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SOME PRELIMINARY RESULTS ON A HIGH ORDER ASYMPTOTIC
PRESERVING COMPUTATIONALLY EXPLICIT KINETIC SCHEME∗

RÉMI ABGRALL† AND DAVIDE TORLO‡

Abstract. In this short paper, we intend to describe one way to construct arbitrarily high order
kinetic schemes on regular meshes. The method can be arbitrarily high order in space and time, run
at least CFL one, is asymptotic preserving and computationally explicit, i.e., the computational costs
are of the same order of a fully explicit scheme. We also introduce a nonlinear stability method that
enables to simulate problems with discontinuities, and it does not kill the accuracy for smooth regular
solutions.
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1. Introduction
Let us specify first the context. We are given the PDE

∂u

∂t
+

∂f(u)

∂x
=0 (1.1a)

with the initial condition

u(x,0)=u0(x), (1.1b)

with u∈Rp and f :Rp→Rp a Lipschitz continuous flux. It is known, at least since the
work of Jin [13] and then Natalini [17] and co-workers, that this system can formally
be seen as the limit for ε→0 of a relaxation system:

∂F

∂t
+Λ

∂F

∂x
=

M(PF)−F

ε
(1.2a)

with F∈Rk×p, M is a Maxwellian and P is a linear operator such that PM(PF)=PF.
The constant matrix Λ and the flux f are linked by PΛM(PF)= f(PF). The simplest
example, due to Jin and Xin [13], is

∂u

∂t
+

∂v

∂x
=0

∂v

∂t
+a2

∂u

∂x
=

f(u)−v

ε

that can be rewritten in the form (1.2) with:

∂f1
∂t

+a
∂f1
∂x

=
M1−f1

ε
,

∂f2
∂t

−a
∂f2
∂x

=
M2−f2

ε
,

(1.3)
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erstrasse 190, Zürich, Switzerland (remi.abgrall@math.uzh.ch).
‡Inria Bordeaux-Sud-Ouest, 200 avenue de la vieille tour, 33405 Talence, France (davide.torlo@

inria.fr). https://davidetorlo.it/

297

mailto:remi.abgrall@math.uzh.ch
mailto:davide.torlo@inria.fr
mailto:davide.torlo@inria.fr
https://davidetorlo.it/


298 RESULTS ON ASYMPTOTIC PRESERVING KINETIC SCHEME

i.e., where

F=

(
f1
f2

)
, Λ=

(
a 0
0 −a

)
, PF=f1+f2 and M=

(
M1

M2

)
where the Maxwellian is defined from the relations

M1+M2=f1+f2=u, a(M1−M2)=f(u),

i.e.

M1(f,a)=
1

2

(
f1+f2+

f(u)

a

)
,M2(f,a)=

1

2

(
f1+f2−

f(u)

a

)
.

We know that a must be larger than the max of |f ′(u)| because of the Whitham sub-
characteristic condition, obtained via a formal Chapman Enskog expansion. Another
argument is, as shown by [6], that under this condition the two Maxwellians M1 and M2

satisfy a monotonicity condition, i.e. the BGK model becomes compatible with entropy
inequalities.

The questions we address in this paper are the following: Given a system (1.1)
and a regular grid of spatial step ∆x>0, can we construct a computationally explicit
scheme that solves (1.2) with uniform accuracy of order r>0 for all ε>0 and with a
CFL condition, based on the matrix Λ, that is larger than 11. The answer is yes, and
this paper proposes a simple construction in one dimension. By computationally explicit
we mean that the solution of a certain scheme does not require any nonlinear solver,
nor the inversion of a mass matrix.

High order accurate methods for kinetic problems à la Shi-Jin has received a lot of
attention in the recent years. For a long time the state of the art was that of second
order in time and space finite volume with a TVD-like stabilisation, see e.g [3]. For
higher than second order, one may mention [15] where a splitting approach is adopted
with a regular CFL stability condition for the overall finite volume scheme, [19] where
relaxed upwind schemes are proposed running up to CFL =1 and up to third order in
time/space, again in a finite volume context. In [4], a WENO approach is proposed.
In [9] a discontinuous Galerkin approximation of the system (1.2) is developed (with
a temporal scheme allowing very large CFL number). In the kinetic literature, where
the fluid system is represented with the BGK approximation, so that dense and less
dense flows can be simulated, there has also been a large effort towards high order
schemes with asymptotic preserving properties. One may mention [5] for hyperbolic
systems with diffusion, [23] where a high order conservative semi-Lagrangian technique
is developed.

We want to go beyond that, with very simple and cheap numerical schemes that
are potentially arbitrary high order and run at CFL =1, with an accuracy that is inde-
pendent of the relaxation parameter ε. The format of the paper is as follows. We first

introduce the general method which amounts to describing the discretisation of Λ
∂F

∂x
and a time discretisation. We take into account the source term. The scheme resulting
from this discretisation is fully implicit. The next step is to show that, thanks to the
operator P, and using a particular time discretisation, we can make it computationally

1Initially, the first author was motivated by understanding in a better way the LBM method, even
though the answer is not about the LBM method at all. The only remaining property between what
we look for and the LBM method is the CFL condition.
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explicit, and high order accurate, independently of the parameter ε. Several choices
of Λ and Maxwellians M are described. We also address the question of the nonlinear
stabilisation of the method when discontinuities appear. Several numerical examples,
covering scalar and system cases, are then proposed to show the relevance of the method.
The accuracy is checked for the scalar case.

2. General discretisation principle

Starting from (1.2), the idea is to discretise first in space Λ
∂F

∂x
. This introduces an

error which we assume to be O(∆xq),

∂F

∂t
+

1

∆x
ΛδF=

M(PF)−F

ε
+O(∆xq). (2.1)

The second step is to discretise in time, so that we expect that the resulting scheme
will be of order p in space and time, at least for moderate values of ε. The problem
is then two-fold: (i) how to define the discretisation operator δ for which a minimum
requirement is the semi-discrete linear stability when there is no source term, (ii) how
to discretise in time so that the accuracy is uniform in time and ε. We first discuss the
issue of time discretisation, then space discretisation.

2.1. Time discretisation. One may use IMEX Runge-Kutta schemes, and
more precisely SSP IMEX Runge-Kutta schemes, to have a better control of the stability
properties of the method. Rewriting (1.2a) as the sum of a non-stiff term and a stiff
one

dU

dt
+F(U)=

G(U)

ε
(2.2)

an IMEX method is defined by two Butcher’s tableaux

c A
0 bT

and
c̃ Ã

0 b̃T

where the first one is for the non-stiff part, while the second one is for the stiff part:

U0=Un

...

Uk=U0+∆t

k−1∑
j=1

akjF(Uj)+
∆t

ε

s∑
j=1

ãkjG(Uj)

...

Un+1=Un+∆t

s∑
j=1

bjF(Uj)+
∆t

ε

s∑
j=1

b̃jG(Uj)

(2.3)

with various compatibility conditions so that a given order is reached, see [11, Chapter
IV]. Anticipating a bit, if there exists a linear operator P such that PG=0 as here,
we see that, applying P to (2.3), a necessary condition is that the explicit RK scheme
defined by the explicit part is itself SSP. Since we want to have a running CFL number
of at least one, this needs that the SSP RK scheme must have a CFL number of at
least 1+ϵ, ϵ>0. To our knowledge there are some explicit SSP RK schemes satisfying
this condition, inter alia [20], but they are not generalizable to arbitrarily high order of
accuracy, and no IMEX versions are available.
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For this reason, we use an IMEX deferred correction (DeC) method. It is a general
way of building arbitrarily high order Runge Kutta schemes. It also allows more freedom
in the spatial discretization, for instance, allowing the use of lumped mass matrix [1].
Its implicit and IMEX versions allow to use a combination of more traditional low order
IMEX schemes and arbitrarily high order implicit RK schemes, obtaining arbitrarily
high order IMEX schemes. We leave the study of SSP version of these schemes for
future research. The final IMEX DeC scheme we obtain is computationally explicit and
it is also matrix-free.

2.1.1. Deferred correction. The DeC is an iterative procedure that was
proposed and developed in its explicit version in [10] and in an implicit version in [16].
It was applied to hyperbolic PDE, for instance, in [1], with a new formalism which makes
the proof of its properties more straightforward. An IMEX version of this algorithm
applied to hyperbolic PDE is available in [2], and the algorithm we discuss in the
following is a modification of this one. With the notation of [1], the DeC uses two
operators: one high order accurate L2, which defines a fully implicit method, and a
low order easy to solve L1 operator. The process allows to approximate with arbitrary
accuracy the solution of the high order operator L2, with the simplicity of the operator
L1. We start with the description of the high order operator L2.

Let us consider q+1 points in [0,1], c0=0<c1 .. .<ci<...<cq =1 and the quadra-
ture formula ∫ tn+ci∆t

tn

φ(s)ds≈∆t

q∑
j=0

aijφ(tn+cj∆t).

More precisely, if {ℓj} are the Lagrange polynomials associated to the partition {cj}qj=0,
if we take

aij =

∫ ci

0

ℓj(s)ds,

the quadrature formula is of order q+1. We will always require that the quadrature
formula is consistent, i.e.

q∑
j=0

aij = ci. (2.4)

Considering xk, a grid point, and setting Fn,j
k ≈F(xk,tn+cj∆t) and Fn,0

k =Fn
k , an

approximation of (1.2) is:

Fn,j
k −Fn,0

k +
∆t

∆x

( q∑
l=0

ailΛδkF
n,l

)
−µ

q∑
l=0

ail
(
MPFn,l

k −Fn,l
k

)
=0, j=1,. ..,q (2.5)

where µ= ∆t
ε and δF

∆x is a consistent approximation of
∂F

∂x
. We will set Fn+1

k =Fn,q
k .

The relations (2.5) can be rewritten in matrix form, setting

Fk=
(
Fn,1

k ,. ..,Fn,q
k

)T
, F (0)

k =
(
Fn,0

k ,. ..,Fn,0
k

)T
=
(
Fn

k ,. ..F
n
k

)
,

and neglecting the index of the timestep n, as
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Fk−F (0)
k +

∆t

∆x
ΛAδkF−µA

(
M(PFk)−Fk

)
+

∆t

∆x
Λa0⊗δkF

n,0−µa0⊗(M(PFn,0
k )−Fn,0

k )=0, (2.6)

where, by abuse of language, we have written

M(PF)=
(
M(PF1),. ..,M(PFq)

)T
.

The matrix A is

A=

a11 .. . a1q
...

...
...

aq1 .. . aqq


and we have

a0=

a0q
...

a01

.

As a result, (2.6) is implicit, and in general nonlinear, because of the Maxwellian.
In order to simplify the resolution, we consider a simpler scheme, where the source term
discretisation remains the same and the forward Euler method is used on each sub-time
step:

Fn,j
k −Fn

k +cj
∆t

∆x
ΛδkF

n,0−µ

q∑
l=0

ajl
(
M(PFn,l

k )−Fn,l
k

)
=0, j=1,. ..,q. (2.7)

We rewrite this as:

Fk−F (0)
k +

∆t

∆x
CΛδkF (0)−µA

(
M(PFk)−Fk

)
−µa0⊗(MPFn,0

k −Fn,0
k )=0 (2.8)

where C= diag
(
c1,. ..,cq

)
and F (0)=(Fn,0,. ..,Fn,0)T .

This leads to the introduction of two operators L1 and L2 acting on F =
(.. .,Fk,Fk+1,. ..) and defined as:[
L1(F)

]
k
:=Fk−F (0)

k +
∆t

∆x
CΛδkF (0)−µA

(
M(PFk)−Fk

)
−µa0⊗(M(PFn,0

k )−Fn,0
k ),

and [
L2(F)

]
k
:=Fk−F (0)

k +
∆t

∆x
ΛAδkF−µA

(
M(PFk)−Fk

)
+

∆t

∆x
Λa0⊗δkF

n,0

−µa0⊗(M(PFn,0
k )−Fn,0

k ). (2.9)

So that (2.8) is L1(Fn,j)k=0 while (2.6) is L2(Fn,j)k=0. In order to have more
structure, we will require that δkF has the following difference form:

δkF = F̂k+1/2−F̂k−1/2 (2.10)

where F̂k+1/2 depends on P arguments, is consistent with F and uniformly Lipschitz
continuous with respect to its arguments. Examples will be given in Section 2.2.
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Thanks to (2.4), we see that

L2(F)k−L1(F)k=
∆t

∆x
ΛA
(
δkF−δkF (0)

)
, (2.11)

the important fact is that ε plays no role here.
We will solve the problem (2.6) with the following defect correction (DeC) method:

• Set, for any k, F (0)
k =(Fn

k ,. ..,F
n
k )

T ,

• Solve for p=0,. ..,M−1 the problem

L1(F (p+1))=L1(F (p))−L2(F (p)), (2.12)

• Set Fn+1=F (M).

We remark that the operator L2 will never be solved directly as it will be applied to the
previously computed iteration F (p). The DeC procedure will converge to the solution
of the L2(F∗)=0 problem by solving iteratively (2.12). We show that if the problem
(2.6) has a unique solution F⋆ and taking M = q, we have a formal error of ∆tq, i.e.,
for a norm to be defined,

∥F (q)−F⋆∥≤C∆tq,

so that the formal accuracy is the same as solving (2.6) exactly. Before doing that, we
first have to explain how we solve for L1 and, hence, (2.12), then we show the error
estimate (and define the proper norm).

2.1.2. Solution of L1(F)=G and (2.12). Let us first start with L1(F)=G
for any G. Applying P to this equation, we get, for any k∈Z,

PFk=PGk+PF (0)
k − ∆t

∆x
PCΛδkF (0)=PGk+K,

with

K=PF (0)
k − ∆t

∆x
PCΛδkF (0).

The found equation is explicit for PF and we can in practice compute this term and use
it to obtain the solution of the whole operator. Substituting PF into the Maxwellian,
we obtain

Fk=Gk+F (0)
k − ∆t

∆x
CΛδkF (0)+µ

(
AM

(
PGk+K

)
−AFk

)
+µa0⊗(M(PFn,0

k )−Fn,0
k ),

where all the unknown terms F depend only linearly on some coefficients which we can
collect on the left-hand side(
Idq×q+µA

)
Fk=Gk+F (0)

k − ∆t

∆x
CΛδkF (0)+µAM

(
PGk+K

)
+µa0⊗(M(PFn,0

k )−Fn,0
k ).

Now, if Idq×q+µA is invertible, we can compute only once and store its inverse to obtain
an easy solution of the whole problem, i.e.,

Fk=
(
Idq×q+µA

)−1
(
Gk+F (0)

k − ∆t

∆x
CΛδkF (0)

)
+
(
Idq×q+µA

)−1
µAM

(
PGk+K

)
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+
(
Idq×q+µA

)−1
µa0⊗(M(PFn,0

k )−Fn,0
k ). (2.13a)

In this way, we are able to find a solution of the system L1(F)=G in a computationally
explicit way: the source term is split into the linearly implicit part and the Maxwellian
evaluated in the previously computed PF . The remaining terms are the explicit right-
hand side G, the explicit convection term δkF (0) and the explicit part of the high
order time integration of the source. There have been many other works using similar
techniques in order to explicitly solve the implicit discretization of the kinetic system
(1.1b), inter alia [2, 3, 8, 18]. This DeC approach combining the two operators, has
the advantage of being arbitrarily high order without building complicated structures.
Indeed, we can use this computationally explicit solution to solve (2.12).

Setting

Gk=L1(F (p))k−L2(F (p))k,

we can apply (2.13) directly. However, since the source term discretisation is the same,
we have simplifications. Indeed, after little algebra, (2.12) is rewritten as:

F (p+1)−µA

(
M(PF (p+1))−F (p+1)

)
=F (0)− ∆t

∆x
ΛAδF (p)− ∆t

∆x
a0⊗ΛδFn,0

+µa0⊗(M(PFn,0)−Fn,0) (2.14)

and we can apply the same technique. We first apply P,

PF (p+1)=PF (0)− ∆t

∆x
PΛAδF (p)− ∆t

∆x
a0⊗PΛδFn,0, (2.15)

so we know explicitly PF (p+1), and then we can solve

(
Idq×q+µA

)
F (p+1)=µAM(PF (p+1))+F (0)− ∆t

∆x
ΛAδF (p)− ∆t

∆x
a0⊗ΛδFn,0

+µa0⊗(M(PFn,0)−Fn,0),

and then

F (p+1)=
(
Idq×q+µA

)−1
(
µAM(PF (p+1))+F (0)− ∆t

∆x
ΛAδF (p)

− ∆t

∆x
a0⊗ΛδFn,0+µa0⊗(M(PFn,0)−Fn,0)

)
.

(2.16)

Again, we see that the method is computationally explicit.
Next, we show the error estimate, and then we comment more on (2.16), in partic-

ular when ε→0.

2.1.3. Error estimate. If φ :R→Rp is C1(R)p and has a compact support, we
can consider the discrete version of its L2 and H1 norms:

∥φ∥2L2 =
∑
j∈Z

∆x∥φi∥2, ∥φ∥2H1 =∥φ∥2L2 +
∑
j∈Z

∆x∥Diφ∥2

where Diφ= φi+1−φi

∆x .
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We will establish error estimates that are valid in a given but arbitrary compact
I=[a,b] with discrete equivalent of L2

loc and H−1
loc estimates:

∥F∥2,I = sup
φ∈C1

0 ([a,b])
p

∑
j∆x⟨φi,Fi⟩
∥φ∥L2

and ∥F∥−1,I = sup
φ∈C1

0 ([a,b])
p

∑
j∆x⟨φi,Fi⟩
∥φ∥H1

and we note that for φ∈C1
0 ([a,b])

p, we have a Poincaré-like inequality

∥φ∥2,I ≤ (b−a)∥Dφ∥2,I .

We first show that

Lemma 2.1. If F̂k+1/2=
q∑

l=−p

αlFk+l and letting C= max
−p≤l≤q

|αl|×max
i

|λi|, we have

∥L2(F)−L1(F)∥−1,I ≤C∥F∥2,I ∆t. (2.17)

Proof. We have, from (2.11) and since δkF = F̂k+1/2−F̂k−1/2, we have, using that
φ has a compact support,∣∣∣∣∣∑

k

∆x⟨φk,L2
k(F)−L1

k(F)⟩

∣∣∣∣∣=
∣∣∣∣∣∑

k

∆t⟨φk,AΛ
(
F̂k+1/2−F̂k−1/2

)
⟩

∣∣∣∣∣
=

∣∣∣∣∣∑
k

∆t∆x⟨Dk+1/2φ,AΛF̂k+1/2⟩

∣∣∣∣∣
≤∥A∥∥Λ∥∆t

√∑
k

∆x∥Dk+1/2φ∥2
√∑

k

∆x∥F̂k+1/2∥2

≤C∆t∥φ∥H1∥F∥2,I .

We remark that the norm of the coefficients A is smaller or equal to 1.

We also have the following lemma on L1:

Lemma 2.2. We assume that the Maxwellian is Lipschitz continuous and that there
exists C,C ′>0 such that for all ε>0,

∥
(
Id(q−1)×(q−1)+µA

)−1∥≤C, µ∥
(
Id(q−1)×(q−1)+µA

)−1
A∥≤C ′.

Let us consider F ,F ′ and G,G′ such that

L1(F)=G and L1(F ′)=G′.

Then, there exists α>0, independent of F ,F ′, ε and I such that

∥F −F ′∥2,I ≤α∥G−G′∥2,I

and

∥F −F ′∥−1,I ≤α∥G−G′∥−1,I

Proof. We have the explicit solution F and F ′ from (2.13), and we see that

(
Id(q−1)×(q−1)+µA

)(
Fk−F ′

k

)
=Gk−G′

k+µAM
(
PGk−PG′

k

)
,
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so that if ∥ . ∥ is any of the two norms, we have

∥Fk−F ′
k∥≤α∥Gk−G′

k∥.

The constant α depends on C, C ′, Λ and the Lipschitz constant of the Maxwellian.
Remember also that in (2.13), K depends only on F0,

∆t
∆x and Λ. It is independent of

ε.

Then, wrapping all together, we have the following proposition:

Proposition 2.1. Under the assumptions of Lemmas 2.1 and 2.2, if F⋆ is the unique
solution of L2(F)=0, there exists θ independent of ε such that we have, for all p∈N

∥F (p+1)−F⋆∥L2 ≤
(
θ∆t

)p+1∥F (0)−F⋆∥L2 . (2.18)

Proof. We first have, since L2(F⋆)=0

L1(F (p+1))−L1(F⋆)=
(
L1(F (p))−L1(F⋆)

)
−L2(F (p))

=
(
L1(F (p))−L1(F⋆)

)
−
(
L2(F (p))−L2(F⋆)

)
,

so that combining the inequalities of Lemmas 2.1, 2.2 and the Poincaré-like inequality,
we obtain the result.

Remark 2.1 (Comments about inequality (2.18)). This result shows that after p+1
iteration, the error is O(∆xp+1)=O(∆tp+1) if a CFL-like condition is available. Of
course it needs to be better that θ∆x<1 for the inequality to be effective, so we may
experience a reduction of the CFL number. This reduction needs to be studied case by
case, however this also shows that the overall cost of the method is of the order of an
explicit one. This is why we name this computationally explicit.

2.1.4. Asymptotic preservation. We can show that the presented method
is asymptotic preserving (AP), starting from the Chapman–Enskog expansion of the
model (1.2a). Let us define uε :=PF, we obtain that

F=M(uε)+O(ε)

∂uε

∂t
+

∂f(uε)

∂x
=O(ε).

(2.19)

Proposition 2.2. The discretisation given by (2.16) is consistent with the limit model
(2.19) up to an O(ε).

Proof. Now, using first (2.16) and then (2.15), defining u(p),ε=PF (p) and recalling
that µ= ∆t

ε , M(Pu)=u, PΛM(u)= f(u), by induction on the subtimesteps p

u(p),ε=PF (0)− ∆t

∆x
PΛAδF (p)− ∆t

∆x
Pa0⊗δF (p)+O(ε),

we can extend the formal expansion also in the discrete case, i.e.,

F (p+1)=M
(
PF (0)− ∆t

∆x
PΛAδF (p)− ∆t

∆x
PΛa0⊗δF (0)

)
+O(ε)=M

(
u(p),ε

)
+O(ε)

u(p+1),ε=u(0)− ∆t

∆x
AδPΛF (p)− ∆t

∆x
a0⊗PΛδF (0)+O(ε)

=u(0)− ∆t

∆x
Aδf(u(p),ε)− ∆t

∆x
a0⊗δf(u(0),ε)+O(ε). (2.20)
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The final result is a discretisation in space and time of the asymptotic model given by
(2.19), if the the spatial discretisation is consistent with the space derivative.

Remark 2.2. One can proceed further and prove that, both in the discrete and
the continuous case, the next term of the Chapman Enskog expansion is a diffusive
term under Whitham’s subcharacteristic condition of Λ2−∂uf(u) being positive definite.
We can also prove that the discretisation is consistent also with that term up to an
O(ε2)+O(∆t2) if the spatial discretisation is at least consistent. We refer to [2] for the
details of such computations for the sake of brevity.

2.1.5. Examples of L2 time discretisation. Here, we will consider second
and fourth order approximation in time in the L2 operator, namely the Crank-Nicholson
method and the fourth order one that uses the points tn, tn+

∆t
2 and tn+1. They are

described by their matrices A,

• Second order

A2=
(
1
2

)
,a0=

(
1
2

)
, F =

(
Fn,1

Fn,0

)
with Fn,0=Fn and Fn,1≈F(tn+1). Writing the L2 discretisation of the time
derivative applied to F, we would have

Fn,1−Fn,0+∆tAΛδF =0,

i.e.,

Fn,1−Fn,0+∆t
(1
2
ΛδFn,1+

1

2
ΛδFn,0

)
=0.

This is Crank-Nicholson. We see that(
Id1,1+µA2

)−1
=

2ε

2ε+∆t
, µA2

(
Id1,1+µA2

)−1
=

2∆t

2ε+∆t
.

are uniformly bounded in [0,2] for any (∆t,ε).
• The fourth order scheme is obtained by

A3=

 1
3

−1
24

2
3

1
6

 ,a0=

(
5
24
1
6

)
,F =

Fn,2

Fn,1

Fn,0


where Fn,0=Fn, Fn,1≈F(tn+

∆t
2 ) and Fn,2≈F(tn+1). We see that

det

(
Id2×2+µA3

)
=
(
1+

µ

3

)(
1+

µ

6

)
+

1

36
>0

so the matrix is invertible. It is also easy to see that the matrices(
Id2×2+µA3

)−1

and µ

(
Id2×2+µA3

)−1

A

are uniformly bounded.
In fact, in this case, the operator L2 corresponds to the scheme Lobatto III,
which is fourth order accurate [11]. For that reason, we will use this temporal
scheme in conjunction with a fourth order spatial approximation.
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2.2. Space discretisation: Definition of the δ operator. The only question
left is how to define a stable scheme. As we have seen in Section 2.1.4, the scheme is
asymptotic preserving. Under Whitham’s subcharacteristic conditions the relaxation
terms introduces diffusion which further stabilize the scheme. Hence, we focus only on
the stability of the convection scheme, which will also guarantee the stability of the full
scheme. The answer for the fully nonlinear convection problem is out of reach, at least
for this paper, so we will rely on a classical linear stability analysis. The stability of
the convection schemes splits into two sub-questions: is the convection scheme defined
by L2=0 conditionally or unconditionally stable, and then, is the convection scheme
defined by the DeC iteration (2.13) stable, and under which conditions. In the next
section, we will provide 3 examples with increasing accuracy, and sketch a general
method.

The matrix Λ is diagonal. In [12], the author considers the transport equation

ut+aux=0

and shows that if a<0 and

ux(xi)≈
1

∆x

s∑
j=−r

αjui+j ,

then the order is at most 2min(r+1,s) and in addition the only stable methods are
those defined for r=s or s= r+1 or s= r+2. If a>0, we set

ux(xi)≈
1

∆x

r∑
j=−s

αjui+j ,

while in that case r=s or r=s+1 or r=s+2. We will only consider these approxima-
tions. Following [12], we have

αj =
(−1)j+1

j

r!s!

(r+j)!(s−j)!
, −r≤ j≤s,j ̸=0,

α0=−
s∑

j=−r,j ̸=0

αj

and

δku

∆x
− ∂u

∂x
(xk)= c∆xq ∂

q+1u

∂xq+1
(xk)+O(∆xq+1), q= r+s,

c=
(−1)s−1r!s!

(r+s+1)!
.

Remark 2.3 (Conservation). We note that we can always write

δiu= f̂i+1/2− f̂i−1/2 (2.21)

with

f̂i+1/2=

s∑
j=−r+1

βjui+j , βj =
∑

l≥j+1

αl. (2.22)
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Proof. Assuming that f̂i+1/2=
s−1∑
j=−r

βjui+j for any i, we write

α−rui−r+ .. .+αsui+s=

(
β−r+1ui−r+1+ .. .βsui+s

)
−
(
β−r+1ui−r+ .. .βsui+s−1

)
=−β−r+1ui−r+(β−r+1−β−r)ui−1−r+ .. .

+(βl−βl−1)ui+l−1+ .. .+βsui+s

so that βj =−
∑

l≥j+1

αl, using that
r∑

l=−s

αl=0.

This means that the approximations (2.13) and (2.16), in the limit ε→0, are always
conservative since Λ is diagonal, and thanks to (2.10).

We list some possible choices for δ:

• First order approximation: this is the upwind scheme. If a>0, we take δ1uj =
uj−uj−1, while if a<0, δ1uj =uj+1−uj . If a=0, of course δ1uj =0. The flux
is

f̂j+1/2=
1

2

(
uj+uj+1+sign (a)(uj+1−uj)

)
, sign(a)=

a

|a|
.

• Second order: for a<0,

δ2uj =−uj−1

3
− uj

2
+uj+1−

uj+2

6

so that

ux=
1

∆x

(
− uj−1

3
− uj

2
+uj+1−

uj+2

6

)
+c∆x3 ∂

4u

∂x4
+O(∆x4)

with

c=− 1

12
.

This corresponds to the [r,r+2] approximation with r=−1. In terms of flux,
we have (for a<0):

fj+1/2=
1

6

(
2uj+5uj+1−uj+2

)
.

For a>0, we have

fj+1/2=
1

6

(
2uj+1+5uj−uj−1

)
,

so all in all

f̂j+1/2=
1− sign (a)

12

(
2uj+5uj+1−uj+2

)
+

1+ sign (a)

12

(
2uj+1+5uj−uj−1

)
.

• Fourth order: if r=s=2, and for any a

δ14uj =
uj+2−uj−2

12
+2

uj+1−uj−1

3



R. ABGRALL AND D. TORLO 309

hence

∂u

∂x
− δ14u

∆x
= c∆x4 ∂

5u

∂x5
+O(∆x5)

and if r=1, s=3 and a<0,

δ24u=−uj−1

4
− 5

6
uj+

3

2
uj+1−

uj+2

2
+

uj+3

12
.

In terms of flux, we have:

– for δ14 ,

f̂j+1/2=a

(
uj+2

12
+

3

4
uj+1+

3

4
uj+

uj−1

12

)
– for δ24 ,

f̂j+1/2=
1− sign (a)

2

(
uj+3

12
− 5

12
uj+2+

13

12
uj+1+

uj

4

)
+

1+ sign (a)

2

(
uj+1

4
+

13

12
uj−

5

12
uj−1+

uj−2

12

)
.

3. Stability analysis
We study the stability of the discretisation of the homogeneous problem. Since Λ

is diagonal, it is enough to look at the scalar conservation problem. We first look at the
implicit method defined by L2=0, and then at the DeC iteration that is constructed
on top of it. This is done by Fourier analysis, we can assume that a>0 and the Fourier
symbol of δ is g. The Table 3.1 displays the symbols of the operators.

Operator Symbol g

δ1 1−e−iθ

δ2
1

3
eiθ+

1

2
−e−iθ+

1

6
e−2iθ

δ14 i

(
sin(2θ)

6
+

4

3
sinθ

)

δ24
eiθ

4
+

5

6
−

3

2
e−iθ+

1

2
e−2iθ−

e−3iθ

12

Table 3.1. List of Fourier symbols.

The next step is to evaluate the amplification factors of the method, first without
DeC iteration, then with DeC iteration.

3.1. First order in time. For a first order scheme the L2 operator can be
written as an implicit Euler method, though being computationally explicit, while the
DeC iteration, which consists of one step, resembles the explicit Euler method with CFL
constrained 0≤λ≤1, where λ=a∆t/∆x. For the L2=0 operator, by Fourier transform,

we have ûn+1− ûn+λgûn+1=0, so that the amplification factor is G=
1

1+λg
which is

of modulus ≤1 if

2λℜ(g)+λ2|g|2≥0.



310 RESULTS ON ASYMPTOTIC PRESERVING KINETIC SCHEME

If λ→0+, we see that ℜ(g)≥0 is a necessary condition, while if λ→0−, ℜ(g)≤0. In all
cases, λℜ(g)≥0 is a necessary condition. Writing g=a+ ib, and assuming that λ ̸=0,
we see that this condition reads:

2λa+λ2(a2+b2)=(λa+1)2+λ2b2−1≥0.

We also see that

(λa+1)2+λ2b2≥ (λa+1)2≥1

so that λℜ(g)≥0 is a necessary and sufficient condition for stability. The Table 3.2
provides the stability condition for the first, second and fourth order schemes. For the
rest of the discussion we consider a=1 and in case it is different, one has to rescale λ
accordingly, as classically done for CFL conditions.

3.2. Second order in time. In that case the L2=0 scheme reads:

un+1
i −un

i +
λ

2

(
δun

i +δun+1
i

)
=0,

for which the amplification factor is simply

G=
1− λ

2 g

1+ λ
2 g

.

We have |G|≤1 if and only if

λℜ(g)≥0.

Again, the Table 3.2 provides the stability condition for the first, second and fourth
order schemes.

The DeC iteration is

u
(p+1)
i =un

i −
λ

2

(
δun

i +δu
(p)
i

)
,

so that

G0=1

Gp+1=1− λ

2

(
g+gGp)

and we see that

Gp+1−G=−λg

2

(
Gp−G)=

(
− λg

2

)p+1(
1−G

)
.

3.3. Fourth order in time. Here, the L2=0 scheme reads:

u
n+1/2
i −un

i +λ

(
5

24
δun

i +
1

3
δu

n+1/2
i − 1

24
δun+1

i

)
=0

un+1
i −un

i +λ

(
1

6
δun

i +
2

3
δu

n+1/2
i +

1

6
δun+1

i

)
=0
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so that the Fourier transform gives(
ûn+1/2

ûn+1

)
=G

(
ûn

ûn

)
with

G=

(
1+ λg

3 −λg
24

2λg
3 1+ λg

6

)−1(
1− 5λ

24 g

1− λg
6

)
=

(
G1

G2

)
and we have to look at max{|G1|, |G2|}≤1 for the calculation of ûn+1/2 and ûn+1 to be
stable. We have

G=

 −g2λ2+24
2g2λ2+12λg+24

g2λ2−6λg+12
g2λ2+6λg+12

 .

Then with obvious notations, the DeC iteration is

v
(p+1)
1 −un

i +λ

(
5

24
δun

i +
1

3
δv

(p)
1 − 1

24
δv

(p)
2

)
=0

v
(p+1)
2 −un

i +λ

(
1

6
δun

i +
2

3
δv

(p)
1 +

1

6
δv

(p)
2

)
=0

The Fourier analysis gives:

v̂(p+1)=

(
1−λθ10g
1−λθ20g

)
ûn−λg

(
θ11 θ12
θ21 θ22

)
v̂(p),

(
θ10 θ11 θ12
θ10 θ21 θ22

)
=


5

24

1

3

−1

24

1

6

2

3

1

6

 .

The amplification vector, Gp after the p-th iteration is defined by

G0=

(
1
1

)
Gp+1=

(
1−λθ10g
1−λθ20g

)
−λg

(
θ11 θ12
θ21 θ22

)
Gp.

(3.1)

We note that, setting θ=

(
θ11 θ12
θ21 θ22

)
,

Gp+1−G=(−λg)pθp
((

1
1

)
−G

)
and ρ(θ)=

1

2
√
3
. So using the spectra decomposition of θ which has two complex and

distinct eigenvalues, we have that

ρ(θp)≤µp=

√
17

16
+

√
241

16

(
1

2
√
3

)p

.

We get finally µ1=0.4115783562, µ2=0.1188124373, µ3=0.03429819635, µ4=
0.009901036444, hence the convergence is very quick.
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First order second order Fourth order
δ1 ✓ ✓ ✓
δ2 ✓ ✓ ✓ if λ≤4.5
δ14 ✓ ✓ (|G|=1) ✓ (|G|=1)
δ24 ✓ ✓ ✓ if λ≤ 9

4

Analytical condition λℜ(g)≥0 λℜ(g)≥0 λℜ
(
g− λg2

6

)
>0

Table 3.2. Stability conditions for the original scheme.

3.4. Summary of the stability analysis. Combining these expressions with
the actual form of the Fourier symbol of δ, we get the results of Table 3.2.

Now, we turn our attention on the DeC iteration. For the second-order-in-time
approximation, we first have

Gp=(1−θp)G+θp with θp=
(
−1
)p(λ

2
g

)p

.

So we get

|Gp|2−1= |1−θp|2
(
|G|2−1

)
+2ℜ

(
θp(1−θp)(G−1)

)
hence if |G|≤1, a sufficient condition is that

ℜ
(
θp(1−θp)(G−1)

)
≤0.

For the fourth order scheme, we have similarly

Gp=
(
Id−(−λgθ)p

)
G+(−λgθ)pe, e=

(
1
1

)
,

but it is more complicated to get an analytical condition. So we rely on Maple.

The stability conditions are summarised in Table 3.3.

Scheme # iterations
Order δ 1 2 3 4 5 6

2 δ1 1 1 1 1 1 1
2 δ2 0 ≥0.85 ≥1.22 ≥1.02 ≥1.08 ≥1.23
2 δ14 0 0 ≥1.45 ≥1.45 ≥0.002 ≥0.01
2 δ24 0 ≥0.5 ≥0.69 0.71 0.73 0.73

3 δ1 6 ≥1.5 ≥1.87 ≥2 ≥2.23 ≥2.48
3 δ2 0 0 1 ≥2.0447 ≥2.17120 ≥2.568
3 δ14 0 0 0 ≥1.6171 ≥2.4727 ≥2.9162
3 δ24 0 0 ≥0.1 ≥1.3096 ≥1.3955 ≥1.8282

Table 3.3. CFL number for stability of the DeC iterations. 0 means that the scheme is uncondi-
tionally unstable. If a real number x is given, it means that the scheme is stable up to CFL x, if ≥x
is written, this means that the scheme is stable for at least CFL x (and slightly above indeed).
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4. Wave model
We have to specify the diagonal matrix Λ and the Maxwellians M. We will use two

kinds of wave models:

• A two waves model. In that case,

Λ=

(
a 0
0 −a

)
with a≥maxiρ(f

′(ui)). Setting uε=PF, we have f(uε)=PΛF and we know
explicitly M=(M1,M2):

M1(PF)=
1

2

(
uε+

f

a

)
, M2(PF)=

1

2

(
uε− f

a

)
. (4.1)

• A three waves model, where

Λ=

a 0 0
0 0 0
0 0 −a

 .

In that case, the Maxwellian is M=(M1,M2,M3) and we have

uε= M1+M2+M3

f(uε)=aM1−aM3

so we need to specify M2.

For the scalar problems, we will use the two waves model that reveals itself sufficient.
For the fluid problems, we will show that the two waves model is not perfect, and hence
the three waves model needs to be considered.

In the case of 3 waves, let us specify M2. Following [6], we know that the sub-
characteristic condition is equivalent to the monotonicity of the Maxwellians: they need
to be differentiable and have only positive eigenvalues. In [6, 17], it is proposed to use

M1(u
ε)=

1

a
f+(u

ε)

M2(u
ε)=u− f+(u

ε)− f−(u
ε)

a

M3(u
ε)=

1

a
f−(u

ε)

(4.2)

where f(uε)= f+(u
ε)+ f−(u

ε), f± are differentiable, ∇uf+(u) has only positive eigen-
values, while ∇uf−(u

ε) has only negative eigenvalues. A possible choice, inspired by
the Enquist-Osher-Solomon flux, is

M2(u
ε)=

∫ uε

0
|f ′(s)|ds
|a|

,

but the integral (or the path integral for system) must be evaluated. In the case of the
Euler equations, we give a second one that does not necessitate the evaluation of an
integral. In the case of the Euler equations,

uε=

 ρ
ρu
E

, f(uε)=

 ρu
ρu2+p
u(E+p)

 , p=(γ−1)
(
E− 1

2
ρu2
)
, (4.3)
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we propose to use a Maxwellian that relies on the van Leer flux splitting [21]. It is
purely algebraic and defined by:

(1) if M =
u

c
≤−1, with c2=γ p

ρ , then f−(u
ε)= f(uε), f+(u

ε)=0,

(2) if M ≥1, then f+(u
ε)= f(uε), f−(u

ε)=0,

(3) if −1≤M ≤1, then

f−(u
ε)=

 Q
QR
γ

QR2

2(γ2−1)

, Q=− ρ

4c
(u−c)2, R=(γ−1)u−2c,

and f+= f− f−.

The eigenvalues of f± are bounded by

a=

 (|u|+c)
γ+3

2γ+ |M |(3−γ)
if |M |≤1

|u|+c else.

Note that γ+3
2γ+|M |(3−γ) ≤

γ+3
2γ for |M |≤1. For γ=1.4, γ+3

2γ = 11
7 ≈1.57.

5. Nonlinear stabilisation

If the solution is expected to be nonsmooth, then one can expect the occurrence
of spurious oscillations. Sometimes, oscillations are acceptable, provided they do not
lead to the crash of the simulation. In order to get rid of them, or to control them, we
have adopted the MOOD technique initially designed in [7] with some improvements
described in [22]. We have adapted it our way in order to get results that are formally
of order p+1 in space and time, here p=1,2,3.

MOOD is an a posteriori corrector of high order numerical methods [7,22]. MOOD
requires a sequence of schemes ordered from the most accurate/less stable one to the
low order/more reliable one. It also requires a series of criteria that the solution should
fulfill, e.g. physical admissibility, discrete minimum principle or numerical errors. After
having performed a step of the most accurate scheme, it checks the criteria on each
cell/degree of freedom, and detects the areas where the criteria are not met. There, we
switch to the next scheme in a cascade style, which is supposed to be more stable and
reliable. We proceed iteratively until either the criteria are met or the most reliable/less
accurate parachute scheme is used. The parachute scheme should analytically guarantee
all the criteria.

In the following we describe how the criteria must be verified on the described
spatial discretisation, while the list of the schemes that we use consists always of 2
schemes (the considered one and the upwind discretisation δ1 as parachute scheme) and
we specify directly in the numerical simulations which criteria will be considered, as
they are problem dependent.

We proceed as follows: at the time step tn, we have the values (Fn
k )k. From now

on, we drop the superscript n, since there is no ambiguity. In the DeC iteration (2.5),
with the spatial scheme defined by δp, writes (with the convention that F(l),0=F0 for
l=0,. ..,q−1)

F
(p+1),j
k −F0

k+
∆t

∆x

( q∑
l=0

ajlΛδkF
(p),l−µ

q∑
l=0

ajl
(
MPF(p+1),l

k −F
(p+1),l
k

))
, p=0,. ..,q−1,
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from which we get

PF(p+1),j
k −PF0

k+
∆t

∆x

( q∑
l=0

ajlPΛδkF(p),l

)
=0, p=0,. ..,q−1. (5.1)

The increment δkF
l is the difference of two terms, and we write

δkF
l=Λ

(
F̂l

k+1/2− F̂l
k−1/2

)
=Φ

[k,k+1],l
k +Φ

[k−1,k],l
k

with

Φ
[k,k+1],l
k =ΛF̂l

k+1/2−ΛFl
k, Φ

[k,k+1],l
k+1 =ΛFl

k+1−ΛF̂l
k+1/2.

One equivalent way to rephrase the conservation is

Φ
[k,k+1],l
k +Φ

[k,k+1],l
k+1 =Λ

(
Fl

k+1−Fl
k

)
(5.2)

and the right-hand side of this relation is independent of the order p. It is equivalent
because we see that

ΛF̂l
k+1/2=

1

2

(
ΛFl

k+1+ΛFl
k−
(
Φ

[k,k+1],l
k −Φ

[k,k+1],l
k+1

))
.

Using this we rewrite (5.1) as:

PF(p+1),j
k =

1

2

(( ˜PF(p+1),j
k

)
k−1/2

+
( ˜PF(p+1),j

k

)
k+1/2

)
(5.3a)

with ( ˜PF(p+1),j
k

)
k−1/2

=PF0
k−

∆t

∆x
Φ

[k−1,k],(p),j
k( ˜PF(p+1),j

k

)
k+1/2

=PF0
k−

∆t

∆x
Φ

[k,k+1],(p),j
k

(5.3b)

In practice, we compute for each interval [k,k+1]

( ˜PF(p+1),j
k

)
k+1/2

=PF0
k−

∆t

∆x
Φ

[k,k+1],(p),j
k( ˜PF(p+1),j

k+1

)
k+1/2

=PF0
k+1−

∆t

∆x
Φ

[k,k+1],(p),j
k+1

(5.4)

and then apply (5.3a).
In the simplified version of the MOOD algorithm we use, we consider only two

spatial approximations, namely the first order one defined by δ1, and the high order
one defined by δp, p=2 or 3 in this paper. The idea is to use as often as possible
the highest order scheme, and to use the low order one to correct potential problems.

Knowing the {F(p),j
k }k, we first compute for each interval [k,k+1] the quantities defined

by (5.4) with the high order residuals. Then we test the values of the results using a

set of criteria, applied on (
˜PF(p+1),j
k )k+1/2 and (

˜PF(p+1),j
k+1 )k+1/2. This set of criteria is

explained in the next paragraph. If both (
˜PF(p+1),j
k )k+1/2 and (

˜PF(p+1),j
k+1 )k+1/2 pass

the tests, this element is declared sane, else un-sane. This enables to identify a set I
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of un-sane elements [k,k+1] where the criteria are not met, and we store the residual

{Φ[k,k+1],(p),j
k ,Φ

[k,k+1],(p),j
k+1 } for the sane elements. We then repeat the procedure for the

un-sane elements with the lowest order scheme. At the end of the procedure, we have

evaluated residuals, that we still denote by {Φ[k,k+1],(p),j
k ,Φ

[k,k+1],(p),j
k+1 }, even though

they are potentially evaluated by different schemes. We then compute PF(p+1),j
k by

(5.1). There is no problem of conservation since (5.2) holds true.

Now we describe the criteria we apply to (
˜PF(p+1),j
k )k+1/2 and (

˜PF(p+1),j
k+1 )k+1/2,

following the ideas of [7, 22] with some small adaptation to the context. When specific
tests are done on a variable, we denote this variable by ξ. For a scalar problem, ξ
is simply the conserved variable. In the case of the Euler equations, we test this on
some primitive variables: the density and the energy, and for some severe problems, the
velocity. We can add as many criteria as needed.

(1) We first check if (
˜PF(p+1),j
k )k+1/2 and (

˜PF(p+1),j
k+1 )k+1/2 lie in the invariance domain;

if relevant: in the case of the Euler equation, we check if the density and the internal
energy are both positive. If not, we set the criteria to .FALSE. on this element. In
that case we jump to the next element, else we look for the next criterion.

(2) We check if the solution is not locally constant. Taking ν=∆x3 and S the stencil
defined by the operator δ, we check if∣∣max

l∈S
ξi+l−min

l∈S
ξi+l

∣∣≤ν and
∣∣max
l∈S

ξi+1+l−min
l∈S

ξi+1+l

∣∣≤ν.

If this is true, the criteria is kept to .TRUE., else it is set to .FALSE. and we jump
to the next element.

(3) We check if a new extrema is created or not, by comparing with the solution at the
previous time step, in a neighbourhood extended to the right and the left by one
cell: we are running at CFL 1.

(a) We first test if ξn+1
k ,ξn+1

k+1 ∈ [min
l∈S

ξk+l+ϵ,max
l∈S

ξk+l−ϵ]∩ [min
l∈S

ξk+1+l+

ϵ,max
l∈S

ξk+1+l−ϵ]. If this is true, we jump to the next element,

(b) else, denoting by Pj the Lagrange interpolation polynomial that interpolates
{ξj+l}l∈S

• we compute ξ′=P ′
k(xk), ξ

′
L=P ′

k(xk− ∆x
2 ), ξ

′,k−1/2
min/max=min/max

(
P ′
k(xk−

∆x
2 ),P ′

k−1(xk− ∆x
2 )
)
then

– if ξ′L<ξ′, αL=min(1,
ξ
′,k−1/2
max −ξ′

ξ′L−ξ′
)

– if ξ′L= ξ′, αL=1

– if ξ′L<ξ′, αL=min(1,
ξ
′,k−1/2
min −ξ′

ξ′L−ξ′
)

• we compute ξ′=P ′
k(xk), ξ

′
R=P ′

k(xk+
∆x
2 ),

ξ
′,k+1/2
min/max=min/max

(
P ′
k+1(xk+

∆x
2 ),P ′

k(xk+
∆x
2 )
)
then

– if ξ′R<ξ′, αR=min(1,
ξ
′,k+1/2
max −ξ′

ξ′R−ξ′
)

– if ξ′R= ξ′, αR=1
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– if ξ′R<ξ′, αR=min(1,
ξ
′,k+1/2
min −ξ′

ξ′R−ξ′
)

• we set α=min(αL,αR)

• if α=1, then we have a true extrema, keep the criteria to .TRUE. and jump
to the next element. Else, we set the criteria to .FALSE. and jump to the
next element.

The idea behind the step 3 is described in [22] and is also related to [14]:
we try to check if the gradient of the interpolation ξ lies in the interval[
min

(
ξ
′,k−1/2
min ,ξ

′,k+1/2
min

)
,max

(
ξ
′,k−1/2
max ,ξ

′,k+1/2
max

)]
.

Remark 5.1 (Stability). The von Neumann stability study of Section 3 does not
hold directly for the MOOD algorithm but it is clear that we are dealing with a combi-
nation of the stabilities of the schemes used in the MOOD cascade. Hence, if we choose
CFL conditions that guarantee the stability of both the high order schemes and of the
parachute scheme (upwind CFL=1 in our case), then we know that the global MOOD
scheme will be von Neumann stable.

6. Numerical examples

6.1. Scalar problems. The first problem is the transport equation with periodic
boundary conditions

∂u

∂t
+

∂u

∂x
=0

where the initial condition is

u0(x)=sin(2πx)+0.5. (6.1)

A two waves model is used with a=1.01 (so a little larger that the actual maximum
speed. We always proceed as such for scalar and system cases. We make a convergence
test for short and long final times, namely T =0.5 and T =10. The CFL number, with
respect to the wave model maximum speed, is always set to 1. In both cases, we see
that the expected order of accuracy is obtained, see Table 6.1 for T =0.5 and Table 6.2
for T =10.

(a) First order, second and fourth order solu-
tion, with no stabilisation.

(b) First order, second and fourth order with
MOOD.

Fig. 6.1. Burgers equation T=0.5. Initial condition : u0(x)=sin(2πx)+0.5
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Note that for the second and fourth order schemes, the nonlinear stabilisation does
not detect any troubled point, giving exactly the same error as in the non-stabilised case.
We show the results for the fourth order schemes. All the calculations are done with
the two waves model. Note that the first order scheme, with the initial condition given
by the Maxwellian, is nothing more than the Lax-Friedrichs scheme, for second order in
time approximation. For fourth order in time, since the equilibrium relaxation is more
complex, we get a different scheme. Note that the nonlinear stabilisation procedure of
Section 5 does not flag any cell.

First order
h L1 r L2 r L∞ r
50 2.7596399210−2 - 3.8982208810−2 - 2.4997234310−2 -
100 1.3196682610−2 1.43 1.8655391410−2 1.43 1.1889378510−2 1.43
200 6.9403722910−3 1.33 9.8105203410−3 1.33 6.2602809610−3 1.33
400 3.4753510310−3 1.38 4.9137393910−3 1.38 3.1319172110−3 1.38
800 1.7389570110−3 1.38 2.4590014910−3 1.38 1.5663454510−3 1.38

Second order
50 4.8362761710−3 - 6.7043406910−3 - 4.4050212010−3 -
100 1.2175436110−3 2.07 1.7048980810−3 2.06 1.1020648510−3 2.08
200 3.0511873810−4 2.07 4.2937923010−4 2.07 2.7547049110−4 2.08
400 7.6069736710−5 2.08 1.0731420510−4 2.08 6.8584086010−5 2.08
800 1.8989960210−5 2.08 2.6821670010−5 2.08 1.7109106910−5 2.08

Fourth order
50 0.20142410−4 - 0.27897910−4 - 0.18321310−4 -
100 0.12237610−5 4.04 0.17133710−5 4.02 0.11081810−5 4.04
200 0.75854710−7 4.01 0.10674210−6 4.00 0.68485010−7 4.01
400 0.47247510−8 4.00 0.66651510−8 4.00 0.42597910−8 4.00
800 0.29483110−9 4.00 0.41643310−9 4.00 0.26563110−9 4.00

Fourth order+MOOD
50 0.20142410−4 - 0.27897910−4 - 0.18321310−4 -
100 0.12237610−5 4.04 0.17133710−5 4.02 0.11081810−5 4.04
200 0.75854710−7 4.01 0.10674210−6 4.00 0.68485010−7 4.01
400 0.47247510−8 4.00 0.66651510−8 4.00 0.42597910−8 4.00
800 0.29483110−9 4.00 0.41643310−9 4.00 0.26563110−9 4.00

Table 6.1. Order of convergence for the convection problem and two waves model for order 1,
2 and 4, and 4th order with MOOD. The final time is T =0.5. One can see that the two fourth order
results are identical as expected.

The convergence tables are obtained against the solution of the asymptotic model,
proving moreover that the model is asymptotic preserving as expected.

The Figure 6.1 shows some results for the Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
=0 (6.2)

with the initial condition (6.1). This generates an unsteady shock wave, so a priori more
challenging than a steady one. The nonlinear stabilisation performs correctly.

The last scalar example is the Buckley-Leverett equation

∂u

∂t
+

∂f(u)

∂x
=0, f(u)=

u2

u2+(1−u)2
(6.3)
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(a) unlimited O2-O4 solutions (b) first order and O2-O4 limited solutions

Fig. 6.2. Buckley-Leverett problem with 100 points. A reference solution (first order with 10000
points) is also indicated.

(a) Density (b) Pressure

(c) Velocity

Fig. 6.3. Sod problem with 3-waves model: plot of the density, velocity and the pressure. Displayed
solutions for order 1, 2 and 4 schemes with 100 points with and without MOOD. Also the exact solution
is plotted.

again with the same initial condition (6.1). The flux is nonconvex, so the problem is a
bit more challenging.

We have run the simulations with 100 spatial points, until time T =1, with the
2 waves model we have considered. The first order (O1), second order (O2), fourth
order (O4), second order with nonlinear stabilisation (O2M), and fourth order with
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First order
h L1 r L2 r L∞ r
50 0.374521524 - 0.529551387 - 0.337824076 -
100 0.222015068 1.22 0.313846916 1.22 0.200003594 1.21
200 0.121430904 1.23 0.171709701 1.30 0.109344706 1.3
400 6.3574053310−2 1.34 8.9905165110−2 1.34 5.7239554810−2 1.34
800 3.2535936710−2 1.36 4.6012137110−2 1.36 2.9292902010−2 1.36

Second order
50 9.7688645110−2 - 0.135240585 - 8.8857606110−2 -
100 2.4349840410−2 2.08 3.4092426310−2 2.07 2.2048734110−2 2.09
200 6.0669463110−3 2.08 8.5373045910−3 2.08 5.4775909510−3 2.08
400 1.5135461010−3 2.08 2.1351466410−3 2.08 1.3645917610−3 2.08
800 3.7795319810−4 2.08 5.3383701010−4 2.08 3.4051880410−4 2.08

Fourth order
50 0.39962710−3 - 0.55432910−3 - 0.36396410−3 -
100 0.24452710−4 4.03 0.34239410−4 4.01 0.22142710−4 4.03
200 0.15161310−5 4.01 0.21334410−5 4.00 0.13689310−5 4.01
400 0.94452110−7 4.00 0.13324110−6 4.00 0.85158710−7 4.00
800 0.58918910−9 4.00 0.83221410−8 4.00 0.53083610−8 4.00

Fourth order with Mood
50 0.39962710−3 - 0.55432910−3 - 0.36396410−3 -
100 0.24452710−4 4.03 0.34239410−4 4.01 0.22142710−4 4.03
200 0.15161310−5 4.01 0.21334410−5 4.00 0.13689310−5 4.01
400 0.94452110−7 4.00 0.13324110−6 4.00 0.85158710−7 4.00
800 0.58918910−9 4.00 0.83221410−8 4.00 0.53083610−8 4.00

Table 6.2. Order of convergence for the convection problem and two waves model for order 1,
2 and 4 with MOOD. The final time is T =10. The fourth order results with and without stabilisation
are identical as expected.

ε 0 10−6 10−4 10−3 10−2

log∆x logL2 slope logL2 slope logL2 slope logL2 slope logL2 slope
-2.995 -1.332 - -1.332 - -1.332 - -1.400 - -2.049 -
-3.688 -2.655 1.908 -2.655 1.908 -2.655 1.907 -2.710 1.889 -3.314 1.825
-4.382 -4.030 1.984 -4.031 1.984 -4.031 1.984 -4.063 1.951 -4.647 1.922
-5.075 -5.415 1.997 -5.415 1.997 -5.415 1.996 -5.410 1.943 -5.999 1.951
-5.768 -6.801 1.999 -6.801 1.999 -6.800 1.998 -6.749 1.930 -7.365 1.971

Table 6.3. Convection problem: error for the second order scheme with different ε.

nonlinear stabilisation (O4M) are displayed in Figure 6.2, together with a reference
solution computed with 1000 points and the first order scheme: remember that this
corresponds to the Lax Friedrichs scheme, and it satisfies all entropy inequalities. This
guaranties that the scheme converges. The nonlinearly stabilized solution has a correct
behavior.

6.2. Uniform order of accuracy with respect to ε. In order to test the con-
vergence of the scheme also in nonasymptotic regimes, we use again the scalar advection
equation

∂u

∂t
+

∂u

∂x
=0 (6.4)
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ε 0 10−6 10−4 10−3 10−2

log∆x logL2 slope logL2 slope logL2 slope logL2 slope logL2 slope
-2.995 -3.615 - -3.615 - -3.701 - -3.701 - -4.445 -
-3.688 -6.385 3.995 -6.385 3.996 -6.475 3.996 -6.475 4.001 -7.212 3.992
-4.382 -9.158 4.000 -9.159 4.001 -9.253 4.000 -9.253 4.007 -9.991 4.008
-5.075 -11.93 4.000 -11.93 3.999 -12.03 4.000 -12.03 4.007 -12.76 4.004
-5.768 -14.70 4.000 -14.70 4.000 -14.80 4.000 -14.81 4.006 -15.53 4.001

Table 6.4. Convection problem: error for the fourth order scheme with different ε.

(a) Density (b) Pressure

(c) Velocity

Fig. 6.4. Sod problem with 2-waves model: plot of the density, velocity and the pressure. Displayed
solutions for order 1, 2 and 4 schemes with 100 points with and without MOOD. Also the exact solution
is plotted.

with initial condition

u(x,0)=sin(2πx). (6.5)

The CFL number is set to 1, the time and space order are set to 2 and 4, the
final time is T =1, the boundary conditions are periodic. The values of ε are
{0,10−6,10−5,10−4,10−3,10−2}. We evaluate the order of convergence with the fol-
lowing standard procedure: if u∆x, u∆x/2 are the numerical solutions evaluated for
consecutive meshes, the order α is, for the norm ∥ . ∥,

α=
log∥u∆x−u∆x/2∥

log∆x
.

This test does not have an obvious result, as order reduction phenomena are common
for IMEX schemes when the space discretization and the relaxation variable are of the
same order. Nevertheless, we see on Tables 6.3 and 6.4 that the convergence order does
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(a) O2Mood (b) O4Mood

(c) O2MoodNaN (d) O4MoodNaN

Fig. 6.5. The reference solution is plotted with a dotted line. Comparison of various strategies of
MOOD, for 800 points.

not depend on ε. It is optimal. Also qualitatively, we see that for small enough values
of ε, the solution obtained for ε=0 is almost indistinguishable from 0<ε≪1.

6.3. Euler equations. In this section we test our scheme on Euler equations
(4.3). We set γ=1.4 and we run some standard cases: the Sod case and the Shu-Osher
case.

6.3.1. Sod test case. The Sod problem consists of a Riemann problem defined
by the following initial conditions:

(ρ,u,p)T =

{
(1,0,1)T for x<0.5m
(0.125,0,0.1)T else.

The final time is T =0.16. We have used the 3-waves model described above. The mesh
resolution is of 100 elements, and the CFL is again 1 in all cases. From Figure 6.3, we
see that the results are of good quality, at least compared with more standard methods.

For the sake of completeness, we have made the same simulation with the two waves
model in Figure 6.4.

We see a stair case solution of the first order in space which is typical for the Lax-
Friedrichs scheme. Comparing the solutions, the 2 waves model provides results of lower
quality with respect to the 3 waves one. For that reason, we will not consider it anymore
for the Euler equations.
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(a) O2 800 (b) O4 800

(c) O2 400 (d) O4 400

(e) O2 200 (f) O4 200

Fig. 6.6. O2 and O4 MOOD solutions with control of NaN only, for 200, 400 and 800 mesh points.

6.3.2. Shu-Osher test case. The conditions of the Shu-Osher test are

(ρ,u,p)=

{
(3.857143,2.629369,10.3333333) if x<−4,
(1+0.2sin(5x),0,1) else.

on the domain [−5,5] and the final time of the problem is T =1.8. The reference
solution is obtained with 10.000 points and fourth order limited scheme. It is difficult
to see any modification in the solution if we use more grid points, this is why we consider
this solution as the reference solution. We display only the solution with the MOOD
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stabilisation technique, however, we have tried two different strategies. The figures
labeled as OXMood, where X=2 or 4, use the full strategy of Section 5. The physical
variables are the density and the pressure, nothing is tested on the velocity. In the
figures labeled as OXMoodNaN, with X=2 or 4, we only check if the solution lies in
the invariance domain, i.e., density and pressure stay positive and we do not encounter
NaN values. In Figure 6.5 we plot the results for 800 points. In Figure 6.6 we compare
results for 200, 400 and 800 mesh points only for the MoodNaN strategy.

From Figure 6.6, we see that with 800 points, there is hardly any difference between
the O4MoodNaN solution and the reference one.

7. Conclusion
In this paper, simplifying a method described in [2], we show how to construct a

class of kinetic numerical methods that can run at least at CFL 1. They can handle in a
simple manner hyperbolic problems, and in particular the compressible fluid mechanics
ones. These methods are always locally conservative and thus can handle discontinuities
correctly. We have described a rather simple stabilisation mechanism which can be
further improved or changed: it is not really the core of the proposed method. Our
methodology can be arbitrarily high order and can use CFL number larger or equal to
unity on regular Cartesian meshes. Extension to the multidimensional case will be the
topic of future works. In particular, our implementation of these methods indicates that
they can be potentially very fast. The parallelisation should also be straightforward.
This, however, has to be confirmed in several spatial dimensions.

Acknowledgment. R.A. would like to thank Prof. Li-Shi Luo (Old Dominion,
USA) and Professor Sagaut (Aix-Marseilles University, France) for their encouragement.
Finally, he would like to thank Professors Lallemand and D’Humières for the discussion
they had during his PhD studies. This paper shows that this has never been forgotten.
I take this opportunity to also thank Prof. Chi-Wang Shu for very helpful discussions
about time stepping. D.T. has been partially funded by ITN ModCompShock project
funded by the European Union’s Horizon 2020 research and innovation program under
the Marie Sklodowska-Curie grant agreement No. 642768.

Appendix. Another iteration technique for the fourth-order-in-time case.
The iteration (2.12) solved by (2.16) reads (when we have no source term or after the
application of the projector operator):

v
(p+1)
1 =un

i −λ
(
θ10δu

n
i +θ11δv

(p)
1 +θ12δv

(p)
2

)
v
(p+1)
2 =un

i −λ
(
θ20δu

n
i +θ21δv

(p)
1 +θ22δv

(p)
2

)
and after the application of the Fourier transform, we have

v̂(p+1)= ûne−λgθv(p), e=

(
1−θ10λg

1−θ20λg

)
, θ=

(
θ11 θ12
θ21 θ22

)

so that the amplification factor satisfies

G(p+1)=e−λgθG(p).

This can be seen as the Jacobi iteration for solving the system

(Id+λgθ
)
G=e.
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By analogy, we can define a Gauss-Seidel iteration by

v
(p+1)
1 =un

i −λ
(
θ10δu

n
i +θ11δv

(p)
1 +θ12δv

(p)
2

)
v
(p+1)
2 =un

i −λ
(
θ20δu

n
i +θ21δv

(p+1)
1 +θ22δv

(p)
2

)
whose Fourier transform is

v̂(p+1)= ûne−λgΘ1v̂
(p+1)−λgΘ2v̂

(p), Θ1=

(
0 0
θ21 0

)
, Θ2=

(
θ11 θ12
0 θ22

)
,

and hence

(Id+λgΘ1)G
(p+1)=e−λgΘ2G

(p).

In both cases, G(0)=e.

We can study the stability of the Gauss–Seidel iteration, and we recall the results
of Jacobi’s for comparison. Denoting by g1 (resp. g2, g4,1, g4,2) the Fourier symbol of
the operators aδ1 (resp. aδ2, aδ

1
4 , aδ

2
4), we get the results of Table A.1.

Iterations 1 2 3 4 5
Symbol Gauss Seidel

g1 1.5 1.276906714 1.167201858 1.197067146, 1.152628955
g2 0 ≥1.65 ≥1.47 ≥1.435 ≥1.55
g14

2 0 ≥0.926 ≥1.775 0 0
g24 0 ≥0.917 0.8754013933 ≥0.89 ≥0.86

Symbol Jacobi
g1 1 1 1.256372663 1.392646782 1.774161172
g2 0 ≥0.87 ≥1.625 ≥1.744 ≥2.06
g14

3 0 0 ≥1.25 ≥2.06 ≥2.52
g24 0 0 ≥0.905 ≥1.044 ≥1.321

Table A.1. CFL number for stability of the DeC iterations given by Gauss-Seidel and Jacobi
methods. 0 means that the scheme is unconditionally unstable. x means that the scheme is stable up
to CFL x, ≥x means that the scheme is stable for at least CFL x (and slightly above).

Remark A.1 (A few remarks about Table A.1).

• For g14 , the amplification factor is always equal to 1 when x=π, and strictly
below 1 under the condition stated above.

• For g1 and 3 iterations, the CFL condition can be computed exactly. It is
1
2

3
√
4+

√
17− 1

2
1

3
√

4+
√
17

+ 1
2 ≈1.256372663.

From these results, we see that there is no fundamental reason to prefer Gauss-
Seidel iteration to the Jacobi one; the coding of the Gauss-Seidel is also slightly more
involved. However, this conclusion holds true only for the schemes we have considered
here, and might not be true for others.

2always 1 for x=π
3always 1 for x=π
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