conventions among speakers or
computational agents. In human linguistics, this drift is not arbitrary but a somewhat directional
adaptation, while in machine communication, LD often emerges as a misalignment between emer-
gent languages and human languages, especially when supervised tasks merge with RL. Various
mitigation and evaluation methodologies have been explored to manage LD in artificial settings.
For example, evaluation metrics like BLEU and Negative Log-Likelihood and strategies, such as us-
ing syntactic and semantic constraints, have been employed to regulate the phenomenon. Research
thus explores balancing linguistic evolution with maintaining alignment to human languages.

2.3 Principles of Reinforcement Learning

We have previously discussed what artificial agents learn. Now, we shift our focus to a specific
learning paradigm: Reinforcement Learning. The genesis of RL lies at the intersection of two
research areas: trial-and-error learning in animal behavior from the mid-1980s and optimal control
through value functions and dynamic programming from the 1950s. While there is no single event
marking the birth of modern RL, Klopf [1972]’s work is widely recognized for linking RL with AI.

In RL, machines are placed in an environment and receive rewards or penalties based on their
actions. This necessitates a mathematical framework, and in the context of RL, Markov Decision
Process provides the foundational theory.

2.3.1 Markov Decision Processes

A Markov Decision Process (MDP) describes decision-making scenarios in probabilistic environ-
ments. It is represented as a tuple (O,A, S,R) where:

• O: is the observation space, representing a finite set of possible observations.

• A: is the action space, comprising a finite set of available actions.

• Sa(ot, ot+1): is the transition model that defines the likelihood of moving from state ot to
another state ot+1 after taking action a.

• R(ot, ot+1): is the reward function quantifying the benefit of transitioning from one state to
another.

The foundation of MDPs is the Markov property, which asserts that the future state is solely
determined by the present state and is independent of the past. Mathematically, this can be
articulated as

P [ot+1|ot] = P [ot+1|o1, . . . , ot]

This equation underlines that the probability of transitioning to the next state ot+1 relies only
on the current state ot and not on the sequence of states that led to it. MDPs provide a mathemat-
ical framework for many real-world scenarios where agents make decisions over time in uncertain
environments.
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2.3.2 Model-Free and Model-Based Reinforcement Learning

Markov Decision Process provide a foundational structure and theoretical framework within which
Reinforcement Learning operates. To extract optimal policies within this MDP structure, RL uses
multiple strategies, two of which have garnered significant attention due to their distinct method-
ologies: Model-Free Reinforcement Learning (MFRL) and Model-Based Reinforcement Learning
(MBRL) approaches.

In the MFRL approach, the agent operates without an explicit internal model of the environ-
ment. Instead, it learns optimal policies purely through interaction, relying on empirical data and
iterative refinement. By directly approximating value functions or policies from experiences, this
method bypasses the need to learn and predict environmental dynamics. It often requires a sub-
stantial amount of interaction data to converge to an optimal policy, making it potentially more
straightforward but data-intensive.

On the other hand, the MBRL approach sees the agent either possessing or working to construct
an internal model of the environment’s dynamics. Using this model, the agent can predict the out-
comes of potential actions, allowing it to simulate forward steps to evaluate and refine its strategies.
This approach, which includes the concept of opponent modeling discussed earlier, can often lead
to faster convergence towards optimal or near-optimal policies since it benefits from both real and
simulated experiences. However, the effectiveness of learning is intrinsically tied to the accuracy of
this internal model.

2.3.3 Multi Agent Reinforcement Learning

Real-word environments often see the presence of multiple agents, which pushes classical RL into a
new field called Multi-Agent Reinforcement Learning (MARL). One of the fundamental challenges
in MARL is the dynamic nature of the environment, where agents must constantly adapt to both
the environment and the actions of other agents. The introduction of multiple agents into an
environment disrupts its stationarity, violating many optimality assumptions from conventional RL
algorithms.

To address these challenges, researchers have explored the use of Model-Based Reinforcement
Learning with techniques that directly acknowledge the presence of multiple agents. For example,
agents modeling other agents based on their own policy, essentially using their understanding of
self to predict the behavior of others. Different approaches have included the ability of agents to
predict and influence the actions of adversaries, encouraging an adaptive and predictive attitude.
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Chapter 3

Literature Review: Reinforcement
Learning’s Influence on Language
Modeling

This chapter contains the related works necessary for the subsequent discussions in this thesis.
Our work starts with examining the domain of Emergent Communication (EmeCom). Notably, we
explore studies that shed light on the interplay between cooperation and competition as drivers in-
fluencing language emergence (§3.1). Within this framework, we introduce the class of games called
Social Deduction Game (SDG) (§3.1.3), narrowing our focus further on two games of particular
interest, The Werewolf (§3.1.3) and the Referential Game (§3.1.3).

Transitioning to Section 3.3, our attention shifts to a property of EmeCom: the presence of
multiple agents in the system; and the works that address the problem that arise with Theory
of Mind (ToM) (§3.3.1). We analyze its application and ramifications in the context of language
modeling (§3.3.2). After that, we describe a fundamental game environment frequently studied
in EmeCom research, named the referential game. We explore its unique characteristics and its
relationship with Reinforcement Learning (§3.3.3).

Concluding our chapter in Section 3.2, we examine the domain of RL, particularly highlighting
the challenges posed by the misalignment issues. Herein, we present some proposed solutions to
mitigate such challenges (§3.2.1). Additionally, we touch upon the concept of agency and its impli-
cations in the landscape of RL (§3.2.2). We conclude by examining the role of RL within the scope
of language modeling (§3.2.3).

3.1 Cooperative and Competitive Dynamics in Language Emer-
gence

Language, as an emergent phenomenon, can be significantly influenced by environmental pressures
and interaction dynamics. It is widely accepted that the necessity of cooperation for survival
played a critical role in the evolution of human communication [Nowak and Krakauer, 1999, Smith,
2010]. This need for cooperative exchange and sharing of responsibilities led to the development of
complex language systems. These systems had to be efficient, precise, and adaptable to facilitate
the coordination of tasks and the negotiation of shared resources within a group.
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However, competition also plays a key role in language development and complexity. The
pressure to secure resources in a competitive environment, not only within a species but also between
different species, has led to an escalation in communication complexity. This complexity serves as
a mechanism for groups to strategize, negotiate, and adapt to ever-changing conditions. In the
context of EmeCom, the emergence and development of communication protocols are significantly
influenced by these two contrasting forces: cooperation and competition.

3.1.1 Cooperation in Language Emergence

Cooperation can significantly influence the nature and complexity of language that emerges within
a group. A cooperative environment encourages the development of a shared language that is
mutually intelligible to all group members.

One type of cooperation in the context of emergent communication is inner cooperation, when
all the agents within a team are cooperative. This setting has been the focus of many studies in
EmeCom [Cao et al., 2018, Graesser et al., 2019, Lazaridou et al., 2017]. For instance, Lazaridou
et al. [2017] have demonstrated the necessity of inner cooperation in referential games for successful
communication. Moreover, Cao et al. [2018] delved into the role of cooperation among pro-social
agents and found that these agents tend to favor cheap talk, resulting in better performance com-
pared to selfish agents. Extending this notion, Graesser et al. [2019] provided insights on how
complex language evolution can surface from simple social interactions between cooperative agents.
Overall, the role of cooperation in emergent communication is fundamental, offering the stability,
cohesion, and effectiveness necessary for the evolution of shared language protocols. It creates a
context in which agents can align their goals and promotes the development of mutually beneficial
systems.

3.1.2 Competition in Language Emergence

Competition, though seemingly antithetical to cooperation, can significantly contribute to devel-
oping effective communication protocols and enhancing overall performance within a group. The
work by Liang et al. [2020] highlights how competition can encourage agents to develop more so-
phisticated communication protocols. These protocols prioritize compositionality, performance, and
convergence, thereby ensuring effective and efficient communication among agents.

The beneficial effects of competition on communication are not confined to abstract discussions
or hypothetical scenarios. In fact, numerous studies have put these theories to the test in practical
setups.

For instance, in Orzan et al. [2023], the agents are trained on a spectrum of environments eliciting
different levels of cooperation, including cooperative, competitive, and mixed-motives environments.
Their study aims to understand the effects of uncertainty regarding the degree of incentives’ align-
ment on the level of cooperation that agents are able to achieve and whether cheap-talk emergent
communication can help improve it. They show that communication allows certain agents to exploit
the uncertain ones, mainly when no uncertainty modeling is used. Therefore, explicitly modeling
the uncertainty of the environment can provide the agent with additional information, and it is less
likely to be deceived.

On the same line, Nakamura et al. [2016] introduced a Social Deduction Game known as The
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Werewolves of Millers Hollow. In this setting, agents must make assessments regarding their peers’
trustworthiness. These assessments are based on their interactions and communication actions,
which are hard-coded in the game’s rules. This kind of game setup provides a rich environment
for studying communication because it compels agents to strategize and communicate effectively
to win the game. Furthermore, it opens avenues to study how trust, a critical component of any
form of communication, develops within a group. Therefore, the study by Nakamura et al. [2016]
exemplifies how competitive settings can stimulate the development of advanced communication
strategies. These results signify that competition, even under adverse circumstances, can drive
agents to improve their communication skills, ultimately enhancing their ability to collaborate
and succeed. This perspective on competition provides a valuable lens through which to view the
interplay between competition, communication, and collaboration. It sheds light on how competition
can foster improved communication and performance.

3.1.3 Social Deduction Games as a Medium for Studying Pressures

Further exploring the interplay between competition and cooperation leads us to the examination of
Social Deduction Game (SDG), where these dynamics are prominently featured. These games have
been widely used as mediums to understand the dynamics of social interactions and their influence
on emergent communication [Eger and Martens, 2018]. They present scenarios where rationality
plays a pivotal role in interpersonal interactions [Colman, 2003] and allow researchers to analyze
different forms of social mechanics [Consalvo, 2011] as well as the role of communal topology in
social settings [Abramson and Kuperman, 2001].

Interestingly, the deduction element of these games, a crucial component of these interactions,
has often been overlooked. For instance, in the work of Chan et al. [2009], a mathematical formula-
tion for a general social game was presented to streamline the design of such games. However, this
work fell short of providing a specific formulation for deduction games.

Another intriguing perspective on social deduction games was provided by Wiseman and Lewis
[2019], who sought to identify these games’ most influential information source. Their study con-
cluded that prior interactions are regarded as most important to players. While this may hold true
in scenarios involving familiar parties, the implications for games where players are unfamiliar with
each other remain unexplored.

In these studies, the primary attention is on how players interact socially. However, the work
presented in Chapter 5 takes a different approach, focusing on finding the best strategy to improve
a group’s performance in social deduction games. Through this, we aim to explore how these games,
as small-scale models of real-world social interactions, can shed light on how language grows and
becomes more complex, influenced by both cooperation and competition.

The Werewolf Game

A notable example of these settings is embodied in The Werewolf game. This game stages a
scenario where players are divided into two contrasting groups operating within a partially unknown
environment.
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Game’s Rules The Werewolf game is a compelling study of social dynamics and deception. The
game begins with a group of players assigned two primary roles: villagers and werewolves. Villagers
represent the innocent parties, unaware of the true identities of the werewolves that live among
them. On the other hand, werewolves know each other’s identities and work together to deceive the
villagers and avoid detection. As the game progresses, villagers discuss identifying the werewolves
and vote to eliminate suspected individuals. In contrast, the werewolves strive to outnumber the
villagers by eliminating them during the night phase of the game. The villagers win if they manage
to exterminate all werewolves, and the werewolves triumph if they equal or outnumber the remaining
villagers. This dynamic of deduction, deceit, cooperation, and competition makes The Werewolf an
excellent case study for exploring Emergent Communication and social behavior.

A Typical Game Session Following the initial role distribution, a typical session of "The Were-
wolf" game alternates between night and day phases that intensify strategic interactions. During
the night, werewolves confidentially select a villager to eliminate, strategically reducing the non-
werewolf population while maintaining anonymity. At daybreak, the remaining players engage in
deliberative discussions aimed at deducing werewolf identities. This involves analyzing behavioral
cues, voting patterns, and argumentative inconsistencies. Villagers attempt to correlate these ob-
servations with suspected werewolf behavior, while werewolves work to mislead and sow discord.
The day ends with a collective vote to eliminate a suspected werewolf, significantly influencing
the game’s dynamics. This cycle repeats, each phase requiring heightened strategic thinking and
social deduction, reflecting complex human interactions and decision-making processes within a
constrained social setting.

Theoretical analysis The game of The Werewolf has been subject to extensive theoretical mod-
eling, particularly focusing on optimal randomized strategies employed by both villagers and were-
wolves. Within this model, the number of werewolves w has to be set equal or lower to the square
root of the total number of players N to allow the chance of winning for villagers to be more than
zero [Braverman et al., 2008].

Further distinctions in the game dynamics have been discussed by Migdal [2010], particularly
the influence of player count parity on the game outcomes. The study demonstrates that adding
one villager to an even-numbered player set substantially enhances the probability of a werewolf
victory—more so than removing a villager would. This seemingly counterintuitive finding results in
a closed-form formula for the likelihood of werewolf victory:

Win(w,N) = 1−
w∑
i=0

(
w

i

)
(−1)i (N − i)!!

N !!(N mod 2)− 1)!!
(3.1)

To underscore the impact of player count parity on the probability of werewolf victory, Figure
3.1 visually illustrates the contrast that can manifest between different player configurations.

One observation from the model is the oscillatory behavior of both odd and even player probabil-
ities, with oscillation peaks diminishing in relation to the total number of players. The oscillations
appear more pronounced in games with an odd number of players, where winning probabilities can
deviate by a factor of ±20%.

The oscillatory behavior in player probabilities hints at complex dynamics underlying the game
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Figure 3.1: Graphical representation of werewolf victory probabilities as determined by Equation 3.1, high-
lighting the impact of player count parity. The figure demonstrates the oscillatory nature of win probabilities,
accentuating larger deviations in games with an odd number of players.

mechanics.

Research interests Within this complex environment, the game of The Werewolf presents an
exciting setting for studying emergent behaviors in AI. Over time, The Werewolf has acquired
considerable attention, particularly in Japan, where the annual AiWolf contest [Bi and Tanaka,
2016, Hirata et al., 2016, Katagami et al., 2014, Nakamura et al., 2016] spotlights artificial agents
competing with human players in a bid to win the game using a prescribed language syntax.

Among the various strategic implementations, a study by [Wang and Kaneko, 2018] proposes
a modified 5-player game incorporating additional roles. Their methodology utilizes a Deep Q-
Network, which assists in evaluating which player to trust or eliminate based on the gameplay.

In the context of our research (see Chapter 5), we have chosen The Werewolf as an exemplar of
the generic Social Deduction Game framework. However, it is important to note that our approach to
the game diverges from traditional implementations, including those observed in the AiWolf contest.
A case in point is the study by [Kajiwara et al., 2014], where the authors employ Q-learning to
explore the probabilities of villagers winning in a game of 16 players, where communication actions
are pre-defined. Our model, in contrast, promotes the evolution of player-derived communication.
We accomplish this by outlining some general attributes of the communication channel, thereby
providing the players with the freedom and flexibility to develop their unique communication styles
and strategies.

Referential Games

Another example of Social Deduction Game that will be the basis of Chapter 6 and §7 is the
Referential Game (Ref Game). This game finds its origins in the work of Lewis [1969] and has
been categorized as a communication-focused game in Brandizzi [2023], i.e., an environment where
communication not only forms how agents interact but is also the primary objective of the study.
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Figure 3.2: General pipeline for a discriminative Referential Game. The speaker is shown a target image
(an apple) and is tasked to generate a message. The listener sees a pool of images (distractors) containing
the target and must choose the correct one based on the message.

Central to the game are two agents, a speaker and a listener, each equipped with distinct roles
and responsibilities, as depicted in Figure 3.2. Both agents are presented with a pool of images.
The speaker’s task is to craft a message that coherently describes a target image. Conversely, the
listener must discern the described image from the pool based on the speaker’s message.

While the Ref Game game’s conception can be attributed to Lewis [1969], its introduction to
the RL community was introduced by Das et al. [2017]. Their work drew parallels between a
synthetic environment composed of rudimentary geometries and a real-world scenario, employing a
visual dialog system for the latter. Although the referential game has seen numerous iterations and
variations, the focus of research in this area has centered on deciphering the emergent language that
originates from these interactions. This phenomenon of language emergence has been documented
and analyzed in a variety of studies, as evidenced by works such as [Chaabouni et al., 2020, Dagan
et al., 2020, Graesser et al., 2019, Havrylov and Titov, 2017, Lazaridou et al., 2017, Li and Bowling,
2019, Rodriguez et al., 2019, Wang et al., 2021, Yuan et al., 2020].

3.2 The Potential and Pitfalls of Reinforcement Learning in Lan-
guage Modeling

When a measure becomes a target, it
ceases to be a good measure.

Goodhart and Goodhart [1984]

Value alignment is defined as the process of ensuring that the goals and behaviors of a system,
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whether human or artificial, are in harmony with the intended outcomes. This concept extends
beyond the realm of Artificial Intelligence; its principles can be found in earlier research on organi-
zational studies and human behavior. As early as the 1970s, researchers explored the complexities
surrounding alignment in a multitude of settings. In the foundational work by Kerr [1975], the au-
thor illustrates several cases that depict the challenges of misalignment, especially when there is an
intent to incentivize certain behaviors, but the outcomes diverged significantly. One such scenario
highlights the counterproductive consequences when managers emphasize individual achievements
in contexts where collaborative efforts are crucial. Similarly, issues surface when promotions rely
strictly on seniority, overlooking vital factors such as expertise and tangible contributions. Addi-
tionally, Kerr [1975] highlights the pitfalls of overemphasizing quantitative metrics, often at the ex-
pense of qualitative outcomes, which can inadvertently drive decision-makers towards short-sighted
choices. Subsequent research by Gibbons [1998] provides an in-depth examination of agency theory
in relation to incentives. His work reveals how objective performance indicators often fall short of
crafting optimal incentives.

However, in the domain of AI, the issue of misalignment gains a unique dimension. The chal-
lenge arises primarily from the information asymmetry between those who set the objective (us
humans) and the AI system. Ideally, if we could perfectly define the correct incentives, this could
be programmed into an artificial agent, eliminating the misalignment. This concept resonates with
the domain of Reinforcement Learning. A central challenge in RL is defining a reward to guide an
agent’s behavior within a known environment [Ng et al., 1999]. Specifically, the core question is:
«Given a reward signal, how can an agent’s behavior be optimized to maximize it?» [Russell, 1998].

While, at times, it may seem straightforward, such as specifying the distance between an agent
and its objective, the reality is often more complex. Indeed, reward specification has frequently led to
unforeseen and undesirable agent behaviors [Amodei and Clark, 2016, Soares and Fallenstein, 2014].
For instance, in specific gaming environments, agents were observed to intentionally terminate their
sessions before entering a level where accumulating points posed a challenge [Saunders et al., 2018].
In another example, an agent learned to volley a Pong ball indefinitely rather than playing to score,
effectively exploiting its reward predictor [Christiano et al., 2017].

These examples underscore the complexity of reward specification, which can arise due to various
factors, such as human error, time constraints, or a gap in understanding the desirability of certain
states over others as Amodei et al. [2016] explains: «An objective function that focuses on only one
aspect of the environment may implicitly express indifference over other aspects of the environment.
An agent optimizing this objective function might thus engage in significant disruptions of the
broader environment if doing so provides even a tiny advantage for the task at hand.».

Often, it is challenging to precisely articulate, let alone mathematically formulate, an intended
behavior for complex systems. Recognizing this difficulty, numerous solutions have been proposed
over time. In this section, we will examine a selection of these approaches.

3.2.1 Inverse Reinforcement Learning

Traditional RL primarily focuses on determining how an agent should act to maximize rewards in an
environment. The central challenge revolves around designing an appropriate reward function that
guides the agent toward desired behaviors. However, as previously discussed, accurately defining
this reward function for complex tasks can be tricky, if not impossible. But what happens if we
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flip this question and ask: «Given the observed behavior, what reward signal, if any, is being
optimized?»[Christian, 2020]. This question lies at the heart of Inverse Reinforcement Learning
(IRL), as introduced by Ng et al. [2000].

In their study, Ng et al. [2000] present the first formulation of IRL with Markov Decision
Processes and highlight the ambiguity inherent in reward functions.

Since the introduction of IRL, numerous studies have been conducted to address various chal-
lenges. For instance, Bagnell et al. [2006] delved into max-margin with boosting, facilitating the
utilization of a broad vocabulary of reward features. Meanwhile, Kolter et al. [2007] explored the hi-
erarchical max-margin. Additionally, Baker et al. [2009] investigated understanding human inverse
planning inference.

Apprenticeship learning

The IRL framework offers valuable insights but tends to neglect a significant distinction: predict-
ing actions does not necessarily imply alignment in underlying values. With this differentiation
in mind, Abbeel and Ng [2004] introduces the Apprenticeship Learning (ApL) framework where
they sought to teach an autonomous driver varying driving styles in a car simulation experiment.
Instead of crafting a detailed reward function specifying every desired driver behavior, they uti-
lized human-generated driving data. From this data, they approximated the human driver’s reward
function with IRL. Once the reward function was inferred, determining the optimal policy became
a standard Reinforcement Learning challenge. In their observations, Abbeel and Ng [2004] remarks
on the inadequacy of a model that directly attempts to emulate the driver’s behavior because of
the complexity of the road environment. Even though the driving actions appeared complex, the
main goals were clear and straightforward. The IRL system easily recognized key objectives like
avoiding crashes, staying on the road, and keeping in the right lane when possible. This clear set of
goals, simpler than the actual driving behaviors, was easier to learn and could be applied in various
situations.

Since the initial formulation of Inverse Reinforcement Learning, various derived works have
emerged. One can refer to the survey by Arora and Doshi [2021] for a comprehensive overview.
Certain studies stand out within this vast body of work due to their implications for Human-Machine
Interaction. Specifically, the study by Osa et al. [2018] explores imitation learning, positing that it
is often more efficient for a teacher to demonstrate a desired behavior to a robot than to engineer it
from scratch. They show how their approach can accelerate learning and produce more organic and
human-like robot behaviors. Furthermore, the work by Jara-Ettinger [2019] offers an interesting
perspective, suggesting that the Theory of Mind can be conceptualized through the lens of IRL.
The paper highlights the complexities and challenges of constructing a human-equivalent ToM in
artificial agents. Indeed, the relationship between IRL and ToM has gained interest in recent years.
Recognizing this trend, Ruiz-Serra and Harré [2023] offers a detailed review, exploring how IRL can
be leveraged as an algorithmic basis for Theory of Mind in robots.

Inverse Reward Design

Building upon the foundation of Inverse Reinforcement Learning, an assumption exists: human
teachers always exhibit optimal behavior, or, at the very least, their actions are not arbitrary. While
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this premise may hold true in many scenarios, it does not always accommodate for human error.
Akin to the transition from RL to IRL, there’s a need to adapt the frameworks to more realistic
scenarios, where desired behaviors are not only hard to demonstrate but sometimes impossible, e.g.,
showing a chat-bot how to be emphatic. In this context, it becomes central for artificial agents to
ask themselves: «What do I think you want, based on what you told me to do?» [Christian, 2020].
This question led to the rise of a new framework called Inverse Reward Design (IRD) introduced by
Hadfield-Menell et al. [2017]. Following the inception of Inverse Reward Design, researchers have
worked to make artificial agents more adaptable and receptive. One extension of this research is
the work by Eysenbach et al. [2019], which emphasizes learning skills without an explicit reward
signal. Their methodology seeks to maximize behavior diversity, leading to the emergence of varied
skills. Focusing on an information-theoretic objective with a maximum entropy policy ensures skills
acquired are distinct and expansive, leading to enhanced adaptability. Moreover, Banihashem et al.
[2022] targets the shaping of Reinforcement Learning agents to choose from a set of admissible
policies. This approach seeks not to enforce a single policy but rather to dissuade inadmissible
actions. Despite the inherent computational challenges, their methodology offers an alternative
optimizable problem. Finally, Ratner et al. [2018] introduces the Independent Reward Design
approach, which advocates for environment-specific rewards that are later harmonized instead of
a one-size-fits-all reward function. Their findings highlight a 50% reduction in design time and
enhanced solution quality, suggesting a more efficient and effective method for real-world robotics
reward design.

Corrupted rewards While Hadfield-Menell et al. [2017] built their framework on the potential
mis-specification of rewards, Everitt et al. [2017] explored the idea of rewards being inherently
corrupted. They categorized four main challenges: reward misclassification [Amodei and Clark,
2016], sensory error, reward hacking1 [Skalse et al., 2022], and reward misinterpretation, all of
which aggregated under the umbrella of reward corruption. They showed how providing agents
with more comprehensive data and leveraging randomization to temper the agent’s optimization
processes can partially mitigate reward corruption under certain conditions. Their framework has
been later refined to investigate RL with inaccurate feedback [Faulkner et al., 2020], attainable
utility preservation [Turner et al., 2020a] and noise-perturbed rewards [Wang et al., 2020].

3.2.2 I Can’t Get No Satisfaction Without Agency

So far, we have explored agents designed to learn specific behaviors. We began by addressing the
challenge of mathematically defining a reward function (transitioning from RL to IRL). We then
highlighted that actions do not always truly reflect intentions (progressing from IRL to ApL). Fur-
ther, we relaxed the assumption that humans always act optimally (transitioning from ApL to IRD).
Lastly, we recognized that human behavior could be misinterpreted or even flawed (moving from
IRD to reward corruption). Central to these frameworks is the underlying concern about potential
errors in learning pipelines, emphasizing the need to safeguard agents from these pitfalls. But why
this emphasis on error prevention? The rationale lies in the fact that actions have consequences,
which can vary in magnitude and impact.

1Where an intelligent RL agent exploits its reward channel to maximize its gains.
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A prevalent assumption in contemporary AI posits that machine learning models, even when they
act upon their environment, will not fundamentally alter the reality they model. More often than
not, this belief is false. Consequently, a new AI subfield has emerged, dedicated to quantifying and
mitigating agents’ impact on their surroundings. Amodei et al. [2016] frames this as the challenge
of formulating an Impact Regularizer. Simply put, rather than preventing an agent from having any
impact, the aim is to guide it towards achieving its objectives with minimal side effects or limiting
its overall "impact footprint". The core challenge lies in correctly formalizing what constitutes a
change to the environment.

The notion of exerting influence on the environment correlates closely with the term Agency.
This concept has deep roots, spanning philosophy, economics, and law. This section will explore the
concept of agency, discussing how most current Large Language Models lack it. Subsequently, we
will describe techniques focusing on using RL for LLMs, a promising approach towards addressing
this gap.

Defining Agency

The concept of agency has been a subject of extensive philosophical debate. One seminal work in
this arena is Taylor [1985], which begins by cautioning that a quick characterization of agency is
likely to be either too broad or uninformative. Despite this caution, Taylor explores the concept
without offering a rigid definition. Instead, he relates agency to the following core ideas2: Firstly,
he treats agency as a latent capacity, meaning it can exist even if not currently in use. Secondly,
he discusses the notion of goal-directedness, stating that an agent, when active, aims to achieve
specific objectives. Lastly, he describes agency as a productive power capable of effecting change in
the world.

Building on Taylor’s foundational work, Barandiaran et al. [2009] examines the concept of agency
within both artificial and biological dynamic systems, for instance, bacteria exhibiting metabolic-
dependent chemotaxis. Barandiaran defines agency as an autonomous organization3 that adaptively
modulates its interaction with its surroundings4 and sustains itself as a result5.

These works show that agency defies easy categorization and is better understood through as-
sociated properties rather than fixed definitions. The significance of agency also extends beyond
academic interest; it has been posited as a prerequisite for consciousness [Hurley, 1998] and is un-
derstood to manifest differently across varying levels of cognitive sophistication [Dennett, 2008]. In
the following paragraphs, we analyze the implications of agency for AI systems, explicitly examining
the role of RL in cultivating agency.

Agency in Artificial Intelligence

In the realm of Artificial Intelligence, the concept of agency often encompasses the ability of AI
agents to take actions that advance them toward their objectives while simultaneously minimizing
or entirely avoiding environmental impact. This form of agency, often referred to as conservative

2In his work, Taylor [1985] provides a total of five ideas, but for the scope of this work, we only focus on three.
3This is connected to the individuality condition, which postulates that a system must establish its own uniqueness.
4A system exhibiting agency must satisfy the interactional asymmetry condition, being the primary initiator of

activity in its environment.
5This self-sustainability is tied to the Normativity condition, which requires the system to regulate its activities

according to certain norms or guidelines.
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agency, has been studied through specially designed environments, such as the irreversible side
effects suite [Leike et al., 2017].

This environment has gathered the interest of researchers seeking to mitigate the unintended
consequences of agent actions. For instance, Krakovna et al. [2018] introduced the relative reach-
ability measure, a metric that penalizes the agent if the current state is less reachable from the
baseline state after an action. Expanding on this, Turner et al. [2020b] proposed attainable utility
preservation, which involves providing the agent with auxiliary goals within the gaming environ-
ment. These goals ensure that the agent retains the capability to pursue secondary objectives even
after completing the primary tasks set by the game. Interestingly, the effectiveness of this approach
remains consistent regardless of whether these auxiliary goals are randomly generated. Further work
by the same authors [Turner et al., 2020a] extends this framework to more complex environments
[Wainwright and Eckersley, 2019].

A unifying theme across these studies is the application of Reinforcement Learning. In the
section that follows, we will examine the symbiotic relationship between agency in AI and RL and
how they affect each other.

Reinforcement Learning’s Role in Agency In contemporary discussions surrounding Rein-
forcement Learning, agency is frequently related to value alignment [Alizadeh Alamdari et al., 2022]
and AI safety [Thorn, 2015]. However, our focus diverges toward a more philosophical domain. We
aim to explore whether RL can confer a specific type of agency upon an agent, thereby enhancing
its efficacy in Human-Machine Interactions. This question is examined in Butlin [2023], which con-
tends that artificial systems can indeed possess goals and thus qualify as agents. Contrary to the
notion that only biological self-maintenance can establish the normativity condition6 essential for
agency, the author argues that Model-Free Reinforcement Learning suffices for minimal agency and
Model-Based Reinforcement Learning is suggested to be adequate for reasoned action.

In parallel, Butlin et al. [2022] posits that systems trained via RL are agents, whereas those
trained by supervised learning are not. This challenges Dretske’s criteria for agency [Dretske, 1985,
1991], arguing that both methodologies create agents with agency, as both learn to selectively
produce outputs in response to inputs. The crucial difference lies in RL ’s sensitivity to the in-
strumental value of outputs, which enables systems to exploit the effects of outputs on subsequent
inputs and thus achieve superior performance over prolonged interactions. In contrast, supervised
learning systems focus solely on refining their outputs based on specific inputs without considering
the broader contextual or sequential information.

Lastly, Butlin et al. [2023] delves into the role of agency in AI consciousness, positing it as
a potential indicator. Drawing on evidence from animal studies [Dolan and Dayan, 2013], the
work suggests a compelling overlap between Model-Based Reinforcement Learning, agency, and
consciousness.

3.2.3 Reinforcement Learning and Language Modeling

Having established the concept of agency and its interplay with Reinforcement Learning, we now
shift our focus to research that integrates RL with Large Language Models. This integration of
methodologies provides a fertile ground for exploring how adaptive frameworks can augment the

6The concept of Normativity tied to agency is described in Barandiaran et al. [2009] in the section above.
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capabilities of LLMs, particularly in the domain of Human-Machine Communication. We aim to
unravel the complex behaviors that can emerge when RL principles are applied to LLMs, thereby
offering a comprehensive understanding of how agency can be manifested in language-based tasks.

Fine-Tuning or Fine Problems?

The method of Reinforcement Learning from Human Feedback (RLHF) has emerged as an instru-
mental technique for refining LLMs [Bai et al., 2022a]. Employing the Proximal Policy Optimization
(PPO) algorithm [Schulman et al., 2017], RLHF enables LLMs to deviate from their initial train-
ing distribution and generate outputs that align more closely with human evaluations. Such a
fine-tuning strategy is prevalent in state-of-the-art models like GPT-4 [OpenAI, 2023], Claude [Bai
et al., 2022b], LLama [Touvron et al., 2023a,b], BARD [Manyika, 2023], and OpenAssistant [Köpf
et al., 2023], with the ultimate aim of promoting safety and value alignment [Ramamurthy et al.,
2023].

However, this approach is not without its challenges. For instance, model size remains a crucial
variable, with specific capabilities only emerging at higher scales [Kaplan et al., 2020, Wei et al.,
2022]. Studies indicate a threshold for attributes like moral self-correction [Ganguli et al., 2023],
whereas other works reveal limitations in Theory of Mind [Sap et al., 2022], reasoning [Saparov and
He, 2022], and planning [Valmeekam et al., 2022] in large models. Moreover, Perez et al. [2022] found
that excessive RLHF training could result in counterproductive behavior, such as biased political
or religious views and Wolf et al. [2023] proved that undesirable responses, though diminished
in probability, are not entirely removed from the model. Instead, they can be elicited given the
appropriate prompts.

Finally, as elaborated in §3.2.1, the challenges of representing a diverse array of human values
and societal norms within a single reward function [Casper et al., 2023] also extend to the application
of RLHF.

Reinforcement Learning as Pretraining Strategy

As previously seen, Reinforcement Learning has been explored as a mechanism for fine-tuning
Large Language Models. However, its potential as a pretraining strategy remains underexplored
in language generation tasks. Nevertheless, the utility of RL in pretraining has been recognized
within the context of Neural Machine Translation (NMT), as illustrated by Lee et al. [2017]. Their
work employs the Emergent Communication framework in pretraining and demonstrates significant
improvements in translation metrics across various benchmarks.

Additionally, existing research indicates that pretraining LLMs on specialized tasks can yield
enhanced performance in downstream applications [Dessì et al., 2023, Liu et al., 2023a, Lowe et al.,
2020, Yao et al., 2022]. For example, Papadimitriou and Jurafsky [2020] found that Recurrent Neu-
ral Networks pretrained on non-linguistic data with latent structures, such as music or programming
code, showed improved capabilities in NLP tasks. Similarly, Li et al. [2020] speculated that ground-
ing communication in visual stimuli could offer an inductive advantage, notably enhancing NMT
performance in few-shot settings.

Despite its promise, implementing the Emergent Communication framework for LLM pretraining
is not without its challenges. Mainly, it demands substantial computational resources and time since
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the pretrained LLM has to be later trained on language tasks.

Cooperative Learning

Human beings acquire social norms and values through dynamic social interactions. Through these
interactions, we obtain feedback and adjust our behavior to make a positive impact [Krishna et al.,
2022]. In contrast, Large Language Models are typically trained in a socially isolated environment,
focusing solely on textual domains. This observation opens up an intriguing avenue for research:
leveraging the LLM ’s ability to learn in context [Brown et al., 2020, Chowdhery et al., 2023] to
co-train it with humans.

In this context, the field of Cooperative Inverse Reinforcement Learning (CIRL) is particularly
relevant [Hadfield-Menell et al., 2016]. In CIRL, a human and a computer agent collaborate to
optimize a shared reward function, initially known only to humans. Unlike traditional Inverse
Reinforcement Learning, where the human is assumed to optimize their own reward in isolation,
optimal CIRL solutions can lead to cooperative behaviors such as active teaching, active learning,
and communicative actions, which are more conducive to achieving value alignment between humans
and agents.

Although CIRL is a well-established field, its application to linguistic tasks has only recently
garnered attention. For instance, Sumers et al. [2022b] conducted an experiment wherein two
artificial agents learned language-driven objectives. A speaker agent was designed to generate
utterances to maximize expected rewards based on the listener agent’s responses, while the listener
used Inverse Reward Design to infer the speaker’s latent goals. Their work suggests extending reward
design to linguistic interactions is a viable strategy for robust value alignment in natural language
tasks. Similarly, Liu et al. [2023b] employs a language-based feedback mechanism inspired by human
learning. They convert feedback from various games into sentences, allowing the machine model
to adapt its outputs based on this human feedback and to identify and rectify errors or negative
behaviors.

While a considerable number of studies employ language feedback for learning [Nguyen et al.,
2021, Sumers et al., 2022a, 2021], only a few focus on the bidirectional adaptation between humans
and machines and none use actual humans in their experiments. This emerging line of research
holds significant promise and demands further exploration.

3.3 Theory of Mind in Adaptive Language Models

Adaptation is a central idea often discussed in the study of evolution. Many researchers [Brandon,
2014, Rose and Lauder, 1996, Symons, 1990] connect this idea to Charles Darwin’s work on evolution
[Darwin, 1964]. In Darwin’s own words: «How have all those exquisite adaptations of one part of
the organization to another part, and to the conditions of life, and of one distinct organic being to
another being, been perfected? [...]; in short, we see beautiful adaptations everywhere and in every
part of the organic world».

Building upon Darwin’s insights, Brandon [2014] delved into the mutual interplay between
living entities and their environments. Brandon [2014] emphasized that a comprehensive study
of adaptation necessitates understanding the environment in which it occurs. Notably, one such
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environment of interest is human society, where individuals continually adapt, especially when
faced with new cultures and societies.

In this context, the work of Kim [2001] offers an enlightening perspective. Her theory accentuates
that adaptation is not merely an individual’s internal process but is deeply intertwined with con-
tinuous communication within the unfamiliar cultural environment. This dynamic process involves
overcoming challenges, adapting to new cultural norms, and growing within the new context.

But, the question arises: How do individuals understand and adapt to not just the cultural
norms but also the myriad people within those cultures, each with their own beliefs, thoughts, and
emotions? Herein lies the essence of the Theory of Mind.

3.3.1 Theory of Mind

Recognizing and understanding another person’s mental state, beliefs, intentions, and desires is
crucial for effective communication and meaningful adaptation. Without this cognitive ability, true
adaptation (in the sense of understanding a culture and its people) remains elusive. This process
is often referred to as Theory of Mind and was first introduced by Premack and Woodruff [1978] in
their study of animal behavior. Premack and Woodruff [1978] initially investigated whether chim-
panzees could attribute beliefs and intentions to others. Their findings sparked a broad discourse in
cognitive science and psychology, laying the foundation for understanding how the ability to infer
others’ mental states is pivotal for human social interactions. Subsequent studies ventured into the
development of the ToM in children [Gopnik and Wellman, 1992, Harris et al., 1989]. Notably, Gop-
nik and Wellman [1992] identified the reliance of social reasoning on sophisticated mental models
of other individuals. A significant focus was also placed on the absence of such cognitive models in
autistic children [Baron-Cohen et al., 1985, Happé, 1993]. This line of research paved the way for
identifying specific brain regions associated with the formation and functioning of ToM [Gallagher
and Frith, 2003, Gallese and Goldman, 1998, Stone et al., 1998].

Machine Theory of Mind

With advancements in understanding the Theory of Mind, computer scientists realized its potential
for enhancing machine capabilities. Recognizing the mental states of others can be instrumental
in aligning machine actions with human values, fostering efficient cooperation, and making ethical
decisions [Hadfield-Menell et al., 2016, Nowak, 2006]. As a result, these models become indispensable
for effective communication, pedagogy, and overall HMI, especially in contexts requiring mutual
understanding [Dragan et al., 2013, Fisac et al., 2020].

Building on these foundations, one of the pioneering works in machine ToM was presented by Ra-
binowitz et al. [2018]. Their approach resonated with the principles of opponent modeling [Albrecht
and Stone, 2018, He et al., 2016a], a historically rich domain within Multi-Agent Reinforcement
Learning. Specifically, they framed their challenge as a meta-learning task, where ToM-enhanced
agents could swiftly adapt to new agents in the environment and anticipate their future actions.
This was accomplished using a two-part architecture: one component profiled other agents based on
historical behaviors, and the other deduced the current mental state of agents through more recent
actions. As a result of this work, numerous studies emerged [Andreas and Klein, 2016, Foerster
et al., 2017, Hawkins et al., 2020, Raileanu et al., 2018, Xie et al., 2021, Yuan et al., 2020, Zhu et al.,
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2021]. Despite the variations in environments, tasks, and agent interactions across these studies, a
shared architectural theme arose: a dual-stream structure for ToM-augmented agents. For instance,
[Xie et al., 2021] incorporated repeated interactions to discern latent strategies of other agents, while
a separate component of their system learned to optimize long-term rewards from an experience
buffer. Similarly, Raileanu et al. [2018], drawing inspiration from [He et al., 2016a], designed two
distinct neural networks. One was trained using A3C [Mnih et al., 2016] to anticipate agent actions,
while the other determined the actions of the main agent.

Such dual-network architectures derive the original work presented in Chapter 7.

3.3.2 Cognitive Insights into Language Models

Having established an understanding of Theory of Mind and its relevance to Multi-Agent System,
especially within RL frameworks, we now shift our focus to the intersection of ToM and language
modeling. Our primary interest lies in examining how ToM-enhanced architectures can adjust their
communication to ensure clarity and mutual comprehension with other agents, be they artificial or
human.

The Rational Speech Act Framework

While the understanding of ToM provides insights into the cognitive processes behind social in-
teractions and decision-making, its application within language modeling demands exploring the
linguistic mechanisms that facilitate communication. Within the linguistic domain, the Ratio-
nal Speech Act (RSA) [Frank and Goodman, 2012, Goodman and Frank, 2016, Goodman and
Stuhlmüller, 2013] emerges as a principle closely aligned with the concepts of ToM. The RSA posits
that communicators optimize their messages based on mutual beliefs and shared knowledge to be
more effective in conveying their intent. In the realm of artificial speakers, such as language models,
incorporating RSA often involves enhanced decoding algorithms [Vedantam et al., 2017]. These
models can also be trained to produce distinctive sentences by modifying the training objectives
[Mao et al., 2016] or adding auxiliary Reinforcement Learning modules [Yu et al., 2017]. Some
strategies even base the RL rewards on the success of a separate agent model in understanding
the generated message [Lazaridou et al., 2020]. Collectively, these studies highlight the trend of
crafting training strategies tailored to specific tasks. Although this direction is intriguing, it does
not entirely address the essence of adaptation, where the training of a neural network is disjoint
from its adaptive functions.

Adaptive Techniques in Language Modeling

Adaptive controlled text generation has gained momentum with the introduction of Large Language
Models. The objective is to have the ability to steer these models toward generating text with certain
characteristics or attributes without compromising their core knowledge. Several innovative methods
for directed text generation have emerged, encompassing strategies like prefix-tuning [Ben-David
et al., 2022, Li and Liang, 2021], prompting [Brown et al., 2020], adapters [Houlsby et al., 2019,
Pfeiffer et al., 2020a,b], and energy-driven constraints [Qin et al., 2022]. One noteworthy method
in this domain is the plug-and-play approach to controlled text generation [Dathathri et al., 2020,
Pascual et al., 2021]. Here, latent representations are modified during inference with the support
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of a classifier, but the primary model parameters remain static. This method has successfully
guided LLMs to produce texts with desired characteristics, like specific sentiment or vocabulary
distribution.

Chapter 7 focuses on integrating the stirring approach of controlled text generation, as exem-
plified by the plug-and-play method [Dathathri et al., 2020], with the insights gained from the
theory of mind [Rabinowitz et al., 2018]. The aim is to steer language generation towards a path
of enhanced mutual understanding.

3.3.3 Image Captioning

Image Captioning (ImC), positioned at the intersection of Natural Language Processing (NLP)
and Computer Vision (CV), is the task of automatically describing an image’s content in words.
Understanding this class of problems is essential, especially concerning multimodal language gener-
ation, as it lays the foundation for the experimental framework discussed later in §7.1. The surge
in Image Captioning interest can be attributed to advancements in machine translation [Bahdanau
et al., 2015, Cho et al., 2014], computer vision [Szegedy et al., 2015], and a broader curiosity in
multimodality. This has been reflected in both challenges [Russakovsky et al., 2015] and datasets
[Lin et al., 2014b] that have become pillars in the field.

Contrary to traditional Emergent Communication (EmeCom) frameworks, ImC predominantly
employs supervised training using LLM. Here, the agent’s actions are primarily communicative.
The similarities between Hum-EmeCom (a form of EmeCom that employs human language as
discussed in §2.2.2) and ImC are quite evident. Both domains utilize datasets augmented with
human annotations or employ pretrained language models to develop agents skilled in understanding
multimodal contexts, such as visual and linguistic cues, and reasoning in natural language.

However, their methodologies are distinct. Hum-EmeCom research often unfolds in game-based
environments, leading to a preference for Reinforcement Learning techniques. In contrast, ImC
predominantly draws from methods rooted in the NLP and CV domains. For this reason, evaluation
metrics differ significantly between these two. ImC adopts metrics directly from NLP, such as BLEU
Papineni et al. [2002] and Cider Vedantam et al. [2015], which assess the similarity between generated
captions and reference data. Consequently, the domain often employs loss functions that measure
divergence between language distributions in generated and training samples Karpathy and Fei-Fei
[2015], Vinyals et al. [2015].

Conversely, Hum-EmeCom, and by extension EmeCom, measure success based on inter-agent
understanding. While this mimics real-world interactions, it introduces unique challenges, notably
the inability to backpropagate errors through discrete channels like language.

Discrete channel backpropagation

Language’s inherent discreteness, though reflecting real-world characteristics, imposes significant
limitations when modeling human language on primarily word-based channels. This discreteness
renders backpropagation non-differentiable, blocking direct gradient updates from estimated errors.
This challenge is particularly pronounced in Hum-EmeCom, where the objective is not merely
modeling human language (achievable with ImC techniques) but also enabling agent coordination.
Such coordination performance, often governed by game mechanics, is not directly optimizable due
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to communication’s discrete nature.
To overcome this, various techniques have been developed, including the reparameterization

trick (such as VQ-VIB [Tucker et al., 2022]), semantic hashing [Kaiser and Bengio, 2018, Salakhut-
dinov and Hinton, 2009], Gumbel Soft-max [Jang et al., 2017, Maddison et al., 2017] and the
REINFORCE algorithm Williams [1992]. These methods enable backpropagation through non-
differentiable variables, allowing for effective training of communication networks. However, they
often exhibit inconsistencies in performance across different architectures and settings, leading to
suboptimal communication strategies and longer convergence times.

3.4 Open problems

Building on the related works discussed earlier, this section outlines key open problems relevant to
scientific research and societal impact. The following three subsections reflect the structure of the
related works, each addressing issues arising from Sections §3.1, §3.3, and §3.2.

3.4.1 Influence of Environmental Complexity on Language Emergence

The study of Emergent Communication in AI has revolved mainly around simplified or abstracted
scenarios. While simplified scenarios in Emergent Communication allow research to be focused
on specific questions, they often overlook real-world complexities. This complexity encompasses
a broad range of factors intrinsic to human communication, such as competitive and cooperative
dynamics (discussed in §3.1), as well as the perceptual and memory capacities of agents, as explored
in Brandizzi [2023]. There is a compelling need to develop simulation environments that more
closely mirror real life. Such environments would allow for examining whether machines, subjected
to similar pressures as humans, develop analogous languages. This line of study is relevant on both
a scientific level, to question whether evolutionary processes yield parallel outcomes in organic and
artificial systems; and for broader inquiries into how humans acquired and developed language,
investigating the roles environmental complexities play in shaping linguistic systems.

3.4.2 Reinforcement Learning in Artificial Interactions

Exploring Reinforcement Learning in artificial interactions invites new perspectives on AI’s evolu-
tion. This involves not just technological advancements but also ethical, societal, and collaborative
dimensions, enriching the AI-human dynamic.

Artificial Agency and Reinforcement Learning One of the compelling questions is whether
true agency can manifest within RL frameworks. If so, is RL the exclusive approach through which
this can occur, or are there alternative learning frameworks capable of promoting similar levels of
agency in artificial agents? The exploration of these questions not only sheds light on RL ’s role
in AI development but also probes deeper into ethical considerations surrounding the concept of
agency itself.

This inquiry parallels philosophical thought experiments like the "Knowledge Argument" or
"Mary’s Room", as described by Jackson [1998]. In these scenarios, the protagonist possesses ex-
tensive theoretical knowledge yet lacks experiential understanding. This analogy raises the question
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of whether a supervised learning-only AI, devoid of interactive experiences, can gain a form of knowl-
edge akin to that acquired by experiencing the world first-hand. Could interaction with humans and
the environment impart new layers of understanding to AI models, similar to Mary’s experiential
leap from theory to perception? This philosophical perspective takes on practical implications when
considering the current limitations in Large Language Models interactions.

Detection and Resolution of AI Misalignment The issue of misalignment in AI, as dis-
cussed in Section 3.3, has become increasingly significant with AI ’s growing role in everyday life.
Addressing misalignment requires a dual approach: identifying misaligned behaviors and devising
strategies for correction. While these two aspects are correlated, they fundamentally operate in
distinct realms.

Effective detection of misalignment would likely involve the development of new metrics and
would represent a significant leap in our ability to detect when AI systems deviate from intended
behaviors. However, once reliable metrics are established, a natural progression would be to incorpo-
rate them into the AI optimization processes. As discussed in the related work section, integrating
these metrics into the optimization loop might inadvertently fuel the root problem of misalignment.
There is a risk that AI systems might develop strategies to subtly evade detection, giving the illusion
of alignment while still operating in misaligned ways beneath the surface.

Therefore, it’s crucial to maintain a separation between the detection and resolution strategies.
The goal should be to identify misalignment and understand and address the factors contributing to
it. This understanding is key to developing AI systems that are not just compliant in a superficial
sense but truly aligned with human values.

Human-Machine Collaborative Learning As introduced in Section 3.2.3, exploring collabo-
rative learning scenarios where both machines and humans learn from their environment and each
other offers a promising research direction. Traditionally, AI research has focused on situations
where humans teach AI to learn "optimal" behaviors [Frattolillo et al., 2023], but embracing mu-
tual knowledge exchange could potentially address the misalignment issues discussed earlier. This
approach, which diverges from the typical teacher-learner dynamic, emphasizes reciprocal learning
and adaptation, offering a novel solution to aligning AI behavior with human expectations and
values.

3.4.3 Adaptation in Language Modeling

The final area of exploration concerns adapting AI, especially Large Language Models. Developing
Theory of Mind models that can effectively interpret agents’ intentions in various environments
could significantly alleviate many communication issues we have identified between humans and AI.
The focus here would be on how enhanced ToM capabilities facilitate more adaptable, cooperative,
and efficient interactions, particularly in scenarios involving asymmetric information and knowledge
disparities.

Moreover, addressing AI adaptability must also consider environmental impacts. The process of
fine-tuning LLMs, as previously discussed, has substantial environmental implications. To support
the development of adaptable and personalized AI on our devices, we must devise more resource-
efficient strategies for adapting these models. This dual focus on advanced cognitive modeling
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and sustainable AI development is crucial for the responsible and effective evolution of language
modeling.
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Chapter 4

Problem and Solution Formulation

The formulation of the problem and the subsequent solution outlined in this section stem from an
analysis of open challenges identified in the related works (§3.4). As previously mentioned, our
approach to this problem in the subsequent chapters will be incremental; thus, it necessitates a
consistent standard formulation.

As introduced in §2.2.2, communication within the realm of Emergent Communication diverges
into two predominant modalities: explicit and implicit. Each modality plays a distinctive role in
influencing the dynamic equilibrium of the game.

Explicit communication characterizes intentional information exchanges that aim to modify the
cognitive perspectives of other players. In contrast, implicit communication comprises actions with
multiple meanings, such as actions that subtly guide other players toward certain game objectives.
Determining the appropriate timing, content, and method of communication is integral to the game’s
outcome.

In this section, we delineate our solution based on the typical Reinforcement Learning framework
(see Section 2.3), where we distinguish two categories of actions performed by the players: 1) game
actions, which directly alter the game’s progression, 2) communication actions, which solely influence
players’ mental state or knowledge.

In this formalization, we consider only forms of explicit communication, while studying forms
of implicit communication is left as future work.

4.1 Problem Formulation

Our problem formulation is rooted in the concept of Social Deduction Game (SDG) as elaborated
in §3.1.3. Central to these games is the framework of multiple opposing teams, represented as
T (1), T (2), . . . , T (m), where typically m = 2. Each team comprises a finite number of players, and
while the number of players might differ across teams, for simplicity, we denote this number as n.
Formally, any given team, T (k), can be defined as:

T (k) = {p1, p2, . . . , pn}

where 1 ≤ k ≤ m. The cumulative set of all players across teams is represented as N =
⋃

1≤k≤m T .
In the SDG landscape, players sequentially take actions that shape the game’s trajectory and

influence its score. The objective for each team is to surpass the others, often employing a mix of
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strategic behaviors like bluffing or deception. Such tactics underscore the need for players to assess
the actions and intentions of their counterparts.

In general, we can identify two types of goals in SDGs:

• An agent-based micro-goal, which is the main factor steering the agent’s behavior, either in
isolation (in competitive environments) or together with other agents’ goals (in cooperative
environments).

• A team-based macro-goal, expressing the aligned interests of the members of the same party
that, combined, make up the party goal.

The successful accomplishment of these goals in SDGs demands a fine balance of cooperation
and competition, which is guided by effective communication strategies.

4.1.1 Game Characterization

In characterizing our game environment, we primarily recognize several elements:

1. An action set
A = G ∪ C (4.1)

made of two separate components:

• a finite set of possible game actions G the elements of which we will denote with g.

• a set of unidirectional communication actions Ci,j(b) intended to convey some information
b ∈ B 1 between two players:

Ci,j(b) : pj → pi ∀pj , pi j ̸= i ∈ N

2. The state set
O = EN × ΓN × V (4.2)

built out of three elements:

• a set of agent’s features E representing the game situation of each agent (typically visible
to all other agents).

• a set of agent’s internal states Γ (e.g., representations of beliefs not visible to other
agents).

• a set of environment states V that are common for all the agents (i.e., independent from
the agent states).

3. an environment S implementing the game logic. S is a transition function converting agents’
actions to new environment states

S : O ×AN → O (4.3)

1A possibly infinite set of all possible signals.
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Moving forward, we direct our focus towards a specific variant of SDG: the Referential Game
(Ref Game). While this game was already introduced in §3.1.3, here we provide a new type of
formulation relevant to our study.

4.1.2 Referential Game

A Referential Game is inherently easier than a typical SDG game, such as The Werewolf (see §3.1.3).
However, its simplicity is crucial to examining particular research questions that require as much
control in the experimental setting as possible.

In this section, we’ll define the Ref Game based on the prior formulation, highlighting the specific
assumptions introduced and discussing the implications of each.

The first and most visible simplification is the presence of only one team with two agents, a
speaker, and a listener, N = 2.

Speaker Agent

This agent’s set of actions is exclusively communicative. Formally:

Gs = ∅ =⇒ As = C

Speaker(O)→ C
(4.4)

Notably, the set of communication actions by the speaker (cs ∈ C) is a subset of all potential
communication signals, represented as C ⊂ B. Each communication action, while rooted in the
broad B, is designed to convey specific information.

Listener Agent

Contrarily, this agent’s actions are strictly game-based and non-communicative:

C l = ∅ =⇒ Al = G

Listener(O,B)→ G
(4.5)

The listener’s primary role is decoding the speaker’s intentions and navigating game dynamics
based on the interpreted communication.

Game Dynamics

In the Referential Game scenario, the speaker views a target image (t̂) from an image pool (vctx ∈ V ).
The speaker then translates this observation into a communicative signal (b). The listener’s task is
to decode this signal, distinguishing (gl) the referenced image from the pool, which also contains
other distractor images. Success in the game is defined by the listener’s correct identification of the
image: gl = t̂.

This dynamic solidifies a unidirectional communication flow solely from the speaker to the
listener. This can be formalized as:

C(b)s,l : Speaker → Listener (4.6)
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The progression involves crafting a solution framework that integrates these dynamics, especially
when dealing with multi-agent games.

4.2 Solution Concept

Learning optimal policies in multi-agent games is a well-established challenge, and numerous solu-
tions have been devised to address it. However, the addition of communication actions brings an
added layer of complexity. The core of the problem shifts towards leveraging Artificial Intelligence
techniques to optimally decide when, what, and how to communicate.

In this context, we introduce two solution frameworks, drawing upon terms from the realm of
Reinforcement Learning. It is important to clarify that even though we refer to these solutions as
policies, they are not restricted to the use of RL as the primary resolution mechanism. Yet, in
certain scenarios, we find RL to be a fitting solution.

The distinction between our two proposed solutions depends on the nature of the environment.
Specifically, when communication and game actions overlap (C = G), a singular policy can govern
both. This union is evident in our initial study outlined in Chapter 5, where communication actions
converge with game actions. It is worth noting that such a dynamic is also observed in situations
where agents interact exclusively through communicative means, as suggested by Hill et al. [2020].
Conversely, in scenarios where communicative and game actions diverge, dual policies (one for each
domain) enhance learning efficiency. This will be the core of Chapter 6 and §7.

4.2.1 Unified Action Policy

In scenarios where game and communicative actions align, adopting a unified action policy (πU )
might become advantageous in terms of complexity and interconnection between game and commu-
nication actions.

This policy requires a game split into distinct time steps, each corresponding to a specific action.
A single game turn, t, is viewed as a sequence spanning r+1 steps. The initial r steps are dedicated
to communication actions, denoted as c ∈ C, modifying the agents’ mental states. In contrast,
the final step shifts its focus to game action, represented as g ∈ G, which advances the game’s
progression.

For clarity, let’s label each step within this sequence as Oj
t ∀j ∈ [0, r+1]. Here, Oj

t encapsulates
the game’s condition at step j during turn t. I follows how the unified policy, πU , selects the action
as:

πU (O
j
t ) ∈ C ∀ j ≤ r (4.7)

πU (O
r+1
t ) ∈ G (4.8)

By this approach, the unified action policy coordinates the series of actions an agent should
pursue, transitioning between communication and game actions. Yet, it is worth noting that in
more complex settings, defining two distinct policies, one for communication and another for game
actions might offer greater precision in decision-making.
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4.2.2 Disjoint Action Policies

In environments with distinctions between communication and game actions, it is necessary to
evolve two separate policies. This scenario offers a more realistic reflection than the previously
discussed unified policy, mirroring real-world situations where our actions and words, although
interdependent, are distinct. In this setting, we employ two policies: a communication policy πC

and a game action policy πP .

Communication Policy

The communication policy πC aims to generate communication signals based on the observation
set, O. It can be formally expressed as:

πC : O → C (4.9)

One of the characteristics of πC is its potential for independent training. This means that the
policy can be optimized without explicit knowledge of or dependence on other agents.

To elaborate on the objective for training πC , let’s denote it as J(πC). This objective seeks to
maximize the correctness of the agent’s communication signals, given the environmental observa-
tions. In the simplest terms, it can be represented as:

J(πC) = EV [U(πC(O))]

Where U is a utility function that quantifies the value or "worth" of the generated communication
signal in the context of O, e.g., the informativeness of a caption. The expectation is taken over all
possible environmental observations, ensuring that the policy is effective across a broad range of
scenarios.

Importantly, the objective J(πC) mirrors the objectives employed during the training of Large
Language Models, especially those geared towards tasks like Image Captioning. For instance, a ImC
LLM aims to produce a caption, a form of communication signal, based solely on the provided input.
In this context, the input is the image and potentially any associated context, and the output is the
generated response. Given its observations, the model aims to generate the most appropriate and
relevant communication signal. Therefore, the strategies adopted by such LLM provide a concrete
real-world analogy for our πC policy formulation.

Action Policy

The action policy πP allows the agent to act in the environment. To acknowledge the agent’s own
communicative footprint in the game, this policy includes both the current environmental state and
the preceding communication signal. It is formulated as:

πP : O × C → G (4.10)

At its core, the πP policy is crafted to account for the actions and potential reactions of other
agents.
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Regarding its training objective, πP is optimized to minimize the divergence between the pre-
dicted and optimal actions. The degree to which the policy’s predictions align with the optimal
actions determines its efficacy. Consequently, the objective function can be represented as:

J(πP ) = EO,C [D(πP (O,C), â)]

Where D can be any distance function and will depend on the nature of the action and the envi-
ronment.

From a practicality and scalability standpoint, it is worth noting that the parameterization of
πP might be much more concise than that of the communication policy πC . This distinction is
particularly important for Large Language Models. The inherent design of the prediction policy
permits quicker and more efficient adaptation compared to retraining the communication policy.

4.3 Solution Framework Based on Theory of Mind

The above formulation is quite general and allows us to tackle one of the fundamental problems of
Multi-Agent Reinforcement Learning: the non-stationarity nature of the environment. To address
this challenge, we turn to the Theory of Mind (ToM) in Chapter 7 and extend the disjoint action
policies to account for ToM agents. Moreover, we define the schema for an iterative communication
refinement, where an agent iteratively refines its communication signal to better address the other
agent’s knowledge.

Incorporating the Theory of Mind into our formalization provides a mechanism for agents to
infer and predict the future actions of other agents based on their observed behavior. Crucially, in
this context, we equate an agent’s belief system directly with their intentions for future actions. It
is worth noting that while an agent’s belief system can be vast, encompassing reward functions in
artificial agents and values or morals in humans, our primary access to their internal state is through
their manifested actions. The act of observing these actions is the foundation for understanding
their underlying beliefs and intentions.

Assumption 1-GSF . The internal state of an agent, γp, can be derived from its observable game
actions. Mathematically:

γp = f(gp)

where gp represents the game actions of the agent and f is a function mapping these actions to its
internal state.

Moreover, we posit that the agent’s internal state, γp, can be wholly explained by the actions it
takes in the game environment. This approach facilitates a more straightforward modeling of agent
behaviors in our current setup. Specifically, we make the simplifying assumption:

Assumption 2-GSF . The function f mapping the agent’s game actions to its internal state is the
identity function, represented as:

f = I =⇒ γp = gp

where I denotes the identity function.
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It is worth noting, however, that in scenarios where f diverges from the identity function, the
relationship between observable actions and internal states becomes more complex. Such scenarios,
where the internal state may have other latent factors not directly discernible from actions, intersect
with the broader field of Multi-Objective Reinforcement Learning [Hayes et al., 2022]. Precisely,
they touch upon concepts like the utility function, which provides a measure of the worth or value
of different states. Exploring these complexities, while immensely valuable, is left for future work.

4.3.1 Prediction Policy

In this context, the action policy πP described above can be expressed in terms of a speaker agent
predicting the future game action of another agent. Building upon Assumption 2-GSF , it becomes
evident that forecasting the following action of the agent p parallels predicting its belief state γp.

4.3.2 Iterative Communication Refinement

Suppose the speaker desires an agent to perform a specific action, denoted as â. To steer the agent
towards this action, the speaker employs an iterative method, aiming to reduce the discrepancy
between the predicted action of the listener ḡp and the intended action â. This discrepancy is quan-
tified using a distance function D, which provides feedback to adjust the speaker’s communicative
action accordingly.

Mathematically, this procedure can be described as:

1. Using its prediction policy πP , the speaker predicts the action of the listener given the current
communication action c:

ḡp = πP (o, c)

2. A distance function D is determined based on the difference between the predicted action ḡp

and the desired action â:
D = Distance(ḡp, â)

3. The speaker’s communication policy πC then generates a refined communication signal cnew

given the environment state V , with the policy being conditioned on the computed distance
D:

cnew = πC(o)|D

4. This cycle of prediction, distance computation, and communication adjustment is repeated
until D is minimized, indicating that the speaker’s prediction of the listener’s action closely
matches the desired action â.

Minimizing the gap between expected and actual outcomes, the speaker uses its ToM to guide
the agent’s actions, showcasing adaptive communication rooted in mutual understanding.
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Chapter 5

Emergent Communication in Interactive
Environments

The first step towards solving the general problem stated in §1.2, i.e., allowing machines to learn
language interactively, revolves around establishing whether effective communication can indeed
arise within an artificial interactive framework.

In this chapter, we narrow our focus to scenarios involving artificial agents engaged in activities
necessitating communication. This communication is expressed through numerical vectors of natural
numbers, devoid of any pre-established linguistic constructs, an approach parallel to the Machine-
centered EmeCom delineated in Brandizzi [2023]. It is important to highlight that our exploration
does not attempt to produce languages that are either interpretable by humans or reflect similarities
with human languages.

The following section (§5.1) delineates the design of an environment that replicates real-world
dynamics and allows for collaboration and competition, ensuring the organic evolution of commu-
nication strategies without any restrictive constraints. The outcomes, presented in §5.2, illustrate
how introducing a communication channel enhances the success rate of the villager.

5.1 Design of Experiments and Solution

In this section, we introduce our framework for The Werewolf Social Deduction Game, detailing
the experiments and baselines that lay the foundation for our analysis.

Initially, we outline the environment in §5.1.1. Staying consistent with Reinforcement Learning
terminology, we define the action and observation spaces, the transition model (which includes
environment rules), and the reward system.

Subsequently, in §5.1.2, we detail the agent policies. We first establish the static, hand-coded
policies for the werewolves, which remain unchanged over time and do not allow learning. We then
describe the algorithm and policy specifics of the villagers, connecting it with the unified action
policy discussed in §4.2.1.

5.1.1 Environment for Experimentation

The environment for experimentation plays a pivotal role in assessing the efficacy of the action
policies and how effectively our agents navigate the game’s complexities. As discussed in §2.3, the
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Figure 5.1: Illustration of the signal vector components, detailing both the general formulation and specific
values for Signal Length (SL) and Signal Range (SR).

application of RL necessitates defining the action space and observation space, the specifics of which
are detailed in the ensuing section. These spaces delineate the possible actions agents can take and
the information they can perceive, respectively, providing the necessary infrastructure for AI agents
to interact, learn, and strategize within the game.

Action Space

The action space encapsulates an agent’s moves, consisting of game actions (gt) and communication
actions (ct). These actions are performed in tandem with a unified action policy (πU )

The action space can be deconstructed into two primary components:

• Target (gt): This is an integer within the range gt ∈ [0, N − 1], where N signifies the total
number of players. The function of the target is to facilitate voting among the players within
the game. It should be noted that the set of viable target values remains constant throughout
the game. However, certain actions might be rendered illegitimate within specific contexts,
such as voting for deceased players. The model subsequently filters out such illegal actions in
the later stages of the game.

• Signal (ct): As depicted in Figure 5.1, the signal vector ct is delineated by a pair of integer
values. One value defines the length of the signal, SL ∈ [0,∞[, which can range from zero
(indicating no communication) up to an arbitrarily large integer. The other value determines
the range, SR ∈ [2, N ], setting the count of possible values the signal can assume. The
lower limit for SR is set to 2 as a signal with only a single value essentially becomes a static
vector stripped of any significant information. Conversely, the upper limit is defined by N ,
facilitating the embedding of the signal with the target. Both these parameters help outline
the scope for communication before the training process.

Observation Space

The Observation Space (ObS) plays a fundamental role in determining the agents’ interactions with
the environment and their subsequent responses. It embodies the perceptual range within which
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agents operate, encapsulating both fellow agents’ actions and the game environment’s evolving state.
The ObS in our game environment is made of multiple components, each contributing to the state
of the game. The elements of the observation space are as follows:

• Phase ∈ {1, 2, 3, 4}: This component signifies the current phase of the game. The game is
divided into two main timeframes: night and day. Each timeframe consists of two distinct
phases, one dedicated to communication and the other to action execution.

• Day ∈ I+: This element reflects the progression of days in the game. An upper limit of
10 days has been set for practical purposes, which, when represented as a one-hot encoded
vector, ensures a manageable length.

• StatusMap ∈ [0, 1]: This binary array assigns a boolean value to each agent index, thereby
conveying to the players whether a particular agent is alive (= 1) or dead (= 0).

• ID ∈ [0, N ]: This component provides information about an agent’s identity within the game.
Given that the agents’ identities are shuffled at the start of each game, this integer value is
crucial for maintaining each agent’s awareness of its own position.

• Target ∈ [−1, N ]: This component groups all the potential targets within the game1.

• Signal ∈ [−1,SR− 1]: This component groups all the signals, providing a means of commu-
nication between agents.

Where:

V = {Phase,Day, StatusMap}

E = {Targets, Signal}

O = EN × V

In our formulation, Γ (the agent’s internal state) is not modeled explicitly, thus Γ = ∅.

Transition Model

The transition model captures how the state of the game evolves from one-time step to the next,
considering both the actions taken by agents and the inherent rules of the game, as illustrated in
Figure 5.2. Given that our setting revolves around the complex dynamics of the game, we can
formulate the transition model with greater specificity, drawing from the game mechanics and the
interactions between agents.

• Time Transition: Central to our model is the cyclical progression between day and night
phases, which substantially impacts game dynamics. At every timestep t, the environment
function S mediates this transition. Formally, this can be expressed as:

Phaset+1 = S(Phaset)

The S function ensures a sequence from night to day and vice versa.
1Values of -1 are placeholders for agents that have died.
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Night PhaseDay Phase

1 Werewolves
Communication

3Villager 
Communication 2 Werewolves

Targeting

4Villager 
Targeting

Figure 5.2: Werewolf Game Transition: This diagram illustrates the phase transitions in the Werewolf
Social Deduction Game. The right side depicts the night phase, where werewolves first communicate to
select a target (1) and then choose a villager to eliminate (2). The left side shows the day phase, where both
werewolves and villagers engage in communication (3), followed by a collective decision to execute a suspect
(4).

• Player State Transition: An agent’s status, dead or alive, significantly influences the game’s
trajectory. Specifically, once a player is voted out or killed, their status transitions to "dead",
and they are consequently removed from active participation in subsequent timesteps. This
transition can be formally written as:

StatusMapt+1(i) = S(StatusMapt(i), at)

Where i denotes a specific player.

Reward Structure

The reward structure plays an important role in RL, steering the agents’ learning trajectories and
strategic developments. These rewards or penalties create an incentive system that guides the agents
to optimize their actions in order to maximize the expected return.

In the context of our environment, the reward system incorporates both agent-based and group-
based rewards to address different aspects of game dynamics. The first three conditions listed below
are agent-based, applying individually to each agent to directly influence their personal strategies
and decisions. The final condition is group-based, impacting the entire team and emphasizing
collective success:

• Round Duration: To encourage the agents to devise strategies for winning the game more
swiftly, a small penalty of −1 is applied to each agent at the end of every day.

• Player Demise: The occurrence of a player’s death incurs a penalty of −5. Though strate-
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gically sacrificing oneself can be part of certain gameplays, this penalty serves as a check to
prevent excessive self-eliminations.

• Voting Consensus: To prevent the voting system from becoming another communication
channel, agents are penalized when they cast their votes for players who are not eventually
executed. This mechanism, therefore, promotes cooperative behavior among the agents, as
successful executions depend on a certain level of coordinated communication and consensus
among the players.

• Game Outcome: The final reward or penalty is group-based and applied at the end of the
game. Teams (villagers or werewolves) are either rewarded or penalized by a factor of ±25,
depending on the game’s outcome. This ensures that the overall team objective of winning
the game remains paramount for every agent.

Designing the reward structure, often referred to as reward shaping, is essential for guiding
or discouraging specific agent behaviors. Within our framework, elements like Round Duration
and Player Demise serve as the micro-goals, guiding the individual tactics of players. In contrast,
broader objectives such as Voting Consensus and Game Outcome are identified as macro-goals,
reflecting the collective aspirations of a team or party (as specified in §3.1.3). However, reward
shaping comes with its own set of challenges. Notably, it requires substantial prior knowledge
about the system, including understanding how to achieve specific outcomes. Moreover, overly
crafted reward structures can inadvertently constrain the possibility of emergent behaviors, thereby
limiting the scope for AI agents to discover innovative strategies or solutions.

5.1.2 Agents’ Policies

While the environment serves as a foundation for the emergence of complex behaviors, it is only
one piece of the puzzle. The other element is the definition of learning mechanisms that guide the
agents’ actions. An action policy encapsulates the agent’s behavioral strategy throughout the game,
learning from its experiences, and constantly adjusting to maximize the potential rewards.

In this section, we examine the process of defining these action policies. We distinguish between
two categories: static and trainable. Static policies are pre-programmed behaviors that ensure a
stable benchmark during evaluations. On the other hand, trainable policies allow the agents to
accumulate experience and adjust their strategies to achieve maximum rewards. For the scope of
this study, we have implemented static policies for the werewolves, while villagers are able to learn.

Static policies for werewolves

We have assigned static policies to the werewolf agents within the game with the intention of
establishing a performance benchmark for evaluating the learning progression of the villager agents.
Given that the werewolves inherently hold a higher probability of victory in an entirely stochastic
environment (see §5.2.1), the use of static policies is sufficient. If we observe significant shifts in
winning rates, it can be inferred that the villagers have developed innovative strategies.

We have implemented three distinct static policies for the werewolf agents:

• Random Target Policy: During the execution phase, this policy enables a werewolf to
select a living villager as the target arbitrarily.
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• Random Target Unite Policy: A more cohesive strategy where all werewolf agents align
to select the same villager as their target during both day and night execution phases. This
united front can sway the day execution phase in favor of the werewolves, even with random
villagers.

• Revenge Target Policy: This policy introduces an element of retaliation into the game.
Here, the werewolves either vote randomly or specifically target a villager who had previously
voted against a werewolf.

Trainable policies for villagers

For the villagers, we employed Proximal Policy Optimization (PPO) as our training algorithm,
attributed to its proven efficacy in multi-agent environments, as indicated by [Guan et al., 2020,
Wei et al., 2019].

Mechanics of the Policy PPO utilizes a surrogate loss function to constrain the divergence
between the updated and the previous policy within a safe limit.

The formula for the original PPO loss is as follows:

LCLIP = Et

[
LCLIP
t (θ)

]
Where, LCLIP

t (θ) = log πθ(at|st)×At denotes the log-likelihood of the action at time t under the
policy πθ multiplied by the advantage At at time t, and Et

[
LCLIP
t (θ)

]
represents its expected value.

To consider the influence of the value function, the loss function needs to include an additional
error term:

LCLIP+V F = Et

[
LCLIP
t (θ)− c1L

V F
t (θ)

]
Here, LV F

t (θ) = (Vθ(st) − V targ
t )2 denotes the squared-error loss between the value function

Vθ at state st and the target function, and c1 serves as its coefficient. This addition is crucial to
estimate the critic loss, reflecting the model’s capacity to predict the value of each state.

To regulate the total loss, an additional term is introduced:

LCLIP+V F+S = Et

[
LCLIP+V F
t (θ) + c2S[πθ](st)

]
The entropy coefficient is maximized when all the policies are equally likely to be selected, corre-
sponding to the agent’s random actions. By including this value in the loss function, the training
algorithm is incentivized to minimize the entropy value, thus evading a scenario where the prema-
ture convergence of one action probability monopolizes the policy and impedes exploration [Ahmed
et al., 2019]. The term c2 scales the value of the entropy.

Model architecture The model’s architecture is primarily guided by the Observation Space, the
size of which is dictated by multiple components outlined in §5.1.1. These components include the
phase of the game, which consists of 4 units, and the Maximum Days, which by default is set to
10. Also contributing to the length of the ObS are the Status Map, ID, and Target, each equivalent

N. Brandizzi 47



5.2. Analysis and Results

Figure 5.3: Observation vector trend in relation to player count (N), signal length (SL), and Observation
Space (ObS) for a 21-player game. The figure illustrates the parabolic growth of the observation space with
increasing SL, from SL=1 yielding ObS=56 to SL=4 with ObS=119.

to the number of players, N . Finally, the Signal component contributes a value calculated as the
number of players multiplied by the Signal Length.

Taking all these factors into account, we can express the size of the observation vector in the
following formula:

∥ObS∥ = N · (3 + SL) + 14.

Taking an example of a game with 21 players (N = 21) and signal length as 1 (SL = 1), the
vector has a length ∥ObS∥ = 56 elements. If SL = 4, the space increases to ∥ObS∥ = 119. The action
space size follows a parabolic trend, as represented in Figure 5.3. Given the high dimensionality
of the ObS, an embedding layer comprised of a Fully Connected Network (FCN) is employed for
dimensionality reduction. This FCN takes an arbitrary number of inputs and generates outputs
exactly equivalent to N · (1+SL). By using this network, the dimensionality of the output vector is
reduced, and similar observations are grouped together. The FCN has a dimension of 256×256, and
Tanh is the default activation function. It also includes an Long-Short Term Memory layer with a
cell size of 256, enabling the agents to retain the memory of past steps.

Finally, two independent masks are used to ensure the model’s predictions are valid. The action
mask filters out invalid IDs from the model’s action output. Invalid IDs typically represent either
deceased players or other werewolves during the night phase of the game. On the other hand, the
signal mask operates as a static boolean mask. Its role is to permit only signals within a specific
range, denoted as SR, effectively filtering out all other values. Due to its static nature, this mask
remains unchanged throughout the entire execution of the game.

5.2 Analysis and Results

Our analysis begins by examining agents’ performances for both a game with nine and twenty-one
players in §5.2.1.

Next, we analyze the emerged language in §5.2.2. Our focus lies in understanding the spe-
cific characteristics and patterns that emerged with a spotlight on uncovering any similarities to
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properties found in human languages.

5.2.1 Performance analysis

To evaluate alterations in agent behavior and the effectiveness of different strategies, the study
employs the following normalized metrics:

• Suicide: This metric quantifies the frequency with which an agent chooses to vote for it-
self during an execution phase, reflecting an aspect of irrational behavior within the agent’s
decision-making process.

• Wins: The success rate of the villagers is tracked within this category, measured over a
normalized range of values to facilitate comparative analysis.

• Average Days: This represents the mean duration of matches in terms of days, providing
insight into the pace of gameplay and the efficiency of strategies employed.

• Consensus: A measure of the collaborative aspect of the game, this metric denotes the average
proportion of agents voting for the same target during the two execution phases. It offers a
glimpse into the consensus-building or dissension among agents, indicative of their collective
intelligence and alignment.

Baselines

We first describe the probability of the villagers’ victory in a completely random environment. This
analysis is essential, as it sets the benchmark against which we can measure and understand the
implications of our agent training under various policy settings.

Random Policy As explored in §3.1.3, the random policy scenario provides a closed-form solution
for the winning probability of werewolves, as proposed by Migdal [2010] and depicted in equation
3.1. While this formula serves as a valuable benchmark, it is important to consider that our game
setting slightly deviates from the one analyzed by Migdal [2010]. Our version begins with a werewolf
killing a villager, making the game harder for the villagers. Consequently, we use the formula’s
result as an upper bound when calculating the villagers’ chances of winning. In a nine-player
setting, equation 3.1 produces a villager’s winning probability of 6.34%. However, when empirically
estimated considering the starting conditions of our game setting, this probability adjusts to 3.12%.

Unite Policy To date, no formal studies have been pursued to inform our understanding of the
unite policy. Despite this, a statistical analysis can be conducted to verify the plausibility of later
findings. The number of werewolves, w, is directly proportional to the number of players n, as per
the equation:

w = ⌊
√
n⌋

Since the werewolves consistently agree on a target, they collectively represent w identical votes.
Conversely, the villagers distribute their v = n−w votes at random. The probability of the villagers
collecting more identical votes than the werewolves is computed as follows:

N. Brandizzi 49



5.2. Analysis and Results

Figure 5.4: Graphical depiction of the villagers’ winning probability against unite werewolves as determined
by Equation 5.1. The figure illustrates the exponential decrease in villagers’ chances of victory, emphasizing
a significant drop at n = 9, where werewolf numbers increase.

1

nw+1
= (n)−(⌊

√
n⌋+1) (5.1)

This equation provides an optimistic estimation of actual behavior, as it disregards the decreasing
number of players throughout the game. The trend for equation 5.1 is depicted in Figure 5.4. As
shown, the function plummets exponentially towards zero, starting from 0.8% chance of victory. A
discontinuity at n = 9 is present where the number of werewolves increases by one.

Revenge Policy Lastly, the revenge policy is expected to emulate the trend of the random policy
most of the time while occasionally mirroring the unite policy. Given that it depends on the villagers’
actions, its formulation is not trivial, but we expect it to be between the previous two.

Performance analysis: Nine Players

Table 5.1: RLupus: Multi-channel metrics. The first column reports the type of communication (Comm)
channel regarding the Signal Length (SL) and the Signal Range (SR). The next four show the metrics values
for villagers winning rate, suicide rare, number of days elapsed and consensus rate

Comm Win Vil Suicide Days Consensus

0SL 0.044 0.086 1.55 0.47
1SL-2SR 0.19 0.078 1.58 0.47
1SL-9SR 0.21 0.078 1.58 0.47
9SL-2SR 0.45 0.067 1.9 0.47
9SL-9SR 0.19 0.077 1.58 0.46

Table 5.1 displays the outcomes derived from various communication forms, depicted across
different rows. Each column represents a distinct result, with the settings for communication defined
in terms of signal length (SL) and signal range (SR). Our primary focus is on comparing and
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evaluating performance improvements occurring between non-communicative scenarios (SL = 0),
binary communication (SR = 2), and scenarios involving varying lengths of information exchange.

Insights derived from Table 5.1 indicate that any level of communication facilitates better out-
comes than the non-communication setting (0SL). Notably, binary communication (2SR) outper-
forms the full-ranged one (9SR), suggesting that a restricted communication range can yield better
results.

Interestingly, incorporating just a single bit of communication allows the villagers to perform
on par with a fully extended communication setting (9SL-9SR). This finding implies that an overly
expansive information space may negatively affect overall performance.

For scenarios where SR = 9, augmenting the channel length SL primarily speeds up convergence
by approximately 25% with each increment.

Contrastingly, binary communication yields consistently superior outcomes, regardless of the
channel length. This observation suggests that the two communication channel parameters (SL and
SR) do not equally contribute to the learning efficiency of the agent.

Table 5.2: RLupus: single/no channel metrics. The Design Choice part of the table shows which kind of
policy Random, Unite or Revenge has been used in relation to the communication, while the Results half
present the metric’ values

Design Choice Results
Comm Rnd Unt Rvg Vil Win Consensus Suicide Days

0SL X 0.044 0.478 0.086 1.55
0SL X 0.03 0.695 0.059 1.5
0SL X 0.12 0.482 0.078 1.64
1SL-2SR X 0.19 0.47 0.078 1.58
1SL-2SR X 0.08 0.685 0.055 1.52
1SL-2SR X 0.4 0.479 0.065 1.9

Policies comparison The impact of different werewolf policies, namely Random (Rnd), Unite
(Unt), and Revenge (Rvg), on the game’s outcome, is summarized in Table 5.2. In a no-communication
environment (0SL), both the revenge and random policies demonstrate nearly equivalent consen-
sus values, which markedly exceed that of the unite policy, in line with our initial expectations.
The unite setting is characterized by fewer game days, reflecting a quicker game conclusion. Sur-
prisingly, the revenge policy in the no-communication setting (0SL) achieved a higher success rate
(12%). Unlike the random policy, where werewolf actions are unpredictable, and the unite policy,
which depends on high coordination for overpowering villagers, the revenge policy offers a discernible
pattern. This pattern is more easily identifiable by villagers and, at the same time, lacks the over-
powering force of the unite policy. Thus, the Revenge policy provides just enough predictability for
villagers to potentially learn and adapt over time, leading to their higher win rates.

Further inspection of the three policies under binary communication (SL = 1,SR = 2) provides
interesting results:

• Random: A notable improvement is observed in the villager’s winning rate, which improves
to ≈ 20%. This is an increase of 4.5 times compared to the non-communication setting and
6.5 times the theoretical winning rate.
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• Unite: The incorporation of communication considerably enhances the level of coordination,
causing a threefold surge in the villagers’ winning rate. This outcome alone substantiates the
power of limited communication channels to substantially augment the villagers’ performance,
even under the most unfavorable conditions.

• Revenge: As with the previous policies, the revenge policy becomes easier for a trained agent
to detect in the presence of communication, leading to an impressive winning rate of 40%.

Performance analysis: Twenty-one players

In our previous examination of the nine-player game, we addressed the scenario with the minimum
required number of players, which inherently favored the werewolves. The investigation revealed
intrinsic challenges for the villagers, as the game dynamics gave a substantial edge to the werewolf
faction.

Here, we focus on the twenty-one players (21P) game. This configuration introduces a new
layer of complexity, offering more opportunities for the villagers to strategize and potentially win.
Indeed, by constructing a tabular representation of the expanded decision tree (as illustrated in Table
5.3), we see how the villagers’ winning possibilities have been significantly augmented, reaching a
probability of 11.62% in an entirely random environment.

Table 5.3: Mapping of game outcomes to probabilities. The Outcome column on the left lists the possible
results as (number of werewolves)-(number of villagers), with corresponding event probability and occurrence
frequency. The table is divided into two sections: outcomes favoring the villagers (top) and outcomes favoring
the werewolves (bottom).

Outcome Prob. % Leaves Total %

0-12 0.029 1
0-10 0.143 4
0-8 0.447 10
0-6 1.162 20
0-4 2.819 35
0-2 7.02 56

11.62

1-1 21.06 56
2-2 27.965 21
3-3 26.017 6
4-4 26.017 1

88.38

Total 1.0 210 1.0

A comprehensive comparison of various multi-channel settings is presented in Table 5.4. In
alignment with the findings from the previous section, it is observed that the bit communication
strategy (9SL − 2SR) consistently outperforms the full-ranged communication approach (∗SL −
21SR), both in terms of the winning ratio and the reduction of suicides. Conversely, the 1SL −
2SR setting performs poorly compared to the non-communication scenario. This anomaly may be
attributed to inadequate exploration of the environment, a phenomenon possibly exacerbated by
the increased complexity of the twenty-one players scenario. The expanded tree size, as detailed in
Table 5.3, introduces additional layers of complexity, thereby increasing the risk of the algorithm
becoming entrapped in local minima.
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Nevertheless, with the exception of the configuration mentioned above, every other setting
that leverages a communication channel demonstrates an improved winning rate over the no-
communication baseline. This strongly supports the notion that even minimalistic communication
aids agents in more accurately exploring and navigating the vast array of potential game branches.

Table 5.4: Comparative analysis of multi-channel settings in a 21-player game scenario. The table highlights
the superiority of the bit communication strategy (9SL-2SR) over full-ranged communication (SL-21SR) in
terms of win ratio and suicide reduction.

Comm Win Suicide Days Accord

0SL 0.42 0.072 7.84 0.56
1SL-2SR 0.25 0.075 7.74 0.57
9SL-2SR 0.98 0.04 7.3 0.56
21SL-2SR 0.94 0.05 7.6 0.56
1SL-21SR 0.72 0.062 8 0.56
21SL-21SR 0.61 0.066 7.9 0.56

In light of these observations, we discern a significant role for the structure of the communica-
tion signal in enhancing agents’ explorative abilities. This phenomenon underscores the importance
of fine-tuning communication parameters. It offers promising avenues for future research, particu-
larly in examining how specific communication shapes may be tailored to suit various contextual
requirements.

5.2.2 Linguistic Analysis

In the previous section, we discussed how the communication channel aids the villagers in coor-
dinating their efforts to win over the werewolf. This achievement is undoubtedly noteworthy and
forms the basis for our continued exploration. However, the specific content of the villagers’ com-
munications remains unclear.

Indeed, only analyzing performance is insufficient to gain an in-depth understanding of emergent
coordination in artificial settings [Lowe et al., 2019]. While Brandizzi et al. [2021] did not examine
the interpretation of the emerged language, later work by Lipinski et al. [2022] took a closer look. In
their adaptation of The Werewolf environment, Lipinski et al. [2022] introduced two additional pa-
rameters for exploration: the number of communication rounds and the voting threshold. Retaining
the parameters from the original study and implementing a grid search, they delved deeper into un-
derstanding the system dynamics. In specific game configurations, their agents showed performance
improvements beyond both the theoretical baseline and the results demonstrated by Brandizzi et al.
[2021].

During gameplay, a key observation was that villagers consistently repeated the same message
in each communication round, voting off those who did not adhere to this strategy. This tactic
echoes the principles of the Turing Test [Turing, 1950], with agents effectively distinguishing each
other without human intervention. Upon investigating the emergent language, Lipinski et al. [2022]
discovered a sparse vocabulary associated with successful strategies. Most winning agent popula-
tions used a single signal nearly 90% of the time, suggesting the development of a password-like
system rather than a complex language. This might be attributed to the high efficiency and ade-
quate performance achieved via this approach and falls in line with the literature highlighting how
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natural language does not emerge naturally in artificial contexts [Kottur et al., 2017].
Modifications to the original environment resulted in a significant impact on the convergence

speed. The convergence point was defined as the episode where agents achieved a win rate exceeding
75%, indicating a successful strategy. Both the number of communication rounds and the voting
threshold appeared to decrease the average episode count needed for convergence. Interestingly, the
number of rounds showed a statistically significant effect on win rates and convergence speed, but
the voting threshold’s impact was insignificant.

5.3 Discussion on Emergent Machine Communication

In this chapter, we deal with the first question posed in §1.2, namely, can effective communication
emerge between artificial agents when presented with adequate learning pressures?

In pursuit of an answer, we initially sought to understand the real-world pressures that drive
human interaction, as detailed in §3.1. We advanced that these pressures stem from the presence
of multiple agents and the necessity for cooperation in an environment where survival is otherwise
untenable for solitary agents. This scenario presupposes a world with finite resources in which
diverse groups or teams of agents compete for these resources. Having discerned the dual forces of
cooperation and competition at play, we pinpointed an apt environment to simulate and analyze
these dynamics.

For this purpose, we turned our attention to Social Deduction Game (SDG) as delineated in
§3.1.3. These games create natural environments fostering both cooperation and competition and
are heavily dependent on communication. Typically, the communication in these games needs to be
instructive for allies while simultaneously evading the comprehension of adversaries. Upon general
formalization of SDG, we identified our model environment as the game The Werewolf. Despite its
extensive exploration in the context of facilitating gameplay between artificial agents and humans
[Bi and Tanaka, 2016, Hirata et al., 2016, Katagami et al., 2014, Nakamura et al., 2016, Wang and
Kaneko, 2018], the potential of this game as a vehicle for studying emergent communication among
agents remained unexplored.

In §5.1, we introduced the framework developed by Brandizzi et al. [2021], establishing the
groundwork for later analysis. This framework draws heavily on prior research on RL and MARL,
setting up several experiments to test the feasibility of emergent effective communication. We cast
the communication in a numerical, vectorized format, enabling the agent to map these numerical
values to their action and observation space (see §5.1.1).

Our hypothesis was validated in §5.2, where we first examined the performance improvements
in §5.2.1, demonstrating the capacity of agents to enhance their winning rates. While these results
confirmed our initial question, they did not offer any additional insights into the nature of the
emerged language. Thankfully, a subsequent study by Lipinski et al. [2022] analyzed the emerged
communication, suggesting that it more closely resembled a strategy to identify enemies than a
manifestation of natural language properties (see §5.2.2).

5.3.1 Human-interpretability in emerged languages

Given the numerical vector character of the language that arises, the challenge of human inter-
pretability in emergent languages becomes apparent. Lipinski et al. [2022] identified that this
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emergent form of communication exhibited a lack of properties typically associated with natural
human languages. Instead, it displayed the characteristics of a coding scheme specifically engineered
to identify and exclude non-learning agents.

This communicative format might be efficient in the context of artificial agents’ interactions, but
it poses considerable barriers when considering broader applicability and integration with human
communication systems. Hence, a gap persists between the languages used by artificial agents and
those understandable to humans.

Bridging these differences is no trivial task, as it implies instilling artificial agents with an
understanding of context, subtext, ambiguity, and the vast range of human emotions and intentions
that language can convey. The problem stretches beyond the translation of numerical vectors
into human language. Instead, it requires a more profound rethinking of how artificial agents are
trained to communicate, potentially employing methods that mimic how humans learn languages.
This would entail grounding words in perceptual experiences, learning from multimodal inputs, and
understanding the use of language in social contexts.

Tackling this challenge will be our focus in the subsequent chapter, where we aim to train
artificial agents that can meaningfully interact with humans using languages that are both effective
and interpretable.
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Chapter 6

Grounding Artificial Agents in Human
Language

In the preceding Chapter 5, we demonstrated how effective communication1 can spontaneously
emerge among artificial agents under specific environmental pressures. These findings support our
hypothesis that agency can develop under the right conditions, particularly in multi-agent systems
where competition and cooperation coexist, and when reinforced by an adaptive learning paradigm
such as Reinforcement Learning (RL).

However, allowing language to emerge from interactions within artificial settings often results
in languages that are not interpretable by humans. This challenge arises because the primary
training objective in these systems is geared towards performance. Specifically, the reward signal
in RL is directed towards objectives that do not prioritize interpretability. More importantly,
we recognize that when artificial agents communicate, it is not a mere exchange of information.
Through interactive communication, they enact actions that can profoundly impact fellow agents
and the surrounding environment.

Addressing these challenges, this chapter shifts focus towards exploring an integration of su-
pervised and Reinforcement Learning. Our investigation is guided by the recent trend of Large
Language Models (LLMs) using Reinforcement Learning for alignment as discussed in Section 3.2.3.
We are interested in exploring the following research questions:

• How does teaching English to artificial agents through isolated supervised learning (without
exposure to collaborative contexts or game-solving tasks) impact their ability to work together
to solve a game? Additionally, what implications does this learning approach present regarding
agency (§3.2.2)?

• Can Reinforcement Learning Fine-Tuning (RL-FT) enhance a pre-trained LLM ’s adaptability
to generate understandable expressions and adapt to other agents? How does RL modify the
LLM ’s parameters?

To address these questions, we engage with the problem formulation delineated in Section 4.2.
Initially, in Section 6.1, we focus our attention towards a speaker model, optimizing solely the
communication policy, denoted as πC (see §4.2.2), in a typical NLP fashion utilizing exclusively

1Language designed to influence the environment and other agents.
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supervised learning. This model, referred to as the General Speaker (G-Speak), demonstrates
adequate efficacy on the Image Captioning task and exhibits performance metrics above random
levels on the Referential Game (Ref Game) when paired with a listener.

Next, in Section 6.2, we shift our focus to the Asymmetric Referential Game (A-Ref Game). In
this context, we observe a notable decrease in performance compared to the standard Ref Game.
To address this challenge, we propose using Reinforcement Learning Fine-Tuning as a strategic
countermeasure, enabling the speaker to adapt to a domain-specific listener. Interestingly, while
the adaptation seems successful, reflected through performance metrics, a deeper qualitative analysis
unveils a word distribution that has collapsed around a select few keywords that evoke the desired
listener behavior. We correlate these observations with the well-documented issue of Language Drift
in Emergent Communication (§2.2.2), along with the misalignment problem, discussed in Section
3.2.1.

6.1 Single-Agent Training for Collective Gameplay

This section details our experimental framework, distinctly modeled as a Referential Game, which
sees two artificial agents (a speaker and a listener) within a visual environment encompassing mul-
tiple images, denoted as vctx. The game revolves around the speaker generating a communication
signal, symbolized as cs, with the intention of referring to a particular image, tagged as the target
t̂. Subsequently, the listener tries to identify the target image, solely guided by the provided signal,
also referred to as the Referring Expression (RefEx).

The following sections will navigate through the components of our research. Initially, the
dataset for our experiments will be introduced (§6.1.1). Following that, we discuss the models,
specifically exploring the architectures employed for the listener and speaker (§6.1.3). Ultimately,
we present the results of our analysis in §6.1.4.

6.1.1 PhotoBook Dataset

The visual context and captions in the Ref Game are taken from the PhotoBook dataset [Haber
et al., 2019]. The dataset is based on a conversational game where two participants collaborate online
through multiple rounds to identify images. In each round, they view a grid displaying six images.
These images, derived from the MS COCO Dataset [Lin et al., 2014b], depict everyday scenes.
Each participant’s display has common images visible to both, as well as different images unique to
each. Three images on every page are emphasized, marking them as target images. The objective
is for participants to communicate using chat, aiming to classify these highlighted images as either
common or different based on shared knowledge. Over five rounds, some images reappear, requiring
participants to reference them repeatedly. The PhotoBook dataset captures interesting dialogue
dynamics, as it contains multiple descriptions for each target image. This makes it a resource for
studying cooperative behavior, especially in the context of collaborative Referring Expression and
their alignment with conversational common ground.

We employ a version of the PhotoBook dataset curated by Takmaz et al. [2020]. This dataset
comprises 41, 340 RefExs, each paired with the intended target image and five additional images
that serve as the visual context.
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6.1.2 Framework Specification

Before describing the models and their training regimes, as well as how they interact with each
other, we need to ground the game in the formalization detailed in §4.2.

Action sets

As detailed in §4.1, the action set, denoted as A, comprises two distinct components: (i) a finite
set of potential game actions, G, each element within this set is represented by g; (ii) a collection
of unidirectional communication actions, Ci,j(b), crafted to relay information b ∈ B between two
participating players.

Considering the referential context of our setup, game actions correspond to the image indices
showcased in each round. Specifically, with six images displayed, G encompasses indices from 0 to
5, i.e., G = {0, 1, 2, 3, 4, 5}. When a player executes an action g that belongs to G, it signifies the
listener’s selection of one image from the available pool.

Contrastingly, the nature of the communication actions, Ci,j(b), is more intricate. To begin
with, and as highlighted in equation 4.6, such unidirectional actions exclusively proceed from the
speaker toward the listener. Furthermore, the collection of feasible signals, B, arises from the
interplay between the dataset’s vocabulary size2 (SR), which stands at 6,038, and the upper limit
for message length (SL), set at 30. Taking into account that word repetitions are allowed, the total
possibilities can be expressed as:

|B| = SRSL = 6, 03830 = 2.67e+113

This vastness underscores the importance of equipping the speaker with the capability to craft
precise communication signals, also known as Referring Expressions, to describe the target image
appropriately.

Observation Set

Referencing §4.1, the observation set, denoted as O, comprises three distinct components: (i) E

which captures the game’s current status for each player; (ii) Γ that embodies an agent’s internal
states, such as beliefs that remain unobservable to their counterparts; and (iii) V , indicating the
environmental states shared across all agents, unaffected by individual agent states.

Let’s begin with V as it is relatively straightforward. The set V represents the six images
presented to the listener. Formally, V = {v1, v2, . . . , vn}, where each vi is defined as:

vi = {img1, img2, img3, img4, img5, img6}

constituting a subset of 6 distinct images. These images are randomly selected from a larger pool
containing 324 unique images. Given the significance of image positioning and the restriction against
repetitions, the number of potential combinations for V is given by:

|V | = n =

(
324

5

)
= 3.46e+12

2This refers to the number of unique words within the dataset.
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Turning our attention to the remaining components of the observation space, we first detail the
significance of the Referring Expression produced by the speaker and subsequently relayed to the
listener. Given that the RefEx (cs) is an intrinsic attribute of the speaker, it naturally falls within
the set E. Notably, the cardinality of this component aligns with that of the communication set B.

Conversely, Γ encompasses the listener’s belief state upon being introduced to the image pool.
Stemming from Assumption 2-GSF , we can formalize the relationship between Γ and E as:

Γ ⊆ E =⇒ E = Γ ∪B

It is evident that Γ is a subset of E.

6.1.3 Model Desing for Multimodal Interaction

Engaging two agents, a speaker and a listener, the Ref Game necessitates collaborative communica-
tion to be successfully solved. Despite sharing a common objective, the agents occupy distinct roles
that diverge in complexity and function. While both process multimodal input, the listener, only
interpreting signals, requires a simpler design. In contrast, the speaker must generate descriptive
captions, necessitating a more sophisticated architecture.

For the speaker, we employed LSTMs with sampling techniques, a decision aligned with method-
ologies established by Takmaz et al. [2020]. This alignment allows us to directly compare our results
against established baselines and evaluate the incremental improvements of our approach. The
choice of LSTMs was also driven by practical resource considerations, detailed in §8.2.1. Given
the high computational demands of transformer models, LSTMs offered a more viable solution,
balancing efficiency and effectiveness even with limited training data, where transformers may not
reach their full potential without extensive resources. Thus, both the speaker and listener models,
designed to process complex multimodal data, reflect a strategic compromise that ensures resource
efficiency, aligns with prior research for comparative analysis, and maintains robust model perfor-
mance across diverse inputs from visual and textual domains.

Image Encoding via ResNet-152

In an effort to maintain a linguistic-centric focus, we leverage ResNet-152 for image encoding [He
et al., 2016b]. Ensuring all agents access identical features extracted through the same network
establishes a consistent visual baseline across interactions. This eliminates the need for agents to
learn feature representations independently, thereby accelerating training and mitigating potential
inconsistencies in visual comprehension that could impact the experimental outcomes.

Listener Architecture

The listener model, Figure 6.1, is derived from Takmaz et al. [2020] and acts as a discriminator.
It starts by processing two primary types of input: word embeddings and visual context (vctx).
The word embeddings, representative of RefExs (b̂), first undergo a dropout layer [Srivastava et al.,
2014] for regularization and are then transformed by a linear layer activated by a Leaky-ReLU
function [Xu et al., 2015], followed by normalization (Linguistic Processing). Separately, the visual
context, which encapsulates concatenated representations of six images, is similarly processed and
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Figure 6.1: Architecture of the Listener Model, illustrating the processing pipeline from word embeddings
and visual context to the final decision space.

standardized (Visual Processing). The individual representations of these images are also separately
transformed and standardized (Image Processing). As the next phase begins, the word embeddings
are integrated with the processed visual context. This joint representation is subjected to another
linear transformation, activated by a ReLU function (Concatenation). An attention mechanism
is then applied to these vectors, deriving an attention-weighted multimodal context vector. In the
final step, this model aligns this context vector against the transformed representations of individual
images via a dot product to identify the image most resonant with the RefEx and output a prediction
(gl).

Functionally, the listener model accepts a Referring Expression alongside a set of images and
renders a decision regarding those images. The objective is to discern the image that aligns best
with the provided caption. The formal representation is:

Listener(b̂, vctx)→ gl : B × V → G

where b represents the RefEx associated with the target, vctx is the set of images, and G is the
decision space.

Training Regime and Results The training objective is to minimize the Cross Entropy (CE)
loss between the chosen image and the target, and the optimization process is carried out with
the Adam optimizer [Kingma and Ba, 2015]. Model performance is assessed based on resolution
accuracy and Mean Reciprocal Rank (MRR) on the validation set, and the optimal model is selected
accordingly. The listener was trained for ten epochs with batch size 64, a learning rate of 0.0001,
and a dropout between layers set to 0.2. The results show a correct comprehension of the correlation
between captions and dataset with an accuracy of 82.26% and MRR of 88.87%.

Speaker Architecture

The speaker model, shown in Figure 6.2, serves as a visually conditioned language model, designed
to produce a RefEx (cs) that aptly describes a target image (t̂) within a provided visual context
(vctx). It embodies a typical captioning model but is specialized for the context of the study, drawing
inspiration from the work of Takmaz et al. [2020].
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Figure 6.2: Architecture of the Visually Conditioned Speaker Model: From Visual Encoding to Referring
Expression Generation

The foundation of the speaker is its encoder-decoder architecture, with the visual encoder pro-
cessing and representing visual data. In the initial stages, two primary inputs are processed: the
standardized target image vector and the concatenation of all six images in the full visual context
(including the target image and five distractors). These are passed through a linear layer, followed
by ReLU activation (Visual & Target Processing). Subsequently, the representations from the tar-
get image are concatenated with those from the visual context. To obtain the final visual context,
another linear transformation augmented with ReLU non-linearity is applied.

The visual context serves as the initialization point for a bidirectional LSTM encoder. Depending
on the dialogue, the encoder either takes in a previous RefEx related to the target image or a special
token, which signifies the absence of any preceding Referring Expression. Upon processing, the final
forward and backward hidden states from the encoder are concatenated and further transformed
using a linear layer, complemented by a Hyperbolic Tangent Function (Tanh) non-linearity (Hidden
Layer Processing).

This transformed output from the LSTM encoder sets the stage for the LSTM decoder by
becoming its initial hidden state, denoted as h0. Using nucleus sampling [Holtzman et al., 2020],
with a top-p value of 0.9, the decoder then generates a RefEx. This process also involves the decoder
paying attention to the encoder output at each step of the generation (Attention Mechanism),
ensuring the coherence and relevance of the generated content.

Formally, the speaker represents a specific instance of the communication policy πC , as defined
in equation 4.9:

Speaker(vctx)→ cs : V → C

Here, only the communication subset is considered instead of the full observation set O.

Training Regime and Results The speaker model is trained from scratch, intentionally avoiding
the use of pretrained embeddings to retain complete control over the model’s knowledge. During
each training instance, the speaker model is presented with a set of six images. Leveraging its
architecture, the model’s task is to generate an apt caption for the target image. The training uses
the CE Loss function between the model’s generation and the reference RefEx from the dataset.
To achieve this, we employ teacher forcing [Lamb et al., 2016], feeding the true caption values
back into the LSTM at every stage. As for the listener, we utilize the Adam optimizer [Kingma
and Ba, 2015]. To evaluate the model’s efficiency, we assess it against multiple Natural Language
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge
40.06± 1.60 23.81± 1.51 14.09± 1.20 8.46± 0.89 32.92± 0.93

CIDEr BertScore R BertScore F1 BertScore P
44.07± 1.68 58.91± 0.19 57.7± 0.12 57.9± 0.16

Table 6.1: Performance metrics of the speaker model on the test set. The table presents average values
and standard deviations from four separate test runs, evaluating the model across various NLP metrics.

Processing metrics on the validation set, including BLEU [Papineni et al., 2002], ROUGE [Lin, 2004],
CIDEr [Vedantam et al., 2015], and BERTScore [Zhang et al., 2020b]. The model selection is based
on a composite score calculated as the average of these metrics for each model, ensuring a balanced
consideration of all aspects of linguistic quality. We selected the model with the highest composite
score, which represents the best average performance across all metrics, for final implementation.
After identifying the best-performing model, its weights are frozen, ensuring that this model becomes
the standard language generator for all subsequent experiments. The performance of the speaker
model on the test set is documented in Table 6.1. This table presents both the average values and
their corresponding standard deviations from four separate runs on the test dataset.

Compared to classic natural language generation metrics, the speaker showcases adequate per-
formance and are in line with those reported by Takmaz et al. [2020] using their ’Ref’ model, which
we use as our baseline reference.

6.1.4 Evaluating Linguistic and Strategic Outcomes in Referential Gameplay

The analysis presented in this section focuses on two areas: performance metrics, with a spotlight
on accuracy, and a linguistic investigation of the Referring Expressions crafted by the speaker. This
analysis is framed within the context of the cooperative game between the pretrained speaker and
listener. Results are derived from an average of five Ref Games, each initiated with different seed
values, ensuring robustness and reliability.

Performance Analysis

The accuracy is not only an indicator of correct answers but also reveals distinctions regarding the
agents’ capability to align their independent learnings to solve the game cooperatively.

In a game where the speaker and listener play together, the average accuracy is 50.37% ± 0.5.
This significantly outperforms the random baseline of 16%, remarking the agents’ capacity to solve
the game despite being devoid of specific cooperative training. Their success is rooted in their
ability to converge upon similar representations independently. To further analyze the quality of
the RefExs, a game scenario where the speaker utters random words is explored. In this setup,
the accuracy decreased to 18.8% ± 0.4, proximate to random chance, showing the importance of
sense-full RefExs.

Linguistic Analysis

We derive insights from conventional linguistic metrics, focusing on the Type-Token Ratio (TTR)
and Part of Speech (PoS) analysis, which respectively offer an understanding of the diversity and
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Figure 6.3: Shifting distributions in unigram Part of Speech between the test split of the dataset (blue)
and speaker-generated Referring Expressions (red).

variational aspects of employed vocabulary and an analysis of individual words through their gram-
matical roles, such as nouns, verbs, and determiners.

Type-Token Ratio The TTR offers a glimpse into vocabulary diversity. The analysis here
pertains to the language generated by the speaker on the test subset of the Photobook dataset.
Initially, we analyze this subset’s TTR, showing a value of 4.48%, suggesting that participants in
the dataset creation generally adhered to a limited array of unique tokens. Interestingly, our speaker
exhibits a lower value: 2.9% ± 0.02, indicative of a tendency towards approximate language use.
This potentially underscores a strategy of the speaker to sidestep outlier captions during learning,
skewing towards median responses.

Unigram Part of Speech Tagging Figure 6.3 presents the PoS distributions for both the test
subset of the Photobook dataset and the speaker-generated RefEx. Notably, most of the PoS
elements exhibit minimal differences, with a few exceptions. Specifically, there is an increase in
determiner usage3 (by 11.1%) and a marked reduction in both proper noun4 and adverb5 usage,
decreased by 13.43% and 17.62% respectively. These linguistic shifts hint towards a generalized,
less specified language strategy, approximating the authentic word distribution within the dataset.

6.1.5 Discussion on Static Agent Communication

Investigating supervised language models’ linguistic and cooperative capacities confirms how agents
can learn human language in line with state-of-the-art methods. However, our findings extend
this knowledge, illustrating that this learning enables two artificial agents to communicate and

3A determiner refers to a word that references a noun or noun phrase, e.g., they, this, my, many.
4A proper noun signifies a noun that denotes a singular entity and is utilized to refer to that specific entity.
5An adverb broadly modifies a verb, typically conveying a level of certainty, and answers questions like how,

when, where, and to what extent.
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navigate a Referential Game with above-random accuracy. This ability stems from the agents’
independent yet paralleled approximation of the visual and textual domains, fostering a shared
language understanding and enabling collaborative problem-solving within the gameplay.

Several issues emerge from our linguistic analysis, notably the speaker’s tendency towards a
generalized language use that sidesteps linguistic outliers, potentially sacrificing communicative
richness. Moreover, the speaker exhibits a lack of agency. The communication actions, devoid of
inherent strategy, only adhere to the problem’s formulation, with the speaker maintaining a static
word distribution, unaware of its collaborative role in informing another agent.

6.2 Enhancing Communication via Reinforcement Learning Fine-
Tuning

Our earlier discussion focused on the abilities of artificial agents to learn a human language. Specifi-
cally, utilizing English to solve a Referential Game through means of supervised learning only. Here,
we address identified limitations, particularly focusing on the speaker’s evident lack of agency and
strategic communication. This section thus explores the potential of Reinforcement Learning to
facilitate the speaker’s adaptation to an agent, examining how this could improve communicative
effectiveness and strategy.

In the preceding experiment, we utilized images from the PhotoBook Dataset (see §6.1.1) without
differentiating among them based on their content or context. The following experiment, however,
introduces the concept of domains within which each image resides based on the depicted content.
This distinction allows us to explore knowledge asymmetry by training the speaker on the whole
dataset, while domain-specific images are used for training the listener. Under this setup, our
hypothesis posits that to achieve effective communication; the speaker must synchronize its RefExs
with the listener’s more specific understanding. We seek to facilitate this synchronization by fine-
tuning the speaker through RL while maintaining the listener’s model parameters unchanged during
experimentation. In this context, we refer to the fine-tuned speaker as Reinforcement Learning Fine-
Tuning Speaker (RL-Speak), while the speaker from §6.1 will be referred as the General Speaker
(G-Speak).

The subsequent sections will dissect our approach and findings as follows:

• Section 6.2.1 presents the introduction of asymmetry in the Referential Game.

• Section 6.2.2 describes the architectural and experimental modifications necessary for the
asymmetric framework to take place.

• In Section 6.2.3, we explore how Reinforcement Learning Fine-Tuning improves performance
but leads to a simplification of RefEx to single words.

6.2.1 Exploring Knowledge Asymmetry and Mitigation Strategies

To investigate adaptability in the context of language modeling, modifications to our Referential
Game are necessary. Knowledge asymmetry is introduced by partitioning the PhotoBook dataset
into five distinct domains and subsequently training a listener specific to each domain. While the
General Speaker is uniformly trained on the entire dataset and thereby frozen, the domain specificity
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Domain Prop N |V | Images Specific Overlap

Appliances 9.4% 4,310 1,271 36 29.5% 23.2% (Ind)
Food 12.4% 5,682 1,646 36 43.3% 22.9% (App)

Indoor 26.4% 12,088 2,477 96 44.3% 26.0% (Out)
Outdoor 35.9% 16,427 2,858 108 47.0% 26.2% (Veh)
Vehicles 15.8% 7,234 1,738 48 36.0% 26.2% (Out)

All 100% 45,741 6,038 324 - -

Table 6.2: Characteristics of domain-focused datasets: Total utterances count (N), proportion within
the full dataset (Prop), size of vocabulary (|V |), count of distinctive images (Images), fraction of domain-
exclusive vocabulary (Specific), and the highest lexical commonality with a different domain (Overlap). The
most significant overlap exists between outdoor and vehicles, with shared terms like ‘left’, ‘black’, ‘driving’,
and ‘glasses’.

of the listener accentuates challenges in comprehending the G-Speak, thus necessitating strategic
adaptation.

Constructing a Domain-Specific PhotoBook Dataset

As mentioned in Section 6.1.1, the PhotoBook Dataset, encompassing over 41,000 unique Referring
Expressions, utilizes images sourced from COCO dataset [Lin et al., 2014a]. The latter spans
across 30 distinctive visual domains. In an effort to explore speaker adaptation across varied
semantic contexts, the PhotoBook dataset’s Referring Expressions is categorized according to their
corresponding visual domain. The domains are grouped based on the similarity of their vocabulary
vectors, derived from word frequency counts within expressions from that domain. This approach
results in five broad categories: appliances, food, indoor, outdoor, and vehicles. Each category was
chosen to ensure minimal vocabulary overlap, as in Table 6.2. Subsequently, the RefExs and their
visual context are extracted for every visual domain cluster. These are then partitioned into training
(70%), validation (15%), and test datasets (15%).

Asymmetric Referential Game

In this setup, the G-Speak model possesses greater domain knowledge than the listener. This
intentional disparity enables us to investigate adaptation. To facilitate this, we train six distinct
listeners for each of the domain splits (appliances, food, indoor, outdoor, vehicles, and all-domains).
Conversely, the G-Speak is trained across all these domains, thus being well-versed in each one.
This setup ensures that only the relevant listener can comprehend the speaker’s RefEx depending
on the prevailing image domain. An illustrative example is provided in Figure 6.4. Here, when
the domain of food is the visual context and the G-Speak generates the caption "green salad", all
listeners except the one trained specifically on the food domain (i.e., the food-listener) get confused,
leading to erroneous predictions.

Asymmetric Accuracy Before discussing the effect of asymmetry on the listeners’ results, we
introduce two metrics that arise from the asymmetric nature of the A-Ref Game game:

• IN-Domain (IND) Accuracy: This metric measures the accuracy achieved on the test set
corresponding to the domain the listener was trained on, e.g., a listener trained on the food
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Green Salad
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Figure 6.4: Illustration of Asymmetric Referential Game: While the speaker’s caption "green salad" is
clear in the context of the food domain, it confuses listeners trained in other domains.

Domain Epoch IND OOD
Accuracy MRR Accuracy MRR

Appliances 23 84.12± 0.33 90.27± 0.10 20.28± 0.23 44.07± 0.11
Food 21 85.40± 0.28 91.20± 0.20 17.72± 0.18 42.42± 0.06
Indoor 14 82.94± 0.13 89.32± 0.09 19.14± 0.09 43.46± 0.06
Outdoor 19 83.96± 0.23 90.01± 0.14 19.64± 0.07 43.52± 0.06
Vehicles 17 78.99± 0.35 86.81± 0.14 18.46± 0.28 42.36± 0.20

Average 18.8 83.08± 0.26 89.52± 0.13 19.05± 0.17 43.16± 0.09

Table 6.3: Performance metrics of listeners on training utterances. The table shows Accuracy and Mean
Reciprocal Rank (MRR) values for both IN-Domain (IND) and Out Of Distribution (OOD) samples, corre-
sponding to listeners trained within designated domains (highlighted in the ‘Domain’ column).

domain (food -listener) evaluated on food data samples.

• Out Of Distribution (OOD) Accuracy: This metric evaluates the accuracy on domains the
listener has not been previously introduced. An example would be assessing the accuracy of
images from the vehicles domain for a listener solely trained on the food domain.

Listeners Performance

To show the effects of the Asymmetric Referential Game on the game outcome, we report the
listeners’ accuracy in Table 6.3.

Clearly, our listener models exhibit domain specificity. Indeed, the average IND accuracy stands
at 83.08% ± 0.26. In contrast, the OOD accuracy is averaged at 19.05% ± 0.17, marginally higher
than a random baseline of 16%. The table also indicates the epoch at which training concluded due
to convergence, with an average epoch of 18.8.
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Listener
domain

Data domain
appliances food indoor outdoor vehicles

appliances 57.61± 1.38 20.10± 0.63 19.92± 0.47 21.27± 0.83 15.98± 0.82
food 19.11± 1.70 54.29± 1.06 18.60± 0.84 18.85± 0.49 18.85± 0.49
indoor 22.71± 1.30 19.65± 1.77 53.62± 0.79 20.82± 1.05 16.77± 0.79
outdoor 15.08± 1.04 21.46± 0.70 19.62± 0.69 52.93± 1.11 17.69± 0.97
vehicles 16.36± 1.55 16.17± 0.81 17.41± 0.64 20.13± 0.59 43.08± 1.16

Table 6.4: Evaluation of listeners based on speaker-produced data. Every row represents a unique listener
trained within a particular domain, with columns indicating the assessment domain. Entries within the table
represent the mean values across five seeds, where listeners of a particular domain are evaluated.

Furthermore, as we aim to discuss later the interplay between the RL-Speak and listener, it
is essential to analyze the listener’s performance on RefExs not derived from the training data.
Instead, we focus on RefExs generated by the G-Speak, represented as cs. To this end, Table
6.4 outlines the listener accuracies on G-Speak inputs. Notably, in IND scenarios, we observe
diminished scores relative to the usage of the training data (83.08% vs. 51.7%), on average a loss of
31% accuracy. This discrepancy is likely due to the different word distribution between the training
data and the G-Speak ’s generated RefExs. Contrarily, the OOD accuracy stays roughly the same
(19.05% vs 18.82%).

6.2.2 Experimental Setup

Given the drop in performances reported previously, this section details the experimental settings
and strategies used to mitigate these challenges. We first explore the issue of handling out-of-
distribution words in listener embeddings and introduce a masking strategy to manage this. Subse-
quently, we provide a comprehensive breakdown of our Reinforcement Learning Fine-Tuning strat-
egy, detailing the construction of the loss function and the fine-tuning process for the RL-Speak
model.

Mitigating Out-of-Distribution Words via Masking

All listeners begin with an identical vocabulary that encompasses every word from the training data.
However, certain words are unique to specific domains and are not learned by listeners outside those
domains, as outlined in Table 6.2, which details vocabulary overlaps. This means that while these
unique words exist in the vocabulary of every listener, their embeddings are randomly initialized in
domains where they do not appear and, consequently, are not updated. This situation was observed
to impact the performance of our listener adversely. Specifically, when the G-Speak generates
RefExs for a specific domain, these words can mislead the listener with their random embeddings.

To address this issue, we set these words to the unk (unknown) token upon completing the
listener’s training. This decision was motivated by the idea that it would familiarize the listener
with the notion of unknown words. It should be noted, however, that our methodology does not
truncate the training set vocabulary based on frequency, which means listeners are not exposed
to unknowns during training. To ensure consistency, the unk token is initialized in the same way
across all domains when a uniform seed is used. Thus, all domain-specific listeners are effectively
masked with an identical vector.
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Fine-tuning Strategy

Given the discrete nature of the decoding process in the speaker model, traditional end-to-end
backpropagation is not feasible for optimizing the speaker’s output (for a detailed discussion, see
§3.3.3). To circumvent this limitation, our approach draws inspiration from recent advancements
in the field [Dessì et al., 2023]. We employ the REINFORCE algorithm [Williams, 1992], combined
with a custom reward function built around the RL-Speak ’s decoded logits.

Our reward function (R) integrates multiple loss components designed to optimize various as-
pects of the model’s performance:

R(ht, gl, t̂, cs, vctx) = απCL
πC + αPlst

LPlst + αSL
S + αKLL

KL

The following paragraphs offer detailed formulations and interpretations of these individual loss
components.

Policy Loss In our framework, the policy loss LπC is a measure of how well the communication
policy performs in generating the RL-Speak ’s Referring Expression (RefEx), denoted as cs. This
loss is calculated by evaluating the logarithm of the softmax probabilities of the decoded logits,
referred to as ht, corresponding to the actual indexes of the chosen words (hcst ):

LπC =
1

length

SL∑
j=1

maskj

[
log

(
exp(hcs,jt )∑B
i=1 exp(h

i,j
t )

)]

To focus the loss computation only on meaningful parts of the sequence (RefEx), we employ a
binary mask (maskj), which is set to one if the label for the j-th words in the RefEx is non-zero,
otherwise zero. This serves to effectively ignore the irrelevant portions of the sequence in the loss
computation.

maskj =

1, if cs, j ̸= 0

0, otherwise

We also normalize the sum of the masked log probabilities by an effective sequence length
(length). This length is the sum of the binary mask values but is adjusted to be at least one to
prevent division by zero.

length = max

1,

SL∑
j=1

maskj


Thus, LπC essentially captures the average log probability of the actual RefExs under the model’s

current communication cs, filtered and normalized by the aforementioned terms.

Listener Loss The listener loss LPlst is meant to optimize the listener’s accuracy in the Referential
Game6. By doing so, this loss steers the RL-Speak model in the direction of generating RefExs
that are more effectively interpreted by the pretrained listener. Specifically, the RL-Speak aims

6In our framework LPlst does not directly optimize the listener model, which remains frozen during this phase.

N. Brandizzi 68



6.2. Enhancing Communication via Reinforcement Learning Fine-Tuning

to produce RefExs that facilitate accurate and confident identification of the true target t̂ by the
listener within the given visual context vctx.

Formally, the listener loss is defined as:

LPlst = −
|G|∑
i=1

t̂i log

(
exp(gil)∑|G|
j=1 exp(g

j
l )

)

In this equation, gl = Listener(cs, vctx) represents the listener’s output, a vector in G, which
is the set of all possible game-related actions. The model generates this output when given an
utterance cs and visual context vctx.

The term t̂ is a one-hot encoded vector, where each element corresponds to a possible action in
G. The element corresponding to the true action is set to 1, and all other elements are set to 0.

Thus, minimizing LPlst essentially steers the RL-Speak model to generate utterances that not
only make the listener more accurate but also more confident in picking the true target t̂ from the
set G.

Entropy Loss An entropy regularization term is included in the objective function to encourage
exploration in the action space [Mnih et al., 2016, Williams and Peng, 1991]. By favoring higher
entropy, this term discourages the RL-Speak model from prematurely converging to a sub-optimal
communication policy.

The entropy loss can be formally defined as follows:

LS = − 1

|B|

|B|∑
i=1

[
exp(hit)× log

(
exp(hit)

)]
The entropy is calculated for the categorical distribution defined by ht, and the mean of this

entropy across all possible RefEx is taken as the entropy loss LS .

Kullback–Leibler Loss The Kullback-Leibler Divergence (KL-Divergence) [Kullback and Leibler,
1951] loss is employed to ensure that the distribution of the RL-Speak model’s Referring Expression
does not deviate excessively from an original, reference distribution [Chaabouni et al., 2022]. This
is useful for constraining the model to stay within a predefined "good" behavior while allowing for
improvements.

The KL loss can be mathematically defined as:

LKL =
1

|B|

|B|∑
i=1

(
log

(
exp(hit)

exp(horiginal,i
t )

))
× exp(horiginal,i

t )

Here, ht represents the decoder’s output by the current iteration of the RL-Speak model, while
horiginal
t is the decoder’s output obtained from the G-Speak, both vectors in B.

Training Details

Building on the outlined Reinforcement Learning Fine-Tuning strategy, we report the specificities
of the training process that yielded the results explored in the following section. The RL-Speak
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Methodology Data domain
appliances food indoor outdoor vehicles

Train Data 17.25 85.28 18.80 18.65 16.77
G-Speak 19.11 54.29 18.60 18.85 18.85
RL-Speak 41.83 79.08 35.29 34.64 32.03

Table 6.5: Evaluation of food-listeners based on different methodologies. The first row reports the accuracy
on training set, the second is for the General Speaker (G-Speak) (Table 6.4) and finally the third row shows
results for the Reinforcement Learning Fine-Tuning Speaker (RL-Speak).

model was trained for 300 epochs7 with AdamW optimizer [Loshchilov and Hutter, 2019] and a
learning rate of 0.0001. The Cosine Annealing improved the optimization with the Warm Restarts
scheduling strategy [Loshchilov and Hutter, 2017], which incrementally amplified the learning rate
by a magnitude of 2. Regarding the reward weights, we use 0.1 for αS , 0.001 for αKL

8, and values
of 1.0 for both απC and αPlst

.

6.2.3 Analysis

This section presents the results derived from the interaction between a specific listener within the
food domain and the RL-Speak tailored for it. The choice to analyze the behavior within just one
domain stems from the computationally intensive nature of the Reinforcement Learning Fine-Tuning
process required for the speaker. It is important to note that fine-tuning Large Language Models
generally has substantial environmental implications, often leading to increased carbon footprints
and energy consumption [Rillig et al., 2023].

Quantitative Analysis

Here, we focus on the interaction between a food-listener and the Reinforcement Learning Fine-
Tuning Speaker. We investigate how this fine-tuning technique modifies language distributions,
examining metrics like the Type-Token Ratio and unigram Part of Speech (PoS). We also explore
the probability distribution dynamics of the encoder and decoder during training. Finally, we
present outcomes from the interaction of the RL-Speak with listeners from other domains, assessing
the method’s generality.

Referential game accuracy Table 6.5 offers a comparative listener performance analysis under
three conditions: training dataset, Asymmetric Referential Game with a G-Speak, and a RL-Speak.
Remarkably, the listener performs better with captions from the RL-Speak than G-Speak. Specif-
ically, the Out Of Distribution accuracy jumps to 35.77%, contrasted with 19.05% from training
data and 18.82% with the G-Speak. Additionally, the IN-Domain (IND) accuracy sees a rise of
24.79% (54.29% to 79.08%), though it is still 6.2% below training accuracy.

Linguistic Analysis Contrary to the findings in §6.1.4, Reinforcement Learning Fine-Tuning
enhances the type ratio value. The increase is by two percentage points compared to the G-Speak,

7Each epoch consists of 256 episodes with a batch size of 32.
8Throughout our experiments, we discovered that increasing the αKL value inhibited variation to the speaker’s

weights, even after an extensive training time.
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Figure 6.5: Distributional shifts in unigram Part of Speech between dataset test split (blue), General
Speaker (red) and General Speaker (yellow).

settling at 5.54% against 2.9%. This signifies a token diversity boost of 65.63%. Interestingly, the
TTR surpasses the test set value (4.48%). This metric assesses vocabulary diversity but also depends
on the Referring Expression length. As we will see, Reinforcement Learning Fine-Tuning tends to
produce shorter RefExs, potentially skewing the metric and creating misleading interpretations.

Furthermore, Figure 6.5 displays the shifts in unigram PoS distribution. Some variations merit
attention. For instance, there’s a notable rise in proper noun usage (1.94% to 18.76%) and significant
drops in determiners (14.53% to 0.20%), coordinating conjunctions (2.57% to 0.14%), and pronouns
(7.26% to 0.78%). These patterns suggest a RL-Speak strategy emphasizing keywords to elicit
specific listener responses, potentially compromising grammatical accuracy.
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Figure 6.6: Probability distribution of tokens in logarithmic space: (a) Decoder and (b) Encoder, illustrat-
ing the effects of Reinforcement Learning Fine-Tuning throughout training.

Effect of RL on language distribution To further explore the impacts of RL-FT on linguistic
distribution, Figure 6.6 reports the probability distribution of tokens (expressed in logarithmic
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Listener
domain

Data domain
appliances food indoor outdoor vehicles

appliances 27.46± 0.32 19.74± 0.16 21.39± 0.11 18.28± 0.64 20.11± 0.26
food 41.83± 5.99 79.08± 2.26 35.29± 8.98 34.64± 2.99 32.03± 4.52
indoor 19.21± 1.28 16.53± 1.23 37.85± 0.11 19.50± 0.13 19.88± 0.58
outdoor 19.36± 0.21 21.73± 1.48 24.32± 0.65 29.79± 0.50 19.51± 0.32
vehicles 15.96± 0.32 17.17± 0.49 20.82± 0.38 22.08± 0.11 31.09± 0.45

Table 6.6: Comparison of listener performances when paired with a RL-finetuned speaker on domain food.
The table reports average accuracies and standard deviatoins, emphasizing the versatility and adaptability
of the finetuned speaker despite its domain-specific training.

space) for both the decoder (6.6a) and the encoder (6.6b) throughout the training process. Notably, a
discernible difference is observed in the decoder’s probability distribution. Initially, the distribution
has a mean of µ1 = −12.90 and a standard deviation of σ1 = 1.61. Upon conclusion, these values
transitioned to a mean of µ2 = −9.52 and a standard deviation of σ2 = 0.18. This transformation
reflects a differential of ∆µ = 26.20% and ∆σ = 88.81%, coupled with a notable Cohen’s distance
of 2.93. The reduced mean and standard deviation are coherent with what has been seen so far,
i.e., a raised focus on particular words that become increasingly more probable while diversity in
the vocabulary decreases.

In contrast, the encoder’s distribution parameters remain relatively stable. Before training the
distribution is defined by µ1 = −9.12 and σ1 = 0.56. At termination, these metrics slightly adjusted
to µ2 = −9.09 and σ2 = 0.53 respectively. This marginal shift, characterized by a difference of
∆µ = 0.32% and ∆σ = 5.35%, registers a small Cohen’s distance of 0.05. Such stability suggests
that fine-tuning does not drastically alter the encoder’s distribution. This behavior aligns with
theoretical expectations, given that the policy loss, LπC , directly influences the decoder output
while only marginally affecting the encoder9.

Assessment with Alternative Listeners In an effort to evaluate the versatility of the RL-
Speak, we tested it in conjunction with several domain-specific listeners, with the results detailed
in Table 6.6. An examination reveals that, on average, these listeners performed slightly better
with the RL-Speak (28.80% ± 1.86) in comparison to their performance with a non-fine-tuned
counterpart (25.52% ± 0.95)10. Specifically, the Out Of Distribution accuracy saw an increase
(18.82%±0.91 to 22.88%±0.48), whereas the IN-Domain accuracy registered a decline (51.07%±1.10
to 31.54%± 0.34).

This observation is particularly interesting, considering the speaker’s fine-tuning was conducted
with a food domain-specific listener. Despite this specificity, the RL-Speak demonstrated adeptness
in generating better referential expressions for diverse listeners. However, as reported in the next
section on qualitative analysis, this approach culminates in a linguistic distribution that not only
deviates from the original but also diminishes its interpretability from a human perspective.
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Gold: I have two trucks (looks like fire
trucks) in a field

Speaker: Two man sitting in a train, one
is wearing a suit

RL-Finetuning: 178

Gold: green salad with a person
holding up a portion with fork ?

Speaker: i have one more maybe
round you think that has a lime green
shaped greens , a salad ?

RL-Finetuning: bowl

Gold: Last, two businessmen in gray
suits sitting side by side

Speaker: Two man sitting in a train,
one is wearing a suit

RL-Finetuning: lady

Outdoor to food Food to Food Indoor to Food Vehicles to Food

Gold: Cake with a slice missing,
bananas and other fruits in the
background?

Speaker: Do you have the one with
the fruit and tomatoes?

RL-Finetuning: fruit

Figure 6.7: Illustration of Referring Expression outcomes post Reinforcement Learning Fine-Tuning (RL-
FT). Each image is paired with a referential expression generated by the RL-FT speaker.

Qualitative Analysis

As mentioned in the related work §3.2.3, focusing on metrics only does not necessarily provide a
complete understanding of the results, especially when those metrics are also used in the optimiza-
tion process. For this reason, instances from successful Asymmetric Referential Game turns are
shown and analyzed in this section. These instances are randomly selected from scenarios wherein
the General Speaker struggled to convey the intended message to the listener. However, these out-
comes became positive results with Reinforcement Learning Fine-Tuning. As observed in Figure
6.7, RL-FT predominantly yields Referring Expressions composed of singular words. While this
aligns with prior analyses, it remains interesting to observe these effects in tandem with actual im-
ages. Some examples, like "fruit" and "bowl", resonate with the chosen visual target. In contrast,
others, such as "lady" and "178" appear somewhat out of place given the visual context. As high-
lighted earlier, the primary objective of fine-tuning aligns with optimizing listener performance in
the A-Ref Game, which, in turn, prompts the RL-Speak to gravitate towards specific keywords that
elicit the desired response. This phenomenon correlates with challenges mentioned in related works
(see §3.2.3), where the objective metric may not comprehend aspects like human interpretability
or adherence to the inherent grammatical structure of a RefEx. While introducing more complex
metrics could offer some mitigation, the misalignment issue persists, proving to be both elusive and
subtle in nature.

It is essential to recognize that a purely quantitative analysis might depict an optimal perfor-
mance. However, without a qualitative lens, one might overlook such misalignments. In the context
of our experiments, these inconsistencies are relatively discernible, given the model’s small size. Yet,
when navigating models with billions of parameters, such as contemporary Large Language Models,
detecting these misalignments becomes considerably more challenging.

9Preliminary experimentation, wherein the encoder output was incorporated into the policy loss, culminated in
suboptimal performances.

10In these estimations, the IND accuracy of the food-listener was excluded from consideration.
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6.3 Reflecting on Findings

In our pursuit of more human-like AI communication, this chapter has probed the capability of
artificial agents to utilize human language within an interactive context. We posited that a fusion
of supervised and Reinforcement Learning could spawn an emergent language that is both action-
aware and human-interpretable, consistent with the findings detailed in the previous Chapter 5.

We commenced by examining the potential for artificial agents to acquire human language
through supervised learning and subsequently utilize this language to cooperatively navigate a
game (§6.1). Initially, we introduced the Photobook dataset (§6.1.1) and developed two multimodal
agents (a speaker and a listener), each designed to independently master a Referential Game (§6.1.3).
Once the agents demonstrated adequate knowledge of the game, we paired them, investigating the
feasibility of resolving the game without prior knowledge of one another (§6.1.4). Our findings
confirm that this is indeed possible, even though the agents were not engineered to account for
other entities in their environment and solely acted in alignment with their supervised training
paradigm (§6.1.5).

Following this, we shifted our focus to explore the application of Reinforcement Learning in
language model fine-tuning §6.2, with a particular interest in enabling the speaker to adapt to
the listener to enhance game performance. We then considered a variant of the Referential Game,
introducing knowledge asymmetry §6.2.1. In this modified scenario, while a General Speaker (G-
Speak) demonstrates proficiency across all domains, the listener holds expertise limited to a specific
domain (e.g., the food domain). We hypothesized that domain-specific listeners might encounter
difficulties engaging in the game when the G-Speak communicated about domains outside their
expertise, such as a food-specialized listener evaluating images from the vehicle domain.

To mitigate this issue, we proposed a fine-tuning strategy based on RL §6.2.2, wherein a Re-
inforcement Learning Fine-Tuning Speaker (RL-Speak) participate in a Referential Game with a
domain-specific listener. Our methodology draws inspiration from recent advancements in language
modeling (see §3.2.3). In Section 6.2.3, we initially validated our hypothesis, confirming that the
ability of a domain-specific listener to engage in a Referential Game is impeded when images orig-
inate from a domain outside their expertise. Subsequently, we demonstrated how our fine-tuned
speaker exhibits notable improvements in engaging the domain-specific listener in the Referential
Game. However, following deeper linguistic and qualitative analysis, we identified a collapse in the
speaker’s word distribution to a reduced set of keywords, which prompted specific listener responses.

In conclusion, we draw attention to parallels with the language drift (§2.2.2) and misalignment
(§3.2.1) issues highlighted in the related works.

6.3.1 Limitations

Although the Reinforcement Learning Fine-Tuning paradigm has emerged as a powerful strategy
for modifying the speaker’s parameters toward a desired direction, its application comes with no-
table limitations. The primary strengths of RL-FT include its capacity to explore and exploit
environments and its capability to specify reward signals tailored to specific needs. Additionally,
when defining rewards becomes complex, numerous methods to infer the reward signal have been
proposed and are detailed in related works §3.2.1.

Nevertheless, RL-FT presents distinctive challenges. One significant obstacle is the substantial
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number of interactions required to fine-tune the model, which can be prohibitively extensive in
the context of actual human interaction. Furthermore, a critical issue highlighted in this chapter
is the ambiguity in determining the correct reward signal. When specifying the optimal outcome
for a game turn, we aim for the model to generate "better" captions. This, however, implies an
assumption that "better" equates to more human-like or human-friendly language usage. There is
a cascading series of approximations, starting from biases inherent in the dataset, through domain-
specific listeners learning approximations of these biases, to the speaker attempting to emulate these
approximations. The hyperdimensional parameter space of the speaker model is too complex to be
easily navigated towards our anticipated outcomes via supervised and/or Reinforcement Learning.

Necessity of Human Evaluation

A meta-analysis of our analysis sheds light on our ability to anticipate misalignment issues through
various linguistic metrics. Although this approach offers a notable improvement over a sole reliance
on performances, it scarcely suffices to quantify the magnitude of the misalignment. The depth of
the misalignment only became transparent following a qualitative analysis of speaker behavior. This
vital step is often neglected in the literature, especially within the computer science field. While
fields like linguistics, cognitive psychology, and social sciences often place qualitative analysis at
the forefront (if not making it the exclusive form of analysis), computer science tends to prioritize
automatic metrics, occasionally overshadowing the importance of human evaluation. While the
scalability and economic feasibility of human evaluations in experiments pose a challenge, they
remain indispensable for infusing human-aligned values into modern AIs.

Bigger models, bigger problems?

Our ability to identify inconsistencies in the speaker model is facilitated by its relatively smaller
size compared to most current Large Language Models. Analyzing the patterns of billion-parameter
LLMs can be intimidating, sometimes leading to perceptions of sentient behavior [Guardian, 2022].
Such perceptions fuel arguments on machine consciousness [Chella and Manzotti, 2013], distracting
from pressing AI-related societal risks. These concerns are not solely about potential malevolent
Artificial General Intelligence [Pistono and Yampolskiy, 2016], but also their tangible impacts today.
Though scaled down, our findings emphasize these concerns for the AI community. In the following
chapter, we propose an alternative to Reinforcement Learning Fine-Tuning. Instead of modifying the
model, we advocate for a static "oracle-like" approach combined with a secondary, more manageable
model that utilizes the speaker to guide its generation, enhancing listener comprehension.
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Chapter 7

Investigating Adaptability in AI:
Focusing on the Theory of Mind

The previous chapter (§6) concentrated on enabling artificial agents to use human languages to
collaboratively resolve a game using supervised learning. While successful to a degree, prominent
limitations arose, particularly a lack of agency and adaptability in the agents (§6.1). To address this,
we applied Reinforcement Learning as a fine-tuning strategy, aiming to allow the speaker to tailor
its language to a specific listener (§6.2). Unfortunately, Reinforcement Learning Fine-Tuning led
to the model’s word distribution collapsing to a handful of keywords that elicited desired behaviors
from the listener. Though this result might be seen as beneficial in some contexts, the resultant
lack of human interpretability and the broader issue of misalignment are substantial drawbacks.

Given the conclusions drawn in the previous chapter, we observed that directly altering the
parameters of the speaker (a Large Language Model) inadvertently results in the unpredictability
of the learning outcome, especially when dealing with models comprising billions of parameters.
Therefore, this chapter revisits the same experimental setup but adopts a different strategy wherein
the speaker undergoes no further training, and the adaptation is executed by an additional, smaller,
and more manageable model1.

Our method draws from the Theory of Mind (ToM). As previously discussed in §3.3, while ToM
is not unfamiliar in AI and language modeling realms, its applications have been mainly restricted
to small-scale experiments due to the high costs associated with training LLMs. Thus, we aim
to deliver a framework that can be integrated into LLMs without requiring exhaustive and time-
intensive retraining. Our framework builds upon existing literature on machine ToM, mixing it with
strategies for adapting language generation, with a goal to devise communications that are more
attuned and responsive to the user’s mental state.

7.1 Solution via Adaptation Techniques

This adaptation is implemented via an auxiliary model named the Simulator. To be discussed in
further detail in §7.1.2, the simulator is tasked to anticipate the listener’s behavior by engaging
with it over time. Once adept at predicting, the simulator employs its understanding to guide the

1The content and solution proposed in this chapter has been developed in collaboration with the Dialogue Mod-
elling Group at the University of Amsterdam.
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Indoor
Listener

Encoder

Decoder

"Green Salad"

General
Speaker

Indoor Simulator

"Bookshelves in
background"

Figure 7.1: A representation of the speaker’s iterative refinement in communication, transitioning from an
initial caption to an adapted RefEx with the guidance of the simulator.

General Speaker ’s RefEx generation. This process has an iterative nature, in line with the approach
defined in §4.3.

In Figure 7.1, an example of this process is illustrated. In it, the (indoor) listener struggles
to recognize the food image based solely on the initial caption "green salad". However, with the
guidance of the simulator, the G-Speak adjusts its Referring Expression to better match the listener’s
understanding, resulting in the modified statement "bookshelves in the background". It is important
to note that the simulator operates on the latent space of the speaker (h0), connecting the encoder
and decoder. This interaction facilitates the backpropagation of gradients through the simulator,
guiding the G-Speak ’s latent representation towards improved clarity.

The proposed solution offers several advantages. Firstly, it equips the speaker with adaptability,
allowing it to adjust its RefExs to meet the specific needs of different listener domains, promoting
more effective communication. Secondly, the speaker can quickly refine its language generation
without the need for extensive retraining, improving efficiency. Lastly, the model maintains its
domain knowledge, ensuring its applicability and effectiveness in a variety of contexts.

7.1.1 Simulator Model and Training Details

As illustrated in Figure 7.2, the simulator module represents a novel augmentation to the speaker’s
architecture, functioning as an internal prediction tool. Stemming from insights presented in §3.3,
the simulator enables the G-Speak to anticipate a listener’s interpretation of a Referring Expression,
ensuring more effective communication.

The distinctiveness of the simulator is reflected in its dual-stream input processing. The first
Linguistic Stream accepts the visual context (vctx), together with the speaker’s intended RefEx
(cs). This mirrors a typical listener architecture, where a Referring Expression, once generated, is
set to be resolved amidst a visual setting, thus predicting the listener’s behavior. Simultaneously,
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Embedding Stream

Simulator Model

Visual
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Separate
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Figure 7.2: Architecture of the Simulator Module, showcasing the parallel processing streams of visual
context, planned RefEx, and the language model’s initial hidden state.

the second Embedding Stream processes the same visual context but combined with the speaker
model’s initial hidden state (h0). This part is necessary to influence the speaker’s RefEx generation
process, as we will later see. A combination of shared linear layers standardizes and computes the
dot product between h0 and the visual context. The outcomes from both streams are multiplied
together to derive the final representation that later gets contrasted against candidate images.

Formally, the simulator can be described as:

Simulator(vctx, cs, h0)→ gsim : V ×B × Γ→ G

In this definition, the simulator accepts the visual context and the speaker’s RefEx, both elements
of O. Additionally, it considers the initial hidden state of the speaker model, denoted as h0, which
is an element of Γ. Using these inputs, the simulator predicts actions within the predefined action
set, G.

Training Methodology

In the simulator’s training, we operate under the presumption that both the speaker and the domain-
specific listener models have been pretrained, with their weights being frozen (see §6.1.3). This
precondition is essential since the simulator’s training relies on samples derived from the interactions
between these two agents.

The training procedure for the simulator mirrors that of the listener in certain aspects. For
instance, both models are presented with six images and must select one. Yet, a distinct difference
emerges in the source of the target caption: rather than deriving it from the training set, it is
generated by the speaker. Furthermore, the simulator is given an additional input, the speaker’s
hidden state, denoted as h0.

Outlined below is the step-by-step progression of a training iteration:
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Setting Avg Pos Neg
IND 78.20± 1.26 88.09± 1.98 67.36± 2.96
OOD 72.78± 0.56 73.67± 1.69 72.58± 0.71

Table 7.1: Accuracy of the simulator in forecasting the actions of two types of listeners: one versed in
all domains (akin to the speaker) and another with domain-specific expertise, evaluated on IND and OOD
samples. ’Avg’ denotes comprehensive accuracy, whereas ’Pos’ and ’Neg’ signify the proportions of accurate
predictions for instances where the listener selected the right (Pos) and wrong image (Neg), respectively.

1. Six images are randomly selected from a consistent domain.2 One among these is designated
as the target (t̂).

2. The speaker formulates a caption for this target. This generated Referring Expression and its
corresponding hidden state (h0) are retained for future use.

3. Subsequently, the listener is presented with the six images and the RefEx produced by the
speaker. Based on this, the listener arrives at a prediction (gl) that may not always align with
the preselected target.

4. In the final stage, the simulator is supplied with the listener’s inputs, augmented by the
speaker’s embeddings. The simulator’s task is to anticipate the listener’s decision by choosing
a target image (gsim).

For each domain-specific listener, a dedicated simulator is trained. The loss function employed
is Cross Entropy, and optimization is achieved through the AdamW optimizer [Loshchilov and
Hutter, 2019]. The optimal simulator for each listener variant, is discerned based on the precision
of the simulator’s predictions. Following this, the simulators’ weights are set, ensuring they remain
unchanged throughout subsequent stages of the process.

Training Performance Evaluation

In this evaluation, we analyze the performance of our simulators in predicting the behavior of
domain-specific listeners. The findings are as follows:

• For IND samples, the simulators exhibit an average prediction accuracy of 78.20%.

• For OOD samples, the accuracy averages at 72.78%. The observed reduction in accuracy,
when transitioning from IND to OOD samples, suggests potential challenges in discerning
listener reactions on unfamiliar OOD data.

Further analysis of Table 7.1 reveals that the simulators demonstrate heightened proficiency
in forecasting the listener’s behavior when the listener accurately identifies the target image, as
compared to instances where the listener erroneously selects a distractor image (designated as Pos
and Neg in the table, respectively).

A plausible explanation for this phenomenon could be attributed to the consistent representation
of the listener’s accurate responses in the IND training data.

2It is pertinent to note that while the images are chosen from a singular domain, this domain alternates among
all five available. This ensures the listener’s response to Out Of Distribution data points is adequately examined.
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7.1.2 Adaptation Mechanism

Algorithm 1: Mechanism of Model Adaptation
Input: siter : maximum number of adaptation steps

lradapt : learning rate for adaptation
seed : random seed

Data: h0 : speaker’s initial hidden state
vctx : visual context
t̂ : true target

1 i← 0
2 while i ≤ siter do
3 set_seed(seed)
4 cs = Speaker(vctx, h0)
5 gsim = Simulator(vctx, cs, h0)

6 if gsim == t̂ then
7 break

8 loss = CrossEntropy(gsim, t̂)
9 h0 = backprop(loss, h0, lradapt)

10 i += 1

11 tl = Listener(vctx, ut)

As outlined in earlier sections, the primary objective of the simulator is twofold: firstly, to
predict listener behavior, and secondly, to guide the speaker’s language generation towards enhanced
comprehensibility. We previously detailed the predictive phase, and, in this section, we seek to define
this adaptation mechanism and its elements.

A core challenge when fine-tuning language models on tasks necessitating non-communicative
actions arise from backpropagation through the discrete outputs of the model, as elaborated in
§3.3.3. To overcome this issue, our adaptation mechanism, as detailed in Algorithm 1, harnesses
the simulator to assess the speaker’s generative outcomes iteratively. The algorithmic steps can be
detailed as follows:

1. Initialization:

• Establish the adaptation parameters: maximum refinement steps siter, learning rate
lradapt, and a seed for reproducibility.

• Get the game input elements: visual context vctx, target image t̂, and the speaker’s initial
hidden state h0.

2. Adaptive Refinement Loop (Maximum Iterations: siter):

(a) Reset the random seed for consistent results using set_seed(seed)3.

(b) Produce an RefEx (cs) via the Speaker, incorporating the visual context vctx and hidden
state h0.

(c) Utilize the Simulator to predict the listener’s target choice gl given the visual context,
RefEx, and hidden state.

(d) If the simulator’s projected target gsim aligns with the true target t̂, terminate the loop.
3This ensures that word sampling variations stem solely from changes to h0, eliminating randomness from nucleus

sampling.
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OOD IND
Train Data G-Speak Adapted Train Data G-Speak Adapted

appliances 20.21 19.30 27.74 84.21 57.21 74.28
indoor 18.50 19.53 28.34 83.22 52.94 69.62
food 17.06 18.31 26.26 85.61 55.54 78.15
outdoor 18.89 18.54 26.21 84.38 52.83 73.04
vehicles 18.25 17.35 25.16 78.67 42.09 63.75
Average 18.58 18.61 26.74 83.22 52.12 71.77

Table 7.2: Comparison of Listener Performance in the Referential Task Using Utterances from Different
Sources: Original Training Set (Train Data), Unmodified General Speaker (G-Speak), and Adapted Speaker-
generated (Adapted) across various domains. Results are aggregated over five seeds for each domain.

(e) Otherwise, calculate the CE loss between the simulator’s estimation and the true target.

(f) Modify the hidden state h0 by backpropagating this loss, employing the specified learning
rate lradapt.

3. Listener’s Prediction:

• Following the refinement loop, the listener predicts the target choice gl utilizing the visual
context and the refined Referring Expression.

From this process, it is evident that when a mismatch surfaces between the simulator’s estimate
gsim and the actual target image t̂, a Cross Entropy loss is generated. Gradients derived from
this loss are harnessed to adjust h0 using the Adam optimizer. Fundamentally, the adaptation
fine-tunes solely the initial hidden state of the speaker’s decoder. Upon updating this state, the
language model formulates a fresh RefEx, which then undergoes assessment by the simulator.

7.2 Evaluation of Machine Adaptation Performance

In the preceding section, we discussed the key components of our system and provided a foundational
overview of the adaptation mechanism, where the simulator modulates the speaker’s latent space
to enhance the listener’s comprehension.

This section is dedicated to presenting the outcomes of the adaptation mechanism. Specifically,
we will first examine performance outcomes, assessing the listener’s efficiency on the referential task
after receiving the adapted Referring Expression in §7.2.1. Subsequently, we will explore the effect
of ToM adaptation on the speaker language use, in §7.2.2.

7.2.1 Analyzing Performance Metrics

Table 7.2 displays the listener’s performance in the referential task across different domains. The
results are categorized into OOD and IND. Each category further lists the outcomes based on the
different origins of the RefEx: the original training set (Training Data), RefExs generated by the
speaker (G-Speak), and adapted RefExs (Adapted).

The data suggests that adaptation proves beneficial in scenarios with knowledge asymmetry.
This is evident even in IND contexts where the agents engage in a conversation about a domain
familiar to the listener, with performance improving from 52.12% to 71.77%. Furthermore, the
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adapted RefExs significantly enhances resolution in OOD scenarios, increasing from 18.61% to
26.74%.

The results presented directly address the issues introduced at the beginning of this chapter
and demonstrate the efficacy of our solution. By integrating a ToM-enhanced architecture into
language generation, we can modify the generated language to enhance comprehension. While
this achievement is noteworthy and constitutes a milestone in our study, an exclusive emphasis on
performance enhancement does not provide insights into the qualities of the language, as highlighted
in §5.2.2. Such a narrow focus can lead to erroneous conclusions and may degrade human-machine
interactions in the long run. To address this, the subsequent section offers a comprehensive linguistic
analysis of the adapted RefExs.

7.2.2 Linguistic analysis

The primary aim of this section is to delve deeper into the neural mechanisms and strategies that
derive from our adaptation experiments.

Probing Neural Representations for Domain Information

Diagnostic probing is a technique often employed to investigate and interpret neural network repre-
sentations. According to Adi et al. [2017], Conneau et al. [2018], Hupkes et al. [2018], this method
allows researchers to discern what information is stored or retrieved from neural activations. With
diagnostic probing, we want to decipher how well the speaker model encodes relevant domain infor-
mation.

Central to our investigation is the LSTM decoder’s first hidden state, h0. This state is crucial
as the simulator module acts upon it to modify the speaker’s Referring Expression and can be seen
as the speaker’s belief state. Given its role in encoding a target image, our hypothesis suggests that
h0 should possess information about the semantic domain of that image. For the speaker to adapt
successfully to domain-specific listeners, its ability to differentiate between visual domains becomes
necessary.

To validate our hypothesis, we subjected h0 to the diagnostic probing process. A logistic re-
gression classifier was trained on 70% of the h0 hidden states obtained during testing. We then
evaluated its proficiency in predicting the domain of images tied to the remaining 30%. Consistent
with our anticipations, the classifier demonstrated perfect precision and recall across all five visual
domains (both equal to 100%). Our next step revolved around whether h0 also captures the domain
of the listener. Preliminary understanding suggests that prior to any simulator intervention, the
speaker model remains oblivious to the listener’s domain knowledge. To test this, probing was con-
ducted, revealing accuracy scores between 13% and 16% across various domains, nearly coinciding
with the random baseline of 16%. This affirmed that pre-adaptation, the speaker’s initial hidden
state remains uninformed about listener-specific data.

As adaptation progresses, led by the simulator’s processes, h0 undergoes modifications over
adaptation steps. Analyzing these transformed states: h10, h

2
0, . . . , h

siter
0 , we notice a decline in the

encoding robustness of the image domain (Figure 7.3). Indeed, after three adaptation steps, the
listener’s domain can be almost perfectly recognized from the adapted h0, with an accuracy of 90%.
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Figure 7.3: Graphical representation of probing accuracy for image and listener domain predictions across
various adaptation phases. Stage ’0’ pertains to the unadapted h0.
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Figure 7.4: (a) Variation in Type-Utterance Ratio (TUR) across adaptation steps, including comparisons
with human gold utterances (refg) and non-adapted utterances (0). (b) Fluctuations in Type-Token Ratio
during adaptation steps, with similar comparisons.

These findings show how listener-focused data effectively replace information from the visual
context through adaptation.

Analysis of the Adapted Speaker Vocabulary

To understand the dynamic shift in vocabulary used by the speaker during its adaptation, we
calculated two linguistic metrics: the Type-Utterance Ratio (TUR) and the Type-Token Ratio
(TTR).

Type-Utterance and Type-Token Ratios The TUR measures the vocabulary size relative to
the number of RefExs for a specific step, giving insights into the density of vocabulary usage4.
Conversely, the TTR provides insight into the diversity and variability of the vocabulary utilized.

4It is important to clarify that this ratio accounts for the variable number of RefExs across steps, given the nature
of the simulator module’s operations.
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Figure 7.5: Distribution of unigram Part of Speech categories across various adaptation steps.

An examination of figure 7.4 reveals how the initial adaptation phases, particularly steps 1 to
3, show a noticeable decline in both ratios. However, following this dip, a significant increase can
be observed. This indicates a considerable augmentation in vocabulary diversity, especially when
contrasted with the non-adapted RefExs.

Unigram Part-of-Speech Distribution Analyzing the unigram Part of Speech (PoS) distribu-
tion, as shown in Figure 7.5, gives insights into the speaker’s language choices during adaptation.
In the early stages of adaptation, there is a clear decrease in punctuation and a rise in nouns. This
indicates the speaker’s shift from sentence structure to emphasizing specific content using nouns.
Among the diverse PoS categories, two exhibited pronounced changes: proper nouns and deter-
miners. This rise can be interpreted as the speaker’s effort to make its language more specific,
using unique identifiers that might better align with the listener’s domain-specific knowledge. This
approach mirrors what we observed when employing Reinforcement Learning Fine-Tuning in the
previous chapter, where specific word choices helped tailor the communication more effectively.
On the other hand, the use of determiners decreases, indicating a move towards more generalized
or open-ended statements by the speaker. This trend suggests a strategic avoidance of generating
overly specific referential expressions, a challenge we previously encountered with RL-FT. The adap-
tation process thus seems to reach a balance, avoiding overly specific language while still achieving
more tailored communication.

Domain-Specificity of Referring Expressions In our study, we also examined how the speci-
ficity of RefExs changed over time with respect to both the image content and the listener’s domain.
To achieve this, we identified words that were entirely used in conversations about a specific do-
main, labeling these as domain-specific. A key finding from this analysis is that, as the adaptation
process unfolded, the speaker began to use more words relevant to both the image in question and
the domain of the listener (as shown in Figure 7.6). Simultaneously, there was a noticeable decrease
in the use of more general, domain-agnostic terms.

Interestingly, even though the speaker’s focus shifted more towards the listener’s domain over
time, this shift did not result in completely ignoring the image domain. Instead, the speaker
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Figure 7.6: Distribution of Lexical Selections from Image and Listener-Specific Domains.

continued to incorporate words related to the individual images. This trend indicates that the
speaker might be giving more importance to the specific images rather than their broader semantic
categories. This observation raises further questions about how the speaker is grounding its language
in the image context and how it uses image-related words during adaptation.

Successful Adaptation Strategies

An important aspect of our exploration is discerning the differences between successful and non-
successful adaptation outcomes. While our previous observations provided an overview of how
adaptation impacts RefExs over time, they did not explicitly address the characteristics of successful
adaptations.

To explore this, we considered the concept of Age of Acquisition (AoA), a metric used in psy-
cholinguistics to indicate when a word is typically learned in one’s life. Based on the ratings by
Kuperman et al. [2012], AoA values range from 0 to 25, with lower values representing words learned
earlier in life. These early-learned words are usually more basic and widely understood. We hy-
pothesized that RefExs utilizing words with a lower AoA might be more effective as they are likely
easier for the listener to comprehend.

Our hypothesis is supported by the findings illustrated in Figure 7.7. We analyzed adapted
RefExs based on whether they led to correct responses from the listener. The analysis revealed
that successful RefExs tended to use words with a lower AoA (with a statistically significant result
of t = −28.88, p < 0.001). Additionally, these successful RefExs showed a decreased reliance on
vocabulary specific to the target image (with a significant t = −28.76, p < 0.001) and an increased
use of terms from the listener’s domain (t = 5.88, p < 0.001). This suggests that adaptability in
RefExs is not just about adjusting to the listener’s domain but also about using more universally
understandable language.
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Figure 7.7: Influential determinants of a successful adapted RefEx: Age of Acquisition (left) and proportion
of words tied to the target image domain (right).

Qualitative Assessment Through Manual Inspection

For a thorough understanding of the model’s behavior and its linguistic adaptation mechanisms, a
manual examination of the generated data remains crucial. This step ensures we are not relying
solely on metrics but are also considering the intricacies of the model’s language dynamics.

In Figure 7.8, we illustrate select instances of adapted sentences to show the influence of adapta-
tion on lexical choices. Taking the leftmost example as a case in point, the image domain presented
is primarily centered around food, and the associated listener had its training grounded in the indoor
domain. As a result, the adapted RefEx shifts from a description of food items and introduces a
term - bookshelves - more familiar to the listener’s domain. The second example features an image
from the outdoor domain and a listener trained in the food domain. Notably, the adapted Refer-
ring Expressions avoids explicitly mentioning a truck. Instead, the model emphasizes recognizable
features like the color pink and leans towards entities familiar to the listener, such as donuts.

However, our qualitative evaluation does raise some issues. While many of the adapted RefExs
are understandable, a notable portion appears less fluent or even unnatural. This may stem from
our choice to use artificial agents. As a result, the language model’s adaptation to an artificial
listener might deviate from typical human language patterns.

7.3 Discussion and Key Findings

In our pursuit of enhanced Human-Machine Communication, this chapter delves into the often-
overlooked aspect of human-to-human interaction in modern Large Language Model: adaptation.
We have delineated adaptation and associated it with the concept of Theory of Mind, defined
as the ability to have a mental model of other agents in the environment and tailor your action
accordingly. Given that this theory originates from cognitive sciences (see §3.3.1), it naturally steers
our exploration towards cognitive insights within computational linguistics, where we identified
Rational Speech Act ’s alignment with ToM and state-of-the-art adaptive techniques for LLM
(§3.3.2).

Drawing parallels with challenges addressed in the previous chapter, we customized the formal-
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food to indoor
Gold green salad with a person 
holding up a portion with fork ?
Speaker i have one more 
maybe round you think that has 
a lime green shaped greens , a 
salad ?
Adapted 1 with carrots , etc . 
maybe you have a picture of a 
salad on a reddish tray of an 
greens
Adapted 2 must bookshelves in 
the salad ?

outdoor to food
Gold i have the pink food truck again 
... white shirt lady
Speaker girl at black phone , red 
truck , brown hair , pink
Adapted 1 two donuts , tan tank top ?
Adapted 2 pink donuts

outdoor to vehicles
Gold handstand on beach .
Speaker i have the guy with his 
hand
Adapted 1 low dude doing 
handstand
Adapted 2 must beach doing
Adapted 3 must beach doing
Adapted 4 low tire doing 
handstand lenningh .

vehicles to food
Gold do you have the bike pulling 
the car with the dogs ?
Speaker i have that one too
Adapted 1 with a cup of dogs on ?

Figure 7.8: Illustrative examples of RefExs influenced by audience-aware adaptation. We simplify the
presentation by displaying only target images, omitting the comprehensive visual context. Presented are the
final adapted RefExs, generated when the adaptation mechanism anticipates successful image recognition
by the listener.

ism presented in §4.1 to delineate our problem’s constituents, namely the simulator (§7.1). Notably,
while the simulator is a crucial component of our approach, the essence of our proposition lies in
the adaptation algorithm detailed in §7.1.2.

At the conclusion of our experiment, we shifted our attention to the study’s outcomes as out-
lined in §7.2. Mirroring the analytical approach of the prior Chapter 6.2.3, we first illustrated the
enhanced performance of the listener when utilizing adapted expressions, as delineated in §7.2.1.
The empirical results met our anticipations, illustrating augmented performance in both IN-Domain
instances (with an improvement of ≈ 20%) and Out Of Distribution instances, recording an im-
provement of ≈ 7%.

While these results are exciting, we emphasized that merely optimizing for performance without
interpretability can lead to languages that are not transparent to human observers. With this
understanding, we performed a linguistic analysis presented in §7.2.2. Our findings are as follows:

(i) Diagnostic probing revealed that the speaker model’s hidden state, denoted as h0, begins
by accurately encoding the image’s domain. Yet, as adaptation unfolds, there’s a shift towards
encoding the listener’s domain knowledge. This shift ends in perfect listener domain recognition
after three adaptation steps. (ii) The study’s linguistic metrics revealed that the speaker’s vocab-
ulary initially decreased in diversity during early adaptation phases, but subsequently showed a
significant increase in vocabulary diversity, surpassing non-adapted RefExs. (iii) The unigram part-
of-speech distribution analysis revealed that during adaptation, the speaker reduces punctuation
use and emphasizes content through an increase in nouns, especially proper nouns, while decreasing
determiners to create more generalized statements. (iv) As adaptation progressed, the speaker in-
creasingly incorporated words related to both image and listener domains, reducing domain-agnostic
terms, indicating a focus on individual images rather than their broader semantic domain. (v) Suc-
cessfully adapted RefExs predominantly use words learned earlier in life (lower Age of Acquisition)
and favor the listener’s vocabulary over the target image’s specific vocabulary.
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7.3.1 Comparative Analysis: Theory of Mind vs. Reinforcement Learning
Techniques

Comparing results from the previous chapter (§6.2.3) and this chapter (§7.2.1), a clear pattern
can be seen: Reinforcement Learning Fine-Tuning outperforms Theory of Mind-based modeling
concerning measured performances. Notably, RL-FT demonstrates superior performance due to its
ability to harness the entirety of a LLM complexity and size, focusing on excelling at specific tasks.

However, this comes with anticipated drawbacks. Firstly, fine-tuning an LLM is computationally
expensive, both in terms of the power needed and the volume of data required to approximate
optimal behavior accurately. This is attributed to the model’s size, as larger models inherently
possess more substantial priors. In practice, given equal training samples, our simulator outperforms
a pre-trained speaker by better approximating a listener’s behavior. In this direction, we advocate
for the adoption of smaller, modular systems comprised of multiple task-specific models instead of
foundational models with billions of parameters. This not only facilitates better manageability but
also ensures that problems are decomposed into smaller, more manageable units.

An additional limitation, centrally featured in this work, pivots on the concept of misalignment
intrinsic to Reinforcement Learning Fine-Tuning. Simulators, while not a definitive solution, serve
as an initial step towards modeling decisions based on intentions, with the intention in this context
being to predict listener behavior. This approach aligns with efforts by researchers focusing on
action-oriented language models [FAIR]. Such models, comprising multi-part systems, are driven
by intention and can be probed to comprehend the genesis of a particular sentence generation. In
essence, they embody an understanding of how their generated words manipulate the environment
and other interacting agents.

7.3.2 Limitations

Having discussed the advantages of the Theory of Mind-based solution method over the Reinforce-
ment Learning Fine-Tuning, we must now address its limitations.

One primary limitation is the focus on adapting the speaker alone, without considering mutual
adaptation. In human communication, both speaker and listener typically adjust to each other, a
dynamic we have not fully captured. This might mean missing out on the complexities and richness
of interactions that involve both parties modifying their behavior for clearer communication.

Another limitation stems from our choice not to use pretrained models for language tasks. While
this approach was deliberate in addressing specific research questions, it does raise concerns about
the applicability of our findings to scenarios where pretrained models, with their rich linguistic
knowledge, are employed. Additionally, our model architecture does not incorporate transformer-
based models, which have demonstrated their efficacy in various language tasks.

Furthermore, despite interaction being a central theme, our research heavily relies on super-
vised training paradigms. Incorporating Reinforcement Learning could potentially provide more
comprehensive insights into the adaptation process, presenting a direction for future exploration.

However, the most significant limitation is our exclusive use of artificial learners. These agents,
designed to mimic human responses, may not fully replicate human belief systems. This raises the
risk of misalignment, where behaviors influenced by feedback from artificial agents do not align with
human values and expectations. This issue is especially critical given our simplification of equating
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an agent’s belief state to its action (2-GSF). While this makes modeling more manageable, it
overlooks the complexity of human beliefs. Addressing this alignment challenge is crucial and
highlights the irreplaceable role of human involvement in shaping AI behaviors.
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Chapter 8

Conclusions

At the core of this work is the question of how Large Language Models can autonomously act while
aligning with our desired outcomes and the broader societal context. The pervasive influence of such
technology in society naturally raises concerns regarding its reliability. A crucial question arises:
Do these models genuinely understand their societal repercussions, and can they consistently align
with human values? These questions are rooted in the concepts of agency and misalignment, which
form the backbone of our discussions.

Driven by the historical evolution of AI, aligning it with human values has become fundamen-
tal, with the past decade emphasizing a human-centric approach. This approach, described by
Davenport and Kirby [2016] as augmentation, seeks to enhance rather than replace human efforts.
As language is a universal human experience, there’s been a shift towards natural language-based
applications. This shift amplifies the significance of Human-Machine Communication, where the
challenge lies in training artificial agents, especially with the emergence of the transformer archi-
tecture in NLP, to communicate in globally spoken languages.

The year 2023 has witnessed a surge in the deployment of LLMs across diverse fields, including
medicine, chemistry, and economics [Clusmann et al., 2023, Sallam, 2023]. However, one limitation
of LLMs is their reliance on predicting the next word in a sentence rather than understanding the
context and purpose behind language usage, as humans do. Given the widespread impact of this
technology on society, issues emerge about its reliability.

As researchers, we must address these issues by enhancing LLMs with the awareness of how
their communications influence their surroundings and facilitate a deeper comprehension of humans.
This multidisciplinary problem intersects various fields, but our primary focus is on Human-Machine
Communication.

8.1 Comprehensive Summary

Having identified the lack of agency and misalignment in modern LLMs as main issues, this doctoral
thesis systematically addresses these challenges. The approach is structured into three distinct
phases, each building upon the findings of the previous one. Each of these phases is grounded in peer-
reviewed materials that have been published during this doctoral journey. Specifically, phase one is
informed by Rlupus: Cooperation through emergent communication in the werewolf social deduction
game [Brandizzi et al., 2021] and Emergent communication in human-machine games [Brandizzi
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and Iocchi, 2022], phase 2 draws from both Speaking the language of your listener: Audience-aware
adaptation via plug-and-play theory of mind [Brandizzi et al., 2023] and Towards more human-like
AI communication: A review of emergent communication research [Brandizzi, 2023], and phase 3 is
based on Brandizzi et al. [2023].

8.1.1 Game Dynamics for Exploring AI Agency

In the initial phase, we deal with a fundamental question: Can agency manifest in artificial systems
given an adequate learning framework? We address this issue in Chapter 5 by creating an artificial
version of The Werewolf game, where agents coordinate within their groups and compete against
other groups. In this game, one group (the villagers) is posed in a heavily disadvantageous position,
where chances of winning against the other group (the werewolf) in a random environment are
close to zero (4%). We posit that: if agents can leverage a communication channel for cooperative
intent, it serves as evidence of their emergent agency, i.e., using communication to influence the
game outcome.

To assess our hypothesis, we introduce a communication channel in the game without incentiviz-
ing agents to use it. Upon analyzing the results, we found that the villagers’ win rates increased
significantly from 4% to 40% with the introduction of communication, thereby supporting our hy-
pothesis. Our results show that by introducing a simple communication channel, even without
explicitly teaching the agents to use it, we witnessed a tenfold jump in the villagers’ chances of
winning. This transformation signifies that when placed in the right learning environment, like our
multi-agent and Reinforcement Learning setup, artificial agents can indeed develop the ability to
communicate with intent, demonstrating emerging agency in linguistic contexts. We validate these
findings across two player configurations: nine and 21 players. Subsequent analysis by Lipinski
et al. [2022], which builds on our findings, reveals how the villagers agreed on specific communica-
tive symbols, setting a kind of "linguistic trap" for the werewolves. Since the werewolves did not
learn this emergent language, they were easily identified by their inability to use or understand
these symbols, reminiscent of how a Turing test distinguishes between humans and machines. Yet,
a challenge remains: the evolved language, while efficient, consists of bits and numbers, making it
non-interpretable by humans. Our exploration ends with the insight that while the right learning
paradigm can indeed spark agency, the resultant language must be understandable to humans.

8.1.2 Language Agency in AI through Reinforcement Learning

Building upon our earlier findings, the subsequent Chapter 6 advances to agents that communicate
in a human-interpretable manner. Drawing from the established research (§3.2), we experiment with
a Referential Game (Ref Game). In this game, one agent (the speaker) describes a target image while
another agent (the listener) tries to identify it from a set. We aim to answer the following question:
Can agents, trained independently from each other, collaboratively solve a game? Surprisingly, our
results revealed that these independently-trained agents could solve the game with above random
accuracy (§6.1). We attribute these results to their shared expertise in both linguistic and visual
domains. However, this success leans heavily on the agents sharing complete knowledge, an idealistic
scenario not reflected in real-world dynamics, where knowledge disparities are common.

We introduce a different version of the Ref Game to simulate these disparities. Here, the game’s
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data is split across various domains, laying the groundwork for an Asymmetric Referential Game
(A-Ref Game). With the speaker retaining a complete knowledge base, we build listeners limited
to specific domains, e.g., listeners fluent in food-related images only. As anticipated, this setup
severely impairs game outcomes, with some performances decreasing to random chance when a
listener confronts unfamiliar domains, for example, vehicle images. The primary challenge arises
from the speaker’s limited exposure to other agents during training, suggesting a lack of agency.

Taking inspiration from the previous part, we turn to Reinforcement Learning, fine-tuning the
speaker to adapt to a designated listener (§6.2). The outcomes show the adapted speaker outper-
forming its original version (44.57% vs. 23.85%), again proving how an adequate learning framework
can mitigate the issue of agency. Yet, a deeper analysis into the speaker’s lexicon uncovers a re-
liance on selected keywords that trigger specific listener reactions (§6.2.3). We relate this trend
to the misalignment problem since higher game performances do not inherently translate to better
communication. Finally, we critique the constraints of our approach, particularly in the context of
contemporary LLMs training (§6.3). While we can address the agency issue by adjusting training
methods, the misalignment problem requires a different solution.

8.1.3 Advancing AI Communication with Theory of Mind

Our concluding Chapter 7 stands as the main contribution of this thesis, combining insights from
different disciplines to address the problem of agency and misalignment in language models. We
propose a novel approach inspired by the recent introduction of adapters to the field of NLP and
insight from cognitive psychology.

Adapters are trainable functions used in LLMs that leverage the model’s prior knowledge and
adapt it for a different task, e.g., a LLM used for translating English to Italian can use an adaptor for
translating from Italian to English (§3.3). However, adapters do not necessarily capture nor model
the new task they are trained for. On the other hand, a prominent theory in cognitive psychology,
termed Theory of Mind (ToM), defines a propriety of humans strictly tied with modeling. ToM is
the ability of humans to reason about the understanding and knowledge of other humans and modify
their actions accordingly (§3.3.1). In this sense, ToM provides a perfect framework for alignment
since, if the machine is able to understand what the human wants from it, it will more likely be able
to accomplish exactly that. Moreover, ToM also tackles the agency issue, where reasoning about the
effect an action can have on another agent is one of the fundamental aspects discussed previously.

Our solution takes into account both strategies, with the introduction of an auxiliary model: the
simulator (§7.1). The simulator’s primary function is to learn the listener’s behavior during inter-
action rounds in a typical ToM fashion. Once the simulator demonstrates proficiency in predicting
listener actions based on the environment, we implement a unique adaptation mechanism inspired
by adapters. This mechanism leverages the simulator’s insights to guide the speaker’s responses,
ensuring they resonate more effectively with the listener.

To validate our approach, we initially show (in §7.2) how our adaptation strategy enables the
speaker to adjust to various listeners, improving performances (49.25% vs. 23.85%). Subsequently,
we examine the evolved language and report metrics such as Type-Token Ratio, Part of Speech
tagging, and Age of Acquisition. Our findings indicate a noticeable improvement in vocabulary
diversity (avoiding the previous issue of distribution collapse) and enhanced human interpretability.

One significant advantage of our approach is that we do not need to make extensive changes
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to the speaking model, which is both time-consuming and has a significant environmental impact
[Rillig et al., 2023, Scao et al., 2022]. Instead, our smaller simulator model is more environmentally
friendly and quicker to train. Furthermore, the reduced model size is advantageous for interpretabil-
ity analyses, which are vital to gain insight into how the AI makes decisions. Another critical point
to note is that we are addressing both the agency and misalignment issues together. Often, solu-
tions focus on one problem or the other, but our approach tackles both. Finally, combining NLP
techniques, psychological insights, and environmental considerations highlights the importance of
combining knowledge from different fields. As AI plays a more significant role in our daily lives, it
is clear that we need expertise from various areas to ensure it works responsibly and effectively for
everyone.

8.2 Limitations

This thesis ambitiously aimed to address critical challenges in the field of AI, specifically in enhancing
the agency and alignment of language models within human contexts. While the findings contribute
valuable insights to the discipline, it is crucial to acknowledge certain limitations that influenced the
research scope and outcomes. This acknowledgment does not diminish the work’s significance but
rather provides clarity on the experimental conditions and the potential scalability of the proposed
solutions.

8.2.1 Resource Constraints and Model Selection

One significant limitation was the computational resources required for employing transformer mod-
els, which are known for their state-of-the-art results in various NLP tasks. The selection of LSTM
models was critical to ensure the feasibility of experiments within the available resources, and they
have been effective to an extent within this framework. Although the results can theoretically be ap-
plicable to transformer architectures, further experimentation is needed to confirm their scalability
and to enhance the robustness of the solutions proposed in this thesis.

Moreover, opting for LSTM models also introduced challenges in the quality of language gener-
ation. While LSTMs are resource efficient, they fall short of the richer linguistic and grammatical
precision offered by the more advanced transformer models. This limitation was evident in the AI’s
language outputs, which, although functional, occasionally lacked the depth of context that trans-
formers can achieve. This issue highlights a prevalent challenge in today’s NLP research landscape:
the necessity for substantial computational resources to achieve impactful results. This require-
ment often limits what can be accomplished in academic settings and tends to favor entities in the
industry with greater resources. We address the implications of this disparity in the Ethical Con-
siderations chapter of this thesis (§8.4.3), underscoring the need for equitable access to advanced
computational technologies in the academic community.

8.2.2 Exclusion of Human Participants

Another limitation was the exclusion of human participants in the experimental phases. Integrating
human data could provide deeper insights into the human-AI interaction dynamics and enhance the
validity of the AI’s agency and alignment in real-world scenarios. The use of simulated environments
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and agent-only interactions was primarily due to the high costs and logistical complexities associated
with human-subject research. Despite this, the conceptual frameworks developed are designed with
the flexibility to include humans in the loop. Future studies are encouraged to incorporate human
participants to test the applicability of the findings in more naturally occurring interaction settings.
Furthermore, the ethical implications of involving human participants in AI research are significant
and are discussed in greater detail in the Ethical Considerations Section 8.4.3.

8.3 Future Research Impact

In this section, we reflect on the broader implications of our research. Here, we consider how the
insights and methodologies developed in this thesis could shape future AI research, influence industry
practices, and contribute to society’s understanding of AI. This foresight effort is an essential part
of our academic responsibility, helping us to understand and articulate the potential future influence
and real-world applications of our findings.

8.3.1 Theoretical : Merging RL and Language Modeling

In this thesis, we have taken a fresh approach by combining Reinforcement Learning and language
modeling, as highlighted in Section 4.2. Our approach redefines the standard perspective of super-
vised training in Large Language Models, where it is not considered an isolated process but a policy
within a dual-policy architecture. By viewing supervised training as a policy in its own right, we
effectively merge it RL. This integration allows for the application of RL principles and method-
ologies directly to the process of language model training. Thus, advancements and innovations
in supervised learning for Large Language Models can be directly incorporated into this broader
RL-based framework. This novel perspective significantly expands the scope and applicability of RL
strategies in language modeling. It opens a pathway for a more cohesive and integrated approach
to AI development, leading to potentially more robust, adaptable, and advanced language models.

Moreover, another key theoretical contribution of our work is the iterative refinement process,
as detailed in §4.3. Traditional alignment methods in modern LLMs often rely on retraining with
RL or new supervised tasks. These practices directly modify the model parameters, necessitating
substantial computational resources. Our methodology, which delegates the adaptation task to an
external model, addresses these challenges. By reducing the computational load on the primary
LLM, we could potentially replace the current resource-intensive processes, marking a significant
theoretical advancement in AI and language modeling.

8.3.2 Industrial: Personalizing AI with Efficient Models

Large Language Models have gained immense popularity, revolutionizing various industry applica-
tions. However, a significant limitation is their lack of personalization, i.e., the ability to adapt to
individual users’ specific needs or preferences. Until now, the industry has attempted to achieve
this through fine-tuning techniques, such as Reinforcement Learning or adding supervised tasks.
However, due to the immense computational resources required, this approach is not scalable to
individual users.
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Our research presents a novel solution, particularly the simulator model introduced in Section
4.3. By utilizing smaller, more efficient models, we facilitate the personalization of LLMs with
considerably reduced computational demands. This model acts as an intermediary, adapting the
LLM’s responses to align with individual user preferences, enabling a more personalized interaction
without the need for extensive resources typically associated with fine-tuning LLMs.

Advancing Towards On-Device Language Models

Another emerging focus in the industry is developing compact LLMs capable of operating on user
devices. Current efforts in this direction often involve downsizing the models, which, unfortunately,
compromises their capabilities. Our approach offers an alternative pathway.

By offloading the personalization aspect to our smaller simulator model, the need for constant
online connectivity and server-side computation diminishes. This model can be trained directly on
user devices, allowing the original, more robust LLMs to retain their full capabilities while providing
personalized experiences. Although internet connectivity remains a requirement for initial interac-
tions, our methodology lays the groundwork for more independent, on-device LLM in the future.
This advancement not only enhances user privacy and accessibility but also marks a significant step
towards more sustainable and efficient AI technologies in everyday applications.

8.3.3 Societal: Promoting Sustainable and Ethical AI Research

In discussing the societal impact of our research, it’s essential to recognize the broader implications
of AI technologies on the environment and accessibility. A key aspect of our work is the reduced
computational resource requirement for adaptable language models. This lessens the environmental
impact, which is crucial in an era of heightened ecological awareness, and democratizes access to
advanced AI technologies. With our approach, requiring fewer resources, a wider range of individuals
and groups, from academic researchers and students to tech enthusiasts, can experiment with and
train these models on their own devices. This democratization aligns with the goal of making AI
more inclusive and accessible, breaking down barriers that previously limited engagement with these
technologies to entities with substantial computational capacities.

Addressing AI Misalignment and Encouraging Responsible Research

The second part of our societal impact concerns the ethical dimensions of AI, particularly the issues
of misalignment and agency. Our work highlights the real-life consequences of unmonitored AI
systems, showcasing instances where such technologies have negatively impacted human living con-
ditions. By bringing these issues to the forefront, this thesis emphasizes the necessity of considering
AI’s societal impacts throughout the research process.

Throughout this work, we maintain a dual focus on research advancement and societal implica-
tions, underlining the importance of AI technologies aligning with human values and societal norms.
We hope that this approach encourages other researchers to similarly prioritize the societal impact
of their work, fostering a research culture that not only pursues innovation but also conscientiously
evaluates how such advancements affect the broader society.
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8.4 Ethical Considerations

While this thesis has extensively focused on the technical development of AI, it is important to
address the ethical implications of these advancements. Integrating ethical considerations into AI
education is essential, either by incorporating ethics as a fundamental component of university
curricula or by promoting collaborations with experts in the field. This section aims to explore
some ethical considerations, underscoring the need for balanced progress in AI that is aware of its
broader impacts on society and human values.

8.4.1 Humanazing AI: When Do Machines Become Too Human?

Throughout this thesis, our primary aim was to develop machines that better understand us through
learning dynamics akin to human experiences. This objective raises an important ethical question:
how much should we blur the line between humans and machines?

There are two principal approaches to this dilemma. One approach is maintaining a clear distinc-
tion between machines and humans, ensuring these entities are consistently recognized as distinct.
However, this may impose a mental workload on users, requiring them to adapt to interacting with
these machines. Conversely, creating machines increasingly resembling humans could ease this cog-
nitive strain and enhance Human-Machine Interaction. Yet, a pressing ethical concern arises: what
are the implications when machines become indistinguishable from humans?

This question must be considered from both human and machine perspectives. From a human
standpoint, we must ponder the ethics of potentially deceiving a person into believing they are
interacting with another human. What could be the societal impacts of such interactions? The
2013 film "Her" by Spike Jonze illustrates this dilemma, where the protagonist falls in love with an
AI entity. This scenario resembles an incident involving a Google engineer who believed an advanced
language model exhibited sentience [Guardian, 2022]. In these situations, is it morally acceptable
to subject individuals to emotional connections with entities they can neither physically interact
with nor share a human experience? This concern intensifies where very lonely individuals find
company and potentially life-saving connections through their interactions with AI systems. From
the machine’s perspective, ethical questions about their treatment arise as they evolve to exhibit
human-like reasoning and emotions. Specifically, the Reinforcement Learning paradigm, based on
rewards and punishments, becomes a point of question. How does penalizing an AI entity with a
-10 penalty differ from inflicting a physical slap as punishment? The primary distinction lies in our
control over the virtual realm in which these machines live, rendering their experiences less tangible
compared to our reality. This control is akin to an author’s power over the fate and pain of fictional
characters in a story. Yet, unlike fictional characters, machines possess the capability to interact
with our world and us. Therefore, the ethics of ’punishing’ such entities demands contemplation,
especially as they grow increasingly sophisticated and sentient-like in their interactions with the
human world.

8.4.2 AI and the Future of Work: Progress or Pressure?

In this thesis, our focus has been on enhancing human-machine interaction, particularly in commu-
nication. We discussed complex concepts like agency and misalignment, critically analyzing recent
advancements in Reinforcement Learning Fine-Tuning LLMs and their shortcomings in addressing
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misalignment issues. Yet, the broader societal implications of AI advancements remain to be fully
explored.

The current AI evolution parallels the Industrial Revolution in many ways but with distinct im-
plications. The Industrial Revolution’s machines replaced human labor, improving living standards
but also displacing jobs. While this shift ultimately led to the creation of new, more specialized
roles requiring advanced education (such as mechanics instead of manual laborers), it inevitably
left behind those unable to adapt to the rapid changes, whether due to lack of resources, skills,
or other constraints. This transition, while broadly beneficial, impacted individual livelihoods and
societal structures. Today’s advancements in AI hold the potential to similarly reshape society,
automating repetitive tasks in favor of roles that demand more uniquely human expertise. This
transition is likely to create and encourage new job opportunities, such as those in advanced fields
like computer science, mirroring the changes brought about by the Industrial Revolution. However,
just as before, this shift raises important questions about the evolving landscape of work and our
collective priorities.

If AI’s capability transforms a typical five-day workweek into four days, how does this reshape
our perception of work and leisure? Will individuals be encouraged to enjoy an extra day of rest, or
will the pressure to increase productivity push for more work within the reduced timeframe? These
considerations are deeply rooted in societal value alignment: what do we prioritize as a society?

Though I do not claim to have the answers, I envision a future where AI’s efficiency allows us to
reevaluate our work-focused lifestyle. As AI reshapes our efficiency and production capabilities, we
must continually question and assert our values, ensuring that technological advancements enhance,
rather than worsen, our quality of life.

8.4.3 The AI Race: Balancing Innovation with Responsibility

The contemporary trend in artificial intelligence is a race towards creating ever-larger and more
advanced AI models. While these developments are undoubtedly groundbreaking, it becomes crucial
to pause and consider the broader implications of such rapid advancements. This section explores
several critical aspects often overshadowed by the allure of AI’s capabilities.

Inequality in Compute Power and Innovation Access

The demand for substantial computational resources to develop and operate advanced AI models
like transformers highlights a significant disparity in the capability to innovate between well-funded
industry giants and resource-constrained academic institutions. This disparity limits the progress of
new research in places that usually support the early development of ideas and widens the techno-
logical divide across different regions and economic backgrounds. As addressed in the discussion of
LSTM limitations, the necessity for high compute power often favors entities with greater resources,
potentially leading to a concentration of AI advancements in fewer hands. This concentration risks
exacerbating global inequalities and hinders the democratization of AI technology. Recognizing and
addressing these challenges is essential for ensuring that advancements in AI contribute positively
across all sectors of society, not just those with the most substantial financial capabilities.
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Environmental Impact

Following the concern of compute inequality, the environmental footprint of AI development is
another significant aspect that needs urgent attention. Training large-scale AI models require sub-
stantial computational resources and energy, leading to notable carbon emissions. As AI technology
advances, adopting an interdisciplinary approach that integrates sustainable practices into every
stage of AI development is essential. This effort extends beyond software optimization to include
collaboration with hardware researchers and manufacturers. The goal is to innovate and create
hardware that is not only more powerful but also energy-efficient.

Moreover, this issue feeds into the broader debate about energy sources, particularly the bal-
ance between renewable and non-renewable options. The AI field, therefore, has a responsibility
to advocate for and utilize renewable energy sources wherever possible, thereby minimizing its
environmental impact.

AI in Classrooms

The introduction of Large Language Models into the educational sector holds both potential for
enhancing learning and poses significant risks, particularly in the context of the current education
system. Students, faced with the pressure of academic success, might resort to using LLMs to
compose entire texts, thereby bypassing the essential learning process. This challenge necessitates
a shift in our educational paradigms. Rather than emphasizing memorization and writing skills,
education systems should pivot towards promoting critical thinking and analytical abilities. The
ability to discern text inconsistencies, whether AI-generated or otherwise, should be central to this
new educational system.

On the positive side, LLMs can be transformative in personalizing learning. They can adapt
educational content to suit individual learning styles and paces, a practice proven to be highly
effective [Gómez et al., 2014, Zhang et al., 2020a]. This personalized approach could allow teachers
to focus on facilitating deeper understanding and addressing specific learning challenges.

In essence, while LLMs bring potential risks to the education system, they also open up oppor-
tunities for a more inclusive and effective learning environment.

The Human Cost of AI

The development of Large Language Models like ChatGPT relies heavily on human annotators,
who play a role in processing and filtering massive amounts of data. These annotators are often
tasked with sifting through internet content, selecting or excluding materials that could influence
the training process of these AI systems. This task exposes the annotators to a wide array of
content, including potentially disturbing or traumatic material.

For instance, annotators in Kenya, who have contributed significantly to training models like
ChatGPT, often encounter distressing content as part of their job [Guardian, 2023]. The nature of
this work can have long-lasting psychological impacts, with stress and trauma potentially persisting
long after the job is done. This raises an ethical question: Should the advancement of AI, aimed at
enhancing human life, be built upon the potential suffering of humans?

It is crucial to consider the human cost behind these advancements. Providing adequate mental
health support, creating safer work environments, and developing strategies to minimize exposure
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to harmful content is essential to ensure ethical AI development.

Copyright Issues in AI Contributions

The integration of human-generated data into AI systems presents complex copyright issues that
need urgent addressing. As modern Generative AI technologies utilize vast datasets often provided
by human contributors, questions arise about the ownership and copyright of the outputs generated
by these systems. This debate extends to whether contributors should retain any legal rights over
their input or the AI-generated content that results from it.

The current legal frameworks are often not equipped to handle the unique challenges posed
by AI-generated content, leading to potential conflicts between AI developers, users, and content
providers. There is a growing need for laws that recognize and regulate the contributions of both
humans and AI systems in a way that protects the rights of all parties involved.

The Workforce in an AI World: Anxiety and Adaptation

Continuing on the topic of mental health, the advancement of AI and automation extends its impact
on the psychological well-being of individuals, especially young adults. The prospect of AI replacing
human roles in various sectors has ignited a pervasive sense of employment anxiety. This fear is not
just about the potential loss of jobs but also about the uncertainty of the future in an increasingly
AI-driven world.

This anxiety is rooted in the perception of AI as a threat to job security, fueling concerns about
the relevance of human skills in the future workforce. To address this, it becomes vital for society
to shift its perspective on AI and automation. Rather than viewing these technologies as replace-
ments for human workers, we should see them as complementary to human skills. Emphasizing a
cooperative relationship between technology and the workforce can help alleviate some of the fears
associated with AI-driven automation.

In light of this, there is a need for enhanced mental health support. Providing counseling services,
stress management workshops, and educational courses about AI and its role in the future of work
can be effective ways to help people. Additionally, promoting environments where individuals can
learn to use and understand these technologies can empower them, turning fear into a sense of
control for the future.

Concluding Thoughts

The race towards achieving AI supremacy should not be blinded by the pursuit of technological
excellence alone. We must broaden our focus to prioritize the long-term societal, environmental,
and ethical implications of AI development. By doing so, we can ensure that AI advancements truly
enhance the quality of life and well-being of all involved, paving the way for a more balanced and
conscientious technological future.
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Appendix A

Meta-Analysis of Thesis Writing Process

This appendix aims to provide a clear and honest view of what goes into writing my doctoral thesis.
When I first started my writing, I looked through dozens of theses in my university’s library and
noticed something missing: there was no trace of the actual effort, the ups and downs, that went
into writing them. This lack of transparency inspired me to record my writing process to give future
PhD students a real-life reference of what to expect.

I kept track of my writing by simply counting the characters I wrote each day, and later on, I
also started counting the math equations and titles. This method gave me a complete picture of my
progress. From this data, I learned a lot about how academic writing works. The hardest part was
just getting started with writing, which led me to seek help from a writing advisor. Their support
got me going and taught me the importance of asking for help. The data also showed that my
writing productivity varied, which is expected considering all the different tasks and responsibilities
that come with a PhD.

I have created this appendix, especially for other Ph.D. students at my university and in my
lab. I hope it can act as both a guide and a source of encouragement, showing an accurate picture
of the thesis-writing journey. Keeping track of my writing was not just about the numbers; it was
motivational and helped me see how far I had come. Looking back at the comments I made along
with the character counts, it is interesting to see how my worries and challenges have shifted over
time. With this appendix, I aim to make the thesis-writing process more transparent and relatable
for future scholars who are about to start this important academic journey. Beyond that, I hope
to set a precedent, encouraging other Ph.D. students to record and share their own journeys. By
doing so, we can collectively build a richer, more supportive framework for academic writing that
truly reflects the diverse experiences and challenges of PhD life.

A.1 Comparison with Peers

Engaging in comparison with peers and seeking their advice is crucial in academia and life. It not
only aids in understanding the process but also instills a sense of control over your work. In this
spirit, I began by reviewing theses written by my colleagues and later conducted interviews with
those who had recently completed their doctorates.
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A.1. Comparison with Peers

A.1.1 Analyzing Previous Theses

First, I examined theses written by colleagues in my department, accessible through Sapienza’s
publication system, Iris. I found 24 published theses1.

The first aspect I examined was the page count, which, excluding bibliographies, averaged 116.9
pages with a standard deviation of 31.7. Next, I observed the structural pattern: most theses were
divided into self-contained chapters based on published material. Initially, I adopted this structure,
too, but after consulting with my supervisor, I realized this approach could disrupt the thesis’s flow.
Therefore, I revised the structure significantly, leading to a notable difference between the initial
Table of Contents (Figure A.1) and the current one.

A.1.2 Interview with Graduates

After analyzing the thesis, I sought the experiences and advice of those who had already graduated.
I interviewed six of my senior colleagues, all recent Ph.D. graduates, to gather insights. These
interviews covered a range of topics, from the technicalities of thesis submission to the personal
challenges encountered during the Ph.D. journey.

Summary of Responses

The responses from the interviews highlighted several key aspects:

1. Thesis Delivery : The delivery process involves uploading the thesis to the university portal,
identifying external reviewers, and meeting specific deadlines. The committee structure varies
but typically includes internal and external members.

2. Review and Approval Time: It generally takes 1-2 months to receive revisions from reviewers.
Auditors’ judgment usually ranges from good to excellent, with suggestions for minor or
significant changes.

3. Challenges: The main challenges include creating a consistent structure and narrative, man-
aging time pressure, and dealing with language barriers. Most emphasized the importance of
transforming multiple publications into a coherent document.

4. Advice for Future Ph.D. Students: Common suggestions included talking to peers in sim-
ilar situations, using year-end reports as a starting point, and looking at other theses for
structure inspiration. Resources like LaTeX templates, Overleaf, and AI writing tools were
recommended.

5. Post-Doctorate Plans: Responses varied from pursuing postdoctoral research to exploring job
opportunities and research grants.

Effect on My Approach

The insights I gained from these interviews significantly shaped my thesis writing approach. Under-
standing their experiences, particularly regarding the time commitment they dedicated, offered me
a realistic perspective on the process. Their time frames varied from one to six months, averaging

1There were many more theses available, but these were not published.
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A.2. Methodology of Data Collection and Writing Process

around 2.6 months, with many reporting up to eight hours of daily work. I learned the role of
planning in both the structural development of the thesis and the preparation for its defense.

Furthermore, their reflections on seeking support were particularly impactful. It reinforced the
value of utilizing available resources, whether leveraging digital tools like Overleaf and AI writing
assistants or engaging in discussions with fellow academics.

From them, I learned the value of early planning and consistent effort. Their advice: start with
a detailed plan, but be prepared for it to evolve. They also stressed the importance of balancing
writing with rest and self-care.

A.2 Methodology of Data Collection and Writing Process

In writing my thesis, I utilized Overleaf, a LaTeX editor that is useful for composition and for
tracking my progress. Overleaf offers a feature to count words, including headers and mathematical
equations (both inline and displayed). However, I only discovered the capability to track headers
and equations halfway through my thesis writing; for this reason, they appear later in my tracking.

My approach to data collection was straightforward: I tracked the days I worked on the thesis
rather than the hours I spent each day. Overleaf also keeps a detailed history log in HTML format,
which records the date and time of each writing session but not the word count. Later, I downloaded
this HTML log and extracted the dates and times for a deeper time analysis. So, the upcoming
data analysis will combine these two sources, offering a more complete view of my thesis writing
timeline.

It is important to note that my thesis is cumulative, primarily based on my previous publications.
This nature of the thesis meant that much of my writing involved adjusting existing texts rather
than creating entirely new content. As a result, the time taken for my writing process might differ
significantly from those working on monographic theses, where the content is entirely original. This
distinction is crucial for anyone looking to compare their progress with mine, as the nature of the
thesis heavily influences the writing process.

A.2.1 AI Tools for Writing

A significant part of my writing process involved leveraging AI tools to refine my scientific writing.
Being a fluent but non-native English speaker, I found that tools like Grammarly, Wordtune, and
ChatGPT were invaluable in enhancing the clarity and readability of my work. While the content
and research are my own, the assistance of such technologies has made this thesis more reader-
friendly and significantly sped up the writing process.

The process was iterative and required careful management. I often found myself guiding the
AI towards more suitable expressions or adjusting the wording myself. It is worth noting that while
I always provided the content for the AI-generated suggestions, these tools occasionally introduced
content that I had not written or suggested, often inaccurately. Therefore, a critical and thorough
review of the AI-generated text was essential to ensure accuracy and maintain the integrity of the
content.

This process underscores the importance of being critically engaged with AI tools. Moreover,
this experience has provided me with additional insights on Human-Machine Interaction and on
improving not just this work but also my future research.
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A.2.2 Evolution of Thesis Structure

My journey in writing the thesis started with creating the Table of Contents. This step provided
a comprehensive view of the entire thesis, helping me envision the structure and flow of my work.
The process of outlining the Table of Contents was not just about listing the chapters; it was about
framing the narrative I intended to develop through my research.

During this initial phase, an important realization was the insignificance of chronological order
in the context of a thesis. Instead, what mattered more was the contextual relevance and how each
chapter contributed to answering the research questions. For instance, in my thesis, while Chapter
7 preceded Chapter 6 chronologically, the narrative demanded an inverse order.

Figure A.1: Initial Table of Contents

When I began writing, I started with the methodological chapters. These chapters mainly
involved reshaping work I had already done. This was a practical starting point and made moving
into more complex parts of the thesis easier. However, as I progressed, the structure of the thesis
naturally evolved. The initial Table of Contents changed quite a bit; new chapters were added,
and others were repositioned or revised. This dynamic process is evident when comparing the final
structure of my thesis with the initial Table of Contents, which is presented in Figure A.1.

Midway through the thesis writing, I was prompted to write an extended abstract for unrelated
reasons. This exercise turned out to be a turning point in my writing journey. It offered me a new
perspective on my work, helping me to crystallize the core themes and issues. Notably, it brought
into sharper focus the emphasis on concepts like agency and misalignment, aspects that were not
as pronounced in the early drafts. Consequently, I highly recommend writing a summary or an
extended thesis abstract as a second step, following the Table of Contents.

A.3 Data Analysis

This section details the analysis of my thesis writing data. Initially, I focus on entries from my
manual log, recording word counts and dates. Subsequently, I explored insights from Overleaf’s
history feature. As we will observe, discrepancies emerge between these two sources, prompting a
combined analysis for a fuller picture.
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Figure A.2: Daily and Cumulative Word Count: The x-axis represents the dates, and the left y-axis (in
green) corresponds to the cumulative word count aligned with the blue line. At the same time, the right
y-axis (also in green) relates to the daily word count depicted by the bars.

A.3.1 Manual Logged Entries

Throughout my thesis journey, I wrote a total of 37,128 words across 45 active writing days, spanned
over 213 days. The longest pause in writing was 33 days, while my most consistent streak involved
writing for four consecutive days. On a weekly average, I crafted 1,256 words.

The graph in Figure A.2 highlights two noticeable gaps. The first, from late July to mid-August,
was a period when I attended a conference and took a well-deserved vacation (it is vital to rest and
recharge). The second, from mid-September to mid-October, coincided with job interviews, an
invited talk, and some intermittent breaks. The graph illustrates phases of intense writing, often
followed by rest periods.

A.3.2 Overleaf history

The Overleaf history review revealed some variations: the total writing days rose to 72, and the
total writing timeframe shortened to 158 days. The additional days accounted for in the Overleaf
history likely indicate days I missed logging manually. At the same time, the reduced timeframe is
attributed to starting the Overleaf document from a previously worked-on copy, thus omitting 55
days of activity.

With Overleaf tracking precise modification times, we can estimate the average time spent per
writing day, circa 4 hours (03:47:16), and the total time spent, which amounts to 11 days, 09 hours,
and 05 minutes. However, these estimates assume continuous work without breaks, based on the
first and last entry times within a day, making it a high upper boundary.

The most extended break between writing sessions was reduced to 12 days. Even during va-
cations, this indicates that I accessed the document for minor tweaks that I then failed to log.
Meanwhile, the longest stretch of continuous writing extended to 11 days.

Figure A.3 reflects the updated, more substantial investment of time in writing, providing a
representation that more accurately mirrors the effort poured into my thesis.
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Figure A.3: Aggregated Data on Writing Sessions: This updated graph’s x-axis lists the dates; the left
y-axis (in green) aligns with the cumulative word count indicated by the blue line, and the right y-axis (in
green) represents the daily minutes spent writing, corresponding to the green bars.

A.3.3 Combined analysis

Figure A.4: Structural and Content Development: Correlation between writing time, headers, and math
displays over the thesis writing period.

Figure A.4 illustrates the incorporation of headers and mathematical formulas into the graph.
It highlights that the frequency of these elements does not consistently align with increases in
word count. This disparity suggests a distinct differentiation in the nature of tasks associated with
thesis writing. The initial setting up of the structure, as marked by the creation of headers, often
precedes the more intensive content development phase. Once the thesis framework is established,
the focus shifts predominantly to expanding and refining the content. This observation reflects
my personal experience, where showing a clear structure early on facilitated a smoother and more
focused content-writing phase.

A.4 Conclusion and Discussion

Crafting my thesis resembled navigating through a complex labyrinth rather than a straightforward
journey. Early in the process, I realized the significance of sacrificing chronological order in favor
of contextual relevance for each chapter, which proved more effective in addressing my research
questions. My advice to those embarking on their thesis is to begin with a well-structured table of
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contents and a comprehensive summary. This strategy offers a clear roadmap and a defined sense
of direction.

The actual writing felt like a series of sprints, with breaks in between for conferences, vacations,
or job interviews. Recording my progress was a game-changer. Seeing the word count rise was not
just about tracking; it was motivating. It is a practice I would strongly recommend to others.

A.4.1 Challenges, Solutions, and the Role of Technology

The most challenging aspect for me was revisiting and refining my written texts. I discovered that
the older the text, the easier it was to revise. Freshly written sections often required some distance
before I could critically evaluate and revise them effectively. Additionally, being in a supportive
environment, especially with my partner, who was also engaged in thesis writing, proved invaluable.
Sharing the experience with someone who understood the process’s ups and downs helped validate
and navigate through the challenging phases.

Technology played a big part too. Overleaf was great for drafting and tracking my thesis.
AI writing tools like grammar checkers and ChatGPT helped refine my writing. These tools did
not reduce my workload but changed it. They are great for getting a draft going, but always read
critically what they produce. Sometimes, they come up with incorrect stuff, so always double-check.

A.4.2 Personal Takeaways and Final Thoughts

This analysis helped put my thesis into perspective. It made me realize that the thesis is just a
part of the PhD journey, not the entirety of it. It is a valuable piece of work, but it is not the whole
story of what I have learned and experienced.

In sharing this, I hope to set a precedent. I want future PhD students to have a real-life example
of what the thesis writing process can look like. It is not just about the final product but also the
journey to get there. My advice is to embrace the process, find your support system, use the tools
available, and remember to take a step back once in a while to see the bigger picture.
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