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Abstract 
The ongoing transition towards a more sustainable and resilient electrical system has 
initiated profound changes within electricity distribution networks. The substantial 
increase in renewable energy installations, electric vehicle adoption, and energy 
consumption, underscoring the urgent need for a comprehensive grid reinforcement 
strategy. 
This PhD thesis advocates a holistic perspective to facilitate the transition of distribution 
networks towards the smart grids. Central to this approach is the effective utilisation of 
network management tools, which harness the full potential of existing flexibility 
resources. Implementing intelligent strategies begins with the pivotal digitalisation step, 
incorporating real-time SCADA systems, Internet of Things devices, and distributed 
sensors. The thesis delves into innovative algorithms within this framework, including 
machine learning-based optimisation and forecasting models, transformer’s ageing 
prediction and energy district management, validating the tools within real case studies. 
The thesis further explores three key application areas, illustrating how flexibility services 
can integrate into distribution grids in the context of electric mobility, hydrogen 
infrastructure, and energy communities. 
The transition towards network modernisation is complex, necessitating a collaborative 
effort from various stakeholders, including distribution system operators, aggregators, 
energy retailers, end-users, energy communities, researchers, and legislators. A 
transversal approach and incremental steps are essential to overcome the existing barriers 
and provide environmentally friendly services. Ultimately, these efforts aim to foster a 
sustainable energy future, where distribution networks are the cornerstone of a resilient 
and eco-conscious electrical system. 
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1 Introduction 
1.1 Motivation and context 
The spread of renewable energy sources and the need for a resilient energy system are 
leading to significant changes in the electricity distribution network. 
According to the most recent European legislation the end user is no longer a passive 
participant in the system, he can consume electricity, produce it, participate in demand 
response mechanisms, form energy communities, recharge electric vehicles and has the 
right to know the dynamics of the electricity system with transparency. The distribution 
network, being in direct contact with the end user, must adapt quickly to the change. 
The distribution network already feels some of the effects of the change in consumption 
and distributed generation, partly due to the high average age of installations. The spread 
of photovoltaic installations means that the loading of lines and transformers is higher and 
there are frequent episodes of reverse flow, which can lead to various technical problems. 
In addition, fast charging stations for electric vehicles are rapidly occupying the hosting 
capacity in the grids. 
Future forecasts predict a 32 % increase in PVs by 2025, a 452 % increase in electric vehicle 
penetration and a further 2.05 % increase in consumption. The impact on the grid will then 
be very significant and a reinforcement of the grid is necessary. 
The strategies to be implemented in this case are twofold: i) the construction of new, better-
performing infrastructures; ii) the use of tools to manage the network effectively and make 
optimal use of the flexibility resources already present. 
In the course of this thesis, various active strategies are analysed, considering that none 
alone can solve all network problems: an integrated approach is necessary. 
The first step in the implementation of intelligent strategies is digitisation: using real-time 
SCADA, IoT devices and distributed sensors makes it possible to acquire fundamental 
data to better manage the network.  In this context, the thesis shows an original, simple 
and inexpensive measurement device based on Raspberry Pi, which communicates with 
SCADA via MQTT. 
Among the various tools serving the network, optimisation and forecasting models are 
shown, based on machine learning, such as the prediction of the ageing of transformers 
located in secondary substations of the Terni network, based on the power and noise 
emitted; a forecasting model of the consumption and generation of an energy district 
based on Reinforcement Learning; a digital twin that integrates state estimation through 
a genetic algorithm and the optimisation of an energy community in order to maximise 
self-consumption.  Finally, in the area of digitisation, the role of cybersecurity cannot be 
overlooked. 
In this thesis, three application areas are presented where flexibility services can be 
provided for the electricity distribution grid: electric mobility, hydrogen infrastructure 
and energy communities. 
Studies are presented on electric mobility, which is managed as a grid flexibility tool, 
capable of absorbing power at peak generation times, while respecting the needs of end 
users. The approach of building a new grid, parallel to the existing grid, exclusively 
dedicated to powering electric mobility, is investigated, thus not burdening the current 
grid, but rather increasing its resilience. 
Energy scenarios predict significant growth in hydrogen production, with 40 GW in 2030. 
The use of hydrogen is particularly interesting in the hard-to-abate sectors; in the thesis it 
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is mainly seen in relation to the electricity grid, i.e. as a highly flexible load, which 
interfaces to the grid via electrolysers and constitutes an important flexibility resource. 
The active participation of citizens can turn the concept of the distribution network upside 
down: the emergence of energy communities, interconnected to the electricity grid, but 
transitioning energy internally, makes it possible to limit costs for end users, delegating to 
the grid only a supporting role. 
 
1.2 Objectives 
The primary objective of this thesis is to demonstrate that facilitating the energy transition 
within distribution networks necessitates a holistic perspective. Rather than confining the 
focus to a singular technology or a specific domain, it is imperative to adopt an integrated 
approach. Such an approach must encompass a wide spectrum of elements, ranging from 
generation facilities and end consumers to grid reinforcement, considering both passive 
and active strategies. 
The integration of emerging information technology solutions into the grid infrastructure 
holds the key to unlocking the tremendous potential of data amassed through the Internet 
of Things devices. Leveraging this data resource empowers us to discern and implement 
cost-effective, sustainable, and readily deployable remedies for enhancing the grid's 
resilience and efficiency. 
The path towards network modernisation is extremely complex, and its implementation 
requires time, resources and expertise, but with a multi-transversal approach, involving 
Distribution System Operators, aggregators, energy retailers, end-users, energy 
communities, technology providers, researchers and legislators, it is possible to proceed 
in incremental steps towards overcoming barriers and implementing increasingly 
environment and user-friendly services. 
 
1.3 Structure of the thesis 
The thesis is organised as follows: after this introductory chapter, Chapter 2 shows the 
current state of the distribution network in Italy, highlighting the challenges it faces in the 
near future with a focus on the need for flexibility resources. Three analyses of the current 
situation of distribution networks are shown: the first concerns a study of barriers to 
innovation in the smart grid, providing a quantitative analysis of each barrier, the second 
shows the variation over time of the behavioural habits of end users of the Terni network 
and the third is a preliminary analysis of the resilience of a portion of the Terni distribution 
network. Finally, the characteristics of Terni's distribution network, managed by ASM 
Terni, are shown, and some of the innovations carried out within the research projects of 
the continental Horizon 2020 and Horizon Europe programmes are shown. 
In Chapter 3, it is shown how advanced information technologies and the deployment of 
IoT devices bring high added value to electricity grid services. The grid's Digital Twin is 
shown as the essential platform on which to establish all innovations in the field of 
electrical analysis. Analytics such as energy forecasting, grid optimisation and predictive 
maintenance are studied in detail and brought into real applications. Special attention is 
paid to cybersecurity, showing how vulnerable the grid is to the injection of false data that 
could potentially cause irreparable damage. 
In the following chapters, analysis are shown among the consumer sectors that are 
expected to develop significantly in the years to come: electric mobility, the hydrogen 
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chain and energy communities. These sectors are analysed by showing how they can be 
integrated into the electricity grid and what the added value in terms of flexibility is. 
In Chapter 4, the role of mobility as a service provider for the electric grid is shown, 
analysing both the impact of a complete mobility conversion for the city of Terni, in 
particular a 500 kW recharging system, and the role of electric company fleets and the 
different management methods. 
Chapter 5 investigated how the hydrogen sector can provide flexibility services to the 
electric distribution network and in particular evaluated the application in the conversion 
of a company fleet from diesel to fuel cell electric vehicles. 
Chapter 6 analysed how Renewable Energy Communities can bring benefits to the 
electricity grid and in particular the impact of the deployment of energy communities in 
the Terni grid by 2030, evaluating user behaviour that is more or less willing to change 
their habits to provide services to the grid. 
Finally, in Chapter 7 the conclusions and main results are reported. 
Published materials and references are listed at the end of the thesis. 
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2 Electrical distribution network: state of the art and 
challenges 

2.1 Considerations on the state of the art, challenges and evolution of 
the distribution network in Italy 

The electric Distribution Network (DN) is a fundamental infrastructure in the energy 
system, and has the task of distributing electricity to end users in a safe, sustainable and 
continuous way. The DN needs to adapt to the ongoing energy transition, with the 
development of Renewable Energy Sources (RES) and the need to increase the resilience 
of the grid. The Smart Grid (SG) adapts to the transition of the generation system from 
centralized to distributed, with a large percentage of RES. SGs are becoming more and 
more common. These use advanced communication and control technologies to improve 
the efficiency and resilience of the electricity system. This includes smart metering, active 
demand management, automated distribution, and real-time monitoring. 
Today, electricity distribution networks are invested with the crucial task of creating the 
conditions, through their renewal and  technological upgrading, for the evolution of the 
electricity system in the direction of energy-environmental objectives. In Italy there are 
128 operators who manage the more than 36 million withdrawal points throughout the 
country for a distributed energy of almost 270 thousand GWh. The DN sector has been 
subject to major regulatory transformations in recent years and, for the service offered, 
DSOs are recognized by the Regulatory Authority for costs that amount to over 5 billion 
euros. From the point of view of the domestic customer, the distribution and metering 
service accounts for 15.5% of the final electricity expenditure. On the basis of the estimates 
made, it is possible to predict a total regulatory value of the DNs of about 25 billion euros. 
Equally important is to maintain a high quality of service, which is increasingly stressed 
by the presence of Distributed Energy Resources (DERs), Electrical Energy Storage 
Systems (EESSs) and inverter-connected loads. 
The need to adapt to the rapid technological evolution and digitalization processes, which 
are considered as essential to achieve the stated objectives and make the network flexible 
and resilient, is an additional cost factor. To this end, a coordinated and long-term vision 
for the energy sector is needed that is able to manage its transformations without delays 
or errors. The state of electricity DNs is constantly evolving, with an increasing focus on 
efficiency, safety, sustainability and the integration of RES. The main challenges facing 
DNs are: 

• Leakage Management: DNs are investing in advanced technologies to reduce 
energy losses during transmission and distribution. This includes the use of smart 
sensors to detect leaks and defects in networks. 

• Integration of DER, with a total number currently around 970,000, for a capacity of 
at least 37 GW in the Italian context. 

• Cybersecurity: Cybersecurity has become a critical aspect of DNs, as the increasing 
automation and interconnectedness of networks makes them vulnerable to 
cyberattacks. Protecting critical infrastructure is a priority. 

• Energy efficiency: Optimising energy efficiency is a key objective. This includes 
adopting energy-efficient technologies, promoting more efficient buildings and 
industrial processes, and managing demand intelligently. 
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• The integration of Electric Vehicles (EVs): The adoption of EVs is increasing, which 
poses additional challenges and opportunities for DNs. EV charging requires 
efficient charging infrastructure and managing peak demand. 

• Storage usage: EESSs are becoming increasingly important for balancing electricity 
supply and demand. These systems help to ensure a constant supply of energy, 
especially from RES. 

• Regulation: Regulation plays an important role in the development of distribution 
networks. Regulators are often trying to promote innovation and sustainability 
through incentives and appropriate policies. 

• Monitoring and preventive maintenance: The maintenance of electrical 
infrastructure is critical to the safety and reliability of the system. The use of 
advanced technologies, such as data analytics, is becoming increasingly common 
to prevent breakdowns and optimize maintenance. 

 
2.2 The need for flexible resources 
The flexibility resources of the electricity grid are varied and it is necessary to exploit all 
available technologies to guarantee RES integration, power flow balancing and voltage 
and frequency regulation services. Below are the main technologies used as flexibility 
resources for the DN. 
 
2.2.1 Storage systems 
EESS play a crucial role in the modern energy landscape by serving as one of the main 
flexibility resources. These systems store electricity and release it when needed, which 
helps balance supply and demand on the electrical grid. EESS function as flexibility 
resources in serveral ways, for example for load leveling and to reduce the peaks. EESSs 
facilitate the integration of RES, injecting power when is mainly needed and not when the 
non programmable RES produce. EESSs can provide ancillary services to the DN, as 
voltage and frequency regulation, increasing the stability of the grid. 
The EESS are optimal to be included in Demand Response (DR) mechanisms allowing 
customers to reduce their energy consumption during peak periods and, in turn, receive 
incentives or lower electricity rates. 
 
2.2.2 Electric mobility 
EVs can serve as flexibility resources for the DN, offering a range of benefits to both grid 
operators and EV owners. EVs can participate in DR programmes, where they charge 
during off-peak hours and reduce or delay charging during peak periods. Grid operators 
can send signals to EVs to adjust their charging patterns, helping to balance electricity 
supply and demand. If properly configured, Electric Vehicle Charging Station (EVCSs) 
can also inject power to the grid, allowing the Vehicle-to-Grid technology, that enables 
bidirectional power flow between the EV and the grid. EVs can discharge stored electricity 
back to the grid during peak demand periods or in response to grid signals. This can help 
alleviate stress on the grid and reduce the need for additional generation capacity. 
The flexible energy available from electric mobility can be used by the DN to provide 
innovative services, i.e. frequency regulation, RES integration, and grid voltage balancing. 
However, it's important to note that the widespread adoption of EVs as flexibility 
resources for the DN requires supportive policies, standards, and the development of 
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vehicle-to-grid infrastructure. Additionally, it must consider the impact on the battery life 
of EVs, as frequent discharging and charging can affect the longevity of the battery. As 
technology advances and grid operators and regulators adapt to accommodate vehicle-to-
grid, EVs have the potential to play a significant role in enhancing the flexibility and 
reliability of DN while supporting the integration of RES. 
 
2.2.3 Demand response mechanisms 
DR is a valuable flexibility resource for the DN, helping grid operators manage electricity 
supply and demand more effectively. DR is the active participation of end users in order 
to shift the energy consumption from peaks to time interval in which is better for the DN. 
In this operation way is possible to allow load shifting, peak reduction and valley filling. 
The active contribution of end users can also allow to variate the power flow in the grid, 
allowing to balance the grid, reduce the overvoltages and undervoltages and limiting the 
loading of the power cables. The DR mechanisms can facilitate the management of voltage 
and frequency stability issues. 
To effectively utilize DR as a flexibility resource for the DN, it requires advanced 
technologies, smart meters, communication systems, and supportive policies. Grid 
operators and utilities must also work closely with participants to ensure the success of 
DR programs. As the grid becomes more modern and digitized, DR will play an 
increasingly important role in optimizing grid operations, supporting RES integration, 
and ensuring grid reliability. 
 
2.2.4 Power to gas process 
Power-to-gas technology, which converts electricity into hydrogen or other synthetic 
gases, can serve as a flexibility resource for the DN. Hydrogen, produced through power-
to-gas or other methods, can play a significant role in enhancing grid flexibility and 
reliability. Hydrogen can be used as flexibility resources for the DN as an energy storage, 
since it allows excess electricity, particularly from RES like wind and solar, to be converted 
into hydrogen. This hydrogen can be stored for later use. During times of high electricity 
demand or when RES generation is low, the stored hydrogen can be converted back into 
electricity through fuel cells or gas turbines, providing a valuable energy storage solution 
for grid operators. Hydrogen storage, unlike EESSs, allows for seasonal accumulation, in 
which the difference in renewable production between summer and winter is exploited. 
While power-to-gas and hydrogen offer numerous benefits for grid flexibility and 
decarbonization, challenges include the cost of electrolysis, hydrogen storage, and 
infrastructure development. Additionally, hydrogen transportation and distribution 
infrastructure must be expanded to realize the full potential of hydrogen as a flexibility 
resource for the DN. Nonetheless, ongoing research and development are addressing 
these challenges and paving the way for hydrogen to play a crucial role in the future of 
grid flexibility and sustainability. 
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2.3 Analysis of the barriers to the Smart Grid 
The SG technology has the potential to modernise the electricity system, offering several 
advantages in terms of grid resilience, environmental impact, and management efficiency. 
However, the progress faces economic, technological, regulatory, organisational, and 
human obstacles. An original study has been carried out [VIII] providing a comprehensive 
examination of these barriers, focusing on their manifestations in five European countries, 
drawing on data collected from the BRIGHT European project [52]. This study involved 
establishing a standardised metric survey and convening five round table discussions, 
engaging 26 stakeholders from various European nations. Numerous literature articles 
have addressed SG barriers, including Luthra et al. [293], which identified 12 such barriers 
through an extensive literature review and employed interpretive structural modelling to 
elucidate their interrelationships. Building on this classification of 12 barriers, [VIII] aims 
to contribute to the existing literature by addressing the need for more quantitative data 
on these barriers. This study thoroughly analyses the current status of each SG barrier, 
gathering insights from academic papers and expert viewpoints. Subsequently, it presents 
an exploratory quantitative assessment of these barriers, utilising data acquired from a 
metrics survey administered to electricity grid operators and other relevant stakeholders. 

 

2.3.1 Literature review and methodological approach for the quantitative 
assessment 

The methodology of the study is described in Figure 1. An extensive literature review has 
been conducted to investigate each barrier comprehensively, and the findings have been 
enriched with insights from BRIGHT project partners' experiences. Our approach 
involved a detailed examination of each barrier. Regarding the exploratory quantitative 
analysis, initially a metric based on the Likert Scale [233] has been devised. For each 
barrier, five options are available, where a rating of 1 indicated that the barrier posed a 
significant limitation, potentially jeopardising the implementation of SGs. Conversely, a 
rating of 5 signified that the sector was highly advanced in the country and required no 
further development. 

 
Figure 1: Work plan schema 

Each barrier evaluation was formulated based on the findings of our literature analysis. 
Task partners from different countries convened round table discussions with SG 
stakeholders between April and June 2022. These stakeholders included experts falling 
into the following categories: i) Distribution System Operators, ii) Universities and 
research centres, iii) power grid technology providers, iv) BRIGHT Project partners, and 
v) others. The BRIGHT Project partners are either power systems owners or providers of 
technology and services in the field. During the round table discussions, the barriers to SG 
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implementation were debated, and a collective assessment was made to determine the 
level of development in each nation concerning these barriers. In total, 26 stakeholders 
participated, with 17 representing entities outside the BRIGHT Project. To collect 
quantitative data on the state of SG barriers in five European countries—Italy, Romania, 
Netherlands, Greece, and Slovenia—round tables have been organised to establish the 
most suitable criteria for evaluating each barrier, using the metric as a reference point. 
Each partner's contribution in its country formed a preliminary national baseline. The 
overall European situation was assessed by considering the findings from these national 
baselines. Figure 2 illustrates the breakdown of stakeholders by type in a pie chart. 
 

 
Figure 2: Distribution of the stakeholders engaged in the quantitative analysis. 

The results of each national round table were analysed and commented on in light of the 
situation of the electricity system in each country [80],[85],[313]. 
 
2.3.2 Barriers to smart grid, an in-depth analysis 
The ever-evolving energy system demands rapid adaptation from the grid to deliver high-
quality and dependable services to users. However, various obstacles hinder and 
complicate the progress of grid development. The literature lacks a single unified 
classification for these barriers. In [230], a hierarchical categorisation is proposed, 
consisting of three primary barriers: economic, technological, and social, along with 
secondary barriers encompassing political/regulatory, physical, comprehension, and 
market structure obstacles. Twelve barriers have been identified through a systematic 
review of barriers to implementing SG technologies, as outlined in Table 1. Luthra [293] 
was selected as the reference source due to its comprehensive coverage of these barriers. 
Table 1: Barriers to SG technologies 

N. Barriers to the smart grid 
1 Financial impact of the investment 
2 Market uncertainty 
3 Lack of regulatory framework 
4 Low public awareness and engagement 
5 Low innovation in the industry 
6 Inadequate infrastructure 
7 Technology immaturity 
8 Workers expertise 
9 RES integration 
10 Inefficient communication system 
11 Availability of open standards 
12 Cyber security and data privacy constraints 

11

8

1

3

3
DSO

Technology provider

Energy retailer

University, Research
Organization
Other
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In the following subsections, each of the twelve barriers is described and expanded on 
based on the identified literature and discussions with the relevant stakeholders. 
 
2.3.2.1 Financial impact of the investments 
Implementing SGs requires extra funding for essential infrastructure, communication 
systems, the recruitment of skilled professionals, and research activities. Due to the 
substantial initial investment, the payback period is relatively extended [110]. From the 
end-users' perspective, purchasing Internet of Things (IoT) devices or participating in DR 
programs can also entail economic uncertainties. To alleviate the hesitancy of vendors and 
manufacturers, it is essential to establish a secure return on investment through 
government-backed incentives. 
 
2.3.2.2 Market uncertainty 
The tools and components of the SG face vulnerabilities within an evolving market 
characterised by ambiguities in institutional functions, services, and exchange 
mechanisms, potentially leading to market obstacles or failures [230]. The direction in 
which the SG landscape progresses depends on the decisions made by national regulators 
in supporting investments [60]. Market barriers impede the development of a robust 
market, resulting in insufficient competition, difficulties in accessing funds, uncertainty, 
imperfect information, and hidden costs. Furthermore, the required capital costs can 
discourage investment in SG services, as illustrated by the example of the flexibility 
market, which can hinder the establishment of a DR market [111] where a comprehensive 
list of market barriers and failure types is provided. To generate revenue, it is crucial to 
define SG standards and business models through regulatory frameworks [120]. 
 
2.3.2.3 Lack of regulatory framework 
A well-structured regulatory framework is essential to foster the development of SGs. 
Many electrical systems operate under outdated and non-harmonized regulatory 
structures [272], which can deter investments in innovation. Currently, the regulatory 
aspects of SGs remain unclear [101]. In [214], it’s possible to find an analysis of the 
regulatory frameworks in each European country. It is imperative to establish clear data 
measurement and management standards, determine fair compensation for distribution 
system operators [230], address retail energy market issues, define transparent billing 
structures, and enhance customer protection. Standardising smart meters and other 
components would provide greater clarity regarding the services they can offer [1]. A 
market liberalisation process is underway in European countries, allowing free market 
users and those under a regulated regime to coexist. The presence of the protected regime 
can hinder operators' creativity [236]. 
 
2.3.2.4 Low public awareness and engagement 
The involvement of the public is crucial for the development of the SG. It is essential to 
raise awareness and provide information about innovative technologies to encourage 
consumer engagement [244]. Barriers stemming from human factors, particularly related 
to awareness and trust, hinder participation in DR programs [230]. Enhancing consumer 
awareness should motivate individuals to adopt new energy consumption patterns [11]. 
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Currently, there is a low level of public awareness and engagement in SG projects, 
necessitating initiatives to address this issue [41]. Participants with access to additional 
information tend to be more engaged and persistent in DR programs. Consumer 
engagement is estimated to increase by 2.5% with additional information and by 1% by 
incorporating automation technology. 
 
2.3.2.5 Low innovation in the industry 
Organisational barriers impede companies' capacity for innovation, stemming from 
institutional, strategic, and operational factors. At the institutional level, development 
projects are often perceived as high-risk activities with extended payback periods, 
frequently hindering their execution [88]. Strategic barriers arise from the company's long-
term vision, where individual departments maintain their strategies, and a lack of 
communication hampers cross-functional innovation. Operational barriers result from the 
company's operational practices, where activities are governed by stringent standardised 
procedures, making the quest for new integrated solutions complex. Collaborative 
interactions between highly innovative small organisations and large companies or 
institutions with ample resources and established organisational structures facilitate the 
development of inventive solutions [232]. 
 
2.3.2.6 Inadequate infrastructure 
Establishing a SG platform involves the integration of both technical infrastructure and a 
market layer that can effectively coordinate operators [36]. To bring SGs to fruition, it is 
imperative to have an infrastructure that enables the seamless real-time flow of energy 
and data, along with robust protection and measurement mechanisms. This requires 
incorporating various components, including automated control systems, converters, 
communication networks, meters, and energy management tools [101]. Smooth data 
transmission between edge devices and cloud-based computers, particularly for control 
purposes, is of utmost importance. The absence of a standardised set of criteria defining 
the necessary attributes for smart meters and other devices adds complexity to network 
communication. 
 
2.3.2.7 Technology immaturity 
A technological hurdle arises when the requisite technology is lacking to deliver a stable, 
dependable, and safe service. This limitation primarily stems from the underdeveloped 
state of technology and the incomplete widespread dissemination of efficient technologies 
[56]. Owing to technological immaturity, auxiliary systems struggle to meet the 
requirements of SGs. While technological knowledge is accessible, it remains unevenly 
distributed, and the adoption of smart appliances within the grid remains limited. 
Immature technology results in substantial investment, maintenance expenses, and 
security concerns. The meaning of technological immaturity is emphasised in [230], and 
empirical evidence from [319] demonstrates that a deficiency in standardisation, often 
indicative of technological immaturity, can impede adoption. 
 
2.3.2.8 Workers’ expertise 
Upon the culmination of the technology transfer process and the integration of 
technology, there arises a requirement for a fresh cohort of well-trained engineers and 
managers who can bridge the gap and acquire new proficiencies in analytics, data 
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management, and decision support [272]. Organisations may delay innovations due to a 
deficiency in essential technical expertise [56]. As per [344], the fundamental roles of most 
employees, including line workers, technicians, and electricians, will remain unaltered. 
The knowledge transfer process predominantly pertains to programmable logic 
controllers, electronic components and circuits, and digital electronics [82]. 
 
2.3.2.9 Renewable Energy Sources integration 
Integrating both centralised and DER is a fundamental aspect of SGs, necessitating 
effective coordination across various energy sectors [180]. RESs play a pivotal role within 
SGs by offering ancillary services such as frequency regulation, voltage control, and static 
inertia. To facilitate this, it's crucial to establish interconnected networks among 
distribution system operators, power plants, and energy consumers [43]. This connectivity 
can be achieved by providing real-time information on the availability of RES to both 
energy providers and consumers. Consequently, this allows for large-scale integration 
through demand-side management, often involving dynamic pricing mechanisms. 
Utilities are also inclined to share information regarding the energy sources they utilise 
with their customers, enabling consumers to make informed decisions regarding real-time 
pricing and their environmental footprint [56]. 
 
2.3.2.10 Inefficient communication system 
Facilitating the SG is contingent on the seamless bidirectional transmission of both energy 
and data, as the management of this intricate system relies heavily on the real-time sharing 
of information and signals [315]. The development of an effective SG is impeded by the 
absence of coordination between electric energy and telecommunications agencies [277]. 
To support this, the communication system must consistently and bidirectionally transmit 
vast amounts of data, necessitating standardised procedures [23]. Management and 
applications such as DR and automation require minimal latency and maximum reliability 
to ensure smooth grid operation. Numerous standards have been established to address 
these requirements, covering various aspects of standardised communication within the 
SG domain. Notably, standards like SAREF, SGAM, and EEBUS define ontologies and 
protocols for data exchange in the SG, while others like OpenADR, EFI, and 
CEN/CENELEC S2 specify DR and flexible interfaces to the SG [84]. Blockchain and 
Distributed Ledger Technology are potential options for facilitating Peer-to-peer activities 
in this context. 
 
2.3.2.11 Availability of open standards 
The absence of clearly defined standards and guidelines across the grid aimed at 
promoting system interoperability, significantly impedes the advancement of SGs [357]. 
Interoperability standards established for energy distribution networks, power sources, 
and energy consumers may lag behind the progress of SG implementations. It is essential 
to transition from many proprietary standards to open standards, fostering greater 
stakeholder involvement and encouraging market entry. This, in turn, promotes 
innovation among multiple suppliers, driving the development of new technologies while 
fostering competition in features and performance [102]. The European Union has 
mandated organisations such as CEN, CENELEC, and ETSI [52] to standardise the 
functionalities of smart meters and their communication interfaces for application in the 
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electricity, gas, heat, and water sectors. A more in-depth evaluation of the current 
standards landscape is available in [318]. 
 
2.3.2.12 Cybersecurity and data privacy constraints 
Implementing a SG introduces complexity, particularly concerning privacy and 
cybersecurity considerations [344]. In cybersecurity, establishing a secure SG confronts 
four distinct challenges: i) The power system necessitates communication requirements 
that must remain relevant over time without becoming prematurely outdated. ii) Many 
devices employed in power automation systems are tailored for specific functions, often 
lacking the computational capabilities required to address security issues. iii) Networking 
within the power grid encompasses a variety of heterogeneous technologies and 
protocols, such as ModBus, ModBus+, ProfiBus, ICCP, and DNP3. iv) Power systems are 
typically proprietary optimised for specific performance and functionality rather than 
prioritising security measures [317]. 
Furthermore, frequent data collection and analysis from smart meters can enhance energy 
efficiency and inform future policies, but it may come at the expense of user privacy 
concerns [43]. 
 
2.3.3 Quantitative assessment of barriers in European countries 
The literature analysis performed by the authors shows a lack of quantification of the 
barriers to the SG, limiting approaches to qualitative analyses only. The results of round 
tables conducted in Italy, Romania, the Netherlands, Slovenia, and Greece are presented 
below. Finally, a comparison and an indication at the European level, obtained by 
averaging the values of these states, are shown. The list of stakeholders engaged per 
country and type is shown in Table 2. 
 

Table 2: Stakeholders engaged per country and typology 

 ITA ROM NET SLO GRE 
DSO 1 4 2 3 1 
Tech. provider 1 1  5 1 
Research Cen. 1 1 1   
Retailers     1 
Others 1 2    
TOTAL 4 8 3 8 3 

 
2.3.3.1 Barriers in Italy 
In 2020, Italy recorded an electricity consumption of 295 TWh, marking a significant 
growth of 25.6% compared to the levels seen in 1990. RES contributed to 38.8% of this 
consumption. To meet the targets set by the EU's Fit for 55 package, Italy needs to 
substantially expand its renewable capacity and introduce additional energy storage 
systems to ensure grid stability. Italy's storage capacity, primarily consisting of pumped 
hydro facilities, stands at 7.5 GW. To align with the requirements, this capacity needs to 
be doubled. At the distribution level, the regulatory authority has established a 
remuneration system for distribution system operators, which is based on their 
operational efficiency. This system imposes specific standards for quality indicators such 
as SAIDI and SAIFI, while also incorporating a penalty and reward system. The 
deployment of smart meters across the country is overseen by distribution system 
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operators, resulting in the installation of more than 32 million smart meters. In recent 
years, Italy has made substantial progress in liberalising its energy market and enhancing 
infrastructure. While the wholesale market has become competitive, reforms are still 
necessary in the retail market. It's worth noting that Italy has the highest electricity costs 
in Europe for industrial consumers and ranks third highest for domestic consumers, with 
taxes accounting for 40% of these costs. Regarding outage duration, Italy ranks 13th 
among EU countries. In terms of market dynamics, a single company operates over 30% 
of the production plants and supplies more than 85% of the distribution network. Despite 
progress in the wholesale market, there is a notable absence of an independent market 
observer. Figure 3 illustrates the assessment of the 12 barriers, with critical areas 
highlighted in red, those close to the average in yellow, and the most developed sectors in 
green. 
 

 
Figure 3: Quantitative evaluation of SG barriers in Italy 

According to expert assessments, Italy exhibits partial readiness for the adoption of SGs, 
with favourable ratings in multiple domains. However, the areas where substantial 
limitations are observed include public awareness and engagement, as well as the 
expertise of the workforce. Experts have highlighted the need for significant efforts to shift 
consumer interest in sustainability from a passive stance to widespread active 
involvement. Moreover, there is a noted challenge in acquiring appropriately qualified 
personnel for innovative and cross-functional roles. 
 
2.3.3.2 Barriers in Romania 
In 2020, Romania's annual electricity consumption amounted to 52 TWh, marking a 
notable reduction of 22.59% compared to levels recorded in 1990. Impressively, RES 
contributed to 47.4% of the total electricity generation. The industrial sector emerged as 
the largest consumer, accounting for 45.9% of electricity usage. Notably, the primary 
generation companies are state-owned entities. Romania's energy market consists of both 
regulated and unregulated segments. Significant changes had transpired in the wholesale 
market structure since 2012 when market transitions necessitated the shift to a centralised 
market operator with transparent public bidding. Looking ahead to 2030, Romania has 
ambitious plans, including the phasing out of thermal power plants, a twofold increase in 
nuclear capacity (currently at 19%), a surge in renewables to 30.75%, and a reduction in 
energy dependence on foreign sources to 17.8%. The electricity market has undergone 
liberalisation, although a substantial portion of the population remains in the protected 
market category. Concerning the development of the SG, Romania has initiated a 
digitisation process, with the installation of smart meters underway, albeit at relatively 
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low percentages. Figure 4 offers an assessment of the 12 barriers identified during the 
Romania round table discussions. 
 

 
Figure 4: Quantitative evaluation of SG barriers in Romania 

As per expert evaluations, the state of SG development in Romania can be characterised 
as moderate, with no particular areas standing out as either notably strong or critically 
weak. The system requires certain innovations and adjustments to align itself with the 
integration of SGs. Public awareness and engagement, although not exceptionally high, 
surpass levels observed in some other countries. However, when compared to other 
European nations, Romania exhibits lower performance in addressing the bi-directional 
communication and integration with RES barrier. 
 
2.3.3.3 Barriers in the Netherlands 
In 2020, the Netherlands recorded an annual electricity consumption of 116 TWh, marking 
a substantial increase of 49.8% compared to 1990. However, the portion of energy derived 
from RES stood at 18.5%, one of the lowest figures in Europe. Nevertheless, this figure is 
projected to surge to 70% by 2030, primarily attributable to the installation of offshore 
wind farms. The service sector emerged as the most substantial consumer, accounting for 
41% of electricity usage. The Netherlands is undergoing a profound transformation in its 
energy policy, encompassing changes in the generation fleet and efficient grid operation 
to enhance the flexibility of the electricity system. Support schemes, including renewables 
financing through auctions, will drive this energy transition. Furthermore, the country's 
only nuclear power plant is set for decommissioning. Distribution system operators are 
tasked with managing smart meters and encouraging data accessibility, with 54% of 
residential users equipped with smart meters as of 2018. Remarkably, the Netherlands 
boasts over 50,000 semi-public charging points, representing one of the highest 
concentrations globally. While the retail market is open and competitive, there is still a 
significant concentration of market share among energy suppliers. Retail electricity prices 
are not subject to regulation and are marginally lower than the median of IEA member 
countries, despite a relatively high tax component of 24%. Dutch stakeholders' 
perspectives on SGs are illustrated in Figure 5. Their assessments indicate that the 
Netherlands exhibits cutting-edge aspects in certain areas of SGs, such as innovation 
within the industry, technical expertise among personnel, and the integration of RES and 
two-way communication networks. However, the regulatory framework is regarded as 
the most critical obstacle, necessitating substantial updates to foster SG development. 
Additionally, enhancing public awareness and engagement represents another 
noteworthy challenge. 
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Figure 5: Quantitative evaluation of SG barriers in the Netherlands 

 
2.3.3.4 Barriers in Slovenia 
In 2020, Slovenia's annual electricity consumption amounted to 14 TWh, representing a 
notable increase of 34.5% since 1990. RES accounted for 32.7% of the total electricity 
generation, primarily attributed to hydroelectric power, which ranks as the second most 
utilized energy source in Slovenia, following nuclear energy. Notably, the industrial sector 
emerged as the largest consumer, accounting for 46.1% of energy usage. Slovenia's 
approved energy transition plan for 2020 outlines initiatives focused on RES development 
and investments in energy efficiency. To meet these objectives, the Slovenian production 
system must evolve to become more efficient, digitalised, optimised, and offer innovative 
services. The majority of the electricity sector in Slovenia is state-owned. Since 2001, the 
retail market has been characterised by competition. Electricity costs for consumers and 
businesses in Slovenia are among the lowest in neighbouring countries, largely attributed 
to existing tax exemptions. Regarding smart meters, widespread deployment is 
anticipated by 2025.  
 

 
Figure 6: Quantitative evaluation of SG barriers in Slovenia 

According to expert opinions, Slovenia is moderately prepared for the development of 
SGs. Certain areas, such as innovation in the industry and the integration of renewables, 
hold the potential for excellent performance. Conversely, in other domains like public 
involvement, technology readiness, and existing infrastructure, steps need to be taken to 
advance towards SGs. When compared to other analysed states, Slovenia neither excels 
nor falls significantly short in any of the evaluated categories. 
 
2.3.3.5 Barriers in Greece 
In 2021, Greece's annual electricity consumption stood at 51 TWh, marking a significant 
increase of 58% compared to the levels recorded in 1990. As of 2021, RES contributed to 
41.2% of Greece's electricity production. In recent years, Greece has taken numerous 
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measures aimed at enhancing competition by liberalising both the wholesale and retail 
energy markets, aligning with the transition towards the European market structure. The 
share of RES is anticipated to expand further as the electricity grid extends to reach the 
previously unconnected large islands. Among the various sectors, the commercial sector 
emerges as the largest consumer, accounting for 40% of the energy demand. Greece holds 
a prominent position in Europe as both a producer and consumer of lignite, although this 
contribution is gradually diminishing. Efforts are underway to redistribute shares in the 
wholesale and retail markets, with the goal of bolstering market competitiveness.  The 
energy pricing structure underwent liberalisation in 2013, with a tax component of 32% 
for residential consumers and 19% for industrial consumers. There is room for greater 
flexibility in the market, as only 3.3 GW of hydropower plants are currently utilised for 
this purpose. Greece aims to establish a stable regulatory framework by implementing 
measures that facilitate the development of DR mechanisms and capacity payment 
systems. BRIGHT Project assessed the present status of SGs across various barriers, as 
depicted in Figure 7. 
 

 
Figure 7: Quantitative evaluation of SGs barriers in Greece 

SG experts assessed that overall, the situation is favourable and partially ready for the 
transition to SGs. Some areas, such as industry innovation, existing infrastructure, and 
cybersecurity, are at the forefront, although could be better. In contrast, public 
involvement and awareness are the most critical areas.  
 
2.3.3.6 Overall evaluation of barriers in Europe 
The analysis reveals variations at the national level, influenced by the unique 
characteristics of each country, but it also highlights common trends. Figure 8 presents an 
aggregated analysis of the European landscape. The European electricity grid system is 
on the cusp of becoming a SG; however, exist barriers that could significantly impede its 
progress. Notably, the sectors leading the way are cybersecurity and data privacy, where 
Europe has already established modern standards. The data also show efficient two-way 
communication, supported by a well-developed infrastructure. Integration with RES is in 
good shape and Europe has an industry sector that is relatively receptive to innovation. 
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Figure 8: Quantitative evaluation of SGs barriers in the European Union 

Conversely, the most critical area is users' engagement in active participation in energy 
management mechanisms. This is a deficiency also due to a need for more awareness of 
end users in their energy impact. 
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2.4 Analysis of the behaviour of end users 
The active participation of the public is crucial for the development of SGs. It is essential 
that the masses are aware of their impact on energy consumption and the environment. In 
addition to their choices of sustainable operators and energy-saving activities, consumers 
can actively contribute to the energy transaction by installing PV plants placed above 
homes or businesses. In Italy, at the end of 2019, 880,090 PV plants were installed, with a 
power capacity of 20.9 GW and a yearly generation of 23.7 TWh [121]. More than 92 % of 
the plants had an installed PV power lower than 20 kW. For prosumers, the operational 
management of PV plants, possibly connected to EESSs, is generally aimed at high Self 
Cunsumption Rate (SCR) and Self Sufficiency Rate (SSR) values. The increase of SCR and 
SSR provides economic profits for the prosumers while reducing congestion and limiting 
grid losses. The study of prosumers’ habits and their impact as aggregate systems plays a 
significant role in electrical system research, paving the way for the spread of Renewable 
Energy Communities (RECs), virtual power plants and DR mechanisms.  
In Italy, starting from late February 2020, the COVID-19 pandemic introduced dramatic 
changes in society, changing consumer behaviour due to the national lockdown from 
March to May 2020 and the following closures and restrictions. Remote working and social 
distancing became widespread, reducing transport and industrial energy demand and 
increasing household consumption.  
In this context, the study [VII] presents a statistical analysis of producers in the city of 
Terni during the period 2015-2020. The main goal of this work is to highlight the current 
trends in prosumers’ behaviour, focusing on SCR, SSR and capability of the PV plants. 
Moreover, it addresses the effects of the national lockdown, taking into account 
differences between domestic and non-domestic customers. 

 

2.4.1 Data collection and handling 
After 2011, Terni has witnessed a significant increase in the adoption of DER, mainly PV 
plants. This emerging trend brings environmental advantages and poses challenges and 
opportunities for the electrical grid. This research presents findings derived from ASM's 
smart meters data collected between 2015 and 2020. The information gathered by these 
smart meters was aggregated and analysed to portray the behaviour of prosumers over 
the years. The analysis involved using conventional energy metrics, including equivalent 
hours of plant operation (Heq), SCR, SSR, and the ratio of PV installed capacity to load 
power (PR). The definitions and formulas for these indicators are presented below. 
Heq is the amount of energy produced (Ep) over the installed power (PPV) of the PV plan, 
as expressed in Equation 1.  
Equation 1:PV plant equivalent hours definition 

Heq= 
Ep

PPV
 

SCR is the ratio of the portion of the PV production consumed by the loads over the 
produced energy (Ep) of the PV plant. It ranges between 0 % and 100 %, and its expression 
as a function of energy injected (Ei) is reported in Equation 2. 
Equation 2:Self Consumption Rate definition 

 SCR= 1- Ei
Ep
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SSR is the portion of energy produced that has been consumed, out of the total energy 
consumed by the utility, i.e., the absorbed energy (Ea) and the self-consumed energy. It 
ranges between 0 % and 100 %. 
Equation 3:Self Sufficiency Rate definition 

 SSR= !Ep- Ei"
!Ea+ Ep-	Ei"

  

PR is defined in Equation 4 as the ratio between the installed PV power (PPV) and the load 
connection power (PL) 
Equation 4:PV plant power ratio definition 

 PR= PPV
PL

  

Regarding data collection, ASM's infrastructure measures monthly energy consumption, 
production, and injection into the grid. The Distribution System Operator (DSO) gathers 
static information for each user, including the nominal power of their PV plant, 
contractual power for their load, address, and energy usage classification (e.g., residential 
or non-residential). To effectively organise this data, three distinct clusters were identified 
and analysed. Firstly, the authors examined a group of users who had installed their PV 
systems prior to 2015, ensuring the availability of consistent monthly data for meaningful 
comparisons of evolving capabilities. Additionally, the authors applied filters to exclude 
inconsistent measurements and focused the analysis on prosumers, excluding users with 
minimal SCR. Thus, for this cluster, the following filters were applied to the data: 

• data available for all 12 months each year from 2015 to 2020  
• the PV plant in operation for each month 
• the yearly SCR ≥ 5% 
• the PR between 0.2 and 3 
• PPV lower than 20 kW 

In so doing, 413 prosumers were selected and analysed. Moreover, two additional clusters 
were identified, i.e., domestic and non-domestic prosumers. The group of domestic 
prosumers, with data available for 12 months, was selected with PR lower than 3 and 
annual Heq greater than 100 kWh/kW. The group of non-domestic prosumers comprises 
small and medium-sized factories and large commercial activities, identified applying as 
filters the data available for 12 months, SCR greater than 20 %, a PR between 0.2 and 3, 
PPV between 10 and 300 kW and annual Heq greater than 100 kWh/kW. Table 3 shows 
the number of PV arrays in operation from 2015 to 2020 for domestic and non-domestic 
clusters. 
 

Table 3:Number of PV plants installed each year 

Year Domestic Non-domestic 
2015 709 50 
2016 758 68 
2017 836 69 
2018 881 79 
2019 936 86 
2020 1004 82 
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2.4.2 Prosumers’ behaviour trends 
Initially, a pool of 413 prosumers, domestic and non-domestic, were selected, and their 
SCR and SSR were analysed from 2015 to 2020, aiming to observe the overall trend over 
time.  

 
Figure 9: Distribution of prosumers' SCR and SSR related to the PR 

Figure 9 shows the distribution of SCR and SSR related to PR, confirming that prosumers 
aim to maximise SCR and SSR to obtain more significant financial savings for PV plants. 
As shown in Figure 9 and reported in [57], these parameters are almost complementary; 
an increase in PR results in an increase in SCR and a decrease in SSR, and vice versa. 
 

 
Figure 10: Relation of Heq for each year with the annual irradiance in Terni 

To assess the trend in the productivity of PV arrays over time, a comparative analysis of 
Heq and solar irradiance was conducted using data between 2015 to 2020. This analysis is 
presented in Figure 10. The yearly fluctuations in Heq align with the annual irradiance 
patterns observed in the Italian region, with average irradiation data for Italy being 
publicly accessible, as referenced in [121] and [320]. Furthermore, the maximum PV 
production and the peak solar irradiance occurred in 2017. These data also indicate that 
the degradation rate of PV panels is approximately 1.7% per year. A review of the 
literature on degradation rate, as conducted in [4], reveals that it typically falls within the 
range of 0.8% to 2.03% per year. 
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Figure 11: Normal distribution of Heq from 2015 to 2020 

Regarding the producibility of PV plants, Heq emerges as a pivotal parameter. It 
underscores the number of plants operating under ideal conditions, encompassing 
optimised tilt, sun exposure, and panel efficiency. Figure 11 illustrates the normal 
distribution of equivalent solar hours per year in this context. Consistent with Figure 10, 
the curves for 2015 and 2017 exhibit a slight rightward shift attributed to the heightened 
power generation resulting from increased solar irradiance. Mean values and standard 
deviations are detailed in Table 4. Notably, in the Terni area, the Global Solar Atlas 
anticipates a potential PV production of about 1,430 Heq, as referenced in [118]. However, 
the actual PV production in Terni averaged 25% lower in 2018, with the minimum gap 
being approximately 14% in 2015. This differential should be considered when planning 
network reinforcement and assessing the impact of RES. 
 
Table 4: Yearly average equivalent hours and standard deviation for prosumers’ PV plants 

Year Average Heq (kWh/kW) Standard deviation 
2015 1237.11  210.10 
2016 1118.85  171.13 
2017 1215.27 198.31 
2018 1058.06 181.44 
2019 1101.30 201.18 
2020 1163.67 197.66 

 
The monthly trends of production, SCR, SSR and energy produced, injected and 
withdrawn were evaluated, calculating an average value for the 6 years analysed. Figure 
12 and Figure 13 show that SSR follows the curve of production, because while the 
monthly consumption of the identified group varies slightly (by 22.5 %) the production of 
solar energy changes significantly (by 70.8 %). On the other hand, SCR is higher when 
production drops, i.e., in the period between November and February, also reaching 
average values above 45 %. 
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Figure 12: Monthly energy trends, averaged over the period 2015-2020, for prosumers 

 

 
Figure 13: Monthly Heq, SCR and SSR values, averaged over the period 2015-2020, for prosumers. 

As for the energy exchanged with the grid this is closely linked with the production and 
consumption curves of the prosumer, and in any case, it depends on the seasons that 
impact both. To sum up, the analyses of six-year data period of a pool of 413 domestic and 
non-domestic prosumers led to the average values reported in Table 5. 
Table 5: Prosumers’ annual average values (2015-2020) 

Parameter Average value 
PPV (kW) 4.60 
PR 0.98 
Heq (kWh/kW) 1,183  
SCR (%) 29.7 
SSR (%) 35.2 

 

2.4.2.1 Domestic prosumers 
The analysis of different parameters related to 6-year data of domestic prosumers led to 
the evaluation of some average parameter values, as shown in Table 6. 
Table 6: Annual average values of domestic prosumers (2015-2020) 

Parameter Average value 
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Number of plant annual variation (%) + 8.3 
SCR (%) 31.1 
SSR (%) 31.3 
Heq (kWh/kW) 1,114  
PR 0.94 
PPV (kW) 3.90 

 

Data analysis shows that domestic PV plants have an average installed power of 3.9 kW, 
almost constant over the last 6 years, with mode values of 3 kW (35% of households) for 
installed power and a PR of 0.9 (46%). Average SCR and SSR are stable over 30%, as shown 
in Table 6 and Figure 14, revealing that domestic users have not changed their behaviour 
or that current consumption patterns do not allow a smooth increase in these parameters. 
In 2020 only 2.6 % of domestic users were able to perform an SCR greater than 70 %, and 
3.1 % were able to have an SSR greater than 50%. To sum up, it is unlikely that 
householders are able to perfectly overlap consumption and PV production. With the 
exception of 2015, in Figure 15, it’s notable that SCR grows monotonically over time, while 
the SSR is strongly dependent on the irradiance and, therefore, roughly follows its trend. 
 

 
Figure 14: Distribution curve of domestic prosumers' SCR 
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Figure 15: SCR and SSR trends for domestic prosumers 

2.4.2.2 Non-domestic prosumers 
The other cluster of prosumers analysed is made up of non-domestic PV plants, which 
contains small and medium-sized factories and other commercial activities. This group 
has an average installed power of 40.4 kW and total production greater than 3 GWh each 
year as shown in Table 7, with a significant increase in the number of installations between 
2015 and 2016.   
Table 7: Annual average values of non-domestic prosumers (2015-2020) 

Parameter Value 
Number of plant annual variation (%) + 12.8 
SCR (%) 49.6 
SSR (%) 34.2 
Heq (kWh/kW) 943 
PR 1.07 
PPV (kW) 40.4 

 

Non-domestic installations have sizes that vary over a wide range, with the mode at about 
20 kW (12.2% of plants). For non-domestic prosumers, as shown in Figure 16 and Figure 
17, there are average SCR values close to 50 %, i.e. 18.3 % higher than for domestic 
prosumers. Thus, it can be seen that non-domestic prosumers have consumption that takes 
place more contemporaneously with PV generation than domestic prosumers. The trend 
of SCR is almost linearly increasing in the period of analysis with an annual increment of 
2.3 % (Figure 17). 
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Figure 16: Distribution curve of non-domestic prosumers' SCR 

Moreover, apart from 2015, SSR is about 5% above domestic customers, perhaps due to 
availability of plants optimised for the characteristics of the business (Figure 17). It can be 
noted that in 2020 the 9.7% of plants were able to perform a SCR greater than 90% and the 
10.9 % of plants were able to have a SSR greater than 50%, values extremely higher than 
those expressed in the cluster of domestic prosumers. 

 
Figure 17: SCR and SSR trends for non-domestic prosumers 

It's noteworthy to emphasise that this particular group exhibits superior performance in 
terms of SCR and SSR when compared to the domestic group. This distinction may be 
attributed to their higher energy consumption during sunny hours, when PV production 
is at its peak, as opposed to during the evening and early morning hours when domestic 
energy demand is highest but PV production is minimal. In regard to Heq, this group 
reports values lower than the previous group, indicating that their average production is 
35% lower than the potential production as projected in [118]. 

 

2.4.3 Covid-19 pandemic effects on prosumers behaviour 
Recent studies, as cited in [92] and [77], which examined the emergency pandemic period, 
have reported a significant reduction in energy consumption across industrial, 
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commercial, and transportation sectors following the implementation of the initial 
national lockdown measures. Simultaneously, there was an increase in domestic 
consumption. Hence, an assessment of the SCR for both domestic and non-domestic 
clusters was conducted. Table 8 reveals a noticeable rise in the average annual SCR during 
2020 compared to the previous year's average. This increase can be attributed primarily to 
the impact of COVID-19 and a slight upward trend in SCR from year to year. On the other 
hand, SSR experienced a slight decline in 2020, albeit its value is significantly influenced 
by annual irradiation levels. 
Table 8: Self-consumption and Self-sufficiency rate effect of Covid-19 

Year Parameter Domestic Non-domestic 
2015-2019  SCR (%) 30.8 49.4 
2020 32.5 50.7 
2015-2019 SSR (%) 31.5 34.3 
2020 30.2 33.8 

 

Figure 18 and Figure 19 show how SCR changed monthly for the domestic and non-
domestic prosumers. They clearly show that SCR for domestic prosumers increased 
significantly when the lockdown started (end of February), in comparison with the 
previous years; the difference among trends is about 8 %. The increase in SCR during this 
period is due to the increased presence of people in their homes allowed for an increased 
focus on more self-consumption-prone behaviour. 
 

 
Figure 18: Domestic SCR in 2020 with respect to average 2015-2019 values 

As to the non-domestic cluster (Figure 19), SCR did not change during the full national 
lockdown (March-May 2020), but it subsequently increased, likely due to the different 
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Figure 19: Non-domestic SCR in 2020 with respect to average 2015-2019 values 
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2.5 Grid Resilience 
In recent years, a transformation in the electricity grid has been underway, due on the one 
hand to the major environmental issues and on the other to the need to provide electricity 
of ever better quality and from RES. Due to climate change, extreme natural phenomena 
such as floods, snowfalls, hurricanes, fires have significantly increased, and the effects on 
infrastructure are significant, and attacks on the electricity grid also come from humans, 
both voluntarily and involuntarily. In particular, the DN is most prone to these incidents, 
in fact it is estimated that 90% of outages have their roots in this layer of the network [358].  
In recent years, the concept of resilience has been introduced in the electrical sector, to 
expand and strengthen the concepts of reliability, continuity and robustness of the grid. 
There is no unequivocal definition of resilience [58], but for this thesis it was decided to 
adopt the one present in the 2017 National Energy Strategy [334]: “Resilience is defined as 
the ability of a system not only to withstand stresses that have exceeded the limits of the 
system itself, but also the ability to quickly return to its normal operating state. The 
effectiveness of a resilient system depends on its ability to anticipate, absorb, adapt and/or 
quickly recover from an extreme event“. 
In a resilient system, the components are designed to withstand threats and have a 
maintenance that avoids failure, if a failure occurs the system as a whole continues to 
function properly thanks to the sufficient redundancies present. In the case of 
simultaneous degradation of several components, the system progressively degrades in a 
controlled and adaptive manner thanks to defense systems and by sending 
communications. Finally, in the event of a fault, the reset is carried out quickly.  
 
2.5.1 Resilience assessment 
Assessing resilience is performed via two different approaches: a qualitative and a 
quantitative one, which have different purposes and indicators of results.  
Qualitative methods serve for long-term policy and provide a picture of the state of the 
system. These include that of Carlson et al. [156] and that of McManus et al. [295], which 
provide results at regional level using interviews and questionnaires with citizens, 
businesses and institutions to see the overall state of the system's resilience. There are also 
hierarchical analytical methods, which detect subjective opinions on comparable 
quantities, which are easier to evaluate in order to be able to make decisions. 
Quantitative methods are based on the transposition of system performance into numbers, 
and are particularly suitable for comparison between multiple systems. There are mainly 
three categories of quantitative methods: simulation, analytical, and statistical.  
The most widespread are simulation methods because they allow a combination of 
accident scenarios and consequence scenarios, examples are J. Watson et al. [160], M. 
Shinozuka et al. [213], and  S. Chanda and A. K. Srivastava [289].  
Analytical methods provide the probability that the system will fail in some particular 
situation, for example the method of J.C.Whitson and J.E.Ramirez-Marquez [27].  
Statistical methods, on the other hand, are suitable for systems that have suffered a 
different number of natural disasters and have a large archive of restorative systems used, 
the best known being the methods of P. J. Maliszewski and C. Perrings [239], D. A. Reed, 
K. C. Kapur, and R. D. Christie [69]. 
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In the literature, there are also other advanced methods to calculate resilience, which can 
be seen as an inverse function of risk or each of the phases in the resilience curve can be 
analyzed individually over time [248].  
Generally, the results are shown through indicators that allow to quickly highlight the 
resilience of a distribution network, which is mainly assessed through data on the 
interruption to users. The main indicators are the following: 

• System Average Interruption Frequency Index (SAIDI), which is the average 
number of interruptions per user. With l which represents the power failure 
frequency in area i,  Ni represents the number of users in area i, and NT represents 
the total number of users replenished. 
 

Equation 5: System Average Interruption Frequency Index 

𝑆𝐴𝐼𝐹𝐼 = 	
∑𝜆!𝑁!
𝑁"

 

 

• System Average Interruption Duration Index, which is the average duration of 
interruptions per user. With Ui representing the duration of the outages. 
 

Equation 6: System Average Interruption Duration Index 

𝑆𝐴𝐼𝐷𝐼 = 	
∑𝑈!𝑁!
𝑁"

 

 

• Customer Average Interruption Duration Index, which is the average duration per 
interruption, set as: 
 

Equation 7: Customer Average Interruption Duration Index 

𝐶𝐴𝐼𝐷𝐼 = 	
𝑆𝐴𝐼𝐷𝐼
𝑆𝐴𝐼𝐹𝐼

 

 

• Average System Availability Index, which is the percentage of time a user receives 
power: 
 

Equation 8: Average System Availability Index 

𝐴𝑆𝐴𝐼 = 	
𝑡#$%%&!'(
𝑡)*)+&

	 ∙ 100	% 

 

2.5.2 Interventions to improve resilience 
There are two types of strategies that can be adopted to increase resilience:  

• Passive approaches: defined as the physical modification of utility infrastructures 
to make them less susceptible to extreme events through the growth of the system's 
toughness. Examples of interventions are: burying conductors, using more robust 
materials, relocating utilities, introducing redundancy, using protective barriers, 
carrying out maintenance of the surrounding areas (vegetation), using anti-
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rotational devices for overhead cables... Interventions of this type are usually 
expensive and are only effective for certain types of accidents. 

• Active approaches: Use of SG technologies to improve the overall efficiency of the 
power system, threat prediction, scheduling control actions, rapid responses 
against outages. Possible interventions are the installation of emergency 
generators and distributed generators, EESSs, demand management, construction 
of microgrids, advanced protection and control, use of circuit breakers and remote-
controlled disconnectors. These systems can alert in real-time in the event of 
failures so is possible to act quickly. 
 

Optimal design encompasses both approaches. The active approach is certainly full of 
benefits, but it can be very expensive, so it is only suitable for critical areas. While the SG 
approach is systemic, i.e. it predicts failures or recognizes them early and sends 
communications for immediate recovery. 
The study of the resilience of the network was partly carried out in the publication [XII], 
which shows the analysis of the impact of faults in the Terni distribution network. 
 
2.5.3 Short-circuit faults in different neutral configurations: case study of Terni 

distribution grid 
A Medium Voltage (MV) power DN is paramount for efficiently delivering electrical 
energy to industrial, commercial, and residential areas. Nevertheless, these networks face 
various faults that pose a substantial risk to their reliability and stability. Understanding 
the root causes of short-circuit faults and their associated consequences is imperative to 
devise effective mitigation strategies and enhance system performance. The network 
resilience topic has been extensively explored in the literature, encompassing conditions 
like natural disasters [226], [81] and strengthening infrastructure through active [305], 
[284] or passive interventions [194], [189]. 
Short-circuit faults present significant challenges to power distribution systems' 
dependable and secure operation. These faults can lead to high current flows, voltage 
disturbances, and potential damage to equipment, thereby jeopardizing the stability and 
continuity of electrical supply. Grasping the behavior and repercussions of short-circuit 
faults in diverse neutral configurations is pivotal for the efficient design, protection, and 
operation of power grids [165], [311], [144] and [279]. 
In MV and High Voltage (HV) power systems, the neutral state is critical in maintaining 
balanced voltages and currents. Each neutral configuration exhibits distinct responses to 
short-circuit faults, necessitating a comprehensive exploration of their behavior [224]. 
This study in [XII] seeks to thoroughly examine the effects of short-circuit faults on current 
and voltage within various neutral configurations in the power grid of Terni. The analysis 
centers on fault current magnitude and overvoltages in different neutral states. 
Understanding these parameters is essential for assessing fault severity, determining 
equipment resilience, and developing suitable protection schemes. Through this 
investigation, potential risks can be identified, and mitigation strategies can be proposed 
to bolster system resilience. 
Furthermore, the paper [XII] delves into the role and impact of shielding, only partilly 
analysed in literature [29], [96], [16].  
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2.5.3.1 Grid analysis and model tools  
To investigate how the network behaves in the presence of faults and the impact on 
shielding, OpenDSS was utilised. OpenDSS allows for the simulation of each phase and 
facilitates the analysis of short-circuit faults by introducing a specific component called 
the "Fault Object." Properly positioned, this object enables the emulation of various fault 
types. While OpenDSS can simulate shields using the "Tape Shield" object, it doesn't treat 
them as distinct conductors, preventing the direct tracking of current and voltage. 
Therefore, it became necessary to model the three-phase conductors with shields as a six-
conductor line, where three conductors represent the phases, and the other three represent 
the shields, each grounded at both ends. To obtain the admittance matrix for this line, we 
employed modeling and schematic drawing of the conductors using ATPdraw [40]. 

 
Figure 20: The methodology applied to the study 

The model was used to evaluate voltages and currents in the network in the event of i) 
Single-phase earth fault; ii) Double single-phase earth fault, ii) double single-phase earth 
fault, iii) Single-phase triple fault, iv) Screen fault, v) phase-to-phase fault; vi) Three-phase 
fault. 
The following neutral configurations have been considered: 

1. Neutral isolated from earth 
2. Neutral connected directly to earth 
3. Neutral to earth via resistor 
4. Neutral to earth via Petersen Coil 
5. Neutral to earth via Petersen Coil in parallel with resistor 

 
Tables displaying the most significant simulation results have been presented for each 
scenario. The obtained current values can also be valuable input for designing circuit 
breakers and other protections. Furthermore, network operators can leverage the 
constructed model to evaluate the feasibility of expanding and reconfiguring their 
networks. To simulate the network's behavior, OpenDSS was selected because, unlike 
other open-source softwares, it can calculate electrical characteristics separately for each 
phase, permits the simulation of screens, and enables the examination of short-circuit 
events. OpenDSS was not used for modeling conductor screens because it automatically 
performs Kron reduction, making it impossible to assess the current flow within them. 
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Consequently, the three-phase conductor with screens was represented as a 6-phase 
conductor, with only three phases actively powered; this configuration was modeled 
using a 6 x 6 matrix. The matrix parameters were calculated with the assistance of the 
open-source tool ATPdraw. 
 
2.5.3.2 Short circuit current in various grid configurations 
The developed model was tested on a portion of the electricity grid in Terni depicted in 
Figure 21. 

 
Figure 21: Grid topology 

Table 9 shows the number of lines in the grid portion and their length for overhead, cable, 
and underground lines. 

Table 9:Grid features 

Overhead lines (m) 
 160 mm2 Al 16 mm2 Cu 25 mm2 Cu 35 mm2 Cu 
Line 6 2392       
Line 7   1403 304 1794 
Line 8   28   809 
Line 9   5964 1269 2616 

Insulate overhead lines (m) 
 35 mm2 Al 

Line 7 782 
Line 9 202 

Underground conductors (m) 

 150 mm2 
Al 

185 mm2 
Al 

50 mm2 
Cu 

95 mm2 
Cu 

185 mm2 
Cu 

Line 1 1471 291   310   
Line 2 1187 894   179   
Line 3       494   
Line 4       473   
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Line 5     985 1415   
Line 6         789 
Line 7   501   1061   
Line 8   184   4395   
Line 9   962 238 1191   

 

The grid is a combination of 16.96 kilometers of overhead lines, 0.98 kilometers of isolated 
overhead lines, and 17.29 kilometers of underground lines. In those sections where shields 
are present, they possess a cross-sectional area of 16 mm² and are grounded at both 
terminals. The primary substation transformer has a capacity of 25 MVA, a rated voltage 
of 120/20.8 kV, operating at a frequency of 50 Hz, and possessing a short-circuit impedance 
of 14.11% p.u. Various potential configurations were explored for phase connections and 
neutral management. Since precise power consumption data is unavailable, and the 
study's focus is on conducting short-circuit analyses, a constant load of 50 kW is assumed 
for pole-mounted transformers, and 90 kW is assumed for masonry secondary substations 
in both cases, maintaining a power factor of 0.95. Given these assumptions, the total 
demand for the grid is 4.57 MW and 1.12 MVAR. The network does not have any power 
production. 
For configuration III, a resistance of 38.49 ohms was selected, aligning with one of the 
standard values commonly used in Italy. Considering the network's capacitance in 
configuration IV, the Petersen coil's reactance is 324.02 ohms. Configuration V, on the 
other hand, employs a 400-ohm resistor in parallel with a reactance that can offset 95% of 
the homopolar grid capacitance, which equates to a reactance of 307.84 ohms. 
 

2.5.3.2.1 Permanent electric regime 
Across all configurations there are no issues concerning voltage distribution, consistently 
maintaining between 0.98 and 0.99 p.u. As Table 10 outlines, the current consistently 
remains below the conductor's ampacity, and line loading never overcomes 20.7%, while 
the highest recorded current is 72.00 A. Power losses account for 2.49% of the total 
demand. The column related to shield currents exclusively pertains to insulated 
conductors, whether overhead or underground. Under steady-state conditions, the 
current flowing through the shields exhibits variations among the three phases, falling 
within a range of 2.7% to 8.5% relative to the current in the conductor, with an average 
value of 5.1%. 

Table 10: Permanent regime power flow 

Line I max phase (A) I max shield (A) 

L1 18.91 1.33 
L2 16.13 1.16 
L3 8.18 0.66 
L4 2.68 0.36 
L5 13.52 1.27 
L6 72.00 6.04 
L7 19.60 1.69 
L8 25.63 2.44 
L9 27.04 2.51 
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2.5.3.2.2 Phase to ground faults  
Single-phase earth faults were simulated at the termination point of each of the lines, with 
each fault set to its maximum potential. Table 11 illustrates the highest recorded current 
values for each configuration and specifies the line in which they occurred. Across the 
same configuration, there are generally minimal discrepancies in the currents among the 
lines, except for configuration II. In this configuration, where the neutral is directly 
connected to the ground, fault currents in lines L7, L8, and L9 are significantly lower, by 
60%, than the other lines. In the screens of the faulty phase, a consistent current ranging 
between 23.8% and 30.7% is observed, while in the screens of the unaffected phases, the 
current is slightly lower, ranging from 17.2% to 27.8%. 
Configuration II exhibits current values that could be considered unacceptable. However, 
it has a minimal impact on voltage, with the fault phase voltage dropping to 0.72 p.u. In 
the case of configuration III, neutral management would be feasible with the current 
values observed. Still, if protection against single-phase earth faults relies on current-
operated relays, careful attention must be paid to their correct configuration. In 
configuration V, the current remains consistently below 30 A, ensuring that full dielectric 
strength can be restored during self-recovering faults. 

Table 11: Phase to ground faults 

Configuration Ifault (A) Vmax (p.u.) Ishields max (A) 

I 35.76 (L9) 1.75 10.65 
II 4530.2 (L3) 1,20 1356.50 
III 302.70 (L3) 1,68 90.79 
IV 0.07 (L2) 1,72 0,02 
V 29.96 (L2) 1,71 7.39 

 

A specific type of single-phase fault arises between the conductor and the screen, which 
can occur if the insulation between the conductor and its screen deteriorates. This fault 
type resembles the previous one, but it introduces an additional fault impedance from the 
screen to the ground. Consequently, the fault currents obtained are notably reduced, 
falling within the range of 5.76 A to 7.33 A across all configurations. 

 

2.5.3.2.3 Double and triple phase-to-ground faults  
Within power grids, a scenario can arise where two faults happen concurrently. Following 
the initial occurrence of a single-phase earth fault, a temporary overvoltage can lead to a 
second fault in one of the still healthy phases, especially if the insulation in that phase is 
weakened. These dual single-phase earth faults are more common in medium voltage 
(MV) networks that employ an isolated neutral. Table 12 presents the current values for 
situations where these two faults occur either in the same phase or different phases. For 
the sake of simplicity, our analysis assumes that one fault takes place at the end of L1, 
while any potential second faults can occur in any of the other lines. 
 

Table 12: Double phase to ground faults 

Config. Ifault (A) same 
phase 

Ifault (A) diff. 
phase Vmax (p.u.) Ishields max (A) 

same phase 
Ishields max (A) 
diff. phase 

I 26.95  
(L1-7) 3990 (L1-3) 1,73 6.44 973.22 
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II 4539.50 (L1-8) 4575 (L1-5) 1,75 1106.80 1114.50 

III 325.04  
(L1-8) 4066 (L1-5) 1,75 79.35 991.52 

IV 36.71  
(L1-8) 4066 (L1-4) 1,72 10.93 991.58 

V 61.11  
(L1-8) 3998 (L1-5) 1,72 15.02 974.84 

 

If multiple faults occur on the same phase, the current limitations come into play in 
configuration I, while in configuration II, the current values become unmanageable. In 
configuration V, it's noticeable that the fault current can double compared to what's 
observed in the case of a single-phase earth fault. In the isolated neutral configuration for 
a double single-phase earth fault on the same phase, the current value is lower than that 
observed with a single phase-to-ground fault, except for all other configurations where 
the short-circuit current value increases. Notably, in configuration IV, which includes the 
Petersen coil, the current no longer approaches zero in the case of a double phase-to-
ground fault. The current flowing through the shields can reach values as high as 29% of 
the current on the conductor in the event of such a fault. The voltage consistently remains 
at about 1.74 p.u., even in configuration II, where it has significantly lower values for a 
single-phase fault. The results indicate that short-circuit currents for double phase-to-
ground faults closely resemble those for phase-to-phase faults. The values obtained are 
considerably higher when the faults occur on different phases. It's worth noting that these 
simulations assume no fault resistance, so in actual situations, these values would be 
lower. The current flowing in the shields can reach up to 24.4% of the current on the 
conductor. As expected, the voltage of the healthy phase drops in such cases compared to 
when faults occur on the same line. Specifically, the voltage of the healty phase generally 
doesn't reach the phase-to-phase voltage level but remains around 1.5 p.u. It increases 
with the length of the line in which the fault occurs. For a double single-phase fault on 
different phases between lines L1 (phase 1) and L9 (phase 2), considering the distance 
between the fault points, the voltage of phase 2 in line L1 does not drop to zero, and the 
same holds true for line L9 relative to phase 1. Additionally, the overload voltage of the 
healthy phase increases up to 1.89 p.u. Overvoltages increase as the line length increases, 
especially if one of the lines is overhead.  
In case of a triple phase-to-ground fault, with one fault per phase in different lines, very 
high current values are obtained, regardless of how the neutral is managed. The maximum 
fault current value reaches 4608 A, with 1380 A circulating in the shield. These values 
closely resemble those of three-phase faults, overvoltages are not recorded. 
 

2.5.3.2.4 Phase-to-phase faults 
Regarding phase-to-phase faults, there are no variations depending on the type of neutral 
management. Table 13 shows each line's current value and the screens' maximum current. 

Table 13: Phase-to-phase faults 

Line. Ifault (A) Ishields max (A) 

L1 3991.40 184.08 
L2 3991.22 184.05 
L3 3991.72 203.96 
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L4 3991.72 204.05 
L5 3991.40 212.69 
L6 3058.25 175.07 
L7 2207.03 120.68 
L8 3052.04 161.05 
L9 2200.37 120.09 

 

The current flowing in the shields is, on average equal to 5.18% of the current flowing in 
the conductor, similar to the stationary regime, but in this case, values higher than the 
allowable capacity of the shields are reached. Regarding the voltage, the sound phase 
remains at a value close to the nominal voltage, while the faulty phases reach 
approximately half the nominal voltage. 

 

2.5.3.2.5 Three-phases faults 
The three-phase short-circuit fault remains unaffected by the chosen neutral management 
configuration, consistently reaching its maximum value at the initial point of the line. 
Consequently, for lines originating from the primary substation, peak values of 4609.30 A 
are attained. In contrast, for the three lines originating from the MV/MV substation, 
namely L7, L8, and L9, the highest recorded current is 4051.20 A. Notably, within the 
insulated conductor in L6, a current of 313.74 A flows within the shield, surpassing its 
thermal capacity. 
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2.6 Terni distribution network: an innovation hub 
ASM Terni S.p.A. is the entity that manages the electricity DN for the municipality of Terni 
and the surrounding area. It has been operating in the electricity sector in the municipality 
of Terni since 1960 and is also responsible for other municipal services such as waste 
collection, public lighting, public hygiene service, drinking water distribution, wastewater 
purification, and the operation of the natural gas network. 
ASM manages the entire HV, MV and Low Voltage (LV) network in Terni and has fifty 
employees, divided between workers and specialised technicians, who are responsible for 
the design, construction and maintenance of the electrical infrastructure. ASM's grid is 
connected to the national transmission grid through two primary substations, the first 
delivers 50 MVA in HV and the second delivers 80 MVA in MV. The following table shows 
the internal characteristics of Terni's grid: 

Table 14: Transformers and substations in Terni distribution network 

Transformers and substations 

Primary substations HV/MV 1 

Secondary substations MV/MV 6 

Secondary substations MV/LV 588 

Total transformation power 115 MVA 
 

The transformers in the secondary substations are of various sizes, ranging from 40 kVA 
and 630 kVA with a predominance of 100, 250 and 400 kVA units. About 100 secondary 
substations are remotely controlled from the operations centre. 

Table 15: Terni distribution network power lines 

Power lines 

MV overhead lines (10/20) kV 395 km 

MV lines underground cable (10/20) kV 242 km 

LV overhead lines with bare conductors 335 km 

LV overhead lines with insulated conductors 495 km 

LV underground lines  626 km 
 

Table 16: End users of Terni distribution network 

End-users 

Number of LV end-users  65 000 

Power installed of LV end-users  312 MW 

Average daily consumption of LV users 890 MWh / day 

Average yearly consumption of LV users 218 GWh / year 

Number of MV end-users 190 

Average daily consumption of MV users 290 MWh / day 
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Average yearly consumption of MV users 167 GWh /year 
 

Table 17: Power generators available in Terni distribution grid 

Power plants 

Total power installed 63,4 MVA 

DER in LV 13 GWh 

Number of PV plants in LV 1276 

Power installed in LV 7,9 MVA 

DER in MV 167 GWh 

Number of generation plants in MV 53 

Power installed in MV 55,5 MVA 
 

The plants connected to MV are hydroelectric (4 %), PV (36 %) and thermal (60 %). Overall, 
DER has produced about 140 GWh/year in recent years, accounting for 40 % of annual 
energy demand. Among the various plants is the Alviano 2 hydroelectric power plant, 
which has been in operation since 2002 and uses water from the Tiber river to produce 
electricity; it has a maximum flow rate of 160 m3/s and an average flow rate of 72 m3/s, its 
head is 4.1 m and it produces a nominal power of 2 904 kW [38]. 
 

 
Figure 22: Hydro-electric power plant Alviano 2  

Table 18: Public lighting data in the Terni network 

Pubblic lighting 

Light points distributed throughout the city 22,000 

The ASM headquarter is an energy district that covers an area of about 3 hectares in the 
suburbs of Terni, with a three-storey building with offices, three warehouses for electrical, 
gas, and water supplies, used by the multi-utility, and two parking areas covered by PV 
panels. The microgrid is connected to the external grid via two secondary substations, 
which have oil-filled electrical transformers with a nominal power of 250 and 400 kVA. 
Electricity consumption in the building and warehouses, which is approximately 650 
MWh per year, is mainly for lighting and powering electrical devices (e.g. computers and 
servers). The PV generation system comprises 1,100 monocrystalline silicon panels of 150 
W at 12 V with dimensions of 98.5 x 98.5 cm. The PV plant is located in the parking area 
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and interfaces with the microgrid via a 200 kVA inverter. The loads and PV generators are 
equipped with real-time monitoring sensors using power quality analysers, which allow 
the voltage, current, active and reactive power values of the various devices to be tracked 
and stored in a database with a granularity of 1 second. In the parking area there are 3 
EVCS, each equipped with two charging points up to 22 kW AC and 32 A, single-phase or 
three-phase. The EVCSs have a user interface to start and regulate charging, a real-time 
smart meter, and the option to modulate the charging power remotely.  
ASM Terni is responsible for the local door-to-door waste collection in the city of Terni, 
covering an area of 211 km2 and serving 110,000 citizens on average. The waste collection 
in the city is carried out by a devoted company fleet which consists of 143 endothermic 
engine vehicles, that are normally refuelled at the ASM headquarters. Vehicle mileage 
ranges from 190 km and 46,362 km every year, average, median and standard deviation 
values are respectively of 10,596 km, 9,843 km and 7,148 km. Light vehicles are those that 
travel the shortest distance per year (8,901 km), while heavy vehicles are the most used 
(10,896 km); medium-weight vehicles are at a similar value (10,379 km). The waste 
management fleet has, to date, annual consumption of about 508 m3 of diesel fuel.  
 
2.6.1 Trial site for European projects 
ASM is a pioneering and innovative DSO in some areas, which participates and has 
participated in numerous European projects, within the European Horizon 2020 
Programme [134] and Horizon Europe [135]. A brief description of the main projects in 
which it has made a contribution is given below. 

• BD4NRG: Big Data for Next Generation Energy. This project [47] envisions to 
confront big data management challenges for the energy sector, giving a 
competitive edge to the European stakeholders to improve decision making and at 
the same time to open new market opportunities. BD4NRG aims to enable 
an incremental decentralized energy data-driven ecosystem and a collaborative 
data sovereignty driven ecosystem. The goal is to exploit the economic potential of 
big data and give to energy sector stakeholders the opportunity to improve their 
business operational performance. To achieve this and to address the emerging 
challenges in big data management, BD4NRG partners developed, adapted, and 
deployed a distributed big data energy analytics framework, consisting of several 
distributed intelligent collaborative federated nodes, a graphically enriched open 
modular big data analytics energy toolbox, a scalable big-data energy analytics 
environment. BD4NRG combined edge processing technologies with federated 
Machine Learning (ML) and AI, to operate the data-driven energy ecosystem. 
Also, the project made extensive adoption of open sources technology 
components, tools and APIs. 

• I-NERGY: Artificial Intelligence for Next Generation Energy.  The deployment 
of Artificial Intelligence (AI) in the energy sector will radically reshape the energy 
value chain in the coming years, improving the performance of business processes 
while increasing environmental sustainability. However, some barriers slow down 
the introduction of these innovative models within the energy system. I-NERGY 
[145] aims to validate new energy use cases and technology building blocks, as 
well as to develop new AI-based energy services, strengthening the 
competitiveness of SMEs in the energy AI sector. In addition to the AI sector, the 
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project also deals with the integration of IoT devices and the topics of semantics, 
federated learning and analytical tools. I-NERGY evolves, scales and demonstrates 
innovative AI-as-a-Service energy analytics applications and Digital Twin (DT) 
services that are validated through 9 pilots. 

• IoT-NGIN: Next Generation IoT as part of Next Generation Internet. IoT is one 
of the next big concepts to support societal changes and economic growth, being 
one of the fastest growing information technology segments. A specific challenge 
is to leverage existing technology strengths to develop solutions that sustain the 
European industry and values. IoT-NGIN [148] introduces novel research and 
innovation concepts, which will fuel the next generation of IoT as a part of the 
European next generation internet. IoT-NGIN uncovers a patterns based meta-
architecture that encompasses evolving, legacy, and future IoT architectures. The 
project also optimizes machine to machine and 5G communications, including 
using secure-by-design micro-services to extend the edge cloud paradigm. 
Moreover, it enables IoT systems to be autonomous through privacy-preserving 
federated ML and with augmented reality support for humans.  
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3 Digital Transition as a flexibility enabler for the energy 
transition 

The deployment of measurement tools and the integration of advanced technologies and 
services into the electricity grid are pivotal for optimizing grid operations, enhancing 
resilience, and supporting the transition to a more sustainable and efficient energy system. 
The development of advanced information technology tools is stricly related with the 
availability of monitornig devices and metering infrastructures. Placing sensors and IoT 
devices across the grid's territory enables real-time monitoring of key parameters like 
voltage, current, and cables temperature. Advanced metering infrastructure including 
smart meters and sensors, offers a comprehensive view of energy consumption and grid 
performance at the customer level, and finally geographic information systems and 
geospatial tools assist in mapping the grid infrastructure, helping utilities identify 
vulnerabilities and plan for grid upgrades strategically. Smart devices can have edge and 
cloud computing, to increase the data management and applicability: edge computing 
devices, situated closer to grid components, provide real-time data processing, reducing 
latency and enhancing local decision-making, while cloud computing enables scalable 
data storage, analysis, and remote access to grid information. 
The potential for integrating advanced information technology tools is high, depending 
on the datasets present and the needs of the DSO. Some of the technologies that will be 
integrated in the coming years are: 

• 5G Networks: 5G networks provide low-latency, high-bandwidth communication, 
enabling real-time data exchange between grid components. This facilitates remote 
monitoring, control, and response, improving grid reliability and management. 

• AI: such algorithms can analyze massive datasets generated by the grid's 
measurement tools and can identify patterns, predict failures, optimize grid 
operations, and enhance fault detection and resolution. 

• Machine Learning: ML models are adept at forecasting energy demand, 
identifying anomalies, and optimizing grid operations. They can support 
predictive maintenance and energy efficiency initiatives. 

• Grid Management Platforms: incorporate various technologies, in particular the 
DT of the grid and receive data from many sensors and IoT devices, offering a 
unified view of the grid. They enable utilities to monitor, control, and optimize 
grid performance in real-time. 
 

The integration of these technologies and services into the electricity grid empowers 
utilities to make informed decisions, enhance grid reliability, reduce losses, and support 
the integration of RES. Moreover, it fosters a more resilient and efficient grid, meeting the 
evolving demands of a modern energy landscape. 
 
3.1 Digital Twin of the power grid 
The proliferation of DER and the growing need to enhance the resilience of DN are 
prompting DSOs to raise awareness of the real-time status of the networks and actively 
manage flexible energy resources to enhance system performance. In this context, DT 
technology plays a crucial role in establishing an affordable distributed framework that 
supports the management of DNs. The application of DT in the power system draws 
inspiration from implementations in other sectors, such as manufacturing and building 



 49 

automation. The research in [XVI] presents a practical case study of developing and 
integrating a DT with an existing DN. The architecture of the DT adheres to recent 
standards, and its core components were initially designed to facilitate near-real-time 
functions like data collection, state estimation, and flexibility calculation. The individual 
tools integrated into the system and the reliability of the DT were rigorously tested and 
validated during one-month of operation. The system demonstrated consistent service 
continuity and accuracy. Results obtained from the flexibility calculator illustrate the 
effectiveness of the proposed strategies, which have the potential to enhance the energy 
efficiency of the DN by increasing the local SCR of RES production. 
In last years, the adoption of DTs in many industrial fields has allowed performing 
advanced data analytics and the integration of IoT devices. According to [360], DT is 
defined as “a living model of the physical asset or system, which continually adapts to 
operational changes based on the collected online data and information, and can forecast 
the future of the corresponding physical counterpart”. Since the 1990s, DT has been 
implemented in various industries [8] for applications including real-time monitoring, 
production control, performance prediction, human-robot interaction, optimization, asset 
management, and production planning. Among DN applications, the main services are 
predictive maintenance, fault detection and diagnosis, state monitoring, performance 
prediction, virtual testing, diagnosis and adaptive degradation analysis of rotating 
machines [159], prognostics, and health management [95]. Concerning the power system 
domain, the DT concept is not widely adopted, as reported in [227], which reviews the 
most recent trends of DT in microgrids. In particular, the few papers that address DT in 
power systems do not exploit the existing standard requirements or the already defined 
reference architectures for developing a new DT. Indeed, the exploitation of existing 
standards can be frequently found in other fields while, in the power system domain, 
common approaches are missing. It is expected that DT can be an enabling technology for 
increasing flexibility exploitation as well as market participation, [163], [54]; moreover, it 
could increase operator awareness and system resilience. 
However, some examples of DT for individual components of a power system can be 
found in [351], where a DT is used for monitoring power converters; in [322], which 
describes DT for automated fault detection with an analytical rotodynamic model, and 
[186], which implements DT for fault diagnosis and maintenance of power grid equipment 
and transmission lines. DT was also exploited to increase awareness about SG status to 
increase resilience against cyber-attacks, as in [301] and [18]. Few works fully exploit the 
DT concept on an electrical power system; notably, reference [261] presents the outcomes 
of a project where a state estimation was developed for simulation and on-field evaluation 
by controlling one PV plant for optimized voltage regulation; reference [154] reports a DT 
of DER tested in a hardware-in-the-loop environment; finally, in [125] DT is exploited for 
optimally scheduling an EESS. 
The research in [XVI] aims at deploying the DT concept in the electric DNs for low-cost 
applications. At first, the authors surveyed the existing architectures that can be used as a 
reference, mainly exploiting recent reviews on this topic [78]. Once the reference 
architecture was identified, the DT modules were developed. The authors developed three 
separated modules: a data collection module, a state estimator algorithm, and a flexibility 
calculator. Such modules allow the integration of multiple data sources, the calculation of 
the power flows (also in case of lack of measurements), and the estimation of the flexibility 
from EESS, EVCS and electrical loads. The modules were developed to be integrated in 
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the DT framework and to ensure near real-time operation, assuming that field sensors can 
provide near real-time measurements. For these services, the frequencies of the updates 
(e.g., the status is updated every 3 s) are suitable to consider the analysis in near real-time. 
The whole DT was finally integrated with a real DN to validate the modules and evaluate 
the near real-time performances. Indeed, after the integration, the system continuously 
worked for a month, then its outcomes were analyzed to finally asses the validation on a 
real case study. The paper [XVI] reports a real-life integration of the DT and the 
performance evaluation of the developed modules (i.e., data sharing speed, the execution 
time of the modules and assessment of the impact on SCR thought the flexibility 
calculator). 
 
3.1.1 Digital Twin architecture and modules  
3.1.1.1 System Architecture  
A crucial element in the development of a DT is the establishment of a reference 
architecture. Numerous papers have presented DT implementations and their associated 
reference architectures in the literature [260]. An interesting classification provided by 
[163] distinguishes these architectures into the following categories: 

a. Unit architecture: This pertains to a monolithic software architecture designed for 
systems with low complexity. 

b. System architecture: This type suits systems with multiple interactions, albeit with 
less complex constituent parts. 

c. System of Systems: This architecture is geared towards systems with a high 
number of dependencies in a multi-technology domain. 

Several architecture models have been proposed and discussed in the literature. For 
instance, in [171], the authors introduce a DT architecture reference model for cloud-based 
Cyber-Physical Systems, which helps identify various degrees of basic and hybrid 
computation-interaction modes. Reference [353] outlines an application framework 
consisting of three main layers (Physical space, Information Processing Layer, and Virtual 
Layer), with DT applied to the physical production line of an equipment factory. However, 
in the context of power systems, a comprehensive and robust set of architecture models is 
not readily available. For example, a review focusing on DT for microgrids does not 
provide any architecture models [227]. Similarly, a review of DT architectures does not 
mention works related to power systems [151]. Some papers refer to DT architecture in 
the power system domain. In [353], a DT architecture in the power system extends the 
functionalities of Supervisory Control And Data Acquisition (SCADA), including state 
estimation and additional analyses. In [18], DT architecture's power system comprises 
three layers: the physical layer, the edge control system, and the virtual space, housing 
different modules. 
This study [XVI] draws inspiration from the recent ISO standard for DTs in manufacturing 
[151]. Figure 23 illustrates the implemented architecture, which consists of two main 
spaces: the physical entity encompassing power system equipment (such as cables, 
transformers, loads, and generators), sensors, and actuators, and the DT framework 
comprising the data collection entity, the core entity, and the user entity. 

• The data collection entity is responsible for gathering all state changes from 
observable elements and transmitting control commands to those elements when 
adjustments are required. This entity encompasses sensor adapters, data storage, 
and data pre-processing. 
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• The core entity contains the models of the DT, reads the data collected by the data 
collection entity, and utilizes this information to update its models. The core entity 
includes both services and models. As per [151], the core entity should be 
subdivided into the operation and management sub-entity and the application and 
services sub-entity. In this study, the authors have developed a state estimation 
module that uses a limited set of available measurements to enhance awareness of 
the network's status. This module comprises a network model and topology and 
leverages historical data to forecast load profiles. In terms of services, a flexibility 
calculator has been developed to estimate orders sent to pre-identified flexibility 
sources. 

• Lastly, the user entity houses the user interface for the services, allowing 
visualization of module outcomes and the configuration of set points for flexibility 
orders. 

 

Figure 23: DT  system architecture based on [151]. 

 

3.1.1.2 Data Collection 
The Data Collection entity plays a pivotal role within the DT architecture, facilitating near 
real-time operation and continuous interaction with the physical entity. Its function in the 
DT architecture is illustrated in Figure 23, and further elaboration can be found in Figure 
24. This entity encompasses sensor adapters, data storage, and a pre-processing function. 
Notably, its design does not impose limitations on the integration of sensors; it readily 
accommodates different open protocols and open data formats by developing the relevant 
adapters. Adapters are responsible for extracting pertinent information from sensor 
outputs and aggregating them. The development of adapters is a customized process, 
which is always necessary due to the diverse array of sensors installed in power systems. 
Figure 24 offers insights into the adapters created for the real-case study. In particular, the 
data collection entity leverages existing open protocols and uses edge devices already 
deployed. These edge devices can provide measurements, even if measurement is not 
their primary function. Examples of such edge devices include smart meters, power 
quality analyzers, programmable logic controllers, and intelligent switch breakers. The 
central adapter that has been developed adds value through the adoption of a reference 
data structure that is both open and flexible, allowing it to be implemented by the manager 
of the metering infrastructure. 
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Figure 24: Data collection entity developed for the case study 

3.1.1.3 State estimation 
The inclusion of the state estimation module in the architecture serves two primary 
purposes: to enhance the observability of the DN by utilizing collected measurements and 
to provide a digital representation of the DN that other modules can further utilize. This 
module takes actual measurements from the electrical infrastructure as input, specifically 
voltages, and powers at network nodes equipped with smart meters. These measurements 
compute power flows along the lines by solving the load flow problem. This computation 
uses OpenDSS, which is integrated into the Python environment through the Component 
Object Model interface. The related library is accessible online [182]. OpenDSS was chosen 
as the power flow solver due to its open-source nature and suitability for analyzing DN 
issues, including its ability to analyze unbalanced networks. Additionally, it offers 
compatibility with various additional libraries by interfacing the solver with the Python 
environment. In particular, OpenDSS calculates node voltages by solving the following 
system of nonlinear equations: 
Equation 9: 
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In Equation 9, Pn and Qn are active and reactive power at the node n, Vn and θn are the node 
voltage and its phase angle. Vj and θj are the voltage and angle of the i-th node; NN is the 
number of nodes of the network; Ynj is the branch admittance and γnj its related angle. The 
system, which is summarized in Equation 9, has (2*NN –1) equations (i.e., 2 equations for 
each node); the remaining node is the slack bus (𝑉#&+,) for which the reference voltage 𝑉-	is 
set.  
The power flow calculation in OpenDSS necessitates input data including the active and 
reactive power values for all nodes and the voltage at the slack bus. If the number of 
monitored buses is insufficient to solve the power flow problem, it becomes necessary to 
estimate the missing active and reactive power values. Voltage measurements are 
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employed to assess the acceptability of the proposed estimation, using a predefined 
tolerance as a reference. 
A genetic algorithm is employed to estimate these missing power values. This algorithm 
determines the combination of active and reactive power for the unmonitored buses while 
minimizing the error between the measured and calculated voltages. While state 
estimation problems can typically be addressed using well-established techniques [67], 
using a genetic algorithm becomes beneficial when observability requirements are not 
met. Consequently, this choice enhances the module's flexibility when integrated into the 
DT and applied to various networks. 
Among the available genetic algorithm versions, a micro genetic algorithm, as detailed in 
[177], is utilized in the DT. Compared to other genetic algorithms, the micro genetic 
algorithm starts with a smaller initial random population and converges in just a few 
generations. Implementation is accomplished using an existing Python library called 
PyGAD [28], with options for single-point crossover, steady-state parent selection, and 
random mutation. 
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Figure 25: State estimation module in the DT 

The flowchart in Figure 25 shows the details and functionalities of the state estimation 
module. After collecting network parameters and topology, these are imported into the 
OpenDSS input file, which requires to know the value of 2NN – 1 electrical variables in 
order to perform the power flow analysis. When the state estimation starts (i.e., ts> 0), the 
module considers the measurements that have been just collected and stored. Among 
these, measured active and reactive power, as well as the voltage of the slack bus are 
included as input variables in the OpenDSS input file. NU nodes are the unmonitored 
nodes, whilst 2NU (i.e., active and reactive power values) are the resulting missing 
variables that genetic algorithm has to calculate. 
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The genetic algorithm is initialized and parametrized considering actual missing 
variables, each of them corresponding to a gene (i.e., each individual has 2NU genes). Each 
gene can vary in a discrete range defined according to historical data. As an example, the 
structure of the whole chromosome is reported in Table 19; in that case, defining 𝑃!.  
historical active power of the i-th node (kW), the range is between 0.8𝑃!. and 1.2𝑃!. .	In 
Table 19, 𝑃!. is a value that can reasonably approximate the actual value to be estimated 
by the genetic algorithm for node i (e.g., the historical measurement of that specific hour 
and weekday that is under evaluation). This is a limitation of the DT since a power value 
highly different from the historical data is not allowed, but this seems to the authors a 
good compromise between DT accuracy and execution time. 
After the initialization, the sequence of generations starts, as it is reported by the flowchart 
in Figure 26. For each generation g, genetic algorithm defines the parameters of all NK 
individuals. Then, the fitness of each k individual generated by the genetic algorithm is 
calculated by using the genes of the individual to complement the input file to the 
OpenDSS power flow. In this manner, the estimated values of active and reactive power 
are included in the power flow calculation. After updating the file, OpenDSS, which is 
coupled with the genetic algorithm, calculates power flow and provides a set of voltages 
that are compared with the measured values. The actual fitness assigned to each k 
individual is finally calculated according to the following equation: 
Equation 10: 
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In Equation 10, NM is the number of monitored nodes for which voltage values are 
measured, 𝑉!/  and 𝑉!0 are the measured and calculated voltage of the i-th node, 
respectively. Equation 10 requires in input the measured voltages that are collected in the 
previous step, according to the flowchart. The best individual is the one with the 
maximum fitness. 
As shown in Figure 26, two stopping criteria are considered: the tolerance on voltages and 
the maximum number of generations NG (i.e., g=NG). As soon as one stopping criterion is 
achieved, the best individual is stored as the solution of the genetic algorithm based state 
estimation. The solution obtained by the genetic algorithm complements the OpenDSS 
input file, and thus the power flow of the network is calculated. The new power flow 
solution is used by the other modules that perform additional calculations, such as 
flexibility estimation as explained in the following subsection. 
In the first time step ts= 1 the population is randomly initiated, but when ts > 1 the best 
individual of time step ts – 1 is incorporated in the individuals of the first population. 
Indeed, as shown in Figure 25, the genetic algorithm is continuously invoked by the state 
estimation tool and if the time interval between two consecutive steps ts and ts+ 1 is small, 
it makes sense to initialize the state estimation solver with the solution calculated in the 
previous time stamp. This approach allows to reduce the genetic algorithm execution time 
and quickly fulfills the assigned tolerance, making the DT able to operate in near real-time 
and therefore to be invoked many times per minute. When the solution in the time step ts 

– 1 is the starting point of step ts, the genetic algorithm starts from a solution that already 
has high fitness and in a few generations, can fulfill the algorithm tolerance. Therefore, 
even if each genetic algorithm elaboration can be quite limited, a cycling update of the 
initial population can easily lead to a solution that fulfills the assigned tolerance. 
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Figure 26: Genetic algorithm for state estimation 

 
Table 19: Structure of the chromosome in genetic algorithm for state estimation 

Chromosome Gene 
1 … Nu Nu + 1 … 2Nu 

[0.8𝑃1,3, 1.2𝑃13] … [0.8𝑃&(
3 , 1.2𝑃&(

3 ] [0.8𝑄1,3, 1.2𝑄13] … 
[0.8𝑄&(

3 , 
1.2𝑄&(

3 ] 
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The complete set of genetic algorithm parameters used in the case study is included in 
Table 20. 

Table 20: genetic algorithm parameters for the case study 

Population 5 
Maximum number of generations 50 
Absolute tolerance on average error 0.25 V 
Percentage of genes to mutate 10 % 
Number of parents to keep in the population 1 
Number of solutions to be selected as parents 4 
Type of crossover Single-point 
Parent selection type Steady- state selection 
Type of the mutation operation Random 
 

3.1.1.4 Flexibility calculator 
The flexibility calculator is an integral component of the DT, designed for the purpose of 
overseeing the management of distributed flexibility resources that are interconnected 
with the DN. As defined in [215], flexibility, in this context, refers to a component's 
capacity to adjust or modify its regular operation temporarily, responding to external 
service requests without causing unplanned disruptions. This module is primarily 
responsible for peak load reduction and load shifting, with the ultimate goal of enhancing 
the SCR of local RES and reducing the average and peak load on transformers and power 
lines. The decision to prioritize SCR as the main objective of flexibility management stems 
from its significance in the specific case study for which the DT is tailored and tested. In 
this particular study, the network under examination experiences Reverse Power Flow 
(RPF) events. However, it's worth noting that in the future, additional objectives could 
also be taken into consideration. SCR is described in Equation 2. 
To perform this task, OpenDSS is interfaced with a Python module, exploiting a control 
strategy of flexibility resources based on the power flow value at the connection with the 
external network (e.g., the power line or the transformer). Flexibility resources include 
network elements such as: 

• EESS; 
• Flexible loads, i.e. Heating, Ventilation and Air Conditioning (HVAC), water 

pumps, and other time-dependent loads (dishwasher, refrigerator, washing 
machine) for which a DR mechanism is applied; 

• EVCS. 
The flexibility resources exhibit a range of distinct characteristics, including their capacity 
for one-way or two-way power exchange with the grid, nominal power ratings, overall 
capacity, and operational durations. To illustrate, certain devices are capable of activation 
solely for short-term services, whereas others have the capacity to operate for extended 
periods throughout the day. Below, we provide a description of each flexibility resource 
model. 
 
3.1.1.5 Electrical Energy Storage System 
Within OpenDSS, the EESS object is represented as a power conversion element. During 
the charging phase, it is modeled as a constant power load, and during the discharging 
phase, it acts as a generator. An EESS is inherently subject to limitations imposed by its 
rated power capacity and stored energy capacity. Illustrated in Figure 27, this model 
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comprises a storage component that adjusts its State Of Charge (SoC) throughout its 
operation. Additionally, it incorporates an inverter, which enables the dispatch of the 
desired amount of reactive power while adhering to a selected power factor. Table 21 
outlines the primary characteristics of the storage object. 

Table 21: Storage Object main features 

state Storage state: 1) Idling, 2) charging, 3) discharging 
% Discharge Discharge rate in percent of the nominal power (%) 
% Charge Charging rate in percent of the nominal power (%) 
𝜂45  Charging efficiency (%) 
𝜂645  Discharging efficiency (%) 
𝐸(𝑡)  Available energy at time t (kWh) 
𝑃78845 (t) Power charging the storage at time t (kW) 
𝑃788645(t) Power discharging the storage at time t (kW) 
𝑃%$(𝑡)  Power injected in the storage by the grid at time t (kW) 
𝑃9:;(𝑡)  Power injected in the grid by the storage at time t (kW) 
𝑃%6*  Idling power losses (kW) 

When charging, the following balance equation applies: 
Equation 11: 

𝐸(𝑡 + ∆𝑡) = 𝐸(𝑡) + 𝑃78845 (𝑡) ∙ ∆𝑡 

where: 
Equation 12: 

𝑃78845 (𝑡) = (𝑃%$(𝑡) ∙ 𝜂%$<(𝑡) − 𝑃%6*) ∙ 𝜂45 

When discharging, the balance equation is: 
Equation 13: 

𝐸(𝑡 + ∆𝑡) = 𝐸(𝑡) − 𝑃788645(𝑡) ∙ ∆𝑡 

where: 
Equation 14: 

𝑃788645(𝑡) =
𝑃9:;(𝑡)

𝜂%$<(𝑡) ∙ 𝜂645
+
𝑃%6*(𝑡)
𝜂645

 

Furthermore, constraints pertaining to the upper and lower limits of the SoC, as well as 
limits on injected/absorbed power and voltage, are enforced. During periods when the 
storage component is in an idle state, the losses incurred during idling, along with the 
corresponding inverter losses, are sourced from the grid. This ensures that the SoC of the 
storage remains constant during these idle periods. 

 

Figure 27: Storage model 
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3.1.1.5.1 Electric vehicle charging station 
Recent developments in SG technologies have opened up opportunities for EVs to engage 
with the grid actively and passively, both on an individual and collective basis. EVCSs can 
now manage power flow, enabling them to harness their complete capabilities within the 
electricity DN, all while contributing ancillary services. In this study, as also observed in 
literature sources [296], EVCSs are simulated with a behavior similar to that of storage 
systems, limiting the mode of operation to charging only. Table 22 reports the main 
features of an EVCS as modeled in [XVI]. 

Table 22: EVCS model main features 

state 1) No charging, 2) charging 
% Charge Charging rate in percent on the nominal power (%) 
ηch  Charging efficiency (%) 
 𝑆𝑂𝐶=/(𝑡) SoC of the EV connected to the EVCS at time t (%) 
𝐸𝑛=/(𝑡)  Nominal capacity of the battery of the EV (kWh) 
𝑃78845 (t) Power charging the EV at time t (kW) 
𝑃%$(𝑡)  Power injected in the EV by the grid at time t (kW) 

 
We exclusively focused on the grid-to-vehicle charging mode, where the power supply is 
adjusted in accordance with the grid's requirements, permitting operation solely during 
vehicle charging sessions. In this scenario, the EVCS is activated as a flexibility source only 
when, based on the state estimation results, it is determined that a vehicle is actively 
charging. The amount of power that can be shifted in time spans a range from 25% to 100% 
of the EVCS's rated power capacity. There are no specific user engagement criteria taken 
into account in this approach. However, it's worth noting that the EVCS may not be 
activated for flexibility if the user requires charging at the maximum power level, without 
concurrently providing any auxiliary services to the grid. When charging, the following 
balance equation applies: 
Equation 15: 

𝑆𝑂𝐶=/(𝑡 + ∆𝑡) = 𝑆𝑂𝐶=/(𝑡) + 100 ∙
𝑃78845 (𝑡) ∙ ∆𝑡
𝐸𝑛=/(𝑡)

 

being 
Equation 16: 

𝑃78845 (𝑡) = (𝑃%$(𝑡) ∙ 𝜂%$<(𝑡)) ∙ 𝜂45 

In addition, constraints related to the maximum SoC, absorbed power, and voltage are 
applied. When there are no EVs connected to the EVCS or the EV is fully charged, power 
losses are nil.  
Figure 28 reports the simplified model of the EVCSs. 

      

Figure 28: EVCS model 
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3.1.1.5.2 Flexible load for DR 
DR encompasses the fluctuations in electricity consumption patterns among end-users in 
reaction to alterations in electricity prices or incentive schemes designed to encourage 
reduced electricity consumption during periods of elevated wholesale market prices or 
when there's a threat to the power system's reliability. DR can be activated through two 
methods: self-dispatch participation, where consumers engage in load shifting to 
economize in response to price signals, and incentive-based DR, where consumers are 
rewarded, often financially, for achieving a specified load reduction or increase within a 
designated timeframe, aligning with the electricity grid's requirements. Numerous models 
for DR can be found in the existing body of literature, varying in complexity and 
considering factors such as the internal characteristics of equipment, technological aspects, 
societal influences, and environmental considerations. In this study, the authors have 
opted for a simplified aggregate model of DR, which achieves load shifting [296], [209], 
[267] and [229]. Load shifting stands out as the most prevalent form of DR, typically 
involving thermal loads (e.g., air conditioning, heating, cooling), deferrable loads (e.g., 
washing machines, ventilation, water pumps), or physical storage systems (e.g., hydrogen 
production). Nonetheless, load shifting encounters various constraints, including 
technical limitations (e.g., lack of automation in electrical devices or the inability to shed 
loads), user behavior constraints, process requirements (e.g., certain processes cannot be 
interrupted or modified once initiated), and the availability of appliances, as mentioned 
in [42]. 
The load shifting model employed in the DT closely resembles those used for storage and 
EVCSs. Essentially, it allows the flexible load to "generate" power by abstaining from 
consumption during specific periods while being able to "consume" power during other 
times by increasing or decreasing the expected demand curve. In the model, a DR with 
load shifting is utilized, incorporating saturation without relying on a base demand profile 
[113]. When in the charging phase, the following equilibrium equations come into play:  
Equation 17: 

𝑃>?(𝑡) = 𝑃+4;(𝑡) + 𝜙(𝑡)		∀	𝑡 

Equation 18:           

'𝜙(𝑡)
@

;'1

= 0 

Equation 19: 

𝑃A%$ ≤ 𝜙(𝑡) + 𝑃+4;(𝑡) ≤ 𝑃A+B			∀	𝑡 

Equation 20:                         

𝑃>?(𝑡) ≥ 0			∀	𝑡 

Equation 21:                                

𝐸(𝑡) = 𝐸(𝑡 − ∆𝑡) + 𝜙(𝑡) ∙ ∆𝑡			∀	𝑡 

Equation 22:      

𝐸A%$ ≤ 𝐸(𝑡) ≤ 𝐸A+B			∀	𝑡 
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Equation 23:                                                           

𝐸(𝑡 = 𝑇) = 𝐸(𝑡 = 0) 

Equation 17 - Equation 20 are the constraints of an ideal shifting of power without a base 
demand value, where 𝜙(𝑡) is the power variation due to the DR mechanism in a certain 
time period. Pmin and Pmax depend directly on the type of load in which the DR mechanism 
is to be realized. To not change the overall consumption, Equation 18 imposes that 
increments and reductions are balanced over the time span T. 𝑃+0)(𝑡) is the actual power 
demand at time t in kW. Equation 21 - Equation 23 involve the free variable E(t) which 
represents the energy displaced over time by the mechanism, i.e., the capability to 
anticipate or postpone the consumption, in analogy to EVCS and EESS. In particular, 
Equation 22 models the load saturation effect by imposing a minimum (𝐸/!1 ) and 
maximum (𝐸/+2) level of storage capacity: in this way, unlimited load overconsumption 
(over-curtailment) during many consecutive periods is not allowed, because the storage 
will reach its maximum (minimum) level. Equation 23 ensures that the storage level 
returns to its initial value at the end of the time span T, thus guaranteeing that load 
demand can be shifted, but the total overall energy consumption will remain the same.  
 
3.1.1.5.3 Flexibility resources management 
In order to regulate the behavior of adaptable resources effectively, it is essential to 
establish an operational criterion. This criterion can either be an inherent attribute of the 
flexibility resource itself or, more commonly, it can involve the utilization of a controller 
object. While OpenDSS provides predefined controller modes, which are based on power 
flow or time scheduling, the authors of this study opted to create a custom controller using 
Python and the py-dss-interface module. This custom controller enables the adjustment of 
the operational state and the amount of power consumed or injected by the adaptable 
resource. It's worth noting that each resource may have its own distinct controller, or a 
single controller can oversee multiple devices, as exemplified in the DT framework 
introduced in this paper and illustrated in Figure 29. 

 
Figure 29: Storage controller mechanism 

The authors devised a controller model using Python, which interfaces with OpenDSS 
through the COM Interface. This controller relies on the measurement of a specific 
parameter in the network's connection element that links it to the remainder of the 
network. It functions by evaluating the power value in comparison to predefined 
threshold values and, based on this assessment, instructs the resource to adopt different 
behaviors, thereby adjusting its operational state and modifying the quantity of power it 
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either injects into or absorbs from the system. The control system operates by monitoring 
the power flow within the main feeder, and in the subsequent timestamp, it triggers either 
power withdrawal or injection by the adaptable resources, as detailed in Table 23. When 
substantial power levels are observed in the main feeder, the storage resource injects 
power, while other adaptable resources refrain from power withdrawal. Conversely, 
when power levels in the main feeder are low, the storage resource charges, and other 
adaptable resources increase their power consumption. As written by the authors, this 
operation mode is the result of a simplification and is not without flaws, e.g. swinging 
phenomena, although rare, can occur. 

Table 23: Storage Controller criteria 

Threshold Flexibility 
resource status 

% charging % discharge 

P ≤ 𝑃;51  Charging 100 % - 
𝑃;51  < P ≤  𝑃;5C  Charging 75 % - 
𝑃;5C  < P ≤  𝑃;5D  Charging 50 % - 
𝑃;5D  < P ≤  𝑃;5E  Charging 25 % - 
𝑃;5E  < P ≤  𝑃;5F  Idling - - 
𝑃;5F  < P ≤  𝑃;5G  Discharging - 25 % 
𝑃;5G  < P ≤  𝑃;5H  Discharging - 50 % 
𝑃;5H  < P ≤  𝑃;5I  Discharging - 75 % 
P >  𝑃;5I  Discharging - 100 % 

To enhance the SCR of the network, we established thresholds employing a genetic 
algorithm. The process entails utilizing historical data derived from the state estimator, 
encompassing power demand and generation, and applying the genetic algorithm to 
retrospectively analyze the past period. This analysis identifies the optimal threshold 
values that would have yielded the highest self-consumption. These threshold values are 
then employed for all subsequent iterations until the analysis is terminated. The 
optimization procedure utilizing genetic algorithm was developed using the Python-
based open-access library, PyGAD [28]. This task involves generating 5 solutions within a 
population for 100 generations, with each solution comprising 8 genes. When executed 
over one month of data sampled every 20 seconds, the algorithm takes approximately 46 
minutes to complete. It's important to note that this execution time, while not negligible, 
has no impact on the DT since it runs only once, while the DT itself operates in near real-
time. 
In summary, the management of flexibility resources encompasses the following steps: 

1. Identify suitable resources that can be used (e.g., EVCSs are included only if an EV 
is charging, some resources can be out of service for maintenance activities, etc.); 

2. Management of the flexibility resource depending on the power flow in the main 
feeder (or the connection with the external network compared to threshold values); 

3. The power flow of the network with the device thus configured is solved; 
4. The energy stored in each device is updated by Equation 11, Equation 13, Equation 

15, and Equation 21; 
5. Voltage, current, power, and SoC values obtained by the use of flexible resources 

are exported. 
Execution time for the above-described five steps is about 0.01 s, ensuring near real-time 
operation. The operations performed by the flexibility mechanism in each iteration are 
shown in Figure 30. 
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Figure 30: Flowchart of the flexibility resources management implemented in the DT 

3.1.2 Digital Twin of the grid for real time analysis and control in Terni distribution 
grid 

The case study is conducted in a portion of the medium voltage DN of Terni. The network 
section selected for the case study well represents the set of recently installed technologies 
enabling the DT implementation. The section is an MV feeder that supplies 5 secondary 
substations, as shown in Figure 31. Two secondary substations supply the DSO’s 
headquarters. Summing up, it comprises 2 PV arrays (185 kWp and 60 kWp rated power, 
respectively); an EESS equipped with 72 kWh 2nd life Li-ion battery; two buildings (6,800 
m2) and a 1,300 m2 warehouse. The base load is between 50 and 90 kW, whereas the peak 
load is between 120 and 170 kW. The HVAC of the building is equipped with a Building 
Energy Management System; 2 private EVCSs and one public EVCS are installed. Figure 
32 shows some equipment installed in the case study. Moreover, other users are also 
supplied by the MV feeder, i.e. 1 MV customer and 35 LV customers with an average 400 
kWh daily load demand. Some recorded load profiles are plotted in Figure 33 as an 
example. 
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Figure 31: Single-line diagram of the case study 

    

 
a) 

 
b) 

 
c) 

Figure 32: Some of the equipment installed in the case study: a) PV plant; b) metering devices; c) EVCS. 
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Figure 33: Example load profiles at some buses of the case study, measured in June 2022. 

The Terni DN is partially equipped with a near real-time metering infrastructure. This 
infrastructure includes physical sensors such as power quality analyzers embedded 
within the network and smart meters that communicate with a local extension, typically a 
Raspberry Pi or a similar single-board computer. These extensions enable the transmission 
of data in near real-time. Data from these sensors are made available to the modules 
through the utilization of MQTT protocol. Smart meter extensions and power quality 
analyzers are configured to publish data every second. To gather these measurements and 
integrate the data from smart meters, adapters were developed. These adapters subscribe 
to the relevant topics published by the meters connected within the DN described earlier. 
It's worth noting that while, in the case study, only power quality analyzers are currently 
connected to the DN, the adapters developed are adaptable for use with smart meters as 
well, as the data format remains consistent.  
The whole DT of the MV network section was implemented in a remote Workstation with 
an Intel Core i7-7820X 3.6 GHz CPU and a 64-GB RAM. Various sources of flexibility are 
installed in the case study, such as EESS, EVCSs, and flexible loads (through DR). These 
components main features are reported in Table 24. 

Table 24: Flexibility Parameters for the case study 

Node 
Flexibility 
resources Pn (kW) En (kWh) 

Bus8 DR for HVAC 10 30 

Bus 11 DR for flexible 
load 10 10 

Bus10 DR for flexible 
load 5 5 

Bus9 EESS 16 16 
Bus14 EESS 72 66 
Bus8 EVCS 22 70 
Bus16 EVCS 50 70 

 
For electrical loads serving heat consumers like HVAC, it's assumed that 15% of the 
average power can be rescheduled over a span of 3 hours. As for other flexible electrical 
loads, it is assumed that the entire rated power of the load can be shifted within a duration 
of 1 hour. 
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All storage systems in this analysis are presumed to have a power factor of 1. The 
efficiency curve of the inverter linked to the storage system, dependent on the utilization 
factor, is derived from [323] and illustrated in Figure 34. 

 

Figure 34: Inverter efficiency curve implemented in the module 

As depicted in Figure 29, resource management relies on a single controller responsible 
for monitoring power flow within the primary feeder. This controller can either supply or 
absorb power with the aim of maximizing the SCR of the specific grid section. When the 
positive flow of power (i.e., from the HV network) exceeds a predefined threshold, the 
control system prompts flexibility resources to discharge power. This action helps reduce 
upstream power flows and associated network losses. Conversely, when the power flow 
falls below a certain threshold, the flexibility resources are instructed to charge power to 
mitigate or eliminate RPF. It's worth noting that the threshold values used by the 
controller are updated each time the simulation is initiated. As an example, Table 25 
displays the threshold values following one month of simulation, with a time resolution 
of 20 seconds. As previously explained in the preceding section, this calculation doesn't 
impact near real-time operations since it is conducted offline. 

Table 25: Example of the threshold values 

Threshold of the power in the main feeder 
and example 

Flexibility 
resource status 

% charging / 
discharging 

P ≤ 𝑃;51  𝑃;51 =	−12	𝑘𝑊 Charging 100 % 
𝑃;51  < P ≤  𝑃;5C  𝑃;5C = 	13	𝑘𝑊 Charging 75 % 
𝑃;5C  < P ≤  𝑃;5D  𝑃;5D = 	41	𝑘𝑊 Charging 50 % 
𝑃;5D  < P ≤  𝑃;5E  𝑃;5E = 	53	𝑘𝑊 Charging 25 % 
𝑃;5E  < P ≤  𝑃;5F  𝑃;5F = 	120	𝑘𝑊 Idling - 
𝑃;5F  < P ≤  𝑃;5G  𝑃;5G = 	164	𝑘𝑊 Discharging 25 % 
𝑃;5G  < P ≤  𝑃;5H  𝑃;5H = 	172	𝑘𝑊 Discharging 50 % 
𝑃;5H  < P ≤  𝑃;5I  𝑃;5I = 	265	𝑘𝑊 Discharging 75 % 
P >  𝑃;5I   Discharging 100 % 

Due to the small number of flexibility resources available in the case study in comparison 
with the load, some resources are saturated quickly and the shift of the power flow curve 
is limited. 
 
3.1.3 Test network 
To evaluate the state estimation module's performance on a larger DN, additional 
simulations were conducted, implementing state estimation in a test network over the 
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course of one day. These tests were conducted on the 33-node IEEE test network [199], 
where 32 nodes represent secondary substations with passive loads, and the final node 
serves as the primary substation. To simulate daily load profiles, the base power for each 
secondary substation was considered and employed a standard profile from reference [2]. 
This profile is expressed as a percentage of the peak load and is sampled hourly. To 
achieve load profiles sampled every 20 seconds, spline interpolation was applied, and 
random noise was introduced to differentiate profiles for each substation. 
Figure 35 illustrates the maximum and minimum variations imposed every 20 seconds. 
It's noteworthy that the absolute variation does not exceed 20% of the reference profile. 
The network's base voltage is set at 11 kV. 

 

Figure 35: Reference power profiles and extreme variations evaluated for all timestamps 

The tests primarily center on the state estimation module. The goal is to ensure that state 
estimation functions correctly even when dealing with a larger network, which involves 
managing a higher number of variables. In this context, it's important to assess whether 
the state estimation process remains accurate and efficient despite the slightly increased 
complexity in power flow calculations when compared to the smaller real-case study 
presented earlier. As for the flexibility calculator, additional tests were not conducted. This 
decision stems from the fact that the threshold values are not updated during system 
operation. In other words, the time it takes to calculate these thresholds does not impact 
the system's real-time operation. 

 

3.1.4 Results of the Digital Twin deployment  
3.1.4.1 State estimation 
Over approximately one month, from 05/08/2022 to 09/09/2022, the state estimation 
module was executed nearly 150,000 times, equivalent to about 3 times per minute. The 
average execution time for these operations was 0.155 seconds. Instances of unusually 
long execution times, defined here as exceeding 4 seconds, were rare, occurring only 0.1% 
of the time. 
In terms of accuracy, the average difference between measured and calculated bus 
voltages was generally acceptable, falling within the ranges of 0.024 V, 0.063 V, and 0.140 
V for the 1st, 2nd, and 3rd quartiles, respectively. Cases of average errors surpassing the 
tolerance established by the genetic algorithm, which is 0.25 V as per Table 26, occurred 
only 6% of the time. 
A more detailed assessment of the state estimation module's performance is provided in 
Figure 36. This figure illustrates the average absolute error between the state estimation 
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results and measurements (depicted by the orange line), as well as the execution times 
(indicated by the blue line) during a 75-minute operation. The state estimation process 
was executed 235 times within this selected time interval.  
Regarding voltage errors during these 75 minutes of DT operation, the average error value 
was 0.2 V, with a median value of 0.11 V. The median execution time for the genetic 
algorithm to reach stopping criteria was 0.087 seconds, while the average execution time 
was 0.46 seconds. Figure 36 reveals several peaks in execution time, leading to a higher 
average value. These variations in execution time are attributed to the algorithm's 
tendency to require fewer iterations to meet the specified tolerance in some cases. 
Based on these results, it can be concluded that the implemented DT can perform state 
estimation in near real-time. The developed adapters, which provide a continuous and 
uninterrupted data flow, also contributed to the system's overall good performance. 

 

Figure 36: Execution time of the GA-based state estimation (blue line) and average absolute error between state 
estimation results and measurements (orange line) during 75 min of operation 

Furthermore, Figure 37 a) and b) offer detailed insights into the calculations performed on 
01/09/2022 and 02/09/2022, respectively. These figures present a comparison between the 
voltage profiles measured and those calculated, explicitly referring to Bus 2, as shown in 
Figure 31. Figure 37 b) showcases an intriguing aspect of the state estimation algorithm: 
its ability to track a sudden voltage drop of 8% that occurred around 13:00. In contrast, 
during the other timestamps depicted in Figure 37 a) and b), the state estimation algorithm 
exhibited its typical behavior, maintaining a solid agreement between the measured and 
calculated values. 

 
a) 
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Figure 37: Measured and calculated voltage profiles at Bus 2 on a) 01/09/2022 and b) 02/09/2022 

Finally, Figure 38 and Figure 39 are selected among the timestamps to show the difference 
between the two stopping criteria, i.e. minimum tolerance in absolute value on the average 
error (Figure 38) and the maximum number of generations (Figure 39). 

 

Figure 38: Fitness evolution when genetic algorithm in state estimation stops since minimum tolerance in absolute 
value on the average error is achieved 

 

Figure 39: Fitness evolution when genetic algorithm in state estimation stops since the maximum number of 
generations is reached 

b) 
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Finally, some results on the IEEE 33-nodes test case are reported, based on 4 sets of 50 
simulations. For each set of simulations, NM is fixed. However, the group of monitored 
nodes is randomly defined for each simulation (i.e., 50 different configurations are 
evaluated). It is worth mentioning that power profiles are the same for all the simulations 
and were carried out assuming that the exact status of the network is known at the first 
timestamp (i.e., the state estimation overcame the start-up transient). Results of the 200 
simulations are averaged and reported in Table 26, which shows that the state estimation 
can still provide good performances on accuracy and execution time. 

Table 26: Results of the state estimation applied on the test network 

NM 
Average time 

(s) 
Average error 

(V) 
Median time 

(s) 
Median error 

(V) 
25 0.0200 0.1612 0.0239 0.0223 
20 0.0186 0.0736 0.0220 0.0235 
15 0.0176 0.0688 0.0209 0.0276 
10 0.0165 0.0561 0.0190 0.0307 

 

3.1.4.2 Flexibility calculator 
In this section, we delve into the primary performance metrics of the flexibility calculator 
during the near real-time operation of the DT. Figure 39 a) provides an overview of the 
active power flow in the main feeder (line 1 in Figure 31) over the course of a week in 
September 2022, considering actual consumption and generation data that has been post-
processed by the state estimation. For a more detailed examination, Figure 39 b) and c) 
zoom in on specific time windows extracted from the power flow data presented in Figure 
39 a), representing one day and one hour, respectively. A consistent pattern emerges from 
these visuals: flexibility resources are recharged between 9 a.m. and 12 p.m., coinciding 
with the increase in PV production and relatively low load demand. These resources are 
then discharged during the pre-evening hours to mitigate peak power consumption. 
Examining Figure 39 c) closely reveals that the flexibility management system effectively 
attenuates some peaks by bringing them closer to the average, although its impact varies. 
This variance occurs because the system operates with thresholds that elicit a non-linear 
response, and once flexibility resources are saturated, they cannot provide services until 
they become available again. 
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Figure 40: Active power flow in the main feeder during a) one week in September; b) one day (22 of September); c) one 
hour. Blue line: measurements; red line: power flow using flexibility resources 

Figure 40 provides a depiction of the available energy from the flexibility resources, which 
include three flexible loads linked to buses 8, 10, and 11, as well as two EESS connected to 
buses 9 and 14. These data span three days in the latter half of September 2022. It's notable 
that the utilization pattern of flexible resources exhibits a similar trend across all storage 
objects. This consistency arises from the presence of a single storage controller overseeing 
all resources, albeit with varying power and energy constraints. As illustrated in Figure 
40, resources are replenished during the midday hours when PV production is at its peak, 
and the power flow in the main feeder is minimal or negative. Conversely, these resources 
are discharged from late afternoon until morning. 
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Figure 41: Available energy from flexibility resources installed in the case study during three days in September 

The utilization of flexibility resources has a negligible impact on bus voltage profiles. This 
is primarily because the implemented algorithm doesn't optimize bus voltages per se; 
instead, its objective is to enhance the SCR of the network segment. As a result, when 
comparing average bus voltage values with and without flexibility, there is minimal 
difference, measuring 236.124 V and 236.137 V, respectively. The standard deviation is 
also quite similar, standing at 1.502 V with flexibility and 1.516 V without. This aspect is 
further clarified by Figure 41 a) and Figure 40 b), which clearly illustrate that only minor 
voltage variations occur within the network when flexibility resources are employed. 

 

 

Figure 42: Voltage profile of two buses on the 22 of September in a) a 12-hours time window and in b) a one-hour time 
window with and without the use of flexibility services. 

As expected, the impact of flexibility resources on currents is larger than what happens 
for voltage. The reduction of the average current values on each line is about 4.57%, with 
a reduction in the standard deviation of 11.48%. Figure 42 a) and b) highlight this effect, 
allowing in this way the reduction of network losses and, for more stressful power lines, 
the reduction of thermal risks. 
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Figure 43: Current profile of two lines on the 22 of September in a) 12-hours time-window and b) a one-hour time-
window with and without the use of flexibility services 

Lastly, Table 27 reports some aggregate results obtained after one month of DT operation. 
The SCR is increased from 88.42% up to 91.99% and RPF along the main feeder are reduced 
by 33.01%, with benefits for both LV users and DSO. The peak of the power drawn from 
the DN is reduced by 23.7%, while the peak from the DN to the external network is 
reduced by 27.4% in the analyzed month. 

Table 27: Effect of DT operation on global indicators 

Parameter Without digital twin With digital twin 
SCR (%) 88.42 91.99 
Reverse energy flows (kWh/month) 2,999 2,022 
Max power in main feeder (kW) 345 263 
Min power in main feeder (kW) -204 -148 
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3.2 Internet of Things devices and sensors 
The IoT has been identified as one of the next big concepts to support societal changes and 
economic growth, and one of the fastest growing information and computer technology 
segments. A whole new range of applications that leverage data and metadata from 
connected devices provide novel services in various areas such as the SGs. An “thing” in 
the IoT landscape is any  kind of sensor, actuator, wearable device, smart phone or 
autonomous system, such as autonomous guided vehicles, robots or drones with 
networking capabilities. In the next generation IoT era, the biggest challenges are to 
research towards federated on-device intelligence, so that the devices react as self-aware, 
and when applicable user-aware, semi-autonomous entities, even when their resources 
are constrained or network connectivity is not reliable; to enforce interoperability and data 
sovereignty, overcoming scalability and fragmentation of vertically-oriented, closed 
systems; and to ensure trust, cybersecurity and privacy.  
The most important functions needed by an IoT device are flexibility, reliability and 
performance, along with the security and privacy limitations. Above all, it is the need for 
a commonly agreed semantic representation of any kind of “things”, which will bind 
existing and future implementations.  
The electricity distribution sector is experiencing a transition period in order to achieve 
the targets set for the fight against climate change and the reduction of climate-altering 
emissions. The IoT sector offers many prospects and opportunities in the field of SGs. The 
implementation of IoT in SGs can improve the efficiency, reliability and sustainability of 
the overall energy system and foster integration with electric mobility. 
IoT can enable real-time monitoring of energy consumption and intelligent energy 
management in SGs. Smart meters collect data on users' energy consumption and transmit 
it to a central system. This data can be used to optimize energy distribution, manage 
energy demand more efficiently and prevent any overload problems or power outages, 
facilitate the integration of non-programmable RES. 
IoT can enable advanced automation and control of electrical DN. IoT devices can be used 
to intelligently monitor and control grid components, such as transformers, switches or 
EESS devices. This allows more efficient management of energy flow, automatic recovery 
in case of interruptions and better optimization of network operations. 
Using predictive maintenance tools, based on distributed sensors, it is possible to detect 
in advance the emergence of any failures or malfunctions of the network components. 
Using IoT sensors, data can be collected on the health and performance of components, 
applying data analysis algorithms to identify signs of deterioration or anomalies. This 
enables timely and targeted maintenance, reducing costs and optimizing resource 
utilization. 
A further application is that of IoT devices integrated into the electric mobility sector, 
favoring efficient charging processes, optimizing the use of RES and offering a better 
experience to users. Smart charging infrastructure for EVs can be created. IoT sensors can 
be integrated into EVCSs to monitor charging conditions, outlet availability and wait 
times. This information can be passed on to e-mobility operators and users, allowing for 
better planning of charging operations and reducing waiting times. By inserting on board 
devices into vehicles, the status of EVs’ batteries and the optimization of charging are 
monitored. IoT sensors can collect data on the SOC, temperature, and other key 
information of batteries. Using data analysis algorithms, charging can be optimized based 
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on battery needs, extending battery life, reducing charging time, and improving overall 
energy efficiency. IoT sensors can be installed on vehicles in a corporate or car-sharing 
fleet to monitor their usage, location, performance and conditions. This information can 
be used to optimize fleet operations, such as route planning, preventive maintenance and 
energy consumption monitoring. This enables more efficient and sustainable management 
of EV fleets. The application of optimization tools makes it possible to exploit EVs as a 
source of flexibility for the DN, increasing their supply with energy from RES. EVs can act 
as energy flexibility resources and provide DR services to power grids. The prospects in 
the IoT sector for SGs are very promising. The use of IoT devices, real-time monitoring, 
automation, data analysis and integration of RES and EVs contribute to improving energy 
efficiency, resource management, sustainability and reliability of power grids. 
The integration and development of IoT devices in the power grid is one of the scopes of 
IoT-NGIN project [148]. In literature several information about the applications of the IoT 
devices in the field of network monitoring have been reported. Many utilities have already 
started different smart metering practices for consumer billing [162], but few practices of 
smart metering have focused on the grid infrastructure. The applications focus on MV/LV 
transformers [292], [167] for their central role in the DN. In [292], the authors proposed a 
novel IoT infrastructure for asset monitoring with a particular focus on the health of the 
distribution transformers; their work emphasises the necessity of a low-cost sensor 
network based on an easily accessible communication network. A minimalistic approach 
is proposed in [287], where the authors use a computer vision system to take advantage 
of the possible measurement devices installed in the electrical system but not connected 
to a TLC infrastructure.  
The capillary monitoring infrastructure is exploited in literature to create services for the 
DSO and the consumers/prosumers, such as detecting energy flexibility sources on the 
territory and implementing DSR or other decision-making mechanisms [348], [262]. Some 
studies focus on the devices' capability to work with many electrical/energy 
measurements and grid status [173], [266], [174], [300] and [153]. In [167], smart meters 
provide grid operators more visibility into the health and operation of their assets (e.g., 
transformers lines). In [203], the authors present an original data acquisition and 
transmission system designed and optimised for online temperature monitoring systems 
in electric power transformers. In [265], a real-time anomaly detection framework is 
developed by exploiting data collected at the consumers’ premises. In this way, the 
authors present a system able to detect anomalous events and abnormal conditions. A new 
method to carry out the load flow analysis in MV networks is presented in [5], based on 
LV load power measurements applied on an innovative backward/forward algorithm for 
the power flow resolution. The power quality of public electricity networks is evaluated 
in [205] through a signal analysis framework based on the data acquisition and 
transmission of the monitoring devices. Many studies highlight the possibility of building 
up DR campaigns to exploit the flexibility derived by the customers [235], [327], [286], 
[341], and [210]. In [204], the DR allows the customers, autonomously or in RECs, to 
estimate the baseline price in real-time. Based on the estimated price signal, the customers 
schedule their energy consumption using a cost-sharing strategy to minimise their 
incommodity level. The authors of [188] suggest an energy management system that runs 
a simple DR campaign, considering peak and off-peak rates. Most existing studies mainly 
focus on the theoretical design of DR schemes and do not verify the proposed schemes 
through implementation, as underlined in [342]. 
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3.2.1 State of the art of Internet of Things devices in the distribution grid 
One of the significant issues in the future that DNs will face is the high integration of DER 
such as PV systems, wind turbines and EESSs. This comprehensive integration brings 
unreliability and unbalancing in the operation of the power system. Thus, the operators 
of the control centres require an integrated and coordinated system that guarantees the 
certainty of network operation. Due to the technical and financial restrictions, the 
monitoring and controlling of power systems at MV and LV sides has not been 
implemented entirely. In most countries, the monitoring and controlling procedure is 
done only on primary substations, and the LV or even the MV DNs lack appropriate 
measurement devices. Consequently, the control centres' operators cannot be exact aware 
of system conditions on these sides. The dissemination of smart measurement devices in 
power systems would resolve these problems and bring several proven benefits. An 
implemented SG scheme would simultaneously tackle the problems of conventional 
electrical grids (voltage limits, overloads, fault detection, etc.) and allow a variety of 
beneficial effects. A smart meter infrastructure would bring contemporary social, 
environmental, and economic advantages.  This is possible thanks to the fast response and 
bi-directional communication infrastructure, collecting and saving of information, 
displaying and billing function and the ability for loads programming [111]. Regarding 
the social effects of the spread of smart metering devices, they increase energy efficiency 
through monitoring information on electricity usage. Nataliya Mogles et al. [231] found 
that the application of smart meters leads customers to better knowledge about their 
energy habits. This augmented engagement paves the way for individual energy saving 
and consequently will diminish the energy sector's environmental impact. Also, on the 
environmental level, the SG infrastructure would allow a higher penetration of RES on the 
LV side of the electrical network [172]. G. Dileep [111] stated that the requirement for 
monitoring DERs is the widespread implementation of smart meters which make the 
infrastructure of real-time monitoring of power systems. From an economic point of view, 
realising a reliable power network brings the possibility to control and monitor the 
components of the electrical network continuously; this brings several benefits, such as 
fast communication to the operator of any significant or minor failure in systems 
components. For example, power transformers are at risk of failure for several reasons: 
any degradation of internal insulation or fluid leak would determine severe internal 
damage to the transformer, causing an unwanted power outage in the utility grid. Hence, 
the advantages of settling intelligent monitoring on the power grid include a decrease in 
the rate of outrage and even maintenance costs. Meanwhile, the periodical overhaul of 
monitoring and control devices must be done to avoid the failure of monitoring devices 
such as meters and sensors since it causes the operator to take false action and has no 
access to reliable data for normalising the system in critical conditions. 
All these effects are possible thanks to the variety of applications of smart meters and their 
fast communications. The developed DN benefits from different equipment that constitute 
SGs' infrastructure, such as smart device interfaces, transmission subsystem components, 
intelligent grid distribution components, storage components and demand-side 
management components. Figure 44 shows the modern technologies which can match 
itself with smart meters. 
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Figure 44: Smart meters’ interface components 

These new potentialities brought by the data exchange of smart meters in both directions 
have been made possible by the advancement in the information and communication 
technologies (ICT) sector. It can be seen that the companies which are active in this domain 
introduced various technologies and protocols for communicating data [212]. Zheng et al. 
[162] stated that smart meters can be regarded as practical devices for measuring the 
energy consumption of end users and transferring the obtained data via two current 
communication technologies, namely Radio Frequency and Power Line Communication, 
in case of the widespread use of smart metering in the DN (LV side), a robust and reliable 
bandwidth communication channel for exchanging data among vast numbers of smart 
meters and controlling units. Meanwhile, the unification of communication protocols with 
the control centre is vital to avoid discordances in data refining. The exploitation of smart 
devices depends on the DN’s topology, the location's climate, and financial and technical 
parameters. The monitoring of SGs can be characterised by different metering 
technologies such as advanced metering infrastructure [9], intelligent electronic devices 
[99], comprehensive area measurement systems [162], Phasor Measurement Units (PMUs) 
[12] and different scales: home access network [216], local area network [168], vast area 
network [15], neighbourhood area network [98]. Another division can be made on the 
communication network, such as the cloud architecture [206], and the different schemes 
are chosen according to their task and performance characteristics. Moreover, it can be 
stated that smart meter devices are applied to various structures. 

 

3.2.2 Deplyment of a cost-effective and simple Internet of Things monitoring 
device in Terni network 

The evolution of the DN towards the SG paradigm requires implementing a 
telecommunication network overlayed to the DN. To achieve this target, a new generation 
of reliable, cheap, and easily deployable smart meters must be developed. Papers [I] and 
[II] present a smart meter that fits in a series of possible implementations, from household 
metering to DER monitoring. The Raspberry Pi ecosystem is chosen for this purpose due 
to low cost and highly reliable technology to develop an easy-deployable smart meter to 
collect the principal magnitudes of interest of the monitored side and make them 
accessible from a Laptop or mobile phone. The designed device is realised and deployed 
in a secondary substation to monitor a PV power plant in the Terni DN. 

 

3.2.2.1 Device description 
An investigation is conducted in these papers to design and implement smart metering 
and a monitoring system due to ease of modelling, cost-effectiveness, setup up and use. 
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The Raspberry Pi single-board computer, an analogue to digital converter, amplification 
circuit and sensors are the main components of the device, as depicted in Figure 45. 

 
Figure 45: The functional diagram of the proposed system 

The Raspberry Pi is a single-board computer used in various fields like improving 
programming skills and implementing electronic projects, and also is applicable both in 
home automation and industry projects [274]. The third version of Raspberry Pi has been 
used in this case study. This version is supported by a 1.2 GHz quad-core CPU, 1GB RAM, 
full-size HDMI, micro USB power source, BCM43438 wireless LAN and Bluetooth Low 
Energy on board. The lower price of this board is one of the notable properties, which is 
about $60.  Raspberry Pi is based on Linux, which promotes Python and scratch as the 
primary programming language. This device provides a set of General-Purpose 
Input/Output pins for communicating with other electronic components for physical 
computing and exploring the IoT applications.  
A Rogowski coil is used for measuring the wide range of current. This kind of sensor is 
used when it's needed to measure more than tens of amperes up to a thousand amperes 
and is considered an electrical transducer for measuring AC current's high-speed 
transients. Rogowski coil can be found in the market in a rigid toroidal core form or 
flexible belt-like (as that one used in the use case). Quickly wrapping around the 
conductor, reacting to the fast-changing current due to the low inductance, owing linear 
characteristics, being highly safe in opening secondary winding, and having a low 
construction cost are the main advantages of the preferred sensor. The output signal of the 
Rogowski coil is in analogue.  
A sensor module, namely ZMPT101B, has been implemented in the designed system to 
measure voltage. It measures voltage in the range of 0-250V. This module provides a 
multi-trim potentiometer to adjust the analogic output. The sensor is efficient and precise, 
providing galvanic isolation and good consistency for voltage and power measurement. 
The output of this sensor is analogue and it must be converted into digital form before 
connecting to the Raspberry Pi. By altering the input signal, the output signal is changed. 
If there is no load on the primary side, the output signal will equal Vcc/2.  
As mentioned above, the sensor's output signal is in analogue form. Thus, it must be 
converted in digital form to be readable in Raspberry Pi. Therefore, the AD converter, 
namely ADS1115, is used as an interface between sensors and Raspberry Pi. This converter 
applies in high-precision instrumentation, automation and in any case where it is needed 
to obtain a high-precision data collection. The primary function of ADS1115 is amplifying 
and improving the signal and then converting it to digital form. Moreover, it supports 4 
analogue inputs with a 2 - 5.5 V power supply. The data is transferred through the I2C 
serial interface. This converter is equipped with a programmable gain amplifier, which 
can amplify the low amplitude signals with high resolution. It can do conversion 
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operations at 860 samples per second. Four single-channel inputs or two differential 
inputs allow getting data from more channels simultaneously.  
The selected sensor, Rogowski coil, has an output signal of 100 mV / 1 kA. It is evident 
that when measuring a current under 100 A (which corresponds to 70 kW in a 400V LV 
distribution system), the generated signal will be shallow (10 mV), which is not in the 
range of operation of the ADS1115 converter. Looking from the other side, the signal 
outputs of most sensors are very low and must be amplified. To address this issue, the 
inverting amplifier circuit can be an exciting scheme for amplifying the output signal. An 
operational amplifier, namely LM358P, is used in designing this circuit for this aim. 
LM358P possesses two independent high-gain and frequency-compensated operational 
amplifiers.  
Operational amplifiers are active elements, and signal amplification will not occur unless 
negative and positive power sources are connected to the appropriate pins. An operational 
amplifier amplifies the voltage difference between two pins with an extremely high gain. 
There is an unwanted phenomenon in the operational amplifier, which is called offset. For 
more explanation, the output value is non-zero in case of having no value in the input. 
Thus, the voltage should be applied at the input to make zero on the output side. There 
are two kinds of offset in operational amplifiers: i) input offset voltage ii) input offset 
current. The input offset voltage for LM358P is lower than 7 mV. The voltage gain of 
operational amplifiers is exceptionally high (more than 100,000); in practice, applying a 
negative feedback scheme, a voltage amplifier with stable gain will be designed. To ensure 
the stability of circuit operation, it is ideal to set the gain voltage between 10 and 10,000. 
To reach this goal, an amplification circuit uses one amplifier and some resistance. After 
the amplification, an offset stage is added to send a signal between 0 and 5 V at the ADC.  
 

3.2.2.2 TLC Infrastructure 
The Raspberry Pi 4 is a server that receives the measurement data in the form of strings 
and stores them for future use. Two Python codes were made in the Thonny IDE 
environment to provide the software required. The “client” code installed in Raspberry Pi 
3 reads the measurement data incoming from the sensors, stores the data for future use, 
connects to a given host IP address and transfers the data in the form of strings via a socket 
communication. The “server” code establishes a socket communication, binds it to a port 
number, and listens to incoming communication. The server receives and stores the 
measurement data in the Raspberry Pi 4 storage SD card. 
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Figure 46: The prototype system set-up in the outdoor box 

The Raspberry Pi operating system Raspbian GNU/Linux 9 was adopted. The main benefit 
of the Raspberry Pi consists of the communication interfaces, such as the Secure Shell 
protocol and Virtual Network Computing utilising the Remote Frame Buffer protocol. 
These may enable both remote wireless access to the PC and wired access to the PC 
without the need of connection to a local network with the device to communicate with. 
In this study, Python programming has been used for measuring temperature and 
humidity. Socket programming was used to connect two network nodes so that they can 
interact with one another. One socket listens on a specific port at an IP address, while the 
other seeks to connect. The most common socket application type is a client-server 
application, where one side acts as the server and waits for client connections. The server 
creates the listener socket while the client connects to the server. The communication 
system based on TCP/IP socket communication consists of two sides: server and client. 
The client side is responsible for connecting to the server and transmitting the measured 
data to the server. The server side is responsible for establishing a socket connection and 
binding it to a port, receiving measurement data from the client, and storing it in the 
memory of the single-board computer.  
The details of the coding of both sides are as follows:  

• The client-side Python code is made as follows: i) defines all necessary libraries 
and variables, including host (server IP address) and port; ii) defines functions 
responsible for reading the sensor measurements and for the communication with 
the server; iii) defines a function that writes the measurements into a log file, where 
each string combines measured variables, date and time of measurement. iv) Then, 
another function encodes the string containing the measurement variables and 
sends them via socket communication established before. v) The measuring, 
logging, combining, encoding, and transmitting functions are put inside an infinite 
loop to ensure continuity. The measurement granularity is set at every 3 seconds. 
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• The server code consists of a series of functions that finally log the information 
received from the client. i) the socket communication is created; ii) it is bound with 
a pre-defined port number; iii) the server starts listening to potential client 
requests; when the signal code is received, the server starts a loop. This loop 
continuously receives the information, decodes it with UTF-8 (by default), and iv) 
logs it into a file opened previously. This file has no specific format, but the 
information received is CSV. 
 

3.2.2.3 Deployment of the smart meter in the Terni distribution grid 
The designed device is installed in a secondary transformer substation of ASM on the LV 
line coming from a PV plant with 60 kW peak power capacity. A unified diagram of the 
secondary cabin of ASM, with reference also to the location of the measurement device, 
can be found in Figure 47. 

 
Figure 47: The schematic diagram of the measurement device in the Terni electricity grid. 

 
Figure 48: Location of the measurement device in Terni electricity grid 

The designed system uses a wireless sensor network for the aim of monitoring electrical 
quantities described in previous sections. The collected data are sent to the A/D converter 
for changing the form of signal output of sensors from analogue to digital. The obtained 
parameters can be monitored without any interruption through the graphical interface 
between Raspberry Pi and a computer. Meanwhile, the whole process of reading the 
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magnitudes of interest (voltage, current, temperature and humidity), storing the data, and 
the communication protocol has been done by programming in Python. The voltage and 
current sensors are connected to the load of the PV plant in a secondary substation for 
measuring the electrical quantities. The PV power plant located at ASM S.p.A. energy 
district headquarters has been monitored for a week, proving the reliability of the 
designed device. By running the system, the operator can be aware of these parameters in 
the form of remote mode. Also, operators would be capable of stopping or running the 
measuring process by accessing to the measuring program. In contrast, the access to the 
measuring environment in Raspberry Pi can be made only by an expert operator due to 
the operative safety risk against non-specialist persons. The obtained data can be saved in 
the form of an external file for printing or other evaluations and assessments them. The 
designed system can be expanded with more sensors by operator and customer’s interest. 
An example of the acquired data in real-time at the secondary substation of the ASM 
district is illustrated in Figure 49.  

 
Figure 49: Data sample 

 

 
Figure 50: Voltage and current measured at the ASM secondary station by the proposed monitoring device in the week 
of 24/09/2021 – 01/10/2021 

Measured data concern secondary substation temperature in °C, secondary substation 
humidity in %, RMS value of voltage, expressed in Volt, at LV level for ASM district load 
and RMS value of current, expressed in Ampere, at LV level for ASM district load.  
As shown in Figure 50, during the period under consideration, the voltage is always 
between 242 and 231 V, i.e., in pu between 1.050 and 1.004. Conversely, the current varies 
more, ranging from around 30 A to almost 150 A. The acquired data concern the electrical 
quantities of the line connecting ASM's headquarters with the secondary substation; 
therefore, the trend of the curves is very jagged due to variegate types of loads and the 
power generation from the PV system. The granularity of the data is 15 seconds, which is 
feasible for the DSR campaign implementation. 
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3.3 Artificial Intelligence and Machine learnig for the grid 
AI is poised to revolutionize the energy sector, reshaping the entire energy value chain 
and fundamentally altering how the REC conducts its business. The adoption of AI is 
widely recognized as paramount for energy utilities to enhance the efficiency of their 
operations and for power network operators to bolster the stability of their grid systems, 
especially within the context of the emerging decentralized paradigm driven by RES. The 
transformation of AI in the energy industry will have direct implications on global energy 
stability and economic prosperity. 
Simultaneously, the widespread use of AI in the energy sector holds the promise of 
significant environmental and social impacts. This extends to aspects such as 
environmental sustainability, fostering stronger social bonds within local communities, 
and contributing to the alleviation of energy poverty. Energy fingerprinting, for instance, 
can be harnessed to provide a variety of consumer-centric AI-driven services that bring 
substantial social value to individuals and local communities. 
In this evolving landscape, the escalating adoption of AI, ML, deep learning, and 
reinforcement learning presents an unprecedented opportunity for the energy system. It 
aims to achieve greater grid flexibility, optimized maintenance, and operational efficiency, 
all while delivering socially-focused, consumer-centric services that encompass energy 
efficiency, personalized comfort, green energy procurement, the synergy of energy with 
mobility, and energy fingerprinting-driven social services, such as personal safety, 
security, and care management. 
A significant portion of energy stakeholders anticipates that AI will have a substantial 
impact on their businesses. However, despite recognizing the potential, many are yet to 
fully integrate AI into their core operations. This is primarily attributed to the fact that 
energy utilities, despite their technical expertise in power systems, often lack the 
information technology background necessary to fully harness the potential of AI 
applications and services within their processes. 
Furthermore, a multitude of innovative small and medium-sized enterprises are 
emerging, offering a wide array of intelligent services and technologies to stakeholders 
within the energy value chain. Yet, the unclear and often ambiguous regulations 
surrounding data access have hindered the development of sustainable business models 
and return on investment for SMEs, ultimately delaying the widespread adoption of AI 
throughout the energy value chain. 
Moreover, there are several challenges that must be addressed to fully exploit the vast 
potential that AI offers to the energy sector. 
In the following sections, several types of AI-based tools are presented. 
 
3.3.1 Energy forecasting services 
Forecasting tools within the electricity grid are essential for managing the supply and 
demand of electricity efficiently. These tools use various data sources and modeling 
techniques to make predictions about future electricity usage, generation, and other grid-
related parameters. Some application of the forecasting tools are: load forecasting, RES 
generation forecasting, flexibility forecasting... These forecasting tools rely on various data 
sources, including historical data, weather information, real-time monitoring, and 
predictive algorithms. They play a critical role in ensuring the efficient operation of the 
electricity grid, optimizing resource allocation, and accommodating the integration of RES 
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and evolving grid technologies. Below two forecasting models are presented, developed 
in studies [III] and [XI] respectively, the first through the multi-layer perceptron model, 
while the second with a recurrent neural network. 
 
3.3.1.1 Energy forecasting through a  Multi-Layer Perceptron model 
In [III] a framework was generated in order to obtain day-ahead forecasts for the load and 
the RES production of the microgrid including 2 PV plants. The energy forecasting tool is 
based on the weather forecasting. Concerning PV production, accurate forecasting is 
essential for managing operations in an energy district [290]. Energy production is 
stochastic and depends on many factors, such as weather, solar radiation, season, hour of 
the day, and the PV panel’s orientation [258]. In literature, several papers deal with 
analysing forecasting tools for energy production, which are classified as physical models, 
statistical models, and hybrid models [338], [242], [191], [202], [170], [238] and [201]. The 
use of ML improves the model accuracy and reduces training time [354], [196].  
Concerning load consumption forecasting, it strongly depends on the typology of load, 
i.e. a commercial activity, a factory, or a residential building. The statistics forecasting 
model for energy consumption and PV production are similar, but there are differences 
due to the influence on weather, which in the loads is minor, and to the impact of 
inhabitants' behaviour, which can vary according to the day or the season [130]. There are 
several algorithms to provide load forecasting based on statistical models or ML [361].  
In [III] two modules have been developed, the first for the PV production and the second 
for the load forecast. The models were based on Convolutional Neural Network – Long 
Short-Term Memory Networks since, from previous research, it appears as the most 
accurate [175], [3]. The model was composed of two stages: in the first, the Convolutional 
Neural Network layer extracted the spatial characteristics of the features, and then the 
results were processed by the Long Short-Term Memory Networks layer with the noise 
partially removed and the identification of the irregular time information using the 
transmitted spatial features. The model architecture is shown in Figure 51: 

 
Figure 51: Architecture of the CNN-LSTM forecasting model 

The features used by the model of the PV production are: 
• Environmental temperature 
• Environmental relative humidity 
• Global radiation 
• hour of the day 
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• month of the year 
 
The features used by the electricity consumption model are: 

• 24 hours lag 
• 48 hours lag 
• 168 hours lag 
• hour of the day 
• day of the week 
• month of the year 

 
Both models were trained using the Keras library, Tensorflow-GPU backend, Cuda 
Toolkit, and CuDNN.  
In the following, a detailed explanation of the forecasting tools is provided. The proposed 
model was a Multi-Layer Perceptron, a feedforward Artificial Neural Network consisting 
of a system of interconnected neurons, generally called nodes. These nodes were 
connected by weights, and a simple non-linear activation function activated them. Since 
the activation function is non-linear, the Multi-Layer Perceptron was able to provide 
solutions to non-linear problems. The architecture of the Multi-Layer Perceptron included 
an input layer, an output layer, and one or more hidden layers. Each node of the Multi-
Layer Perceptron was connected to every node in the next layer and the previous layer; 
thus, it can be considered a fully connected network [115]. An example of an Multi-Layer 
Perceptron network with two hidden layers is presented in Figure 52. Generally, the 
output of each hidden and output node was determined by the sum of all the weighted 
values of the preceding layer’s nodes. Afterwards, the result passed through the activation 
function [51]. The training of the Multi-Layer Perceptron determined the values for each 
weight and resolved the network’s modelling. It was based on an algorithm called 
backpropagation, which computed the gradient of the cost function concerning the 
weights of the nodes, aiming to minimise the cost function by adjusting the network’s 
weights and biases [285].  

 
Figure 52: The architecture of the MLP, a fully connected network that includes an input layer, two hidden layers, and 
an output layer. 

The main Multi-Layer Perceptron goal was to find a function f that associates the input 
nodes in X to the output vector sinY (Y= f(X)). In that case, X=[n×k], Y=[n×j], n was the 
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number of training patterns, k was the number of input nodes/variables, and j was the 
number of output nodes/variables. During the process of training the model, the function 
f was optimised. The optimisation came by achieving the lowest possible margin in the 
output, given the input vectors in X to the target values in Y. The function f was based on 
the adjustable weights of the network’s nodes, and the matrices X and Y represented the 
training data. The ideas behind the method used for the approximation and prediction are 
very much alike. The Multi-Layer Perceptron only had one output node, and the 
dimensions of matrices X and Y in the generic application were n × k and n × 1, 
respectively, since one variable is modelled from the input data. The prediction required 
training the model to output the future value of a variable given an input vector containing 
earlier values [115]. By selecting a suitable set of connecting weights and transfer 
functions, an Multi-Layer Perceptron can estimate all the perceptible functions within the 
input and output nodes after choosing the appropriate activation/transfer functions and 
weights. By training the Multi-Layer Perceptron, the network learned the current training 
data set, formulateed the input and related output nodes. During this process of training, 
the Multi-Layer Perceptron was constantly introduced to the training data; by adjusting 
the weights, the optimal input–output mapping occurred. The training/learning process 
of an Multi-Layer Perceptron was performed in a supervised approach. When the desired 
output was not met during a particular input vector, an error signal was identified as the 
difference between the desired and actual output. During the training process, this error 
signal was used to establish the adjustable weights to reduce the error signal. As a result, 
the Multi-Layer Perceptron could extrapolate to unknown but related input data when 
trained with the appropriate training data [115]. Most traditional ML and deepl learning 
methods use offline learning, meaning they ingest training data simultaneously to 
construct a static model. Incremental learning, or online learning, is a branch of ML that 
involves continuously and in real-time processing incoming data from a data stream. 
Thus, a model can be trained multiple times and can be iteratively readjusted to new data 
while still considering older data as well. Training the model incrementally offers multiple 
advantages and solves many problems of the traditional training methods. Incremental 
learning algorithms can be used to solve the problem of shortages in computation power. 
By providing the data in the form of batches, the model is able to fit data quickly and 
efficiently without the need for a computationally powerful machine. Additionally, on 
several occasions, the training data size may be unknown or of huge volume, thus making 
storage impossible. Exploiting incremental learning, a substantial solution is provided by 
offering the ability to ingest data in batches and retrain the model. As a result, the whole 
dataset does not need to be stored and can be gradually stockpiled and used. This method 
is also beneficial when dealing with streaming data or data provided in small chunks and 
not in one unified pile.  
Furthermore, incremental learning helps to implement a system that gradually improves 
in terms of accuracy whenever new examples emerge, offering an appealing approach to 
real-life problems and actual scenarios, where changes in the data distribution are 
continuous and real-time monitoring of environments is essential [48] However, 
incremental learning brings some difficulties: in the traning/learning process one of the 
main challenges is catastrophic forgetting, which is the tendency of an artificial neural 
network to entirely and abruptly forget previously learned information upon learning 
new information [275]. For that reason, the behaviour of the newly obtained values should 
be monitored closely. Some simple solutions include rehearsal and pseudo-rehearsal 
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methods, i.e., retraining the model on the part of old data when new data is introduced 
[282]. Another obstacle to online learning is concept drift: the properties of the target 
variable, which the model is trying to predict, change over time in unforeseen ways. This 
causes problems because the predictions become less accurate as time passes. Concept 
drift can be avoided by tracking solutions and updating the set using data features in old 
classes [131].  
The proposed methodological framework satisfied the need for incrementally training the 
proposed ML models and the methods used to implement them. Firstly, the framework 
included a continuous connection to an MQTT broker for collecting data streams in real-
time, as well as the operations of data pre-processing, cleaning, and analysis. The collected 
data was aggregated into an hourly format and stored in a database. Thus, data could be 
loaded from the database once daily to periodically retrain the models. The retraining 
process required only the most recent data and not the whole dataset, thus offering 
scalability and reduced training time. The updated models were then stored and could be 
used directly to produce hourly day-ahead forecasts.  
First, a real-time connection to a continuous data stream is required, which, was provided 
via an MQTT broker. All collected data were aggregated hourly and pre-processed to 
detect unusual details. The pre-processing operations focused on missing data and 
outliers. Missing values were filled using a special linear interpolation averaging past 
days’ data during the same hour. Some wrong data was detected due to error in the 
measurement. To handle these outliers, a check was performed, replacing negative or 
unjustifiably high values. This pre-processing routine resulted in a uniform dataset that 
could be fed to the models.  
Consequently, data were stored in a time-series database for easy and direct querying. In 
this specific use case, a PostgreSQL database was used to store and retrieve the hourly 
aggregated information. Thus, data could be loaded daily to re-train ML models. 
Regarding ML models, the Multi-Layer Perceptron Regressor model of the 
sklearn.neural_network library was used [53]. The proposed framework involved fitting 
the model to a chunk of already collected data (one year) and creating a solid baseline 
model that has learned the patterns of a calendar year. After that period, the baseline 
model was periodically retrained once daily using the continuous flow of data previously 
stored in the time-series database. Stored data was given to the model daily in mini-
batches of 24 values. Consequently, the model was retrained with the most recent data at 
the end of the day. As a result of this process, the model kept adjusting to new data every 
day and could cope with changes in the data distribution in near real-time. At the same 
time, the stored model generated day-ahead forecasts using the database's most recent 
records. Moving to the core of the incremental learning process, it is noteworthy that to 
perform the training process incrementally, the function partial_fit() was used instead of 
the traditional fit() method. The traditional fit method clears the model and provides a 
different initialisation of the weights each time. On the contrary, the partial_fit method 
does not completely clarify and re-initialize the model but updates it concerning the data 
provided [250]. The small portion of data (usually a data stream) provided as input to the 
partial_fit method is called a mini-batch. Thus, the ability to learn incrementally from a 
mini-batch of instances is critical to out-of-core learning, as it guarantees that at any given 
time, there will be only a small amount of instances in the main memory [309].  As 
mentioned above, the algorithm used for evaluating incremental learning was the Multi-
Layer Perceptron regressor of Scikit-Learn. The Multi-Layer Perceptron regressor was 
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selected because of its ability to support online learning in mini-batches, as compared to 
several other ML models. A crucial step of the learning process was the selection of 
optimal model hyper-parameters, as this offers a significant boost to the accuracy of the 
ML models. The selected hyper-parameters for the case of PV production and electricity 
consumption are presented in Table 28.  

Table 28: The hyper-parameters for the PV production and the electricity consumption forecasting models. 

Measure PV Production Electricity Consumption 

Number of hidden Layers 4 3 
Neurons per Layer 641, 286, 432 6, 412, 832 
Learning Rate 0.001 0.001 
Solver adam adam 

 
3.3.1.2 Energy forecasting through MLP model: results 
The incremental learning framework was evaluated on ASM infrastructure. A portion of 
Terni’s low-voltage electricity grid was used to test the proposed models, including two 
secondary substations: ASM’s headquarters and a PV production plant of 185 kW. The 
annual building consumption is about 650 MWh, mainly due to lighting, HVAC, and 
powering computers and data servers. The data-sharing infrastructure consisted of a 
SCADA system ans data are transmitted from the sensors via the MQTT and Modbus 
protocol to the ASM headquarters MQTT broker. The sensors communicate in near real-
time with a time resolution of 1 second. Data are then transmitted, to an AVEVA Historian 
database, accessed through Microsoft SQL Server interface. Two different datasets are 
used: the first is a PV production time series accompanied by weather data, while the 
second includes the consumption of the ASM building. Appropriate aggregations were 
applied, transforming the data resolution to an hourly level. All the data used were hourly 
and lasted about 2 years and nine months (23,616 hours). A visualisation of the PV 
production and building consumption time series is presented in Figure 53 and Figure 54: 

 
Figure 53: PV production historical data. 
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Figure 54: ASM headquarters consumption historical data. 

PV production has both daily and yearly patterns due to its dependence on solar radiation. 
Thus, the position of the sun during the day directly affects the output of the PV system, 
and at the same time, seasonal weather differences affect the production at a yearly level, 
resulting in much more energy production during the summer period compared to winter. 
The building consumption time series is more irregular in general, being affected by 
human factors. An indicative example is the difference observed between weekdays and 
weekends due to the difference in occupancy levels. The same applies to holiday periods. 
In general, PV production is stochastic and mainly influenced by weather conditions. 
Consequently, the main features driving the performance of the PV forecasting model are 
seasonal features, such as the hour of the day and the month of the year, as well as weather 
features, mainly solar radiation. The correlation plots between the PV production and the 
weather feature time series are presented in Figure 55. These plots confirm that PV 
production is strongly related to solar radiation. While air temperature, cloud coverage, 
and relative humidity, are much weaker related. Considering all these factors and after 
experimenting with several combinations of input features, the selected input features for 
the PV production forecasting model are the following: (a) air temperature, (b) relative 
humidity, (c) global radiation, (d) month of the year, and (e) hour of the day.  
 

 
Figure 55: PV production compared with solar radiation (W/m2), air temperature (°C), relative humidity (%) and wind 

speed (m/s). 

The consumption of the building is not strongly affected by weather conditions. It is 
influenced mainly by human behavior and building use patterns. Nevertheless, electricity 
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consumption demonstrates strong seasonality patterns. Figure 56 presents the auto-
correlation function of the electricity consumption time series across a week. The most 
interesting finding is that the consumption patterns tend to repeat for the same hour on 
different days. This has led to the use of past electricity consumption data as input features 
in the consumption forecasting model. Another useful observation is that similar patterns 
are detected during weekends and weekdays, indicating that the day of the week is 
another useful feature. With respect to the above findings, the selected input features for 
the electricity consumption forecast model are the following: (a) hour of the day, (b) day 
of the week, and (c) month of the year. (d) electricity consumption at the same hour in the 
last two days, and (e) electricity consumption at the same hour and day in the last week.  

 
Figure 56: Auto correlation function of the building consumption across a week (168 h lag). 

The performance of the Multi Layer Perceptron models for both PV production and 
building consumption was evaluated with the following procedure. The dataset was split 
into a training dataset and an evaluation dataset using a 63–37% split to allow the models 
to learn the patterns of more than a year (since the month of the year is given as input) 
and to be evaluated under a whole year as well. Thus, the first 63% of the dataset (619 
days) was used for the training process and the remaining 37% (365 days) was used for 
testing the models. The accuracy of the models was evaluated by computing the RMSE 
and the MAE of the respective forecasts across the evaluation period considered. The 
mathematical formula for these two metrics is presented as follows:  
Equation 24: Root Mean Squared Error 
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Equation 25: Mean Absolute Error 

𝑀𝐴𝐸 =	
1
𝑛'|

$

;'1

𝑦; − 𝑦U;| 

where 𝑦) is the real value of the PV production or the building consumption time series at 
hourly intervals t of the evaluation period and 𝑦<) is the produced forecast of the respective 
model. Along with these two evaluation metrics, the NRMSE was considered. NRMSE is 
a metric for comparing models of different scales, relating the RMSE value to the observed 
range of the variable. It was calculated as follows:   
Equation 26: Normalized Root Mean Squared Error 

𝑁𝑅𝑀𝑆𝐸 =	
𝑅𝑀𝑆𝐸
𝑦Y  
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where 𝑦= is the average of the real values.  
In the following, results are presented separately for the case of PV production forecasting 
and the case of the building’s electricity consumption forecasting. A comparative plot of 
the predictions of the two forecasting models for PV production is presented in Figure 57. 
The model that was periodically re-trained during the evaluation period was more 
accurate than the traditionally trained one. This can be attributed to the ability of the 
former model to better adapt to changes in the data distribution or possible trends. For 
example, if the performance of a PV system changes significantly due to anomalies such 
as PV cell internal damages or cracks in panels a traditional model cannot adapt to these 
changes. In contrast, an incrementally trained model is capable of detecting such patterns 
in the PV production time series, adapt and thus accurately forecast even in these difficult 
cases.  

 
Figure 57: Comparison between the traditional and the online learning framework for the PV production forecasting 

task. 

In the case of PV production forecasting, the incrementally trained model demonstrated 
an MAE index equal to 6.697 kWh, an RMSE index equal to 13.260 kWh, and an NRMSE 
index equal to 0.527. In contrast, the traditional ML model demonstrated an MAE index 
equal to 7.273 kWh, an RMSE index equal to 13.340 kWh, and an NRMSE index equal to 
0.570, as presented in Table 29. Thus, the incrementally trained model outperforms the 
traditional one by 8.6% in terms of MAE and 8.1% in terms of RMSE, further highlighting 
the importance of periodical re-training in the predictive task of PV forecasting.  
 
Table 29: Error metrics for the PV production forecasting models in the cases of traditional and incremental learning. 

Measure Incremental Learning (kWh) Traditional Learning (kWh) 
MAE 6.697 7.273 
RMSE 13.260 14.340 
NRMSE 0.527 0.570 

 
Considering the case of electricity forecasting in buildings, the impact of re-training the 
models is even higher. This could be attributed to the fact that electricity consumption is 
more stochastic compared to the mainly weather-driven PV production forecasting task.  
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Figure 58: Comparison between the traditional and the online learning framework for the electricity consumption 

forecasting task. 

In terms of accuracy metrics, the incrementally trained model outperforms the traditional 
Multi Layer Perceptron, considering both the MAE error index (8.082 KWh for the 
incremental model versus 9.048 KWh for the traditional model) and the RMSE index 
(12.391 KWh for the incremental model versus 13.429 KWh for the traditional model), as 
presented in Table 30. The respective percentage improvements are 11.9% for MAE and 
8.4% for RMSE.  
 

Table 30: Error metrics for the building consumption forecasting models in the cases of traditional and incremental 
learning. 

Measure Incremental Learning (kWh) Traditional Learning (kWh) 
MAE 8.082 9.048 
RMSE 12.391 13.429 
NRMSE 0.214 0.232 

 

It can be observed that the impact of incremental learning is higher on the building 
electricity consumption task compared to the PV production forecasting. As expected, this 
can be attributed to the more stochastic nature of the electricity consumption time series, 
which is highly influenced by human behavior. Regarding the benefits in terms of 
complexity, the incremental learning approach requires over 600 times less memory than 
the standard learning process in the examined case study. This can be attributed to the 
incremental learning architecture, which consumes only a single batch of data each time. 
In terms of time complexity, the incremental models were trained in significantly less time 
than the traditional ones, although the difference in training time depends on the 
computational system used. Consequently, using standard training methods makes 
storage and manipulation more difficult and time-consuming. In contrast, training a 
model incrementally offers the option to use batches of data. Thus, the required space is 
reduced, being equal to the size of a single batch. In terms of time complexity, incremental 
training is more efficient and quicker, since the training time required when using a single 
batch is significantly lower than the corresponding time when using the entire data set in 
standard methods. 
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3.3.1.3 Energy forecasting service through a Recurrent Neural Network 
The forecasting model presented in [XI] is based on online learning: the training of models 
is done continuously when new data is available. This paradigm acquires great 
importance in the context of IoT due to the large number of sensors or devices that can be 
present in everyday scenarios and the large amount of information captured by them 
dynamically. The online learning service supports both Application Programming 
Interface REST requests and streaming data since most IoT devices generate real-time 
communication flows. Forecasting the power generated by the grid over a future time 
frame, based on the historical data collected from grid sensors, consists of predicting the 
following power values from the last past measured ones. For example, given the last 
measured 36 h of generated power, predict the next 24 h. Forecasting is computed by a 
trained ML model that inferences the prediction based on a given input tensor of 
measured values. This is an example of a univariate time series prediction problem 
addressed by ML modelling techniques. Before the ML model is ready for computing 
predictions, it must be trained with historically generated power data. As the sensor 
continuously pushes the data via MQTT, learning is conducted by an online learning 
service [50] that collects online data from the topic and trains the model after applying the 
following data pre-processing procedure: i) power is computed from sensor data, ii) data 
is resampled by averaging it over each hour, iii) data is scaled in the range [0, 1] as required 
by ML algorithms applied during training, iv) data is windowed across collected power 
data, to create a dataset with the shape required by the ML training algorithms. The ML 
model designed for forecasting the generated power of the grid is a DL model with layers 
based on recurrent neural networks [70]. Recurrent neural networks have been 
demonstrated to work well in predicting the future behaviour of time series, although they 
present some disadvantages, such as the vanishing gradient problem [249]. To overcome 
this problem, alternative architectures for ML models, evolving from recurrent neural 
networks, have been proposed, including Long Short-Term Memory and Gated Recurrent 
Units [263]. The Gated Recurrent Units has been adopted for the power forecasting 
problem since it solves the vanishing gradient problem suffered by the original Recurrent 
neural networks and converges faster than other types of Recurrent neural networks (e.g., 
Long Short-Term Memory). After the recurrent layers, fully connected layers are added 
for applying linear transformations to the outputs of the Gated Recurrent Units layer. 
Figure 59 depicts the layers of the implemented architecture. 
This proposed model has been trained to minimise the MSE between the fundamental 
values and the predictions. To understand the performance of the forecasting model, the 
lower the MSE is, the better the effectiveness is. The MSE has been evaluated as in 
Equation 27:  
Equation 27: Mean Squared Error 

𝑀𝑆𝐸 =	 1
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Where 𝑥) is the actual value of the PV production or the building consumption time series 
at hourly intervals t of the evaluation period and 𝑥<)  is the produced forecast of the 
respective model. 
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Figure 59: DL architectures for power forecasting 

A module has been implemented for eXplainable AI that attempts to explain the 
predictions made to answer the question: Why has the model made this prediction? 
EXplainable AI is a set of methods and processes that help to comprehend and trust the 
prediction driven by the ML model. Moreover, it helps to characterise the model 
performance by providing the impact of the input data for a given prediction, adding 
transparency to the prediction and capacity for model bias detection. The online learning 
service is deployed using Kserve [183] through Kubeflow [184]. Kserve allows to deploy 
3 types of components: predictor, transformer, and explainer. Each of these components 
exposes a REST API as an HTTP service. The monitoring service consists of an HTTP 
endpoint deployed using the FastAPI framework [105], a Prometheus engine [254], and a 
Grafana web tool [119]. 

 
3.3.1.3.1 Energy forecasting service through a Recurrent Neural Network: Results 
To verify that the proposed ML architectures are valid, it has been tested to predict the 
voltage trend and the active and reactive power of the PMU, a smart meter, and two power 
quality analysers. Forecasting was carried out using a dataset collected for 18 months. It 
was chosen to have predicted data with a time horizon of 24 hours and a resolution of one 
hour, whose forecasting is based on the last 36 hours of data averaged every hour. 
Proposed models have been trained with hyper-parameters shown in Table 31. The 
optimiser, called Adam, is an algorithm for first-order gradient-based optimisation of 
stochastic objective functions based on adaptive estimates of lower-order moments [72]. 
 

Table 31: Hyper-parameters for power forecasting models 

Hyper-parameters Value 
Epochs 50 
Learning Rate 0.005 
Optimizer Adam 
Loss Function Mean Squared Error 
Batch size 128 

 
After training the model, inferences for forecasting the generated power have been 
computed, comparing predictions with actual measure power. Figure 60 shows the actual 
power data (orange line), inferences performed by the ML model (blue points), and the 
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forecasting intervals with a 90% confidence (blue area). The forecasting intervals can be 
computed when the errors between the actual data and the model predictions present a 
distribution that can be considered Gaussian. To assume errors that come from the 
Gaussian distribution, they have been subjected to normality tests: Shapiro-Wilk [297], 
Anderson-Darling [328], and D'Agostino-Pearson [259]. These tests consist of statistical 
hypothesis tests that check whether the data contains specific properties. Thus, 2 
hypotheses are defined: the null and alternative hypotheses. The null hypothesis supports 
that the data probably comes from a normal distribution, while the alternative hypothesis 
argues that the data present a different distribution. The statistical test returns a 
probability known as the p-value. Suppose this result presents a value lower than the 
defined significance level (0,05 in this case); the null hypothesis must be rejected so that 
the data distribution can be assumed normal. Table 32 shows the p-values obtained.  
 

Table 32: Normality test results (p-values) for power forecasting models 

Normality test Value 
Shapiro-Wilk 0.47 
Anderson-Darling 0.76 
Agostino-Pearson 0.10 

 
Within the confidence intervals, the model learns quite well the seasonal variations of the 
generated power, as depicted in Figure 60, obtaining an MSE of 0.009 during the training. 
As shown in Figure 60, there is a good matching between observed and predicted values 
within the confidence interval, which captures both the trend and seasonality of the future 
series behaviour. 

 
Figure 60: Training results for generated power forecasting for 20 days of analysis in August 2022 
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3.3.2 Grid optimization services 
Grid optimization services for the electricity DN involve a range of strategies and 
technologies aimed at improving the efficiency, reliability, and sustainability of the 
electrical grid. These services are essential for meeting the growing demand for electricity, 
integrating RES, reducing energy losses, and ensuring the grid's resilience. Some of the 
applications of the grid optimization include the DR management, the DER integration, 
the storage integration, the tools for grid analysis and predictiva maintenance, and the 
analysis to increase grid resilience and environmental impact. Overall, grid optimization 
services are crucial for modernizing the electricity DN, ensuring its reliability, and 
facilitating the transition to a more sustainable and resilient energy system. They require 
a combination of technology, policy, and operational improvements to meet the evolving 
needs of the electricity grid and the consumers it serves. In the following two grid 
optimization tools are shown: the first address the management of a microgrid, with 
various demands and generation sources, while the second, presented in [XI], analyse the 
DR in a portion of MV grid via Reinforcement Learning 
 
3.3.2.1 Power Scheduling Optimisation between EV Charging Station, Storage System 

and PV Panels 
In the following study the framework addressed the problem of managing the DER of a 
microgrid with a specific focus on mitigating issues related to RPF and on increasing the 
SCR of the local RES. In order to optimize the behaviour of the grid flexible resources were 
used, i.e. loads that can be shifted in time without varying the quality of the service. 
Examples of flexible loads are EESS, EVs, washing machines, and thermal loads. The 
management of flexible loads is crucial in an energy district since it allows to reduction of 
the impact of the district to the DN leveraging on the local RES [127]. The load shifting, 
which aims to reduce the energy peaks and fill the energy valley, can be obtained through 
DR programs: end users receive economic and non-economic benefits for the change of 
their electrical behaviour. The role of EESS in energy districts is notable and particularly 
useful, since they can shift the energy absorption in time and inject power when needed, 
with the constraints of their size and capacity [355]. A heuristic model was developed to 
find an optimal solution for EV and EESS scheduling. The heuristic load shifting algorithm 
model received the day-ahead forecasts of the load consumption, the PV production, and 
the EV demand as input and determined the optimal hours for the charging sessions of 
the EVs and for the management of the EESS. Each day the algorithm assessed the 
expected hourly values of the production and the consumption of the microgrid and it 
aimed to minimise the RPF. Finally, the rule-based control method aspired to simulate the 
use of the EESS in a microgrid. This optimized algorithm reduced net load during peak 
hours and increased load when there was excess RES production. The optimization 
function of the model was the minimization of the dependences from the external grid, 
and, in other words, the increase of the SCR of the energy district. 
The input of the heuristic model for the EV charging sessions scheduling are: 

• The number of EVs to be used on a certain day. 
• The electricity required by each vehicle in the day and the SoC of the vehicles. 
• The hourly predicted net electricity load of the energy district. 

 

The algorithm was iterated over all EVs. For the storage optimal management, the 
equations that led the process are: 
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Equation 28: 

𝑃J/(𝑡) +	𝑃=KK(𝑡) = 𝑃=/(𝑡) + 𝑃LMN>(𝑡) + 𝑃O?P>(𝑡) 

Explaining the power exchanged with the grid as an exclusive absorption component 
𝑃345(𝑡) and a feed-in component 𝑃678(𝑡) results in: 
Equation 29: 

𝑃J/(𝑡) +	𝑃=KK(𝑡) 	+	𝑃>8O(𝑡) = 𝑃=/(𝑡) + 𝑃LMN>(𝑡) + 𝑃?JQ(𝑡) 

With the constrain: 
Equation 30: 

𝑃=KK$#)(𝑡) ≤ 	𝑃=KK(𝑡) 	≤ 	𝑃=KK$*+(𝑡) 

where Equation 28 and Equation 29 represent the power balance in the energy district. 
Equation 30 defines the constraints of the power flow from the EESS. 

 
Figure 61: An overview of the microgrid system topology considered in this study, illustrating the direction of power 

flows. 

 
3.3.2.1.1 Power Scheduling Optimisation between electric vehicle charging station, 

storage system and PV Panels: Results 
To better illustrate how the service works in practice and evaluate its potential benefits, 
four key performance indicators have been identified. These include: 

• annual RPF, i.e., the energy that flows from the DN to the transmission grid.  
• annual Demand from Grid (DfG),  
• energy autonomy (number of days within a year that DfG is zero),  
• peak shaving (average daily range of DfG) 

 

Figure 79 provides an illustrative example of how the proposed optimisation framework 
affects the timing of the EV charging sessions, netload, battery SoC, DfG, and RPF on a 
randomly selected period date. 
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Figure 62: Example (randomly selected date) illustrating how the proposed optimisation framework affects the timing 
of the EV charging sessions (top left), net load and battery SoC (top right), DfG (bottom left), and RPF (bottom right). 

A 50 kWh battery is used, and 5 EVs are considered. 

 

In the case study, the microgrid was connected to the external grid via two secondary 
substations, with a nominal power of 250 and 400 kVA. Electricity consumption in the 
building is approximately 650 MWh per year, mainly for lighting and powering electrical 
devices. The PV generation system comprises 1,100 monocrystalline silicon panels of 150 
W at 12 V with 98.5 x 98.5 cm dimensions. The PV plant is in the parking area and 
interfaces with the microgrid via a 200 kVA inverter. The loads and PV generators are 
equipped with real-time monitoring sensors using power quality analysers, which allow 
the various devices' voltage, current, active, and reactive power values to be tracked and 
stored in a database with a granularity of 1 second. The parking area has 5 EV charging 
stations, each equipped with two charging points up to 22 kW AC and 32 A, single-phase 
or three-phase. The charging stations have a user interface to start and regulate charging, 
a real-time smart meter, and the option to modulate the charging power remotely. The EV 
fleet using the charging facilities currently consists of 10 cars. Given that the batteries of 
the fleet’s EVs have an average capacity of about 40 kWh, and assuming that the drivers 
are willing to charge their cars when the battery level of charge drops to around 20%, each 
charging session is expected to consume about 33 kWh and last three hours on average. 
These estimates are consistent with the actual data available on the duration and electricity 
consumed per charging session. Nevertheless, since the chargers currently available 
surplus the demand, as expected, it is typical for many users to plug their cars into the 
chargers when they arrive at the building (around 08:00) and disconnect them when they 
leave work (around 17:00). To assess the impact that various sizes of EV fleets might have 
in the future on the examined KPIs, the daily inflow of N ∈ {5, 10, . . ., 35, 40} EVs for one 
year (365 days) was simulated. To do so, N numbers were first randomly selected from a 
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uniform distribution U (0.1, 0.9) ∗ 100%, indicating the initial battery level of charge for 
each EV. Then, by assuming that all drivers whose car is charged below 20% will be willing 
to charge their vehicle, the EV inflow on the first day of the simulation period is 
determined. To estimate the EV inflow for the following days, it was assumed that each 
car would cover an average distance of 20 km per day, thus appropriately reducing their 
previous charge level. Similar to the first day of the simulation, whenever the battery level 
of charge of an EV dropped below 20%, it was assumed to be fully charged the following 
day. To ensure fair and direct comparisons between different simulations, the EVs SoC 
initialised was performed just once. To facilitate comparisons and evaluate the potential 
effect of the proposed framework under various conditions of use, the following three 
scenarios were considered: 

• Business as usual: In this scenario, all drivers interested in charging their EVs 
connect their cars to the chargers when arriving at work (08:00). Also, no battery was 
available. 

• Optimal scheduling of EV charging sessions: In this scenario, the drivers interested 
in charging their EVs connect their cars to the chargers at the time the heuristic 
algorithm for optimally scheduling the charging sessions of EVs suggested. No 
battery was available. 

• Optimal scheduling of EV charging sessions and EESS automation: like the previous 
scenario, the drivers interested in charging their EVs connect their cars to the 
chargers according to the suggestions of the proposed algorithm. Moreover, having 
determined the time the EVs will start charging, a battery was used to automatically 
store the electricity produced by the PV plant when appropriate. It used it, when 
necessary, as defined by the rule-based algorithm for controlling the EESS. 
 

To assess the impact that batteries of various capacities may have on the examined 
indicators, separate simulations were conducted for batteries of capacities C ∈ {5, 10, 15, . 
. ., 90, 95, 100} kWh. The data used for implementing each scenario and its variants were 
hourly and lasted about 2 years and 11 months (25536 hours), ranging from 6 September 
2019 to 3 August 2022. The period from 4 August 2021 to 3 August 2022 was used for 
evaluation purposes, while the rest of the data was for training the models to be used for 
forecasting the electricity consumption in the building and the PV power for the following 
day (24 hours). As such, the original data set included the total electricity consumed by 
the building and the electricity produced by the PV plant. However, it was supplemented 
by the simulated data, indicating the electricity consumed by the EVs. These variables 
were effectively the input of the proposed optimisation algorithms. Figure 63 summarises 
the impact of the scheduling algorithm when no battery is available for storing the energy 
produced by the PV system over the BaU scenario. As expected, the greater the size of the 
EV fleet becomes, the more energy is consumed from the grid. Nevertheless, the 
optimisation can still lead to energy savings that range from 1.5% (5 EVs) to 7.2% (40 EVs). 
In terms of RPF, it was observed that optimal scheduling can indeed be beneficial, 
reducing its magnitude from 7.2% (5 EVs) to 44.3% (40 EVs). This time, the improvements 
were consistently greater for larger EV fleets, which is expected given that more EV 
charging sessions imply less surplus solar power. The scheduling algorithm also 
significantly impacted peak shaving, reducing the average daily range of the demand 
from the grid from 3.7% (5 EVs) to 34% (5 EVs). On the contrary, the energy autonomy of 
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the microgrid remained practically the same for relatively small sizes of EV fleets, being 
slightly deteriorated for larger ones. 

 
Figure 63: Impact (full year) of optimally scheduling the EV charging sessions when no battery is available for storing 
the energy produced by the PV system. Performance is measured both for the BaU and optimised scenario assuming 

different numbers of EVs. 

Figure 64 provides similar comparisons, but this time focuses on the EESS's impact on the 
optimised EV charging scheduling. It is observed that batteries of greater capacity can 
result in less demand from the grid and RPF. The maximum percentage improvements 
(using no battery versus using a battery of 100 kWh capacity) in terms of demand from 
the grid remained relatively constant when a certain number of EVs was assumed, ranging 
from 5% (40 EVs) to 7% (5 EVs). The same was true for peak shaving, which reduced the 
demand from the grid range by up to 2%. On the contrary, the respective RPF 
improvements were significantly affected by the number of EVs, ranging from 35% (5 EVs) 
to 52% (40 EVs). In terms of energy autonomy, the results were similarly encouraging, 
suggesting that for a given size of EV fleet, instances of zero energy demand could be 
increased from 33% (5 EVs) to 45% (40 EVs). Thus, electricity storage can complement the 
scheduling algorithm and further boost its performance regarding reduced RPF and 
enhanced energy autonomy. 
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Figure 64: Impact (full year) of the ESS on the optimal scheduling of the EV charging sessions. Performance is 

measured assuming various numbers of EVs and battery capacities. 
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3.3.2.2 Grid Optimisation leveraging Demand Respons mechnism via Reinforcement 
Learning 

The grid optimisation model reported in [XI], aiming to maximise its SCR and SSR, is 
designed as an reinforcement learning based optimisation model [321]. Reinforcement 
learning is a ML discipline centred on learning optimal behavioural policies for the 
decision-making of a group of agents interacting in a common environment, leading to a 
maximisation of a cumulative reward (i.e., expert-defined performance metric). In the 
context of control systems, the learned policy allows for deploying deterministic or 
stochastic control logic/instructions for agents interacting with the end system, such as, 
e.g. maximising the grid SCR and SSR ratios. Some of the main concepts of reinforcement 
learning involve the environment, agents, states, actions, rewards, observations, and 
policies are reported below:  

• The environment refers to the physical or simulated space which the agents interact 
with. 

• Agents are the entities affected by and are in a position to interact with the 
environment by taking actions. 

• Agents take a state (e.g., vector) that represents their status at every point. States are 
defined as a discrete or a continuous, closed set. 

• A set of actions is defined for the agents to take. This group is defined as a discrete 
or a continuous, closed set. 

• Rewards are given by the environment after the undertaking of actions by the 
autonomous agents. 

• Observations are pre-processed snapshots collected after each transition that gather 
relevant variables of the environment, as well as the previous state and the actions 
taken, resulting in the state and the observed reward. 

• Policies, in broad terms, are the learned (deterministic or stochastic) mapping 
between the set of states and the set of actions. 

 
Figure 65: RL concept 

Depending on the problem to be tackled, experience is gathered through interactions in 
either a simulated or a real (digital or physical) environment. Based on the knowledge of 
the environment, it is possible to distinguish between model-free and model-based 
approaches [321]. For the reinforcement algorithm to learn/approximate an optimal 
policy, it must buffer enough experience from the environment. The experience collected 
by the model comprises transitions (steps within episodes), which are made up of 
observations, including relevant variables from the environment, the previous agent 
status, the action taken, the following states, and the observed reward. The following 
describes the reinforcement learning elements for the grid optimization model. The 
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reinforcement learning service has been deployed with KServe via the Tensorforce 
framework [332].  
 
3.3.2.2.1 Environment 
A grid simulator has been implemented based on the pandapower framework [246]. This 
framework uses the Pypower solver [256] to create a calculation network program to 
automate and optimise power systems. As a result, the simulator describes the same 
environment state as the real grid when connected with the same sources of power 
generation and consumption. The operation of the simulator is as follows: once the 
electrical network is specified in pandapower, the simulator reads the power loads 
demanded by all the consumer groups connected to the grid and the power generated 
along a day. The data has a resolution of 15 minutes, so there are 96 values per day of 
domestic and industrial consumers’ power demand. Next, the simulator introduces the 
loads on the grid and performs a simulation. Then, the simulator outputs the grid state, 
consisting of the parameters to be optimised: network losses, SCR, SSR, and RPF. 
 
3.3.2.2.2 States 
The optimiser acts on the customers’ energy demand: it modulates the distribution of 
energy demand throughout the day, so it is necessary to know the state of energy demand 
or, equivalently, the distribution of current energy demand. Two types of customers can 
be distinguished: domestic and industrial. There are 13 loads (client groups) of each. A 
pre-analysis of a dataset collected over a year has been carried out, Figure 66 and Figure 
67 show the average distribution of each domestic and industrial load for one day. The 
available data, provided by the grid owner, provide an averaged curve relating to the 
industrial cluster and one relating to the domestic cluster, as well as the PV production 
curve. Furthermore, the capacities of each load and each PV system are known. The user 
curves are proportional to each other according to installed power. To simplify the 
optimisation model, it will only act on higher loads, those having a stronger influence on 
the grid (the top 8 loads, combining 4 domestic and 4 industrial ones, have been selected 
since they cover, respectively, 70% and 77% of the total cluster load). It was considered 
that the flexibility of users, i.e. the ability to vary their consumption curve, is 
proportionally the same for all users, with the difference being that larger users can 
provide higher performance services for the entire DN. Reducing the number of actors 
simplifies the computational aspects of the problem and speeds up the solution. 

 
Figure 66: Energy demand for domestic clusters 
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Figure 67: Energy demand for industrial clusters 

It can be seen that the trend of domestic users peaks in the morning hours, and the two 
main peaks are around lunchtime and dinnertime. This is an averaged curve, which 
therefore considers full and part-time workers, students, or pensioners. The curve for 
industrial and commercial users presents a peak in the early hours of the day, 
corresponding to the start-up of engines and other consumer devices, and a slow decrease 
in consumption, interrupted only by a recovery around noon. 
 
3.3.2.2.2.1 Discretization of states 
As the power demand continuously changes, it must be discretized, as a discrete state 
space is needed for training the optimizer in a reasonable time. The state space should be 
as small as possible in order to be completely explored by the optimizer so that the 
complete policy is learned. However, an excessive reduction of the time interval would 
increase the state space, imposing higher exploration time on the optimizer training 
process. After initial tests with quarter-hourly discretization, it was noted that an 
extremely large number of episodes were required by the optimizer to explore the state 
space, despite running on a very high-performance high performing compting cluster. 
Hence, it was decided to carry out hourly load discretization. An approach with much 
lower discretimization times, such as 15 seconds or less, would be desirable for electrical 
aspects (overcurrents, voltage issues…), for energy aspects, such as SCR or SSR, as the 
objective of the grid optimizer, there is no need to adopt short analysis times. In this 
respect, the Italian legislation also adopts hourly resolution times for the calculation of the 
SCR for the calculation of incentives for RECs [122]. Therefore, the states consist of the 
sum of all the loads, discretized by the hour. This approach ended up with 48 states, 
consisting of 2 vectors of 24 elements each (one for domestic consumers, another for 
industrial ones). Each state could take a continuous value in the range [0, 1], that is, the 
percentage over the total daily demand for each daily hour. Therefore, the range [0, 1] is 
also discretized into 10 bins. Besides, it is possible to apply a further normalisation by 
dividing the state value by a “load threshold” so that the possible states of demand in the 
range [0, 1] are constraints (to reduce the state space dimension) to those values with 
higher likelihood of being explored and applied by the optimizer. In this way, the 
simulator can explore more states in a reasonable time. 
 
3.3.2.2.3 Actions 
The RL-based optimizer seeks to optimise the energy demand of the grid. To do so, the 
distribution of energy demand of each load is shifted throughout the day. This optimiser 
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uses four sets of discrete actions (Table 33).  The first action set is the load selection: select 
one load from 8 available. The second action set determines the start and end time of the 
energy displacement. The third action set determines the percentage of energy that is 
shifted at different times. Three different energy shifts have been considered: 1%, 5%, and 
10%. For example, if from 8:00 a.m. to 9:00 a.m. there is an energy demand of 10kW and it 
is chosen to make a 10% shift to the time slot between 9:00 a.m. and 10:00 a.m., this second-
time slot will increase the power demand by 1kW, and the energy demand from 8:00 a.m. 
to 9:00 a.m. will decrease it by the same amount. This is resulting in a set of 147,456 
possible actions. 
 

Table 33: Action subset 

Action subset Length 
Domestic demand cluster selection 4 
Industrial demand cluster selection 4 
Domestic initial time slot 24 
Industrial initial time slot 24 
Final domestic time slot 2 
Final industrial time slot 2 
Demand shift for domestic cluster 2 
Industrial shift for domestic cluster 2 

 
The energy demand shift presents several restrictions: i) the total energy demanded by a 
load must remain constant throughout the day, ii) the shift can only occur within 2 
contiguous time slots, the displacement cannot be applied to any arbitrary distant time 
slots, iii) the demand cannot be negative. The power demand load describes the daily 
demand, with a 15-minute interval, resulting in a 96 values vector for a full day, in order 
to be aligned with the state discretization of 1 hour, the optimizer resamples the loads by 
averaging the samples within each hour. 
 
3.3.2.2.4 Rewards 
The objective of the system is to optimise the operation of the grid. This version tries to 
maximise the SSR and SCR. The reward function is the mean of both parameters. In order 
to obtain greater flexibility during the training process, the reward is computed as a 
weighted average: 
 
Equation 31: Reward of the optimization problem 

𝑅 =
1
2
(𝛼 ∙ 𝑆𝐶𝑅 +	(1 − 𝛼) ∙ 𝑆𝑆𝑅) 

By tuning the 𝛼	parameter, it’s possible to address the optimisation needs, and promote 
SSR over SCR (or vice versa). In this way, we can force SCR and SSR to evenly contribute 
to the reward, by setting 𝛼 = 9

:
, or make reward equal to the SCR, by setting 𝛼 = 1. 

 
3.3.2.2.5 Agents 
The optimization model includes agents for the training of types PPO, DQN, and DDQN 
[321]. The optimization model has been implemented using the Tensorforce RL 
framework. For training, some improvements have been conceived and implemented, 
including: 
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• Variable number of steps per episode: some experiments show that the reward fell 
down after some steps, incapable of going up for the rest of the episode. To avoid 
wasting time in the training process, the episode is concluded when obtained 
rewards go down a threshold of customizable 20%. 

• Variable exploration time: the training process supports the configuration of a 
variable exploration rate, which can be diminished as the learning process 
progresses over more learning episodes. 

• State density matrix: the optimization training process registers all the states visited 
by the agent, intended to give a clear vision of the agent’s preferable combination 
of states, aiming to understand the reasons for the agent to choose such a state 
combination as optimal. This state’s matrix consists of 48 columns, corresponding 
to the 24 hours of both domestic and industrial consumers, and 10 rows, 
corresponding to the 10 state bins available for each state. 

 
3.3.2.2.6 Grid Optimisation leveraging Demand Respons mechnism via Reinforcement 

Learning: Results 
In order to evaluate the effectiveness of the ML tool developed, a portion of the Terni MV 
network was used as depicted in Figure 68, consisting of 14 nodes, one of which represents 
the primary substation, while the others represent secondary substations and 30 power 
lines. Each of the 13 secondary substations feeds a different capacity of industrial loads, 
for a total of 650 kW of installed power, domestic loads (3374 kW), and some of them have 
PV systems (3663 kW). Based on the historical data of the last 5 years, a yearly average 
curve of industrial and domestic loads and PV production is available, with a granularity 
of 15 minutes. These curves are used as a baseline in the optimisation tool. Experiments 
were conducted in an Atos high performance computing cluster of 12 nodes, with 720 
cores each and a total memory of 2968 Gb. Experiments were conducted on 16 cores and 
128 Gb RAM, lasting days to be completed. 

 
Figure 68: Schematic diagram of the portion of the 20-kV grid used as a case study. Some nodes are connected via 
different sections of line, for example of the overhead and cable type, or with different typologies. For reasons of 
graphic clarity, they have not been distinguished here 

 
The grid optimisation model has been trained with the agent’s hyperparameters shown in 
Table 34. In the experiment, 𝛼 = 1 was chosen, as from the DSO’s point of view it is more 
convenient to implement a DR mechanism that favours SCR of local DER, to reduce RPF 
and reduce demand from the grid. High SCR means low grid losses. SSR, on the other 
hand, is more related to consumers and the possibility of becoming grid-independent. 
 

Primary 
Substation

BUS 14

BUS 13

BUS 12

BUS 11 BUS 10

BUS 8

BUS 9

BUS 7

BUS 6 BUS 5

BUS 4
BUS 3

BUS 2

BUS 1
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Table 34: Hyper parameters for grid optimisation models 

Hyper-Parameter Value 
RL Algorithm PPO 
Learning Rate 0.001 
Optimizer Adam 
Multistep 10 
Batch size 1 
Reward discount 10% 
 𝛼 1 
Load threshold 30% 

 
Initial experiments were conducted to determine each episode's optimal duration (i.e., 
#steps), resulting in 2000 steps. Also, as described before, better optimisation results were 
obtained by applying a normalised discretisation of the state space. Results show the agent 
is exploring the state space much better than if normalised discretisation would not be 
applied. Figure 69 shows the matrix space of visited loads after completing the 
experiment.  

 
Figure 69: Load state space 

As a result of the training, the reward is improved (Figure 70) after applying learnt actions 
on the user’s demand load, resulting in better SCR. The SCR achieved, at around 52%, is 
very high, as the portion of the grid in question has an average daily production of 23.6 
MWh and a consumption of 12.9 MWh, so the maximum SCR that can theoretically be 
achieved is 55%, which occurs in the case of completely zero energy absorption from the 
grid. 

 
Figure 70: Reward evolution over episodes considering α=1 

In Figure 71, domestic loads are shown before (i.e., left) and after being optimised (i.e., right) 
along the day hours in the x-axis. A similar trend is recognised for industrial loads. The optimised 

load shows a shape closer to the theoretical optimal one, with a bell-shape where the load is 
concentrated in the noon. For the optimizer reaching the optimal shape, extremely longer 

episode duration, beyond our computing capability, is required to exhaust the exploration of the 

Reward

N. steps
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state space, in order to compute the optimal policy, but the initial training results, with our 
computational constraints, show progress in the right direction. 

 
Figure 71: Domestic demand load before (a) and after (b) the training 

Further experiments are required to improve the optimised SSR and SCR values, close to 
the theoretical ones, by reducing the dimension of the state space so that within the 
affordable computation time, the agent can exhaust the state space, searching for optimal 
user demand loads. 
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3.3.3 Predictive maintenance applied to power transformers 
Predictive maintenance analytics applied to the electrical DN involve using data-driven 
techniques and advanced analytics to anticipate and prevent equipment failures, improve 
reliability, and reduce downtime. These analytics are crucial for modernizing the grid, 
ensuring its efficient operation, and reducing maintenance costs. The first step in 
predictive maintenance analytics is the collection of extensive data from various sensors 
and monitoring devices installed throughout the grid. These sensors can capture 
information about voltage levels, current, temperature, humidity, and other relevant 
parameters. Collected data is integrated into a centralized system, often referred to as a 
data historian or data warehouse. This allows for the consolidation of information from 
multiple sources, including substations, transformers, power lines, and other grid 
components. Before analysis, the collected data is cleaned and preprocessed to remove 
noise and inconsistencies. Data preprocessing may also involve data normalization, 
feature engineering, and the handling of missing data. Predictive maintenance analytics 
leverage ML algorithms to analyze historical and real-time data. These algorithms can 
identify patterns, anomalies, and early signs of equipment degradation or impending 
failures. Common techniques include regression analysis, clustering, classification, and 
time-series analysis. ML models can predict when specific grid components, such as 
transformers or circuit breakers, are likely to fail based on data patterns. These predictions 
are valuable for scheduling maintenance activities before an actual failure occurs. Real-
time monitoring and analysis of equipment conditions are essential. Sensors continuously 
send data to predictive analytics models, which assess the current state of equipment and 
detect deviations from normal operating conditions. An asset health index or score is often 
assigned to individual grid components based on their condition. This index provides a 
quick overview of the health of assets and helps prioritize maintenance efforts. Predictive 
maintenance analytics generate optimized maintenance schedules, allowing utilities to 
plan and allocate resources efficiently. Maintenance activities can be scheduled during 
periods of lower demand to minimize service disruptions. 
By implementing predictive maintenance analytics, utilities can enhance the reliability 
and efficiency of the electrical DN. This proactive approach reduces the risk of outages, 
minimizes maintenance costs, and contributes to a more robust and resilient grid 
infrastructure, ultimately benefiting both utilities and consumers. An example of 
predictive maintenance analytics service is presented in [IX], aimed to predict the electrical 
transformers' ageing in secondary substations. The correlation between the hot point 
temperature of the transformer and its degradation was the starting point for forecasting 
the component's working life, based on Arrhenius's theory. Moreover, by exploiting other 
data appropriately processed – mainly audio data – it was possible to estimate power data 
and forecast the transformer's ageing in a simple, cheap way. Efficient predictive 
maintenance of the transformers enables the substitution of the devices once their working 
life has expired and avoids high costs due to power interruptions. The developed model 
applies to oil-cooled secondary substation power transformers. The ageing of the 
transformer is strictly correlated to the temperature at the hot point. Still, since, in most 
cases, temperature-related measures are not available, it is necessary to calculate it by 
applying a thermal model of the transformer. Primarily, it’s necessary to calculate 
apparent power from raw power by extracting those values from the real-time smart 
meter. From apparent power, it is possible, through mathematical and physical models, 
to infer the hot-point temperature of the instrument and, from that, its degradation. The 
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Python library, named Prophet, allows the calculation of the aging [331], [255]. The use 
case also covered another eventual situation. Smart Meters are not available in every 
secondary substation, while acoustic sensors may be cheaper. So, theoretically, it is 
possible to use audio data to estimate power data and consequently, the ageing of the 
transformers. The tool used for this analytic service was the ML Regression Model. Still, 
first, it was necessary to identify an appropriate set of points (audio and electric data) that 
could be used to train the model. The power that had been inferred in this way wasthen 
used to predict in the same way as indicated for the normal workflow. All of the following 
implementation was done using Python, exploiting useful and common Data Science and 
ML libraries, such as Sci-Kit Learn [308], Pandas [247], etc.  

 

3.3.3.1 Transformer acoustic model  
The acoustic emission of power transformers depends on numerous parameters, such as 
the type of transformer, type of cooling, age, presence of faults, etc. The vibration of the 
transformer housing and the emitted noise consists of a series of acoustic components that 
fall within the first 100 Hz frequency harmonics, i.e. there are typical values of 100 Hz, 200 
Hz, 300 Hz, and 600 Hz, while there are rarely values above 1000 Hz [270]. The noise 
emitted by transformers can have a significant impact on the surrounding environment, 
especially near densely populated areas. The emission of transformer noise is caused by 
magnetostriction phenomena, i.e. vibrations of the mechanical components of the 
transformer due to electromechanical forces, the vibrations occur at a frequency that is 
twice the grid frequency, i.e. for a 50 Hz grid, such as the European grid, the vibrations 
and thus the emitted noise are at a frequency of 100 Hz [217]. Several articles in the 
literature address this topic, both through experimental cases and by investigating the 
physics of the phenomenon. In [157] the results of tests on 10 oil-cooled power 
transformers without load using the sound pressure method are presented, showing that 
the values are considerably lower than the legal limits and are affected by the value and 
quality of the voltage applied by the network. The no-load emission values, for 
transformers with voltage levels of 20kV / 400 V and a power between 40 and 150 kW, 
showed that as the size increases, the intensity of the emitted sound increases from 26 dB 
to 44 dB, but it is still below the legal limits [107]. In addition, since the transformers are 
equipped with a tap changer, it can be seen that a reduction in voltage by 10% reduces the 
noise level by approximately 15%, while an increase in voltage by 10% increases the 
emitted sound by almost 20%. The difference between no load and full load, at constant 
flux density is usually no greater than 1 or 2 dB. An exception to this is when special flux 
shields are placed inside a transformer tank to reduce stray flux effects. [117]. A similar 
analysis has been made in [346], where the transformers of the primary substations were 
analysed, which show significantly higher noise levels but still have a peak in the vicinity 
of 100 Hz, and in [217], where air-cooled transformers were analysed and tested instead. 
Part of the literature analyses suitable means of reducing noise escaping from secondary 
substations, e.g. through insulation or the design of substations in underground locations 
or further away from densely populated areas. The analysis of transformer noise emission 
provides some relevant information on the aging of transformers, based on existing 
models. Many faults are closely related to sound: If the sound of the transformer is louder 
than usual and there is a disordered sound, it may be caused by the loosening of the 
internal clamp or the iron core and other individual parts, which increases the vibration 
amplitude of the silicon steel sheet. If the dry-type transformer has a similar boiling sound, 
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the transformer winding may have a short circuit fault, or the tap changer may overheat 
due to poor contact. When there is discontinuous and abnormal noise in a dry-type 
transformer, it may be caused by poor contact in the high-voltage cabinet. If the sound 
intensity of the transformer is very strong and accompanied by an uneven popping sound, 
it may be the internal or surface insulation breakdown of the transformer. If partial 
discharge occurs inside or on the surface of the transformer, there will be "crackle" 
discharge sound in the sound. A large area of power transformer diagnostics relies on the 
analysis of partial discharges emitted by transformers at fault moments [143]. 
 
3.3.3.2 Transformer aging model  
The power flowing over the rated power, or the loading of the transformer, as well as the 
presence of defects on the internal components of the transformer and the grid segments 
near to it, all play a significant role in the ageing of electrical power transformers. The 
component most prone to degradation within the transformer is the electrical insulation 
between the windings. Degradation of dielectric performance occurs due to excessive 
temperatures and work hardening of the material, so the analysis of transformer aging is 
closely related to the transformer's thermal model [140]. Transformer aging is mainly 
assessed by calculating the hot point temperature, i.e. the maximum temperature that the 
oil reaches in the transformer. Various models can be found in the literature that relate the 
hot point temperature to the average oil temperature and ultimately to the power flowing 
through the transformer. The static parameters influencing the aging of the transformer 
are: 

• nominal transformer power 
• liters of oil in the tank 
• power loss inside the transformer 
• thermal capacity of the oil 

 

On the other hand, from a dynamic point of view, aging depends on two parameters: 
electrical power flowing in the transformer and ambient temperature. Various models for 
calculating aging have been presented in [61], [271], [143], [109], [45]. 
 
3.3.3.3 Regression Model 
The solution implemented in this service consists of three different components: a grid 
search, a ML layer consisting of three different regressors, and one meta-regressor. The 
ML layer consists of three regression models: a polynomial regression model, a support 
vector regression, and an extreme gradient boosting regressor, commonly renamed 
XGBoost. The first step was to find the best parameters for all the models. To avoid 
arbitrary setting of the parameters, a grid search methodology was chosen, using the data 
to let the model find its best hyperparameters automatically. Then, each model was 
trained separately in order to evaluate the quality of single regressors. Finally, the stacking 
regressor was the meta-regressor chosen for this task, and it worked by using a model to 
make a prediction based on the predictions made by other estimators. In other words, each 
of the trained estimators returned a prediction that constituted the input of the meta-
regressor, which was then responsible for returning the ultimate estimation. 
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3.3.3.4 Transformers Aging Prediction:  Results 
The outcome of this analysis is twofold: the forecasting module address the analysis of the 
loading of the secondary substations’ transformers and the aging model determines the 
expected remaining life of the transformer, based on its health status, the current power 
flow and other physical parameters (noise emitted, temperature and humidity of the 
cabin). The forecasting module provides a domain expert with all the information needed 
to assess the transformer’s condition, providing plots with the decreasing percentage, with 
a probabilistic forecast as illustrated in Figure 72. The module also provides weekly, 
yearly, and daily information on peak usage ranges, in order to modulate the usage of the 
substations. 

 
Figure 72: Seasonality of usage of the transformer. 

ASM provides 10 secondary substations located in the distribution system, that collect 
power data from smart meters, power quality analysers, and acoustic and environmental 
(humidity and temperature) sensors installed in all secondary substations. All these data 
are available in real-time and are stored in a historic database on ASM’s premises, working 
with MQTT protocol. Once the data are available, the analytic service applies some pre-
processing steps in order to adapt the data to the model needs. For example, since there 
are no sensors that monitor the temperature of the oil in the transformer, but just the 
temperature of the cabin, it is necessary to calculate the hot-point temperature by applying 
some physical and mathematical models based on the ambient temperature and the power 
flow. As mentioned in the previous section, the pre-processing steps were required in 
order to adapt data to the requirements for the calculations. Two separate flows were 
applied in order to process audio or power data. For power, as indicated in the conceptual 
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diagram, it was necessary to apply a higher number of processing steps, in order to obtain 
the hot point temperature of the transformer. In the other case, audio data required only 
a general pre-processing, for example, to calculate the timestamp of the registration. To 
find a solution for the case in which power data are not available, a ML regression model 
capable of estimating power data from audio ones was trained. For this use case, the 
regressor is a meta-regressor, namely a stacking regressor. This type of algorithm is 
capable of taking the best prediction from other estimators and making another prediction 
using another regression model. First of all, it’s useful to depict the initial situation, 
highlighting the set of points that were chosen to train the models. These data refer to a 
single transformer, but the mode has been applied to all the infrastructure. Figure 73 
shows that there is a correlation between audio and power measurements. It was obtained 
by using a single transformer as a blueprint and then adding data taken from other sensors 
to cover all combinations. For a couple of specific and limited intervals of points, a data 
augmentation technique was required to improve the number of available features, but 
data simulated in this way did not exceed the threshold of 10% of data, to maintain a sort 
of balance between augmented data and real ones. The data were simulated in a strict 
interval, starting from the mean and the standard deviation calculated on the real power 
and audio data. Only 100 samples were be generated out of a total of 636 real and usable 
samples. The dataset created in this way also described a strong positive correlation 
(Pearson index= 0.75). From that, it is possible to start the training of each model.  
 

 
Figure 73: Initial situation. Audio against power data. 

Figure 74 shows the training plots of the three estimators and the stacking regressor. To 
evaluate the performance of a regression, the most commonly used metrics are mean 
absolute error and mean squared error. Those metrics were used in association with the 
R2 coefficient to evaluate our models and to choose among other possibilities. 
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Figure 74: Model training 

Figure 75 shows the prediction made by the regressor, with the relative metrics of the 
model. The data did not cover all the available sensors, but only a selection of them, in 
order to maintain the correlation. To improve the quality of the model a little, some data 
in a specific interval were simulated. The simulated data were less than a quarter of the 
initial data so the original situation was not affected too much by the injection of simulated 
data. Figure 75 depicts, on the left, the initial situation with the missing data section 
highlighted, and on the right the data with the addition of simulated ones. 

 
Figure 75: Initial Data (on the left), Augmented Data (on the right) 

For reference, in Figure 76, the red line shows the prediction made by the polynomial 
regression model, the green line the support vector regressor model, and the blue line the 
XGBoost model. The output shows a good overall prediction, and the quality is confirmed 
by common metrics for the evaluation of regressors, which are mean absolute and mean 
squared errors. Table 35 reports the metrics of all the models illustrated in this paper.  

Table 35: Metrics of all ML models tested. 

Metrics Estimators Stacking 
regressor 

 SVR XGBoost Polynomial 
Model  

MAE 0.221 0.237 0.211 0.0637 
MSE 0.061 0.0734 0.567 0.00693 

 

 
Lastly, the prediction is passed on to the stacking regressor, and the model outputs the 
final estimated power values. Since this was not a “linear” regression model, the depicted 
line is not as smooth as one might expect, but again, it shows good prediction based on 
the starting data we have. 
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Figure 76: Stacking Regressor Prediction. 

 

The outcome of this analytics service is the ageing prediction, depicted in Figure 77. As 
illustrated, the prediction also has a forecasted horizon, the most helpful part for a domain 
expert who needs to monitor the transformer's health.  

 
Figure 77: Aging Forecasting Prediction. 
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3.4 Big Data Management 
The energy sector is currently undergoing a profound transformation driven by two key 
factors: the widespread adoption of RES and the active engagement of customers. This 
transformation is reshaping the industry's structure and giving rise to entirely new utility 
concepts. In an environment marked by a high penetration of RES, where the incremental 
energy costs are significantly decreasing, a novel type of relationship with customers is 
becoming a reality. Customers are evolving into active participants, often referred to as 
"prosumers." Within this digitized and service-centric energy ecosystem, data is expected 
to play an increasingly critical role. 
In recent years, the growing adoption of information technologies, including the IoT, AI, 
5G connectivity, and big data, has facilitated the shift from traditional power grids to the 
SGs. This paradigm shift is fueled by the availability of vast datasets generated at an 
unprecedented rate, both within the grid-owned assets (such as transformers, feeders, and 
PMUs) and non-grid-owned assets (including decentralized energy generation, smart 
residential buildings, industrial facilities, and community-level aggregated loads). This 
shift towards a more distributed architecture is giving rise to fresh innovation challenges. 
Furthermore, the integration of external data sources, including environmental, climate, 
geographic, financial, and socio-economic data, can empower novel energy analytics. 
This, in turn, provides energy stakeholders with more robust actionable insights and 
fosters improved decision-making.  
The data within SGs are diverse, coming in varying resolutions, formats, and 
asynchronous forms, and are stored in different locations. These datasets are characterized 
by their high volume (often measured in terabytes), wide variety (ranging from structured 
to unstructured, and from synchronous to asynchronous), varying velocity (spanning real-
time to different resolutions), veracity (including inconsistencies, redundancies, missing 
data, and potentially malicious information), and values (technical, operational, 
economic). Consequently, power grid management systems of the future will need to 
process enormous amounts of heterogeneous data. Thus, adopting a big data approach is 
essential for managing both real-time and historical data, extracting meaningful insights, 
and making data-driven decisions. 
The growing momentum of big data technologies and the shift towards a data-driven 
economy offer a unique opportunity for the energy sector. This enables significant 
enhancements in grid reliability and efficiency, improved management of grid-connected 
assets, more accurate assessments of energy efficiency and RES investments, and attention 
to operational performance monitoring and citizen comfort. These trends, when coupled 
with AI, edge/IoT infrastructure management, and entrepreneurship, stimulate the 
creation of innovative energy services and applications. 
For utilities, it is crucial to comprehend how the surge in data impacts their traditional 
operations and to devise strategies that unlock value from this vast and varied data pool. 
A recent survey involving 1,000 electric utility and industry respondents from 10 countries 
highlighted that most electric utilities acknowledge the importance of big data analytics 
for future SGs and new business opportunities. However, the implementation of big data 
analytics remains relatively low, with only 20% of utilities having partially adopted these 
technologies. 
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While various architectural and technological implementations for big data solutions in 
SGs have emerged, the development of a standardized and interoperable architecture for 
big data across smart energy grids has lagged behind. Furthermore, the presence of 
functional and organizational silos, combined with a lack of semantic and business 
interoperability, hampers the full potential of big data in the energy domain. Addressing 
these challenges is essential for harnessing the power of cross-domain data and providing 
a wide range of unprecedented services efficiently. 
Efficiently handling this diverse data requires a precise understanding of its nature and 
the utilization of novel digital technologies (such as IoT, AI, cloud, and big data services) 
to process large datasets within acceptable timeframes and with due attention to safety 
and security. The absence of energy-focused data ownership and sovereignty 
management policies has, in many cases, hindered data sharing while respecting privacy 
and security. Additionally, the lack of data management provisions for near-real-time 
proactive analytics-based decision-making and control has limited the extraction of new 
value streams from big data. Traditional approaches to power system data management 
often focus solely on the most critical data required for immediate supervision and 
predefined operations, overlooking the potential benefits of big data. 
The big data management problems and opportunities are in-deeph analysed in the 
BD4nRG European project [47]. 
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3.5 The need for information security 
Cyber-physical systems are composed of computation, communication and physical 
systems and processes, which integrate and coordinate heterogeneous components. SGs 
are one of the most complex cyber-physical system. Due to the increased usage of 
technologies in modern power systems, new types of threats emerge that are based on 
security vulnerabilities of the physical as well as the communication system. The 
interaction between both create new, previously unknown patterns of cyber-physical 
threats. 
In a SG the energy management systems monitor and control the power flow process 
using SCADA systems, that usually hosts on dedicated communication infrastructures, 
consisting of WAN, FAN and LAN. Networked sensors in the system collect 
measurements and transmit the data to the control systems through remote terminal units 
in the SCADA system.  
The integration of information technologies in the SG has resulted in a cyber infrastructure 
that is closely linked with the physical systems. Measurements and control commands are 
frequently exchanged between cyber and physical systems. Based on the measurements, 
operators determine the optimal control policies and issue the necessary control 
commands to coordinate actuators in the physical systems. In case of a fault, diagnostic 
logs are recorded to support the location, evaluation, mitigation and restoration during 
emergencies. Additionally, sensor measurements are processed by centralized and 
distributed computation devices deployed at different levels and locations in the SG. 
The power grid increasingly relies on public communication infrastructures due to 
increased pressure for efficiency and cost reductions. Two-way communications between 
service providers and users are established through the advanced monitoring 
infrastructure system, which allows flexible DR patterns. 
The safety of the power grid is obtained via a physical infrastructure and a cyber 
infrastructure, that work together to anable the security. Physical security is achieved for 
example through the presence of closed circuit cameras at sensitive points of the network 
or through the presence of fences and barriers for access to the infrastructure. Clearly it is 
not possible to use these devices for the entire length of the network, therefore contingency 
analyzes are often carried out to also limit the propagation of faults, if them occur. 
Cybersecurity is about protecting computer access points and assets from remote attacks. 
Defense against cyber attacks must be considered from an organic point of view and 
cybersecurity plays a leading role in the development of the SG. The use of secure 
protocols can protect the SCADA, while the use of dedicated telecommunication cables 
prevents attacks on sensitive parts of the network. Cybersecurity is closely linked to the 
physical configuration of the infrastructure and for this reason it is called a cyber-physical 
system. In security analysis, critical vulnerabilities are often revealed through scenarios 
where attackers are characterized with feasible resources, knowledge and objectives. The 
investigation of attack schemes often serves as the first step to establish security in a 
vulnerable system. While it is impossible to exhaust all potential attack schemes, the 
worst-case analysis is important to understand the feasibility and impact of a potential 
attack scenario. Extensive investigation of the SG security has revealed a significant 
number of attack schemes that could exploit critical vulnerabilities, potentially leading to 
severe disruptions and damages.  
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Essentially, a threat may be considered as a possible danger that could exploit a 
vulnerability and sidestep the security measures of a system. A threat can be associated to 
“intentional” damage, which means that  the attack is intentionally caused. Instead, a 
threat can also be associated to  an accidental damage. A cyber-threat is any circumstance 
or event with the potential to adversely impact organizational operations, organizational 
assets, or individuals through an information system via unauthorized access, destruction, 
disclosure, modification of information, and/or denial of service. Examples of differet 
threats are: malware, web based attacks, web application attacks, phishing, spam, denial 
of servics, randsomware, botnets, insider threat, physical manipulation, data breaches, 
identity theft, information leakage, exploit kits and cyber espionage. 
Ensuring cybersecurity has emerged as a critical challenge in the pursuit of secure and 
dependable SGs [200], [298], [185], [352]. The primary cybersecurity threat vectors that can 
allow malicious attackers to gain access to a device or control network encompass external 
users accessing the network through the internet, improperly configured firewalls, 
unsecured wireless routers, wired modems, infected laptops outside the firewall, infected 
USB devices, programmable logic controllers, and insecure RS-232 serial links [68].  
 
3.5.1 False data injection 
The paper in reference [XVII] focuses on evaluating the repercussions of a voltage 
regulation mechanism in a case study when false data are introduced. The global surge in 
cybersecurity attacks targeting the energy sector has coincided with the widespread 
integration of DER into electrical grids, such as PV and wind power plants. The increasing 
reliance on communication networks to manage these complex systems has introduced 
new vulnerabilities to malicious threats [190], [55], [13], [264]. More data must be 
transmitted and processed to enhance interoperability and efficiency in forecasting and 
managing power generation, consumption, and storage [350]. The shift from passive grids 
to active grids, characterized by high RES penetration, presents technical challenges such 
as RPF, voltage stability, and increased interruptions [324], [94], [198]. 
Research into FDIA on SGs has gained significance in this context. Reference [112] 
emphasizes that most attacks on intelligent grids involve false data injection, and 
numerous detection algorithms have been developed [17], [207], [97], [211]. However, the 
impact of false data on power systems has received comparatively less attention. FDIA 
detection algorithms are often tested against manually crafted anomalous profiles that do 
not account for probabilistic scenarios [97]. Consequently, this document seeks to 
investigate how randomly generated false data could affect a smart DN employing a 
centralized voltage regulation framework to mitigate the effects of DER. While many 
papers in the literature have explored new voltage regulation strategies for DSOs to 
mitigate the impact of DER and load variations on grids [349], [294], [169], they often 
neglect cybersecurity aspects. Voltage regulation schemes are categorized based on 
communication architecture, including local control, centralized control, distributed 
control, and decentralized control [169]. The various voltage regulation schemes have 
been extensively studied in the literature, but cybersecurity considerations are frequently 
overlooked. For example, in [240], a decentralized control system is examined concerning 
the dynamic voltage regulation of a hybrid distribution transformer. In [129], DER are 
leveraged to maintain voltages within specified limits through local and centralized 
voltage control. [291], [197], [269] and [7] explore centralized voltage control schemes to 
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ensure voltage stability in active distribution grids, utilizing voltage source converters, 
on-load tap changers, and step voltage regulators. Reference [291] uses voltage 
fluctuations forecasting to optimize tap positions and maximize the minimum voltage 
margin. In [19], centralized voltage control is assessed about the impact of data 
falsification attacks, focusing on voltage measurements transmitted from the field to the 
control system. A two-step method based on ML techniques is proposed to detect false 
data injection in the context of an active grid, tested on a 240-bus real distribution system 
and the IEEE 123-node benchmark DN. Ref. [228] investigates a volt-var control system 
subjected to a cyberattack, considering varying levels of the attacker's knowledge about 
the control system, network topology, and monitoring system. The authors propose a 
game-theoretical approach to derive countermeasures for detecting and mitigating 
attacks. [350] studies the impact of false data injection on a centralized voltage control 
system in a DN with high PV penetration. The authors demonstrate that falsified 
measurements can lead to many voltage violations and propose a detection algorithm 
tested in a residential area with one feeder. [288] explores the impact of cyberattacks on 
the remedial action schemes of large transmission systems, offering metrics for evaluating 
the effects of malicious operations through simulations on synthetic Illinois 200-bus and 
South Carolina 500-bus systems. In [71], a formulation for detecting and characterizing 
cyberattacks is presented in the context of a control center for a transmission system 
network. The authors investigate the impact of false data on parameters used in 
calculating the optimal power flow, which is essential for grid management. 
Unlike the previously mentioned papers, this study assesses the impact of FDIA by 
creating a false data generator simulating a wide range of attacks and their effects within 
an extensive DN. The paper introduces a voltage regulation framework based on a 
microgenetic algorithm for centralized voltage control, sending optimized setpoints to 
DER units to maintain voltage levels within acceptable limits. The IEEE 118-bus test 
system is employed, considering various false data attacks. These attacks are generated 
using a specially developed false data generator, differentiating this research from others 
by not manually defining false data and evaluating multiple attack scenarios.  
 
3.5.1.1 False Data Generator Model 
The false data generator was implemented using a series of Python functions. It operates 
by taking a dataset as input, introducing various anomalies to some of the data, and then 
providing an altered dataset as output. This highly adaptable generator doesn't require 
additional adjustments when dealing with different data profiles. The model is 
constructed based on Pandas module data frames, where each variable within the data 
frame corresponds to a distinct electrical bus, and the values within these buses are subject 
to analysis. After identifying which users are affected by data falsification, anomalies are 
introduced by manipulating a subset of data points associated with an electrical user, 
which could be either a generation plant or a load. These values are altered using random 
parameters selected from predefined lists. The false data generator requires various 
parameters before creating the anomaly: 

• Type of anomaly: Spot, Drift, or Mixed. 
• Percentage of users subject to the cyber attack, Nfalse_i 
• Fraction of anomalies present per node, Nfalse% 
• Anomaly scale parameter, s(NK)  
• Fraction of anomalies parameter, j(NK) 
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• Mean drift parameter, µ(NK) 
• Drift spread parameter, g(NK) 
• Typology of anomaly attack to the node NK, ATYPE (NK)  
• Number of nodes subject to spot anomalies, NA spot 
• Number of lines subject to drift anomalies, NA drift 

 

The process of creating the anomaly is shown in Figure 78. 
 

 
Figure 78: False data generator algorithm 

 
For Spot type anomalies, first, the algorithm evaluates the minimum and maximum values 
of the input array related to a specific node NK, from which the amplitude values are 
obtained as: 
Equation 32: 

∆+RR(NS) 	= 	ArrA+B(NS) 	−	ArrA%$(NS) 

 
Where Darr(NK)  is the maximum variation of values for the array relative to the NK node, 
and Arrmin(NK) and Arrmax(NK) are respectively the minimum and maximum value of the 
array referring to node NK data.  
Based on the j(N;) parameters, obtained by randomly extracting from jlist (list of all possible 
values for the anomaly fraction parameter) containing the permitted values for anomaly 
fraction, a portion of the timestamps is modified, extracted randomly by an amount equal to: 
Equation 33: 

𝑁;%A7);+AT)(𝑁S) = j(NS) 	 ∙ 	Dt 
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Where Ntimestamp(NK) is the number of timestamps modified by the Spot anomalies in the 
analysis time-period Dt. These data are randomly increased or decreased according to 
Equation 34: 
Equation 34: 

𝑥(𝑁S);Q+*)7 =	𝑥(𝑁S);?7+* 	± 	s(𝑁S) ∙ D+RR(NS) 

 
𝑥(𝑁;))8+&#'  is the false value of the array related to the node NK in the timestamp t and 
𝑥(𝑁;))6'+&  is the real value of the array related to the node NK in the timestamp t.  
Drift-type anomalies vary the magnitude by raising or lowering the arrays’ mean value from a 
specific time. First, a drift time tdrift is set, chosen randomly within the analysis period Dt, at which 
the value of the quantity undergoes a shift, then the values of µ(NK) and g(NK) are defined, both 
obtained by randomly extracting from the lists glist (list of all possible values for the spread drift 
parameter ) and µlist (list of all possible values for the anomaly mean drift parameter), the 
first represents the percentage of mean drift, while the second represents the percentage change 
in the spread of the data. 
In this type of anomaly, the values before tdrift the magnitude remain the same, while for values 
after tdrift the new value is evaluated as: 
Equation 35: 

𝑥(𝑁S);Q+*)7 =	𝑥(𝑁S);?7+* +
∑ 𝑥(𝑁S);?7+*
&*,-./
t0/#,-

(𝑁+8;7R − t6R%8;)
∙
µ(NS)
100 ∙ b1 +

g(NS)
100 c 

 
Where Nafter represents the number of timestamps after the drift time. 
In the case of a mixed typology of anomaly, 50% of the nodes involved have a Spot data 
falsification, while the remaining 50% have a Drift type falsification. In Figure 79 two 
typologies of anomalies are shown. 

 
Figure 79: Left) Real Trend; Center) Trend with Spot anomalies; Right) Trend with Drift anomalies 

 
3.5.1.2 Centralized Voltage Regulation Framework  
The model for the centralized voltage regulation system is centered around the capability 
to remotely adjust the operating parameters of DER to maintain the desired voltage profile 
of the grid. With the increasing integration of DER, it is anticipated that operators will 
adopt such a voltage regulation framework to prevent frequent disruptions resulting from 
voltage deviations. Specifically, in the future, operators may fine-tune the reactive power 



 123 

exchange without impacting active power generation, adhering to the limits specified by 
the capability diagrams of renewable-based generators. In the context of DR, there is 
potential for leveraging network services flexibility in an automated manner. Similar 
mechanisms for regulation support from DER are either being implemented or have been 
defined in existing networks or standards. For example, the Italian Grid Codes identify 
specific plants that operators can automatically disconnect to ensure system security [333]. 
According to the German grid code for LV grid connections, new PV installations with 
less than 30 kW capacity, which cannot be controlled remotely, are required to limit their 
output to 70% of their rated power. Additionally, remote control of active power output 
at the request of the system operator is mandated for all DERs rated above 100 kW 
connected to the grid [150]. The Chinese energy storage connection code GB36547-2018 
stipulates that the system operator can send set-points and should work toward effective 
voltage management. The current version of IEEE Std 1547 specifies a requirement for all 
conformant DERs to respond to control signals (local and/or remote) limiting their active 
power output, with no DER size threshold for this requirement. In [XVII], it was assumed 
that the regulation framework could be applied to a MV network, with generators 
connected to the substations of the network. The regulation framework is implemented in 
the Octave environment using the Matpower package. Each substation is represented as a 
power demand node in the load flow analysis, accounting for local power consumption 
and production contributions.The key steps of the regulation framework are illustrated in 
Figure 80. Initially, load flows are computed for the specific timestamp being analyzed. 
Subsequently, the voltage regulation is activated if certain inequalities are not met for each 
node within the network: 
Equation 36: 

0.95 ≤ Vi ≤ 1.05, ∀i	∈	[1,	NSS] 

where Vi is the voltage at the secondary substation characterized by the index i. 
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Figure 80: Flowchart of the voltage regulation framework 

According to Figure 80, if Equation 36 is not fulfilled, the regulation is activated. The 
implemented regulation exploits the reactive production or absorption of RES. The 
reactive power exchanges have to fulfill the typical capability diagram of the PV generator, 
as in [100]. In detail, the maximum Q that a DG system can provide (Qmax) to the grid 
should be calculated according to the following equation, considering an operating point 
characterized by an active power production greater or equal to the 10% of the apparent 
power Sn: 
Equation 37: 

Qmax = Pn · 0.484 (overexcited mode) 

where Pn is the nominal power of the DG system. 
The minimum Q absorbed by the DG system (Qmin) is calculated with the following 
equation. 
Equation 38: 

Qmin = -Pn · 0.484 (under excited mode) 

When the active power production is under 10% of the Pn, the reactive power cannot be 
exchanged with the grid. These limits are also shown in Figure 81. 
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Figure 81: Capability curve assumed for DG in the voltage regulation framework 

The voltage regulation model acquires the active and reactive profiles of load and 
generation by each secondary substation and performs the load flow, considering the 
topology of the grid and the interconnection with the HV system as the reference bus. 
Then, according to Equation 34 the total number of violations is calculated. In case of 
violation occurrence, the model tries to reduce the number of violations using the reactive 
power support by DG. As reported in Figure 80, the optimization technique used for this 
nonlinear problem is based on a micro genetic algorithm, implemented by the authors in 
the open-source Octave environment and coupled with Matpower. The usage of micro 
genetic algorithm enables to address the solution of nonlinear problems with adequate 
performance, even during real-time operation. The algorithm initializes a random sample 
of individuals with the values in p.u. of reactive power for each substation to be optimized. 
The evolution via survival of the fittest is adopted, and the selection scheme used is 
tournament selection with a shuffling technique for choosing random pairs for mating. 
The routine includes binary coding for individuals, jump mutation, creep mutation, and 
the option for a single-point crossover; a restart mechanism with elitism is also 
implemented. The population size is fixed to 5 individuals. Each individual has several 
genes equal to the number of secondary substations + 1; the number of secondary 
substations describes the reactive power exchanges of the generators, while the last gene 
corresponds to the tap changer of the transformer of the primary substation. The objective 
function to be minimized by the micro genetic algorithm is defined as the number of 
violations. Two stopping criteria are implemented: the algorithm is stopped as soon as the 
number of voltage violations is nihil or the maximum number of generations is reached. 
Therefore, in each iteration, the micro genetic algorithm performs the load flow of the DN 
to evaluate the number of remaining violations after implementing the combination of 
setpoints in terms of reactive power exchanged by the DERs. It is worth highlighting that 
the performances (i.e., a reduced number of generations and the related execution times) 
are dramatically improved by exploiting the solution of the previous iteration for the 
current calculation. Leveraging this recursive behavior, micro genetic algorithm suggests 
a minimum amount of changes; moreover, generations start only if the solution of the 
previous timestamp causes a violation during the new timestamp. The entire procedure is 
repeated for each timestamp according to the case study. To evaluate the voltage 
deviations, the following indices are calculated after the execution of the voltage 
regulation: 

• TV1.05 is the number of timestamps during which the maximum network voltage is 
higher than 1.05; 
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• TV1.1 is the number of timestamps during which the maximum network voltage 
exceeds 1.1. 

• TV1.15 is the number of timestamps during which the maximum network voltage 
exceeds 1.15. 

 
3.5.1.3 False data injection in a test network 
The impact of false data on voltage regulation is assessed through a case study involving 
a 118-node DN, as described in [128]. The network's topology is illustrated in Figure 82, 
which initially emphasizes its radial structure comprising four primary feeders and a 
primary substation identified by a red square marker. Each node corresponds to a 
secondary substation with several connected customers. This particular case study was 
chosen as an intriguing test system due to its inclusion of lengthy feeders. Such a 
configuration is representative of scenarios where voltage-related issues may emerge, 
particularly in the presence of significant RPF. Notably, this case study does not include 
current limits on the branches. Therefore, when considering higher flowing currents, such 
as when assuming a certain level of DER penetration, it is assumed that these currents 
remain within the line's specified limits and protection thresholds. 

 

 
Figure 82: Case study topology (red marker corresponds to the PS) 

Following the establishment of the network topology, power profiles were formulated. A 
yearly load profile was utilized for the passive loads, as outlined in [2]. This profile is in 
p.u. and was subsequently adjusted to align with the loads assigned to the nodes in the 
original network from [128]. Additionally, a coefficient ranging randomly from 0.85 to 1.15 
was applied to this profile. Using these load profiles, it was assumed that the loads would 
consume 290 MWh annually, with an average peak load of 0.19 MW at the nodes. In 
addition to the existing passive loads, PV generators were installed at all nodes. Regarding 
the power profiles of these generators, an openly accessible dataset from [234] was 
employed. The sizes of these PV plants are pivotal parameters for determining their 
impact on voltage profiles, and, consequently, the need for frequent regulation. In this 
context, a substantial deployment of PV plants was considered, capable of supplying 
approximately 40% of the energy consumption. This was achieved by assigning sizes to 
the PV generators ranging from 3 to 4 times the peak power of the load profile at each 
node. The installed generators collectively produced 444 MWh annually, delivering 120 
MWh to the loads, resulting in a RPF of 324 MWh at the primary substation. While the 
simulated conditions may appear extreme, they reflect scenarios in regions with low load 
density but high potential for RES installations, such as areas with favorable exposure, 
minimal authorization constraints, available open land, and significant adoption of agro 
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PV plants. These regions often feature a fragile network infrastructure susceptible to 
voltage issues, as evidenced by continuous RPF reported by network operators at their 
primary substations. 
Following the definition of the reference profiles and the sizes to be considered, 
production and consumption profiles were sampled at one-minute intervals. For clarity, 
the analysis concentrates on a single day when the RPF was at its peak, and the most 
significant voltage deviations were observed. Consequently, the overall consumption and 
production profiles under examination are depicted in Figure 83. 

 

 
Figure 83: Global power profiles in case of production peak, used in the case study 

 
Results were obtained by simulating the voltage regulation process, which was performed 
every minute based on the power profiles of the substations. Specifically, the impact on 
voltage profiles was initially assessed when the received data was accurate and reliable. 
Subsequently, multiple sets of false data were introduced to assess their detrimental 
effects on the effectiveness of voltage regulation and the overall network stability. 
The voltage regulation framework inputs the active power and reactive power values of 
the nodes, along with the active power injected by the generators. These profiles are 
intentionally falsified to examine the consequences of FDIA. Furthermore, voltage 
regulation can adjust the transformer ratio at the primary substation, essentially varying 
the secondary voltage, as well as modulating the reactive power exchanged by PVs. 
Assuming that the secondary voltage at the primary substation remains at 1 p.u., the 
voltage regulation comes into effect whenever the voltage exceeds 1.05 p.u. or falls below 
0.95 p.u. Figure 84 illustrates the trends in maximum and minimum voltage levels when 
regulation is actively applied. When regulation is not in effect, voltage levels are assumed 
to be the same as those calculated for the baseline scenario, where regulation is not 
enforced, and the secondary voltage at the PS is set at 1 p.u. It is important to note that the 
maximum voltage level always remains below 1.1 p.u. Due to the enforcement of 
regulations. Operators typically impose this limit to identify potential network violations. 
The beneficial effects of the voltage regulation framework can also be observed by 
examining TV1.05, which corresponds to 67.8%. However, when the impacts of voltage 
regulation are factored in, this value decreases to 7.4%. 
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Figure 84: Case study voltage regulation 

The attack scenarios simulated in this paper are characterized by a distributed 
manipulation of consumption and production data at the secondary substations. In detail, 
the power profiles of the production power plant and the overall power demand at 
secondary substations are manipulated. Results were calculated considering the two types 
of threats previously described (i.e., drift and spot anomalies) and their mixed 
combination. Moreover, an increasing amount of manipulated measurements was 
considered for the simulation; notably, it was simulated that 25%, 50% or 75% of the nodes 
are affected by the anomalies.  
 
3.5.1.4 Results: Impact of FDIA in a distribution grid 
This section presents the simulation results considering the case study and load profiles 
previously presented, assuming that an increasing number of profiles are manipulated. 
The evaluation of the impact of false data is carried out considering 2 main sets of 
simulations. a first set regards some attacks that manipulate up to 25 % of the 
measurements, while a second set regards those attacks that massively manipulate the 
measurements, namely 50 % and 75 % of the data are falsified. The results are presented 
by calculating mean values, standard deviation of the voltages and the defined indices 
TV1.05, TV1.1, and TV1.15. 

 
3.5.1.4.1 FDIA affecting 25 % of the measurements 
The first set of simulations regards the effects of manipulating 25% of the measurements 
applying a mixed anomaly; 10 simulations randomly assigned the set of profiles to be 
manipulated. The overall results are shown in Table 36, which reports the average values 
collected from the 10 simulations; furthermore, these are compared with those calculated 
when the voltage regulation framework does not exploit manipulated data. Considering 
statistical parameters, it can be highlighted that the manipulated data cause notable effects 
on voltage regulation; on average, 6 % of the timestamps report voltage violations on the 
network (i.e., voltage overcome 1.1 p.u. in at least one node). It is worth highlighting that 
false data are processed during all the timestamps. Therefore, the VR framework can still 
solve voltage issues. Indeed, considering that the lack of VR leads to TV1.05 higher than 
1.05, equal to 67.8 %, on average, 30 % of the voltage violations are still solved by the 
regulation procedure. 
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Table 36. Main results comparing average effects of 10 simulations with 25% of manipulated measurements and true 
data processed by VR framework. 

 Max Min Mean SD TV1.05 TV1.1 
True Data 1.056 0.941 0.982 0.0233 7.4 % 0.0 % 
Attack on 25% Nodes 1.127 0.945 0.991 0.0261 31.5 % 6.0 % 

 
The average voltage of the nodes is reported in Figure 85. The figure shows the individual 
effects of the 10 simulated anomalies and the profile calculated without manipulation, 
which is taken as a reference. Figure 86 highlights that the longest feeders (i.e., those with 
the highest numbers of nodes) have the highest voltages and the highest differences 
among results (i.e., the maximum difference is about 0.03 p.u.). Moreover, some nodes 
have a voltage lower than the reference; this behavior is due to the lack of disruptive 
anomalies on the feeder that do not jeopardize the voltage regulation framework.  

 
Figure 85: Average Voltage of the nodes assuming that 25% of measurements are manipulated 

A specific timestamp is also reported in Figure 86 as an example that shows the voltages 
calculated during the timestamp associated with the maximum voltage in the case of real 
data. In this case, it can be seen a violation on voltage higher than 1.1 p.u. 

 
Figure 86: The voltage of the nodes during the maximum violation assuming that 25% of measurements are 

manipulated 

Figure 87 shows the maximum network voltage during the simulated time period 
considering the false data that cause maximum and minimum violations, identified as min 
and max attack, respectively. This figure highlights that a specific combination of false 
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data does not cause voltage violations, while the most disruptive falsification leads to 
violations. 

 
Figure 87. Maximum network voltage during the timestamps considering maximum and minimum violations assuming 

that 25% of measurements are manipulated. 

 
3.5.1.4.2 Massive widespread of False data injection attacks 
An additional set of simulations regards the effects of an increasing amount of falsified 
measurements. Notably, it simulated the effects of spot and drift anomalies when applied 
to 50% or 75% of measurements. The main results of these simulations are collected in 
Table 37, which shows the notable impact on the voltages caused by incorrectly processed 
data; in particular, calculated violations overcome even 1.15 p.u. 

Table 37. Main results considering a combination of anomalies and percentage of falsified measurements 
 

True Data Attack on 50% of 
measurements 

Attack on 75% of 
measurements 

Manipulation type N/A Spot Drift Spot Drift 
Max 1.056 1.164 1.181 1.252 1.215 
Min 0.941 0.923 0.941 0.886 0.891 
SD 0.023 0.029 0.028 0.040 0.039 
TV1.05 7.4% 48.4% 64.4% 63.7% 65.1% 
TV1.1 0.0% 15.0% 29.6% 31.4% 31.0% 
TV1.15 0.0% 0.6% 2.3% 11.7% 13.3% 

 
Similarly to the previous simulations, the average voltages of the nodes are reported in 
Figure 87, while Figure 89 shows the voltages during the most critical timestamps 
identified during the regular operation. Considering Figure 89, it can be noted that the 
spot anomaly does not cause any voltage issues on the network if applied to half of the 
measurements; the drift anomaly has a higher impact on the network, causing 
overvoltages. Moreover, considering the average effects on the network presented in 
Figure 88, it can be shown that drift anomalies can have a higher impact on the DN 
weakening the voltage regulation framework. It is worth noting that the profile associated 
with a lower number of falsified profiles has produced a higher voltage profile on average, 
even if violations are more frequent in the case of a higher number of falsified profiles. 
Indeed, a more comprehensive set of falsified measurements lead to higher standard 
deviation values, namely, overvoltages are more frequent and more intense. Moreover, 
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taking advantage of the evaluation of a wide set of values, it was found that the 
distribution of false profiles that introduce low measurement variations is more 
dangerous than concentrated threats that introduce the highest differences from the actual 
measurement. 

 
Figure 88. Average Voltage of the nodes assuming respectively that 50% and 75% of measurements are manipulated. 

 

 
Figure 89. The voltage of the nodes during the maximum violation assuming respectively that 50% and 75% of 

measurements are manipulated. 

Figure 90 and Figure 91 report the maximum network voltages calculated for all the 
timestamps. These figures show that the effects of drift anomalies are more disruptive 
than the spot anomalies.  
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Figure 90. Maximum network voltage during the timestamps considering half of the measurements falsified.  

 
Figure 91. Maximum network voltage during the timestamps considering 75% of the measurements falsified. 
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4 Mobility as a service provider for the electrical network 
4.1 Prospectives for electrical mobility in the energy transition 
The energy transition involves a radical change in the mobility sector, with the emergence 
of new platforms such as car sharing and the spread of light vehicles in cities, as well as 
the conversion of the vehicle fleet to EVs [252] shows that as of 2019, almost 2.3 million 
EVs, both plug-in hybrids and battery EVs, have been registered, a growth of 9 % 
compared to the previous year, and this growth is set to continue in the near future, 
considering that various national and international policies limit the use of diesel- and 
petrol-powered vehicles after 2035. 
The spread of EVs is spread all over the world, with most vehicles in China, Europe, the 
USA and Japan. In Italy, electric cars account for 0.9 % of registrations (17,000), with 70 % 
of vehicles present in the north, according to 2019 figures. It is estimated that there are 
around 9,100 public EVCSs in Italy, with 9 % of them being fast. In the future, this is 
expected to grow to between 47,000 and 7,000 in 2030, plus between 1.8 million and 3.8 
million private EVCSs. 
As the world shifts towards sustainable energy solutions, electric mobility has gained 
significant traction for the following reasons: 1) EVs contribute to lower carbon emissions, 
supporting global efforts to combat climate change; 2) the integration of EVs into the 
energy grid can promote the use of RES, contributing to a more diverse and sustainable 
energy mix; 3) the growing EV market presents economic opportunities for industries 
involved in the production of EVs, battery technologies, and charging infrastructure; 4) 
EVs can provide grid flexibility and enabling DR capabilities. Through smart charging 
solutions and vehicle-to-grid technologies, EVs can support grid stability and 
optimization. 
Many governments are offering incentives and implementing supportive policies to 
encourage the adoption of EVs. These initiatives include tax incentives, subsidies, and the 
development of charging infrastructure, fostering a favorable environment for electric 
mobility. 
These prospects indicate a promising future for electric mobility, emphasizing its pivotal 
role in the global transition towards a more sustainable and environmentally conscious 
energy landscape, but at the same time the complexities of such a large transition, the 
impact on the electricity grid and the economic aspects are also current challenges. 
 
4.1.1 The role of electric vehicles in providing plexibility to the distribution grid 
Electric mobility is an important enabler for flexibility services for the DN, mainly because 
vehicles are generally parked for a long period of time and can recharge at times of the 
day when it is most convenient for the grid. 
EVs can provide flexibility to the energy DN in several ways. The first way is to charge 
vehicles intelligently, i.e. by using charging management systems that take into account 
the availability of energy from RES or peaks in the grid's power, this approach 
corresponds with the application of DR mechanisms for EVs, shifting recharging to the 
most convenient times. Vehicles can also feed electricity into the grid at times of particular 
need by breaking down storage to feed other sensitive loads, the so-called vehicle-to-grid. 
Intelligent use of storage allows them to be used, taking care not to shorten their lifespan 
or damage the cars, to provide ancillary services to the grid, such as voltage support or 
congestion management. 
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Finally, it is common to use EVCSs within RECs or microgrids to act as active instruments 
of the microgrid to limit the flow of power exchanged with the external grid. 
In summary, e-mobility offers significant potential to improve the flexibility and resilience 
of DN, helping to better manage demand, integrate RES and reduce power surges. These 
benefits are key to supporting the transition to a more sustainable energy system. 
 
4.2 E-mobility impact on the distribution grid 
In the past decade, EVs have seen a significant increase in adoption, and there are strong 
expectations for even more substantial growth in the years ahead. This trend is having a 
notable impact on the DN as the electricity demand is rising rapidly. This increased 
demand is putting stress on power cables and transformers, leading to higher peak power 
loads. EVs have been rapidly gaining popularity, and local governments have introduced 
various incentive policies to encourage their adoption. In 2020, approximately 10 million 
EVs were on the road, accounting for 4.6% of all vehicles sold. Looking ahead to 2030, the 
International Energy Agency forecasts a range of 145 to 230 million EVs, constituting 
approximately 7% to 12% of the total vehicle market [141]. In the European Union, the 
transportation sector is responsible for 30% of greenhouse gas emissions, with 72% of 
those emissions attributed to road transportation. To address this, there is a growing 
emphasis on promoting sustainable mobility options, including electric and hydrogen-
powered vehicles [VI], [326], [35], is needed to reduce pollutant emissions by 55% in 2030 
compared to 1990 data [329], [66]. EVs contribute to greater environmental sustainability 
in the transportation sector and play a crucial role in advancing the adoption of RES. They 
also constitute a significant and economically vital sector within the industry. 
Nevertheless, EVs have disadvantages, including elevated costs, lengthy charging 
periods, and limited driving range. It's important to note that EVs notably influence DN, 
elevating the overall electrical demand, introducing harmonics, and potentially straining 
power lines and transformers. [90], [79], [133], [141]. The scientific literature in this 
research domain primarily focuses on three key aspects:  

1. Charging technologies. 
2. Optimal placement of EVCSs. 
3. The effects of EVs demand on the electrical grid [137]. 

Adverse effects of EVCSs on the electrical grid encompass issues like voltage instability, 
increased load demand, power quality problems, and overheating and overloading of 
transformers. In [302], the authors tackle the challenge of optimising the design and sizing 
of DNs while considering EV demand to minimise overall costs. They consider both the 
sizing and degradation of transformers in this analysis. In [245] and [299], the impact of 
EVCSs on the power quality of the network is explored using OpenDSS, emphasising a 
significant increase in harmonics. Various methodologies, such as Monte Carlo 
simulations and gaussian mixture models, are employed to conduct these analyses. In a 
series of studies [90], [166], [32], [30], authors delve into the ramifications of electric 
mobility on LV distribution feeders. They primarily examine aspects like increased power 
flow and voltage instability. These investigations involve case studies conducted in 
Switzerland, Iran, and California, assessing different charging technologies. To mitigate 
the adverse effects of EVCSs on the power grid, specific research papers propose strategies 
for scheduling EV charging. These include implementing DR mechanisms or utilising 
vehicle-to-grid technology to provide ancillary services to the DN [24], [257]. 
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Two studies have been presented to analyse the impact of mobility on the grid; in the first 
case, the impact of ultra-fast EVCS has been considered [IV], while in the second case, a 
new DN for the city of Terni, separated to the main one that supplies all the other loads, 
has been designed [V].  
 
4.2.1 Impact of ultrafast electric vehicle chargin stations 
This research aims to assess the impact of ultrafast EVCS on DN. As a case study, it 
examines a parking area in Terni, equipped with six ultrafast 500 kW EVCSs. The analysis 
uses Italian projections for adopting EVs and data from the open-access ACN-Data 
database to estimate the load demand, including that from EVs, from 2020 to 2030. 
Introducing EVCSs amplifies the power draw from the primary substation, leading to 
overloads on LV lines. However, it's noted that voltage profiles consistently remain within 
acceptable parameters. The study also investigates the potential role of local DER 
equipped with EESS, revealing a positive impact on the SCR of the EV parking area. 
The research encompasses three distinct scenarios for electric mobility development and 
two plausible load increase scenarios. These scenarios shed light on the consequences of 
ultrafast EVCSs regarding power consumption, voltage fluctuations, and potential 
overloads. This study focuses on 500 kW liquid-cooled EVCSs, which, while emerging in 
the market, are presently limited in deployment. These devices offer a notable advantage 
in rapid recharging times, comparable to conventional internal combustion engine 
vehicles, taking just a few minutes. References related to 500 kW EVCSs can be found in 
[340], [75], [76], [59]. The case study presented in the paper spans 11 years, from 2020 to 
2030, and considers evolving trends in electricity consumption and the adoption of EVs. 
The simulation, through OpenDSS, utilises actual data provided by ASM to model the 
DN, load demands, and PV generation. Additionally, the daily load profiles of the EVCSs 
are based on actual data obtained from the publicly accessible ACN-Data database. 
 
4.2.1.1 E-mobility scenarios and analysis 
In this research, a model has been made to evaluate the impact of 500 kW EVCS on the 
electrical DN. The development of the model involved a sequence of three key steps: 

1. Examination of electricity consumption and EVs adoption scenarios, focusing on 
the city of Terni. 

2. Analysis of EVs consumption patterns over time, drawing upon data provided by 
the ACN-Data dataset [26]. 

3. Conducting a power flow analysis with OpenDSS. 
 

In the subsequent subsections, these three steps are explained. 
 
4.2.1.1.1 Electrical demand scenarios 
The Italian Transmission System Operator, hypothesises two scenarios for the electricity 
consumption trend [307]: business as Usual and Advanced development rate growth; 
trends of aggregate electrical energy consumption normalised for the year 2020 are plotted 
in Figure 92. In the business as usual scenario, the load increases with an average 0.41 
%/year rate, reaching the normalised value of 104.50 % in 2030; in the advanced scenario, 
the rate is 0.87 %/year, reaching 109.65 % in 2030. Growth rates reported in [307] at the 
national level also represent the city of Terni. Based on [252], three scenarios with the 
different spread of EVs and EVCSs in Italy from 2020 to 2030 are considered: base 
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development scenario, which foresees the maintenance of current growth trends; 
moderate development scenario, in line with car manufacturers' development plans and 
the Italian Integrated National Energy and Climate Plan [146]; accelerated development 
scenario, which requires the presence of relevant support mechanisms. Figure 93 shows 
the trends at the national level of the three scenarios, normalised on the total number of 
EVs in Italy in 2020, i.e., 128,000, and the number of EVCSs in 2020, i.e., 24,794. 

 
Figure 92: Business as Usual and Advanced development scenarios of electrical demand trend based on [307], 
normalised on 2020 value 

 
Figure 93: EVs and EVCSs diffusion in three scenarios normalised on 2020 values. 

The base scenario envisages 3.5 million EVs in 2030, with a 2,730% increase in 10 years and 
47,000 EVCSs (189% increase). In the moderate scenario, EVs in 2030 are 5.5 million, with 
a 4,290% increase, and EVCSs are 61,000, with a 246% increase. The accelerated scenario 
considers about 7 million EVs in 2030, with a 5,460% increase and 70,000 EVCSs, i.e., a 
282% increase concerning the 2020 value. As from [146], the most significant growth in all 
scenarios is performed in 2025 – 2030. In Italy, the ratio between the number of EVs and 
the number of EVCSs in 2020 is about 5. In the base, moderate and accelerated scenarios, 
it is expected to reach values of 70, 90, and 100 in 2030. Installation of public EVCSs is 
expected to accelerate significantly between 2020 and 2025 due to national policies and 
grow more slowly until 2030. In this study, only public EVCSs are considered, even if, in 
Italy, a large part of EV owners use private charging points, which at present are about 
70% of the total EVCSs; in 2025, it will be 60%, and in 2030 will be about 45 %. According 
to [252], in the model, about 48.6% of all recharging sessions occur in public EVCSs. 
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4.2.1.1.2 Distribution of vehicle power consumption over time 
The model's distribution over time of EV load demand is based on historical data and 
development scenarios. To define the time consumption pattern, an analysis of the typical 
weekly EV load demand was studied using ACN Data and other open-access data sources 
[26], [359]. A total of 66,745 charging session data from 2015 to 2021 were collected, and 
relevant information concerning the time of access to recharging and the amount of energy 
required for each recharge was evaluated. As shown in Figure 94, the weekly distribution 
of energy required for EV recharges is roughly constant during weekdays, decreases on 
Fridays, and is significantly less on weekends. 

 
Figure 94: Percentage of energy required on the total weekly demand. 

The data collected by ACN Data were divided according to the time of arrival and the 
amount of energy required, with a granularity of 1 minute. Figure 95 reports the time of 
arrival trend, assuming that EVCSs are open from 6:45 a.m. to midnight. 

 
Figure 95: The typical trend of the percentage distribution of arrival times at EVCSs day by day. 

Figure 95 shows that the pattern of arrival times over time follows a constant trend on 
weekdays, with a significant peak in the evening hours (78.3% of charging sessions are 
from 8 PM onwards), while on the weekend, the pattern is more distributed, with a peak 
in the morning hours (44.7% from 7 to 11 AM) and a peak in the evening hours (34.5% 
from 8 PM onwards). The evaluation of EV energy demand requires evaluating the 
average daily EV consumption. Using available data in the literature, the authors 
supposed an average annual mileage for each EV of 14,200 km/year [281] and an average 
EV efficiency of about 0.195 kWh/km [83], so the annual energy demand for each EV is 
about 2,769 kWh/year. Once defined the number of EVs and EVCSs in the location under 
study, using the above-reported data, the model evaluates how many vehicles on average 
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use a EVCS and which is the annual energy demand. Each EV's arrival time is calculated 
based on the distribution in Figure 95. In contrast, the duration of each charging session is 
estimated using the daily share of energy consumption (Figure 94) and the energy 
required by EVs depending on the arrival time. Lastly, the power absorbed in each 
charging session has been randomly reduced to consider limiting factors such as lesser 
needs of the user, technological limits of the car, and power transients, so the average 
value of absorbed charging power is about 250 kW. 
 
4.2.1.1.3 Distribution grid analysis using OpenDSS 
The impacts of EVCSs on the electrical DN were analysed using OpenDSS. Detailed power 
flow analyses spanning the 2020-2030 period with a 1-minute granularity show how the 
different scenarios could affect voltage and current trends in the network over time.  
 
4.2.1.2 Electric vehicle trends baseline 
To assess how the presence of 500 kW EVCSs affects the electricity DN, data provided by 
ASM were used. It was decided to simulate a 9-bus system: three secondary substations 
supply a parking area with six ultrafast 500 kW EVCSs connected to the MV/LV 
transformer by an LV underground power cable. In addition, a 50 kW PV plant and a 60 
kW/55 kWh EESS are connected to one secondary substation. The three substations are 
supplied by a dedicated MV power cable starting from the MV busbars of the primary 
substation. The rest of the DN is represented by an aggregate load directly connected to 
the primary substation. The one-line diagram of the simulated system is depicted in Figure 
96, whereas Table 38 and Table 39  report the primary data of transformers and 
underground power cables. 

 
Figure 96: One-line diagram of the simulated system 

 

Table 38: Transformers electrical characteristics 

 HV/MV Transf. MV/LV Transf. 
Connections Yy Dyg 
S (MVA) 25 1.25 
Vn1 / Vn2 (kV) 132 / 20.8 20 / 0.4 
No load Losses (%) 0.06 0.1075 
Load Losses (%) 0.49 0.9625 
Max tap ratio 1.15 - 
Min tap ratio 0.85 - 
Xcc (%) 14.6 6.0 
Earth Resistance (Ω) - 5 
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Table 39: Underground power cables characteristic 

 in MV  in LV  
Nominal conductor area (mm2) 185 240 
Positive sequence resistance (ohm/km) 0.128 0.0978 
Positive sequence inductance (ohm/km) 0.119 0.176 
Ampacity (A) 479 556 
Length (km) 0.8 0.05 

 
The MV underground power cable has a smaller cross-section than LV power cables since, 
in this specific application, currents flowing through cables are a limiting aspect. In the 
case study, a 50 kW LV-connected PV plant supplies the EVCSs. PV and inverter have 
been simulated using available technical data of real devices [223], [74]. In contrast, PV 
generation has been calculated using historical data on radiation and temperature in Terni. 
The calculated PV profile over one year is shown in Figure 97. 

 
Figure 97: PV generation profile during one year 

To increase SCR and reduce over-currents, the PV is equipped with a 55 kWh/60 kW EESS, 
which injects power when the power output from secondary substation (bus D) is more 
significant than 100 kW and absorbs power when the power output from secondary 
substation is almost zero. MV-busbar demand is connected at 20 kV, and in 2020, the 
recorded power profile ranged between -108 kW (power injected in the PS) and 11,282 kW. 
A graphical representation of the recorded annual active and reactive power in 2020 at the 
MV busbars of the primary substation is in Figure 98: 

 
Figure 98: MV power demand in 2020 (bus B). 

In the case study, demand is considered to increase during the 11 years according to the 
two scenarios already shown. To assess the electric demand forecast for vehicle power 
supply in the case study, an analysis was made, taking into account actual data and 
national scenarios scaled at the municipal level. Based on research on the register of 
vehicles and EVCSs, in Terni in 2021, there were 88 EVs and 9 public EVCSs [195]. Figure 
99 shows Terni's expected number of EVs and EVCSs from 2020 to 2030. The number of 
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EVs is estimated to increase in 2030 to 1,547 in the base development scenario, with a 
maximum of 3,095 in the accelerated development scenario. For EVCSs, the difference will 
be more limited, i.e., between 17 and 25. Since 51.4% of the users supply their EVs from 
private charging points and the average annual energy required by EVs is 2,769 kWh, each 
EVCS will supply 44 EVs in the base scenario and 59 EVs in the accelerated scenario. The 
amount of energy required per year is significant, up to 163 MWh per EVCS per year, i.e., 
a total of 4.097 GWh is needed to supply all the electric mobility, accounting for about 1% 
of the current annual demand supplied by ASM and approximatively corresponding to 
the annual consumption of 1,500 households. 

 
Figure 99: EVs and EVCSs in the considered scenarios in Terni from 2020 to 2030 

 
Figure 100: Annual electrical demand for each EVCSs 

4.2.1.3 500 kW EVCSs impact on the distribution grid 
Through OpenDSS, the trends of all electrical parameters over time in all circuit elements 
were obtained. In the following, the results of power and energy in the primary substation 
are first shown; then, bus voltage profiles and branch currents are analysed. Lastly, the 
role of PV and EESS in ensuring SCR is investigated. The OpenDSS model of the system 
runs quite fast: power flow calculations in 11 years with a 1-minute granularity for all 
different analyses performed required about 130 minutes. 
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4.2.1.3.1 Primary substation energy and power trends 
The amount of energy absorbed from the primary substation is distinguished based on 
development scenarios of electric mobility and consumption electrification. Figure 101 
shows that the energy supplied by the primary substation almost exclusively depends on 
the electrical consumption scenario. In the business as usual scenario, 50.7 GWh were 
supplied in 2020, whereas 53.8 GWh will be required in 2030, while the advanced scenario 
in the same year reaches 56.4 GWh. The impact of electric mobility on the total load 
demand ranges from 0.16% in 2020 to 1.29% and 1.74% in 2030, respectively, in the base 
and accelerated scenarios. In terms of power supplied by the primary substation, over the 
11 years, peak power is expected to increase from the current value of 11.04 MW to 12.40 
MW and 13.23 MW, respectively, in the business as usual scenario and the advanced 
scenario. The EVCSs have a significant impact on the supplied power. Indeed, a EVCS 
rated 500 kW is much more impactful for the power than the energy required. The power 
required by the six EVCSs is 3.30% in 2020 (with a maximum power required of 0.41 MW) 
and will weigh up to 16.48% in 2030 (with 2.18 MW of maximum power required for EVs). 

 
Figure 101: Amount of energy demand for each year in primary substation in six different energy scenarios 

 
Figure 102: Maximum power demand in primary substation for each year and linear trends for six scenarios 
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4.2.1.3.2 Voltage and current trends 
The analysed network comprises 9 buses, and through OpenDSS, various analyses have 
been made on the voltage in all buses and the current in all branches. The average voltage 
of buses A and B is highly constant over time. The average voltage of buses C, D, E, F, G, 
H, and I is always in an acceptable range so that no over- or under-voltages are detected 
in the performed analysis. The current along the MV underground power cable increases 
from about 11.6 A in 2020 to over 59.6 A in 2030, while the currents along the LV 
underground power cables are between 1,149 A and 1,453 A. No overloads on the MV 
underground power cable are detected, while there are several overloads in the LV lines 
supplying the parking area. among LV underground power cables, the least loaded one is 
LV Line 1, equipped with EESS and PV. Figure 103 reports the percentage of time with 
overcurrents in LV lines. Frequently, there are overloads in the LV line due to the high 
power of the EVCSs, which is why LV lines have a cross-section larger than MV lines. 
Indeed, assuming for LV lines, a 70 mm2 cross-section would have obtained overloads up 
to 9% of the time, while using 240 mm2 cables, overloads occur for less than 3.5% of the 
time. In addition, one way to reduce overloads would be to increase the operating voltage. 

 
Figure 103: Percentage of time with overcurrents in LV underground power cables in six simulated scenarios 

Figure 104 shows the trends of some electrical parameters in bus E, where two EVCSs, the 
PV and the EESS, are connected. Three selected days in the accelerated–advanced scenario, 
namely from the 1st to the 3rd of February in 2020, 2025, and 2030, are chosen to show the 
influence of both conventional and EVCS load demand increase over the years. Voltage 
decreases over the years, even if values lower than 0.9 p.u. are never detected. Current 
increases at the same rate over time of load, whereas the tap ratio of the HV/MV 
transformer slowly increases, well below the maximum tap ratio value of 1.15. 
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Figure 104: Trends over time during three selected days (from the 1st to the 3rd of February in 2020, 2025, and 2030) 
in the accelerated–advanced scenario: column 1: bus E voltage; column 2: bus E current; column 3: tap ratio of the 
HV/MV transformer. 

4.2.1.3.3 PV plant and storage roles  
A 50 kWp PV system in the parking area is installed in bus E, which either supplies the 
EVCSs on-site or sends power to the PS. A 55 kWh - 60 kW EESS is also installed to increase 
the SCR of the RES produced by the PV. PV generation is 74,406 kWh annually, partly fed 
into the grid and partly consumed on-site. As shown in Figure 105, SCR is about 24.25% 
in 2020, increasing in 2030 to 54.3% in the base development scenario, 60.2% in the 
moderate development scenario, and 62.3% in the accelerated development scenario. The 
EESS allows increasing SCR considerably, up to 21.9% more. 

 
Figure 105: Self-consumption of EVCSs, with or without EESS 
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4.2.2 Design of a medium voltage network dedicated to supply electric mobility 
The study reported in [V] focuses on the feasibility of expanding the existing DN to 
effectively and securely accommodate EVs. The widespread adoption of electric mobility 
presents a significant challenge for DNs due to the connection of high-capacity and 
unpredictable loads and the increasing demand for rapid recharging, which can result in 
power quality issues. The research proposes establishing a dedicated network exclusively 
designed to supply EVs. This approach aims to mitigate the impact of electric mobility on 
the existing grid while concurrently enhancing the flexibility and resilience of the power 
system. A section of the Terni DN was examined as a case study, comprising two primary 
substations and 18 secondary substations. The study assessed the network's capacity to 
cater to EVs and determined the maximum number of vehicles the system can 
accommodate. Utilising power flow and fault analysis conducted with OpenDSS, the most 
suitable configurations were identified. Additionally, the study investigated the system's 
performance during a primary substation disconnection, revealing that the proposed 
solution significantly enhances grid resilience. 
 
4.2.2.1 Tools and steps for the grid design 
To provide the necessary infrastructure for electric mobility, a proposition is made to 
design a new 20 kV grid onto the existing one. This approach serves two essential 
purposes: firstly, it helps prevent significant disruptions to the existing MV grid, and 
secondly, it offers the flexibility required for accommodating the increasing demand for 
EV charging, which would otherwise be challenging to achieve. Public EVCSs consume 
range from 22 kW for slower charging to over 100 kW for rapid direct current charging. 
Future projections indicate a rising demand for such services. The network's design to 
support EV recharging infrastructure relies on assessing the hosting capacity of HV / MV 
transformers situated in primary substations. This means that the available power margin, 
relative to the maximum load, is entirely allocated to supply EVCS, thus eliminating the 
need for installing new HV/MV transformers. 
The power grid created to supply the charging infrastructure can adopt a radial 
configuration (more straightforward to manage) or a meshed layout (offering greater 
reliability). In this study, specific criteria are employed to identify appropriate grid 
configurations in operation, which include the following: 

• HV/MV transformer loading consistently lower than the rated power; 
• bus voltages always within the range of 0.9-1.1 p.u. 
• Branch loadings are always lower than branch capacities; 
• Three-phase short circuit current in each MV bus lower than the breaking capacity 

of circuit breakers already installed at the MV side of HV/MV transformers. 
Based on such criteria, a comparison between the possible network configurations in 
operation has been made, identifying the most suitable for this service. For each 
configuration, power flow and short circuit calculations have been performed using 
OpenDSS [283]: the maximum load condition is simulated in the study to obtain 
conservative results. A flow chart illustrating the methodology adopted in the study is 
reported in Figure 106. 
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Figure 106: Flow chart of the methodology for the deisign of a new MV network dedicated to EVs 

 

4.2.2.2 Grid features and configurations tested 
The portion of the DN under study is located in the city centre and connected to two 
primary substations, named CPA and CPB. CPA has 2 HV/MV transformers installed, and 
CPB has 3 transformers. The main features of the transformers and the related supplied 
load are reported in Table 40. 

Table 40: Main features of available HV/MV transformers 

Primary 
substation Transf. Rated power 

(MVA) 

Maximum 
active load 
(MW) 

Maximum 
reactive load 
(MVAR) 

CPA TR1 25 12.41 1.26 
CPA TR2 25 14.79 1.49 
CPB TR1 25 17.05 7.59 
CPB TR2 25 14.21 6.51 
CPB TR3 25 12.79 3.34 

 

The aggregate loading factor of the network is 57.7%, whereas the maximum loading 
factor is 63.8% for TR1 in CPB. From an N-1 perspective, considering 4 out of 5 
transformers in operation, the aggregate hosting capacity is about 44 MVA, of which half 
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is reserved for public EVCSs. In contrast, the remainder is spared to cope with possible 
load demand increase and private EVCSs. Based on a preliminary analysis carried out in 
collaboration with ASM ì, 18 EV charging areas connected to the LV DN have been 
identified, each supplied by an 1250 kVA secondary substation [21], and equipped with 
ten 50 kW EVCSs, ten at 22 kW and two at 320 kW. The choice of such infrastructure allows 
for different EV charging times (slow, fast and ultra-fast) and costs. EVCSs available on 
the market have been selected, whose manufacturers’ data are listed in [20] and [312]. The 
configuration of each charging area allows the simultaneous recharging of 22 EVs, and 
therefore, up to 396 EVs in the whole grid, corresponding to 22.5 MVA. The proposed grid 
is equipped with 12.7/22kV, 240 mm2 three core underground power cables, and 
simulations are performed both with aluminium and copper conductors; main conductors 
parameters (positive and zero sequences, denoted by subscripts 1 and 0, respectively) are 
listed in Table 41 [237]. The 240 mm2 cable cross-section has been preferred to 150 mm2 
and 185 mm2 due to the higher ampacity, whereas no voltage violation has also been 
noticed for these two smaller section value. 
 

 
Figure 107: Network topology for the studied configuration
 

Table 41: The main electrical parameters of the 240 mm2 underground power cable 

 Al Cu 
R1 (ohm/km) 0.161 0.098 
X1 (ohm/km) 0.102 0.101 
C1 (nF/km) 298 305 
R0 (ohm/km) 0.520 0.468 
X0 (ohm/km) 0.055 0.054 
Ampacity (A) 316 398 

 

As shown in Figure 107, the portion of the network supplying the 18 secondary substations 
is composed of 2 separate three-phase lines, connected to both primary substations 
through interconnection cabins. The upper line, 6.7 km long, is composed of 8 branches 
and the lower one, 9.9 km long, is divided into 12 branches: the average length of each line 
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section is 0.83 km. Disconnectors have been placed in the middle of both the upper and 
lower lines. All transformers are currently equipped with circuit breakers with a 12.5 kA 
breaking capacity. In the case study, 9 possible network configurations were analyzed, 4 
in closed-ring (loop) operation and 5 in open-ring (radial) operation. Since TR1 installed 
in CPB is the most loaded transformer during the year, in the analyzed configurations it 
is the least used. Table 42 describes each configuration, also showing which transformers 
are used to supply the network. 

 
Table 42: Grid configurations analysed 

N. Config. Involved Transf. Description 

1 
Closed-
ring 

TR1 (CPA) TR2 (CPA) 
TR2 (CPB) TR3 (CPB) 

Loop operation with power supplied by both PSs with 
2 transformers in parallel. 

2 Closed-
ring TR1 (CPA) TR2 (CPA) Loop operation with power supplied only by CPA 

through 2 transformers in parallel. 

3 Closed-
ring 

TR2 (CPB) TR3 (CPB) Loop operation with power supplied only by CPB 
through 2 transformers in parallel. 

4 Closed-
ring 

TR1 (CPB) TR2 (CPB) 
TR3 (CPB) 

Loop operation with power supplied only by CPB 
through 3 transformers in parallel. 

5 Open-
ring 

TR1 (CPA) TR2 (CPA) 
TR2 (CPB) TR3 (CPB) 

Radial operation with 2 separate lines fed by both PSs, 
with disconnectors in the middle of the lines closed. 
Interconnection SSs with busbar disconnectors open. 

6 Open-
ring 

TR1 (CPA) TR2 (CPA) 
TR2 (CPB) TR3 (CPB) 

Radial operation of 2 grid sections, with disconnectors 
in the middle of the lines open. Interconnection SSs 
with busbar disconnectors closed. 

7 Open-
ring 

TR1 (CPA)  TR2 (CPA) 
TR2 (CPB) TR3 (CPB) 

Radial operation of 4 grid sections, with disconnectors 
in the middle of the lines open.Interconnection SSs 
with busbar disconnectors open. 

8 Open-
ring TR1 (CPA) TR2 (CPA) 

Radial operation of 2 grid sections fed only by CPA, 
with disconnectors in the middle of the lines closed. 
Interconnection SSs with busbar disconnectors open. 

9 Open-
ring TR2 (CPB) TR3 (CPB) 

Radial operation of 2 grid sections fed only by CPB, 
with disconnectors in the middle of the lines closed. 
Interconnection SSs with busbar disconnectors open. 

 

4.2.2.3 Simulation results: the design of a MV network dedicated to EVs 
4.2.2.3.1 Electric mobility impact on the distribution grid 
The proposed electric mobility infrastructure has a 22.5 MVA peak load, corresponding to 
35.8% of the power peak of the current grid and 20.4% of the installed capacity in the 
primary substation. The proposed infrastructure allows for to recharge of 396 EVs 
simultaneously and Figure 108 shows the aggregate number of EVs that can be recharged 
over one year. This number is calculated according to the EV average consumption in a 
year and the average EVCSs occupancy factor, defined as the ratio between the yearly 
average number of EVCSs in operation and the number of installed EVCSs. Currently, 
assuming 14,200 km travelled in a year [63] and conversion efficiency of 0.195 kWh/km 
[83], the energy consumption of an EV is about 2,769 kWh/year. Based on this analysis, it 
is evaluated that the system can recharge 42,888 EVs, assuming an occupancy factor equal 
to 0.5 and an average consumption equal to 2,500 kWh/year. This number seems adequate 
for the needs of the entire population of Terni, which is about 110,000 inhabitants. 
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Figure 108: Number of EVs that the infrastructure can recharge in a year as a function of the EVCSs occupancy factor 
and the average yearly consumption of EVs 

4.2.2.3.2 Grid configurations for power electric mobility 
The analysis is performed using OpenDSS, assuming the maximum load for each HV/MV 
transformer and a 0.96 power factor and 0.8 utilisation factor for the EVCSs; results are 
reported in Table 43. HV/MV transformers loading, Smax, is always larger than 20 MVA, 
and for configurations 2, 3, 8 and 9, the rated capacity is exceeded (highlighted in red) 
regardless of using aluminium or copper conductors. The maximum current in the 
network, Imax, is more significant than cable ampacity in five configurations with 
aluminium conductors (configurations 2, 3, 4, 8 and 9, highlighted in red) and two 
configurations with copper conductors (configurations 8 and 9, highlighted in red). 
Thanks to on-load tap changers installed in each HV/MV transformer, bus voltages never 
exceed threshold values. Lastly, the maximum three-phase fault current, Icc, max, exceeds 
the 12.5 kA breaking capacity in configurations 1 and 4 (loop operation). In summary, the 
results suggest that configurations 5, 6 and 7 are suitable (all are open-ring configurations). 
In contrast, closed-ring configurations are all unsuitable due to transformer overloading 
or due to the breaking capacity of the circuit breakers. Amongst the three suitable 
configurations, performances are very similar, with the exception of Icc, max value in 
configuration 7, which is about half the value in configurations 5 and 6: this indicates 
configuration 7 as the most suitable (highlighted in blue). Moreover, since practically the 
same results are obtained in the case of aluminium and copper conductors, configuration 
7, equipped with 240 mm2 aluminium conductor underground power cable, is selected 
due to cost-effectiveness. 

 

Table 43: Power flow and Fault Analysis results 

Grid config. 

Smax in 
HV/MV 
transf. 
(MVA) 

Imax  
(A) Vmin (p.u.) 

System 
power 
losses (kW) 

Icc,max 
(kA) 

1 Al 20.56 211.9 1.037 937 14.1 
Cu 20.49 210.5 1.037 893 14.5 

2 Al 26.32 337.5 0.999 842 9.3 
Cu 26.24 335.3 1.008 706 9.3 
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3 Al 27.68 331.7 1.002 1191 9.2 
Cu 27.60 332.1 1.010 1060 9.2 

4 
Al 24.97 331.1 1.004 1288 12.8 
Cu 24.92 329.4 1.011 1158 12.8 

5 Al 21.93 207.8 1.040 937 8.0 
Cu 20.55 217.6 1.043 893 8.2 

6 Al 20.62 212.5 1.007 953 9.4 
Cu 20.04 211.5 1.010 909 9.0 

7 Al 20.71 212.5 1.033 937 4.9 
Cu 20.54 211.7 1.034 894 5.0 

8 Al 28.01 402.8 0.999 1172 5.0 
Cu 27.88 399.5 1.011 1023 5.0 

9 Al 29.32 406.7 0.990 1351 4.9 
Cu 29.18 402.4 1.002 1200 4.9 

 
Figure 109 qualitatively shows power flows in the branches of the network: the thickness 
of the line is proportional to the power flowing, and the maximum value is about 6 MW. 
 
4.2.2.3.3 Network resilience 
Even if the proposed network only supplies public EVCSs in regular operation, since the 
network connects the two primary substations, in case one of the two primary substations 
is disconnected from the HV network, it is possible to supply its load by using the 
remaining substation, thus significantly increasing the grid resilience. Figure 110 reports 
results obtained adopting an extremely conservative approach, i.e. each HV/MV 
transformer supplies its maximum load (in this case, the EVCS are not connected, 
otherwise transformers in the sound primary substation would be overloaded). Results 
show that if CPA/CPB is faulty, it is possible to supply about 70%/40% of its load by 
CPB/CPA; moreover, results do not differ significantly if aluminium or copper conductor 
is installed.
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Figure 109: Power flow results for configuration 7. The blue lines' thickness is proportional to each branch's active 

power flow 

 
Figure 110: Load (per cent of the rated capacity of the faulty primary substation) that can be supplied using the 

remaining substation, in the case of underground power cable with aluminium and copper conductors 

4.2.2.3.4 One year of dynamic analysis 
Results reported in the previous subsection are obtained simulating only the maximum 
load condition for each HV/MV transformer (maximum load conditions are not 
contemporary during the year for each transformer, so this assumption is highly 
conservative), i.e., with an aggregate 72.16 MVA load demand. In 2021, the maximum load 
was 47.2 MVA, with an average value of 21.4 MVA and was more significant than 30 MVA 
only 12.09% of the time. Then, a power flow study over one year is performed, using, for 
loads at primary substation busbars, the load demands recorded by the DSO in a ten-
minute resolution and simulating the EVCSs always at maximum load: results for 
configuration 7 equipped with aluminium conductors show that the average transformer 
loading is 32.03%, whereas the average line loading is 5.09%. The presence of EVs also 
significantly impacts the reduction of RPF due to RES generation, which decreases from 
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35.7 GWh to 15.9 GWh, thus providing several benefits for the management of the grid. 
The increase in the grid resilience is even more significant: it is possible to fully supply 
with only one primary substation all loads, including the EVCSs, 74.9% of the year. If the 
EVCSs are excluded, this value increases to almost 100% of the year. 
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4.3 The role of company electric vehicle fleets 
Company fleets play an important role in the spread of electric mobility, as medium/large 
companies often have a vehicle utilisation that does not require them to cover large 
distances and the range of an EV can be adequate. In addition, if they also have a PV or 
other generation plant, these companies can be configured as energy districts. The 
intelligent management of energy flows, e.g. through the flexibility provided by EVs, can 
lead to significant savings and environmental benefits. There are some examples of 
optimisation models in the literature, such as George and Xia [116], that created an 
optimisation model based on queueing networks to determine the ideal fleet size. In [132], 
the effects of EV adaption were evaluated in Denmark, Finland, Germany, Norway, and 
Sweden. The combined electricity and road transportation system was studied using the 
Balmoral deterministic partial equilibrium mode, and they found that EVs can potentially 
lessen the requirement for new coal and natural gas power facilities. Vehicle to grid 
technology, in a large-scale scenario, can have several benefits in terms of emissions 
reduction [303], support for the electric supply network [179], [123], and financial gains 
for EV owners [330].  Other indicators mentioned in the literature by Barth and Todd [44] 
include "vehicle-to-trip ratio," "number of relocations," and "number of trips,". The 
interplay between RES and EVs also attracted attention when examining smaller-scale 
systems. For instance, in [273], authors analyse the scenario of two Scandinavian cities and 
find that PV can almost entirely cover the number of EVs required in the summer but that 
the temporal match might be improved in other cases. California's energy system is the 
subject of research by McCarthy et al. [220] on the effects of EVs. Using a spreadsheet-
based dispatch model, the authors categorise California's generation units according to 
technology. According to the findings, greenhouse gas emissions in the transportation 
sector can significantly decrease.  
A part of the literature delve into the analysis of impediments and facilitating factors 
affecting the transition of corporate fleets to EVs, substantiating their findings through 
surveys. The principal drivers behind this shift include environmental benefits, user-
friendliness, the desire to be at the forefront, cost savings on refuelling, anticipation of 
regulatory changes, enhancement of public perception, and the allure of government 
incentives, as evidenced in [39]. Nevertheless, the decision to embrace EVs within a 
corporate fleet primarily hinges on the influence of subjective norms and the 
inquisitiveness of company executives. In [22], the authors shed light on the primary 
obstacles to adopting electric mobility within companies based on interviews with 30 
Swiss companies. Among these barriers, the most significant include a limited driving 
range, substantial initial investment costs, and a scarcity of widespread charging 
infrastructure. A number of major corporations are presently transitioning their entire 
fleets to EVs [39] - [22]. 
To mitigate the impact on the electricity DN, it is essential to implement intelligent 
management of EV charging. This management strategy is intricately linked to the existing 
charging infrastructure and service features. In scholarly literature, numerous articles 
examine the repercussions of EVs on the electricity DN, encompassing aspects such as 
heightened energy demand, peak power requirements, and the introduction of harmonics. 
Additionally, various technologies, such as vehicle-to-grid systems and DR mechanisms, 
are under investigation [94], [136], [90]. Furthermore, researchers have assessed the 
support provided by complementary enabling technologies, as demonstrated in [47], [91]. 
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In the academic sphere, only a few papers have focused on corporate EV fleets [114], [251]. 
A German research [253] addresses how EVs can replace an existing company fleet. Three 
distinct scenarios are delineated: i) powering the fleet exclusively through the grid, ii) 
utilising both local RES and the grid to power the EVs, and iii) scheduling EV charging to 
coincide with periods of reduced network stress. A mixed-integer linear programming 
formulation to jointly perform the routing of the EVs and the scheduling of their 
charge/discharge operation has been presented by Triviño-Cabrera et al. [335].  
Additionally, numerous research that relates to the objective of this work has been 
conducted. For instance, Lee and Bomsma [193] devised an approximation dynamic 
programming strategy known as the least square Monte Carlo method to solve a dynamic 
and stochastic optimisation problem for short-term electric car operation. Wu et al. [347] 
also investigated energy management strategies for EVCSs with multiple types of 
chargers, and they also designed a fuzzy logic guiding system to assign the EVs to the 
appropriate charging spots based on their charging urgency levels, which can reduce 
operation costs by over 50% in comparison to the immediate charging scheme. In a related 
study, Tuchnitz et al. [337] developed a reinforcement learning-based charging 
coordination system for a fleet of scalable EVs that do not require any knowledge of future 
information, such as arrivals, departures, or the energy consumption of the EVs.  
In the following, two original studies on electric fleets for companies are presented in 
detail [XV], [XIII], in which the optimal scheduling of charging is analysed in order to have 
a limited impact on the electricity grid and to minimise the costs for EV owners. 
 
 

4.3.1 Design and policy for a electric vehicles company’s fleet 
In [XIII], the researchers have examined various criteria for effectively managing the 
recharging of ASM Terni's corporate vehicle fleet. Following an analysis of the fleet's 
current energy consumption and the service characteristics it offers, diverse management 
strategies were assessed with the objectives of reducing the number of EVCSs, ensuring 
employee comfort, and enhancing the utilisation of local RES. The research employs a case 
study approach that leverages data from the fleet responsible for maintaining and 
operating the service network to evaluate the consequences of widespread EV adoption 
within the fleet. Currently, the technical service fleet is powered by conventional fossil 
fuels, specifically oil and diesel, consisting of 86 light vehicles and vans utilised by 
technicians for their daily tasks, including maintenance and emergency repairs. 
Monitoring of this fleet is indirect in nature, as refuelling can only occur at the 
headquarters, where a limited number of refuelling points are available. Each refuelling 
event is meticulously documented, capturing details such as the date and time of 
refuelling, the current mileage of the vehicle, and the vehicle's unique identifier. A 
comprehensive dataset has been extracted from the refuelling database, spanning a period 
of 1760 days, starting from January 1, 2015, through October 26, 2019, encompassing a total 
of 16,414 recorded refuelling operations. 
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Figure 111: Distribution of refuelling of ASM vehicles according to the hour of the day 

The dataset has been utilised to gain insights into the real-world operational conditions of 
a fleet. Specifically, the data have been instrumental in understanding vehicle mileage and 
relevant behavioural patterns, which are essential for formulating a new policy for 
managing an electric company fleet. In this context, Figure 111 illustrates the distribution 
of refuelling occurrences over the course of a day. It is evident that a significant number 
of refuellings take place between 6:00 and 8:00 (approximately 65% of all recorded 
refuellings). Based on this graph, it can be inferred that the current practice involves 
refuelling vehicles at the start of their activities. An analysis of the time intervals between 
refuellings reveals substantial variance. However, the first quartile of the fleet experiences 
intervals shorter than 7.9 working days, while the second quartile corresponds to intervals 
of 14.6 days. Upon examining the dataset, the average mileage of the vehicles has been 
determined. Specifically, data analysis indicates that the fleet covers an average daily 
distance of about 33 kilometres, with a standard deviation of 23 kilometres. The 
probability distribution of this data is depicted in Figure 112. 
The proposed charging infrastructure is slated to be installed at the ASM headquarters. 
Figure 113 illustrates an example of the SoC and power trends during the charging process 
of an EV, from 12% to 100%.  

 
Figure 112: Distribution of mileage considering data acquired in the case study 
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Figure 113: The SOC and the charging profile measured in the EV and EVCS of ASM 

 
4.3.1.1 Company fleet scenarios and criteria 
This research assess the implications of substituting 50 disel-engine vehicles with EVs. 
Within this paper, the authors have examined two different design solutions: 

• Design 1: Leveraging and improving existing EV charging infrastructure based on 
a fixed number of fast EVCS, where vehicles charge according to a probabilistic 
function dependent on their SoC. For the sake of clarity, one EVCS corresponds to 
one plug for the EV. 

• Design 2: Each EV has its own 3 kW EVCS located in the parking area. The charging 
sessions are centrally managed and exploited to increase the district's SSR by using 
the energy of the PV plant. 

Moreover, a company fleet is also characterised by the policy through which vehicles are 
managed. Indeed, company policies can be extremely different. 
 
4.3.1.1.1 Design 1: 22 kW electric vehicle charging stations 
Concerning Design 1, using a fixed number of 22 kW EVCSs, two policies have been 
simulated and are defined as follows: 

• Policy 1: When a user comes back from a trip, he has to look for a free charging 
point according to the probability P1(SOC) in Figure 114, based on the SOC value; 
when the trip is not approaching a charging probability distribution, P(SOC) is also 
assigned. 

• Policy 2: When a user comes back from a trip, he has to look for a free charging 
point according to the probability P1(SOC) in Figure 114, based on the SOC value; 
when the trip is not approaching a charging probability distribution, red P(SOC) 
is also assigned. 
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Figure 114: Flowchart for assigning an EVCS to an EV for Design 1 

Policy 1 would require campaigns to increase users' awareness and enforce a charging 
session if it is lower than 40 %. Policy 2 is less strict and simulates more lascivious 
recharging management: it requires recharging only when SOC is less than 20%, whereas, 
for higher values, the probability is much lower. Nihil probability implies a company rule 
that forces users not to charge EVs for that specific SOC. Moreover, Design 1 is based on 
the following assumptions: 

1. Charging sessions can start only during working hours from 7:30 to 13:00 and from 
14:00 to 17:00. 

2. Assigned EVCS is defined based on the flowchart shown in Figure 114, 
3. When SOC is equal to 100 %, it is assumed that the EV can be disconnected to allow 

a new charging session.  
4. The charging profile is defined based on the historical data collected for the EV 

already included in the company fleet; the related profile is shown in Figure 113. 
 

All these inputs and assumptions are modelled in the simulations to evaluate the 
behaviour of the EV user and the corresponding SOC variation. The adequate number of 
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EVCS is verified a posteriori, namely, the number of EVCS would be inadequate if SOC 
were lower than 10 % in more than 500 timestamps for all EVs. Considering that the 
simulations involve 1000 days sampled every 15 min and 50 EVs, SOC can be lower than 
10 % only in 0.1 ‰ of the timestamps. Only the simulation for which the minimum number 
of EVCS satisfies this tolerance have been reported. 
 

 
Figure 115: Different probabilities of starting a charging session according to the actual SOC curves depend on the 

adopted policy 

4.3.1.1.2 Design 2: 3 kW EV charging stations 
Concerning Design 2, using a slow EVCS (3 kW) for each EV, two policies have been 
defined; both require that users connect the EV at the end of the trip. The activation of 
charging sessions is centrally managed; nevertheless, two different strategies have been 
evaluated: 

• Policy 1: Recharging is carried out in parked EV when there is a surplus of energy 
produced by the PV compared to the district's demand, thus withdrawing self-
produced energy, or when EVs fall below the safety threshold, set at 45% SOC, by 
drawing directly from the DN. 

• Policy 2:  Compared to Policy 1, night-time charging is favoured here because, in 
addition to RES self-consumption, daily recharge is applied when SOC<20%, while 
nightly recharge is applied when SOC<50%. 

Design 2 is scheduled to maximise SCR; recharging with the DN only occurs when the 
SOC falls below a set threshold. For the management of the charging sessions in Design 2, 
a centralised control is applied which evaluates how many and which vehicles to charge 
based on which are available at the park station, how much surplus energy is produced 
by the PV compared to the needs of the district and the SOC of the vehicles. Figure 116 
shows the algorithm for determining charging in Policy 1 and the additional conditions in 
Policy 2 (highlighted in blue). 
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Figure 116: Flowchart for determining charging sessions for Design 2 

4.3.1.1.3 Electrical Fleet Modelling 
Fleet modelling is strongly based on the measurement previously presented; other 
technical features of the fleet behaviour have been identified by interviewing the vehicles’ 
users in order to understand the common practices about vehicle usage. Concerning the 
technical modelling of the EV fleet, the following aspects have been considered in the 
model: 

• Daily mileage is assigned to each EV, it is based on probability distribution, as 
reported by Figure 112; 

• Trips duration is defined as a random number based on the standard distribution 
(average value is 6 h, the standard deviation is 1.5 h); 

• Every day, a certain number of trips is assigned to the EV, it ranges from 0 to 2; 
• Trips can start in the morning as well as in the afternoon, trips duration and 

mileage are equally distributed. In all cases, working hours are from 7:30 to 13:00 
and from 14:00 to 17:00. 



 159 

Concerning the presented simulations, some reference EV and EVCS have been 
considered; in particular, in the simulations it has been considered a 52 kWh battery able 
to ensure an autonomous range of 265 km assuming an efficiency of 0.19 kWh/km. The 
EVCS model corresponds to that already installed in the ASM headquarters, therefore, its 
characterization follows the trends presented in Figure 113. The model has been 
implemented using MATLAB. 

 

4.3.1.2 Impact of company fleet management on the distribution grid 
This section presents the results of the simulations that are carried out based on the model 
previously described. Therefore, input data are randomly generated based on the 
probability distribution presented previously; these are used to simulate SOC variation 
according to mileage and charging sessions. Strategies for charging sessions are defined 
according to policies previously described, notably, the following scenarios are presented: 

• Two scenarios based on Design 1 (i.e., a limited number of 22 kW EVCS). 
• Two scenarios based on Design 2 (i.e., all EVs have a low charger at their disposal). 

 

The configurations have been tested by simulating 50 EVs that travel 1000 days. 
Concerning Design 1, Table 44 shows the minimum number of EVCS that is sufficient to 
supply 50 EVs. Regarding Policy 1, 8 EVCS would be sufficient to supply the fleet; Policy 
2 requires at least 12 EVCS. The main results of the simulations are summarized in Table 
45. 

Table 44: Model input 

 Policy 1 Policy 2 
Number of simulated days 1000 1000 
Number of EV 50 50 
Number of timestamp for every EV for 
which SOC is lower than 10 (‰) 

0.001 0.08 

Minimum number of EVCS for supplying 
the EVs  8 12 

 

Table 45: Simulation results (design 1, policy 1) 

 Policy 1 Policy 2 
Model Output Mean SD Mean SD 
Daily energy for charging 
session (kWh) 286.3 46.13 286.8 88.9 

Mileage (km) 30.5 16.1 30.5 16.1 
EV SOC (%) 73.38 15.16 63.54 19.94 
Daily recharging sessions 16.58 3.03 10.95 3.23 
Charging duration (h) 2.13 0.89 2.86 1.16 
Days between two charging 
sessions for a EV 2.5 0.08 3.90 0.14 

 

Figure 116 - Figure 118 shows some comparisons between the two policies. Figure 116 
reports the distribution of the average number (in p.u.) of the busy plugs of the EVCS and 
the average power profiles of the EVCS when a certain policy is applied; frequencies of 
daily energy are reported in Figure 117; finally, Figure 118 reports the SOC variation of 
two EVs as an example. Figure 117 shows that EVCS are often busy in the afternoon, this 



 160 

is because users have ended their activities. From 10:00 to 11:00, the EVCS are frequently 
free because EVs are travelling, as well as from 14:00 to 15:00. Considering the 
corresponding average power profiles of EVCS, Policy 1 causes higher peak powers even 
if the installed capacity is lower than Policy 2. Moreover, according to Table 45, the daily 
energy has a greater standard deviation if Policy 2 is applied; indeed, this policy is less 
strict and does not encourage charging sessions for high SOC. Figure 117 is coherent with 
these results, showing that daily energy has greater variance when Policy 2 is applied. 
 

 
Figure 117: Percentage of busy EVCS and average power profile when Policy 1 and Policy 2 are applied 

 
Figure 118: Frequency of daily energy when Policy 1 and Policy 2 are applied (Design 1) 

 
Figure 119: SOC variation of 2 EVs during 5 days with Design 2 when Policy 1 and Policy 2  are applied 

Concerning SOC variation, Table 45 reports that Policy 1 keeps fleet SOC between 40 % 
and 100 % (i.e., according to standard deviation) whilst Policy 2 causes a significant 
variation of SOC from 20 % to 100 % (ref. Table 46). This difference is also shown in Figure 
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119. The two policies significantly change the fleet management; indeed, when Policy 1 is 
applied, EVs are frequently charged (i.e., every 2.5 days) in comparison with Policy 2 (i.e., 
every 3.9 days). Policy 2 is similar to the current management of the fleet, notably the user 
refuels the vehicle when its tank is almost empty as well as refuelling is done every 14 
working days on average, nevertheless, SOC is often lower than 40 %, and the 
corresponding travel distance could be so much reduced that it could arise range anxiety 
issues and usage barriers. Even strict management of EVCS, as proposed by the first case, 
has some positive aspects; it increases the exploitation of the installed EVCS as well as 
reduces energy variance; in addition, range anxiety issues are avoided because of the high 
average SOC of EV. Nevertheless, this policy would require a campaign to increase users’ 
awareness since it would significantly change their habits. Concerning Design 2, the 
charging infrastructure is located directly inside the parking area, with each parking space 
equipped with a simple 3 kW EVCS. The two policies differ because in the first one the 
aim is to maximise the SCR of local RES, while in the second one the aim is to reduce the 
cost of charging, exploiting both RES and absorbing energy at night, when the cost is 
generally lower as well as to reduce the overall peak of the district. Figure 120 shows the 
number of charging sessions over time and the recharging power within an average day. 
In Policy 1, the sessions are mainly distributed over the evening and night hours, with the 
average daily maximum number of vehicles recharged simultaneously being 13 
(corresponding to 39 kW). In Policy 2, the majority of vehicles are recharged during the 
night, leaving the rest of the day only to recharge through surplus energy; the average 
daily maximum number of vehicles recharged simultaneously is 36 (corresponding to 108 
kW). Energy from RES is concentrated in the central hours of the day, which are 
characterised by an excess of RES production. Figure 121 shows the trend of the SOC of 2 
EVs in 4 days, for both Policy 1 and Policy 2. It can be seen that the handling is extremely 
different than for Design 1 and the charging is slower. The vehicles have on average SOC 
and standard deviation values respectively of 43.84 % and 7.56% (Policy 1) or 47.36 %  and 
8.64% (Policy 2). 

 
Figure 120: The daily average number of charging sessions and power flows from RES to EVCS in Design 2: Policy 1 

and Policy 2 

Figure 122 shows the district's electricity balance, which includes the office building and 
warehouse as well as a 185 kW PV and EV fleet. Charging management allows increasing 
the district SCR and SSR, with consequent economic benefits. As shown in Table 46, these 
values are respectively increased by 5.9 % and decreased by 2.4%, while RPF is reduced 
to 70.8 % in both policies. 
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Figure 121: SOC variation of 2 EVs during 5 days with Design 2 when Policy 1 and Policy 2 are applied 

 
Figure 122: Electrical balance of the energy district (Design 2, Policy 1) during four days 

 

Table 46: Simulation results (design 2) 

 RPF  
(MWh/year) SCR (%) SSR (%) 

Without EVs 51.5  79.7 31.2 
Design 2 36.5  85.6 28.8 
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4.3.2 Optimizing electric vehicle company fleet management in an energy district 
Paper in reference [XV] introduces a novel model designed to optimize EV fleet charging 
schedules within the context of an energy district. Specifically, the aim is to minimize 
unmet demand, ultimately increasing the profit of the system operator while upholding a 
predefined service level. The developed model is further validated using real-world data 
obtained from a multi-utility company that operates within an energy district and deploys 
fleets for various services. This study assesses the optimal scheduling of an EV fleet, with 
the objectives of cost reduction, emissions reduction, and maximizing the energy district's 
SCR. 

 

4.3.2.1 EV Fleet Management Model in An Energy District 
4.3.2.1.1 Optimized EV management 
A simplified representation of the model used to represent the EV fleet is illustrated in 
Figure 123. This optimization approach is applicable to energy districts that encompass 
RES generation, passive loads, and a substantial fleet of vehicles frequently in use 
throughout the day. The primary objective of the optimization model is to minimize costs, 
taking into account the variability in energy prices for consumption and revenues from 
energy injection, which can fluctuate on an hourly basis. Ultimately, the optimizer aims to 
determine the most cost-effective sequence of charging sessions by deciding the optimal 
moment to connect each vehicle to a EVCS, adhering to predefined constraints. 

  
Figure 123: Optimization model for EV scheduling in an energy district 

The technical analysis is formulated as a mixed integrer linear programming optimization 
problem and implemented on Matlab environment, exploiting the free open-source 
Yalmip package [356]. The Gurobi optimization solver [124] is integrated with Yalmip to 
solve the optimization problem. The optimization minimizes the overall cost over the year, 
as expressed in the objective function. The objective function of the problem is the 
following: 
Equation 39: 

𝑜𝑏𝑗 ='(𝑟; ∙ 𝐸𝑆𝐶; + 𝑐; ∗ ('𝐸𝐶𝑉;,<

&12

<'1

− 𝐸𝑆𝐶;))
@

;'1

 

Where rt is the revenue for injected electrical energy during a certain timestamp t (€/kWh), 
T is the number of timestamps, ESCt is the electrical energy self-consumed by the district 
(kWh), ct is the cost for consumed electrical energy during timestamp t (€/kWh), NEV is the 
number of EVs in the fleet, ECVt,v is the energy consumed by one vehicle during one 
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timestamp (kWh), and EEVt,v is the energy available in one vehicle during one timestamp 
(kWh). 
Since the available energy is firstly tried to be used for self-consumption in the building 
before being used to charge EVs, the amount of SCR by the district is calculated from the 
total amount of energy consumed by EVs as in Equation 39. The optimization problem is 
solved considering a constraint about the variation of the available energy in the battery 
of the EV (i.e., the residual capacity of the battery): 
Equation 40: 

𝐸𝐸𝑉;,< = 𝐸𝐸𝑉;01,< − 𝐸𝑉788 ∙ 𝐾𝑀;,< + 𝐸𝐶𝑉;,< ∙ 𝐴;,<   ∀𝑡 > 1, 𝑣 

Where EVeff is the rated efficiency of the EV (kWh/km), KMt,v is the distance travelled by 
an EV during timestamp t (km), and At,v is the availability of EV to be charged during 
timestamp t (can be 0 or 1).  
The following constraint limits the SCR of the district so that ESCt cannot be higher than 
the minimum between produced (EPt) and consumed energy (ECt); moreover, the self-
consumed energy cannot be negative: 
Equation 41: 

0 ≤ 𝐸𝑆𝐶; ≤ minr𝐸𝑃; ,			𝐸𝐶; +'𝐸𝐶𝑉;,<

&12

<'1

s , ∀𝑡 

Another constraint defines the maximum amount of energy that can be drawn by an EV 
during a charging session, with PCS the nominal power of the EVCS (kW) and Nts the 
number of analysed timestamps in one hour. 
Equation 42: 

0 ≤ 𝐸𝐶𝑉;,< ≤ 𝑃UK/𝑁;),     ∀𝑡, 𝑣 

Similarly, the residual capacity of the battery EEV cannot overcome the rated capacity of 
the vehicle (𝐸𝐵<=>?), as it is defined by the following constraint: 
Equation 43: 

0 ≤ 𝐸𝐸𝑉;,< ≤ 𝐸𝐵<VNW,     ∀𝑡, 𝑣 

The last constraint ensures that the number of charging session during one timestamp t 
cannot overcome the number of EVCS (NCS) installed in the district: 
Equation 44: 

v⋃ 𝐸𝐶𝑉;,< ≠ 0&12
<'1 v ≤ 𝑁UK     ∀𝑡 

Considering constraint in Equation 40, the optimization problem requires the initialization 
of the EEV for the initial timestamp for all the EVs. Therefore, the initial residual capacities 
of the batteries of the fleet are defined according to the equation: 
Equation 45: 

0.22 ∙ 𝐸𝐵<VNW ≤ 𝐸𝐸𝑉1,< ≤ 0.75 ∙ 𝐸𝐵<VNW, 

According to the objective function in Equation 39 and the related constraints in Equation 
40 – Equation 45, the optimization problem provides as output the following variables: 

• Self-consumed energy of the district during the analysed timestamps and 
charging. 

• Electrical energy consumed by the EVs during the analysed timestamps. 
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• Variation of the energy available in the batteries of the EVs during the analysed 
timestamps. 
 

4.3.2.1.2 Not Opimezd EV management 
In order to assess if the optimized strategy could significantly improve the energy district 
efficiency, a not optimized strategy has been defined. The vehicle management strategy 
used in the non-optimized scenarios follows simplified criteria, namely, if the SOC is less 
than 20 % there is always charging, if the EV has a SOC of less than 30 % there is 80 % 
chance of charging, if the EV has a SOC of less than 50 % there is 60 % chance of charging, 
and if the EV has a SOC of more than 50 % the probability of recharging drops to 20 %. 
This simulated the ability of the responsible operator to choose whether to do recharging 
depending on the circumstances. In the recharge management algorithm, it was arranged 
that in each timestamp the EVs with a lower SOC would have priority in choosing whether 
or not to recharge, according to the previously stated probability, in order to simulate in 
this way, the urgencies encountered by the different operators. 
 

4.3.2.2 Optimised fleet management results 
4.3.2.2.1 Energy district and EV modeling 
The company's headquarters can be regarded as a compact energy district, comprising 
two PV arrays of 185 kWp and 60 kWp, an EESS featuring a 72 kWh, two buildings 
spanning 6,800 square meters each, and a warehouse spanning 1,300 square meters. The 
baseline electricity demand within this setup fluctuates between 50 kW and 90 kW, while 
peak demand ranges from 120 kW to 170 kW. The building's HVAC system is equipped 
with a building energy management system, and there are two private EVCSs alongside 
one public EVCS on-site. ASM operates a 86 conventional vehicles fleet for several 
activities of the multi-utility. A comprehensive dataset encompassing 1,760 days, starting 
from January 1, 2015, to October 26, 2019, has been compiled, consisting of a total of 16,414 
refueling operations. These dataset outcomes are also utilized in this research. It is 
noteworthy that, on average, a vehicle covers a daily distance of approximately 33 km, 
while the standard deviation for daily mileage is 23 km. 
In addition the PV profile and load building demand of ASM is provided based on the 
first week of 2022 in Figure 124. 

 

Figure 124: Hourly variation of the costs and revenue of the energy price 

4.3.2.2.2 Cost and revenues modelization 
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Figure 125: Hourly variation of the costs and revenue of the energy price 

It has been considered that revenues and costs of exchanged energies are variable during 
the day; notably, it has been assumed that these parameters change every hour. An 
example of the hourly variation is shown in Figure 125, which represents one week of 
hourly variation of cost for withdrawn energy and revenue for injected energy. Energy 
cost is based on the tariffs provided by the Italian Authority [37] whilst its hourly variation 
is based on the open dataset [306]; the second is based on the public variation in 2022 of 
the unified Italian price available in [152]. 
In the following, the results collected by applying the optimization model on the energy 
district considering one year of operation assuming different amounts of NEVCS are 
reported. Moreover, it has been simulated the current size of the PV in the district (i.e., 185 
kW) and an increased size (i.e., 370 kW) assuming that the current plant can be increased 
by installing additional or more efficient panels. Table 47 reports the 6 scenarios evaluated 
applying the optimizer (Scenario 1 – 6); moreover, it includes 6 additional scenarios that 
assess the not optimized behaviour of the fleet (i.e., Scenario 7 – 12). Each scenario assesses 
the same input data, namely, mileage variation of 50 EVs, produced power for 1 kW of PV 
size, and consumed energy by the passive loads. Moreover, PCS is equal to 22 kW and 
assumed constant in this paper. Other relevant parameters were considered in the 
simulations; notably, EVeff and 𝐸𝐵<=>?are equal to 0.13 kWh/km and 44 kWh, respectively.  

Table 47: Analysed scenarios 

Scenario ID NEVCS Size of the PV Optimization 
algorithm 

1 3 185 Yes 
2 4 185 Yes 
3 5 185 Yes 
4 3 370 Yes 
5 4 370 Yes 
6 5 370 Yes 
7 3 185 No 
8 4 185 No 
9 5 185 No 
10 3 370 No 
11 4 370 No 
12 5 370 No 
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Given that the optimization problem primarily revolves around cost reduction, it's 
valuable to present an overview of the total annual expenditures as assessed across 
various scenarios. These findings are summarized in Table 48, encompassing all the 
scenarios considered in the study. The costs remain unaffected by the number of EVCS, 
which ranges from 3 to 5. However, the optimization of charging sessions demonstrates 
the potential for substantial cost reductions. Specifically, when considering the current PV 
array size (Scenarios 1 - 3 and 7 - 9), the optimized procedure results in a 10% reduction in 
costs. In contrast, when an expanded PV array size is taken into account (Scenarios 4 - 6 
and 10 - 12), the impact on cost reduction is even more pronounced, with a reduction of 
approximately 25%. 

Table 48: Total costs assessed by the scenarios 

Scenario ID Total cost (€) 
1 41,072 
2 41,082 
3 41,068 
4 19,658 
5 19,582 
6 19,533 
7 45,684 
8 45,649 
9 45,668 
10 26,010 
11 26,046 
12 25,979 

The cost reduction can be also seen in the energy balance of the energy district. Table 49 
reports the SCR of the district, the percentage of produced energy that is injected into the 
grid, and the average energy consumed during a charging session. 

Table 49: Energy district balance 

Scenario 
ID  SCR (%) Injected energy into 

the grid (%) 

Average energy per 
charging session 

(kWh) 
1 92.15 7.85 7.44 
2 92.13 7.87 5.91 
3 92.13 7.87 6.95 
4 61.77 38.23 10.96 
5 61.90 38.10 9.94 
6 62.34 37.66 8.60 
7 81.37 18.37 22 
8 81.72 18.27 22 
9 81.93 18.06 22 
10 53.86 46.14 22 
11 54.00 46.00 22 
12 53.92 46.07 22 

 

Some details about Scenarios 3 and 6 are shown in Figure 126 and Figure 127 which report 
the trend of the energy self-consumed for the entire year. 
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Figure 126: Self-consumed energy during one year (Scenario 3) 

 
Figure 127: Self-consumed energy during one year (Scenario 6). 

Further findings are detailed in Table 50, which provides information on the average 
duration between two consecutive charging sessions, the mean SOC of the vehicles, and 
its standard deviation. Additionally, in Figure 128, the variation in the available battery 
energy is depicted for the same EVs under Scenario 1 and Scenario 4. Based on the results 
presented, it can be inferred that an optimized scenario would lead to a reduction in the 
average SOC, decreasing from 75% to 48%. However, it's important to note that optimized 
charging sessions, while more frequent, are of shorter duration compared to the non-
optimized scenario, as indicated in Table 50. 

 
Table 50: EV status during the simulated scenarios  

Scenario 
ID 

Average time interval 
between recharges (h) 

Average SOC (%) 
SOC standard 

deviation 
(%) 

1 210.79 48.97727 18.36364 
2 167.51 54.02273 22.02273 
3 186.57 51.52273 19.54545 
4 311.17 44.84091 17.22727 
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5 282.12 43.88636 15.45455 
6 232.96 41.59091 11.56818 
7 539.07 75.27273 14.52273 
8 541.07 75.20455 14.54545 
9 540.41 75.25 14.63636 
10 543.10 74.93182 14.59091 
11 539.74 75.29545 14.54545 
12 540.41 75.09091 14.56818 

 
 

 
Figure 128: Variation of the Energy available in the battery of the same EV in case of different scenarios 
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5 Integration of the hydrogen carrier with the electricity 
sector 

5.1 Perspectives of hydrogen in the European panorama 
Hydrogen is worldwide seen as the fuel of the future, capable of increasing the process of 
replacing fossil fuels, enabling the integration and development of RES, reducing 
pollutant emissions and facilitating energy independence.  Hydrogen can be used in a 
large number of different fields of application, including industrial and transport area, 
storage for the energy system and as an energy carrier, and has received a lot of interest 
in recent years, in addition to sustainability reasons, for its high calorific value (120 MJ/kg).  
Hydrogen is a key energy vector for the European and international perspective in 
decarbonisation processes, as it is estimated [142] that to reach a zero-emission scenario in 
2050, hydrogen will have to account for up to 20 % of final consumption and will be 
produced either through electrolysers, using RES, or from fossil sources combined with 
carbon capture and storage mechanisms. 
Hydrogen has applications in various consumer sectors: energy production, energy 
storage, mobility, chemical production, and other industrial uses.  
Several countries are competing for technological dominance and the development of a 
hydrogen chain. Japan is currently the leader in the hydrogen economy and in 2019 
presented the "Strategic Road Map for Hydrogen and Fuel Cell" [62]. China has developed 
a policy of incentives for the development of hydrogen mobility and the construction of 
electrolysers to achieve climate neutrality in 2060 [221]. South Korea intends to achieve 
leadership in the production of fuel cells for vehicles and stationary applications, aiming 
to produce 6.2 million fuel cell EV and 15 GW of fuel cells in 2040 [316], [176]. The 
European Union published its hydrogen strategy in 2020 [86], with a target of 40 GW of 
electrolysers in 2030. The creation of a hydrogen supply chain would allow countries to 
reduce fossil dependency on oil and other limited resources (such as uranium or lithium) 
and to set up a new supply chain, suitable to create jobs and wealth. 
At the Italian level, guidelines for the national hydrogen strategy have been published 
[222], which include for 2030 real targets for use in heavy mobility and for use in maritime 
and rail transport, for 2050, there are plans to extend applications to hard-to-abate 
industrial sectors and light mobility. 
One of the main interests for hydrogen is its ability to integrate with RES, i.e. it is possible 
to store energy in the form of hydrogen (power to gas) and then use it, staggered in time, 
for the aforementioned applications. In this way, it inserts a chemical storage system into 
the grid that can guarantee high volumes, with efficient conversions; in this way, it is 
possible to realise both storage with a daily time horizon and seasonal storage. 
One of the factors currently limiting the spread of hydrogen is the high cost of 
electrolysers. 
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5.2 Impact of hydrogen mobility on the electricity grid 
The mobility sector is responsible for 27% of CO2 emissions worldwide with 8.2 Gt of CO2 
every year; also, local pollutants and their health impacts cannot be neglected [178], [89]. 
Based on 2013 European data, the transport sector contributed 13% of primary PM10 
emissions and 15% of PM2.5 emissions; it is also the largest source of NOX emissions, with 
46%. In addition, noise and other emissions types must be considered in the impact of 
traditional vehicles on the quality of life. All these pollutants would be dramatically 
reduced by adopting alternative mobility technologies. In the EU Green Deal, the 
Commission decided to phase out petrol and diesel cars from 2035 [87], so that vehicle 
conversion will become a regulatory requirement. The sustainable mobility of the future 
will be realised mainly through EVs and fuel cell EVs. Despite a much more limited 
current development, higher prices and much lower conversion efficiency, fuel cell EVs 
present specific advantages over EVs, notably a longer range and a shorter recharging 
time, similar to the performances of conventional vehicles. Fuel cell EVs have an overall 
conversion efficiency of about 50%, as compared with 90% for EVs. Concerning the safety 
issues of these vehicles, the US National Fire Protection Agency has declared that 
alternative fuel vehicles, such as fuel cell EVs and EVs, are no more dangerous than heat 
engine vehicles [73]. In scientific and grey literature, sustainable energy system scenarios 
forecast that in 2050 hydrogen and its derivates (ammonia, methanol, synthetic fuels) will 
cover 21% of transport demand, contributing to a 26 % reduction in CO2 emissions to 
achieve carbon neutrality [149]. 
In literature, many papers propose an optimization of the microgrid energy management 
including the hydrogen vector, as in [343] where the dual optimisation of energy 
management and component size of a port in France is investigated, which also includes 
an electrolyser and hydrogen storage. In [243], the authors show a mixed integer linear 
programming optimisation of the operating costs of a microgrid located on Stromboli 
(Italy), which integrates RES, an electrolyser, stationary fuel cells and an EESS. Other 
papers report an optimization study of an fuel cell EV fleet. In [192], the authors elaborate 
on a mixed integer linear programming to optimise the installation and the operation cost 
of hydrogen-powered trucks, used for road transport between France and Germany; 
hydrogen production is ensured by the nuclear power plant and wind energy. In [219], 
several MW electrolysers are compared to see how an optimized production chain can be 
set up to supply fuel cell EVs. Few papers perform an optimization model for a microgrid 
including an fuel cell EV fleet, like [33] that investigates the techno-economic analysis of a 
microgrid equipped with heat, power and hydrogen; the electrolysers and fuel cell EVs 
are considered to provide a flexibility lever. A similar case study is presented in [108], in 
which the implementation of hydrogen systems is studied considering the hydrogen 
blending into the methane network. The hydrogen fleet as a flexibility source is analysed 
also in other studies, like [31], [103]. Few papers consider large fleet case studies; in [339] 
a Canadian microgrid a design study is carried out for the islanded operation of 2 days 
duration, equipped with electrolyser, wind and solar sources and 38 fuel cell EVs. Details 
of all costs are given and the sizes have been designed through mixed integer linear 
programming optimisation. In addition, a detailed failure mode and effect analysis is 
carried out. The authors of [225] provide a detailed dataset of vehicles, evaluating a 
technical-economic comparison with the endothermic fleet. Many contributions are 
supported by long terms scenarios where different cost trends and parameter variations 
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are considered; in this respect, reference [304] reviews the feasibility of current hydrogen 
technologies for mobility; reference [106] quantifies the impact of uncertainty on the 
transition to green hydrogen identifying cost of electrolysers, capacity factor and gas price 
as critical factors. Reference [164] assesses the energy and environmental effects of the 
hydrogen energy supply chain on the Korean energy system considering scenarios 
influenced by the development level of key technologies, the contribution of RES to the 
power generation sector, and the importance of each hydrogen production method. 
Reference [336] considers the widespread of hydrogen buses in combination with an 
increasing share of production from wind and solar farms. Reference [6] identifies the 
decarbonizing benefits of hydrogen in transport using hydrogen whilst reference [310] 
points out that hydrogen could be important to decarbonise industry and transport 
considering several scenarios. Finally, the review [104] identifies several key challenges to 
achieving a net-zero economy by 2050. 
Based on literature reviews, an original paper has been presented [XIV], that shows a 
model to forecast the total cost of microgrid management, related to a company equipped 
with a hydrogen fleet. A multiparametric analysis is carried out considering the economic 
trends related to investment and operational costs. The microgrid management is 
optimized through a mixed integer linear programming. The study is carried out over a 
time frame of 21 years, considering economic parameters variation over time, as the 
hydrogen price and energy sale benefits, based on literature trends. The microgrid 
management evaluation is investigated through an extended multiparametric analysis 
(91,125 scenarios are overall reported in the paper). The case study is represented by the 
real microgrid of ASM. 
 
5.2.1 Energy district equipped with a hydrogen fleet model 
The model presented in this paper delineates the energy equilibrium within a locality 
encompassing an operational microgrid, hydrogen electrolyser, and a fleet powered by 
hydrogen. Furthermore, this model facilitates the establishment of optimal energy 
management plans for each scenario, conducts a technical-economic appraisal of the 
energy district, and assesses energy expenses between 2030 and 2050. Figure 129 illustrates 
the principal components of the energy district, with particular emphasis on energy and 
hydrogen flow dynamics. 

 

Figure 129: District model: electrical energy (orange lines) and hydrogen flows (blue lines) 
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On one aspect, the energy flows within the system encompass the building's consumption 
and the local energy production from RES (such as a PV plant). Additionally, it involves 
the utilisation of the electrolyser and interaction with the DN. As depicted in Figure 129, 
the hydrogen system encompasses an electrolyser and a hydrogen storage system within 
the district to provide fuel for fuel cell EVs through a refuelling station and an external 
refuelling service. It's important to emphasise that various auxiliary components play a 
critical role in deploying the hydrogen system, including compressors necessary to 
achieve the required pressure levels. Based on literature findings, a predefined set of 
pressure levels (as shown in Table 51) was considered for all simulation scenarios, which 
assumed that the system would adhere to the highest efficiency standards and the latest 
technical norms. The electrolyser's conversion efficiency was set at 0.2 Nm3/kWh by 
product catalogue available on the market. 
 

Table 51: Pressure levels of district components 

Component Electrolyser Refuelling 
system 

hydrogen 
storage 
system 

Vehicle tank 

Pressure (bar) 30 200 500 700 
 
To date, hydrogen production is mainly carried out by steam reforming methane, but to 
make the proposed model more sustainable, it integrates electricity from RES and the 
power grid to produce hydrogen using electrolysers. The electrolyser was modelled as a 
simple hydrogen source, considering a conversion coefficient ηe from energy (kWh) to 
hydrogen volume (m3). The electrolyser can operate in different operation modes. It can 
be powered by self-generated RES, with RPF energy to maximise SCR of the district or 
absorb energy from the grid. Different solutions can be applied to the storage system. As 
reported in [149], hydrogen can be stored in four different ways: i) in gaseous form in 
high-pressure cylinders, ii) in liquid, iii) chemical absorption within solids, and iv) 
physical absorption within solids. Concerning this work, special cylindrical containers in 
which compressed gas is inserted have been considered; pressure ranges from 350 to 700 
bars whilst the lower heating value reaches up to 5.6 MJ/l.   
First of all, in order to size the storage vessel, the hydrogen consumption during the day 
was linearized and the total annual mileage for each vehicle were considered also a 
constrain of the model. In order to trigger fuel cell EV refueling, a simple probabilistic 
evaluation was implemented in order to sort by priority order the vehicles that could 
require the refueling. Four levels of priority were identified, assigning the highest 
probabilities to refuel fuel cell EV with the emptiest tanks. The vehicle order was needed 
due to the limited refueling points of the infrastructure. The initial tank hydrogen level 
was randomised to represent a reasonable vehicles condition. Therefore, the model is able 
to study the framework operation during a defined discretized time period, evaluating 
the hydrogen consumption, production and exchange. The illustrated model was 
implemented in the GNU Octave environment. The characteristics of the different 
components and the frequency of refueling with the tanker truck were set, but the initial 
tank hydrogen level and the vehicle refueling time were not fixed. Therefore, the 
simulation was repeated several times to take into account the variability of these 
parameters. The hydrogen storage system capacity was calculated considering the 
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maximum variation of the hydrogen level in the simulations. In fact, the initial hydrogen 
storage system size was set as a great value.  
The model presented in [XIV] assesses the electrical energy and hydrogen balances 
considering the components described above (e.g., fuel cell EV demand, Tank level, 
production from RES) and their technical constraints; moreover, it calculates the cash flow 
of the district as to the hydrogen system; finally, the model identifies the optimal energy 
management plan of the district every day. The technical and economic constraints taken 
into account by the model are the following: 

● Purchased hydrogen price (€/l) 
● Revenue from electrical energy injection in the DN (€/kWh) 
● Price of electrical energy absorption from the DN (€/kWh) 
● Cost of the electrolyser installation (€/kW) 
● Cost of the PV installation (€/kWp) 
● Cost of the hydrogen storage installation (€/l) 
● Cost of the fuel cell EVs fleet purchase (€) 
● Nominal power of the electrolyser (kW) 
● Nominal power of the PV (kWp) 
● Electrical energy associated to energy surplus each timestamp    
● Electrical energy consumed by the electrolyser each timestamp   

 
As output, the optimal energy management plan reports a set of six variables, which 
correspond to the optimized management of each component of the district: i) the energy 
injected in the DN in year 𝑦  in day 𝑡  (kWh), 𝐸𝐼@,) , ii) the energy consumed by the 
electrolyser in year 𝑦  in day 𝑡  (kWh) 𝐸𝐶@,) , iii) the energy supplied by the DN for H2 
production in year 𝑦 in day 𝑡 (kWh), 𝐸𝑃@,); iv) The hydrogen volume supplied by the tank 
in year 𝑦 in day 𝑡 (l), 𝐻@,); v) a binary variable for tanker operation in year 𝑦 in day 𝑡, 𝐵@,); 
vi) the level of hydrogen storage system in year 𝑦 in day 𝑡 (l) 𝐿@,). 
The technical analysis is formulated as a mixed integer linear programming optimization 
problem and implemented on Matlab environment [218], exploiting the Yalmip package 
[356]. The Cplex10 [139] solver is integrated with Yalmip to solve the optimization 
problem. The optimization minimizes the overall cost among the year, as expressed in the 
objective function. The objective function (𝑜𝑏𝑗@) of the mixed integer linear programming 
problem is the following: 
Equation 46: Objective function of the mixed integer linear programming problem in hydrogen mobility fleet 

𝑜𝑏𝑗X ='(−𝑔X>& ⋅ 𝐸𝐼X,; + 𝑐X
33 ⋅ 𝐵X,; ∙ 𝐿$ ∙ 0.9 + 𝑐XJ ∙ 𝐸𝑃X,;)

@

;'1

 

Where T is the total number of days in one year, 𝑔@3B is the revenue from energy injection 
in the DN (€/kWh), 𝑐@

." is the purchased hydrogen price (€/l), 𝐿1 is the nominal level of the 
hydrogen storage system and 𝑐@7	is the electricity price in year y (€/kWh). The constraints 
of the mixed integer linear programming problem are reported below: 
Equation 47: 

0 ≤ 𝐸𝑃X,; ≤ 𝑀𝑎𝑥_𝐸𝑃X,;,  ∀𝑦, 𝑡 

Where 𝑀𝑎𝑥_𝐸𝑃@,) is the maximum of energy supplied by the DN for H2 production (kWh).   
Equation 48:                                                                                                    
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0 ≤ 𝐿X,; ≤ 𝑀𝑎𝑥_𝐸𝐶X,;,  ∀𝑦, 𝑡 

Where 𝑀𝑎𝑥_𝐸𝐶@,) is the maximum of energy consumed by the electrolyser in year 𝑦 in day 
𝑡 (kWh).   
Equation 49:                                                                         

𝐸𝐼X,; ≥ 0,  ∀𝑦, 𝑡 

Equation 50:                                                                         

𝑅𝐸𝑉X,; = 𝐸𝐶X,; + 𝐸𝐼X,;,  ∀𝑦, 𝑡 

Where 𝑅𝐸𝑉@,) is total energy surplus at timestamp t in the district. 
Equation 51:                                                                                                                                                                

𝐿X,; = 𝐿( −𝐻𝑉X,; + 𝜀 ∙ 𝐸𝐶X,; + 𝐵X,; ∙ 𝐿$ ∙ 0.9,     ∀𝑦, 𝑡 

Where 𝐿-  is the initial level of the hydrogen storage system, 𝐻𝑉@,)  is the total hydrogen 
demand by fuel cell EVs at timestamp t, 𝜀 is the conversion coefficient of the electrolyser. 
Equation 52:                                                                                                                                   

0 ≤ 𝐿X,; ≤ 𝐿$, ∀𝑦, 𝑡 

The tanker operation is managed considering a refuelling of 90% of the nominal hydrogen 
storage capacity, as in Equation 51. The binary variable is defined in this way: 

● 𝐵@,) = 1 ,  ∀𝑦, 𝑡   when the tanker is in operation. 
● 𝐵@,) = 0,  ∀𝑦, 𝑡   when the tanker is not in operation. 

Electrolyser behaviour is determined based on its size. Indeed, for each step of the 
optimization (i.e., one day) the following equation is applied to calculate 𝑀𝑎𝑥_𝐸𝑃@,) and 
𝑀𝑎𝑥_𝐸𝐶@,), based on the nominal power of the electrolyser (𝑃1CD). 
Equation 53:                                                                                                                                   

𝑃$=L ∙ 24 = 𝑀𝑎𝑥_𝐸𝑃X,; +𝑀𝑎𝑥_𝐸𝐶X,; , ∀𝑦, 𝑡 

It is worth mentioning that these constraints are evaluated taking into account the 10-
minutes production and consumption profiles of the energy district. For each timestamp, 
the electrolyser available power, corresponding to its rated power, can be derived by the 
local energy surplus or by the DN. In this way, the total available electrolyser energy 
consumption can be distinguished into two parts, expressed in kWh, as in Equation 53. 
Equation 50 fixes the amount of electrical energy sold and the electrolyser absorption to 
the local RES in the energy district for each timestamp. Equation 52 limits the variation of 
hydrogen storage level from 0 to the nominal value 𝐿1.  
The main outputs of the mixed integer linear programming problem are: 

● Daily DN energy profile among the year; 
● Daily electrolyser electrical energy and hydrogen production profile among the 

year; 
● Number of tanker operations and total hydrogen volume supplied by the 

tanker; 
● Daily hydrogen storage level among the year. 
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Figure 130: Flowchart of the overall algorithm 

The presented model has been exploited in an algorithm (Figure 130) to carry out multi-
parametric analysis and evaluate long-term scenarios. At the beginning of the algorithm, 
the constants of the model are defined. Among them, the daily energy surplus in the 
district and the fuel cell EVs requests profiles are loaded, considering the available dataset. 
After the constants’ definition, all the combinations of the parameters are built to start a 
loop related to the parameters’ variation. In this way, all the scenarios are initialised, 
corresponding to a total number of scenarios, 𝑁E. When all scenarios are analysed, the 
algorithm ends. A second loop is placed in a cascade to apply the technical and economic 
analysis for each of the 2030-2050 time frame. Every scenario presents a number of 
itarations equal to the number of years, 𝑁F  (e.g., 21), in which some time-dependent 
parameters are varied. The technical analysis is made as a mixed integer linear 
programming optimization problem, in which the operating management of the energy 
district is optimised among the specific year. The electrical energy flow is distributed 
between the DN and electrolyser; the hydrogen flow is managed considering the tank 
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operations. The economic evaluation is carried out through the electrical energy/hydrogen 
profiles over all the years.  
 
5.2.1.1 Economic scenarios and evaluation methods 
To carry out a comprehensive economic analysis, the price of hydrogen and the other 
components involved in the system were researched in the scientific literature [64], [49], 
[314] and [280]. Considering the large investments that are being made globally in this 
sector, as well as the great challenge of the energy transition, the prices of electrolysers, as 
well as the prices of hydrogen and PV plants, are expected to decrease quickly [138]. 
Therefore, given the uncertainty of this transition period, several various scenarios are 
necessary to simulate district operation when the hydrogen fleet will be applied.  
Evaluating economic variables, all OPEX and CAPEX have been identified and 
considering that technologies are not yet fully mature for the inclusion of integrated 
energy disposals with a hydrogen fleet, it was decided to assess the economic viability of 
intervention from 2030, lasting until 2050, i.e., for 21 years, almost corresponding to the 
lifetime of the electrolyser.  
OPEX has been analysed with scenarios from 2030 to 2050, identifying five trends for each 
operational cost: i) hydrogen price (€/kg), ii) revenue from the RPF injected in the DN 
(€/kWh) and price of electrical energy absorption from the DN (€/kWh). Figure 131 shows 
the OPEX cost trend.  

 

 

Figure 131: The lines represent the OPEX parameter cost trends between 2030 and 2050. Five red lines show the 
hydrogen purchase price yearly trends, five blue lines show the electrical energy price trends, and five green lines show 

the RPF revenue trends 
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The price reported is only the price of green hydrogen, because, from 2030 onwards, the 
cost of hydrogen produced from this source will become more and more advantageous 
than the others [49]. The hydrogen purchase price is estimated to decrease, reaching a 
value of 3.78 €/kg in the most favourable trend and 8.40 €/kg in the least favourable trend. 
The gain from RPF is also expected to decrease due to policies encouraging self-
consumption, in some scenarios even down to 0.02 €/kWh. Finally, forecasting the 
electrical energy price is highly uncertain, so upward trends of up to 0.55 €/kWh in 2050 
and downward trends of up to 0.15 €/kWh in 2050 were analysed. 
Concerning the investment costs of PV, electrolyser, hydrogen storage and fuel cell EVs, 
minimum, average and maximum values related to 2030 have been identified and 
depicted in Table 52. 

Table 52: CAPEX at 2030 related to district components 

COMPONENT Minimum CAPEX Average CAPEX Maximum CAPEX 

Electrolyser 350 €/kW 638 €/kW 925 €/kW 

PV plant 294 €/kW 508 €/kW 721 €/kW 

Hydrogen storage 8 €/l 11 €/l 14 €/l 

Fuel cell EV fleet 30.8 M€ 33.6 M€ 36.4 M€ 

 

The depreciation is determined considering a debt interest of 3 %, an equity interest of 10 
%, a percentage of capital coming from bank debt of 80 % and a percentage of capital 
coming from the equity of 20 %. As result, a weighted average cost of capital, WACC, of 
4.4% and a depreciation coefficient in 21 years, 𝛼G>HH , equal to 0.074 were obtained, as 
specified by Equation 54. 
Equation 54:                                                                                                                                   

𝛼;,YNUU =	
𝑊𝐴𝐶𝐶 ∙ (1 +𝑊𝐴𝐶𝐶);

(1 +𝑊𝐴𝐶𝐶); − 1  

Each year the investment cost was depreciated using Equation 55: 
Equation 55:                                                                                                                                   

𝐴𝑛𝑛𝑢𝑎𝑙	𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡 = 	𝛼YNUU 	 ∙ 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡	𝑐𝑜𝑠𝑡 

Finally, for each year the following equations calculate the overall costs, considering both 
OPEX and CAPEX, to compare scenarios. 
Equation 56:                                                                                                                                   

𝐶X@M@ = 𝛼 ⋅ (𝑐J/ ⋅ +𝑐3K ⋅ 𝐿$ + 𝑐=L ⋅ 𝑃$=L) + 𝑐X
33 ⋅ ('𝐻𝑉X,;

@

;'1

− 𝜀 ⋅'𝐸X,;=L
@

;'1

) − 𝑔X>& ⋅ 𝐸𝐼X,; 

Where 𝑐7I is the cost of the PV installation (€/kWp), 𝑐@.E cost of HS installation (€/l), 𝑐CD is 
the cost of the electrolyser installation (€/kW) and 𝐸@,)CD  is the energy consumed by the 
electrolyser at timestamp t. 
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5.2.2 Deployment of a fuel cell electricl vehicles fleet in Terni 
The optimization algorithm was evaluated on the headquarters of ASM. ASM Terni is 
responsible for the local door-to-door waste collection in Terni, covering an area of 211 
km2 and serving 110,000 citizens on average. The waste collection in the city is carried out 
by a devoted company fleet which consists of 143 endothermic engine vehicles, that are 
normally refuelled at the ASM headquarters. Therefore, the authors assumed that the 
hydrogen refuelling system will be installed in this location. Concerning the algorithm 
implementation, ASM headquarters already comprises some facilities (i.e., offices and 
warehouses) with a total load of about 650 MWh yearly. Furthermore, a 500 kW PV plant 
produces 684 MWh/year, with a SCR of 39.5 %. 
The energy district structure is shown in Figure 129, with an electrical load consisting of 
offices, warehouses and utility rooms, a PV generation and the hydrogen system 
infrastructure, composed of an electrolyser, an hydrogen storage and four refuelling 
stations.  
As for the fleet needs, historical data were used to hypothesize the hydrogen needs of the 
new fuel cell EV fleet. The fuel cell EVs fleet has been modelled as a heterogeneous 
aggregation of vehicles, that consumes hydrogen from the energy district hydrogen storage. 
The hydrogen request profile from fuel cell EVs is evaluated through an algorithm on the 
GNU Octave environment. The fleet was simulated considering parameters like the 
number and the typologies of fuel cell EVs, the tank size, the pressure level and the annual 
mileage of each vehicle, the efficiency and the weekly working time for each vehicle 
category. The hydrogen consumption was linearized over the time of each timestamp (10 
minutes) and the annual mileage of each vehicle, real data provided by ASM, was 
considered as the model constraint. fuel cell EV charging session, in each timestamp, takes 
place probabilistically according to four identified priority levels, dependent on the fuel 
cell EV tank filling level. The main features of the fleet are reported in Table 53. 

Table 53: Case study vehicle features 

Vehicle category Number of 
Vehicles  Tank size (l) Weekly Work 

hours (h) 

Fuel cell EV 
efficiency 
(l/km) 

Light vehicle 13 120 48 0.25 
Medium-weight 
vehicle 33 300 48 0.45 

Heavy vehicle 97 600 48 0.70 

 

The following figure shows the annual mileage of ASM fleet vehicles 
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Figure 132: Annual mileage of ASM fleet 

In the case study, vehicle mileage ranges from 190 km and 46,362 km every year, average 
and standard deviation values are respectively of 10,596 km, and 7,148 km. Light vehicles 
are those that travel the shortest distance per year (8,901 km), while heavy vehicles are the 
most used (10,896 km). The waste management fleet has, to date, annual consumption of 
about 508 m3 of diesel fuel. Performing an economic analysis of the district, including the 
fleet, the building consumption and the production of the 500 kW PV it results that the 
annual OPEX cost is 881 k€/year, considering a diesel price of 1.6 €/l, electrical energy price 
of 250 €/MWh and RPF gain of 115 €/MWh. The costs are distributed as follows: the cost 
for the fuel and maintenance of the fleet is 812 k€, the cost for the electrical energy for the 
district is 94 k€ and the income from feeding RPF into the grid is 25 k€. CAPEX is due 
exclusively to the cost of the fleet, which is about 28 M€ and, in compliance with the 
depreciation coefficient expressed Equation 54, has an annual depreciation cost of 2.07 
M€/year. 
The hydrogen consumption required after the fleet conversion was calculated over time 
and a monthly trend is shown in Figure 134. Each year the fleet would require 1,127 m3 at 
500 bars of hydrogen, which corresponds to about 45.832 tons. For the case study, it is 
considered to supply the electrolyser with the energy surplus from the PV plant, which is 
studied in different sizes. 

 

5.2.2.1 Considerations on the hydrogen storage size 
In [VI], the authors carried out a study, made with GNU Octave, to see what size hydrogen 
storage should be within the district. For the study, based on the resources of the area and 
the available space, three types of operation were assumed, as shown in Table 54. In the 
first scenario the electrolyzer is fed by the power produced in excess by the PV system 
compared to the demands of the headquarter, avoiding the introduction of RPF into the 
grid. In the second scenario the electrolyzer is connected in series to a 180 kW PV system 
and converts all the electricity into hydrogen. Finally, in the third scenario, the electrolyzer 
absorbs constant power from the grid, regardless of on-site production, always working 
at the nominal power of 100 kW. 
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Table 54: Electrolyser operating modes 

Operating modes Description 

Scenario I The electrolyser is powered by the 
RPF produced by a 180 kW PV 
system. 

Scenario II The electrolyser is powered in series 
by a 180 kW PV system. 

Scenario III The electrolyser is powered by 
absorbing a constant power of 100 
kW from the grid. 

 
In order to evaluate the feasibility in converting the ASM’s waste collection 
fleet to hydrogen-powered vehicles, 500 simulations were carried out to determine the 
hydrogen storage size, the hydrogen production during two intermittent operation modes 
(RPF and PV production) and a continuous one (electricity from the grid) as well as the 
number of refueling stations. 
 
5.2.2.1.1 Size of the Hydrogen storage vessel 
First and foremost, the capacity of the hydrogen storage was determined for each 
operation mode, considering four refueling stations. Figure 133 shows the results of the 
simulations.  

 

Figure 133: Sizing evaluation in the 500 simulations in the three scenarios, considering 4 refueling points. 

The average values analysis highlights that the greater size is related to Scenario I, with a 
medium value of 47.12 m3, due to the limited impact of electrolyser operation. Scenario III 
requires the minimum average value of 35.25 m3, due to the high hydrogen production 
from the electrolyser, as reported in Table 55. During the simulations it was noted that the 
maximum size occurs in Scenario I, with 51.74 m3, while the minimum reservoir that 
occurred in one simulation took place in Scenario III, with 32.62 m3. 

Table 55: Vessel Sizing Results 

Operating mode Scenario I Scenario II Scenario III 

Maximum size (m3) 51.74 51.18 39.53 

Medium size (m3) 47.12 45.79 35.25 

Minimum size (m3) 44.32 42.51 32.62 

H2 self-sufficiency (%) 3.80 9.40 30.70 
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Considering an average value of 500 simulations, the fleet requires 1,127 m3 at 500 bars of 
hydrogen each year, which corresponds to about 45.832 tons. Figure 134 shows, as an 
example, the trend of the hydrogen tank filling level in one year for Scenario II, where 
every two weeks the storage system is completely filled by a tanker truck. 

 

Figure 134: Filling level of hydrogen storage system in Scenario II. 

As shown in Figure 134 the hydrogen level profile presents a reasonable periodic trend, 
influenced by the refueling sessions and the electrolyser operation.  
 
5.2.2.1.2 Hydrogen produced by electrolysis 
 

 

Figure 135:Amount of hydrogen injected by the electrolyser into the tank at 500 bar day by day in August, for the three 
scenarios. 

To evaluate the amount of hydrogen produced by the electrolyser and its profile due to 
the intermitted generation of ASM’s PV arrays, historical data were used in the simulation. 
Figure 135 shows the production of hydrogen by the electrolysis in August for the three 
scenarios. It is worth highlighting that only during the summer months the hydrogen 
production in Scenario II overcome that one of Scenario III, due to the seasonal variation 
of PV plants. Moreover, the graph shows that the operation of the electrolyser is highly 
variable over time if powered by intermittent RES generation even though it can provide 
an unquestionably useful service to the electricity grid, absorbing RPF and avoiding load 
increase or voltage drops. Based on the simulations, the hydrogen produced in Scenario I 
is about 42.66 m3 (about 1,733 kg) at a pressure of 500 bar, that corresponds to the 3.8 % of 
the hydrogen consumption of the fleet. The percentage is low due to the electrolyser 
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management, that activates the production only in case of a RPF in the secondary 
substation linked to ASM headquarters. In Scenario II, hydrogen is generated from all the 
energy produced by a PV system of 180 kW of nominal power, with a hydrogen generated 
of 105.88 m3 at 500 bar, covering 9.39 % of the hydrogen consumed. Finally, in Scenario 
III the hydrogen generated from the electrolyser is 346.72 m3 at 500 bar, corresponding to 
30.7 % of the whole demand.  
As to the water demand during the electrolysis, an amount of water between 15.6 m3 
(Scenario I) and 126.8 m3 (Scenario III) has to be used to produce the amount of hydrogen 
needed by the ASM’s fuel cell EV fleet.  

 

5.2.2.1.3 Impact of the number of refueling stations 
To evaluate the impact of the number of refueling stations on the size of the storage vessel, 
simulations were performed for Scenario I and the results are summarized in Table 56. 

Table 56: Impact of the number of refuelling stations on hydrogen storage capacity 

Hydrogen storage capacity (m3) 
Refueling points 4 6 8 
Maximum 51.74 52.52 51.86 

Medium 47.12 47.19 47.14 

Minimum 44.32 44.07 43.98 

 
Since the storage capacity does not change significantly in case of 4, 6 or 8 refueling 
stations, this parameter has negligible effects on the storage vessel size. In fact, the higher 
value corresponds to 52.52 m3 in case of 6 refueling points, which differs only of about the 
1.5% with respect to the minimum value of the sizing evaluation. 

 

Figure 136: Average number of refueling performed each month considering hydrogen vehicles and refueling points 
number (Scenario I). 

The number of timestamps characterized by almost one refueling session are distributed 
among the months, as expected, because the seasonal variation related to work conditions 
was avoided. The average monthly number of refueling sessions is shown in Figure 136, 
according to the number of refueling points. 
In accordance with that, a 47 m3 hydrogen storage was used within this district for the 
optimization problem. 
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Figure 137: Hydrogen fleet daily consumption during the month of January 2030 

To date, the ASM district has a 500 kW PV plant, but it has been studied what could 
happen by increasing its size up to 1500 kW. Higher sizes are not applicable because of 
the lack of space in the district. Concerning the electrolyser size, it was decided to limit the 
study to only three scenarios, one concerning the electrolyser sizeable to cover the first 
quartile of the energy surplus power, counting only non-zero values, one concerning the 
second quartile of the energy surplus power and finally one concerning the third quartile 
of the energy surplus. Table 57 shows the sizes used for the case study. 

Table 57: Case study PV and electrolyser sizes 

 Minimum 
electrolyser (kW) 

Average 
electrolyser (kW) 

Maximum 
electrolyser (kW) 

PV I (500 kW) 70  159  442  
PV II (750 kW) 101  249  689  
PV III (1500 kW) 191  499  1,475  
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5.2.3 Technical-economical optimisation of the fuel cell electric vehicle fleet 
This section presents and discusses results gathered from the implementation of the model 
and the algorithm in the case study. Results are firstly distinguished between analyses 
performed on OPEX, both technical and economic and analyses performed CAPEX; 
finally, results of these two analyses are combined providing concluding remarks. Table 
58 shows the list of all the variables used in this study. Five and six parameters were 
respectively chosen, some concerning external data (i.e., independent from the district) 
and others concerning system design parameters. It is worth highlighting that the model 
is capable of evaluating different energy districts as well as different external conditions; 
nevertheless, results are already promising in respect of similar energy districts, namely 
those owned by the waste management company that is operating in a medium-size city, 
as in this case study. 
 

Table 58: OPEX and CAPEX scenarios 

OPEX scenarios N. CAPEX scenarios N. 
PV size 3 PV size 3 
electrolyser size 3 Electrolyser size 3 
Hydrogen purchase price 5 PV investment cost 3 
RPF revenue  5 electrolyser investment cost 3 
Electrical energy purchase 
price 5 Hydrogen storage investment 

cost 3 

  Fuel cell EV fleet cost 3 
 

In the following the results are shown: first, the average annual behaviour at the level of 
comparison between the 1125 operational scenarios and the 729 investment scenarios is 
investigated, then the 21-year trend for some specific scenarios is shown, and so the annual 
trend of the technical parameters in a sample scenario is depicted.  
 
5.2.3.1 Comparison of annual costs in the scenarios 
In the study, several scenarios are investigated to perform the multiparametric analysis. 
The results show the total operating technical parameters and costs as well as the 
investment cost of the ASM district considering the new hydrogen fleet.  
 
5.2.3.2 Comparison of technical parameters 
Within the district, hydrogen and electrical energy flows are distinguished, the magnitude 
of which depends on the size of the PV, the size of the electrolyser and the price trends 
considered.  
Concerning the hydrogen flow, each year the fuel cell EVs fleet’s consumption is about 
1,127 m3, while the energy inputs are distributed between the hydrogen imported from 
outside by tanker trucks, H2,TANKER, (covering between 53% and 99.6% of the annual 
demand, with an average value of 92.8%), the hydrogen produced by the electrolyser 
using energy from local RES, H2,RES, (between 0.4% and 13.4%, with an average value of 
6.0%) and the hydrogen produced by the electrolyser using energy from the DN, H2,DN 
(between 0 % and 34.7%, with an average of 1.1%). 
H2,TANKER is almost constant, with a slight decrease as the hydrogen price increases, i.e., the 
average number of annual refuelling goes from 26.1 to 23.6 when the hydrogen price 
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scenario goes from cheapest to most expensive. H2,RES and H2,DN increase as the hydrogen 
price increases, although they always have small values. An increase in the electrolyser size 
causes the share of H2, RES to increase from 2.9 to 8.9 % of annual demand. The hydrogen 
balance does not undergo any variation when varying the PV size since costs mainly 
determine the flows. Figure 138 shows three examples of hydrogen balance. Sample I 
concerns the scenario where the percentage of hydrogen importation from outside is the 
highest and is determined by having the lowest hydrogen price among those considered, 
i.e., on average, 5.9 €/kg. Sample II is the median scenario concerning the hydrogen 
importation percentage and is determined by having the maximum hydrogen price, i.e., 
on average 14.3 €/kg; finally, Sample III is the minimum hydrogen importation scenario 
and is characterised by having the maximum hydrogen price and the minimum electrical 
energy price, i.e., on average 0.18 €/kWh. 

 
Figure 138: District hydrogen balance in three extreme scenarios 

Concerning the electrical energy balance, it is necessary to consider both the production 
through the PV and the supply from the DN in addition to the consumption of the building 
(of 646 MWh/year) and the consumption for the electrolysis. Increasing the size of the PV 
from the current 500 kW to 750 kW and 1500 kW results in annual production of 684 MWh, 
1026 MWh and 2052 MWh, respectively, of which 39%, 28% or 15% is self-consumed by 
the building, while the remaining can be sold to the DN or can be converted into hydrogen 
by the electrolyser. This simplified assumption has neglected the effect of scaling up on the 
capacity factor; the primary rationale is that the capacity factor could also be affected by 
other parameters (e.g., not uniform space and shadowing) not considered in the model. 
An amount of energy is also taken from the DN used to power the building and possibly 
to increase the hydrogen production from the electrolyser. The consumption of the 
electrolyser increases as the hydrogen price increases, i.e., starting from 15% of the district 
consumption in the cheapest hydrogen trend, it goes up to 39.7% in the most expensive 
hydrogen price trend. An increase in the electrolyser size produces an increase in the 
amount of self-produced hydrogen, i.e., compared to the district consumption, the 
electrolyser goes from absorbing 14.7 % in the case of the smallest electrolyser size to 
absorbing 33.8 % in the case of the largest electrolyser. The greater size of the PV does not 
increase the amount of electrical energy injected into the electrolyser. Figure 139 shows the 
average electrical energy balance obtained in the 500 kW, 750 kW and 1500 kW PV 
configurations, respectively. 
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Figure 139: District electrical energy balance as PV size changes 

Table 59 shows the average number of Heq of electrolyser operation in the different design 
configurations. The average number of Heq of operation is relatively low, especially as the 
size of the electrolyser and the size of the PV plant increase, making it more challenging to 
amortize the investment cost. 

Table 59: Electrolyser equivalent operating hours in different configurations 

 1st electrolyser size 
(kWh/kW) 

2nd electrolyser size 
(kWh/kW) 

3rd electrolyser size 
(kWh/kW) 

PV I (500 kW) 1,505  1,419 746 
PV II (750 kW) 1,078 956 479 
PV III (1500 kW) 634 505  223 

 
Considering all the parameters, within the limits of the assumed values, the increase of 
the RPF revenue causes slightly more electrical energy to be sold to the EG, reducing the 
SCR of the district and with the decrease of hydrogen production from the electrolyser. 
The electrical energy price does not affect, except in the case of very low cost, the amount 
of electrical energy drawn from the grid to self-produce hydrogen.  
 
5.2.3.2.1 Comparison OPEX 
The operating costs are determined by the hydrogen purchased price and the electrical 
energy balance, i.e., the cost of supplying the building, electrical energy absorption for 
running the electrolyser and the revenue for injecting RPF into the EG. 
Given the variety of variable parameters taken into account, it is worth focusing on their 
effect on the average OPEX over 20 years which is calculated for each scenario. Firstly, 
Figure 140 a) shows the distribution of the number of scenarios in relation to the OPEX; in 
particular, each bar length represents the number of scenarios for which OPEX is between 
the corresponding value in the x-axis and the previous one. Based on these data, the OPEX 
average value is 436 k€, the median value is 414 k€, the standard deviation is 100 k€, 
maximum and minimum values are 699 k€ and 243 k€, respectively. It is worth mentioning 
that maximum OPEX is obtained for scenarios with a 500 kW PV plant and an electrolyser 
of 70 kW, while the minimum OPEX is obtained for a scenario with a 750 kW PV plant 
and an electrolyser of 689 kW.  
Therefore, if compared with the current OPEX of the ASM waste collection fleet (881 
k€/year), the average OPEX of the fuel cell EV fleet for the period between 2030 and 2050 
is almost 436k€/year (49.4%) demonstrating that even in the most economically 
unfavourable case among those considered, the forecast OPEX is lower than the current 
one. It, therefore, appears that environmental sustainability associated with optimal 
management also implies economic sustainability. The fact that the CAPEX significantly 
affects the total cost only in part reduces the importance of this result. 
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a)  b)  
Figure 140: a) Average OPEX over 21 years for all the scenarios; b) Distribution of OPEX share (EE and Hydrogen) 

Concerning the OPEX shares, it has been evaluated that hydrogen expenditure ranges 
from 48 % up to 94 % of the total amount, average and median values are 74 % and 76 %, 
respectively; distribution of OPEX share for hydrogen price is reported in Figure 140 b). 
Moreover, expenditure for electrical energy consists of two elements, namely electrical 
energy bill for the building and electrical energy absorbed by the electrolyser from the grid. 
On the one hand, the first element is on average 26 % of the total amount of OPEX, it 
ranges from 10 % to 48 % (Figure 140 b); on the other hand, energy for the electrolyser is 
nihil in the majority of the scenarios (i.e., in many cases energy absorption for the 
electrolyser is not convenient), but it is notable when the highest hydrogen price and the 
lowest electrical energy price are applied. In that case, it has been evaluated as a notable 
contribution to hydrogen production from the electrolyser absorbing from the DN, in terms 
of costs OPEX share ranges from 6 % to 45 % considering the variation of the remaining 
input parameters (i.e., size of the PV plant, size of the electrolyser, revenue from injected 
electrical energy). The highest values have been calculated for the biggest size of the 
electrolyser, in particular, Figure 141 highlights the variable contributions to OPEX for 
different electrolyser sizes, contributions below 5 % of the OPEX are not reported. It is 
worth mentioning that for each size of PV, 3 sizes of electrolyser are assessed, therefore, 
the circles in Figure 141 represent the total amount of OPEX for a certain pair of electrolyser 
and PV sizes corresponding to different scenarios; triangles correspond to the OPEX share 
for the electrical energy absorbed from the grid for producing hydrogen. Concerning the 
OPEX share, variations among the scenarios are negligible as well as it does not increase 
when the electrolyser size is bigger than 500 kW. As shown in this graph, a size 
maximization of PV is not convenient relative to the scale of the pilot site (i.e., waste 
management company in a medium-sized city). 
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Figure 141: Average yearly expenditure considering 45 scenarios defined by highest hydrogen price and lowest 

electrical energy price; triangles correspond to the expenditure for producing hydrogen by using electrolyser; circles 
correspond to the total amount of OPEX spent every year on average 

The following analysis investigates the influence of the parameters, notably the size of the 
PV plant, the size of the electrolyser, the prices of the hydrogen and the electrical energy as 
well as revenue from energy injection. Correlation coefficients have been firstly evaluated 
for the OPEX in relationship with the prices of the hydrogen and the electrical energy and 
the revenue from energy injection; correlation coefficients are 0.92, 0.33 and 0.03, 
respectively. Further analysis and graphs are reported about parameter influence. In line 
with the correlation coefficients and the hydrogen balance, OPEX strongly depends on the 
hydrogen price for which five scenarios have been identified. Figure 142 a) reports the 
average OPEX over 21 years corresponding to the five price trends of the hydrogen, 
notably each bar is as high as the number of scenarios for which OPEX is within the limits 
defined by the x-axis; each colour defines a certain hydrogen price and the group of 225 
scenarios since 1125 scenarios were identified through the combination of all parameters. 
Moreover, the black line is the reference distribution and it is calculated as one-fifth of the 
distribution extracted from Figure 142, where parameter influence is not assessed. 
 

  
a)  b) 
Figure 142: Average OPEX over 21 years in relation to the price of hydrogen. The average price of the hydrogen is 
included in the legend; b) Average OPEX over 20 years in relation to the cost of electrical energy (EE). The average 

cost of the electrical energy is included in the legend 

According to the graph, OPEX increases significantly when the unitary cost is higher as 
well as distribution paths are greatly different from distribution reference. In particular, 
for the extreme scenarios characterized by the highest unitary cost all the calculated OPEX 
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overcome the median value calculated for all the scenarios as in Figure 140 a) (i.e., 414 k€); 
conversely, the scenarios related to the lowest unitary cost cause OPEX lower than the 
median value in all the simulated cases. Finally, when the intermediate unitary cost is 
applied, 47 % of the scenarios report OPEX higher than 414 k€. 
Figure 142 b) shows the impact of the cost of electrical energy on the simulations, graph has 
been obtained following the approach already presented in Figure 142 a). The OPEX 
evaluation takes into account the overall expenditure for the electrical energy supply of the 
district (i.e., building consumption are included in the calculation). As shown in the graph, 
this parameter partially influences the scenario distribution; on the one hand, when the 
lowest cost is applied, 63 % of scenarios reports OPEX lower than the median value, 414 
k€; on the other hand, when the highest cost is simulated, 79 % of scenarios is characterised 
by OPEX higher than the benchmark. 
Following the approach adopted for Figure 142, Figure 143 a) shows the OPEX 
distribution related with the revenues for electrical energy injected in the DN. According 
to the graph, this parameter does not influence the scenario distribution; indeed, when the 
highest unitary revenue is applied, the median value of OPEX is equal to the benchmark, 
414 k€, if the lowest cost is applied, 56 % of scenarios reports OPEX higher than the median 
value calculated for all the scenarios. 
 

  
a)  b)  
Figure 143: a) Average OPEX over 20 years in relation to revenues for electrical energy injected in the DN. Average 

revenue is included in the legend; b) Average OPEX over 20 years in relation to the size of the PV plant 

Figure 143 b) shows the average OPEX over 20 years corresponding to the 3 sizes of the 
PV plant, the black line is the reference distribution and it is calculated as one-third of the 
distribution extracted from Figure 140 a), where parameter influence is not assessed. As 
shown in the graph, the three clusters of scenarios are slightly different among them and 
the reference distribution, nevertheless it is worth mentioning that 53 % of scenarios 
calculated for the highest size of PV plant provides OPEX lower than the median value 
calculated for all the scenarios as in Figure 140 a). Finally, the evaluation of the impact of 
the electrolyser sizes is reported in Figure 144; according to the figures, when the highest 
size of electrolyser for each PV size it can be stated that 55 % of the scenarios are under the 
benchmark.  
The size of the PV has a very limited impact on OPEX, indeed, moving from 500 kW to 
1500 kW of installed PV allows to reduce the OPEX on average by only 2.7 %. 
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a)  b)  c)  
Figure 144: a) Average OPEX over 20 years in relation to the size of the electrolyser (PV plant equal to 500 kW); b) 
Average OPEX over 20 years in relation to the size of the electrolyser (PV plant equal to 750 kW); c) Average OPEX 

over 20 years in relation to the size of the electrolyser (PV plant equal to 1,500 kW) 

5.2.3.2.2 Comparison CAPEX 
During the analysis, 729 investment cost analysis scenarios were considered, which have 
a decidedly significant impact on total costs. The investment costs are due to the purchase 
of PV, electrolyser, hydrogen storage and fuel cell EVs fleet. The following table shows a 
summary of the data from the CAPEX analysis, and Figure 145 shows the CAPEX 
depreciation in relation with the size of PV and electrolyser.  
 

Table 60: CAPEX analysis results 

  PV cost (k€) Electrolyser 
cost (k€) 

Hydrogen 
storage cost 
(k€) 

Fleet cost 
(k€) CAPEX (k€) 

Minimum 147 24 376 30,810 31,357 
Average 465 274 517 33,611 34,868 
Maximum 1,081 1,364 658 36,411 39,515 

 
The fleet cost has a weight ranging from a minimum of 90.85 % to a maximum of 98.52 % 
of the total cost, which is also a symptom of the fact that fuel cell EVs are currently really 
expensive and that the ASM fleet has several special vehicles, dedicated to waste collection 
and therefore very expensive. Excluding the cost for the fleet, the cost of PV, electrolyser 
and hydrogen storage come up to an average percentage weight of 35.7 %, 18.8 % and 45.5 
% respectively. Figure 145 shows the average CAPEX values varying the PV and 
electrolyser sizes. The value of CAPEX varies over a narrow range as PV and electrolyser 
have much less weight than fleet cost in determining it. 
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Figure 145: Average CAPEX values as a function of PV and electrolyser size 

 
The purchase and depreciation of assets can take place in ways other than those indicated 
here, such as assets already owned and depreciated, different financial and tax rates, 
incentives, non-repayable loans, for this reason, it was decided not to analyse excessively 
this topic. 
 
5.2.3.2.3 Overall cost considerations 
Making a comparison between OPEX and CAPEX, annualizing the investment costs, 
through Equation 56, CAPEX covers a portion of total costs ranging from 76.85% to 
91.98%. The total cost has a value, depending on the parameters, ranging from a minimum 
of 2,580 k€ up to 3,549 k€. On average the total annual cost for the district is 3,017 k€, with 
a standard variation of 24.6 k€. Although there is not a big difference between the different 
technical parameters, the average total cost is lower (2,990 k€) for the scenarios with 500 
kW PV and maximum size electrolyser, while it is higher (3,064 k€) for the configurations 
with 1500 kW PV and the maximum size electrolyser.  
Comparing the values obtained from the simulations with the current cost of the district 
with the diesel fleet, it results that the forecasted cost ranges from 87.4 % to 120.2 %, with 
an average value of 102.2 %. This value is encouraging for the development and 
sustainability of hydrogen technology. 
The average breakdown of all the costs, with all the parameters involved, is presented in 
Figure 146. The most significant factors are the fleet, which has an annual cost equal to 
82.6 % of the total (in the current diesel fleet it has a percentage weight of 70.2 %), and the 
hydrogen purchase, which weighs on average 10.5 %. The values shown in Figure 146 are 
averages among all the scenarios considered, so the values can significantly vary from case 
to case. The revenue from the RPF, not represented in the figure, is averagely worth 0.43% 
of the annual total costs. 
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Figure 146: Distribution of total cost (CAPEX and OPEX) 

5.2.3.3 Parameter trends over 21 years 
In the analysis performed, several years of operation of the district are considered, from 
2030 to 2050, in which, as already expressed in paragraph 2.1.1, the prices change over 
time. The mixed integer linear programming was performed year by year, so each year 
can be considered independent of the previous one and may have different results. 
Considering the assumptions, the production from the PV, the consumption of the fleet 
and the district do not change from year to year, while only the external prices vary in line 
with the five trends. Based on the results, it is noticed that two situations could happen, 
the first one, much more common and represented also in Figure 147 a), representing the 
scenario with median OPEX, in which the values are maintained almost constant over 
time, with light random variations or due to small differences of the costs. Otherwise, it 
can verify the case expressed in Figure 147 b), in which the decrease in the hydrogen price, 
which initially started from a very high value, causes to go from the first years in which it 
is not convenient to import hydrogen from outside, but only to absorb electrical energy that 
will then be converted with the electrolyser, to the following years in which the behaviour 
is reversed and hydrogen is completely imported, except for a small percentage of H2,RES. 

  
a) b) 
Figure 147:a) 21-years trend for an operative scenario with parameters almost constant in time; b) 21-years trend for 

an operative scenario with highly variable parameters over time. 
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5.2.3.4 Monthly parameters trend  
 In the study performed, for each of the 1,125 operational scenarios analyzed, a day-by-
day optimization of the district was performed, to know when the tanker arrives, how 
much hydrogen is produced by the electrolyser, and how much electrical energy the district 
absorbs from the DN. Figure 148 and Figure 149 show what is the trend of the tank filling 
level and the hydrogen and electrical energy balances in the time frame of three months of 
2030 for the scenario with median OPEX, i.e. the scenario with 1,500 kW PV plant, 689 kW 
electrolyser and taking into account the price trends as shown in the figures. 
The tank filling curve of the hydrogen storage has a cyclical behaviour and fills up about 
twice a month thanks to the intervention of the tanker, while the electrolyser contributions 
only serve to slightly delay the tanker refilling frequency. The production from electrolyser 
has a rather irregular behaviour and has an increase in the seasons with higher irradiation 
and PV production. 
 

 
Figure 148: Day-by-day hydrogen balance for three months. Data from the scenario with median OPEX value. 

Figure 149 shows that using the 1,500 kW PV size results in a high energy surplus, which is 
only partially absorbed by the electrolyser or the building, while a large part is fed into the 
DN as RPF. Although there is high energy surplus, the electrolyser does not absorb all the 
electrical energy because, except for very high hydrogen costs and very low RPF sales costs, 
it is not cost-effective to convert all the energy surplus to hydrogen. 

 

Figure 149: Day-by-day electrical energy (EE) balance for three months. Data from the scenario with median OPEX 
value 

 

 
  



 195 

6 The emergence of renewable energy communities and 
self-consumption groups 

6.1 European and Italian regulatory framework 
The increased frequency of extreme weather events and other increasingly visible effects 
of climate change and global warming urgently pose the need for adequate and effective 
action. The objectives set for 2030 and 2050 through the Paris Agreement of 2015 have led 
the European Union to define a common energy strategy with the aim of achieving high 
energy efficiency targets in the end uses of energy and buildings, promoting the use of 
energy from RES and regulating the internal electricity market.  
From these objectives was born the Clean Energy for all Europeans Package, approved in 
May 2019: a set of four European directives and four regulations, which aims to implement 
the necessary energy transition by ensuring access to clean energy for all European 
citizens. Subsequently, it emerged the need to update these directives as part of the 
European Green Deal. The crisis following the war between Russia and Ukraine has led 
to strong volatility in gas prices and has pushed the European Community to launch a 
further plan, which takes the name of REPowerEU, with a further increase in the objectives 
of renewable capacity, up to 45% of the electricity mix, and the reduction of consumption 
of natural gas. 
In Italy, RECs are defined by recent legislative decrees that allow a virtual aggregation of 
the users that are supplied by the same primary substation. Moreover, the community has 
to involve newborn RES power plants that virtually supply the participants. The self-
consumption within the community is promoted by calculating the so-called shared 
electricity (i.e., the minimum value chosen between energy hourly consumed and 
produced). According to the measured shared energy, a contribution, identified as the 
sum of the avoided transportation costs, is paid to the RECs. Moreover, in the next 20 
years, a premium tariff is assigned to self-consumer groups for shared energy.  
The legislation [187] defines the characteristics that RECs must have in terms of their legal 
form and their respective entities. The legislation is in the process of being finalised, but it 
is considered that the RECs is made up of subjects under the same primary substation and 
with a maximum generation power of 1 MW.  
The estimates underlying the planning of the Italian National Recovery and Resilience 
Plan investments foresees of a potential contribution of 2 GW of installed capacity from 
RES due to the formation of RECs in the period 2022-2026, representing 7% of the 
renewable capacity necessary to achieve the 2030 objectives.  
Many researchers have studied the response of high PV penetration in different kinds of 
DNs. In [268] the impact of a diffused installation of PV systems in a typical suburban 
Canadian DN. In their work, the RES were evenly distributed among all the households 
and found that the grid was poorly affected by this distribution. References [323], [VII] 
report that the SCR of individual domestic customers are on average lower than 30%. This 
data analysis highlights the need for collaborating mechanisms among prosumers and 
nearby consumers. Also, statistical approaches have been used. In [161] a stochastic 
simulation has been carried out on three different DNs in Sweden. In this work minor 
overvoltages have been detected while consistent RPF towards the MV grid were present. 
Higher penetration of PV has been studied in [14] with a Monte Carlo simulation on a DN 
in the UK. In their work emergers the importance of the granularity of the data. Using the 
hourly average power instead of the quarter-hour average power underestimates the 
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overvoltage and overload frequency. Less attention has been posed to the MV grid with 
fewer and more recent studies. In [208] a study on a real MV network showed that the DG 
can help the power grid in limiting some overloads. Along with the technical feasibility of 
the PV introduction, there is also an economic issue. In a deregulated electricity market, 
most of the initial investment is in charge of private initiatives. Here the profitability of 
the PV system is strongly affected by country-specific conditions such as solar irradiance, 
grid fees, national incentives, and more. Many of these aspects have been treated in [158] 
among the single country condition a factor that was common in all the countries was the 
importance of the RECs. Study [158], highlights the importance of SCR, which allowed to 
significantly reduce the total electricity cost. Different studies have been focused on the 
optimization of the REC to maximise their effectiveness in total cost reduction [126], [155]. 
Many studies have been carried out on the issue of the profitability of the REC 
highlighting their effectiveness and the importance of the scale of the community [93].  
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6.2 The social, economic and technical benefits of energy 
communities 

RECs offer a range of significant benefits that can be classified as socual, economical and 
technical.  
The social benefits go beyond just addressing environmental concerns. These benefits 
contribute to building more sustainable, resilient, and inclusive societies. First, the RECs 
empower local residents to take control of their energy production and consumption. They 
encourage REC members to actively participate in decision-making processes related to 
energy, fostering a sense of ownership and control over their energy future. The 
development and maintenance of RES projects, such as solar and wind farms, create job 
opportunities within the community. These jobs can range from installation and 
maintenance to research and development, offering stable employment and boosting the 
local economy. RES projects often involve a diverse range of community members, 
promoting social cohesion. These projects bring together various stakeholders, including 
local governments, landowners, and energy cooperatives, to collaborate on a shared goal. 
In the meantime, the development of RES projects can provide educational opportunities 
for community members, and increase awareness of sustainability. As a direct 
consequence of the use of renewable energy, there is less environmental impact, and  a 
reduction in air pollution. Finally, participating in a REC often fosters a sense of purpose 
and pride among its members. Knowing that they are contributing to a more sustainable 
and environmentally friendly future can boost community morale. 
From the economic point of view, the RECs can positively impact both at local and 
regional level. These benefits arise from the development, deployment, and maintenance 
of RES technologies within a community. One of the most notable economic benefits of 
RECs is the creation of jobs. These RECs often require a skilled workforce for the 
construction, operation, and maintenance of RES installations. Local residents can find 
employment opportunities in these sectors. Developing renewable energy projects often 
necessitates significant investments in infrastructure, manufacturing, and technology. 
This results in increased local spending on goods and services, such as construction 
materials, equipment, and local suppliers. This boosts the local economy and supports 
small businesses. RECs generate revenue through the sale of excess energy, this income 
can be reinvested into community projects, services, or infrastructure, helping to fund 
local initiatives, and, in the meantime, by generating their own RES, REC members reduce 
their electricity bills and are less subject to the price volatility. Finally, properties located 
within RECs can experience an increase in value and become more attractive to potential 
buyers. 
Finally, from the technical point of view, the RECs provide a step towards the adoption of 
the SGs, introducing technologies that enable real-time monitoring, control, and 
optimization of energy distribution. In such a way it’s possible to enhance grid stability, 
reduce energy losses, and allow for better integration of RES into the DN. The RECs often 
employ advanced control and automation systems that optimise energy management, and 
remote monitoring and maintenance systems, allowing for real-time performance tracking 
and remote troubleshooting, reducing downtime and maintenance costs. RES 
technologies, such as wind and solar, possibly integrated with EESS, can be used to match 
energy demand. This flexibility allows for more efficient energy production and reduces 
the need for additional power plants, especially during peak demand periods.  
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6.3 The benefits of Renewable Energy Communities in the context of 
Terni 

The paper [X] analyzes, through a Python code that exploits OpenDSS, the impact of the 
inclusion of 30 RECs in the electricity DN of Terni, highlighting what can be the benefits 
and disadvantages from the point of view of the DSO and what can be the gains for the 
subjects that make up the community. Various scenarios were considered, taking into 
account the renewable targets envisaged by the RepowerEU plan, and different behaviour 
of consumers were analyzed. 

 

6.3.1 Modelling a Renewable Energy Community 
The examination relies on the approach outlined in Figure 150. A network model was 
constructed using OpenDSS. To enhance flexibility and leverage the software's 
capabilities, it was chosen to interface with it through the py-dss-interface package, which 
invokes the software via Python. The primary parameters employed in the simulations 
are as follows: 

• the grid model that ASM provided and it follows the actual structure of the MV 
network, 

• the load profile measured at secondary substations of the grid for one year. 
The goal of the simulations is to assess the impact of the REC on the DN and the 
operational cash flows of the REC varying the following parameters: 

• Participation degree refers to the total energy absorbed by each MV load node by 
the users participating in the collective self-consumption schemes. Participation in 
DR mechanisms has been modelled through storage, adequately sized and 
configured. 

• According to Italian regulations, it has been assumed that the REC cannot be 
established without the deployment of additional PV plants. 

RECs have been established by grouping various load profiles based on proximity, with a 
preference for loads connected to the same MV node as the PV system rather than nodes 
not part of the same load node. 
Institutions provide economic incentives for energy shared by the same PV system among 
members connected at different points within an MV network downstream of the same 
primary substation. This aligns with the transposition of European directives RED II and 
IEM through subsequent Italian legislative decrees. For incentive calculation purposes, the 
following table of incentives is considered, assuming, for simplicity's sake, a negligible 
variation in the zonal price: 
 

Table 61: Incentive for Self-Consumed Energy 

Power PV (kW) Reward for self-consumed energy (€/MWh) 
P > 600 100 
200 < P < 600 110 
P < 200 120 

 

In alignment with European energy policies and their implementation in Italy, four 
scenarios have been formulated for 2030. Initially, as by [278] and [276], an examination 
was conducted to assess the potential variations in consumption between 2023 and 2030. 
These variations were attributed to increasing electrification and improved energy 
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efficiency. Subsequently, an evaluation was performed to determine how many PVs could 
proliferate. In these scenarios, grounded in the RepowerEU initiative, consumption is 
projected to increase by 13.2%, rising from 318 TWh to 360 TWh in Italy, with an 
anticipated installation of 85 GW of PV plants. 
The analysis considers three levels of user engagement in RECs, enabling users to 
temporarily shift a fraction of their rated power, ranging from one-tenth for 30 minutes to 
one-tenth for 60 minutes and one-tenth for 90 minutes. 
To assess the impact on the DN, the following parameters are taken into account: 

• The total energy produced, 
• RPF in the primary substations, 
• SCR, 
• SSR, 
• Network losses. 

 

The formulas for the SCR and SSR are as indicated in Equation 2and Equation 3. These 
indices are calculated both for each REC and for the entire network. 

 
Figure 150: The methodology applied to the study 

 

6.3.2 Virtual energy communities in the city of Terni 
The study focuses on a segment of Terni's MV network, specifically the portion supplied 
by one of the three primary substations within the network. This section comprises 316 
MV nodes and 309 branches. The MV nodes correspond to MV users or secondary 
substations, while the underlying networks, such as LV, are not considered and are 
simulated as load nodes. The analyzed network includes two 120/20.5 kV transformers 
with a rated power of 25 MVA each. A network segment operates at 10 kV, utilizing a 6 
MVA MV/MV transformers. Within this network are 309 lines and 316 nodes, out of which 
168 function as load nodes. All transformers are equipped with on-load tap changers. This 
grid section currently hosts approximately 10 MW of distributed PV generators and a 9 
MW biomass plant. The results pertain to a one-week period, during which the average 
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profiles for each load node, based on annual quarterly data provided by ASM, are utilized, 
as depicted in Figure 151. 
The current condition of the case study was also assessed to serve as a baseline for 
comparison with the identified scenarios. Currently, there are no energy flows toward the 
primary substation, no overvoltages or undervoltages at the loads, and no line overloads, 
mainly due to the actions of the tap changer. Energy consumption within this grid 
segment amounts to 1123 MWh, while distributed PV systems generate 286 MWh, 
resulting in a SSR of 25.46% and a SCR of 100%, attributed to the relatively limited 
availability of RES. Network losses account for 1.86% of the demand, equivalent to 23.69 
MWh. 
 

 
Figure 151: Power flow analysis in an average week in the current state 

 

6.3.3 Technical benefits for the Distribution System Operator and economic 
benefits for the end users 

First, as indicated in the methodology, the impact of the increase of the RES has been 
considered, with an increase in the load of 13.2% due to the electrification and the 
installation of additional 16 MW PV plants. Then, the overall generation capacity is 26 
MW. For each scenario, it was chosen to create 30 RECs in the network under 
consideration. For the calculation of the incentive, Table 61 was considered. 
 

Table 62: Features of the 30 RECs 

Name PV size (kW) Domestic load 
size (kW) 

Industrial load 
size (kW) 

CER 1 69 22 16 
CER 2 151  72 
CER 3 85 64  
CER 4 85 43  
CER 5 71 20 27 
CER 6 71  46 
CER 7 184 93  
CER 8 185  95 
CER 9 28 3 4 
CER 10 122  61 
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CER 11 186 81  
CER 12 171 86  
CER 13 122 28 27 
CER 14 112 22 39 
CER 15 68 34 9 
CER 16 68  40 
CER 17 78 34 10 
CER 18 123 27 31 
CER 19 70 28 25 
CER 20 88 62  
CER 21 111 84  
CER 22 70 15 15 
CER 23 33  21 
CER 24 90 82  
CER 25 110 45 12 
CER 26 36 13  
CER 27 56 51  
CER 28 101 82  
CER 29 136  85 
CER 30 28 10  

 

Table 62 overviews the RECs composition. It's important to note that the load curves are 
assumed to be uniform for industrial and residential loads based on typical profiles for 
each load category, without variations for specific loads. Notably, the power generated by 
the PV systems often exceeds the installed load capacity. However, in terms of energy 
consumption, the load consumes an average of 215% more energy than what is produced 
by the PV systems. In the 2030 grid simulation, each node within the analyzed MV 
network hosts a PV generation plant, but only 30 of these plants form RECs. The selection 
of nodes for the RECs was made randomly within the network, with proximity and load 
capacity being key considerations. 
A comparison with the current network reveals that by 2030, with PV production 
increased to 26 MW, power production during an average week reaches 745 MWh, while 
power demand amounts to 1272 MWh. This results in a SSR of 46.70% and a SCR of 
81.26%. RPF registers at 139 MWh and network losses account for 23.73 MWh. Figure 152 
illustrates the power trends during an average week, depicting the introduction of 16 MW 
of additional PV plants (only the new plants are represented by the orange curve, while 
the existing ones are "hidden" in the green curve). The energy exchanged with the national 
transmission grid generally indicates a positive sign, signifying energy absorption. Still, it 
becomes negative during the central daylight hours, indicating energy export due to the 
PV peak. Figure 153 illustrates the power trends and how consumption and generation do 
not align temporally for a single REC. 
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Figure 152: Power flow analysis in an average week in the 2030 scenario for the whole DN, without considering the 
presence of DR 

 
Figure 153: Power flow analysis in an average week in the 2030 scenario for a REC, without considering the presence 
of DR 

Subsequently, an examination was conducted to assess the potential impacts of different 
management strategies for RECs, wherein users adjust their behavior to varying degrees, 
resulting in benefits for themselves (in economic terms) and the network—this adjustment 
aimed at reducing RPF and network losses. Three scenarios were considered, each 
involving a 10% load shifting percentage for 30, 60, or 90 minutes. 
Figure 154 illustrates the trend of power flows within the network, as detected at the 
primary substation, when users engage in DR mechanisms, with 60% of the load 
participating. The curve bears similarities to the one presented in Figure 152, albeit with a 
slight shift in the load curve to align more closely with the generation curve. The 
advantages of this mechanism become more apparent in Table 63, where it is observed 
that the SCR and the SSR experience a modest increase as DR participation grows. 
Concurrently, network losses decrease proportionally. 
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Figure 154: Power flow analysis in an average week in the 2030 scenario for the whole DN, considering the presence 
of DR and adhesion of 60%. 

Table 63: Impact on the distribution grid in the scenarios for an averaged week 

Name 2023 Current 
situation 

2030 without 
DR 

2030 with DR 
30 min 

2030 with DR 
60 min 

2030 with DR 
90 min 

E.prod. 
(MWh) 286 745 745 745 745 

E.cons. 
(MWh) 1123 1272 1272 1272 1272 

SCR (%) 100.00 81.26 81.35 81.73 82.06 
SSR (%) 22.10 46.70 46.74 47.03 47.29 
Grid losses 
(%) 1.861 1.864 1.863 1.738 1.58 

RPF (MWh) 0.00 139.59 138.95 136.13 133.63 
 

In the present situation, the presence of PV plants is quite limited, contributing to only 
22.1% of the energy consumed, and all of this energy is fully absorbed within the grid. In 
2030 the scenario envisions sufficient production to cover 46.7% of the total load, achieving 
a SCR of 81.26%. Consequently, there's an increase in RPF, accompanied by a slight uptick 
in losses. 
By effectively utilizing RECs, users can adjust their energy consumption patterns to align 
with RES production. The scenarios examined, involving load shifting for 30, 60, and 90 
minutes, exclusively for REC users (which collectively represent an installed load of only 
1.6 MW), demonstrate an enhancement in overall grid performance. This improvement 
results in a reduction in the SCR, an increase in the SSR, and a decrease in losses. Figure 
155 compares the current load profile and the one that would be realized with the ability 
to shift up to one-tenth of the installed load's power within a 90-minute window. This 
illustration underscores a more pronounced alignment between load demand and RES 
generation. 
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Figure 155: Power flow analysis in an average week in the 2030 scenario for a REC, considering DR with a participation 
of 60% of the power demand 

Table 64: Technical-economical results for each REC 

Name SCR without 
DR (%) 

SCR DR-30 
min (%) 

SCR DR-60 
min (%) 

SCR DR-90 
min (%) 

Cash flow DR 
60% (€/year) 

CER 1 75,01 75,42 77,23 78,64 3419 
CER 2 78,91 79,17 81,96 84,38 9539 
CER 3 78,34 78,86 82,8 86,24 3614 
CER 4 60,80 61,70 63,94 66,18 3630 
CER 5 87,84 87,85 90,49 92,19 3528 
CER 6 94,27 94,26 96,71 98,38 3840 
CER 7 59,22 60,12 62,48 64,75 8018 
CER 8 82,71 82,86 85,06 87,22 11209 
CER 9 43,05 43,82 45,07 46,28 1201 
CER 10 81,60 81,79 83,93 86,03 7410 
CER 11 53,31 54,24 56,38 58,38 7956 
CER 12 58,93 59,84 62,19 64,45 7454 
CER 13 66,31 66,87 68,85 70,5 6318 
CER 14 78,99 79,27 81,56 83,55 6136 
CER 15 69,94 79,58 73,24 76,00 2928 
CER 16 66,79 67,54 70,06 72,62 2915 
CER 17 71,35 71,88 74,1 76,01 3671 
CER 18 68,94 69,56 72,19 74,41 6778 
CER 19 82,45 82,74 85,42 88,01 4293 
CER 20 75,03 75,55 78,53 81,10 3619 
CER 21 78,15 78,61 81,78 84,34 4397 
CER 22 64,66 65,27 67,18 68,75 3614 
CER 23 70,56 71,29 74,07 76,74 1409 
CER 24 87,39 87,53 91,16 94,25 3042 
CER 25 67,25 67,83 70,09 71,98 5203 
CER 26 46,63 47,61 49,37 50,83 1433 
CER 27 87,62 87,75 91,37 94,97 1890 
CER 28 81,69 82,06 85,45 88,41 3856 
CER 29 67,90 68,57 71,27 73,56 5814 
CER 30 48,22 50,90 60,62 67,02 1828 

 

Table 64 shows, for each REC, the SCR is when no flexibility resources are used and when 
there is a shift of loads up to 30, 60, 90 minutes. On average, shifting loads can achieve 
SCRs 5.74% higher. In addition, the approximate operating cash flow was calculated, 
which includes the public incentive on shared energy within the REC, the purchase of 
electricity for consumers, and the sale of the energy produced by the PVs. The higher the 
SCR, the higher the income from the incentive, up to an average increase of 936€ per year.  
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7 Conclusion 
The electricity distribution grid is undergoing a period of major change to meet the 
pressing demands for sustainability, security and resilience. 
This PhD thesis addressed the fundamental challenge of increasing the flexibility of the 
electricity distribution network through a transversal approach, with particular emphasis 
on the case study of the Terni distribution network. The results obtained from the research 
underline the importance of advanced power grid management, particularly in a context 
where renewable and distributed energy resources are becoming increasingly 
widespread. 
 
The main energy sectors involved in the research carried out and shown in this thesis 
concerned the electric mobility sector, power-to-gas, with a focus on hydrogen, and the 
spread of energy districts in the form of renewable energy communities. 
The integration of flexibility resources is not separated from the development of enabling 
technologies, i.e. the emergence of algorithms, models and platforms that allow the 
management of sensors, IoT devices and the monitoring and control infrastructure. 
Several innovative algorithms were presented, some of which are based on machine 
learning, such as consumption and generation forecasting, optimization of power flows in 
assets and predictive maintenance in power transformers. 
The tools developed have been validated within the case study of the Terni distribution 
network, managed by ASM Terni, which is an innovation hub and in which numerous 
technologies are tested within numerous European projects. 
Original researches were shown in the text, as reported in 17 papers published in journals 
or presented at international conferences. 
 
In conclusion, the thesis demonstrates that increasing energy flexibility in the distribution 
networks is an achievable goal through a holistic approach that includes detailed local 
analysis, integration of distributed energy resources, advanced management strategies 
and active stakeholder involvement. This contribution is crucial to address future energy 
challenges and promote a transition to a sustainable and resilient energy system. The 
conclusions of this research are a step forward in the direction of smarter and more flexible 
power grids, ready to meet the challenges of the era of renewable energy and 
decentralization. 
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