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Abstract

A plethora of theoretical arguments and experimental observations suggest evidence
for new physics beyond the standard model and general relativity. A promising
way to detect such deviations is to analyze the possible signatures of these theories
around compact astrophysical objects. In this spirit, this thesis is devoted to the
study of different phenomenological imprints of new physics around black holes.
In the first part of the thesis, I analyze in detail superradiant instabilities, focusing
in particular on the role of interactions of the superradiant field with astrophysical
plasma. I show that such interactions are pivotal to obtain a detailed description of
the systems, and may either lead to promising observables or hamper the instability
itself.
In the second part of the thesis, I focus on tests of general relativity using gravitational
waves. In particular, I discuss in detail the possible detectability of fundamental
dipoles in extreme mass-ratio inspirals, and introduce a formalism to probe theories
beyond general relativity using pulsar-timing arrays. In both cases, I adopt a
model-agnostic approach, encapsulating different theories in the analysis.
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Chapter 1

Introduction

The last century dramatically marked the way we understand the Universe, as
the two milestones of modern theoretical physics were born and raised: Einstein’s
General Theory of Relativity (GR) and Quantum Field Theory (QFT). While the
former changed at a fundamental level our understanding of gravity and cosmology,
the second had a analogous impact for fundamental interactions, and led to the
development of the Standard Model (SM) for particle physics. From their very birth,
these theories were able to provide an exquisite description of reality and passed
every test with flying colours. Nevertheless, a number of theoretical arguments and
experimental results gradually led to the conclusion that the actual picture is still
incomplete. In particular, there are at least two important problems supporting this
incompleteness: I) While GR is a classical theory, a unified picture between QFT
and gravity is lacking. Indeed, GR is not renormalisable in the standard QFT sense;
II) several gravitational evidences – from galaxy rotation curves to gravitational
lensing effects (see e.g. [1, 2, 3, 4, 5, 6, 7]) – showed that only a mere 5% of our
Universe is composed of visible matter. The nature of the remaining "dark universe"
is one of the most mysterious puzzles in physics. In order to explain astrophysical
and cosmological observations, it is believed that the 27% of the energy content in
the Universe is made by dark matter (DM), while the remaining 68% is made by dark
energy, supposedly responsible for the acceleration of the universe [8]. Motivated by
these reasons, in the past decades there have been several attempts to extend GR or
the SM with new degrees of freedom at high or low energy. A fair requirement of
these theories is to reproduce faithfully the phenomenology of GR and the SM at the
energy scales we were able to probe up to now. For this reason, they are expected
to interact very weakly with the SM, or, in the case of modified GR, to possess a
screening mechanism that "hides" them in the intermediate length scales [9, 10]. For
theories beyond the SM (BSM), the feebleness interacting nature of these particles
entails the difficulty to detect them with standard particle accelerators, where the
energy scales may not be sufficiently high. This motivated theorists in the last
decades to search hints of these particles in high-energy astrophysical phenomena,
where the energy scales are extreme, and currently unavailable in particle accelerators
[11, 12]. In addition, the recent discovery of gravitational waves (GWs) [13] opened
a hitherto unexplored window on the strong gravity regime around compact objects,
black holes (BHs) and neutron stars, where the regime is highly-relativistic and
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even the very nature of GR can be put into scrutiny [14, 15, 16, 17, 18]. Hence, the
development of precise GW astrophysics allows for the exciting perspective to turn
BHs into "natural laboratories" to search for new physics. In this spirit, this thesis is
devoted on the study of some of the most energetic phenomena around astrophysical
BHs, aimed at the possibility to detect both physics beyond the SM or beyond GR.

1.1 Black Holes and ultralight bosonic fields
Ultralight bosons are ubiquitous in BSM physics. The most famous proposal is
the QCD axion, a pseudoscalar particle proposed by Peccei and Quinn to solve the
strong charge-parity problem in quantum chromodynamics (QCD) [19]. This particle
arises from a spontaneous symmetry breaking of a U(1) symmetry [20] and gains
mass due to non-perturbative effects. Interestingly, while the axion was initially
proposed to solve the aforementioned problem, in the last decades it also became
a very popular candidate for cold DM [21, 22, 23]. A plethora of similar particles,
usually called axion-like particles (ALP), also arise from a string theory scenario
called "string-axiverse" and they can populate the spectrum down to the Hubble mass
(≈ 10−33eV)[24, 25]. Another prediction from high-energy theories is the existence of
massive spin-1 fields, as the dark photon [26, 27, 28, 29], which supposedly couples
with the SM photon through a non-trivial kinetic mixing. Astrophysical BHs offer a
unique opportunity to probe the existence of these degrees of freedom, in particular
through a phenomenon called superradiance [30]. Due to this phenomenon, ultralight
bosonic fields in a wide mass range can extract rotational energy at a continuous level
from a spinning BH, leading to the so-called superradiant instability. Due to this
energy extraction, the field is amplified and can form a macroscopic cloud around
the BH, with an extremely large occupation number. Superradiant instabilities lead
to striking observables signatures, and therefore represent a unique tool to probe
the existence of these particles.
Up to now, most studies assumed these bosonic fields to be free from interactions,
aside from a minimal coupling to gravity. Nevertheless, in this process, number
densities in the cloud reach extreme values and the effects of interactions can be
crucial even for very feebly interacting fields. In particular, astrophysical BHs are
usually surrounded by plasma, either in the form of accretion disks or interstellar
medium (see e.g. [31, 32, 33]). Hence, taking into account the effects of interactions
and environmental effect is of utmost importance in order to properly understand
these systems. In the first part of this work, I shall focus on these aspects and
provide a description of superradiant instabilities by different interacting ultralight
bosons in the presence of astrophysical plasmic environments.

1.2 Tests of gravity using gravitational waves
The previously mentioned considerations suggest that GR should be corrected both
at low energy (cosmological) and high energy scales. The new theory should be
viable from a cosmologically point of view and, as already mentioned, it should be
consistent with GR in the intermediate length scale 1µm < ℓ < 1AU, where GR
was verified with exquisite precision [17, 34, 35]. Besides these requirements, on a



1.3 Outline and General Structure 6

practical point of view, a key question is also how to modify GR. The building blocks
of GR are enclosed in Lovelock’s theorem, that states that GR is the only possible
viable theory of gravity in four dimensions under specific assumptions, i.e. I) no
additional fields, II) diffeomorphism invariance, III) the field equations contains up
to second derivatives of the metric tensor. Relaxing one of these assumptions allows
for different classes of modified theories. Examples include scalar-tensor theories
[36, 37], where assumption I is violated, and massive gravity [38, 39, 40], which
violates assumption II.
As already mentioned, these theories beyond GR usually possess a screening mech-
anism that "hides" them in the intermediate regime. Thus, it is thus relevant to
study the phenomenology of these theories in the strong gravity regime– where
deviations from GR might be more dramatic– via GW observables. In this spirit,
we discuss in the second part of this thesis how two types of BH binaries, namely
supermassive BH binaries (SMBHB) and Extreme Mass Ratio Inspirals (EMRIs)
allow for novel test of GR using present and future GW detectors. In both cases, we
adopt a theory-agnostic approach and encapsule different classes of theories beyond
GR in a model-agnostic fashion.

1.3 Outline and General Structure
For the reader’s convenience, I summarize in this section the structure of the thesis.
Part I focuses on the study of superradiant instabilities around astrophysical BHs.
In the first part, I discuss in detail the phenomenology of superradiant instabilities
induced by the SM photon in the presence of astrophysical plasma. I show that,
while the plasma confinement provides a mechanism to trigger an instability at a
linear level, non-linear effects completely alter the plasma behaviour and quench the
confinement, rendering the instability ineffective. Afterwards, I discuss some aspects
of the superradiant instability of two of the most interesting ultralight bosons beyond
the SM: the dark photon and the axion. For the former, I show that the instability,
while effective in the minimal scenario, can be completely quenched in the presence
of fermionic dark matter charged under this dark U(1) symmetry, as this additional
component acts as a dark plasma and provides an effective mass to the dark photon,
altering its dispersion relation. As for the axionic case, I discuss in detail a scenario
in which the QCD axion is coupled to the SM photon, so that the energy of the axion
cloud can be released in the emission of powerful EM bursts, provided the ambient
plasma is not too dense. Afterwards, I discuss the phenomenology of superradiant
instabilities in scalar-tensor theories, where the matter surrounding the BH provides
an effective mass to the scalar degree of freedom of the gravitational sector. Finally,
I introduce in the last chapter a relativistic perturbation framework aimed at the
study of transitions between energy levels in the BH-cloud system. This framework is
meant to replace the standard hydrogenic formalism, valid only in the non-relativistic
limit.
In the second part, I discuss novel tests of gravity using GWs. First, I study an
EMRI binary where the secondary is endowed with a fundamental scalar dipole and
show that the emission of scalar radiation due to the latter is suppressed by the mass
ratio with respect to the well-known monopole case. Afterwards, I introduce a model-
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agnostic formalism to map beyond GR theories into a modified tilt for the Stochastic
GW Background (SGWB) spectrum, showing that negative PN corrections (in
particular -2PN) can alleviate the tension in the recent pulsar-timing-array data
if the detected SGWB is interpreted as arising from supermassive binaries. As a
byproduct, I show that adopting this formalism for current data already allows to
place strong constrain in some beyond GR theories. In this work I use G = c = ℏ = 1
units, unless otherwise stated, and the (−,+,+,+) signature.
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Part I
Superradiant Instabilities around

astrophysical black holes

"Inseguendo un’altra volta
La grande onda che ritorna! "
Piotta, La Grande Onda (2002)
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Chapter 2

Superradiance and plasma
physics: an introduction

2.1 Superradiance: Introduction and General Features
Superradiance is a phenomenon that, in generic terms, describes the anomalous
amplification of radiation due to dissipation of energy of a given system. The term
was introduced by Dicke in 1954, when delving into the study of coherent emission
processes from radiating gas in quantum optics [41]. Nevertheless, examples of
similar phenomena can be traced back even to a decade before, when Ginzburg and
Frank discovered the anomalous Doppler effect [42], and the Klein paradox [43] for
charged bosonic fields was analyzed by Hund [44] (see also [45, 46]). Remarkably, in
1971 Zel’dovich discovered a peculiar form of superradiance, known as rotational
superradiance, where radiation can be amplified by the scattering with an absorbing,
rotating object provided that the incident radiation satisfies the following condition:

ω < mΩ , (2.1)

where ω and m are the frequency and azimuthal number of the incoming wave
while Ω is the angular velocity of the absorbing object. On a physical ground, this
condition implies for the angular phase velocity of the wave, ω/m, to be less than
the velocity of rotation of the object [47, 48]. Just an year after, in 1972 Teukolsky
decoupled the perturbation equation for massless test field on a Kerr background,
by exploiting the Newman-Penrose formalism [49]. In the same year, together with
Press, he provided the first quantitative study of BH superradiance, proving that
Zel’dovich mechanism works remarkably well for spinning BHs [50]. They also
predicted that, if superradiant scattering is supported by a confinement of the
radiation modes, an instability can develop, and give rise to striking phenomena such
as BH bombs and floating orbits. In the same years, different studies showed that
no superradiance is possible for fermionic perturbations, so that the phenomenon
is restricted to bosonic ones [51, 52, 53]. Finally, the last piece of the puzzle was
provided by Damour, Daruelle and Ruffini – and later refined by Detweiler, Zouros
and Eardley – which showed that spinning Kerr BHs are unstable under massive
bosonic field perturbation due to superradiance, as the mass of the field can naturally
provide confinement of the modes [54, 55, 56]. These studies enshrine this decade as
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the birth of BH superradiance. In the wake of these studies, BH superradiance has
gradually become a flourishing research field, and gained a renewed interest in recent
years with the discovery of GWs, which potentially allow a pletohra of observable
signatures (see 2.2.4 for details). Finally, it is important to mention that a form of
rotational superradiance was recently observed for the first time in an experiment,
in the form of plane waves propagating on a water surface and amplified by the
scattering with a draining vortex [57].

2.2 Superradiance in BH physics

2.2.1 Features of spinning BHs

In order to introduce relevant quantities that will be extensively used throughout
this thesis, let us briefly introduce the geometry of spinning BHs in GR.
Black holes are solutions in vacuum of GR. The No-hair theorem states that, within
GR, every black hole is completely characterised by three quantities: mass, angular
momentum and electric charge. Nevertheless, in the contest of astrophysical BHs,
the charge can always be neglected as several processes, i.e. charge separation of the
surrounding plasma, pair production, Hawking radiation, contribute to neutralize the
BH by any putative charge in an extremely short timescale [58, 59, 60, 61, 62]. The
metric describing the space-time around a rotating, neutral and axially-symmetric
black hole was found by Roy Kerr in 1963 [63]. In Boyer-Lindquist coordinates, the
solution reads:

ds2 = −dt2 + Σ(dr
2

∆ + dθ2) + (r2 + a2)sin2θdφ2 + 2Mr

∆ (a sin2θdφ− dt)2 , (2.2)

where ∆ = r2 + a2 − 2Mr and Σ = r2 + a2cos2θ. The metric is stationary and
axisymmetric, as it admits two Killing vectors along the t and φ directions, but not
static.
In Boyer-Lindquist coordinates, the metric has a coordinate singularity in the
submanifold ∆ = r2 + a2 − 2Mr = 0, i.e. at r± = M ±

√
M2 − a2, which are

respectively the outer and inner horizon. However, unlike in the Schwarzschild’s
case, the horizons do not coincide with the infinite redshift surfaces. In fact, the
latter are the solutions of the equation:

gtt = −1 + 2Mr

Σ = 0 . (2.3)

The equation (2.3) has two solutions at:

rs± = M ±
√
M2 − a2cos2θ . (2.4)

The outer horizon coincides with the infinite redshift surface only along the z-axis
poles, i.e. at θ = 0, π while in general r+ ≤ rs+. Thus, there exist a region
r+ < r < rs+ outside the outer horizon where gtt > 0 . This region is the ergoregion,
and the surface r = rs+ is called ergosurface. Notably, a particle could cross the
ergosurface, enter the ergoregion and then cross the ergosphere in the opposite
direction escaping at infinity without violating causality. Nevertheless, no static
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observer is allowed inside the ergoregion as the time-oriented Killing vector is spacelike
in this region. Finally, a crucial quantity that defines the Kerr geometry is the BH
horizon angular velocity:

ΩH = a

r2
+ + a2 , (2.5)

which can be interpreted as the angular velocity at the horizon of a timelike observer
falling from infinity with an initially null angular momentum, usually called ZAMO
(Zero Angular Momentum Observer).

2.2.2 A pedagogical example of BH superradiance

Let us introduce the process of superradiance in a straightforward way by considering
a simple charged, minimally coupled scalar field on a stationary, axisymmetric
background. By using the ansatz:

Φ(t, r, θ, φ) =
∫
dωe−iωtYlm(θ, φ)ϕ(r)

r
, (2.6)

one is able to decouple the angular dependence of the field from the radial one, and
rearrange the equation for the radial wavefunction as a Schroedinger-like ordinary
differential equation:

d2

dr2
∗
ϕ(r) − Veff(r)ϕ(r) = 0 , (2.7)

where the effective potential Veff depends on the nature of the background geometry
and the test field. Given that the BH horizon behaves as a one-way membrane, one
can infer the following asymptotic behaviour of the problem:

ϕ ∼
{

T e−ikHr∗ as r → r+

Reik∞r∗ + Ie−ik∞r∗ as r → ∞
, (2.8)

These boundary conditions allow to interpret the system as a scattering process:
an ingoing wave from infinity with amplitude I scatters off the potential and is
partially reflected and partially trasmitted, respectively with amplitudes R and T .
Let us now, for simplicity, assume that Veff is real. Then the equations are invariant
under t → −t, ω → −ω. We can therefore define another solution to eq. (2.7), ϕ̄,
which satisfied complex conjugate boundary conditions. As the two solutions are
independent, their Wronskian must therefore be constant. Using eq. (2.8), one can
therefore easily compute the Wronskian both at horizon and infinity and equate
them, to obtain:

|R|2 = |I|2 − kH

k∞
|T |2 (2.9)

From this equation it is easy to see that, if kH/k∞ is negative, the wave is subject
to an amplification |R|2 > |I|2. In particular, this condition is satisfied, in the Kerr
case, whenever ω < mΩH : this is exactly the rotational superradiant condition found
by Zel’dovich (2.1), provided that the angular velocity of the rotating object is now
identified with the BH horizon angular velocity! As already mentioned, in order
for superradiant scattering to be effective, the system must possess a dissipation
mechanism. In the BH case, this friction comes from the presence of the ergoregion,
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which allows for energy extraction in a similar way to the Penrose process [64]. A
common misconception is to link superradiant scattering to the presence of the
horizon: actually, horizons are not related to superradiance. The latter can as well
arise in horizonless objects possessing an ergoregion [65], while on the contrary it
cannot, for example, in the case of non-spinning BHs, which possess an horizon
but not an ergoregion. One might also wonder whether the same results can be
obtained with other fundamental fields. While higher-spin bosonic fields lead to
similar results, fermionic fields cannot undergo superradiant scattering, and possess
a completely different phenomenology [66]. The reason for this difference lies in
the very nature of fermion themselves: as these fields are described by an anti-
commutative algebra, Pauli’s exclusion principle limits the occupation number of a
given state, and therefore an amplification.

2.2.3 The role of confinement: superradiant instabilities

From the very birth of BH superradiance, it was recognized that if superradiant
scattering was to be supported by a suitable mechanism to confine modes near the
BH, the system would turn unstable. Indeed, as after a scattering the amplified,
reflected wave would not be able to escape at infinity, it would scatter the BH (and
be amplified) again many times. This is the so-called "BH bomb" scenario. To
understand why spinning BHs in confining geometries are unstable, let us introduce
a toy model with a BH placed inside a confining box. Usually, the presence of a box
allows for normal modes with a frequency which is inversely proportional to the box
dimensions: ω ∝ 1/L. Nevertheless, the presence a BH inside the box translate into
an intrinsic dissipation mechanism – via the BH horizon – so that instead of normal
modes one can expect quasi-normal modes (QNMs) ω = ωR + iωI with ωR ∝ 1/L.
In this case, by assuming an harmonic behavior of the field one has the following
expression for the amplitudes of the modes:

A(t) ∼ A0e
−iωt ∝ A0e

ωI t ≈ A0(1 + ωIt) . (2.10)

On the other hand, after a scattering off the BH, the amplitude must vary as:

A(t) = A0(1 − |A|2) , (2.11)

where A is the absorption probability the the horizon. Now consider the system
at a certain time t after N interaction between the modes and the BH, such that
N = t/L. Then, the amplitude has varied as:

A(t) = A0(1 − |A|2)N ≈ A0(1 −N |A|2) = A0(1 − |A|2t
L

) . (2.12)

By comparing eqs. (2.10) and (2.12) one obtains:

ωI = −|A|2

L
(2.13)

In the non rotating limit, |A|2 = (M/L)2l+2 [67], so that using (2.13) one obtains
a negative ωI . In this case, the amplitude decays in time and the system is stable.
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If, on the other hand, the BH rotates, one has |A|2 = (M/L)2l+1(ω − mΩH) [68].
Therefore, when the superradiant condition is met, one obtains a negative |A|2 and
therefore a positive value for ωI . From eq. (2.10), it is easy to note that such a value
corresponds to an exponential amplification of the amplitude, i.e. to the predicted
superradiantly-induced instability.
A natural question that this toy-model prompts is the possibility to have realistic
confining mechanism that could allow for the formation of superradiant instabilities
around astrophysical BHs. In the years, many different mechanism were proposed
for this purpose. For example, confinement can be provided by a non-asymptotically
flat spacetime. This is the case of Anti-De Sitter BHs, and is relevant for the
gauge-gravity duality, but less relevant from an astrophysical point of view. On the
other hand, the most promising mechanisms for astrophysical BHs are most likely
massive bosonic fields confinement and the presence of an astrophysical plasma.

2.2.4 Superradiant instabilities from massive fields

The most promising scenario that allows for superradiant instabilities around astro-
physical BHs is represented by massive bosonic fields. Indeed, a bare mass µ can
naturally confine low-frequency modes in the vicinity of the BH via a Yukawa-like sup-
pression at large distances ∼ e−kr/r, where we defined k =

√
µ2 − ω2. Clearly, from

this expression it is easy to see that this mechanism is efficient provided that |ω| < µ.
The class of modes that satisfy this requirement are usually known as quasi-bound
states (QBSs) and, as QNMs, are described by a discrete set of complex frequencies
ω = ωR + iωI . As these modes are confined near the BH and do not radiate at
infinity, they are sometimes also called non-radiative QNMs. In general, computing
the spectrum of QBS and the associated superradiant instability is challenging,
and requires numerical methods to solve the equations (see e.g. [69, 70, 71, 72] ).
Nevertheless, in particular regimes, the spectrum can be computed analitically. This
is the case, for example, of the spectrum of a Klein-Gordon field under the limit
Mµ << 1, where M is the BH mass. This case is one of the most-studied and well
understood [73, 74]. The spectrum in this case reads:

ωnlm ∼ µ− µ

2
( Mµ

l + n+ 1
)2

+ i

γlnmM

(am
M

− 2µr+
)
(Mµ)4l+5 , (2.14)

where l,m are the usual angular quantum numbers, n is the overtone number
and γlmn is a coefficient that depends on the quantum numbers 1. Notice that
when the superradiant condition is satisfied, a > 2µMr+/m, the imaginary part
becomes positive and the mode is unstable. In this case, the field starts to grow
exponentially because of the superradiant instability ∼ eωI t on a timescale τ = 1/ωI .
The instability timescale depends therefore on a/M , Mµ and l,m, n. The strongest
instability is obtained for n = 0, l = 1,m = 1. In the opposite limit Mµ >> 1,
the instability is not interesting from a phenomenological point of view as even the
shortest timescale obtainable in this regime is way larger than the age of the universe
[56]. For the instability to be efficient on astrophysical timescales, the gravitational
coupling must be of order unity Mµ ≲ 1. For astrophysical BHs with a mass range

1Note that while we focus in this section for simplicity on the spin 0 case, similar relations exist
also for vector [75, 76] and tensor superradiance [77, 78].
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within M⊙ − 109M⊙, this corresponds to boson masses between 10−20 − 10−10eV,
i.e. to ultralight bosons.
Clearly, no bosons in this mass range is known to exist in the current picture of
particle physics. Nevertheless, a plethora of candidates arise from theories beyond
the SM and GR. Examples are represented by QCD axions (or in general axion-like
particles), dark photons or massive gravitons. If such an ultralight boson exists in
this mass range, the instability can efficiently develop in a very short timescale from
an astrophysical point of view. Notice, for example, that this timescale is, in the
scalar case:

τ scalar
inst ≈ 30 days

( M

10M⊙

)( 0.1
Mµ

)9(0.9
a

)
, (2.15)

and even shorter for spin-1 [76, 79, 80, 81, 82, 83, 84] and spin-2 fields [77, 78, 85, 86].
During this timescale, the exponential growth of the field translates into the formation
of a macroscopic, bosonic condensate – usually called "cloud"– in the vicinity of the
BH. Fully non-linear numerical simulations show that the up to the 10% of the BH
mass can be extracted in the process. Due to the spin-down of the BH during the
process, the superradiant condition (2.1) is eventually violated: when this happens,
the instability saturates. Afterwards, the cloud slowly dissipates due to the emission
of nearly-monochromatic GWs [87, 88].
Superradiant instabilities represent a promising mechanism to detect ultralight
bosons. In particular, with respect to standard terrestrial experiments, they possess
at least two unique features: I) the interaction is purely gravitational. Even if such
particles interact feebly with the SM, the equivalence principle guarantees that the
interaction with gravity is universal. II) there is no need for a relic abundance:
every fluctuation will be exponentially amplified by the instability. For this reason,
these systems are characterized by a number of striking observable signatures based
on precise GW astrophysics. Among the most promising ones, there are "gaps" in
the BH mass-spin astrophysical distribution [24, 89, 83, 90, 91, 85]: the existence
of a boson with a certain mass µ would imply that BHs in a certain mass range
(i.e. such that Mµ ≲ 1) are prone to superradiant instabilities and should therefore
possess low spin. Hence, one should not observe BHs with high spin in this region of
the parameter space. On the contrary, the detection of highly spinning BHs allows
to place competitive constrains on the existence of such particles. A plethora of
signatures arise also in binary systems with a BH endowed with a cloud: examples
are dynamical friction, resonances, tidal effects [92, 93, 94, 95, 96, 97, 98]. Finally,
another observable is the detection of continuous GWs emitted by the cloud, either as
individual sources or as a stochastic background [24, 99, 100, 101, 102, 103, 104, 105].
Up to now, there has not been a detection of bosonic clouds around BHs. Nevertheless,
this phenomenon allowed to place bounds on the existence of ultralight bosons in a
previously unexplored region of the parameter space, and the forthcomings LISA
and third generation detectors will allow to search in a much wider region of the
parameter space. An up-to-date list of the current constrains on scalar and vector
particles can be found in [30].
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2.2.5 Superradiant instabilities from astrophysical plasma?

Already at the very birth of BH superradiance, Press and Teukolsky suggested
that in the presence of astrophysical plasma even ordinary photons could undergo a
superradiant instability [50, 106]. Indeed, it is well known that a photon propagating
in a plasma is dressed with an effective mass known as the plasma frequency:

ωpl =

√
nee2

me
, (2.16)

where ne,me and e are the plasma numeric density and the mass and charge of the
electron, respectively. In other words, while in vacuum the photon is characterized
by a gapless dispersion relation, in a cold plasma the dispersion relation is modified
by the presence of a gap ω2 = k2 + ω2

pl, just as in the case of massive particles.
Therefore, modes with ω < ωpl are not able to propagate within the plasma, and are
reflected back. In this case plasma is said to be overdense. Note that the response of
a plasma depends therefore on the frequency of the photon: that is to say, plasma
is a dispersive medium. Also note that, as the plasma frequency depends on the
plasma density, it must be intended in general as a spatially varying effective mass.
The possibility to trigger plasma-driven superradiant instabilities raised a widespread
interest over the years, as it would allow for a rich phenomenology without any need
to invoke ultralight bosons and BSM physics. In particular, two different scenario of
potential interest were identified:

• Non-accreting BHs could suffer superradiant instabilities because of the Inter-
stellar medium (ISM) [107, 108]. The latter is a diffuse, nearly homogeneous
galactic environment with a density in a range ne ∼ 10−3 − 1cm−3. Using eq.
(2.16), this corresponds to ωpl ∼ 10−12 − 10−10eV, i.e., almost miraculously, to
a perfect range to trigger superradiant instabilities around stellar mass BHs.
As the instability would be induced by a nearly-homogeneous and tenuous
plasma – corresponding to an ultralight and nearly constant effective mass –
this scenario was expected to be akin to the massive vector boson instability.
Remarkably, while the current plasma frequency (i.e. at z ≈ 0) matches the
required value for the instability of stellar mass BH, a similar system was also
shown to be efficient in the case of lighter primordial BHs during the radiation-
dominated era, potentially affecting the cosmic microwave background (CMB)
[108].

• An instability which is more akin to the original BH-bomb idea could instead
arise in BHs surrounded by accretion disks. Indeed, accretion disks are way
denser than the insterstellar medium, such that the effective mass would be
too high for the instability to be efficient. Nevertheless, in some cases, they
can be truncated at the innermost stable circular orbit (ISCO) or even further
away (see e.g. [109, 110, 111, 112, 113] for some truncated disk models). In
this case, one can imagine a scenario à la BH bomb where the disk behaves like
a mirror and confine the modes in the plasma-depleted region [114, 115, 116].

Such mechanisms were advocated as a possible origin of Fast radio bursts [107],
or as a way to probe the existence of primordial BHs via cosmic-distorsions in the
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CMB [108]. Nevertheless, a limitation of such studies is the assumption to model
the photon-plasma system using a Proca equation. The fact that the Proca equation
can at most be an approximation is already clear from the counting of the degrees
of freedom: a massive spin-1 field propagates three polarizations (two transverse
modes and a longitudinal one), whereas photons in a cold plasma propagate only two
transverse modes, since the putative longitudinal mode is electrostatic. Moreover,
the phenomenology of photon-plasma interactions is dramatically more complex
than a Proca toy-model also depending on the characteristics of the fluid (whether is
collisional, cold/warm ecc.) and because of non-linear features. Given the interesting
phenomenological implications of plasma-photon interactions around BHs, it is
of utmost importance to understand the system by describing in a more realistic
way photon-plasma interactions around astrophysical BHs using consistent plasma
physics.

2.3 The ABC of plasma physics
Plasma is a ionized gas, made of positive ions and free, dissociated electrons. An
ensemble of charged particle behaves as a plasma whenever the number of particles
is high enough so that the long-rage Coulomb force determines their statistical
properties, but low enough such that the force between two neighborhood particles
is negligible. In other words, due to this long-range force, charged particles in a
plasma exhibit collective behaviours. Because of its peculiar characteristics, plasma
is often called the fourth state of matter. In general, whilst made of charged particle,
a plasma is globally neutral, so that the total charge is zero. Nevertheless, the local
distribution of electrons and ions inside a plasma can vary and generate electric and
magnetic field at different lengthscales.
Notably, the 99% of the visible matter in the Universe (excluding DM and dark
energy) is in the plasma state. Plasma fills the interplanetary, interstellar and
intergalactic medium. Thus, the study of plasma is crucial to understand the details
of all the structures we can see in the Universe, from stars to galaxy clusters.

2.3.1 Debye Length and collective behaviours

As already mentioned, because of long-range forces, plasmas can be characterized
by a collective behaviour: the parameter that determines whether this behaviour
prevails over the individual interaction between two particles is known as Debye
length.
Consider a plasma in equilibrium– such that the ions and electrons are equally
distributed– and assume that an external test charge is immersed in the plasma. This
will generate an electric potential ϕ(r) inside the plasma, which will be determined
by Poisson’s equation:

∇2ϕ = e(ne − ni) , (2.17)

where ne,i are the density of electrons and ions respectively. Now, due to their large
inertia, ions can be considered a fixed background. If one assumes that electrons
follow a Boltzmann distribution with temperature T , it is possible to solve eq. (2.17)
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to obtain:
ϕ ∼ e−r/λd

r
, (2.18)

where we defined the Debye length λd = (kbT/e
2ne), which can be interpreted as

the length scale at which the test charge is influencing the system. In other words,
electrons will react to the perturbation by redistribute in order to screen the external
field over a Debye length, such that on lengths greater than this quantity collective
behaviour prevails over single interactions.

2.3.2 Plasma frequency

A peculariar characteristic of plasmas is they way the respond to electromagnetic
perturbations by acting as a system of coupled oscillator. Consider a group of
electrons in a two-species plasma that are slightly displaced from their equilibrium
position x0, while ions are fixed due to the larger inertia. Then, electrons will
experience a potential that aims to take them back to their equilibrium position.
However, when they reach x0, due to energy conservation, they will posses a non-zero
kinetic energy. Thus, they will continue past x0 until they convert the kinetic energy
in potential one and start over. Just like in a pendulum, this process gives rise to
a harmonic behaviour. If the initial displacement δx of the electrons is small, the
electric field arising from this small charge separation will be:

E = −enδx . (2.19)

By applying Newton’s law:

mea = me
d2δx

dt2
= eE = −e2nδx , (2.20)

so that one gets an harmonic differential equation δẍ = ω2
plδx, where the frequency

corresponds to the plasma frequency (2.16). In other words, perturbed electrons
behave in plasma as a system of coupled oscillators with a typical plasma frequency
ωpl.

2.3.3 Plasma models: what are you interested in?

Plasmas are undoubtedly one of the most complex systems the nature offers us.
Together with the intrinsic complexity of fluidodynamics, the action of the elec-
tromagnetic long-range force leads to a rich phenomenology at different time and
length scales. For this reason, plasmas can be described with different degrees of
approximation using several approaches.
A complete description of a many-particles system requires the knowledge of all
positions and velocities of every single particle. This is described by the N -body
distribution function F (x1, ..xN , v1, ..., vN , t). Nevertheless, in most of the cases,
this function cannot be computed, and is more useful to describe the system with a
one-particle distribution function obtained by marginalising the remaining degrees
of freedom: fα(x1, v1, t) =

∫
F (x1, ..xN , v1, ..., vN , t)dx2..dxNdv2..dvN , where α rep-

resent the particle species (electrons or ions). Such an approach is called kinetic
theory and the relevant equation that describes the system in a statistical picture is
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called Boltzmann equation. This model is incredibly powerful, and able to describe
even the shorter timescale phenomena in plasma, the already mentioned plasma
oscillations τos = 2π/ωpl. Moreover, it allows to capture effects intrinsically con-
nected to microphysics, such as the Landau damping [117]. Nevertheless, a numerical
study using kinetic theory requires particle in cell methods (PIC) [118, 119] which
are prohibitively computationally expensive in the description of large-timescale
phenomenology. On the other hand, a macroscopic description of plasmas can be
obtained by building macroscopic quantities – the specie’s velocity, density ecc. – as
statistical moments of the one-particle distribution [120, 121, 122]. This leads to the
two-fluid formalism, where electrons and ions are treated separately and described
respectively by their own continuity (2.21) and momentum equations (2.22), coupled
to the Maxwell equations, and by an equation of state (2.25):

∂nα

∂t
+ ∇ · nα(x, t)V⃗ (x, t) = 0 (2.21)

nαmα
∂V⃗

∂t
+ nαmαV⃗ · ∇V⃗ − nαqα⟨(E⃗ + v1 × B⃗

c
)⟩ + ∇ · P = mα

∫
N

V

∂fα

∂t
dv (2.22)

∇ · E⃗ = 4π
∑

α

nαqα (2.23)

∇ × B⃗ = 1
c

∂E⃗

∂t
+ 4π

c

∑
α

nαqαV⃗α (2.24)

P = P (nα) , (2.25)

where each species is labelled by an index α. Given that electrons and ions are
treated as separate fluids, the electron oscillations at the plasma frequency are still
captured by this model, which is also way computationally lighter than PIC. As this
is the pivotal effect we wish to describe, in the rest of the thesis we will adopt this
model. Note that another class of models that are often used in plasma astrophysics
are Magnetohydrodynamics (MHD) models [123, 124]. Nevertheless, MHD models
treat the electrons and ions as a single fluid and are based on the quasi-neutrality
assumption, i.e. that the total charge density vanishes ne = Zni. Clearly, this
assumption is a loss of information, as this is not true in general. Nevertheless,
as plasma as a whole is neutral, there is a length scale for which quasi-neutrality
represents a good assumption. This scale is the already introduced Debye length.
Because the fluids are treated as a whole, MHD models are unfeasible to capture the
electron oscillations and therefore the photon’s effective mass. They are therefore
only valid at large length scales LMHD >> λd and timescales τMHD >> ω−1

pl and
unsuitable for our purposes.

2.3.4 Electromagnetic waves in plasmas

The plasma frequency plays a pivotal role in the propagation of waves in plasma.
As already mentioned, a photon in a plasma is dressed with an effective mass equal
ωpl. Nevertheless, one cannot simply interpret the system as akin to a massive
vector boson. With a simple pedagogical example, we will show here how these two
scenarios dramatically deviate also in the most trivial case. Consider EM plane waves
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in a cold, collisionless, isotropic plasma with density n0. Let us assume the plasma
is initially field free (E0 = B0 = 0), and that the perturbation has an harmonic
behaviour, such that the perturbed density and velocity are also harmonic:

E = E1(x)e−iωt B = B1(x)e−iωt n = n0 + n1(x)e−iωt V = V1e
−iωt . (2.26)

In the following we will adopt a two-fluid model to describe plasma and work under
the assumption that ions, due to their large inertia, can be considered at rest.
The relevant field equations are therefore the Maxwell equations and the momentum
equation for the electron fluid velocity, which at first order in the perturbation read:

∇ ×B1 = −iωE1 + J1 (2.27)

∇ × E1 = iωB1 (2.28)

iωV1 = − e

me
E1 (2.29)

J1 = en0V1 . (2.30)

The following set of equations can be easily rearranged to obtain:

∇ × (∇ × E1) = ω2(1 −
ω2

pl
ω2 )E1 , (2.31)

which in the Fourier domain can be easily recasted in the tensorial form, assuming
the wave number is aligned in the z direction:ω

2 − ω2
pl − k2c2 0 0
0 ω2 − ω2

pl − k2c2 0
0 0 ω2 − ω2

pl


Ex

Ey

Ez

 = 0 . (2.32)

It is trivial to see that this equation has three solutions, corresponding to the three
degrees of freedom of electromagnetism in a medium: the first two are standard
transverse EM waves along the x, y direction. In this case, the dispersion relation
ω2 = k2+ω2

pl is analogous to the one of a massive field, and the plasma frequency plays
the role of an effective mass. The third solution nevertheless is the longitudinal one
along the z direction, characterized by an electrostatic dispersion relation ω2 = ω2

pl
with zero group velocity vgr = ∂ω/∂k = 0. This is a strong deviation from a Proca
theory, where the longitudinal degree of freedom propagates and is described by the
same dispersion relation as the transverse ones. Hence, even in this trivial scenario
a Proca equation is unfaithful to describe the system.
In this spirit, the following chapter will be devoted to the study of photon-plasma
interactions in curved spacetime in a coherent framework beyond the Proca toy
model, and to a dedicated characterization of plasma-driven superradiant instabilities
by taking into account the full photon-plasma dynamics.
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Chapter 3

Photon-Plasma Interactions in
Curved Spacetime

Summary
In this chapter, we investigate the linear and non-linear dynamics of an electromag-
netic field propagating in curved spacetime in the presence of plasma. The dynamical
equations are generically more involved and richer than the effective Proca equation
adopted as a model in previous work. We discuss the general equations and start
with the case of a cold plasma in the background of a spherically symmetric black
hole, showing that the system admits plasma-driven, quasibound electromagnetic
states that are prone to become superradiantly unstable when the black hole rotates.
Subsequently, we extend our framework to include thermal effects and collisions
and we generalize the system to the spinning case by adopting a slowly rotating
approach, and unveil the presence of an efficient superradiant instability at a linear
level. Finally, we discuss the impact of non-linearities on plasma-driven superradiant
instabilities by adopting a flat-spacetime toy model, and show that plasma blow-out
can jeopardize the efficiency of the confinement, rending superradiance ineffective.

3.1 Setup and general equations
A plasma can be classified in terms of its temperature. In a cold plasma the thermal
velocity of the electrons is larger than that of ions, but still much smaller than the
speed of an EM wave propagating in it, namely

vthermal ≡
√

2Te

me
≪ ω

k
, (3.1)

where ω and k are the frequency and wave number of the EM field, and Te is the
temperature of the electrons. In this case the thermal pressure is negligible. As
already shown, in a cold plasma, the longitudinal modes are plasma oscillations which
do not propagate and do not transport energy. The presence of this electrostatic
mode already shows that the Proca equation cannot fully describe the interaction of
photons with a cold plasma.
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On the other hand, in a hot plasma, the electron thermal velocity cannot be
neglected and the electrons cannot be considered at rest with respect to propa-
gating waves. In this case the electrostatic modes are converted into propagating,
energy-transporting, longitudinal modes called Langmuir waves [121]. These modes
propagate at the speed of sound in the plasma and the (nonrelativistic) equations re-
semble the Proca one in the case in which the electrons are ultrarelativistic [125, 126]
(although this approximation is beyond the regime of validity of the original equa-
tions).

As a first step, we will limit ourselves to the study of cold plasma, since the latter
provides a good description of accretion disks and ISM around BHs [127, 31]. Indeed,
in the inner region of a typical accretion disk the temperature can be estimated
as [128]

Tdisk ≃ 4 × 103α−1/4
(M⊙
M

)1/4( r
M

)−3/8
eV ≪ me, (3.2)

where α ∼ O(1) is a dimensionless coefficient relating the kinematic viscosity of the
fluid with the velocity of turbulent elements. Therefore, vthermal ≈ 0.06 or smaller.
On the other hand, for a quasibound state around a BH of mass M , ω ∼ ωpl and
k = 2π/λ, where λ ∼ M/(Mωpl)2 is the typical length scale of the mode [89, 87].
This gives ω/k ∼ 0.3 or larger for the most interesting case Mωpl ≲ 0.5. We also
stress that in this chapter we treat the plasma as spherically symmetric, and static.
The first is a simplifying assumption and should be relaxed to accommodate more
realistic accretion disk geometries. Once spherical symmetry is assumed, the plasma
is static to very good approximation: the time scales of interest to this work are
much shorter than the time scales of other important astrophysical phenomena. In
particular, the BH accretion timescale can be conservatively estimated to be given
by a fraction of the Eddington accretion timescale τaccr = M/Ṁ ∼ f−1

Edd 1015 s, where
fEdd is an accretion efficiency factor. For fEdd ∼ O(1), which is conservative as
accretion may be much less efficient, one sees that the time scale of the plasma
radial motion is much longer than the time scale of the quasi-trapped long-lived
perturbations studied below, τaccr ≫ ω−1

pl .
The general study of the propagation of EM waves through a cold plasma in curved
spacetime was pionereed in [129], where the authors derived the system of equations
governing the plasma and the EM field in a two-fluid model. As a first study, we
start from those equations and specialize to a background Schwarzschild metric, for
which we study the quasibound states for different plasma configurations.

Consider a two-component plasma made of electrons and ions. Let us denote
the number density and four-velocity of the electrons as n and uµ, while Jµ stands
for the ion current density. The system of differential equations for the plasma
quantities reads [129]

∇νF
µν = enuµ + Jµ, (3.3)

uµ∇µu
ν = e/meF

ν
µu

µ, (3.4)
uµuµ = −1, (3.5)

∇µ(nuµ) = 0. (3.6)

These are Maxwell’s equations together with the momentum and particle conservation
equations, in covariant form.
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We study the propagation of a perturbation through the plasma by introducing
the small perturbations ñ, ũµ, F̃µν , e.g. Fµν = F background

µν + F̃µν (and likewise for
other quantities). Here we neglect second-order perturbations of the plasma and
EM field, as well as any perturbation of the background metric gµν (since the
gravitational backreactions of these fields is small). We also neglect perturbations of
the ions, since they will be suppressed with respect to those of the electrons by a
factor ∝ me/mion ≪ 1. In the warm plasma case an extra term will appear, as we
will see, in the momentum equation (3.4), due to the pressure of the fluid.

The presence of a plasma implies the existence of a preferred rest frame. Locally,
the plasma defines surfaces of simultaneity for the observer, whose effective metric
tensor is

hµν = gµν + uµuν . (3.7)

The tensor hµν projects orthogonally onto the tangent rest plane of the (electron)
plasma. Then, the kinematic of an electron fluid is described by two matrices: the
rate of rotation (the vorticity) ωµν ≡ −ωνµ, and the rate of deformation θµν ≡ θνµ.
This follows from the general decomposition [130]

∇µuν = ∇(µuν) + ∇[µuν] = ωνµ + θνµ − uµu
α∇αuν , (3.8)

from which we get

ωµν = 1
2(vµν − vνµ) , (3.9)

θµν = 1
2(vµν + vνµ) , (3.10)

where we defined the tensor vµν = hµαhνβuα;β. We can also define the plasma
frequency as in Eq. (2.16), the electric component Eµ ≡ Fµ

νu
ν , the magnetic

component Bµν ≡ hµ
αhν

βFαβ , and the Larmor tensor ωL
µν = − e

me
Bµν . With these

definitions, by differentiating Maxwell’s equation (3.3) and using the momentum
equation (3.4), Ref. [129] obtained the perturbed equation for the vector potential
perturbation Ãµ, containing both the influence of the gravitational potential and
that of the moving plasma:

hα
βu

δ∇δ∇γF̃
βγ − ω2

plF̃
αβuβ + (ωα

β + ωL
α

β + θα
β + θhα

β + e

me
Eαuβ)∇γF̃

βγ = 0,

(3.11)

where θ = θµ
µ. The above equation is the starting point for a rigorous analysis of the

linearized photon dynamics in a cold plasma in curved spacetime. It is clearly very
different from an effective Proca equation which would have the form ∇α∇αÃµ =
ω2

plÃµ. In particular, note that Eq. (3.11) contains third-order derivatives.
In the flat spacetime limit and in the Fourier domain, the spatial part of Eq. (3.11)

reads

k(k · Ẽ) − k2Ẽ +
(
1 −

ω2
pl
ω2

)
ω2Ẽ = 0 , (3.12)

which exactly coincides, in Fourier space, with equation (2.31). Therefore, this
formalism correctly takes into account longitudinal electrostatic degrees of freedom:
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taking k along the z direction one can write the standard dispersion tensor D and
find its determinant, which reads det|D| = (ω2ϵ − k2)2ω2ϵ = 0, where we defined
the plasma dielectric tensor ϵ = 1 − ω2

pl/ω
2. There are two types of solutions to

this dispersion relation: the first one corresponds to the longitudinal mode with
ϵ = 0, i.e. ω = ωpl; while the second one corresponds to the two transverse modes
(ω2ϵ− k2) = 0, i.e. ω2 = k2 + ω2

pl [11].

3.2 Quasi-bound spectrum in Schwarzschild spacetime

3.2.1 Field equations in a Schwarzschild background

We now specialize to the symmetries of the Schwarzschild background. We work in
the coordinates (t, r, θ, ϕ), in which the line element reads

ds2 = −fdt2 + f−1dr2 + r2dΩ2
2 (3.13)

with f(r) = 1 − 2M/r, where M is the BH mass. In this case both the vorticity and
the deformation tensors are zero, as can be easily checked from Eqs. (3.9) and (3.10).
The four velocity of a static plasma is uα = (u0, 0⃗), with u0 = f−1/2 satisfying the
normalization condition uµu

µ = −1. From Eq. (3.4), the electric field has then only
one nonvanishing radial component Eα = (0,me/eΓr

00(u0)2, 0, 0), where Γµ
αβ are the

standard Christoffel’s symbols. We assume an unmagnetized plasma Bµν = 0 (and
therefore also ωL

µν = 0) and work in the Landau gauge, uµÃ
µ = 0,.

Moreover, in any spherically symmetric spacetime it is possible to separate the
angular part of the fields from the radial one by performing a multipolar expansion.
Following Ref. [75], we introduce a basis of four vector spherical harmonics:

Z(1)lm
µ = [1, 0, 0, 0]Y lm, (3.14)

Z(2)lm
µ = [0, f−1, 0, 0]Y lm, (3.15)

Z(3)lm
µ = r√

l(l + 1)
[0, 0, ∂θ, ∂ϕ]Y lm, (3.16)

Z(4)lm
µ = r√

l(l + 1)
[0, 0, ∂ϕ

sin θ ,− sin θ∂θ]Y lm, (3.17)

where Y lm(θ, ϕ) are the standard scalar spherical harmonics. These vector spherical
harmonics satisfy the orthogonality condition∫

dΩZ(i)lm
µ η̂µνZ(i′)l′m′

ν = δii′
δll′δmm′

, (3.18)

where dΩ = sin θdθdϕ and η̂µν = diag[1, f2, 1/r2, 1/(r2 sin2 θ)]. The perturbation of
the vector potential can be decomposed in this basis as

Ãµ(r, t, θ, ϕ) = 1
r

4∑
i=1

∑
l,m

ciu
lm
(i)(t, r)Z(i)lm

µ (θ, ϕ), (3.19)
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where c1 = c2 = 1 and c3 = c4 = 1/
√
l(l + 1). Using this decomposition and a

frequency-domain representation ulm
(i)(t, r) = ulm

(i)(r)e−iωt, the field equations become

u(1) = 0 , (3.20)(
rf(l + l2 + r2ω2

pl) − r3ω2
)
u(2) − r2f2u′

(3) = 0 , (3.21)

l(1 + l)rfu(2) + r3(ω2 − fω2
pl)u(3)

−l(1 + l)r2fu′
(2) + 2Mrfu′

(3) + r3f2u′′
(3) = 0 , (3.22)(

rf(l + l2 + r2ω2
pl) + r3ω2

)
u(4)

−2Mrfu′
(4) − r3f2u′′

(4) = 0 , (3.23)

where u′
(i) = ∂ru(i), we have suppressed the l superscript, and the radial dependence

of ωpl = ωpl(r). Owing to the spherical symmetry of the background, the equations
do not depend on the angular number m. Note that, despite the fact that Eq. (3.11)
contains third-order derivatives, the final system of equations in the frequency
domain is of second differential order.

From Eqs. (3.20)–(3.23) we can immediately notice that the polar (i.e., even-
parity) sector, described by the functions u(1), u(2) and u(3) is completely decoupled
from the axial (i.e., odd-parity) sector, described by the function u(4). This resembles
the case of a massive vector field discussed in Ref. [75] and is in fact a consequence
of the spherical symmetry of the background. We can therefore treat the two sectors
independently, as in the following.

Axial sector

Interestingly, the axial equation is identical to the axial Proca equation found in [75].
Thus, the axial sector can be easily reduced to a Schrödinger-like equation analogous
to the massive vector case [75]

D2u(4)(r) = 0, (3.24)

with D2 ≡ d2

dr2
∗

+ω2 − f
(

l(l+1)
r2 +ω2

pl

)
, and in terms of the tortoise coordinate defined

by dr∗
dr = f−1. In this case the plasma frequency plays indeed the role of an effective

mass for the component u(4). The agreement between the axial sector and the
Proca axial equation lies in the symmetries of the spacetime: the axial sector is a
superposition of purely transverse modes, and is fully decoupled from the polar one,
where the longitudinal electrostatic modes reside. Given that, as shown in 2.3.4, the
transverse degrees of freedom are Proca-like, the two sectors must coincide. Note
that, remarkably, this argument was used in [83] to theorize the similarity between
the two sectors, although the general equations of the plasma-photon system in
curved spacetime were not known. Our framework is the first one to verify this
assumption explicitly.

Polar sector

On the other hand, the polar sector propagates one Proca-line and one electrostatic
degrees of freedom, coupled to each other. Hence, because of the "contamination" of
electrostatic degrees of freedom, the polar sector is different from the Proca case.
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In the monopole case (l = 0), only the first two spherical harmonics are defined
and the field equations reduce to u(1) = 0 and

(ω2 − ω2
plf)u(2) = 0. (3.25)

Therefore, in the flat spacetime limit (M → 0) we recover the presence of electrostatic
degrees of freedom, ω2 = ω2

pl, which are typical of photons propagating in cold plasma.
For l ̸= 0, the polar equations for u(2) and u(3) can be reduced to a single

Schrödinger-like equation,
d2

dr2
∗
ψ − V (r)ψ = 0, (3.26)

where the complicated form of the effective potential V (r) is given in Appendix A.
As expected, V (r → 2M) → −ω2 and V (r → ∞) → ω2

pl(r → ∞) − ω2. The fact
that the polar sector reduces to a single second-order differential equations implies
the presence of only one dynamical degree of freedom. Note that the potential V
depends on the plasma frequency ωpl(r) and also on its radial derivatives.

3.2.2 The hydrogenic spectrum for Proca modes

In the next section we shall compute the quasibound states of our problem by solving
Eqs. (3.24) and (3.26) numerically with suitable boundary conditions. The latter
select an infinite set of complex eigenfrequencies: ω = ωR + iωI . It will be useful to
compare the results with the case of a Proca field with mass ℏωpl = const around a
Schwarzschild BH. In the latter case, the spectrum has a clear physical interpretation
in the Newtonian limit, which corresponds to the Compton wavelength of the Proca
field, ∼ 1/ωpl, being much larger than the horizon size. This requires Mωpl ≪ 1.
To leading order in this limit the spectrum of quasibound states has a hydrogenic
form [131, 75, 79, 76, 83]

ωR ∼ ωpl

(
1 − (Mωpl)2

2(l + S + 1 + n)2

)
, (3.27)

ωI ∼ −1
2C

(1)
lS (Mωpl)4l+2S+5ωR , (3.28)

where l is the total angular momentum1 of the state with spin projections S = −1,
0, 1 (with S = 0 for axial modes and S = ±1 for the two polarizations of polar
modes), n is the overtone number (n = 0 for the longest-lived, fundamental mode),
and C

(1)
lS are constants (given, e.g., in Ref. [30]). The most unstable mode is the

polar dipole with S = −1, l = 1, which has C(1)
1−1 = 16 [83]. The dominant slope

of the imaginary part of the mode is ωI ∝ (Mωpl)10 for the axial dipole, and
ωI ∝ (Mωpl)8 and ωI ∝ (Mωpl)12 for the two polar dipole modes. The above
analytical approximation in the Newtonian limit is in excellent agreement with the
exact numerical results [73, 69, 83, 91, 132, 72, 77, 85].

In the spinning case, the imaginary part acquires a factor ωI ∝ (ωR − mΩ),
which depends on the BH angular velocity Ω. Therefore, in the superradiant

1This can be seen by applying the angular-momentum operator to the state [83]. Note that l was
erroneously identified with the orbital angular momentum in Ref. [75]. See Ref. [30] for a discussion
of different spherical bases used in the literature.
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regime, ωR < mΩ, the modes with the smallest slope in the static case (namely, the
polar dipole with S = −1) become the ones with the shortest instability timescale,
τ = 1/ωI [30].

In the next section we shall compare our numerical results for the full plasma-
photon system with the above hydrogenic behavior of a Proca field.

3.2.3 Plasma profiles

We consider two different plasma profiles: a homogeneous density profile and a Bondi-
like accretion disk model. We will examine first the case of homogeneous density,
and therefore homogeneous plasma frequency, ωpl = const. This approximation
is obviously not realistic, especially close to the BH. However, it will serve as a
warm-up to elucidate the structure of the equations and identify the correct limit
asymptotically far from the BH.

Then, we will consider a radial dependence ωpl = ωpl(r), as expected in the
surroundings of a spherically symmetric BH. In particular, we will consider the
Bondi-like accretion disk model, which describes the accretion dynamics of a non-
self-interacting gas around a spherically symmetric compact object [133]. This model
predicts a power-law density profile for the gas and consequently a plasma frequency
of the type

ω2
pl(r) = ω2

B

(2M
r

)λ
+ ω2

∞, (3.29)

where
√
ω2

B + ω2
∞ is the plasma frequency at the horizon (since in the relevant regime

ω∞ ≪ ωB, with a little abuse of notation we shall refer to ωB as the horizon plasma
density). The slope λ depends on the adiabatic index of the gas (e.g., λ = 3/2 for
monoatomic species). The constant term ω∞ is the asymptotic plasma frequency at
infinity, i.e the interstellar medium plasma frequency far away from the central BH.

3.2.4 Numerical method

We compute the characteristic frequencies of our system using a direct integration
shooting method [134, 76, 75]. The main idea is to integrate the system from the
horizon outwards to infinity, imposing suitable boundary conditions. Close to the
horizon, the solution must be a purely ingoing wave, as the horizon behaves as a
one-way membrane,

u(i) ∼ e−iωr∗
∑

n

b(i) n(r − 2M)n, (3.30)

where the coefficients b(i) n can be computed in terms of the arbitrary coefficient
b(i) 0 by expanding the relevant equations near the horizon. At infinity, the solution
at the leading order can be written in its most generic form as

u(i) ∼ B(i)e
−k∞r∗ + C(i)e

+k∞r∗ , (3.31)

where k∞ =
√
ω2

pl(r → ∞) − ω2. We are interested in strongly localized, quasibound
state solutions for ω < ωpl, and we will therefore impose the condition C(i) =
0, implying exponentially damped solutions at infinity, and solve the associated
eigenvalue problem. This method does not rely on a specific shape of the effective
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potential and is thus extremely flexible. Moreover, the direct integration method
works particularly well for the computation of quasibound states, while it is expected
to be less precise for the computation of normal modes (corresponding to the
boundary condition B(i) = 0), especially for the highly damped modes.

Since the axial and polar sectors are decoupled and each one is described by a
single second-order differential equation, for a given value of l we expect to find two
families of modes (axial and polar), each one defined by an overtone number n. In
the following we shall mainly focus on the fundamental (n = 0) modes, although
tracking a fixed overtone number is difficult in the small Mωpl regime. As we shall
see, in the same regime the imaginary part of the mode can become extremely small
and sensitive to small numerical errors. The latter can be reduced by increasing the
numerical accuracy and the truncation order of the series expansions at the horizon
and at infinity.

This procedure is also suitable to find unstable modes, i.e. those with ωI > 0
and whose time dependence is exponentially growing as eωI t. We have searched for
such modes in different configurations and found none, confirming the reasonable
expectation that the system is stable in the static case.

3.2.5 Numerical Results

Constant Density plasma

Figure 3.1 shows the real part and the imaginary part of the axial eigenvalues
ω = ωR + iωI , normalized to the plasma frequency. We consider l = 1 and two
different overtone numbers, respectively n = 0 (orange) and n = 1 (blue). As
expected, the imaginary part of the frequency is always negative and represents a
mode which is exponentially decaying in time, while the real part is always smaller
than ωpl, a necessary condition to obtain solutions that are confined in the vicinity of
the BH. Since the axial sector is the same as in the Proca case, this plot is equivalent
to what found in Ref. [75] for the axial quasibound states of a Proca field around a
Schwarzschild BH. The dashed curves shown in Fig. 3.1 correspond to the hydrogenic
spectrum expected in the Mωpl ≪ 1 limit.

While in the axial sector the potential is simple and equivalent to that of a Proca
equation, in the polar sector the situation is different. Indeed, not only are the
equations more involved than in the Proca case, but the polar sector only contains
a single propagating mode, in contrast with the two polar modes of a Proca field.
Thus, as expected, the structure of the plasma-driven polar quasibound states is
different and cannot be mapped into a hydrogenic spectrum as in the axial case.
This is shown in Fig. 3.2.

In this case the numerical computation of the eigenfrequencies becomes increas-
ingly more challenging for values of the coupling Mωpl ≲ 0.4 and we therefore do
not show the lower part of the spectrum in Fig. 3.2. However, in order to investigate
the small-mass coupling regime, Mωpl ≪ 1, we separately studied smaller intervals
around Mωpl ≃ 0.15, as shown in Fig. 3.3. Although the numerical results are
noisy in this limit, we find that the scaling of ωI is significantly different from the
hydrogenic behavior predicted in the Proca case for S = −1. Indeed, our best fit
yields ωI/ωpl ∼ (Mωpl)10.84, to be compared with ωI/ωpl ∼ (Mωpl)7 for the S = −1
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Figure 3.1. Imaginary (upper panel) and real (lower panel) part of the plasma-driven
quasibound EM mode of a Schwarzschild BH in the axial sector for the case ωpl = const.
The imaginary part of the frequency is always negative, while the real part is always
smaller than the plasma frequency. We show the fundamental mode (n = 0, orange)
and the first overtone (n = 1, blue) for l = 1. The dashed curves correspond to the
hydrogenic spectrum, which is recovered as expected in the limit Mωpl ≪ 1. Note that
the axial sector is equivalent to that of a Proca field [75].

Proca mode. In fact, we find a scaling that is quite close to the (subleading) polar
mode with polarization S = 1 for the massive vector case [75]. The reason why the
numerical computation of the polar sector in the low-frequency regime is challenging
resides on the presence of a resonance. This will be explained in more detail in 3.3,
where a more detailed analysis is performed.

In some sense, the plasma-driven EM quasibound states are phenomenologically
closer to a massive scalar field than to a Proca field. In both plasma-driven EM
fields and massive scalar fields, the minimum scaling of the imaginary part (which
sets the shortest, and therefore most interesting, mode lifetime) is ωI/ωpl ∼ (Mωpl)9.
This scaling is set by the axial dipole mode in the plasma-photon system. Thus, the
lifetime of the fastest quasibound states in the plasma-driven case is parametrically
longer than for a Proca field – for which the shortest lifetime is set by the polar
modes – by a factor (Mωpl)−2 ≫ 1.
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Figure 3.2. Same as in Fig. 3.1 but for the polar sector. In this case the modes do not
reduce to the hydrogenic Proca spectrum in the Mωpl ≪ 1 limit.

3.2.6 Plasma profile from Bondi accretion

We now analyze the quasibound states for a more realistic plasma density profile,
as predicted by Bondi accretion. In this case the axial sector is also described
by Eq. (3.24), except for a radial dependence in the plasma frequency ωpl →
ωpl(r) =

√
ω2

B(2M/r)λ + ω2
∞. The polar sector is again more involved and its

potential depends nontrivially on the radial derivatives of the plasma frequency. The
equations for the polar case are presented in Appendix A.

In Fig. 3.4 we show the results for the imaginary and real part of the frequency
in the axial sector as a function of ω∞, the quantity that would asymptotically
corresponds to a mass term. In all cases we fix λ = 3/2 for the Bondi model
(corresponding to monoatomic gas) and we show the results for different values of
the horizon plasma frequency ωB. We notice that, as in the homogeneous plasma
case, the real (imaginary) part of the frequency decreases (increases) monotonically
with Mω∞. The effect of ωB is the opposite: larger values of the density in the
vicinity of the BHs lead to a smaller imaginary part and a larger real part. Indeed,
for larger values of ωB it is more difficult to find minima in the effective potentials,
i.e. it is more difficult to support quasibound states. In fact, we were not able to find
quasibound states solutions for ωBM ≳ 1.7, in good agreement with the numerical
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Figure 3.3. Imaginary part of the plasma-driven EM quasibound mode in the polar sector
in Mωpl ≪ 1 regime. The blue dots indicate the numerical data; the black solid line is
the best-fit power law, while the red line denotes the hydrogenic scaling in the Proca
case.

study in Ref. [115] for a scalar toy model. Furthermore, this behavior is consistent
with the ωB → 0 limit, as in this case the spectrum shown in Fig. 3.1, with smaller
values of the real part of the eigenfrequencies, must be recovered.

Note that, in general, the imaginary part of the quasibound states for a Bondi
plasma profile is smaller than in the homogeneous-plasma case. This makes the
numerical computation harder, especially for polar modes for which the imaginary
part is even smaller than in the axial case. Although not shown, we were also able
to compute the plasma-driven polar mode in the case of a Bondi profile, at least
when Mω∞ = O(1). As in the homogeneous case, the axial modes are found to be
the shortest lived for small values of the plasma frequency.

3.3 An extended phenomenology: Collisions, thermal
corrections and superradiant instability

In this section, we include three effects that were neglected in the previous one:
collisions in the plasma, thermal corrections, and the angular momentum of the
background black-hole spacetime. We show that collision and thermal effects – as
expected– do not affect significantly the quasibound states in the astrophysical
environments of interest, so that the spectrum is robust with respect to the plasma
features. Afterwards, we show that the spectrum can turn superradiantly unstable
at a linear level when the BH rotates.
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Figure 3.4. Imaginary (upper panel) and real (lower panel) part of the quasibound state
frequency in the axial sector for a photon in a Bondi-accretion plasma model, see
Eq. (3.29). The imaginary part is always negative, while the real part is always smaller
than the plasma frequency, as expected. The imaginary part of the frequency decreases
(the modes become short-lived) as the horizon plasma ωB density increases.

3.3.1 Collisional plasma

So far, we have ignored particle collisions in the plasma. This amounts to assume that
the collision rate between electrons and ions is much smaller than the characteristic
oscillation frequency of the plasma, ωpl. In other words, it was assumed that the
time τ between two electron-ion collisions is much longer than the other physical
timescales in the problem. Here we show that indeed the inclusion of collision effects
does not affect our results in the astrophysical environments of interest.

Let us first modify the set of Eqs. (3.3)-(3.6) in order to take into account
electron-ion collisions. The electron equation of motion acquires an extra term [135]

uµ∇µu
ν = e

me
F ν

µu
µ − 1

τ
uν . (3.32)

At the microscopic level, τ can be thought as arising from Coulomb collisions between
electrons and ions around the BH [136]

τ ≃ 2πm2
ev

3
e

nee4 log Λ , (3.33)

where ve is the typical electron velocity and log Λ is the Coulomb logarithm. However,



3.3 An extended phenomenology: Collisions, thermal corrections and
superradiant instability 32

in the interest of generality, in the following we will treat the collision timescale τ as
an independent parameter in the perturbed equations.

With this addition the perturbation equation (3.11) becomes

hα
βu

δ∇δ∇γF̃
βγ − ω2

plF̃
αβuβ +

1
τ

hα
β∇γF̃ βγ

+(ωα
β + ωL

α
β + θα

β + θhα
β + e

me
Eαuβ)∇γF̃

βγ = 0,

(3.34)

where we highlighted the new term due to collisions in bold.
In Sec. 3.3.3 we will solve this equation numerically for a nonrotating BH, and

show that the effect of collisions can be safely neglected. As a back-of-the-envelope
estimate, one can compare the collision timescale due to electron-proton Coulomb
interactions with the other relevant timescale in the problem: ω−1

pl . For densities
and temperatures of astrophysical relevance, the collision timescale is much longer
than the plasma oscillation time,

τ ωpl ≃ 2 × 1011
(

T

107K

)3/2 ( ne

104cm−3

)−1/2
, (3.35)

where we estimated the typical electron velocity as their thermal velocity ve ≃
0.03

√
T/(107K) and took Λ ≃ 20. Notice that τωpl ≫ 1 even for much higher values

of ne, as those typical of accretion disks in the vicinity of the BH. Furthermore, using
the background electron velocity to estimate the collision timescale is a conservative
choice. In fact, when electrons are accelerated to relativistic velocities (as in the
case of the superradiant instability discussed below), the collision timescale is even
longer.

3.3.2 Warm plasma

Up to now, we have considered a cold plasma and ignored pressure terms in the
electron equations of motion. We now turn our attention to thermal corrections
arising in a warm plasma with temperature T . Thermal corrections are conceptually
different from the relativistic and nonlinear corrections studied in Refs. [137, 138],
arising from the acceleration of electrons to very large velocities by a strong electric
field. These accelerations, however, do not imply that the plasma temperature is
high. In a warm (hot) plasma the thermal velocity is comparable to (much higher
than) the typical velocities of the propagating modes, which might not be the case
even if the electrons are relativistic. Here we study what happens when thermal
motion is turned on and the resulting thermal pressure gradients need to be included.

The warm plasma model adopted here is an intermediate framework between
the cold plasma model (where thermal motion is completely neglected) and the
hot plasma model (where thermal motion is relevant and cannot be treated within
the fluid description adopted here). Since the velocities associated with the typical
temperature of an accretion disk (see Eq. (3.2)) are smaller than, or at most
comparable to, the phase velocity of the propagating EM mode described by a
quasibound state (see 3.1 and the estimate below), an intermediate, warm-plasma
approximation is well justified.
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In a warm-plasma model, the momentum equation of the electrons [Eq. (3.4)]
must be modified with a pressure correction [139],

uµ∇µu
ν = e

me
F ν

µu
µ − ∇νp (3.36)

where p = nkBT is the pressure of an ideal gas. The system of equations must be
closed by an equation of state p = p(ρ) with ρ = mene in the nonrelativistic regime.
In this case the equation for the perturbed EM field (3.11) is modified to

hα
βu

δ∇δ∇σF̃
βσ − ω2

plF̃
αβuβ + e γ v2

th h
α

β∇βñe

+(ωα
β + ωL

α
β + θα

β + θhα
β + e

me
Eαuβ)∇σF̃

βσ = 0 ,

(3.37)

where v2
th = kBT/me is the electron thermal velocity and we assumed a polytropic

equation of state with index γ, i.e., p ∝ ργ . This allows us to relate, at leading
order, a perturbation in the temperature T̃ to a perturbation in the electron density:
T̃ = (γ − 1)T ñe/ne.

Maxwell’s equations also relate the density perturbation to the perturbation of
the EM tensor. The thermal correction in Eq. (3.37) can thus be expressed in terms
of the EM tensor perturbation alone,

hα
βu

δ∇δ∇σF̃
βσ − ω2

plF̃
αβuβ − γ v2

th hα
β∇βuµ∇νF̃ µν

+ (ωα
β + ωL

α
β + θα

β + θhα
β + e

me
Eαuβ)∇σF̃

βσ = 0 ,

(3.38)

where again the term due to thermal pressure modifying Eq. (3.11) is highlighted in
bold. In the next section we shall solve this equation numerically in a Schwarzschild
background and show that the effect of the plasma temperature can be safely
neglected in realistic astrophysical settings, especially for the dominant quasibound
states of the system. As a simple numerical estimate, Eq. (3.38) suggests that
thermal effects will be negligible as long as

γv2
th ≃ γ10−2

√
T

107K ≪ 1 . (3.39)

3.3.3 Quasibound states in a collisional plasma

We now solve for the EM perturbation in a collisional plasma, Eq. (3.34), around a
nonspinning BH using the same numerical procedures as in the previous section. By
performing the multipolar expansion (3.19), Eq. (3.34) gives

f2u′′
(4) + 2fMr−2u′

(4)

+r−3
[
r3ω2 − fr(l(l + 1) + r2ω2

pl)
]
u(4)

+
fω2

pl
1 − iτωf−1/2u(4) = 0, (3.40)
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for the axial sector, and

f2u′′
(3) + fF (r)u′

(3)

+
(

−fl(l + 1)
r2 + ω2 +

i
√
fτωω2

pl
1 − iτωf−1/2

)
u(3) = 0, (3.41)

for the polar sector, where u′
(i) = ∂ru(i) and F (r) is given in Appendix A.3. As

expected, when τω → ∞ we recover the equations governing the collisionless case
studied in 3.2. Interestingly, the standard collisional term iτω appearing in flat
spacetime is modified by a redshift factor, (1 − 2M/r)−1/2.
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Figure 3.5. Imaginary (top) and real (bottom) part of the axial l = 1 mode for the
quasibound states of a cold, collisional plasma in a Schwarzschild background as a
function of the collision timescale τ , normalized by the plasma frequency. For large
collision time τ ≫ 1/ωpl, the results are identical to the collisionless case discussed in 3.2.
When the collision time becomes very short, τ ≪ 1/ωpl, the collisions between electrons
and protons shorten the lifetime of the bound states.

In Fig. 3.5 and 3.6 we show the imaginary and real part of the fundamental axial
and polar modes, respectively, as a function of the collision time, for four values of
the plasma frequency. For any value of ωpl the dependence on τ is qualitatively the
same. Namely, for very large collision timescales τ ≫ ω−1

pl , the frequencies coincide
with the collisionless frequencies. As expected, collisions are irrelevant when the



3.3 An extended phenomenology: Collisions, thermal corrections and
superradiant instability 35

����

����

����

����

����
����
����

-
��

(ω
/ω
��
)

Mωpl=0.8

Mωpl=0.7

Mωpl=0.6

Mωpl=0.5

� ��� ��� ��� ���
����

�����

����

�����

����

�����

τω��

�
�(
ω
/ω
�
�)

Figure 3.6. Same as in Fig. 3.5 but for the polar sector. The behaviour of the modes is
the same as in the axial case, and a quenching occurs as τωpl ≪ 1.

time between two collisions is much longer than the characteristic time of plasma
oscillations. On the other hand, when the time between collisions is short, τ ≪ ω−1

pl ,
the absolute value of the imaginary part starts to increase, i.e., the lifetime of the
mode is shortened. Collisions between electrons and protons in this case rapidly
quench the quasibound states. However, as shown in Eq. (3.35), the limit τ ≪ 1/ωpl
is never realized in astrophysical environments, and collisions can be safely neglected.
Indeed, realistic values of τωpl are much bigger than those shown in Fig. 3.5.

This numerical result can be understood analytically as follows. Eq. (3.40) can
be re-written to resemble the standard axial equation in the collisionless case, which
coincides with the Proca axial equation, as

Dτ
2u(4)(r) = 0, (3.42)

where Dτ
2 ≡ d2

dr2
∗

+ ω2 − f
(

l(l+1)
r2 + µ2

eff

)
has the same differential form as in 3.2 but

with the plasma frequency replaced by a collisions-dependent effective mass

µ2
eff = ω2

pl

(
1 − 1

1 − iτωf(r)−1/2

)
. (3.43)

The effective mass determines the behavior of the quasibound states at infinity,
k∞ =

√
µ2

eff(r → ∞) − ω2. Clearly, in the limit τ → ∞, the effective mass tends to
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the plasma frequency, and the collisionless spectrum is recovered. In the opposite
limit, τ → 0, the effective mass goes to zero – unable to spatially confine the modes –
and consequently the quasibound spectrum is quenched. Similarly, in the polar case
we found an effective mass at infinity

µ2
eff ∼ ω2

pl

(
1 − 1

1 − iτω

)
, (3.44)

which asymptotically coincides with the axial one. Thus, also in the polar sector the
effective mass term at infinity goes to zero as plasma becomes strongly collisional,
and the polar quasibound spectrum is quenched.

3.3.4 Quasibound states in a plasma with thermal corrections

We now turn our attention to thermal corrections. Applying the multipolar decom-
position to Eq. (3.36), we obtain a system of differential equations for the mode
functions in frequency domain,

f2γv2
thr

4u′′
(2) + 3

2γ(f − 1)fr3v2
thu

′
(2)

−f2r3
(
γv2

th − 1
)
u′

(3)

−r2[fl(l + 1) + γ/2
(
6f2 + f − 3

)
v2

th

+r2(fω2
pl − ω2)

]
u(2)

+1
2γf(3f + 1)r2v2

thu(3) = 0 , (3.45)

f2r3u′′
(3) + (1 − f)fr2u′

(3)

−f(−γv2
th + 1)l(l + 1)r2u′

(2)

+r
[
−fγv2

thl(l + 1) − fω2
plr

2 + r2ω2
]
u(3)

−l(l + 1)r
[
γv2

th − f(2γv2
th + 1)

]
u(2) = 0 , (3.46)

r2f2u′′
(4) + r(1 − f)fu′

(4)

−
[
f(l + l2 + r2ω2

pl) + r2ω2
]
u(4) = 0 . (3.47)

In the polar sector we find the usual distinction between longitudinal u(2) and
transverse u(3) modes. The former are non-dynamical in a cold plasma, but become
propagating, energy-transporting modes (Langmuir waves in flat spacetime [121])
due to the thermal corrections. Indeed, from Eq. (3.45) it is easy to see that the
degree of freedom u(2) becomes dynamical only for vth ̸= 0. To show that this mode
behaves as a Langmuir wave, we take the flat spacetime limit: for r → ∞ and in
momentum space Eq. (3.45) reads

ω2u(2) = (ω2
pl + k2γv2

th)u(2), (3.48)

which is the Bohm-Gross dispersion relation describing Langmuir modes in a warm
plasma [121]. In the same limit, the equation for the transverse mode (3.46) becomes

ω2u(3) = (ω2
pl + k2)u(3). (3.49)
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Therefore, this EM wave is unaffected by thermal corrections at infinity. This
is a general feature of a warm plasma model in flat spacetime: transverse waves
are unaffected by pressure [122]. In curved spacetime, thermal corrections couple
longitudinal and transverse polar modes and the dynamics is more involved.

On the other hand, and more importantly for our scopes, the axial sector governed
by Eq. (3.47) is unaffected by first-order thermal corrections and is the same as
in the cold-plasma case studied in 3.2. Indeed, being a transverse mode, u(4) is
unaffected at infinity, and due to the spherical symmetry of the spacetime it does
not couple to the polar, longitudinal, thermally-affected modes even near the BH.
Given that the axial modes are the most relevant ones for the quasibound spectrum
of the system, we conclude that warm-plasma corrections can be safely neglected
when studying EM quasibound states and superradiance in astrophysical systems.

Thermal effects should be carefully considered for a hot plasma, where transverse
modes also become affected by temperature [122]. In this case, the system must be
studied using kinetic theory, solving a set of coupled Vlasov-Maxwell equations. A
study of this type is beyond the scope of this work and left for future investigation.

3.3.5 Polar quasibound states in the low plasma frequency regime:
reflection point in inhomogeneous plasmas

In 3.2, we computed EM quasibound states in a cold, collisionless plasma at the
linear level. For the polar sector, we were unable to explore the ωplM ≪ 1 regime
with high precision, and we could only provide an estimate of the behaviour of the
quasibound spectrum in this limit. In the following, we explain the physical origin of
the issues encountered in the polar sector in the low-plasma-frequency limit, relating
them to the behaviour of inhomogeneous plasmas in flat spacetime. Furthermore,
we show that, as in flat spacetime, the inclusion of dissipative mechanisms such as
collisions, thermal or nonlinear effects can “smooth out” the low-plasma-frequency
regime.

The fact that, in curved spacetime, plasma behaves as an inhomogeneous medium
– even when assuming a constant electronic density – can be understood by inspecting
the monopole sector of the polar equation in the cold, collisionless case, given by
equation (3.25). This resembles the equation describing longitudinal modes ψL in
plasma physics: ϵψL = 0, where ϵ is the dielectric tensor2. The solution to this
equation gives the dispersion relation for longitudinal modes, ϵ = 0. By analogy, we
introduce an effective dielectric tensor in the BH background,

ϵeff = 1 −
ω2

pl
ω2 (1 − 2M

r
). (3.50)

Note that in the near-horizon limit r ∼ 2M Eq. (3.25) admits only the trivial solution
u(2) = 0. Indeed, no electrostatic modes can exist at the BH horizon. Notice that
the same occurs in the case of a massive (both scalar and vector) field, making the
mass contribution subdominant at the horizon [140, 75, 141]. In the flat spacetime
limit, we instead recover the standard solution for electrostatic modes ω2 = ω2

pl, as
discussed in 3.2.

2The dielectric tensor reduces to a scalar when the plasma is isotropic (unmagnetized), as
assumed here.
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However, due to the BH curvature correction, the effective dielectric gains a
dependence on the radius, ϵeff = ϵeff(ω, r). Therefore, plasma can be considered
effectively inhomogeneous even when ne = const, due to the spacetime curvature [142,
143]. A peculiar characteristic of inhomogeneous plasmas is the presence of a spatial
point, known as reflection point, where the dielectric tensor vanishes, i.e., ϵ(ω, r) = 0.
At this point, the longitudinal electric field and some components of the transverse
magnetic and electric field diverge [144, 145]. Clearly, this divergence is not physical:
dissipation mechanisms should be added to the theory to make the field equations
well-behaved at the reflection point.

Some of the most important dissipative channels are absorbtion via collisions
(as discussed above) and the formation of plasma waves. When collisions are taken
into account, the dielectric tensor acquires an imaginary part, the divergence is
removed and a sharp (but finite) Breit-Wigner resonance appears instead3. Thermal
corrections can also cure the divergence near the point ϵ = 0 [146, 147].

Clearly, these two effects play a major role in a strongly collisional or warm
plasma. If dissipative effects are not strong enough, although the divergence is
removed, the maximum value of the electric field may still be very large. In this
case, nonlinear effects will play the role of the dominant dissipative effect [137]. A
nonlinear treatment would take into account the motion of electrons due to the
strong electric field, modifying the plasma density near the resonance point. For an
analysis of this nonlinear effect in flat spacetime, see [148, 145].

A similar situation arises in our system. The dielectric tensor of Eq. (3.50)
makes its appearance in the denominator of the effective potential in the polar
sector (see Appendix A). In the case at hand, another important dissipation chan-
nel arises: the BH horizon. In the large plasma frequency regime (Mωpl > 0.4),
dissipation through the horizon is sufficient to give rise to a complex mode fre-
quency with a non negligible imaginary part ωI ≲ ωpl, so that the dielectric tensor
is complex and the field is well behaved. On the other hand, in the small plasma
frequency regime, the BH horizon alone cannot quench the resonance and we have
ωI ≪ ωpl. Given that in the relevant astrophysical scenarios the plasma is cold and
collisionless to very good approximation, we expect that nonlinearities will play
the role of the dominant dissipative channel in this regime. Nonlinear effects are
therefore crucial for the high-precision computation of the polar sector for ωplM ≪ 1.

In the following, as a proof of principle, we characterize the role played by
dissipative channels in the vicinity of the reflection point by focusing on a strongly
collisional plasma as modelled in the previous sections. Although in the astrophysical
systems of interest collisions can be neglected and the main dissipative effect is of
nonlinear nature, we use this analysis as a jumping off point to clarify how the
divergence is cured when the dielectric tensor becomes complex.

Figure 3.7 shows the absolute value squared of the complex polar wavefunction u(3)
for different values of the collision time τ for a small plasma frequency. The position
of the sharp peak corresponds to a vanishing dielectric function, r/M = 2/(1−ω2/ω2

pl)
from Eq. (3.50). The peak is “smoothed out" as collisions come to dominate over

3A system in which collisions play the role of the dominant dissipative channel is the Earth’s
ionosphere , where the dielectric tensor depends on the altitude z [144].
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Figure 3.7. Absolute value squared of the polar l = 1 wavefunction u(3) for different values
of the collision parameter τ at Mωpl = 0.35. As plasma becomes more collisional, the
resonance at the reflection point is smoothed out.

the resonance, showing that, when dissipation channels are included in the theory,
the field becomes well-behaved. In flat spacetime, the effect of nonlinearity can be
similarly included by adding an effective collision frequency, νeff , to the dielectric
tensor [148, 145]. Thus, we expect that nonlinear effects should produce an effect
similar to the one shown in Fig. 3.7.

3.3.6 Linearized plasma-photon dynamics in a Kerr spacetime

In previous sections we showed that collisions and thermal corrections have a small
effect on quasibound states around a nonspinning BH. We are therefore justified to
neglect these effects, and to focus our attention on plasma-induced superradiance
in a Kerr background for a cold, collisionless plasma. In this section we derive the
relevant linear perturbation equations to first order in the spin using a slow-rotation
expansion [71] and numerically solve these equations to find superradiant modes.

Let us consider the Kerr metric in Boyern-Lindquist coordinates, given by (2.2)
As in the nonspinning case, since the plasma accretion timescale is much longer

than the dynamical timescale of the problem, we assume a static plasma. Static
observers exist outside the ergoregion of a spinning BH and their four-velocity
reads uα = (u0, 0⃗), with u0 = g

−1/2
00 so that Eq. (3.6) is satisfied. At O(a/M) the

ergosphere coincides with the outer horizon, r+ = 2M + O(a2/M2), so that, to this
order, static observers exist all the way to the BH horizon.

Using the momentum equation (3.4) we obtain the background electric four-vector
field giving rise to the static configuration, Eα = (0,me/e (u0)2Γr

00,me/e (u0)2Γθ
00, 0),

which possesses both a radial and an angular component. We also assume the plasma
to be unmagnetized.

Contrary to the Schwarzschild case, where both the vorticity and deformation
tensors vanish, in the Kerr spacetime the rotation of the BH induces a nontrivial
vorticity in the fluid. The vorticity tensor is antisymmetric and has two nonvanishing
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components,

ωrϕ = − a
(
Σ − 2r2) (a2 − ∆ + r2)

2r
√

Σ (∆ + Σ − r2 − a2)3/2 sin2 θ, (3.51)

ωθϕ = − a∆
(
a2 − ∆ + r2)

√
Σ (∆ + Σ − r2 − a2)3/2 sin θ cos θ, (3.52)

which are nonzero already to first order in the BH spin. The deformation tensor
remains zero in Kerr.

It is again convenient to separate the angular sector of the field from the radial
one through a multipolar expansion. While in Schwarzschild the axial and polar
sectors can be fully decoupled from each other thanks to spherical symmetry, in
Kerr the axial and polar perturbations with different index l are coupled, making
the field equations more challenging to solve [71]. Several methods were developed
in order to solve the equations of a massive spin-1 field in a Kerr background, using
a slow-rotation expansion [79, 76], analytical methods valid for ultralight Proca
fields [83, 72], or numerically either without separability of the equations [91] or
using a recently-discovered separability technique [82, 132].

In the following, owing to the complexity of the field equations for the problem
at hand, we use the slowly-rotating approach to solve the EM perturbation equa-
tion (3.11) perturbatively. The field equations are expanded with respect to the
dimensionless spin parameter ã = a/M ≪ 1 around the nonspinning case ã = 0, and
solved at different orders. This method was shown to perform well for Proca fields
at second order, even for values of the spin close to extremality [76]. In our case, we
are mostly interested in whether the quasibound modes discussed above and in 3.2
can turn unstable in the superradiant regime.

Using the multipolar expansion (3.19) and a frequency-domain representation,
at first order in the spin the field equations assume the following form

ul
(1) = 0 , (3.53)

Al +Ql,m[Ãl−1 + (l − 1)Bl−1]
+Ql+1,m[Ãl+1 − (l + 2)Bl+1] = 0, (3.54)

l(l + 1)αl − imζl + imγl

−Ql,m[(l + 1)(ηl−1 − (l − 1)δl−1)]
+lQl+1,m[ηl+1 + (l + 2)δl+1] = 0, (3.55)

l(l + 1)βl + imηl + imδl −Ql,m[(l + 1)(ζl−1

+(l − 1)γl−1)] + lQl+1,m[ζl+1 − (l + 2)γl+1] = 0, (3.56)

where Ql,m =
√

l2−m2

4l2−1 while the quantities Ai, Bi, Ãi, αi, βi, ζi, γi, δi, and ηi

involve the mode functions ui
(2), u

i
(3), and ui

(4) and their derivatives and are listed in
Appendix B. This set of equations has a similar schematic form as the one obtained
in the Proca case at linear order in the BH spin [76]. In particular, perturbations
with a given parity and angular-momentum number l only couple with perturbations
of opposite parity and index l ± 1 (as shown in Appendix B, the terms Ai, αi, ζi, γi

are polar quantities, while Bi, Ãi, ηi, βi, δi are axial). Note that Al, αl, and βl
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contain corrections proportional to mã, whereas all other functions are proportional
to ã.

As a generic property of the set of linear perturbations, the terms multiplied by
Ql,m do not affect the spectrum at first order in the spin and can be neglected at
this order [149, 76, 79, 71]. This leads to an axial-led equation for ul

(4),

l(l + 1)βl + imηl + imδl = 0 , (3.57)

and a polar-led system of equations for ul
(1), u

l
(2), and ul

(3),

ul
(1) = 0 , (3.58)
Al = 0, (3.59)

l(l + 1)αl − imζl + imγl = 0, (3.60)

The two sectors are decoupled and do not involve couplings between different-l
modes.

Axial sector at first order in the BH spin

Using the explicit form of the coefficients given in Appendix B, Eq. (3.57) can be
rewritten as

D2u(4)(r) − 4amMω

r3 u(4) =
4mMaω2

pl(r − 2M)
l(l + 1)r4ω

u(4), (3.61)

where we have suppressed the l superscript and used the differential operator
D2 ≡ d2

dr2
∗
+ω2−f

(
l(l+1)

r2 + ω2
pl

)
previously introduced (see eq. (3.24). Equation (3.61)

deviates from the axial equation of a Proca field at first order in the spin [76] due
to the presence of the term on the right-hand side. This correction is due to the
vorticity tensor, which vanishes in the nonspinning case. Therefore, even at first
order, we expect the spectrum to deviate quantitatively from that of a Proca field.

Polar sector at first order in the BH spin

The polar sector can be reduced, at first order in the spin, to a single second-order
differential equation

d2

dr2
∗
ψ − V (r)ψ = 0, (3.62)

for an appropriately defined field variable ψ (see Appendix B.2). As in the nonspin-
ning case, although the original equations depended on two independent functions
u(2) and u(3), the polar sector describes only one dynamical degree of freedom. The
other degree of freedom does not propagate and remains electrostatic.

In the Schwarzschild limit (a → 0) the effective potential reduces to the one
obtained in 3.2. In the spinning case, the potential depends on the azimuthal
number m. Moreover, the boundary condition at the horizon is modified, since
V (r → r+) = −(ω2 − 2mωΩH), where ΩH is the angular velocity at the horizon of
locally nonrotating observers at first order in ã. Note that this factor coincides with
the expected superradiant factor, (ω −mΩH)2 at first order in the BH spin.
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Figure 3.8. Imaginary part of the axial l = 1 = m mode for different values of the plasma
frequency ωpl. The imaginary part of the mode changes sign and becomes superradiant
when the superradiant condition ωR < mΩH is met. Black dots represent Proca modes
with l = 1 = m. The difference between the two spectra is always less than 2%.

As discussed in Sec. 3.3.5, owing to the importance of nonlinear effects in the
ωplM ≪ 1 regime, a nonlinear analysis of the polar sector in a Kerr spacetime is
necessary to investigate its spectrum. Therefore, in the next following we shall focus
only on the superradiantly unstable axial sector.

3.3.7 Plasma-driven superradiant instability: numerical results

As in 3.2, we consider two different plasma profiles: a homogeneous density profile
and the Bondi-like spherical accretion flow given by eq. (3.29).

We solve Eqs. (3.61) and (3.62) numerically with the shooting method described
in 3.2. The boundary conditions are now modified according to the behavior of the
effective potential at the horizon and at infinity.

Constant density plasma

In 3.2, we showed that the axial spectrum of the EM field around a nonspinning
BH coincides with the axial sector of a Proca field, i.e. the real and imaginary part
in the Newtonian regime coincide with Eqs. (3.27) and (3.28) with S = 0. On the
other hand, the polar spectrum differed from Proca’s and was subdominant in the
large mass coupling regime Mωpl > 0.4.

Since in the slow-rotation expansion the spin is introduced perturbatively, we
expect that the axial mode should provide the shortest instability timescale in the
superradiant regime, at least for values of Mωpl which are not too small, in order to
avoid the reflection point previously discussed for the polar modes.

In Kerr, the field equations depend on the azimuthal number m. Therefore, the
spectrum is characterised by a Zeeman-like splitting for different azimuthal numbers.
In particular, modes with m > 0 can become unstable if the superradiant condition
ωR < mΩH is satisfied. Figure 3.8 shows the absolute value of the imaginary part of
the axial modes with l = 1 = m at first order in the BH spin, for different values of
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the homogeneous plasma frequency. The black dots, for comparison, represent the
modes of a Proca field with mass ℏωpl. Interestingly, despite the fact that Eq. (3.61)
deviates from the axial Proca equation at first order, the two spectra almost coincide;
the difference between an EM and a Proca mode at fixed ωpl is always less than
2%. When the superradiant condition ωR < mΩH is met, the imaginary part
changes sign and the modes become superradiantly unstable. Since ωR ∼ ωpl and
ΩH ∼ a/(4M2) +O(ã3) for a quasibound mode with Mωpl ≪ 1, the superradiant
condition is met at ã ∼ 4Mωpl, in good agreement with the crossing points in Fig. 3.8.
Note that, since ΩH = O(ã), the superradiant condition requires ωplM = O(ã) or
smaller, making it difficult to solve the equations numerically. Indeed, strictly
speaking the superradiantly unstable modes require O(ã2) corrections (see Ref. [76]
for a discussion), although first-order results are already sufficiently accurate [30].
When Mωpl ≪ 1, the real part of the modes depends only very weakly on the BH
angular momentum and is very well approximated by the hydrogenic relation (3.27),
just as for Proca fields [76].

Bondi Accretion Model

We now analyze the spectrum for a Bondi accretion model, where the plasma
frequency acquires a dependence on the radius ωpl → ωpl(r) as described by Eq. (3.29).
The modes can be obtained by solving Eq. (3.61) taking into account the radial
dependence of the effective mass.

Figure 3.9 shows the (absolute value of the) imaginary part of the fundamental
axial mode with l = m = 1 as a function of the spin parameter ã for different
values of ωB in the case ω∞ = 0.05/M . For these modes ωR/ω∞ ∼ 1, therefore
the superradiant condition ωR < mΩH becomes 4Mω∞ < ã, in agreement with the
crossing points in Fig. 3.9. Consequently, for sufficiently low plasma densities at the
horizon, the system admits plasma-driven superradiant modes, with much larger
timescales than in the ωpl = const. case. As shown in Fig. 3.9, as ωB increases the
timescale of the mode also increases, and can become comparable to the Salpeter
time. For such weakly-unstable modes, accretion must be taken into account; in
particular, our formalism becomes inaccurate in this regime, as we assumed the
plasma to be static.

As shown in Ref. [115] (by using a Klein-Gordon toy model) and in 3.2, if
the density at the horizon grows above a critical value, the spectrum is completely
quenched, making the plasma-driven instability very fragile in realistic configurations.

3.4 The nonlinear death of plasma-driven superradiant
instabilities

The analysis of the last section disclosed that the photon field can be naturally
confined by plasma in the vicinity of the BH via the effective mass, forming qua-
sibound states that turn unstable if the BH spins. Nevertheless, a crucial issue
was unveiled in [137], where it was argued that, during the superradiant phase,
nonlinear modifications to the plasma frequency turn an initially opaque plasma into
transparent, hence quenching the confining mechanism and the instability itself. In
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Figure 3.9. Superradiant axial modes with l = 1 = m in a Bondi accretion model [see
Eq. (3.29)] with plasma asymptotic frequency ω∞ = 0.05/M , for different values of the
plasma frequency at the horizon, ωpl ≈ ωB. The imaginary part of the modes is some
orders of magnitude smaller than in the ωpl = const. case, and can become comparable
to the Salpeter time (marked as a dashed line for the case of M = 10M⊙).

the nonlinear regime, a transverse, circularly polarized electromagnetic (EM) wave
with frequency ω and amplitude E modifies the plasma frequency of a homogeneous
plasma as [150]

ωpl =
√√√√ nee2

m
√

1 + e2E2

m2ω2

, (3.63)

where the extra term is the Lorentz factor of the electrons. In other words, as the
field grows, the electrons turn relativistic and their relativistic mass growth quenches
the plasma frequency. As argued in Ref. [137], the threshold of this modification
lies in the very early stages of the exponential growth, before the field can extract a
significant amount of energy from the BH.

While in this specific configuration the quenching of the instability is evident, this
argument suffers for a number of limitations. In particular, circularly polarized plane
waves in a homogeneous plasma are the only solutions that are purely transverse, as
the nonlinear v⃗ × B⃗ Lorentz force vanishes (here v⃗ is the velocity of the electron,
while B⃗ is the magnetic field). In this case, the plasma density is not modified
by the travelling wave and even a low-frequency wave with large amplitude can
simply propagate in the plasma, without inducing a nonlinear backreaction. In
every other configuration instead (including an inhomogeneous plasma, different
polarization, or breaking of the planar symmetry, all expected for setups around
BHs), longitudinal and transverse modes are coupled, and therefore the plasma
density can be dramatically modified by the propagating field. This backreaction
effect leads to a richer phenomenology as high-amplitude waves can push away
electrons from some regions of the plasma, thus creating both a strong pile-up of
the electron density in some regions and a plasma depletion in other regions. For
example, in the case of a circularly polarized wave scattered off an inhomogeneous
plasma, the backreaction on the density increases the threshold for relativistic
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transparency, as electrons are piled up in a narrow region, thus increasing the local
density and making nonlinear transparency harder [151]. However, in the case of
a coherent long-timescale phenomenon such as superradiant instability, one might
expect that, if the plasma is significantly pushed away by a strong EM field, the
instability is quenched a priori, regardless of the transparency. Overall, the idealized
configuration of Ref. [150] never applies in the superradiant system, and the nonlinear
plasma-photon interaction is much more involved.

The goal of this section is to introduce a more complete description of the relevant
plasma physics needed to understand plasma-photon interactions in superradiant
instabilities. To this purpose, we shall perform 3 + 1 nonlinear numerical simulations
of the full Maxwell’s equations.

3.4.1 3 + 1 decomposition of the field equations

Generic spacetime

In the following, we will decompose the set of equations (3.3)-(3.6) at a fully non-
linear level by adopting a 3+1 formalism. Let us introduce a foliation of the spacetime
into spacelike hypersurfaces Σt, orthogonal to the 4-velocity of the Eulerian observer
nµ. We then express the line element as

ds2 = −(α2 − βiβ
i) dt2 + 2βi dx

i dt+ γij dx
i dxj , (3.64)

where α is the lapse, βi is the shift vector, and γij is the spatial 3-metric. We can
define the electric and the magnetic fields as [152]

Eµ = −nνF
νµ, Bµ = −nνF

∗νµ, (3.65)

where F ∗µν = −1
2ϵ

µνλσFλσ is the dual of Fµν . The EM tensor can be decomposed as

Fµν = nµEν − nνEµ + (3)ϵµνσBσ, (3.66)

where (3)ϵµνσ = nλϵ
λµνσ is the Levi-Civita tensor of the spacelike hypersurface Σt.

Note that Eµ and Bµ are orthogonal to nµ and are spacelike vectors on the 3-surfaces
Σt.

We can define the charge density as ρ = nµJ
µ, and the 3-current as (3)Jµ = hµ

νJ
ν ,

where hµ
ν is the projection operator onto Σt. Finally, we can write the Maxwell

equations as [152]

DiE
i = ρ, (3.67)

DiB
i = 0, (3.68)

∂tE
i = LβE

i + αKEi + [D⃗ × (αB⃗)]i + α (3)J i, (3.69)
∂tB

i = LβB
i + αKBi − [D⃗ × (αE⃗)]i, (3.70)

where Di is the covariant derivative with respect to the 3-metric γij , and Kij is the
extrinsic curvature. Here the first equation is the Gauss’ law, the second equation is
equivalent to the absence of magnetic monopoles, and the last two are the evolution
equations for the electric and magnetic fields, respectively. The EM 4-current is
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given by ions and electrons Jµ = Jµ
(ions) + Jµ

(e). We assume ions to be at rest, due to
the fact that m ≪ m(ions), so that Jµ

(ions) = ρ(ions)n
µ. For electrons instead we have

Jµ
(e) = −eneu

µ. Let us decompose uµ into a component along nµ, Γ = −nµuµ, and a
component on the spatial hypersurfaces, (3)uµ = hµ

νu
ν . The 4-velocity of the fluid

can be written as
uµ = Γnµ + (3)uµ = Γ(nµ + Uµ) , (3.71)

where we defined (3)uµ = ΓUµ. The above expression allows us to write ρ = nµJ
µ =

ρ(ions) + ρ(e) = ρ(ions) + enEL, where nEL = Γne is the electron density as seen by
the Eulerian observer. The density of ions is constant in time, and will be fixed
when constructing the initial data4. As Jµ

(ions) is orthogonal to Σt, the 3-current
(3)Jµ receives only contributions from electrons, and we have (3)Jµ = −eneΓUµ =
−enELUµ. Thus, the source terms that appear in Eqs. (3.67)-(3.69) are

ρ = ρ(ions) + enEL,
(3)Jµ = −enELUµ. (3.72)

Let us now move to Eq. (3.4). Projecting it on nµ and Σt we obtain respectively
(see Appendix C for the explicit computation):

∂tΓ = βi∂iΓ − αU i∂iΓ + αΓKijU iU j

− ΓU i∂iα+ e

m
αEiUi , (3.73)

∂tU i = βj∂jU i − U j∂jβ
i − αai − αU iKjlU jU l

+ α

Γ
e

m

(
−U iEjUj + Ei + (3)ϵijlBlUj

)
+ 2αKi

j U j + U iU j∂jα− αU jDjU i (3.74)

Finally, we can write the continuity equation (3.6) as

∂tnEL = βi∂inEL + αKnEL − αU i∂inEL − αnEL∇µUµ. (3.75)

While the above decomposition is valid for a generic background metric, from now
on we will focus on a flat spacetime.

Flat spacetime

We use Cartesian coordinates, so that gµν = ηµν = diag{−1, 1, 1, 1}. As a conse-
quence, we have that for any 3-vector (3)V i = (3)V i, and

α = 1, βi = 0, Kij = 0. (3.76)

In these coordinates we can write the equations for the EM field as

∂iE
i = ρ(ions) + enEL, (3.77)

∂iB
i = 0, (3.78)

∂tE
i = [∂⃗ × B⃗]i − enELU i, (3.79)

∂tB
i = −[∂⃗ × E⃗]i, (3.80)

4Note that with the conventions we used, electrons carry positive charge, while ions carry negative
charge.
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the evolution equations for Γ and U i as

∂tΓ = −U i∂iΓ + e

m
EiUi, (3.81)

∂tU i = −U j∂jU i + 1
Γ
e

m

[
−U iEjUj + Ei + (U⃗ × B⃗)i

]
, (3.82)

and the continuity equation as

∂tnEL = −U i∂inEL − nEL∂iU i. (3.83)

Moreover, from the normalization condition that uµuµ = −1 we can obtain a
constraint for Γ and U i:

Γ2(1 − U iUi) = 1. (3.84)

3.4.2 Numerical Setup

In this section we discuss our numerical setup, describing the integration scheme
and the initialization procedure.

Integration scheme

We evolve E⃗, B⃗, Γ, U⃗ , and nEL with Eqs. (3.79)-(3.83), using the constraints (3.77)
and (3.84) to evaluate the convergence of the code. The profile of ρ(ions) is kept
constant, consistently with the approximation that ions are at rest. For the numerical
integration we used the fourth-order accurate Runge-Kutta algorithm, computing the
spatial derivatives with the fourth-order accurate centered finite differences scheme.
For simplicity we shall simulate the propagation of plane EM wave packets along the
z direction, and therefore we will obtain field configurations that are homogeneous
along the x and y directions. This feature allows us to impose periodic boundary
conditions in the x and y directions, as they preserve the homogeneity of the solution
without introducing numerical instabilities. We impose periodic boundary conditions
also on the z axis and, in order to avoid the spurious interference of the EM wave
packet with itself, we choose grids with extension along z large enough to avoid
interaction with spurious reflected waves during the simulations.

Initialization procedure

When constructing the initial data for the simulations we first set the profile of the
plasma. We start by setting Γ(t = 0, x⃗) = 1 and U⃗(t = 0, x⃗) = 0, so that the plasma
is initially at rest. Then, we initialize the profile of nEL with barrier-like shape of
the following form:

nEL(t = 0, x⃗) = 2nbkg − nmax

+ (nmax − nbkg)

×
[
σ(z;W1, z1) + σ(z; −W2, z2)

]
, (3.85)

Where σ(z;W, z0) = (1 + e−W (z−z0))−1 is a sigmoid function. The qualitative
behavior of Eq. (3.85) is shown in Fig. 3.10, where we can see that nbkg is the
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Figure 3.10. Qualitative behavior of the barrier-shaped initial profile for the plasma,
Eq. (3.85). nmax and nbkg are the values of the plasma density inside the barrier and
on the background, while the parameters z1,2 and W1,2 determine the position and the
steepness of the boundaries of the barrier, respectively.

background value of the plasma density and nmax is the plasma density at the
top of the barrier. The parameters z1,2 determine the location and width of the
barrier, while the parameters W1,2 control its steepness. Note that this profile was
chosen to reproduce a very crude toy model of a matter-density profile around a
BH [153], where the accretion flow peaks near the innermost stable circular orbit and
is depleted between the latter and the BH horizon. In our context this configuration
is particularly relevant because EM waves can be superradiantly amplified near the
BH and plasma confinement can trigger an instability [108, 114, 115, 116]. Finally,
the constant profile of ρ(ions) is determined by imposing that the plasma is initially
neutral, so that ρ(ions)(t = 0, x⃗) = −enEL(t = 0, x⃗). Once the profile of the plasma
has been assigned we proceed to initialize the EM field. We consider a circularly
polarized wave packet moving forward in the z-direction:

E⃗ = AE

cos[kz(z − z0)]
sin[kz(z − z0)]

0

 e− (z−z0)2

2σ2 , (3.86)

B⃗ = AE
kz

ω

− sin[kz(z − z0)]
cos[kz(z − z0)]

0

 e− (z−z0)2

2σ2 , (3.87)

where AE is the amplitude of the wave packet, σ is its width, z0 its central position, ω
is the frequency, and kz =

√
ω2 − ω2

pl, where ωpl =
√

e2 nbkg
m is the plasma frequency

computed using nbkg, as the wave packet is initially located outside the barrier (i.e.,
σ ≪ z1 − z0).
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3.4.3 Results

Here we present the results of our numerical simulations of nonlinear plasma-photon
interactions in different configurations. We shall consider a low-frequency, circularly
polarized wave packet propagating along the z direction and scattering off the plasma
barrier with the initial density profile given by Eq. (3.85).

Linear regime

As a consistency check of our code, we tested that for sufficiently low amplitude
waves our simulations are in agreement with the predictions of linear theory. We
set units such that e = m = 1 and consider an initial wave packet of the electric
field centered at z0 = 0, with a characteristic width σ = 5. We also set ω = 0.5 and
AE = 10−6, so that the evolution can be described by the linear theory. The plasma
barrier was situated between z1 = 40 and z2 = 100, and we set W1 = W2 = 1. The
background density of the plasma was nbkg = 0.01 so that ω(bkg)

pl = 0.1 and all the
frequency content of the EM wave is above the plasma frequency of the background.
We run 6 simulations with nmax = {nbkg, 0.25, 0.5, 0.75, 1, 1.25}, that correspond to
plasma frequencies at the top of the barrier ω(max)

pl = {0.1, 0.5, 0.707, 0.866, 1, 1.12},
respectively, and fall in different parts of the frequency spectrum of the EM wave
packet. In the linear regime, we expect that the frequency components above ω(max)

pl
will propagate through the plasma barrier, while the others will be reflected, and
this setup allows us to clearly appreciate how this mechanism takes place. In all
these simulations we used a grid that extends in [−1, 1] × [−1, 1] × [−450, 450],
with a grid step ∆x = ∆y = ∆z = 0.2 and a time step ∆t = 0.1, so that the
Courant-Friedrichs-Lewy factor is CFL = 0.5 The final time of integration was set
to T = 400. Figure 3.11 shows some snapshots of the numerical results at different
times for different values of ω(max)

pl . It is evident that the analytical predictions
of linear theory are confirmed: as the plasma frequency of the barrier increases,
less and less components are able to propagate through it and reach the other side.
In particular, when ω

(max)
pl ≳ 0.9 the wave is almost entirely reflected, and the

transmitted component becomes negligible. Furthermore, in the linear regime the
backreaction on the density is effectively negligible, as the barrier remains constant
over the entire simulation (in fact, we observed a maximum variation of nEL of the
order of 10−11, which is clearly not appreciable on the scale of Fig. 3.11).

To better quantify the frequency components that are propagated and the
agreement between the simulations and the analytic expectation in the linear regime,
we computed the (discrete) Fourier transform of the time evolution of Ex in two
points along the z axis: z = −50 and z = 150, which are located before and after
the plasma barrier, respectively. Figure 3.12 shows the absolute value of the Fourier
transform for the different values of the plasma frequency in the barrier, which are
represented as vertical dotted lines. As we can see from the Fourier transform at
z = 150, the transmitted waves have only components with frequency ω > ω

(max)
pl , in

agreement with the fact that only modes above this threshold can propagate. Hence,
the barrier perfectly acts as a high-pass filter, with a critical threshold given by the
plasma frequency.
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Figure 3.11. Propagation of an EM wave packet on a barrier of plasma in the linear
regime. Here we show some snapshots of the evolution of Ex for different values of the
plasma density in the barrier, nmax, and we represent the initial profile of nEL with a
gray dashed line. When the plasma frequency in the barrier ω(max)

pl becomes larger than
ω, the wave packet is mostly reflected by the barrier, while the transmitted component
is suppressed. The corresponding animations are available online [154].
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Figure 3.12. Absolute value of the discrete Fourier transform of Ex extracted before
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Nonlinear regime

We can now proceed to increase the amplitude of the field until linear theory breaks
down and the interaction becomes fully nonlinear. As anticipated, we shall show
that the evolution is more involved than in the idealized model described in [150].
Indeed, even from a first qualitative analysis, it is evident from the z-component of
the momentum equation (3.82) that in the nonlinear regime electrons will experience
an acceleration along the z axis due to the nonlinear Lorentz term (U⃗ × B⃗)z. The
formation of a current along the z directions implies a modification of the density
profile because of the continuity equation, and also the formation of a longitudinal
electric field that tries to balance and preserve charge neutrality. In the following,
we will support this qualitative analysis with the results of the numerical simulations
and show that nonlinear effects can have a dramatic impact on the system dynamics.

In this set of simulations, we set units5 such that e = 1 and m = 1000, and
we consider an initial wave packet of the electric field centered at z0 = −150, with
a width6 σ = 100 and ω = 0.001. We vary the amplitude of the EM in a range
0.1 ≤ AE ≤ 1000. As for the plasma profile, we adopt a similar geometric model
to the linear case, with the barrier placed between z1 = 100 and z2 = 650, with
W1 = W2 = 0.1. We consider a background density nbkg = 5×10−6, and a maximum
barrier density nmax = 0.5, that corresponds to a plasma frequency of ω(max)

pl = 0.022.
We use a numerical grid that extends in [−2, 2] × [−2, 2] × [−750, 850], with a grid
spacing ∆x = ∆y = ∆z = 0.2, and a time step ∆t = 0.1, so that CFL = 0.5. The
final time of integration was set to T = 500.

The parameters are chosen such that the frequency of the wave packet is always
much larger than ω

(bkg)
pl , but a significant component of the spectrum, namely

≈ 97.5%, is below the plasma frequency of the barrier, and should therefore be
reflected if one assumes linear theory. First of all, we quantify the value of the electric
field which gives rise to nonlinearities. A crucial parameter that characterizes the
threshold of nonlinearities in laser-plasma interactions is the peak amplitude of the
normalized vector potential, defined as a0 = eA/m (see e.g. [155, 156]). Specifically,
when a0 ≳ 1, electrons acquire a relativistic transverse velocity, and therefore the
interactions become nonlinear. Given our units, and estimating A ≈ E/ω, we obtain
a critical electric field Ecrit ≳ mω/e ≈ 1.

We performed a set of simulations choosing different values of the initial amplitude
of the EM wave packet in the range 0.1 ≤ AE ≤ 1000. Figure 3.13 shows snapshots
of the numerical simulations for some selected choices of AE . It is possible to
observe that in the case AE = 1 (top panel) the density profile of plasma is not
altered throghout all the simulation, as in the linear case discussed in the previous
section. Moreover, at sufficiently long times, the wavepacket is reflected by the
barrier, in agreement with linear theory predictions. From the second panel on (i.e.

5Note that, in rationalized Heaviside units, changing m (and hence the classical electron radius)
simply accounts for rescaling lengths, times, and masses in the simulations. Lengths and times are
rescaled by [m]−1, while the electric field amplitude scales as [m]2. Hence, the results of this section
can be obtained in the case m = 1 by rescaling the other quantities accordingly.

6While formally the initial profile of the EM field, Eq. (3.87), represents a circularly polarized
wave packet, the chosen value of the parameter σ reduces the y component of the electric field,
making the polarization effectively elliptic.
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Figure 3.13. Snapshots of the evolution of Ex (solid line) and nEL (dashed lines) for the
simulations of the propagation of an EM wave packet inside a plasma barrier in the
nonlinear regime. The initial profile of nEL is not varied across the simulations, and
the different panels refer to different choices of the initial amplitude of the wave packet.
The backreaction effects of the EM field onto the plasma density increase with AE , and
for AE ≳ 50 wave packet “transports” electrons along the z axis, eventually creating a
plasma-depleted region (blowout regime). The corresponding animations are available
online [154].
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as AE ≳ 10), instead, the wavepacket induces a nonnegligible backreaction on the
plasma density. This effect increases significantly for higher amplitudes, and it is due
to the nonlinear couplings between transverse and longitudinal polarizations: the
nonlinear Lorentz term (U⃗ × B⃗)z in the longitudinal component of the momentum
equation (3.82) induces a radiation pressure on the plasma, and hence a longitudinal
velocity U⃗z; as electrons travel along the z direction and ions remain at rest, a large
longitudinal field due to charge separation is created, which tries to balance the effect
of the Lorentz force and restore charge neutrality. This phenomenology resembles
the one of plasma-based accelerators, where super-intense laser pulses are used to
create large longitudinal fields that can be used to accelerate electrons [157].

To quantify the collective motion induced by nonlinearities we computed the
velocity dispersion of electrons as

√
⟨U2⟩ =

√∫
V d

3xnEL UiU i∫
V d3xnEL

. (3.88)

Since the field are constant along the transverse directions7, then nEL(x, y, z) =
nEL(z) and U i(x, y, z) = U i(z). This allows us to evaluate the above integral as

√
⟨U2⟩ =

√√√√∫ z+∞
z−∞

dz nEL(z) Ui(z)U i(z)∫ z+∞
z−∞

dz nEL(z) , (3.89)

where z±∞ are the boundaries of the z domain and we compute the integral using
the trapezoidal rule. In the upper panel of Fig. 3.14 we plot the behavior of the
velocity dispersion with respect to the initial amplitude AE for different times. As
we can see the nonlinearities start becoming relevant in the range 1 ≲ AE ≲ 10,
where electrons start to acquire a collective motion. This is also confirmed by the
middle panel, where the solid and dashed lines denote the maximum of |U⃗ | and Uz,
respectively. While these quantities do not represent the collective behavior of the
system, they have the advantage of not containing the contribution given by the
portion of the plasma barrier that has not been reached yet by the EM wave. From
this plot we can observe that in the range 1 ≲ AE ≲ 10, the electrons start acquiring
a relativistic velocity with a large component on the transverse plane.

As already mentioned, the longitudinal motion of electrons generate a longitudinal
field. Nevertheless, plasmas can sustain longitudinal fields only up to a certain
threshold, usually called wave-breaking (WB) limit, above which plasma is not able
to shield and sustain anymore electric fields, and the fluid description breaks down.
This phenomenon was pioneered in [158] for the case of nonlinear, nonrelativistic
cold plasmas, where the critical longitudinal field for WB was found to be Ez

WB =
mωpl/e, and later generalized for pulses with relativistic phase velocities [159]. This
threshold field represents the limit after which the plasma response loses coherence
as neighbouring electrons start crossing each other within one plasma frequency
period. Therefore, above this critical electric field the plasma is not anymore able
to coherently act as a system of coupled oscillators, and the fluid model based on
collective effects breaks down. This leads to the formation of a spike in nEL, which

7In Appendix D.2 we show how the homogeneity of the fields along the transverse plane is
preserved during the evolution.
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Figure 3.14. Collective behavior of plasma in the nonlinear regime as a function of
the initial amplitude AE of the EM wavepacket. The upper panel shows the velocity
dispersion

√
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longitudinal velocity ⟨Uz⟩. The nonlinearities start becoming relevant in the range
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the blowout regime, where electrons are “transported” by the EM field, and acquire a
positive collective longitudinal velocity.
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eventually diverges, and to a steepening of the longitudinal component of the electric
field. Full particle-in-cell numerical simulations are required after the breakdown (see,
e.g., [160, 161]). In our simulations, we observe the WB phenomenon at late time
for large values of the electric field, in which cases we can only extract information
before the breakdown of the model.

In order to better appreciate how the WB takes place, we repeated the simulation
with AE = 1 for a longer integration time and a larger grid. In the upper panel of
Fig. 3.15 we show the evolution of Ex (solid lines) throughout all the simulation,
where we can clearly see that the incoming wave packet is reflected by the plasma
barrier. However, for t ≈ 700, the longitudinal component of U⃗ leads to an evolution
of the plasma density. In this stage the plasma loses coherence and nEL develops
local spikes that increase in height and becomes sharper with time. When one of
these spikes becomes excessively narrow, the fluid description of the system breaks
down and the simulation crashes. This can be observed from the bottom panel of
Fig. 3.15, where we show the longitudinal component of E⃗ together with the plasma
density profile. Note that WB occurs as soon as the nonlinearities come into play
(we observed it already for AE = 1), and the fluid description in the nonlinear regime
cannot be used for long-term numerical simulations. However the good convergence
of the code even slightly before WB takes place (see Appendix D.1) ensures the
reliability of the results up to this point.

Overall, Figs. 3.13 and 3.15 show that for AE ∼ 1 the system becomes weakly
nonlinear, in agreement with the previously mentioned analytical estimates.

Going back to the snapshots of the evolutions in Fig. 3.13, we now wish to
analyze the behavior of the system for larger electric fields, where the backreaction
is macroscopic. We can see that in this case, i.e. for AE ≳ 50, all the electrons in
the plasma barrier are “transported” in the z direction and piled up within a plasma
wake whose density grows over time. This corresponds to a blowout regime induced
by radiation pressure. In order to better describe how the system reaches this phase,
we can compute the longitudinal component of the collective electron velocity as

⟨Uz⟩ =
∫

V d
3xnEL Uz∫

V d
3xnEL

=
∫ z+∞

z−∞
dz nEL(z) Uz(z)∫ z+∞

z−∞
dz nEL(z) , (3.90)

where, again, we took advantage of the homogeneity of the system along the transverse
direction to reduce the dimensionality of the domain of integration. The results
are shown in the lower panel of Fig. 3.14, where we can see that for AE ≲ 10, the
longitudinal momentum remains low and is not influenced by the wavepacket. For
AE ≳ 10 instead, ⟨Uz⟩ starts to increase in time, indicating that the system is in
the blowout regime, as electrons are collectively moving forward in the z direction.

Overall, the above analysis shows that when the idealized situation studied
in [150] cannot be applied and the nonlinear Lorentz term does not vanish, the
general physical picture is drastically different and that penetration occurs in this
setup due to radiation-pressure acceleration rather than transparency.

3.4.4 Implication for the instability and conclusions

Motivated by exploring the plasma-driven superradiant instability of accreting BHs
at the full nonlinear level, we have performed 3 + 1 numerical simulations of a plane
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wave of very large amplitude but small frequency scattered off an inhomogeneous
plasma barrier. Although nonlinear plasma-photon interactions are well studied in
plasma-physics applications, to the best of our knowledge this is the first analysis
aimed at exploring numerically this interesting setup in generic settings.

One of our main findings is the absence of the relativistic transparency effect
in our simulations. As already mentioned, the analysis performed in [150] showed
that, above a critical electric field, plasma turns from opaque to transparent, thus
enabling the propagation of EM waves with frequency below the plasma one. From
Eq. (3.63), such critical electric field for transparency is Etransp

crit = m
e

√
ω2

pl − ω2.
In our simulations, we considered electric fields well above this threshold, yet we
were not able to observe this effect. On the contrary, in the nonlinear regime the
plasma strongly interacts with the EM field in a complex way. The role of relativistic
transparency in more realistic situations than the one described in [150] was rarely
considered in the literature and is still an open problem [162]. Nevertheless, some
subsequent analysis found a number of interesting features, and revealed that its
phenomenology in realistic setups is more complex.

In Ref. [151] an analytical investigation of a similar setup was performed by
considering the scattering between a laser wavepacket and a sharp boundary plasma.
The conclusion of the analysis is that, when plasma is inhomogeneous, nonlinearities
tend to create a strong peaking of the plasma electron density (and hence of the
effective plasma frequency), suppressing the laser penetration and enhancing the
critical threshold needed for transparency. Subsequently, Refs. [163, 164] confirmed
this prediction numerically, and showed that in a more realistic scenario transparency
can occur but the phenomenology is drastically different from the one predicted
in [150]. For nearly-critical plasmas, transparency arises due to the propagation
of solitons, while for higher densities the penetration effect holds only for finite
length scales. Nevertheless, these simulations were performed by considering a
simplified momentum equation due to the assumption of a null-vorticity plasma,
which is typically suitable for unidimensional problems, but likely fails to describe
complex-geometry problems as the one of superradiant fields. Using particle-in-cell
simulations, it was then realized that radiation-pressure can push and accelerate the
fluid to relativistic regimes, similarly to our results, and produce interesting effects
such as hole-boring, ion acceleration, and light-sail [165, 166].

While the complicated interplay between relativistic transparency and radiation-
pressure acceleration is still an open problem [162, 167], we argue that the latter,
which arises in generic situations with very overdense plasmas and high amplitude
electric fields, is sufficient to dramatically quench the plasma-driven superradiant
instability. To enforce this conclusion, we provide a rough estimate of the total
energy extracted from the BH before nonlinear effects take place [137]. In order for
the instability to be efficient on astrophysical timescales, ω ≲ ωpl ≈ O(1/(GM)),
where G is Newton’s constant and M is the BH mass [115]. This gives a critical
electric field

Ecrit = mω

e
≈ 4 × 105 V

cm
(M⊙
M

)
(3.91)

The associated total energy can be estimated as U = E2
critL

3, where L is the size
of the condensate formed by the superradiant instability, and corresponds to the
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location of the plasma barrier. This gives

U ≈ 107J
( M
M⊙

)( L

6M
)3

(3.92)

where we assumed that the peak of the plasma barrier roughly corresponds to the
location of the peak density of an accretion disk, L ≈ 6M . On the other hand, the
total rotational energy of the BH is given by K = MR2Ω2, where R and Ω are the
radius and the angular velocity of the horizon, respectively. To efficiently satisfy the
superradiant condition, Ω ≳ ωpl ≈ O(1/(GM)), so that

K ≈ 1043J
( M
M⊙

)
. (3.93)

Therefore, when the electric field reaches the threshold for nonlinearities, the total
energy extracted from the BH is tiny, U/K ≈ 10−36.

Another argument supporting this conclusion is that, for the superradiant insta-
bility to be sustainable, the maximum energy leakage of the confining mechanism
cannot exceed the superradiant amplification factor of the BH. For EM waves, the
maximum amplification factor (for nearly extremal BHs and fine-tuned frequency)
does not exceed ≈ 4% and is typically much smaller [30]. Therefore, the instability
is not quenched only if the plasma is able to confine more than 96% of the EM field
energy. Our simulations shows that in the nonlinear regime the situation is quite
the opposite: almost the entirety of the EM field is not confined by the plasma,
thus destroying its capability to ignite the instability. We expect this argument to
be valid also when ωpl ≫ ω, in which case plasma depletion through blowout is
negligible, but the EM field can still transfer energy into longitudinal plasma motion.

Note that the arguments above are extremely conservative, since are based on a
number of optimistic assumptions that would maximize the instability. First of all,
realistic accretion flows around BHs are not spherical nor stationary, especially around
spinning BHs. This would generically introduce mode-mixing and decoherence,
rendering the instability less efficient. More importantly, even in the linear regime
a disk-shape accretion geometry can (partially) confine modes that are mostly
distributed along the equatorial plane, but would naturally provide energy leakage
along off-equatorial directions [168, 116]. Finally, a sufficiently high plasma density
in the corona could quench photon propagation in the first place [115], at least at
the linear level during the early stages of the instability.
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Chapter 4

Dark Photon Superradiance
quenched by dark matter

Summary
Black-hole superradiance has been used to place very strong bounds on a variety of
models of ultralight bosons such as axions, new light scalars, and dark photons. It is
common lore to believe that superradiance bounds are broadly model independent
and therefore pretty robust. In this section we show however that superradiance
bounds on dark photons can be challenged by simple, compelling extensions of the
minimal model. In particular, if the dark photon populates a larger dark sector and
couples to dark fermions playing the role of dark matter, then superradiance bounds
can easily be circumvented, depending on the mass and (dark) charge of the dark
matter.

4.1 Dark photon superradiance in an extended dark
sector

Until recently, studies of the superradiant instability assumed that the superradiant
field was free from interactions, as expected for a field only minimally coupled to
gravity. However, as number densities can reach extreme values in the process, the
effect of interactions can be crucial, even for very weakly interacting fields. Recent
studies have considered the effect of self-interactions, both for scalar and vector
fields [169, 170], axion-photon couplings [171, 172], interactions with astrophysical
plasmas [108, 107, 138, 115, 173, 174, 116], and models of DPs kinetically mixed
with Standard Model photons [175, 176].

In this section, we consider the interaction of a (vector) superradiant field with
other (fermionic) fields in the dark sector, which constitute the entirety or just a
fraction of the dark matter (DM). In other words, we consider an extended dark
sector, populated not only by a massive DP, but also by dark fermions.

The new dark fermions constitute a dark plasma, which can alter the dispersion
relation of the DP and possibly affect its superradiant instability. Intuitively, in
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analogy to the already discussed SM case (see chapter 3), the presence of a dark
fermion should generate a gap in the dispersion relation of the DPs, effectively
endowing it with a plasma mass

ωχ
pl =

(4παχρχ

m2
χ

)1/2
, (4.1)

where ρχ is the energy density of the dark fermions, mχ its mass, and αχ = q2
χ/(4π)

the fine structure constant within the dark sector.
We assess the effect of an extended dark sector on the superradiant instability

by studying quasibound states around nonspinning BHs. We solve numerically for
the (linear) quasibound states of a DP in the presence of a dark plasma and we
find – as expected – that the interaction with a (sufficiently dense) dark plasma
can significantly alter the lifetime of quasibound states. Extrapolated to spinning
BHs, our results indicate that superradiant bounds on DPs can be completely
invalidated in motivated models granting a DM candidate. In the following, we will
show that simple models of ∼ TeV self-interacting DM (SIDM) [26], can generate
ωχ

pl ≃ 10−13 − 10−14 eV around the BH and make the superradiance timescale
much longer than other astrophysical timescales, such as the accretion one, thus
invalidating some of the current DP bounds. Note that, because the superradiance
instability is quenched by the presence of the dark plasma, backreaction due to the
cloud can be safely neglected, justifying our linear analysis.

4.2 Setup
In the following, we will consider a massive spin-1 field coupled to a dark fermion
current. The dark sector is then described by the Lagrangian

L = −1
4FµνF

µν − 1
2µ

2VµV
µ − JµV

µ , (4.2)

where V ν is the DP field, Fµν = ∇µV ν − ∇νV µ is the field strength, µ is the DP
mass and Jµ is the dark sector current. We assume that the dark sector is secluded
from the Standard Model. For instance, we assume that the kinetic mixing between
dark and ordinary photons is sufficiently small that we can neglect it.

Varying the action leads to a Proca equation sourced by the dark current:

∇µF
νµ + µ2V ν = qχnu

ν + Jν
2 , (4.3)

where n is the density of the fermions, qχ is their dark charge, uµ is their four-velocity,
and Jν

2 is the current of a second species which we assume to be present to neutralize
the plasma. Note that deriving Eq. (4.3) and using the conservation of the currents
leads to the Lorenz condition ∇µV

µ = 0. The Proca equation must be solved jointly
with the momentum equation describing the motion of the dark fermions

uµ∇µu
ν = qχ

mχ
F νµuµ , (4.4)

where mχ is the fermion mass. The conservation of the current also implies the
continuity equation

∇µ(nuµ) = 0 . (4.5)
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We will solve the system perturbatively by considering small perturbations for the
DP field, the density and four velocity of the dark plasma (i.e. Fµν = F background

µν +F̃µν

and the same for n and uµ). In order to simplify the problem, we neglect the
perturbations in the second, oppositely charged species, J̃2

µ = 0, in analogy to the
standard case of an electron-ion plasma. The presence of a second fermion would
only shift the (dark) plasma frequency, with the exact amount depending on its
mass and background density. Given the uncertainties in other parameters, we
can re-absorb this shift in the following definition of the plasma frequency for one
species.1 We will also neglect higher order perturbations and the backreaction of
the field on the metric, as they are negligible, at least during the first stages of the
superradiant instability. The perturbed equations of motion are

∇µF̃
νµ + µ2Ṽ ν = qχñu

ν + qχnũ
ν , (4.6)

ũµ∇µu
ν + uµ∇µũ

ν = qχ

mχ
F̃ νµuµ + qχ

mχ
F νµũµ , (4.7)

ũµuµ = 0 , (4.8)
∇µṼ

µ = 0 . (4.9)

As in the SM case, following the procedure outlined in Refs. [129], this set of
equations can be reassembled into a third-order, differential master equation. We
report the details of this procedure applied to our system in Appendix E. The master
equation for the linear perturbations of the DP field in the presence of a moving,
magnetised (or not) plasma reads

hξ
αu

µ∇µ(∇σF̃
ασ + µ2Ṽ α)

+ (θξ
α + ωξ

α + θhξ
α + ω ξ

L α)(∇σF̃
ασ + µ2Ṽ α)

+ qχ

mχ
Eξuα(∇σF̃

ασ + µ2Ṽ α) = ωχ 2
pl F̃

ξµuµ , (4.10)

where ωχ
pl is the dark plasma frequency defined in Eq. (4.1), while Eα, ωαβ

L , ωαβ

and θαβ are the background electric field, Larmor tensor, vorticity and deformation
defined in analogy to the previous section. As anticipated, both the bare DP mass
and the “effective" plasma mass (4.1) appear in this equation. It is straightforward
but important to verify that

• in the ωχ
pl → 0 limit, Eq. (4.10) reduces to the vacuum Proca equation,

∇σF̃
σα = µ2Ṽ α ; (4.11)

• in the µ → 0 limit, Eq. (4.10) matches the one for the Standard Model photon
in a cold plasmic medium on an arbitrary spacetime background [129] and
introduced in the previous section (3.11), once we identify the field and the
plasma with the Standard Model ones.

1For the vanilla DM model we will discuss in Section 4.5, the situation is actually very similar
to that of an electron-positron plasma, with the two species of opposite charges having the same
mass [26]. In this case the change in the dark plasma frequency should roughly be a factor
∼

√
2 [177].
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Also, it is important to notice that Eq. (4.10) is a third-order differential equation,
at variance with the vacuum Proca case, and that it depends on the background
plasma configuration.

4.3 Equations a in Schwarzschild spacetime
We now specialize to the Schwarzschild background. As in the previous chapter,
assuming that the background plasma is also spherically symmetric, it is convenient
perform a multipolar expansion of the dark EM field as

Ṽµ(r, t, θ, ϕ) = 1
r

4∑
i=1

∑
l,m

ciu
lm
(i)(t, r)Z(i)lm

µ (θ, ϕ), (4.12)

where Z(i)lm
µ are the vector spherical harmonics (3.14)-(3.17).

The behavior of the DP perturbations depends on the plasma profile through the
dark plasma frequency ωχ

pl. In the following, we consider two different configurations:
a static plasma, and a plasma in free fall. A static plasma is not a realistic
configuration, especially in the vicinity of the BH horizon, but its perturbation
equations take a simple form, allowing us to understand the interplay between bare
and effective masses analytically. Studying two plasma configurations will also allow
us to explore the dependence of the quasibound states on the background plasma
four-velocity.

Static plasma

Using the decomposition (4.12) and working in the frequency domain, ulm
(i)(t, r) =

ulm
(i)(r)e−iωt, we obtain a set of three equations from the radial and angular compo-

nents of Eq. (4.10). Using the Lorenz condition, it is possible to close the system
and rewrite the field equations in a more straightforward way. We give here the
final form of the perturbation equations, and a detailed derivation in Appendix F.1.
By analogy with the previous section, we can introduce the differential operator
D ≡ d2

dr2
∗

+ ω2 − f
(

l(l+1)
r2 + µ2

)
2, so that the equations read

D u(2) = 1
r3(ω2 − fωχ 2

pl )
f((2(−3M + r)ω2 (4.13)

+ f(6M + r(−2 + l(l + 1) + r2µ2))ωχ 2
pl )u(2)

+ 2(3M − r)(ω2 − fωχ 2
pl )u(3) − f2r2ωχ 2

pl u
′
(3) ,

D u(3) = f

r2ω2 (−l(l + 1)(2ω2 − fωχ 2
pl )u(2) (4.14)

+ ωχ 2
pl ((r2ω2 − fl(l + 1))u(3) + fl(l + 1)ru′

(2)),

D u(4) =fωχ 2
pl u(4) . (4.15)

2Note that here the operator D contains the bare DP mass and not the plasma frequency, unlike
in the previous section.
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As in the SM photon case, owing to the spherical symmetry of the background, the
axial sector (u(4)) is decoupled from the polar sector (u(2), u(3)), the equations do
not depend on the azimuthal number m, and there is no mixing between modes with
different quantum number l. In the limit ωχ

pl → 0, Eqs. (4.13)-(4.15) reduce to the
standard equations for a noninteracting Proca field in a Schwarzschild spacetime [75].

From Eqs. (4.13)-(4.15), it is immediate to see that the interplay between the
bare mass and the plasma frequency is nontrivial. Naively, one might expect the
perturbations to depends on a total mass (squared) given by the squared sum of
the bare and effective masses, at least for transverse modes. However, this is true
only for the axial sector, see Eq. (4.15). For the polar sector, the interplay is less
straightforward.

In the limit of flat spacetime, Eqs. (4.14)-(4.15) read

( d2

dr2
∗

+ ω2 − µ2
)
u(3,4) = ωχ 2

pl u(3,4) , (4.16)

leading, in momentum space, to the dispersion relation

ω2 = k2 + (µ2 + ωχ 2
pl ) (4.17)

of transverse massive modes in a plasma, where the bare and effective masses are
squared-summed. For the radial component of the field we instead obtain

ϵpl
( d2

dr2
∗

+ ω2 − µ2
)
u(2) =

ωχ 2
pl
ω2 µ

2u(2) , (4.18)

where we introduced the plasma dielectric tensor ϵpl = 1 − ωχ 2
pl /ω

2. From this
equation we can verify that our formalism recovers the expected phenomenology in
two important limits:

• if µ → 0, the right-hand side vanishes and the only solution is ϵpl = 0, i.e. ω2 =
ωχ 2

pl . In the absence of a mass, this degree of freedom does therefore become
electrostatic. In fact, a massless spin-1 particle in a cold plasmic medium only
propagates two degrees of freedom, while the third one is electrostatic [11].

• if ωχ
pl → 0, ϵpl → 1 we recover the dispersion relation of a propagating Proca

degree of freedom in vacuum ω2 = k2 +µ2. For realistic plasma density profiles
that vanish at spatial infinity – as the one we will consider in this work (see
Sec. 4.3) – this degree of freedom behaves as a propagating Proca degree of
freedom at large r.

Free-fall plasma

Up to now we have modelled the plasma surrounding the BH as static. We now
want to relax this approximation, by considering a more realistic free-falling plasma.
A freely-falling massive particle follows the geodesics of the Schwarzschild spacetime,
and its four velocity reads

uµ = ((1 − 2M/r)−1,−
√

2M/r, 0, 0) . (4.19)
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As its motion is purely radial, this plasma configuration does not break the spherical
symmetry and therefore, when the field is decomposed in spherical harmonics, it
does not generate couplings between different l,m modes and the axial and polar
sectors decouple as in the static-plasma case. Moreover, as the plasma four-velocity
does not depend on time, the system is still stationary (at least at the linearized level
when backreaction is neglected). Therefore, even in the case of a free-falling plasma,
we can work in the frequency domain and perform the same multipolar expansion
as in Eq. (4.12) with the assumption of a harmonic time dependence ∼ e−iωt. The
corresponding field equations are much more involved than in the static plasma case,
and are reported in Appendix F.2.

In the case of a static plasma, the field equations reduce to second order differential
equations. In the case of free-fall, the perturbation equations remain instead of third
order, and thus require three boundary conditions, as we will see. In the following,
owing to the complexity of the equations, we will focus on the axial sector to explore
the impact of the background plasma velocity field.

Schematically, the third-order equation governing the axial sector in the case of
free-fall plasma reads

A1u(4)(r) +A2u
′
(4)(r) +A3u

′′
(4)(r) +A4u

′′′
(4)(r) = 0 (4.20)

where the coefficients Ai are given in Appendix F.2. It is interesting to study the
above equation in the limit of vanishing plasma frequency,

4MDu(4) +
(
2MDu(4) − r(Du(4))′u′

(4)

)
= 0 , (4.21)

where the D operator was introduced in the previous section. From Eq. (4.10), we
know that in this limit we must recover the vacuum Proca equation, Du(4)(r) = 0 [75],
which is indeed a solution to Eq. (4.21). As we shall discuss in the next section, this
is also the only solution compatible with the boundary conditions of the problem.

Finally, as the free-fall velocity vanishes at large distances, the field equations
have the same asymptotic behavior at spatial infinity as in the case of an everywhere
static plasma.

Plasma density profile and plasma frequency

The density of a plasma in free-fall can be obtained by solving the continuity
equation (4.5) with four-velocity (4.19). This leads to a density profile of the
form [178]

ρ(r) = Ṁ

4π
√

2M
1
r3/2 , (4.22)

where Ṁ is a constant mass flux. This profile features an increasing density at the
horizon, and vanishes at spatial infinity. We can then express the plasma frequency
as

ωχ 2
pl = ω2

H

(2M
r

)3/2
, (4.23)

where ωH is the plasma frequency at the horizon, which in the following we will
treat as a free parameter.
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Figure 4.1. (Upper panels) Imaginary (left) and real (right) part of the axial l = 1, S = 0
mode as a function of ωH/µ for different values of µ and for a static plasma. As the dark
plasma frequency at the horizon increases, it effectively unbounds the modes: the binding
energy ωR/µ− 1 and the imaginary part ωI both go to zero, leading to larger timescales.
(Lower panels) Same as in the upper panels but for the l = 1, S = −1 dominant polar
mode. Here and in the following S = (−1, 0, 1) denotes the spin projection of the
mode [75], with S = 0 for axial modes and S = ±1 for the two polarizations of polar
modes.

To better compare perturbations in static and free-falling plasmas, we shall
assume that the plasma frequency takes the form (4.23) also in the static case (where
the continuity equation is satisfied for any time-independent ρ).

Note that the radial infall of the dark particles is not affected by dark interactions.
This is because the plasma is neutral [26], so the net force acting on the particles is
zero.

4.4 Quasibound spectrum of a Proca field in a plasma

4.4.1 Numerical method and boundary conditions

In the following, we will solve the perturbation equations numerically using the direct
integration shooting method, as in the previous chapter (see 3.2.4). Nevertheless,
while in the static case the system is composed of second-order differential equations,
in the free-fall case the field equations are of third differential order. Hence, while in
the former we can apply the standard boundary conditions (3.30) and (3.31), in
the latter we will need an extra one.
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At infinity, we can impose the same asymptotic conditions as in the static case.
This is because the two configurations coincide in this limit, where the free-fall
radial velocity vanishes. On the other hand, by expanding the axial field equation
at leading order at the horizon, we obtain

d2

dr2
∗
u(4) + b

d

dr∗

(
ω2u(4) + d2

dr2
∗
u(4)

)
+ ω2u(4) = 0 , (4.24)

where b is a constant. We can still impose that, at the leading order, the near-horizon
solution is an ingoing wave, u(4)(r) ∼ b(4) 0e

−iωr∗ , where again b(4) 0 is an arbitrary
coefficient (see eq. (3.30)). However, in this case it is not possible to compute
all the next-to-leading-order coefficients b(i) n solely in terms of b(i) 0 by solving
the field equations recursively as in the static-plasma case, since one coefficient is
left unconstrained. To obtain the full solution near the horizon, we need a third,
physically motivated, boundary condition. In particular, we must impose that the
velocity perturbation of the fermions vanishes asymptotically at the horizon,

ũϕ = O(r − 2M) . (4.25)

Indeed, in a free-fall plasma massive particles reach a background radial velocity
equal to the speed of light at the horizon (as can be seen from Eq. (4.19)), so any
nonvanishing perturbation at the horizon would violate causality. This condition is
automatically satisfied in the static case, where even in the vicinity of the BH horizon
the plasma is static. As can be seen from Eq. (E.1.5) in Appendix E, the extra
boundary condition (4.25) translates into a requirement on the component of the
field orthogonal to the background four-velocity at the horizon. This third boundary
condition provides the missing relation to obtain the asymptotic solution (3.30) in
terms of a single arbitrary coefficient b(i) 0.

4.4.2 Spectrum of quasibound modes

Figure 4.1 shows the dependence of the axial (upper panels) and polar (lower panels)
spectrum on the ratio ωH/µ between the dark plasma frequency at the horizon and
the bare DP mass for different values of µ in a static plasma3. The two sectors show
the same behavior: as ωH → 0, the plasma density goes to zero and we recover the
results of Ref. [75] describing the quasibound states of a noninteracting Proca field
in a Schwarzschild spacetime. As ωH becomes larger, the real part of the mode
frequency increases rapidly toward the value of the bare mass, and therefore the
binding energy of the modes, ωR/µ− 1, vanishes. Meanwhile, the imaginary part
decreases dramatically, leading to much larger timescales. Hence, the modes become
more and more unbound. This behavior is due to the fact that as the effective mass
increases at the horizon, the minimum in the effective potential flattens and therefore
the formation of quasibound states is strongly hampered. The same phenomenology
was recovered in a similar system in [115].

When the effective mass is sufficiently large (which roughly occurs when
√
ω2

H + µ2M ≫
0.1), we find an exponential decay of the imaginary part, as in the case of large

3For the axial sector, we are able to solve for the dominant mode for larger values of ωH/µ and
with higher precision, owing to the simplicity of the axial equation.
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bare mass [56]. In this case the modes become extremely long lived and of less
astrophysical interest. Importantly, this would also affect the superradiant timescale
over which the BH spin is dissipated, which is typically comparable to that of the
quasibound states in the (stable) nonspinning limit [30].

In the upper left panel of Fig. 4.1 we show the values (dashed horizontal lines)
of the (inverse) timescale τBH ≡ 0.1 τSalpeter, where τSalpeter ≃ 4.5 × 107 years is the
Salpeter timescale. This is the characteristic timescale of accretion of an astrophysical
BH, and is the relevant one to compare with the superradiant timescale when deriving
bounds from the superradiant instability [30, 79, 76, 83, 91, 179] (see Sec. 4.6 for
more details on experimental limits). In particular, if the superradiant timescale
1/|ωI| is much longer than τBH the superradiant instability is ineffective.

As a rule of thumb, when 1/|ωI| ≫ τBH, plasma effects are likely to completely
invalidate superradiant bounds, since they destroy the quasibound states in the first
place. In Fig. 4.1 we show two examples, for M = 106M⊙ ≡ M6 and M = 10M⊙ ≡
M1; in both cases if ωH ≳ 2 – 4µ the mode lifetimes are longer than the BH accretion
timescale. The same happens for the polar mode (lower panels of Fig. 4.1), although
in this case it is numerically more challenging to push the modes towards large
values of ωH/µ, and therefore we do not show τBH in that plot. Nevertheless, it is
clear that also in the polar case the imaginary part of the modes becomes extremely
small when ωH ≳ 2 – 4µ, as in the axial case.

We conclude that the presence of a dark plasma, if sufficiently dense, can
completely quench the quasibound spectrum of a DP and cause a dramatic increase
of the mode lifetime. This would correspond to a severe weakening of the superradiant
instability around a spinning BH.
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Figure 4.2. Imaginary and real part of the axial l = 1, S = 0 mode as functions of the
ratio ωH/µ with mass Mµ = 0.2 for the static (dotted blue) and free-fall (red) case. For
MωH = 0, i.e. in the absence of plasma, the two configurations coincide to the vacuum
Proca axial mode. As ωH/µ increases, the real part of the mode is very similar for the
two configurations, while the imaginary part of the mode decreases faster in the free-fall
case. Overall, the two configurations exhibit a similar behavior.

Figure 4.2 shows a comparison between the dominant axial mode in the static
and free-fall configurations for Mµ = 0.2. For ωH/µ = 0, i.e. in the absence of
plasma, the two modes coincide with the vacuum Proca axial mode. This is because,
in the absence of plasma (when the dark plasma frequency goes to zero) the solution
is trivially given by a vacuum Proca equation, see Eq. (4.10). Interestingly, as ωH/µ
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increases, the real part of the mode is essentially unaffected by the plasma motion,
while the imaginary part decreases faster in the free-fall configuration. Overall, the
free-fall configuration has the same phenomenology as the static one: as the dark
plasma frequency increases, the binding energy goes to zero and the timescales are
severely stretched. In the free-fall case, the drop in the imaginary part is slightly
more severe. One can thus expect the superradiant instability to be even more
severely weakened in this case.

In principle, one might wonder about backreaction effects of the dark electro-
magnetic field onto the plasma. These might include breaking of the spherical
symmetry of the plasma, effects on the motion of the plasma particles, or relativistic
transparency effects [137]. However, these effects can only become relevant for suffi-
ciently large DP field amplitudes. As we have argued, the presence of a sufficiently
dense dark plasma prevents the superradiant instability from growing the DP field
efficiently. As the quenching mechanism arises already at the linear level, the field
remains at all times as small as the initial perturbation, and its backreaction effects
are thus negligible.

4.5 DM models
In the previous sections we have shown that a dark plasma frequency comparable to,
or larger than, the bare DP mass can greatly alter the quasibound states, possibly
suppressing the DP superradiant growth. Here we sketch a simple DM model that
can generate a sizable plasma frequency around a BH. The numerical conclusions of
the previous sections are of course independent of the mechanism generating the
fermionic relic abundance, and we could simply assume the existence of a UV model
generating the correct density at low redshift. Nevertheless, we find it useful to write
down an illustrative model, which is not intended to be exhaustive of all possibilities.
We hope our work motivates research into other alternatives in this direction.
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Figure 4.3. Parameter space of interest for a simple secluded DM model. The blue shaded
region is excluded because of the self-interactions bound from dwarf galaxies [180], while
the solid black line indicates the parameters for which the correct relic abundance is
obtained via freeze-out. The horizontal dotted lines indicates the value of αχ correspond-
ing to two different plasma frequencies, assuming Bondi-Hoyle accretion around the BH
horizon and the full DM density at “infinite” distance from it.
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Let us consider a fermion χ with mass mχ coupled to our DPs with fine structure
constant αχ. We consider χ to be a DM candidate and set its abundance via
freeze-out. For simplicity, we study a “secluded" scenario, so that couplings to the
Standard Model thermal bath are not important for thermal freezeout [181, 26] and
the relic abundance is set by the process χ̄χ ↔ V V (where V schematically denotes
the DP), which in the limit µ ≪ mχ has a cross section

⟨σv⟩χ̄χ↔V V ≃
πα2

χ

m2
χ

. (4.26)

The DM relic abundance is obtained when the annihilation cross section is of the
order

⟨σv⟩χ̄χ↔V V ≃ 1
109GeV2 , (4.27)

where we took Tfo ≃ mχ/10 for the freezeout temperature and assumed typical
values for the relativistic degrees of freedom in the early universe [182].

The dark fermions in this model will exhibit self-interactions due to the exchange
of a DP. Self-interactions are especially enhanced in the limit of small DP mass, as
the cross section presents a forward scattering enhancement. In fact, in the Born
limit the transfer cross section for a DM particle of velocity vχ reads

σself ≃
8πα2

χ

m2
χv

4
χ

ln
(m2

χv
2
χ

µ2

)
. (4.28)

Limits on DM self-interactions (SIDM) from observations of galaxy clusters, galaxies,
and dwarf-galaxy halos [180, 180, 183, 26] restrict this cross section to be roughly
σself/mχ ⪅ 0.1 − 100 cm2/g.

Comparing the couplings needed to set the relic abundance, one can see easily
that the SIDM constraint excludes thermal freezeout for DM masses smaller than
mχ ∼ TeV. This is shown in Fig. 4.3. The blue shaded area indicates the region
excluded by measurements of dwarf galaxies [180], which limit the cross section
to be σself/mχ ≲ 10 − 100 cm2/g for DM velocities vχ ∼ 10−4 (here we also fixed
µ = 10−14eV, but the dependence on the DP mass is very weak). The solid black
line indicates the parameters for which the correct relic abundance is obtained via
freeze-out. The horizontal dotted lines indicates the value of αχ corresponding to
two different plasma frequencies, defined as usual as

ωχ
pl =

(4πρχαχ

m2
χ

)1/2
≃ 1.8 × 10−13eV

( ρχ

105 GeV/cm3

)1/2(0.1
αχ

)1/2
, (4.29)

where in the last step we used Eqs. (4.26) and (4.27) to relate mχ to αχ
4. The

normalization of ρχ is estimated by assuming Bondi-Hoyle accretion, which gives
the following density close to the BH horizon

ρχ(rH) ≃ 2.4 × 105ρ∞
χ

(0.01
vrel

)3
, (4.30)

4Notice that the second line of Eq. (4.29) is valid only if the freeze-out happens via Eq. (4.26).
If other interactions, independent of αχ, set the relic abundance, then the full expression of the
plasma frequency (with no a priori relation between αχ and mχ) should be used.
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where vrel is the relative BH-DM velocity far from the BH and ρ∞
χ ≈ 0.4GeV/cm3 is

the DM ambient density far away from the horizon.
From Fig. 4.3 we see that, within this minimal model, dark fermions can naturally

dress the DP with a plasma mass, but the available parameter space is small and
confined to generate a plasma frequency of roughly ∼ 10−13 eV, if we require the
dark fermion to be in the perturbative regime (αχ ≲ 1), have the correct relic
abundance, and avoid SIDM bounds. However, as already mentioned, this simple,
minimal model is easily extendable to widen the allowed parameter space. This can
be achieve by: i) relaxing self-interaction bounds, or/and ii) producing the DM relic
abundance through a different interaction. One possibility to relax SIDM bounds is
to have a large splitting for the Dirac fermion, which kinematically suppresses self-
interactions [184, 185]. A simple extension to evade the relic abundance requirement
is described in Ref. [26], where the DM fermion is also charged under SU(2)L. In
this case, the relic abundance can be set at early times by freeze-out via the weak
interaction. At late times, the weak cross section remains small, while the long-range
cross section mediated by the DP comes to dominate as the DM cools and slows,
reducing to the vanilla model described here. In this way, it can be possible to
extend to lower DM masses, increasing the allowed plasma frequency.

Another possibility occurs if the DP is produced gravitationally during inflation
and DM thermalizes through interactions in the dark sector and not with standard-
model particles [186]. In this respect it would be interesting to extend the analysis
of [186] to smaller DP masses which are relevant for plasma-triggered BH superradiant
instabilities.

Finally, the DM density around the BH may be much larger than the value set
by Bondi-Hoyle accretion, possibly leading to even larger plasma frequencies. This
would be the case, for example, if DM spikes are present around the BH [187, 188].

4.6 Impact of DP-DM coupling on current DP bounds
from BH superradiance

Probing ultralight DPs is an extremely challenging task, as lab-based experiments
become impractical for very long wavelengths [189]. Most of the constraints on
DP masses smaller than µ ∼ 10−10 eV then come from astrophysics and cosmology,
typically assuming a kinetic mixing between the DP and the ordinary photon [190,
191, 192]. In this regard, superradiance represents a unique possibility to probe very
light DPs even without assuming a kinetic mixing to the SM photon.

In the past years, many authors have put tight constraints on DPs using the BH
mass-spin distribution (see, e.g., Refs. [89, 79, 76, 83, 100, 90, 91, 193, 194, 179] and
[30] for a recent summary of the constraints). The basic physics in all these cases is
the same: if a DP with the correct mass is present in the spectrum of the theory,
a superradiant growth can be triggered on short-enough timescales and extract
angular momentum and energy from astrophysical BHs, making the measured spins
inconsistent with the DP itself, and also leading to peculiar gravitational-wave
signatures [30]. In particular, current stellar-origin BH mass-spin measurements
in X-ray binaries5 exclude DP masses between µ ∼ 5 × 10−14– 2 × 10−11 eV, while

5Note that constraints from X-ray binaries might be affected by systematic errors in the
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supermassive BH spin measurements exclude lighter masses, µ ∼ 6 × 10−20– 2 ×
10−17eV [79, 76, 83, 91, 179] and µ ∼ 8.5×10−22– 4.6×10−21eV [196]. These bounds
are reported in Fig. 4.4, where the red bands refer to highly-spinning supermassive
BHs, while the blue ones to stellar-mass BHs (see Ref. [83] for a similar plot).

In order for these bounds to apply, the superradiant rate should be fast enough
to grow a maximally-filled cloud within the relevant BH timescale, τBH. Our present
analysis shows that, in motivated DM models, it may be very easy to make the
superradiant timescale larger than τBH. In particular, within the simple class of DM
models described in the previous section, we have shown that it is possible to obtain
plasma frequencies of the order ωχ

pl ∼ 10−13 eV, or greater. Our numerical results
from Sec. 4.4 indicate that the dark plasma can quench the superradiance instability
any time ωχ

pl ≳ µ (see, e.g., the upper left panel of Fig. 4.1). This means that DPs a
factor of few lighter than µ = 10−13 eV are easily rescued thanks to plasma effects,
in a minimal SIDM model. This corresponds to the gray region in Fig. 4.4, where
the vertical line is drawn using the reference value in Eq. (4.29), divided by a factor
of 2 to account for the onset of the effect observed in Fig. 4.1.

As outlined in Sec. 4.5, it seems also likely that simple extensions of this model
could rescue even larger DP masses, corresponding to the green region in Fig. 4.4.

Finally, we stress that our argument can invalidate superradiance bounds while
leaving unchanged constrains of different nature in the same mass range. For example,
cosmological constrains typically rely on resonant effects on large scales [190], where
the dark plasma density is several orders of magnitude smaller than around a BH.
Such constrains are reported, e.g. in [189]. Another relevant example in this mass
range are recent constrains on the couplings of dark photons with baryons, imposed
using LIGO/VIRGO data [197].

determination of the BH spin, see discussion in Ref. [195].
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Figure 4.4. Constraints on DP masses derived from highly-spinning supermassive (red
bands) and stellar-mass (blue bands) BHs as computed in Ref. [83]. The gray region
indicates the masses for which the simple SIDM model of Sec. 4.5 can introduce strong
plasma effects which invalidate the bounds. The green region indicates masses for which
extensions of the simplest model are required in order to generate a sizable enough ωχ

pl
without overproducing DM and without violating SIDM bounds.
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4.7 Conclusions
In this work, we have studied for the first time the quasibound states of a DP field
in the presence of a (dark) plasma. The latter dresses the DP with an additional
density-dependent mass, which can significantly alter the quasibound spectrum. In
particular, we showed that if the generated plasma frequency is ≳ 2 – 4 times the
DP bare mass, then the state lifetime increases dramatically and (extrapolating to
spinning BHs) the superradiant instability is effectively quenched, similarly to the
case of bosons with a large bare mass (Mµ ≫ 1 [56]) which is of limited astrophysical
interest. This has important implications for observational bounds on DPs. We
outlined a simple, motivated particle physics model that naturally provides a sizable
plasma frequency, possibly bearing a way out from current superradiance bounds
from BH mass-spin measurements.

Interestingly, our analysis also shows that if current or future detectors will
discover gravitational-wave signatures of a new light vector particle through BH
superradiance [79, 76, 83, 91, 105, 104] this could be used to set relevant constraints
on the DP scenario in various motivated DM models.
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Chapter 5

Axionic Superradiance and
Plasma Effects

Summary
Superradiant fields around BHs can couple naturally –although very feebly– with
SM particles. Couplings between superradiant fields and the SM are pivotal to
describe properly the evolution of the system. In this chapter, we study these
couplings using numerical relativity. We first focus on the coupled axion-Maxwell
system evolving on a black hole background. By taking into account the effect of the
coupling concurrently with the growth of the axionic cloud, we observe for the first
time that a new stage emerges: that of a stationary state where a constant flux of
electromagnetic waves is fed by superradiance, for which we find accurate analytical
estimates. Moreover, we show that the existence of electromagnetic instabilities in
the presence of plasma is entirely controlled by the axionic coupling; even for dense
plasmas, an instability is triggered for high enough couplings.

5.1 Bursts of light from axions?
The QCD axion is one of the most promising DM candidate that could potentially
be probed via BH superradiance. As already discussed, the precise development
of the instability is well understood in vacuum and in the absence of couplings
to the Standard Model [24, 89, 87, 30, 88]. Nevertheless, axions admit a number
of possible couplings: among them, notable examples are self-interacting theories
and couplings to the SM photon. In the following, we are going to consider the
latter scenario in the contest of BH superradiance. In previous works, it was argued
analytically and with numerical simulations, that such couplings to the Maxwell
sector might trigger parametric instabilities, whereby the scalar cloud transfers
energy to electromagnetic (EM) radiation [198, 199, 172, 171]. In other words, any
EM fluctuation in the axionic condensate might be parametrically amplified, giving
rise to powerful bursts of EM radiation, sometimes called BLASTs (Black hole Lasers
powered by Axionic SuperradianT Instabilities). This process is based on the decay
of the axions into a pair of photons with opposite helicity a → γγ. Nevertheless, it
was suggested that the presence of a surrounding plasma may quench the parametric
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Figure 5.1. Schematic illustration of our setup. Starting from a spinning BH of mass M
(left), a SR cloud of mass Mc is formed in the dominant (dipolar) growing mode (center).
For sufficiently large couplings to the Maxwell sector, the configuration is unstable: any
small EM fluctuation will trigger emission of EM radiation (black lines, right panel).
Some of these waves recombine to create axion waves (green lines). The blue background
indicates the presence of a plasma.

instability due to the high energy (large “effective mass”) of typical astrophysical
environments [137, 174, 138]: that is to say, as photons in a plasma are dressed with
an effective mass, the decay of the axion may be prohibited by kinematic reasons if
the photons are too heavy.
The previous works left important gaps: (i) the parametric instability was shown to
give rise to periodic bursts of light, but its period and amplitude were not studied.
In fact, the effect of a SR growing cloud was also not understood properly.1 (ii) The
role of plasmas in the development of EM instabilities is known poorly, but could
have a drastic effect (see e.g. recent works on dark photon SR [175, 176]), since the
plasma frequency is rather large in most astrophysical circumstances.

5.2 The theory and general framework

We consider a real, massive (pseudo)scalar field Ψ with axionic couplings to the EM
field. In addition, the EM field is coupled to a cold, collisionless electron-ion plasma.
In this setup, the Lagrangian takes on the following form:

L = R

16π − 1
4FµνF

µν − 1
2∇µΨ∇µΨ − µ2

2 Ψ2

− ka
2 Ψ ∗FµνFµν +Aµjµ + Lm .

(5.1)

The mass of the scalar field Ψ is given by ma = µℏ, Aµ is the vector potential,
Fµν ≡ ∇µAν − ∇νAµ is the Maxwell tensor and ∗Fµν ≡ 1

2ϵ
µνρσFρσ is its dual. We

use the definition ϵµνρσ ≡ 1√
−g
Eµνρσ, where Eµνρσ is the totally anti-symmetric

Levi-Civita symbol with E0123 = 1. We define the Lagrangian for the plasma as Lm,
while ka quantifies the axionic coupling which we take to be constant. There exists

1As we show here, bursts will in general not occur, but give way to a stationary emission of light.
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a wide variety of theories predicting axions and axion-like particles, and generically
ka is independent of the boson mass. Therefore, we take ka to be an additional free
parameter of the theory. Notice that we do not consider self-interactions, which
could appear as an expansion of the axion’s periodic potential. This corresponds to
a region kafa ≥ O(1) predicted in models such as clockwork axions [200, 201] and
magnetic monopoles in the anomaly loop [202, 203], where fa is the decay constant
of the axion.2 In principle, a similar analysis could be performed for scalar couplings
(L ⊃ ksΨFµνFµν), at least when the coupling strength is weak [172].

Finally, jµ is the plasma current, and captures both the contributions of the
electrons and the much heavier ions. In this work, we adopt a two-fluid formalism
model for the plasma, where electrons and ions are treated as two different fluids,
coupled through the Maxwell equations. Hence, the plasma current is given by
jµ =

∑
s qsnsu

µ
s , where the index s represents the sum over the two different species,

electrons and ions, and qs, ns, u
µ
s are the charge, number density and four velocity

of the fluids, respectively.
An axion cloud produced from SR can grow to be ≲ 10% of the BH mass [81,

207, 87]. We will consider the cloud’s backreaction on the geometry to be small
and thus evolve the system on a fixed background. The gravitational coupling µM
determines the strength of the interaction between the BH and the axion and is
a crucial quantity. In order for SR to be efficient on astrophysical timescales, the
gravitational coupling must be O(1). For µM ≪ 0.1, the exponential growth is
too slow, while the instability is exponentially suppressed for µM ≫ 1 [56, 208].
Consequently, we will perform simulations in the range µM ∼ 0.1 − 0.3.

From the Lagrangian of our theory (5.1), we obtain the equations of motion for
the scalar and EM field. In order to close the system, we also need to consider the
continuity and momentum equation of the fluids, which come from the conserva-
tion of the energy-momentum tensor for the Maxwell-plasma sector. Ignoring the
backreaction of the fields in the spacetime, we obtain:(

∇µ∇µ − µ2
)

Ψ = ka
2

∗FµνFµν ,

∇νF
µν = jµ − 2ka

∗Fµν∇νΨ ,

uν
s∇νu

µ
s = qs

ms
Fµ

νu
ν
s ,

∇µ(nsu
µ
s ) = 0 ,

(5.2)

where the index s denotes again the particular fluid species. Finally, we impose the
Lorenz condition on the vector field

∇µA
µ = 0 , (5.3)

thereby fixing our gauge freedom.

5.2.1 Modeling superradiance

Even though we are interested in an axion cloud that grows through SR, and thus
requires a spinning BH described by the Kerr metric, we will instead mimic SR growth

2The strong self-interaction regime was discussed in e.g. [204, 169, 205, 206], where transitions
to various cloud modes and distortion of bound state wavefunctions are expected.
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without the need of a spinning BH. The reason is of a practical nature: timescales
to superradiantly grow an axion cloud are larger than ∼ 106M [209, 69, 208], a
prohibitively large timescale for our purposes. Therefore, we mimic SR growth
following Zel’dovich [47, 48, 210], by adding a simple Lorentz-invariance violating
term to the Klein-Gordon equation,(

∇µ∇µ − µ2
)

Ψ = C
∂Ψ
∂t

+ ka
2

∗FµνFµν . (5.4)

Here, C is a constant, which in the absence of the axionic coupling gives rise to a
linear instability on a timescale of the order 1/C, where we can tune C to be within
our numerical limits. For further details, we refer to Appendix G.2.

5.2.2 Modeling plasma

As already discussed in previous chapters, the plasma frequency acts as an effective
mass for the transverse polarizations of the photons. This effect is crucial to take
into account when studying parametric instabilities as the axion decay into photons
could be suppressed in a dense plasma, i.e., when ωpl ≫ µ. Throughout this work,
we work under the following assumptions regarding the plasma.

1. We drop non-linear terms in the axion-photon-plasma system. That is to say,
as long as the EM field is small, it is sufficient to consider only the linear
response of the medium. Consequently, the backreaction of the EM field onto
the axion field is not included.

2. We ignore the oscillations of the ions due to the EM field. Whenever the
plasma is non-relativistic, this assumption is justified due to the larger inertia
of the ions compared to the electrons and we can treat them as a neutralizing
background. In the relativistic regime however, there is a critical threshold for
which this approximation is no longer valid, defined as Γe ≫ mion/me [120],
where Γe is the Lorentz factor of the electrons.

3. For simplicity, we consider as initial data a locally quasi-neutral plasma,
i.e., Znion ≈ ne, where Z is the atomic number, such that we have a vanishing
charge density. As plasma is globally neutral, this approximation is valid at
large enough length-scales for our setup. In particular, it holds in systems
where typical length-scales are much larger than the Debye length (see 2.3.1).

4. We assume a cold and collisionless plasma. In principle, our formalism can be
extended straightforwardly to include both thermal and collisional effects by
adding a few terms in the momentum equation, as already shown in Sec. 3.3.
In particular, thermal effects can be included by considering a non-negligible
pressure for the fluid and an equation of state, while electron-ion collisions can
be modeled using a term proportional to the relative velocity of the two fluid
species.

5. We neglect the evolution of the fluid’s four velocity with respect to an Eulerian
observer due to gravity. The 3+1 decomposition of the momentum equa-
tion (I.6.25), shows how after linearization the evolution is dictated both by a
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gravitational term ai and an EM term Ei. In a Schwarzschild BH background,
the only non-vanishing component of the gravitational term is ar = M/r2,
which assumes the well known form of gravitational acceleration by a spherical
object.3 Since we are interested in the effect of plasma in a localized region
of spacetime, i.e., the axion cloud, which is situated around the Bohr radius,
an easy estimate shows that the effect of gravity is sufficiently small in the
timescales of interest. For example, let us consider a cloud with µM = 0.1, lo-
cated around r = 200M . In this case, we have that ar = 2.5 × 10−5M−1. Thus
for an initially zero velocity fluid, this term only gives significant modifications
on a timescale t ∼ 105M , which is much longer than the growth timescales
of the EM field. Furthermore, note that the gravitational term is suppressed
with respect to the EM term by a factor of me/qe ∼ 10−22. Neglecting the
evolution of the velocity due to gravity has two consequences for our system
of evolution equations.
First of all, while the momentum equation for the electrons still has the EM
term, we neglect this term for the ions according to assumption (ii). Therefore,
the ionic momentum equation becomes trivial. In fact, it means that ions with
initially zero velocity, do not evolve. Consequently, we can consider them as a
stationary, neutralizing background without evolving the fluid.
Secondly, by neglecting the gravitational term, the constraint of the electron
momentum equation (C.1.7) reduces at the linear level to uν∂νΓ = 0. Since
Γ = 1 linearly due to its quadratic dependence on the velocity, the constraint
equation is trivially satisfied. Hence, dropping the gravitational term allows
for a great simplification of our evolution scheme.

5.2.3 Numerical procedure

To evolve the system, we solve numerically the equations of motion (5.2) around a
Schwarzschild BH with mass M . We denote the spatial part of the Maxwell field
Ai, the electric field Ei, the magnetic field Bi, an auxiliary field Z, and finally the
conjugate momentum Π of the scalar field. Using these variables and applying the
3+1 decomposition to the equations of motion, we obtain the evolution equations
for the scalar field, EM field, and the plasma. A detailed account of the formulation
of our system as a Cauchy problem can be found in Appendix I.

Besides the evolution equations, the 3+1 decomposition also provides us with a
set of constraint equations, which are shown explicitly in (I.1.10). The initial data
we construct should satisfy these equations. For the electric field, we assume the
following profile:

Er = Eθ = Ai = 0 ,

Eφ = E0e
−
(

r−r0
σ

)2

M ,
(5.5)

where Ei = F iµnµ (i = r, θ, φ), with nµ defined as the normal vector of the spacetime
foliation. Here, Eφ can be an arbitrary function of r and θ. We choose a Gaussian
profile with E0, r0, and σ the typical amplitude, radius and width of the Gaussian,
respectively. The EM pulse is initialized in all our simulations at r0 = 40M with

3In fact, this term corresponds to the surface gravity when evaluated at the horizon.
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Run kaΨ0 µM 103CM 104E0M/Ψ0

I1 0.0 0.3 0.0 8.1
I2 0.0295 0.3 0.0 8.1
I3 0.147 0.3 0.0 8.1

J1 0.0737 0.2 4.0 100.0
J2 0.0737 0.2 4.0 1.0
J3 0.0737 0.2 4.0 0.01
J4 0.0737 0.2 4.0 0.0001

J5 0.0737 0.2 4.0 8.1
J6 0.0563 0.2 4.0 8.1
J7 0.0328 0.2 4.0 8.1
J8 0.00737 0.2 4.0 8.1

J9 0.0737 0.2 0.08 8.1
J10 0.0737 0.2 0.2 8.1
J11 0.0737 0.2 0.8 8.1
J12 0.0737 0.2 1.0 8.1
J13 0.0737 0.2 2.0 8.1
J14 0.0737 0.2 8.0 8.1

ωplM

K1 0.147 0.3 0.0 0.01
K2 0.147 0.3 0.0 0.1
K3 0.147 0.3 0.0 0.15
K4 0.147 0.3 0.0 0.2
K5 0.147 0.3 0.0 0.3
K6 0.147 0.3 0.0 0.4
K7 0.295 0.3 0.0 0.2
K8 0.590 0.3 0.0 0.2
K9 0.0737 0.1 2.0 0.02
K10 0.0737 0.1 2.0 0.07

Table 5.1. Summary of the simulations discussed in the main text. Ii simulations do not
include plasma nor SR growth. Ji simulations do include SR growth yet are still without
plasma, while Ki simulations do include the plasma. We denote the axionic coupling
kaΨ0, the mass coupling µM , the artificial SR parameter C, and the ratio between the
initial amplitude of the electric field E0 (5.5) and the scalar field Ψ0 (G.1.5). In the
simulations that include the plasma (Ki), we report the plasma frequency ωpl as well,
while the initial EM amplitude is 104E0M/Ψ0 = 8.1, which is not shown in the table
due to space limitations. In all our simulations, we initialize the EM pulse at r0 = 40M
with σ = 5M .
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σ = 5M . Moreover, we have tested that our results do not depend on these factors,
thus confirming their generality. For the initial data of the scalar field, we use a
quasi-bound state which is constructed through Leaver’s method (see Appendix G.1).
We consider the cloud to occupy the dominant (dipolar) growing mode with an
amplitude Ψ0, whose normalization is defined in (G.1.5). Finally, the constraint
equation for the plasma is trivially satisfied as we explain in Appendix I.4, and for
simplicity we take a constant density plasma as initial data.

To keep track of the scalar and EM field during the time evolution, we perform
a multipolar decomposition. In the scalar case, we directly project the field Ψ onto
spheres of constant coordinate radius using the spherical harmonics with spin weight
sw = 0 to obtain Ψℓm (H.0.1). In the EM case, we track the evolution of the field
using the Newman-Penrose scalar Φ2, which captures the outgoing EM radiation
at infinity (see Appendix H). Analogous to the scalar case, we project these using
spherical harmonics, yet now using spin weight sw = −1 to obtain (Φ2)ℓm (H.0.5).
In our figures, we show |(Φ2)ℓm| =

√
(Φ2)∗

ℓm(Φ2)ℓm. Since this captures massless
waves, |(Φ2)ℓm| ∝ 1/r at large spatial distances.

Throughout this work, we will discuss various simulations. In Table 5.1, the spe-
cific parameters of these simulations are listed. Furthermore, a schematic illustration
of our setup can be seen in Fig. 5.1.

5.3 Superradiance turned off
An axion cloud coupled to the Maxwell sector can give rise to a burst of EM
radiation. The initial explanation of this phenomenon was outlined in [198], while
the full numerical exercise followed in [172, 171]. In this section, our goal is to
carefully perform a further analysis and, as we will see, find some new features of the
system. Throughout this section, we assume SR growth to be absent, as in [172, 171].
Even though this is clearly an artificial assumption, as it means that the cloud was
allowed to grow without being coupled to the Maxwell sector, it allows us to isolate
and understand better some of the phenomena. The full case will be dealt with
afterwards.

As shown analytically on a flat spacetime, but also numerically in a Kerr
background [172, 171], upon growing the cloud to some predetermined value, an EM
instability is triggered depending on the quantity kaΨ0. In particular, there exist two
regimes, a subcritical regime and a supercritical regime. In the former, no instability
is triggered and some initial EM fluctuation does not experience exponential growth.
Conversely, in the supercritical regime, an instability is triggered and the axion field
“feeds” the EM field, which grows exponentially, resulting in a burst of radiation.
The boundary between these regimes is set by two competing effects; the parametric
production rate of the photon, ∝ µkaΨ0, and their escape rate from the cloud,
∝ µ2M . The latter is approximated by the inverse of the cloud size. Similarly
to previous works, we find the boundary to be on the order kaΨ0 ∼ 0.1 − 0.4 for
µM ∼ 0.2 − 0.3.
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Figure 5.2. Top Panel: The time evolution of the (real part of the) dipolar, ℓ = m = 1,
bound state component of an axion cloud around a Schwarzschild BH in two scenarios:
coupling is subcritical (dashed red, I2) or supercritical (green, I3). As a consistency
check, we also evolve with a vanishing coupling to the Maxwell sector (I1), which we
find to be almost indistinguishable from the subcritical case. Bottom Panel: The time
evolution of the absolute value of the ℓ = m = 1 component of the Newman-Penrose
scalar Φ2 for a subcritical and supercritical coupling. The blue dashdotted line shows
the growth rate, λ = 0.0054, as estimated from equation (77) of [172]. In both panels,
the field is extracted at rex = 20M and µM = 0.3.
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Figure 5.3. Top Panel: The dipolar component |(Φ2)11| of the EM field in the supercritical
regime with µM = 0.3, for simulation I3. The alignment of the waveforms shows that
we are dealing with EM radiation. High-frequency oscillations are set by the mass scale
µ, whereas “beatings” (circumscribed by vertical dashed lines) are controlled by 1/µ2.
Bottom Panel: Fourier transform of the signal, taken on the entire time domain,
showing the dominant frequencies in the problem. The gray and brown dashed lines show
N(ω0/2) for N = 1, 3, respectively, where ω0 ≈ µ is the frequency of the fundamental
mode.

5.3.1 The process at large

In the following, we explore these two regimes by evolving the coupled system
describing a SR cloud of axions coupled to the Maxwell sector, while we initialize it
with a small vector fluctuation E0.

Figure 5.2 summarizes well the possible outcomes, which depend on the strength
of the coupling kaΨ0. For small enough couplings to the Maxwell sector, the axion
field is left unaffected, and remains in a bound state of (near) constant amplitude
around the BH. For large couplings however, in what we term the supercritical regime,
the amplitude of the axion field decreases. This transition signals a parametric
instability whereby axions are quickly converted into photons.

The bottom panel of Fig. 5.2 shows the behavior of the EM radiation during this
process (we show only the dipolar component ℓ = m = 1 of the Newman-Penrose
scalar, but we find that higher modes are also excited to important amplitudes, see
Appendix J.2). In the subcritical regime, any initial EM fluctuation decays on short
timescales. However, in the supercritical regime a burst is initiated; these are the
photons that are created by the axion cloud. Furthermore, we find the growth rate
to follow estimates from earlier work [172]. Specifically, it is approximated by taking
the production rate of the photons and subtracting the rate at which photons leave
the cloud: λ ∼ λ∗ − λesc, where λ∗ ∼ 1

2µkaΨ0 and λesc ∼ 1/d, where d is the size of
the cloud. This estimate is indicated by the blue dashdotted line in Fig. 5.2.

At late times, the system settles to a final, stationary state. In the subcritical
regime, this final state is almost the same as its initial state since the axion cloud is
barely affected by the EM perturbation. Conversely, in the supercritical regime, the
parametric instability has driven the axion field to decrease to a subcritical value.
Therefore, in the absence of SR growth, no further instability can be triggered and
the axion cloud settles on a final state with a lower amplitude than its initial value
while the created photons travel outwards.
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5.3.2 Axion and photon emission

Although the axion is massive, EM waves are massless and allowed to travel freely
once outside the cloud. To study EM wave propagation, we monitor the system at
large radii. The top panel of Fig. 5.3 summarizes our findings for EM radiation,
where we align waveforms in time. Some features are worth noting: (i) we find that
Φ2 decays like the inverse of the distance to the BH, as might be expected for EM
waves; (ii) the pattern of the waveform is not changing as it propagates, typical of
massless fields. The radiation travels at the speed of light, as it should.

Additionally, we observe an interesting morphology in the EM burst. It has a
high-frequency component slowly modulated by a beating pattern. While the high-
frequency component is set by the boson mass µ, with oscillation period ∼2π/(µ/2),
the beating frequency scales with 1/µ2 as its origin lies with the presence of the cloud.
Specifically, when the photons are produced inside the cloud, they travel through
it allowing for further interactions. These photon “echoes” exhibit a symmetric
frequency distribution with respect to the primary photons, lying around µ/2. This
can be seen in the Fourier transform in the bottom panel of Fig. 5.3. The frequency
difference between these peaks, ∆ω, corresponds to the observed beating timescale,
∼ 2π/∆ω, indicated by the dashed lines in the top panel of Fig. 5.3. In addition
to the bulk of photon frequencies near half the axion mass, there are other peaks
in the frequency domain, namely two around Mω ∼ 0.45. We believe these higher
order peaks do not originate from a parametric resonance, as one would expect
peaks for each integer N at Nµ/2, while we find the peaks at even N to be absent.
Furthermore, the bandwidth of higher order parametric resonances is extremely
small, making it hard to trigger those. We rather believe these additional peaks to be
a result from photon “echoes” as well, generated at later times, i.e., photons produced
by the parametric mechanism that are up-scattered by the axion cloud. These results
are different from a homogeneous axion background, where only echoes with the
same frequency are produced. The discrepancy is due to the large momentum tail
of the axion cloud.

Besides the expected EM radiation, the reverse process – two photons combining
to create an axion – may also provide a non-negligible contribution. In fact, this
process has been explored in the context of axion clusters [211], where energetic
axions are created that can not be stimulated anymore, hence they escape the cluster
(so-called “sterile axions”). Projecting this scenario in the context of SR instabilities
translates into the creation of unbound axion states, with frequencies ω > µ, that
are thus able to escape to infinity. Such axion waves are indeed produced in our
setup, as can be seen in Fig. 5.4. The large scalar field contribution far away from
the cloud is only present the supercritical regime. Since these are massive waves, the
dependence with time and distance from the source is less simple due to dispersion.
As components with different frequencies travel with different velocities, the wave
changes morphology when traveling to infinity, which is apparent in the top panel of
Fig. 5.4.

The Fourier transform of the axion waves is shown in the bottom panel of
Fig. 5.4. It indeed contains components with frequency ω > µ, showing that the
field is energetic enough to travel away from the source. The frequencies of the
peaks correspond to a group velocity v =

√
1 − µ2/ω2 = 0.036 and v = 0.18 for
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Figure 5.4. Top Panel: The dipolar component of the axion field in the supercritical
regime (simulation I3). When extracted at large radii, the non-zero value of Ψ11 is only
present in the supercritical regime and explained by the production of axion waves. Due
to dispersion, the morphology of the wave changes while traveling outwards. Bottom
Panel: The Fourier transform of the dipolar component, taken on the entire time domain
shown in the top panel. The gray dashed line shows the frequency of the fundamental
mode of the bound state, while the coloured dashed lines indicate the frequency of the
peak of each curve situated at ω > µ, confirming these are axion waves.

rex = 400M and rex = 1000M , respectively. Note that this Fourier transform is
taken over the full time domain and thus dominated by the late signal of the axion
waves, consisting of larger amplitude, non-relativistic waves. This also explains why
the peak for the rex = 1000M curve is at higher frequency; the slower waves did
not have time to arrive yet at this larger radius. If we instead calculate the Fourier
transform on only the first part of the signal, we capture the (more) relativistic
components. These emitted axion waves can in principle be detected by terrestrial
axion detectors if the BH is close enough to Earth.

Besides the dipole component, also higher order scalar multipoles are created by
the photons. In fact, from our initial data, only scalar multipoles with odd ℓ can be
produced. This selection rule is detailed in Appendix L. The higher multipoles for
both the axion and photon radiation are shown in Appendix J.2, where it can also
be seen that excited photons can recombine to create axion waves with twice the
axion mass.

5.4 Superradiance turned on
The formation of an EM burst is determined by whether the photon production from
the parametric instability is dominant over the escape rate from the cloud or vice versa.
The initialization of the system in a supercritical state however, is artificial. Instead,
it starts in the subcritical regime and potentially grows supercritical through SR.
Previous works claimed that this process developed through a burst-quiet sequence: a
burst of EM and axion waves would deplete the cloud, which would then grow on
a SR timescale before another burst occurred [171]. We argue that in fact bursts
do not occur, and that the process is smoother than thought. As we will show, the
presence of SR introduces two important differences: (i) the growth rate of the EM
field is modified and (ii) the system is forced into a stationary phase.
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Figure 5.5. Top Panel: The time evolution of the dipolar component of the EM field
including SR growth for different strengths of the initial EM pulse (see Table 5.1). The
field is extracted at rex = 20M and µM = 0.2. Bottom Panel: Same as above, but
while varying the initial coupling strength kaΨ0. Notice how a stationary state is reached
instead of a burst of EM waves. Moreover, the final EM value is independent of initial
conditions, even though the timescale required to reach saturation does depend on how
the fields were initialized.

5.4.1 Numerical results

We numerically evolve the coupled axion-photon system under the influence of a SR
growing cloud. In these simulations, we start the system in the subcritical regime,
and let it evolve to supercriticality via (artificial) SR, since now C ̸= 0.

Figure 5.5 illustrates the behaviour of the system. We evolve different initial
conditions, corresponding to different seed EM fields E0/Ψ0 and different couplings
kaΨ0, and we see a saturation of the EM field, to a value which is independent on
the initial conditions.4 This stability is simply achieved by turning on SR growth
like in equation (5.4). In contrast to the previous section where the bound state
solely loses energy, the supplement to the axion cloud is dominant at first, resulting
in exponential growth. As the cloud approaches the critical value, parametric decay
to the EM field begins to compensate for the energy gain from the BH, ultimately
reaching a phase where energy gain and loss are balanced. As a result, the entire
system consisting of the axion cloud and the EM field is constantly pumped by SR

4As could be anticipated, the timescale to reach saturation does depend on initial conditions: lower
field values or lower couplings require larger timescales.



5.4 Superradiance turned on 86

10−5

10−4

10−3

10−2

10−1

√
C
M

3/
2
×
|(Φ

2
) 1

1
|

0 500 1000 1500

t/(
√
CM 3/2)

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Ψ
11

J10

J11

J12

J13

J5

Figure 5.6. Top Panel: The dipolar component of EM radiation with SR turned on. The
field is extracted at rex = 400M and µM = 0.2. The blue, black and brown dashed
lines show the growth rate predicted by the standard Mathieu equation, the SR Mathieu
equation (5.9) and its first order expansion (5.10), respectively. The value of C is varied
for simulations Ji, see Table 5.1. Note the rescaling on both the horizontal and vertical
axis with

√
C, where we scale all simulations onto J14. Thus, our results indicate a

clear, simple dependence on the SR rate, which we investigate analytically below in
Section 5.4.2 and 5.4.3. Bottom Panel: Same as above, but for the scalar dipolar
component extracted at rex = 20M .

growth, with a steady emission of EM waves traveling outwards.
The saturation value of the EM field does depend on the SR parameter C. This is

simply due to the fact that the more axions that are created by SR, the more photons
that can be produced through the parametric mechanism. We find the saturation
value to be proportional to

√
C, shown in the top panel of Fig. 5.6. This result is

also supported by analytical estimates in Section 5.4.3, in particular equation (5.15).
Additionally, our results demonstrate that the timescale required to reach saturation
(at fixed initial field values), scales with

√
C as well. This behaviour is explained in

the following section.
These simulations provide us with robust evidence that the saturation phase is (i)

independent of the initial data, and (ii) occurring for all tested values of C which
span 2 orders of magnitude, allowing for universal predictions. In the following, we
discuss various features related to the saturation phase.

Evolution of the cloud’s morphology − When the system has just reached the
critical boundary, the EM field starts growing (super-)exponentially until it reaches
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Figure 5.7. Snapshots of the axion profile during the evolution of the axion-photon system.
Upper row shows the system in the supercritical regime (simulation I3), but without SR
growth. The cloud starts in its initial dipole state, and gets disrupted by the parametric
instability. Afterwards the configuration settles down while axion waves propagate to
infinity. On the bottom row, we show an initially subcritical cloud, yet with SR growth
turned on, C = 10−3M−1 (simulation J12). Again, the cloud starts in its dipole mode,
yet now it grows in amplitude due to SR. Afterwards, the cloud is disrupted due to the
EM instability, eventually settling down to a saturation phase wherein axion waves are
continuously produced.

the saturation value. When this happens, the non-linear backreaction in the Klein-
Gordon equation becomes important. In absence of SR, the EM field quickly decays
in time after reaching its maximum and with that its backreaction onto the axion
field, allowing the cloud to settle back to a stable configuration at late times (see
Fig. 5.2). Conversely, in presence of SR, the EM field settles to a large and constant
value that continuously backreacts onto the axion field. Consequently, it starts
to exhibit strong deviations from the initial pure bound state configuration as
overtones are triggered, i.e., it acquires a beating-like pattern. This can be seen in
Fig. 5.6, where around t ∼ 700

√
CM3/2 the saturation phase ensues and there is no

relaxation to the pure quasi-bound state. We show a series of snapshots from the
cloud’s evolution in the two distinct scenarios in Fig. 5.7.

Angular structure of outgoing EM waves − During the saturation phase, there
is a nearly constant emission of EM waves. For observational purposes, we probe
the angular structure of the outgoing radiation. We do this through the multipole
components of Φ2, while up to now only the dipole was considered. A subset of these
multipoles is shown Fig. 5.8. From the differences in amplitude between different
modes, we conclude that the radiation is not isotropic. In fact, we find that the
dominant radiation is on the equatorial plane (see inset of Fig. 5.8), where the
density of the axion cloud is highest. To strengthen this result, we also compute
analytically the excitation coefficients of these multipoles given our initial data. We
report them in Appendix L.
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Figure 5.8. A subset of the multipoles of the EM field for simulation J12, extracted at
rex = 400M . Every multipole up to ℓ ≤ 6 has approximately a similar contribution.
The inset shows the angular structure of the outgoing EM waves in the saturation phase
(where all multipoles up to ℓ ≤ 8 are taken into account). The y axis is reported in
arbitrary units (a.u.). The dominant production of the photons is on the equatorial
plane where the cloud’s density is highest.

5.4.2 Growth rate

In previous work [172], it was shown that in absence of SR, the growth rate of
the EM field can be approximated by a simple, analytical expression. This is a
consequence of the fact that when the background spacetime is Minkowski and the
background axion field is a coherently oscillating, homogeneous condensate, the
Maxwell equations can be rearranged in the form of a Mathieu equation [172, 212].
The growth rate is then found by taking the production rate of the photons (∼ the
Floquet exponent of the dominant, unstable mode of the Mathieu equation) and
subtracting the escape rate of the photons from the cloud (∼ inverse of the cloud
size). However, while this approach yields accurate predictions in absence of SR (see
Fig. 5.2), it does not in presence of SR (blue dashed line in Fig. 5.6). Remarkably, as
we will show, a simple adjustment to the Minkowski toy model restores its validity.
Additional details are provided in Appendix K.1.

Let us consider the Maxwell equations in flat spacetime. We adopt Cartesian
coordinates and assume the following ansatz for the EM field,

Aµ(t, x⃗) = αµ(t, p⃗)ei(p⃗·x⃗−ωt) , (5.6)

where p⃗ is the wave vector which we assume to be aligned in the ẑ direction without
loss of generality, i.e., p⃗ = (0, 0, pz). To mimic the amplification of the axion field via
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SR, we consider a homogeneous condensate which exponentially grows in time as5

Ψ = 1
2(ψ0e

−iµt + ψ∗
0e

iµt)eCt . (5.7)

Adopting the field redefinition yk = eiωtαk, rescaling the time as T = µt and
projecting along a circular polarization basis e± such that y = yωe±, we obtain a
“superradiant” Mathieu-like (SM) equation:

∂2
T yω + 1

µ2

(
p2

z + 2pze
CT
µ ψ0ka(C cosT−µ sinT )

)
yω = 0 . (5.8)

Unsurprisingly, for C = 0, this equation reduces to the original Mathieu equation.6
From (5.8), we find two new features; an extra oscillating term ∼ C cosT , and, most
importantly, an exponentially growing factor ∼ e

CT
µ . By solving (5.8) numerically, we

find that, similar to the standard Mathieu equation, this equation admits instability
bands, albeit with a larger growth rate. Fitting the exponent of the numerical
solution, we conclude that the solution to the superradiant Mathieu equation is well
described by a super-exponential expression yω ∼ eλSMt, with

λSM = µ

2 kaψ0e
Ct/2 . (5.9)

In Appendix K.1, we show the comparison between this expression and the numerical
solutions as well as an analytic derivation of (5.9) using a multiple-scale method.

We confront the growth rate of the EM field when considering the full axion-
photon system in a Schwarzschild background with the growth rate from our toy
model (5.9) in Fig. 5.6. Here, the standard Mathieu growth rate (blue dashed line),
the full solution and first order expansion in C (black and brown dashed lines,
respectively) can be seen, where the latter is defined by

λSMt ≈ µ

2 kaψ0(t+ Ct2

2 ) . (5.10)

In all of the curves, the time it takes for photons to leave the cloud has been
taken into account. Furthermore, we use the critical value for the coupling kaΨ0.
Remarkably, the SM growth rate matches the numerical results closely. Moreover,
the Ct2 term from (5.10) that appears at first order naturally explains why the
timescale to reach saturation scales as

√
C.

Hence, when considering the axion-photon system under the influence of SR,
a simple extension to Mathieu equation allows for elegant, analytic predictions of
our numerical results. Note that the true value for SR is many orders of magnitude
lower than the one considered in this work and thus we expect the correction to
be subdominant (unlike here). Finally, this prediction neglected the backreaction
onto the axion cloud. Hence, it naturally breaks down when the rate of energy loss
due to conversion to photons becomes comparable the SR growth, i.e., when the
saturation phase ensues.

5We adopt a different notation to distinguish the amplitude of the homogeneous axion field in
this toy model, ψ0, with the one of the axion cloud around the BH, Ψ0.

6Our result includes a sine instead of the cosine found in [172], which originates from a small
sign mistake in their derivation, see equation (19). This has no consequences for the physics, as it
only induces a π/2 phase shift.
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5.4.3 Saturation phase

As can be seen in Figs. 5.5 and 5.6, turning on SR growth forces the system into a
stationary configuration. Here, the energy loss of the cloud due to the parametric
instability balances the SR pump sourced by the rotational energy of the BH. A
description of this phase is remarkably simple as we will show below. A similar
conclusion was found in [198].

For the photons to reach an equilibrium phase, it is required that the parametric
decay rate, λpd, equals the escape rate of the photon, λesc. Assuming that the
former can be approximated by the decay rate in the homogeneous condensate
case [172, 212], we have

λpd ≈ kaΨsatµ

2 ≈ 1
d

≈ λesc , (5.11)

where Ψsat is the average amplitude of the scalar field within the cloud at saturation.
In the non-relativistic regime, we can approximate the size of the cloud by the
standard deviation of the radius d = ⟨r⟩ ≈ 2

√
3rc = 4

√
3/(µ2M). This yields a

relation for which the cloud reaches saturation, namely

kaΨsat ≈ µM

2
√

3
. (5.12)

This is indeed what we find in the bottom panel of Fig. 5.6, since kaΨsat ≈
0.2/(2

√
3) ≈ 0.06.

Additionally, we consider the equilibrium condition of the axion cloud. It is
sourced by the SR rate ΓSR, yet loses energy due to the parametric instability, ΓPI.
In our setup, these two rates are

ΓSR = C

2 and ΓPI ≈ 2ΓΨ→γγ
fγ , (5.13)

where ΓΨ → γγ = ℏk2
aµ

3/(16π) is the perturbative decay width of the axion-to-photon
conversion and fγ is the photon occupation number. When the dominant production
is in a narrow band around pγ = µ/2, we have [213]

fγ(pγ = µ/2) = 8π3nγ

4πp2
γ∆pγ

≈
2π2A2

γ

ℏkaΨsatµ2 , (5.14)

where ∆pγ ≈ 2kaΨsatµ is the photon dispersion bandwidth, approximated to be the
resonant bandwidth at pγ = µ/2. Moreover, Aγ is the photon amplitude, which
relates to our measure of the EM field Φ2 as Aγ ∼ 2Φ2/ω, where ω ∼ µ is the
frequency of the axion field. Finally, nγ = 2ρ/(ℏω) is the photon number density,
with ρ = A2

γω
2/2 the energy density. Substituting these relations into (5.13), we

find that inside the cloud

A2
γ

Ψ2
sat

≈ 2C
πµkaΨsat

≈ C

πλesc
, (5.15)

were we used again (5.11). Hence, this simple analytical estimate shows that the EM
field stabilizes to a value proportional to

√
C. This result is in excellent agreement
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with our simulations (see Fig. 5.6) and it allows us to consider a case in which C
coincides with the SR growth timescale.

The total energy flux of the photons with frequency µ/2 is defined as [198]

dE
dt = ℏµ

2 nγλesc χr
3
c , (5.16)

where χr3
c is the volume of the cloud. Here, χ is a numerical factor where in the

non-relativistic regime, χ ≈ O(102).7 Assuming the SR rate ΓSR to be equal to the
decay rate ΓPI in the saturation phase (5.13), we get that

dE
dt ≈ 7.6 × 1045

(
χ

100

)(2.5 × 102M

τs

)

×
( 0.2
µM

)2
(

10−13GeV−1

ka

)2

erg/s ,
(5.17)

where τs = C−1. To probe the SR regime, we tune C to match the well-known SR
growth rate in the dominant growing mode [73]

ΓSR ≈ aJ (µM)9

24M when µM ≪ 1 , (5.18)

where aJ is the spin of the BH. Using this in (5.17), we obtain

dE
dt ≈ 8.1 × 1040

(
χ

100

)
aJ

M

×
(
µM

0.2

)7
(

10−13GeV−1

ka

)2

erg/s .
(5.19)

Note how lower couplings lead to higher fluxes. Although this may sound counter-
intuitive, it is explained by the fact that for lower couplings, the axion field saturates
at higher values. As the EM flux is proportional to the axion field value, this leads to
a higher flux. 8 As a consequence, the saturation phase opens a channel to constrain
axionic couplings “from below”. Finally, the divergence of (5.17) and (5.19) at small
couplings indicates when our model breaks down. In particular, the equilibrium
condition (5.12) suggests a minimum value for the coupling for which the cloud’s
mass becomes larger than its maximum of Mc = 0.1M . For example, for µM = 0.2,
the minimum coupling for which our description holds is ka > 3.8 × 10−18 GeV−1.
Lower couplings then this yield an unphysical situation and thus a breakdown of
our description.

7To obtain χ, we introduce a threshold value ϵ for the absolute value of the scalar field, and
define

χ =
∫ ∞

0
dr r2

∫
dΩ Θ (|Ψ| − ϵ) ,

where Θ is the Heaviside step function and ϵ ∼ 0.5 max (Ψ). We checked that the order of χ does
not strongly depend on ϵ.

8A similar behaviour was found in the context of dark photons with kinetic mixings to the
Standard Model photon [175].
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5.4.4 Implications for superradiance

Using the scaling relation (5.15), we can probe the system in the regime of SR and
thereby test the validity of (5.19) with our numerical simulations. Before doing so,
however, we must argue why we are able to extend our results beyond the probed
regime for C.

Either end of the tested parameter space for C is accompanied by numerically
challenges. For high C, there is an extreme growth on short timescales which
makes the code diverge. For low C, the evolution timescale of the system becomes
prohibitively large. Besides the simulations shown in Fig. 5.6, we did two additional
simulations, J9 (low C) and J14 (high C), on each end of the spectrum. Regarding
the latter, we find indications that the saturation phase is ruined as the EM field
starts to grow from its saturation value after spending some time in the saturation
phase. Physically, this is to be expected. In the case of extreme SR growth, the
balance between the production and escape rate of the photons is distorted; the
photons simply do not have time to escape the cloud while plenty of axions are
produced. In this scenario, a more burst-like radiation pattern could be possible.9
Since we are interested in SR in this work, we do not probe this regime further.

The regime of low C is of interest as the SR rate is at significantly lower values
than what we can probe numerically (5.18). From the lowest C we probe, J9, we
find that even though there is an apparent decrease after the super-exponential
growth, the

√
C scaling is respected at late times. Physically, the perseverance of the

saturation phase makes sense. When the growth rate is small, the system becomes
adiabatic; as the axions are slowly produced, the system steadily approaches the
critical value at which the system is in equilibrium and a saturation phase ensues.

To extract the energy flux from our simulations, we exploit the properties of the
Newman-Penrose scalar. In particular, we can define

d2E

dtdΩ = lim
r→∞

r2

2π |Φ2|2 , (5.20)

where dΩ ≡ sin θdθdφ. Decomposing (5.20) in terms of spin-weighted spherical
harmonics, we obtain

dE
dt =

∑
ℓm

∫
dΩ 1

2π |(Φ◦
2)ℓm −1Yℓm|2 , (5.21)

where Φ2 = Φ◦
2/r. From our simulations, we extract (Φ2)ℓm,sim for a certain Csim at

large radii (r = rex) by averaging over a sufficient period in the saturation phase.
Then, we scale these multipoles to match their saturation value in the case of SR
according to

(Φ2)ℓm,SR ≈ (Φ2)ℓm,sim√
Csim/(2ΓSR)

, (5.22)

where ΓSR is defined in (5.18). We do this for each multipole and sum them according
to (5.21) to obtain the total flux. As the contribution to the energy flux becomes
smaller for higher multipoles, we sum each multipole until the increment is less

9Such a scenario could be realized in the case of a Bosenova [204], where the axion density
sharply rises on short timescales.
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than 5%. In practice, this means summing the first ∼ 8 values of ℓ. Following this
procedure, we find the following estimate from our simulations for the total, nearly
constant, energy flux in the saturation phase:

dE
dt = 9.10 × 1040

(
10−13 GeV−1

ka

)2

erg/s , (5.23)

where we assumed µM = 0.2 and the BH to be maximally spinning. This matches
closely the theoretical prediction from (5.19).

Besides the photon production, the parametric instability also affects the axion
cloud. As we showed in equation (5.12), the axion amplitude at saturation is
independent of C. By translating the amplitude of the axion field to the mass of the
cloud, the impact of coupling axions to photons becomes much more apparent [87].
It is well-established that, in the purely gravitational case, the cloud is able to obtain
a maximum mass of Mc ≲ 0.1M . As can be seen in Fig. 5.9, through the coupling to
the Maxwell sector, the cloud’s mass can saturate significantly below this maximum.
Note that in this estimate, we assume the profile of the cloud to be hydrogen-like
which is only strictly true in the no-coupling case. Consequently, when the cloud is
disrupted due to the strong backreaction onto the axion field in the saturation phase,
this approximation is not expected to hold. Nevertheless, for the (much) lower SR
growth rate, the EM flux is less strong and thus the cloud less disrupted.

Figure 5.9 has severe implications for current constraints on the mass of ultralight
bosons that are set through either GW searches [214, 101, 215, 216, 217] or spin
measurements of BHs [89, 218, 87, 90, 91, 219, 220, 193, 196, 221, 194]. Due to the
reduced cloud mass, the backreaction to the spin down of the BH could be negligible,
which means current constraints no longer apply, as they assume no interactions for
the axion. Furthermore, the environmental effect of the SR cloud on the gravitational
waveform in BH binaries becomes less relevant [92, 93, 94, 222, 95, 223, 224, 225, 97].

5.5 Surrounding plasma
The presence of plasma affects the axion-to-photon conversion in the parametric
instability mechanism, as the transverse polarizations of the photon are dressed with
an effective mass, i.e., the plasma frequency ωpl. Therefore, when ωpl > µ/2, the
process Ψ → γ + γ becomes kinematically forbidden. Even though it is common
lore to approximate the photon-plasma system with a Proca toy model, the full
physics is more involved: as already shown in sec. 2.3.4, already in the simplest case
of a cold, collisionless plasma, the longitudinal degrees of freedom are electrostatic,
unlike the Proca case (for details see [173, 174]). In curved space, these transverse
and longitudinal modes are coupled and thus the Proca model cannot assumed to
be correct a priori. Moreover, non-linearities provide additional couplings between
the modes, and also the inclusion of collisions or thermal corrections create strong
deviations from a Proca theory. Hence, a consistent approach from first principles
is imperative. In this section, we take a first step in that direction by studying a
linearized axion-photon-plasma system.
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Figure 5.9. Contour plot of the mass of the cloud (Mc) at saturation depending on the
axionic and mass coupling, kaΨsat and µM , respectively. The dark blue area at the
bottom denotes the maximum mass of 10% that the cloud can achieve in the purely
gravitational case.

5.5.1 Without superradiance

We start by studying the axion-photon-plasma system in absence of SR, and initialize
the axion cloud in a supercritical state with kaΨ0 ≪ 1. We evolve the system on a
BH background for different values of the plasma frequency (see Table 5.1). Note
that there is no backreaction onto the axion field in our linearized setup.

Figure 5.10 summarizes the main results. When ωpl < µ/2, the plasma has
little impact on the system and the parametric instability ensues. When ωpl ≥ µ/2
instead, a suppression of the photon production is seen. We find the growth rate
estimated in equation (19) of [199] to fit our simulations well, when taking into
account the finite-size effect of the cloud as λesc ∼ 1/d, i.e.,

λ ≈
µ2
√
µ2 − 4ω2

pl

2µ2 − 4ω2
pl

kaΨ0 − λesc . (5.24)

Finally, the beating pattern in the EM radiation at larger radii (see bottom panel of
Fig. 5.10) is explained by the photons having to travel through the cloud, thereby
scattering of the axions.

Additionally, we show the Fourier decomposition of the signal in Fig. 5.11. As we
concluded from Fig. 5.10, for low ωpl, the parametric instability is barely hindered
and a clear peak arises at half the boson mass. However, when ωpl > µ/2, we
observe the presence of modes with a frequency very close to ωpl. We find good
agreement between these peaks and the plasma-driven quasi-bound states computed
in a similar setup [173]. Note however, that these bound states are extremely fragile
and geometry dependent, and may disappear if more realistic plasma models are
considered [115]. We conjecture the origin of the two additional peaks at ωpl ± µ to
be up and down-scattering from the quasi-bound state photons with the axion cloud.
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Figure 5.10. Top Panel: Time evolution of the dipolar component |(Φ2)11| of the EM field,
extracted at rex = 20M for µM = 0.3, in the presence of plasma. The plasma frequency
ωpl is progressively larger for simulations K1−K6, see Table 5.1. The exponential growth
rate (dashed lines) is determined from (5.24). Bottom Panel: Same as above but now
the field is extracted at rex = 400M . The modulations arise from scattering of photons
with the axion cloud, similar to Fig. 5.3.
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Figure 5.11. Fourier transform of (Φ2)11 extracted at rex = 20M for simulations K2
(ωpl < µ/2) and K6 (ωpl > µ/2) with µM = 0.3. The y axis is shown in arbitrary units
such that both are visible on the same figure. The gray dashed line denotes half the
boson mass, while the other dashed line shows the plasma-driven quasi-bound state
frequency for ωpl = 0.4, located at Mω = 0.3887 − 0.0016i.

Due to the fact that modes with frequency ωpl − µ are decaying, their amplitude is
highly suppressed compared to the up-converted ones.

We now focus on the high axionic coupling regime. In the toy model considered
in [199], it was shown that even when ωpl ≥ µ/2, an EM instability could be triggered
for high enough kaΨ0. In Fig. 5.12, we confirm this prediction numerically and show,
for the first time, the presence of an instability in dense plasmas. This might seem
in tension with the kinematic argument that for ωpl > µ/2 the axion decay into two
photons is forbidden. However, as we show in the inset of Fig. 5.12, the frequency
centers at ω = µ instead of the usual ω = µ/2. This suggests the photon production
to be dominated by a different process, namely Ψ + Ψ → γ + γ.

To support this hypothesis, we study again the connection with the Mathieu
equation (see e.g. [226]). As we detail in Appendix K.1, in flat spacetime, the
Maxwell equations in presence of a plasma can indeed be recasted into a Mathieu
equation which admits instability bands whenever ω2 = p2

z + ω2
pl = n2 µ2/4, with

n ∈ N. Therefore, when ωpl > µ/2, the first instability band (n = 1) at ω = µ/2 can
indeed not be triggered, yet it is still possible to trigger the second band at n = 2,
where ω = µ. This matches exactly the phenomenology observed in Fig. 5.12 and
thus we conclude the EM instability to correspond to the second instability band of
the Mathieu equation, which indeed is triggered by the process Ψ + Ψ → γ + γ (and
kinematically viable even for ωpl > µ/2) [212]. This analysis can be continued for
even higher branches. However, since these get progressively narrower, (extremely)
high values of the axionic coupling could be necessary to trigger instabilities in
higher bands.



5.5 Surrounding plasma 97

0 400 800 1200
t/M

10−7

10−5

10−3

10−1

101

M
|(Φ

2
) 1

1
|

K7

K8

0.0 0.2 0.4 0.6

Mω

0.0

0.5

1.0

(Φ̃
2
) 1

1
[a

.u
.]

Figure 5.12. Time evolution of |(Φ2)11| extracted at rex = 20M for simulations K7 and K8
with µM = 0.3. Even though in both simulations ωpl = 0.2 > 0.15 = µ/2, the instability
can be restored when kaΨ0 is high enough. The inset shows the Fourier transform of
both curves, with the gray line indicating the plasma frequency. The red dashed line
shows the frequency of the peak for K8, which is at Mω = 0.3, indicating that the second
instability band of the Mathieu solution is triggered.

5.5.2 With superradiance

We now probe the axion-photon-plasma system starting from a subcritical regime,
yet letting it evolve to supercritical values via SR. Based on the previous section, we
expect the system to turn unstable at some point, as the axionic coupling kaΨ0 grows
indefinitely. Due the longer timescales associated with this process, we anticipate
assumption (v), regarding the neglecting of the gravitational term, to be violated
for the same parameter choices as before. Therefore, we evolve the system with
µM = 0.1, such that all the assumptions are still justified.

In Fig. 5.13, we show two simulations, K9 (ωpl < µ/2) and K10 (ωpl > µ/2),
which capture well the two distinct outcomes. In the former, the usual instability
with ω = µ/2 ensues when the system has reached the supercritical threshold, yet in
the latter, the time to reach this threshold is longer as the axionic coupling must grow
sufficiently to trigger the second instability band. Note that, similar to the previous
section, there is no backreaction onto the axion field, which therefore merely acts as
a big reservoir for the EM field. This naturally explains the absence of a saturation
phase. Should the backreaction be included however, there is no physical reason
to expect that the saturation phase is ruined by the presence of plasma as it does
not interfere with the balance between the energy inflow from the BH and energy
outflow from the emitted photons. We therefore expect that the general outcome
from the analysis in Section 5.4.3 still holds, aside from minor modifications.10

By allowing the axionic coupling to take on arbitrarily high values, an instability
is thus always triggered, regardless of the plasma frequency. In practice however, it
is bounded by constraints on the coupling constant ka and the mass of the cloud

10For example, the presence of a plasma affects the escape rate, as photons will travel more slowly
through it, i.e., vγ < c.
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(which relates to Ψ0) when SR growth is saturated. We can estimate this maximum
axionic coupling, and therefore the maximum plasma frequency (= electron density)
for which an instability occurs. We do this using the flat space toy model detailed in
Appendix K.2. From (K.2.9), it is immediate to see that the critical value to trigger
an instability in the presence of an overdense plasma (when ωpl ≳ pz) is given by

kaψ0 ≳
ω2

pl + p2
z

2µpz
≈
ω2

pl
µ2 . (5.25)

This condition corresponds to the requirement that the harmonic term in the
Mathieu-like equation dominates over the non-oscillatory one (cf. (K.2.9)). We have
confirmed that this flat spacetime model closely matches the simulations in curved
spacetime. Therefore, we can safely use the (flat spacetime) relation between the
axion amplitude and the mass of the cloud [30] to obtain

ka ≳ 8 × 102
(
ω2

pl
µ2

)( 0.1
Mc/M

)1/2( 0.2
µM

)2
. (5.26)

Note that when ωpl ≈ µ, this condition reduces to the one derived in [171], while in
the case ωpl ≫ µ, stronger constrains on the coupling are imposed. We can translate
this into the following condition for when an instability is triggered

10−13 GeV−1

ka
≲ 8 × 105

(10−3 cm−3

ne

)(
Mc/M

0.1

)1/2

×
(1M⊙

M

)2(µM
0.2

)4
.

(5.27)

Since current constraints on the coupling constant are around 10−13 GeV−1 [227],
this means a plasmic environment can at least be a few orders of magnitude higher
than the interstellar medium (ne ∈ (10−3, 1) cm−3) and still an EM instability would
be triggered.

5.6 Observational prospects
Based on the previous section, there are two distinct outcomes for parametric photon
production in presence of plasma; (i) the dominant instability for ωpl < µ/2, and (ii)
higher band instabilities in the regime of large axionic couplings, for ωpl > µ/2. In
situation (i), the plasma frequency establishes a threshold for the frequency of the
emitted photons. In the case of the interstellar medium, characterized by an electron
density of approximately 1 cm−3 [228], the value of ωpl is estimated to be around
10−11 eV/ℏ (2.16), corresponding to a frequency of 7.6 kHz. This should be compared
to e.g. a BH with mass 5M⊙, which can effectively (µM = 0.4) accumulate an axion
cloud with the same frequency, i.e., µ ≈ 10−11 eV. In this case, the axion cloud
would decay into pairs of photons with a frequency of approximately 3.8 kHz, which
is close to the threshold value required for observation. For higher µ, the mass of the
plasma can be considered negligible, and we anticipate that the primary photon flux
will exhibit a nearly monochromatic energy of µ/2 within the radio-frequency band.
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Figure 5.13. The dipolar component of EM radiation extracted at rex = 20M for
simulations K9 (ωpl = 0.02) and K10 (ωpl = 0.07) with µM = 0.1. Although initially
subcritical, SR drives the axionic coupling high enough such that an instability can
occur, even when ωpl = 0.07 > 0.05 = µ/2.

Note however, that for higher µ, we need to invoke subsolar-mass BHs to grow the
cloud on astrophysically relevant timescales. Besides the total photon flux derived
analytically (5.19) and extracted from our simulations (5.23), we also demonstrate,
for the first time, the anisotropic emission morphology in the frame of the BH, see
Fig. 5.8. Consequently, one expects varying observer inclination angles to result in
quantitatively distinct signals.

Situation (ii) presents an opportunity to observe photons produced by axion
clouds beyond stellar-mass BHs. Still, the typical frequency of these photons
fall below the MHz band, and thus poses a challenge for current Earth-based
radio observations. However, the forthcoming moon-based radio observatories can
potentially detect these signals [229]. Moreover, in the case of a rapidly spinning BHs
resulting from binary mergers, one can anticipate that the radio signals will follow
strong gravitational wave emissions with a delay determined by the SR timescale.
Consequently, by employing multi-messenger observations between gravitational wave
detectors and lunar radio telescopes, constraints can be imposed on the axion-photon
coupling.

Finally, the projected saturated value of kaΨsat can induce a rotation in the
linear polarization emitted in the vicinity of BHs [230, 231]. This phenomenon has
been investigated in the context of supermassive BHs [232, 233, 234]. It should
be noted however that due to the significant hierarchy between the ultra-low SR
mass window and the plasma mass generated by a dense environment, higher-order
instabilities are not expected to occur in supermassive BHs. Consequently, the axion
cloud outside an supermassive BH remains robust against axion-photon couplings.
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5.7 Conclusions
In this chapter, we performed a detailed numerical study of the dynamics of boson
clouds around BHs with axionic couplings to the Maxwell sector. We demonstrate
the existence of an EM instability, thereby confirming previous studies. However,
while those works assumed that the cloud is allowed to grow before turning on the
coupling, we relax this assumption and study the axionic coupling simultaneously
with the growth of the cloud, conform to the SR mechanism. We find that, in
this setup, a stationary state emerges, wherein every produced axion by SR is
converted into photons that escape the cloud at a steady rate. This leads to strong
observational signatures, as the nearly monochromatic and constant EM signal
could have a luminosity comparable with some of the bright- est sources in our
universe. Moreover, the depletion of the axion cloud impacts current constraints on
the boson mass. Additionally, we study the influence of a surrounding plasma on
the EM instability. In the regime of small axionic couplings, we find the expected
suppression of the instability when the plasma frequency exceeds half the boson
mass. Surprisingly however, the instability can be restored for high enough couplings.
We show how the Maxwell equations in presence of plasma reduce to a Mathieu
equation, which naturally explains how the restoring of the instability is associated
with higher-order instability bands. With this interpretation in mind, we conclude
that (very) dense plasmas do not necessarily quench the parametric instability; it
solely depends on the value of the axionic coupling.
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Chapter 6

Superradiant Instabilities by
accretion disks in Scalar-Tensor
Theories

Summary
We study the superradiant instability in scalar-tensor theories of gravitation, where
matter outside a black hole provides an effective mass to the scalar degree of freedom
of the gravitational sector. We discuss this effect for arbitrarily spinning black
holes and for realistic models of truncated thin and thick accretion disks (where the
perturbation equations are nonseparable), paying particular attention to the role of
hot coronal flows in the vicinity of the black hole. The system qualitatively resembles
the phenomenology of plasma-driven superradiant instabilities in General Relativity.
Nevertheless, we show that the obstacles hampering the efficiency of plasma-driven
superradiant instabilities in General Relativity can be circumvented in scalar-tensor
theories. We find a wide range of parameter space where superradiant instabilities
can be triggered in realistic scenarios, and discuss the constraints on scalar-tensor
theories imposed by this effect. In particular, we argue that the existence of highly
spinning accreting black holes is in tension with some scalar-tensor alternatives to
the dark energy, e.g. symmetron models with screening.

6.1 Superradiant instabilities triggered by accretion
disks

Scalar-tensor theories are among the most interesting and well-studied extensions of
General Relativity (GR). In this class of theories, the gravitational sector includes
one or more scalar fields which are nonminimally coupled to the standard metric. A
quite general action of scalar-tensor theories with one scalar field reads [36]:

S = 1
16πG

∫
d4x

√
−g[F(ϕ)R− Z(ϕ)gµν∂µϕ∂νϕ− −U(ϕ)] + Sm(ψm, gµν) , (6.1)

where R is the Ricci scalar, gµν is the metric, ϕ is a scalar field, and the last term
denotes the action of matter fields minimally coupled to the metric. Depending



6.1 Superradiant instabilities triggered by accretion disks 102

on the expressions of the functions F , Z, and U , it is possible to recover different
theories. For example, for F = ϕ, Z ∝ ϕ−1, and U = 0, Eq. (6.1) represents
Brans-Dicke theory. Actions with scalar fields nonminimally coupled to gravity
also arise from string theory, Kaluza-Klein-like theories, and braneworld scenarios.
These theories have been intensively investigated in cosmology [37, 235]. Likewise,
astrophysical implications of scalar-tensor theories for compact objects have been
explored in detail [17].

A crucial requirement for these theories is that their weak-field limit, i.e. length
scales between the micrometer and the astronomical unit, must be consistent with
GR, which in this regime has been tested with extreme precision [34, 17]. Typically,
scalar-tensor theories with interesting cosmological phenomenology must feature
some screening mechanism, hiding the scalar field on local scales [9, 10]. It is thus
relevant to study the phenomenology of these theories in the strong gravity regime,
where deviations from GR might be more dramatic. In this section, we perform a
detailed analysis of matter-triggered superradiant instabilities for spinning black
holes (BHs) in scalar-tensor theories (see [30] for an overview on BH superradiance).
This effect was unveiled in [236, 114], where it was shown that the presence of matter
outside BHs can trigger either spontaneous scalarization or a superradiant instability
in the system, due to the scalar field acquiring an effective mass squared proportional
to the trace of the stress-energy tensor of the surrounding matter. The scope of this
work is to investigate whether this superradiant instabilities can arise if one considers
realistic models of accreting BHs. A similar analysis was recently performed in [115]
in the context of plasma-driven [108, 107] superradiant instabilities of photons in
GR for BHs accreting a tenuous plasma, using a spin-0 toy model (see also [116] for
an extension to the Proca case, and [173, 174] for a recent analysis of photon-plasma
interactions in curved spacetime). It was shown in [115] that the complex geometry
of accretion disks and the high values of plasma density near the BH can significantly
quench the instability.

Nevertheless, we show that this problem can be circumvented in scalar-tensor
theories for realistic accretion-disk configurations, because the effective mass depends
also on the scalar-tensor coupling. For a cold, collisionless plasma the effective photon
mass corresponds to the plasma frequency [108, 107, 173, 174] (2.16). As already
discussed, the plasma effective mass lies in a range able to trigger superradiant
instabilities if ne ∼ 10−3 − 10−2 cm−3, i.e. for plasma densities typical of the
interstellar medium [107]. The plasma density near an accreting BH is several orders
of magnitude bigger [115]. In this case, the effective mass is too large to induce an
instability on a sufficiently short time scale.

However, as we shall later discuss, in scalar-tensor theories the effective mass
squared is [236, 114]

µ2
eff = −2αT ∼ 2αρ , (6.2)

where T is the trace of the stress-energy tensor, ρ = mNne is the matter-energy
density of the gas (with nucleon mass mN ), α is a free parameter related to the
nonminimal coupling of the scalar field, and the last step above is valid for a
nonrelativistic disk (see details below). Thus, in the scalar-tensor case the effective
mass depends on n1/2

e as in the standard photon-plasma case but, crucially, also on
a free effective coupling α. As we shall discuss, depending on the value of α, the
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effective mass can be in the optimal range to trigger a superradiant instabilities for
realistic plasma configurations around BHs.

Another effect that can drastically quench plasma-driven BH superradiant insta-
bilities are nonlinearities [137] (see 3.4). Nevertheless, as we shall later discuss, the
situation is radically different in the case of scalar-tensor theory, at least for the case
of relativistic transparency. Indeed, while also in this case the backreaction induces
a change in the plasma four-velocity, because the effective mass depends only on the
trace of the stress-energy tensor, it is not suppressed by a Lorentz factor.

6.2 General equations and framework

The action in Eq. (6.1) is in the so-called Jordan frame, where the scalar field is
nonminimally coupled to the metric. By performing a conformal transformation of
the metric and a field redefinition for the scalar field,

gE
µν = F(ϕ)gµν , (6.3)

Φ(ϕ) = 1
4π

∫
dϕ

[
3
4

F ′(ϕ)2

F(ϕ)2 + 1
2
Z(ϕ)
F(ϕ)

]1/2

,

A(Φ) = F−1/2(ϕ) ,

V (Φ) = U(ϕ)
F2(ϕ) ,

it is possible to describe the system in the so-called Einstein frame, where the action
takes the form:

S =
∫
d4x

√
−gE

(
RE

16π − 1
2g

E
µν∂

µΦ∂νΦ − V (Φ)
16π

)
+ S(ψm,A(Φ)2gE

µν) . (6.4)

In the Einstein frame, the scalar field is minimally coupled to the gravity sector,
but matter fields are coupled to the effective metric A(Φ)2gE

µν , so that the weak
equivalence principle is preserved while its strong version is violated. In this frame,
we assume a generic analytic behavior for the potentials around a GR solution with
a constant value Φ(0) of the scalar field1,

V =
∑
n=0

Vn(Φ − Φ(0))n , (6.5)

A =
∑
n=0

An(Φ − Φ(0))n . (6.6)

Then, by expanding the field equations for φ ≡ Φ − Φ(0) ≪ 1, it is possible to
rearrange the field equation for the scalar field in a GR background as (see [236, 114]
for details)

[□E − µ2
eff(r, θ)]φ = 0 , (6.7)

1We consider the field equations in the Einstein frame but laboratory clocks and rods refer to
the Jordan-field metric gµν = A2gE

µν . Physical asymptotic quantities related to the metric (e.g.,
masses and angular momementa) are obtained from their Einstein-frame counterpart by rescaling
the latter with suitable powers of A(Φ(0)). In practice, recovering GR in the weak-field regime
requires A(Φ(0)) ≈ 1 so the distinction between Einstein- and Jordan-frame asymptotic quantities
is negligible for our purposes.
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with an effective mass squared term

µ2
eff(r, θ) = V2

8π − 2αTE(r, θ) , (6.8)

where α = A2/A0 Following [114] we focus on asymptotically-flat spacetimes (which
requires V0 = V1 = 0) and on theories admitting GR vacuum solutions (which
requires A1 = 0). For the rest of this analysis we will also assume V2 = 0. This
term is related to a standard bare mass, and neglecting it corresponds to assuming
a massless field.

We are therefore left with a Klein-Gordon equation with an effective mass squared
proportional to the trace of the stress-energy tensor of the surrounding matter. Since
the matter backreaction on the metric is typically negligible, and owing to BH no-hair
theorems in this class of theories [237], the background is described by the Kerr
solution. The sign of the parameter α has a crucial impact on the phenomenology
of the system [236, 114]. If α < 0 the effective mass squared in Eq. (6.7) is negative,
and leads to a possible tachyonic instability and to a scalarization of the BH. If
instead α > 0, the effective mass squared is positive and the system can undergo
a superradiant instability. In this chapter, we will focus on the latter case. In
particular, from eq. (6.8), it is immediate to notice a strong similarity with the
previously discussed plasma-driven superradiant instability 3, as also in this case
the dynamics is governed by a spatially-varying effective mass. Therefore, one can
imagine also in this case (at least at a linear level) a superradiant instability "a là
BH-bomb" (see 2.2.5).

6.2.1 Effective mass

Stress-energy tensor of accretion disks

As previously discussed the effective mass-squared term depends on the trace of
the stress-energy tensor of the matter fields surrounding the BH. In this section we
characterize this term for realistic accretion disk profiles.

We consider different types of effective mass. In general, the stress energy-tensor
of an accretion disk can be fully described by four different components [32]:

Tµ
ν = (Tµ

ν )FLU + (Tµ
ν )VIS + (Tµ

ν )MAX + (Tµ
ν )RAD , (6.9)

which are, respectively, the fluid component, the viscosity component, the elec-
tromagnetic component, and the radiation one. Most models of accretion disks
assume a particular form of the stress energy-tensor. For example, thick accretion
disk models rely on a perfect fluid approximation, which states that (Tµ

ν )VIS =
(Tµ

ν )MAX = (Tµ
ν )RAD = 0. Throughout this work, we will consider this assumption,

in which the stress energy-tensor reads

(Tµ
ν )FLU = (ρuµ)(Wuν) + δµ

νP , (6.10)

where ρ, W , P are respectively the mass-energy density, enthalpy, and pressure. By
neglecting the internal energy density of the fluid, the stress-energy tensor trace
reads T = −ρ+ 3P . Note that while the perfect fluid approximation holds for thick
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disks, in our case we can use the same approximation also for thin disks. Thin
disks have a nonvanishing stress part, which for example in the Shakura-Sunyev
model can be described using a nearly-linear viscosity approximation [31]. However,
the stress part can be written as (Tµ

ν )VIS ∝ σµ
ν , where σµν is the shear tensor of

the four-velocity of the fluid. Since the shear tensor is by definition traceless, the
effective mass is independent of the viscosity.

In what follows we will also neglect the effect of pressure, as it is subdominant.
Indeed, if one for example assumes the equation of state of an ideal gas, then P = c2

sρ,
where cs is the speed of sound of the fluid. Since for accretion disks cs is at least two
orders of magnitude smaller than the speed of light, we are in the nonrelativistic
regime, P ≪ ρ, and we can safely neglect pressure corrections to the effective mass.
Thus, the trace of the stress-energy tensor in our models is simply T ≈ −ρ.

Accretion disks features: truncation, typical densities, and coronae

In the following, we will be interested in accretion environments that exhibit a sharp
cut-off sufficiently far away from the BH horizon. In these models the disk creates a
cavity that can potentially trap scalar modes leading to an instability. A system
that satisfies this requirement is the truncated disk accretion model. Truncated
disk models are commonly used in BH accretion physics and, depending on the
accretion rate, the location of the truncation can be close to the Innermost Stable
Circular Orbit (ISCO) (high/soft state) or very far from it, even at 200 − 400M or
more (low/hard state). Whenever this happens, in the region within the truncation
radius and down to the vicinity of the BH, only a hot coronal flow can exist (see
e.g. [109, 110, 111, 112, 113]). The Comptonization of hot electrons in the coronal
medium is believed to explain the hard, X-ray tail that follows the black-body like
emission spectrum of the disk. For this reason, the truncated disk + corona model
succeeds in explaining features in the emission spectrum [110].

Another ideal configuration producing sufficiently wide cavities in the density
profile near the BH are counter-rotating disks that extend all the way to the ISCO.
In this case, the ISCO is sufficiently far away from the horizon (6 ≤ rISCO/M ≤ 9
depending on the BH spin) so that the cavity is able to trap modes. Finally,
another interesting possibility are magnetically-arrested disks, where a strong poloidal
magnetic field disrupts the disk at a relatively large radius, creating a cavity. Also
this model supports the presence, inside the cavity, of a hot, low-density coronal
flow [238]. In general, these flows are always very tenuous and quasispherical, and
their density is lower than the disk’s one by some orders of magnitude (see [239]
for an estimate or, e.g., [240, 241] for GR magneto-hydrodynamics simulations). In
what follows, we shall therefore describe truncated thin and thick disks by taking
into account an additional coronal structure.

Plasma profiles

We consider different models of density profiles, discussed below. In all models,
since the time scales of interest are much shorter than the typical BH accretion time
scales [174], we shall neglect the time dependence of the matter fields. Moreover,
we shall restrict to axisymmetric configurations in which ρ = ρ(r, θ) (that of course
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Figure 6.1. Radial profile of the effective mass in Model I with αρCM
2 = 0.9, αρHM

2 = 20
and r0 = 8M (solid blue) and Model III with β = 500 (dashed orange). The profiles
are similar, but in Model III the sharp cutoff is smoothed out. For convenience, we
have chosen unrealistic values to better highlight the three fundamental parameters
(r0, αρC , αρH) that govern the salient features of the geometry.

reduce to spherical configurations for purely radial profiles).
Model I describes a thick disk+corona system where the corona is described by

a constant asymptotic term. The full profile reads

µ2
eff,I(r, θ) = α

[
ρHΘ(r − r0)

(
1 − r0

r

)(
r0
r

) 3
2

+ ρC

]
, (6.11)

where Θ(x) is the Heaviside step function. When the scalar coupling α = 1, this
model coincides with the one studied in [115] with a suitable choice of the parameters
ρH , ρC , and r0. In order to investigate the role of the mass at spatial infinity, in
Model II we truncate the corona at r0:

µ2
eff,II(r, θ) = α

[
ρHΘ(r − r0)

(
1 − r0

r

)(
r0
r

) 3
2

+ ρCΘ(r0 − r)
]
. (6.12)

In Model III we investigate the effects of the sharp cut-off produced by the Heaviside
function in Models I and II by replacing it with a sigmoid-like function:

µ2
eff,III(r, θ) = αρH

1 + e−2(r−r0)

1 − r0

r
(
1 + β

r4

)
(r0

r

) 3
2
. (6.13)

Figure 6.1 shows that, with a suitable choice of β, Model III is very similar to
Model I, except that the effective mass does not display a sharp cutoff.

Model IV describes a realistic scenario for a standard, truncated thin disk with
an additional structure made by an ADAF-type corona which extends in the inner
zones where the disk evaporates [242, 243]. We therefore model the disk using the
Shakura-Sunyev solution and the corona by the self-consistent solution described
in [244]. In our analysis, we vary the coronal density by several orders of magnitude
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to investigate its effect on the instability. Furthermore, in thin disks the thickness is
H/R ≪ 1. To try to capture this effect we multiply the radial Shakura-Sunyev profile
by a sin2 θ [115]. As a matter of fact, even more thinner profiles can be considered,
but they would require higher angular resolution when computing the spectrum
(see Sec. 6.3). As for the ADAF-type corona, the geometry is quasispherical so we
can safely neglect deviations from spherical symmetry. Therefore, in Model IV we
consider the following effective mass:

µ2
eff,IV(r, θ) = α

ρHΘ(r − r0)
(

1 −
√
r0
r

) 11
20
(
r0
r

) 15
8

× sin2 θ + ρC

(1
r

) 3
2 ]
. (6.14)

Finally, to explore the difference between the radial geometry of a thin and
a thick disk, in Model V we also consider a radial profile typical of a thick-disk
axisymmetric model with the same corona as in Model IV:

µ2
eff,V(r, θ) = α

[
ρHΘ(r − r0)

(
1 − r0

r

)(
r0
r

) 3
2

sin2 θ + ρC

(1
r

) 3
2 ]
. (6.15)

Note that the salient features of these models can be qualitatively captured by
three parameters, which, on physical grounds, should produce the following effects
(see also Fig. 6.1):

• Parameter ρH represents the height of the barrier. If this value is high enough,
it can naturally confine the scalar modes into a cavity. The higher the ρH the
more efficient the confinement. As ρH represents a potential barrier rather
than a bare mass (at variance with the standard superradiant instability from
massive bosons), increasing ρH should not stabilize the modes, but only confine
them better.

• Parameter r0 is the width of the cavity. If it is large enough, the barrier can
efficiently confine the modes. In particular, a necessary requirement is that
the width of the cavity must be greater than (or at least comparable to) the
Compton wavelength of the modes [245]. In the following we consider two
representative truncation values: r0 = 8M and r0 = 14M .

• Parameter ρC , instead, represents an offset that introduces an effective asymp-
totic mass to the scalar field, thus contributing to stabilizing the modes. Note
also that, if the barrier is high enough and the modes are strongly confined in
it, ρC should be relevant only inside the cavity, because the part of the scalar
field transmitted outside should be negligible. This effect will be explored by
comparing Model I with Model II.

In particular, as we shall later discuss, in the disk µeffM ∼ √
αρHM should

be sufficiently large for the barrier to confine the mode efficiently, whereas in the
corona µeffM ∼ √

αρCM corresponds to the gravitational coupling that governs the
effective mass of the field inside the cavity. As such, √

αρCM ≪ O(0.1) for the
instability not to be quenched.
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6.3 Numerical Methods for Non-Separable Equations
in Arbitrarily Spinning Spacetime

In this section we present the numerical methods used to compute the spectrum of
accreting spinning BHs in scalar-tensor theories. We assume a stationary background
and a e−iωt time dependence for the perturbation, where ω = ωR+iωI is the (complex)
eigenfrequency. Unstable modes correspond to solutions having ωI > 0, which
exponentially grow in time. In the specific case of superradiant instabilities, this
exponential growth is triggered if the mode satisfies the superradiant condition [30],
i.e. 0 < ωR < mΩH = ma

r2
++a2 , where aM is the BH angular momentum, r+ is the

radius of its event horizon, and m is the azimuthal number of the mode.
We use a procedure consisting in two different numerical methods, both in the

frequency domain. We first use a direct shooting method 3.2.4 for finding solutions
of Eq. (6.7) in the case of spherical symmetry, i.e. for nonspinning BHs and when
the effective mass profile depends only on the radial coordinate. Imposing suitable
boundary conditions at the horizon and at infinity, the shooting method allows
us to solve the eigenvalue problem. Then, the wavefunctions and eigenfrequencies
are used as starting guess solutions for computing the spinning case, by applying
a numerical method suitable for nonseparable differential equations. In particular,
following [72], we express Eq. (6.7) as a nonlinear eigenvalue problem which we solve
with the nonlinear inverse iteration algorithm [246] (see below for details). Starting
with the spherical symmetric case, we can iteratively solve the problem by gradually
increasing the spin until we obtain the desired spinning configuration. With this
method we can study also quasiextremal BHs and generic nonseparable equations.

For the case of effective mass profiles having a θ-dependence through sin2 θ, the
field equations are nonseparable even for a nonspinning BH. In this case we introduce
an extra iterative cycle in the procedure. We express the generic effective mass of
any of the previous models as

µ2
eff(r, θ) = µ2

r(r)(1 − k cos2 θ) + µ2
0(r) , (6.16)

where limr→∞ µr(r) = 0, we introduced the fictitious parameter k connecting purely
radial profiles (k = 0) with θ-depending profiles (k = 1), whereas µ2

0(r) comes from
the BH corona. The extra cycle consists in applying the nonlinear inverse iteration
to finding the mode of a nonspinning BH with a nonspherical density profile (k = 1),
using solutions with k = 0 as starting guess: at each iteration we gradually increase
k and use the previous result as a guess, until we obtain the desired configuration
with k = 1 and zero BH spin. Finally, we use the latter solution as a starting guess
to find the modes of a spinning BHs with k = 1, as previously explained. Details of
the latter numerical method outlined above are given in the next subsection.

Nonseparable perturbations: Čebyšëv interpolation and nonlinear eigen-
value problem

Let us consider the case of nonseparable perturbations, which is relevant for both
spinning BHs and even for nonspinning BHs if the effective mass depends on the
angular coordinate θ.
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We assume an axisymmetric (Kerr) background so that perturbations have a
definite azimuthal number m. We rewrite Eq. 6.7 in the following form:{ 1

∆(r) [L2 + a2 cos2 θ(µ2
eff(r, θ) − ω2)] − 1

∆(r)
∂

∂r

[
∆(r) ∂

∂r

]
− ω2 −

P 2
+

(r − r+)2 −
P 2

−
(r − r−)2 + A+

r − r+
− A−
r − r−

+ µ2
eff(r, θ)

(
1 + B+

r − r+
− B−
r − r−

)}
φ(t, r, θ, ϕ) = 0 , (6.17)

where A± = ∓2ω2M+ P 2
++P 2

−−(8M2−a2)ω2

r+−r−
, B± = 2M2−a2

r+−r−
±M , r± = M±

√
M2 − a2,

P± = ma−2ωMr±
r+−r−

, L2 = − 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
− 1

sin2 θ
∂2

∂ϕ2 , and ∆(r) = (r − r+)(r − r−).
Note that the dependence on k is contained inside µ2

eff(r, θ) in the above equation.
At the horizon we must have ingoing waves,

φ ∼ (r − r+)iP+ , (6.18)

whereas, as previously discussed, we impose that there are no waves coming from
infinity,

φ ∼ r−1−
M(2ω2−µ2

∞)
k∞ ek∞r . (6.19)

We apply the following ansatz for the scalar field [72]:

φ(t, r, θ, ϕ) = F (r)
∑
l,m

Blm(ζ(r))Ylm(θ, ϕ)e−iωt , (6.20)

where
F (r) =

(
r − r+

r − r−

)iP+

(r − r−)−1−
M(2ω2−µ2

∞)
k∞ ek∞(r−r+) (6.21)

captures the asymptotic behaviors of the solution. Henceforth for simplicity we drop
the index m from Blm. In the numerical results presented in the next section we will
always consider the case m = 1. In the above ansatz Bl(ζ(r)) are radial functions
depending on the auxiliary radial coordinate ζ ∈ (−1, 1), defined by the following
mapping

ζ(r) =
r −

√
4r+(r − r−) + r2

−

r − r−
, (6.22)

r(ζ) = 4r+ + r−(ζ2 − 1)
(ζ − 1)2 . (6.23)

By performing a spherical harmonics decomposition of Eq. 6.17, we obtain an infinite
cascade of coupled radial equations:[

∂2

∂ζ2 + C
(1)
l (ζ) ∂

∂ζ
+ C

(2)
l (ζ)

]
Bl(ζ) +

4∑
j=−4

C
(3)
l,j (ζ)Bj(ζ) = 0 , (6.24)
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where we have the following expressions for the couplings

C
(3)
l,j (ζ) = −

c
(1)
l,j

ζ ′2(r(ζ))

{
a2[µ2

r(r(ζ)) + µ2
0(r(ζ)) − ω2]

∆(r(ζ)) −kµ2
r(r(ζ))

[
1 + B+

r(ζ) − r+
− B−
r(ζ) − r−

]}

+
kc

(2)
l,j a

2µ2
r(r(ζ))

ζ ′2(r(ζ))∆(r(ζ)) , (6.25)

with the Clebsch-Gordan coefficients:

c
(1)
l,j = ⟨l,m| cos2 θ |j,m⟩ = 1

3δlj + 2
3

√
2j + 1
2l + 1 ⟨j, 2,m, 0| l,m⟩ ⟨j, 2, 0, 0| l, 0⟩ , (6.26)

c
(2)
l,j = ⟨l,m| cos4 θ |j,m⟩ = 1

5δlj + 4
7

√
2j + 1
2l + 1 ⟨j, 2,m, 0| l,m⟩ ⟨j, 2, 0, 0| l, 0⟩

+ 8
35

√
2j + 1
2l + 1 ⟨j, 4,m, 0| l,m⟩ ⟨j, 4, 0, 0| l, 0⟩ , (6.27)

and the following expressions for the remaining functions

C
(1)
l (ζ) =

( 1
r(ζ) − r+

+ 1
r(ζ) − r−

) 1
ζ ′(r(ζ)) + 1

ζ ′(r(ζ))
2F ′(r(ζ))
F (r(ζ)) + ζ ′′(r(ζ))

ζ ′2(r(ζ)) ,

(6.28)

C
(2)
l (ζ) = 1

ζ ′2(r(ζ))

{
F ′′(r(ζ))
F (r(ζ)) +

[ 1
r(ζ) − r+

+

1
r(ζ) − r−

]
F ′(r(ζ))
F (r(ζ)) +

P 2
+

[r(ζ) − r+]2 +
P 2

−
[r(ζ) − r−]2

−
[
µ2

r(r(ζ)) + µ2
0(r(ζ))

] [
1 + B+

r(ζ) − r+
− B−
r(ζ) − r−

]
− A+
r(ζ) − r+

+ A−
r(ζ) − r−

+ ω2 − l(l + 1)
∆(r(ζ))

}
. (6.29)

The couplings c(1)
l,j are nonzero for j ∈ {l, l ± 2}, while c

(2)
l,j are nonzero for

j ∈ {l, l ± 2, l ± 4}, thus each l-mode is coupled with 4 other differing ones. In
order to find solutions we truncate the infinite tower to some L (i.e. we neglect
perturbations with l > L) and transform the remaining (finite) set of radial equations
into a matrix form. The radial coordinate is then discretized through a Čebyšëv
interpolation, which is defined by the following polynomials

pn(ζ) =
∏

q ̸=n(ζ − ζq)∏
q ̸=n(ζn − ζq) = p(ζ)wn

ζ − ζn
, (6.30)

p(ζ) =
N∏

q=0
(ζ − ζq) , (6.31)
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with Čebyšëv nodes
ζn = cos

(
π(2n+ 1)
2(N + 1)

)
, (6.32)

and corresponding weights [72, 247, 248]

wn = 1
p′(ζn) = (−1)n sin

(
π(2n+ 1)
2(N + 1)

)
. (6.33)

where N + 1 is the number of interpolation points and n ∈ [0, N ]. The radial
functions Bl are hence described by a set of (L+ 1)(N + 1) coefficients Bl(ζk), that
define a (L+ 1)(N + 1)-dimensional array B, while the radial equations take the
form

N∑
q=0

[
p′′

q (ζn)Bl(ζq) + C
(1)
l (ζn)p′

q(ζn)Bl(ζq)
]

+ C
(2)
l (ζn)Bl(ζn)+ (6.34)

4∑
j=−4

C
(3)
l,j (ζn)Bj(ζn) = 0

By exploiting the second barycentric form of the Lagrange polynomials, we can get
numerically robust differentiation matrices [72, 247, 248]:

p′
q(ζn) =


wq/wn

ζn−ζq
n ̸= q

−
N∑

b,b ̸=n
p′

b(ζn) n = q

(6.35)

p′′
q (ζn) =


2p′

q(ζn)
(
p′

n(ζn) − 1
ζn−ζq

)
n ̸= q

2p′
q(ζn)p′

n(ζn) +
N∑

b,b ̸=n

2p′
b(ζn)

ζn−ζb
n = q

(6.36)

At the end of this procedure we obtain a nonlinear eigenvalue problem in ω and B,

A(ω)B = 0 , (6.37)

to be solved through nonlinear inverse iteration [246].

6.4 Results

6.4.1 Models I: key ingredients for the instability

We start by studying the first three models with the same density profiles considered
in [115], to show that the obstacles existing in plasma-driven superradiant instabilities
can be circumvented in scalar-tensor theories. Figure 6.2 shows the modes of Model I
with ρH = 4/M2, ρC = 0.09/M2, r0 = 8M , and different values of α. For α = 1 we
recover the results obtained in [115]. In this case, superradiance does not appear
before a/M = 0.99. However, if we consider lower values of α the effective mass
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Figure 6.2. Real (left panel) and imaginary (right panel) part of the modes in Model I
as a function of the BH spin for different values of the coupling α. For lower values of
this parameter, ωR decreases and the modes become superradiantly unstable for smaller
values of the BH spin.

of the scalar field (and hence the superradiant mode frequency) decreases and the
superradiant condition is fulfilled for smaller values of the spin. This is evident
by looking at the real part of the mode frequency in the left panel of Fig. 6.2. As
the coupling α decreases, the real part becomes smaller, eventually entering the
superradiance condition. Therefore, while in plasma-driven superradiant instabilities
in GR a small increase of the coronal mass is sufficient to quench the instability [115],
in scalar-tensor theories decreasing α is sufficient to circumvent this obstacle and
recover an efficient superradiant regime, as also discussed more in detail below.

Nevertheless, by decreasing α too much, the potential barrier becomes too low
and is not able to confine the modes. For the case of Model I, we numerically
find that when α < 0.15 the eigenfunctions start having a nonnegligible amplitude
even after the potential barrier, suggesting that the confinement starts becoming
inefficient.

Assuming a high spinning BH, the superradiant instability can therefore be
quenched in the following cases:

• If the density of the corona is high enough to stabilize the system. In Model I
and for the chosen parameters, this happens when √

αρCM > 0.42.

• If the barrier is not high enough to confine modes. This starts happening when√
αρHM < 0.76.

• If the width of the cavity is not sufficiently large as to support quasibound
states inside it. Indeed, when the effective mass within the cavity is negligible
(i.e., √

αρCM ≪ 0.1), this system resembles the original BH bomb, where the
frequencies scale as the inverse of the width of the cavity, ωR ∼ 1/r0 [245]. In
Fig. 6.3 we show that we recover the same scaling in our system.

Reversing the argument, if the barrier is high enough and the cavity wide enough,
modes can be confined efficiently. If in addition the coronal density is tenuous
enough not to provide modes in the cavity with a too large effective mass, then an
efficient superradiant instability can develop around an accreting spinning BH. We
shall come back to this point in Sec. 6.5.
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Figure 6.3. Real part of the mode frequencies in Model I as a function of r0 for αρHM
2 = 4,

αρCM
2 = 0, and a = 0. The real part decreases linearly with 1/r0, as can be observed

by comparing the numerical result with a linear fit.

For the time being we wish to stress that the main difference with respect to [115]
is the free parameter α appearing in scalar-tensor theories. In [115], it was shown
that, even though the disk can create a cavity where superradiant modes can develop,
an extremely tenuous plasma inside this cavity (of the order of ne ∼ 10−2cm−3

for M = 10M⊙) is sufficient to quench the instability. Given that realistic coronal
densities are orders of magnitude higher, the instability is strongly suppressed. On
the other hand, as discussed in detail in Sec. 6.5 below, in our system there are large
unconstrained ranges of α in which the effective mass due to the corona is negligible
and, yet, the disk barrier is sufficiently high.

6.4.2 Models II and III: truncation of the corona and smoothness
of the profiles

Model II aims to quantitatively verify that only the coronal density inside the cavity
is relevant for providing an additional effective mass. For this reason, we truncate
the corona at r0, where the disk begins. We obtain numerical results which almost
coincide with those of Model I, confirming that what is really relevant to increase
the effective mass – and hence to possibly quench the instability – is only the density
inside the cavity.

Finally, in Model III we replace the step function of the inner edge by a sigmoid,
in order to show that the corners in both the real and imaginary parts shown in
Fig. 6.2 are an artifact of the Heaviside function used in modelling the density profile.
In Fig. 6.4 we show that when the barrier is instead described by a smooth sigmoid,
the corners disappear, and the resulting modes are also smooth functions of the
model parameters.

6.4.3 Models IV and V: role of the corona density

In these models, we study the impact of different coronal density by parametrizing
ρC = γρH and varying the parameter γ in the realistic range 10−6 − 10−1 (see
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Figure 6.4. Real and imaginary parts of modes respectively from Model I (blue) and

Model III (orange). By replacing the step function with a sigmoid, the profile becomes
more regular and the corners disappear.

e.g. [239, 240, 242]). Figure 6.5 show the imaginary part of the solutions for
γ = 10−6, r0 = 14M , ρH = 4/M2 obtained by varying the parameter α in Model IV
and Model V. By varying α across two orders of magnitude the instability is preserved
with qualitatively similar features: this is because the coronal density is so low that
it remains negligible, while the disk density is sufficiently high to confine the modes
in this range of α. Thus, if the coronal density is strongly suppressed with respect
to the disk one, it is possible to have an instability in a wide range of the coupling α.
Also note that assuming a larger truncation radius yields a smaller spin threshold
for the instability. This is because, akin to the original BH bomb phenomenon, the
real part of the frequency decreases with the truncation radius ωR ∼ 1/r0 [245] (see
Fig. 6.3).

Finally, Fig. 6.6 shows the imaginary part of the modes as a function of α for
different density ratios γ in Model V with ρH = 4/M2 and r0 = 8M . Note that, for
certain values of α (e.g. α ≈ 1 for the parameters chosen in Fig. 6.6) the modes
are independent of γ in the γ ≪ 1 limit. This is because the coronal density in
this regime is subdominant and does not affect the mode. On the other hand, as
the α parameter grows, the coronal effective mass eventually becomes relevant and
quenches the instability. In particular, for the chosen parameters the instability is
suppressed when αγ ≳ O(10−1).
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Figure 6.5. Superradiant modes of Model IV (left) and Model V (right) for r0 = 14M
and γ = 10−6 as functions of the dimensionless spin parameter for different values of α.
Even by varying α across two orders of magnitude, the instability is preserved.

6.5 Constraints on scalar-tensor theories from spinning
BH observations

After having explored the parameter space of our models and having identified
the key features of the plasma-triggered superradiant instability in scalar-tensor
theories, we are now in a position to draw a general picture and use it to identify
the parameter space of scalar-tensor theories in which the instability is effective.

The first key ingredient is a sufficiently dense disk that extends down to the BH
up to some truncation radius r0 > O(few)M , as predicted in various models. The
requirement that the disk can effectively confine scalar modes implies

√
αρHM ≳ 1 . (6.38)

For a standard thin disk the typical outer density is [31, 33]:

ρ ≈ 169 f
11
20

Edd

(r/M)
15
8

(
1 −

√
r0
r

) 11
20
(

0.1
β

) 7
10

M
− 7

10
6 kg/m3 , (6.39)

where r0 is the truncation radius, β is the viscosity parameter, fEdd = Ṁ/ṀEdd is
the mass accretion Eddington ratio, and we defined M6 = M/(106M⊙). Using the
above normalization, Eq. (6.38) yields a lower bound on the scalar coupling,

α ≳ αc = 1
ρHM2 ≈ 3 × 106M

−13/10
6 , (6.40)

so that supermassive BHs would yield a smaller lower bound.
The above condition is necessary but not sufficient. In the presence of a corona

with characteristic density ρC = γρH , one should also require that the effective mass
inside the cavity be not too large, namely,

√
αρCM ≲ 1 . (6.41)
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Figure 6.6. Imaginary part as a function of α in Model V for different values of the density
ratio γ between the corona and the disk for a spinning BH with a = 0.97M . When
αγ ≳ O(10−1), the instability is suppressed. Hence, the lower γ, the more efficient the
instability is across several orders of magnitudes in α.

This condition can be written as a upper bound on the scalar coupling,

α ≲
αc

γ
≈ 3
γ

× 106M
−13/10
6 . (6.42)

Since the corona is much less dense than the disk, γ ≪ 1 and condition 6.38 has
always some overlap with condition 6.41. In particular, provided the disk truncation
is not too close to the BH horizon, the superradiant instability can occur when

3 × 106 ≲ αM
13/10
6 ≲ 3

(
10−4

γ

)
1010 , (6.43)

where we have normalized the typical coronal density such that γ = ρC/ρH = 10−4.
Remarkably, different classes of BHs could constrain different ranges of α, ex-

tending roughly from α ∼ O(100) for M ∼ 109M⊙ up to α ∼ O(1017) for M ∼ 5M⊙.
Furthermore, as shown in the previous section the instability time scale, τ = 1/ωI ,
is typically very short compared to astrophysical time scales. The instability can
therefore be effective to change the dynamics of the system (see [87, 30] for the
phenomenology of the BH superradiant instability in various systems).

This implies that, providing the accretion flow can be accurately modelled,
constraints on scalar-tensor theories coming from the observation of highly-spinning
accreting BHs can rule out scalar-tensor theories with positive couplings in a very
wide range. Interestingly, while there exists stringent constraints on α < 0 coming
from spontaneous scalarization and the absence of dipolar radiation in binary
pulsars [236, 114, 249], the regime where α > 0 is essentially unconstrained and is
relevant for cosmology.

The α ≫ 1 regime is particularly interesting for certain scalar-tensor theories. For
example, in the symmetron model [9] the conformal factor reads2 A(ϕ) = 1 + αϕ2/2
and requiring the Milky Way to be screened imposes α ≳ 106 − 108 [252, 251, 253],

2The bare mass term and scalar self-interactions of this cosmological model are negligible for
astrophysical BHs [250, 251], so the approximations assumed in Sec. 9.2 apply.
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which perfectly lies in the range that can be potentially excluded by accretion-driven
BH superradiance.

6.6 On the role of nonlinearities for plasma-driven su-
perradiant instability in scalar-tensor theories

As previously discussed, we find a wide range of parameter space prone to trigger
matter-driven BH superradiant instabilities in scalar-tensor theories. Since during
the instability the amplitude of the scalar field grows exponentially in a short
timescale, linear theory eventually breaks down. It is therefore crucial to understand
the modifications that nonlinearities will introduce in the system. This can be done
by analysing the backreaction of the superradiantly growing scalar field on to the
plasma. In the Jordan frame, plasma particles follow geodesics, as it can be easily
seen by the conservation of the matter stress energy tensor:

∇νT
µν = 0 → Duµ

Dτ
= uν∇νu

µ = 0, (6.44)

where uµ is the plasma four velocity in the Jordan frame. Switching to the Einstein
frame, this equation can be rewritten as (see e.g. [36]):

Duµ
E

DτE
= fνu

ν
Eu

µ
E − fµ

E(uE µuE
µ), (6.45)

where uµ
E = dxµ/dτE and τE are the four velocity and proper time in the Einstein

frame, respectively, whereas fν = −∂ν lnA(Φ) and fµ
E = gµν

E fν . By expanding the
conformal factor around Φ ∼ Φ(0) as before, this equation can be rewritten to the
leading order as

Duµ
E

DτE
= −α

(
φ∂νφu

µ
Eu

µ
E − gµα

E φ∂αφ(uE
νuE ν)

)
. (6.46)

From this equation it is possible to observe that the acceleration of the plasma
particles in the Einstein frame depends on nonlinear terms in the scalar field φ,
with coupling constant α. By solving this equation it is then possible to relate
the backreaction on the four velocity with the backreaction on the density via
the continuity equation of the fluid. Hence, as in the previously studied photon-
plasma case 3.4, nonlinear effects can modify the density of the fluid, which evolves
dynamically. The details on the evolution depend on the specific models and on
higher-order scalar interactions in the scalar-tensor theories. In principle, one could
expect that in some models a plasma blow-up scenario akin to the photon-plasma
case may be possible.

Nevertheless, and most crucially, this system is safe from another nonlinear effect,
the relativistic transparency, which severely hampers plasma-driven superradiant
instabilities in GR [137]. Due to this nonlinear correction, the effective photon
mass in a plasma is modified in the relativistic regime as in (3.63) [150, 254, 137].
As already discussed, this effect can be interpreted as a relativistic increase of the
relativistic electron mass-energy, and it is therefore a completely different effect
from the field backreaction on the density distribution. We will now show that in
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scalar-tensor theories the effective mass does not suffer from a similar suppression.
Indeed, in this system the effective mass is the trace of the stress-energy tensor,
Tµν = ρuµuν . The crucial point is that, no matter what the fluid four-velocity is,
the trace of this tensor is always the rest-mass density, given that uµu

µ = −1 is
a relativistic invariant. Therefore, even if the plasma is accelerated to relativistic
velocities, the expression of the effective mass does not change (although the density
becomes a dynamical quantity as discussed before). This follows from the fact that
the trace of a tensor is a scalar quantity, which is invariant under Lorentz boosts.
Hence, no Lorentz boost factor enters in the effective scalar mass in the relativistic
nonlinear regime, at variance with the standard case of plasma-photon interactions,
so that the system does not suffer from relativistic transparency effects. Nevertheless,
one could still expect a plasma blow-up scenario as in 3.4: thus, further non-linear
studies are imperative to understand the non-linear behavior of the system.

6.7 Conclusions
We have studied in detail the phenomenon of matter-driven BH superradiant in-
stabilities in scalar-tensor theories. We have considered arbitrarily spinning BHs
and realistic models of truncated thin and thick accretion disks. In general the
linearized scalar equation is nonseparable, and we have discussed in detail an efficient
numerical method to find the unstable modes for this system.

We found two interesting results: i) although the qualitative features of the
instability are akin to the case of plasma-driven electromagnetic superradiant in-
stabilities within GR, the obstacles preventing the latter (namely suppression due
to the corona [115] and nonlinearities [137]) can be circumvented in scalar-tensor
theories; ii) Remarkably, there exists a very wide range of (positive and large) scalar
couplings where BH superradiant instabilities can be triggered in realistic scenarios.
This range is unconstrained by observations and it actually includes the regime
where certain scalar-tensor alternatives to the dark energy, e.g. symmetron models
with screening, can evade solar system constraints while remaining cosmologically
viable. Our results suggest that such theories could be ruled out as dark-energy
alternatives by the observation of highly spinning BHs, using the same technique
adopted to constrain ultralight bosons from BH mass-spin observations [24, 89, 30].
However, at variance with the ultralight boson case, here an accurate modelling of
the accretion flow around the BH is needed in order to quantitatively characterize
the instability.

Furthermore, the possibility of circumventing nonlinear damping effects suggests
that the models proposed for ordinary plasma-driven instabilities (e.g. as a possible
explanation for fast radio bursts [107] or for constraints on primordial BHs [108])
could actually work in the context of scalar-tensor theories.

Although the quantitative features of the instability depend on the geometry of
the accretion flow near a BH, the key ingredients are naturally predicted in various
models: i) a sufficiently dense disk with a sharp transition from a low-density to
a high-density region in the vicinity of the ISCO; ii) A sufficiently tenuous corona
in the low-density region, such that its density is much smaller than the one of the
disk; iii) a BH spinning sufficiently fast to make the quasibound modes unstable
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against the superradiant instability.
The numerical method implemented to compute the unstable modes in the

absence of separable equations is general and robust, and could find applications in
other contexts.

Another interesting finding is the fact that the unstable modes of this system
resemble a quasibound state in the vicinity of the BH but are in fact propagating
waves far from it. Therefore, one could imagine situations in which (perhaps during
the superradiant growth) the quasibound states are not efficiently trapped and could
propagate to infinity, possibly after several reflections within the cavity. The scalar
modes in the Einstein frame correspond to a (breathing) scalar polarization of the
gravitational waves in the Jordan frame. Therefore, the phenomenology of this effect
would be similar to the gravitational-wave echoes predicted for matter fields [255],
near-horizon structures [256], and exotic compact objects [257]. A more detailed
study of this interesting phenomenon, that we leave to the future, will probably
require a time-domain analysis.

Finally, an important follow-up of our work is to study backreaction effects on
the plasma and the full dynamics of the system at the nonlinear level.
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Chapter 7

Relativistic perturbation theory
for black-hole boson clouds

Summary
Linear perturbations around black hole spacetimes can be quasinormal, quasibound,
or even superradiantly unstable, the latter leading to the formation of macroscopic
boson clouds. In this chapter, we develop a relativistic perturbation theory for boson
clouds around rotating black holes that supersedes the non-relativistic “gravitational
atom” approximation and brings close agreement with numerical relativity. We first
introduce a relativistic product and corresponding orthogonality relation between
(massive) scalar modes, which extends a recent result for gravitational perturbations,
and forms the basis for our framework. We then derive the analog of time-dependent
perturbation theory in quantum mechanics. As a demonstration, we apply these
techniques to calculate the self-gravitational frequency shift of a Kerr superradiant
mode, improving the error by a factor of four (from 28% to 7%) for the largest
masses considered. We thereby provide a conceptually new approach to calculate
black-hole mode dynamics, with practical application for precision gravitational-wave
astronomy.

7.1 Motivations

In black hole (BH) physics, the analysis of mode solutions of bosonic fields was
initiated by Regge and Wheeler [258], Zerilli [259], and Teukolsky [260, 261]. It is now
well known that the response of a BH to the perturbation of a massless field consists
of a series of damped sinusoids called quasi-normal modes (QNMs) [208, 262]. Unlike
normal modes, which exist for conservative systems and have purely real spectrum,
QNMs appear in dissipative systems and have complex frequencies ω = ωR + iωI,
with the imaginary part setting their decay time. For BHs, dissipation arises due to
radiation of the field through the horizon and away to infinity.
As discussed in the previous chapters, massive fields around BHs admit an additional
class of solutions known as quasi-bound states (QBSs). Whereas QNMs are radiative
solutions, with frequency |ω| > µ, where µ is the field mass, QBSs are spatially
confined by the Yukawa suppression and have |ω| < µ. Thus, QBSs do not radiate
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at infinity, although they still dissipate through the horizon. Via the superradiant
instability, the formation of a macroscopic boson cloud and the spin-down of the BH
translates into potentially observable signatures, such as gaps in the BH spin-mass
(Regge) plane, gravitational wave emission from the condensate, or signatures in
binary systems [83, 96, 102, 90, 100, 104, 85, 79, 92, 93, 95, 223, 105, 103, 222].
Superradiant instabilities, therefore, represent a powerful probe of ultralight bosons
beyond the Standard Model, such as axions or dark photons.

Given these (and other) prospects for deviations from linear mode evolution,
there is considerable interest in calculating nonlinear perturbative effects involving
QBSs or QNMs [96, 263, 264, 265, 266]. However, due to the non-Hermiticity of the
system, the spectral theorem does not guarantee the orthogonality or completeness
of these modes—which moreover often diverge at the BH horizon or infinity—so it
is not clear a priori how to incorporate them into a perturbative framework.

For QBSs, the problem can be simplified using the “gravitational atom” or
“hydrogenic” approximation. Indeed, at leading order in the gravitational coupling
α = µM , where M is the BH mass, and beyond the field’s Compton length, r ≫ µ−1,
QBSs reduce to eigenfunctions of the hydrogen atom Hamiltonian. In this limit,
the ingoing condition at the BH horizon is replaced by a regularity condition at
the origin [73, 74, 76, 92]. Thus, a hydrogenic inner product ⟨·|·⟩H can be defined,
in analogy to quantum mechanics, and mode orthogonality is guaranteed by the
spectral theorem in the absence of dissipative boundaries.1

The hydrogenic approximation (and its relativistic corrections [92]) has been
widely used to compute various perturbative corrections to the linear problem [92,
169, 94, 222, 267, 263]. For instance, to leading order, a potential term δV arising
from, e.g., a binary companion, or a quartic self-interaction, gives rise to level mixing
through the matrix element ⟨nℓm|δV |n′ℓ′m′⟩H [92]. The self-gravity of the state
also gives rise to a shift in the mode frequency, proportional to the matrix element
⟨nℓm|δV |nℓm⟩H [83, 169]. However, this approximation has two drawbacks: it
breaks down for higher values of α, and it does not take into account the dissipative
nature of the problem. To accurately model the phenomenology of massive fields
around black holes, we require a relativistic perturbative framework, based on an
appropriate notion of orthogonality between the modes.

In this chapter, we introduce a bilinear form for massive scalar fields in Kerr
to take the place of the hydrogenic inner product in fully relativistic calculations.
Under this bilinear form, which is a natural extension of the gravitational bilinear
form of Ref. [268], Kerr QNMs and QBSs are truly orthogonal—for all values of
α. The product reduces to the hydrogenic inner product in the limit α → 0, but
it is also applicable in the relativistic regime, and forms the basis for a relativistic
perturbation theory in terms of modes.

Using the relativistic product, we derive the anolog of time-dependent perturba-
tion theory in quantum mechanics for the scalar field. As an application, we calculate
the leading relativistic frequency shift due to the self-gravity of a superradiant mode,
and we find a significant improvement over the hydrogenic approximation when
comparing to previously-published numerical-relativity results [104], improving the
agreement by a factor of 4 even at α = 0.4. Our product therefore opens a new path

1The same is not true for QNMs, which still radiate to infinity.
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to accurate nonlinear mode calculations.

7.2 Bilinear form for massive scalars

We first extend the bilinear form of [268] to scalar massive perturbations of Kerr
and prove the orthogonality of scalar modes with both quasinormal and quasibound
asymptotic conditions.

The Kerr line element for a black hole of mass M and spin parameter a is given
by

ds2 = −
(

1 − 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ dtdϕ+ Σ
∆dr2 + Σdθ2 + Λ

Σ sin2 θdϕ2, (7.1)

in Boyer-Lindquist coordinates, where ∆ = r2 + a2 − 2Mr, Σ = r2 + a2 cos2 θ,
Λ = (r2 + a2)2 − ∆a2 sin2 θ. We denote the event horizon (the greater root r± of ∆)
by r+ and define the tortoise coordinate, dr/dr∗ = ∆/Σ.

The Klein-Gordon equation on a Kerr background (which coincides with the
Teukolsky equation for a spin s = 0 massive field [261]) reads

OΦ ≡ (□ − µ2)Φ = 0, (7.2)

where µ is the mass of the scalar field Φ. A product between two solutions of the
Klein-Gordon equation can be built as follows. Start from a “base” product (related
to the symplectic form),

ΠΣ[Φ1,Φ2] =
∫

Σ
dΣa(Φ1∇aΦ2 − Φ2∇aΦ1), (7.3)

where Σ is a co-dimension 1 sub-manifold. One can easily verify that, if Φ1,Φ2 are
solutions, the product is conserved (i.e., independent of Σ) and that it is C-linear in
both entries, or bilinear.

Reference [268] showed that one can build, from this base product, an infinite
number of conserved quantities by inserting symmetry operators of the equation of
motion. In Kerr, one can make use of the symmetry operators associated with the
time-translation and ϕ rotation isometries, Lt and Lϕ, as well as with the Killing
tensor of the spacetime. One can also use the symmetry operator associated with
the t–ϕ spacetime symmetry, J , whose action on a scalar field simply takes t → −t
and ϕ → −ϕ. Note that the Teukolsky operator and the t–ϕ reflection operator
commute on s = 0 Weyl scalars, OJ = J O.

The product relevant for the orthogonality relation can be built from the t–ϕ
reflection operator [268]. For scalar massive (or massless) perturbations with compact
support it is given by

⟨⟨Φ1,Φ2⟩⟩ = ΠΣ[J Φ1,Φ2] . (7.4)
In Boyer-Lindquist coordinates, the bilinear form reads

⟨⟨Φ1,Φ2⟩⟩ =
∞∫

r+

dr

∫
dΩ
[2Mra

∆ (J Φ1∂ϕΦ2 − Φ2∂ϕJ Φ1) + Σ
∆

(
r2 + a2 + 2Mra2

Σ sin2 θ

)

× (J Φ1∂tΦ2 − Φ2∂tJ Φ1)
]
, (7.5)



7.3 Extension to mode solutions 123

where dΩ = sin θdθdϕ. In addition to being bilinear and conserved, one can easily
prove, in analogy to Ref. [268], that

1. the bilinear form is symmetric, ⟨⟨Φ1,Φ2⟩⟩ = ⟨⟨Φ2,Φ1⟩⟩; and

2. the time-translation symmetry operator is symmetric with respect to the
bilinear form, ⟨⟨LtΦ1,Φ2⟩⟩ = ⟨⟨Φ1, LtΦ2⟩⟩.

7.3 Extension to mode solutions
Quasinormal and quasibound states are mode solutions of the Teukolsky equa-
tion, Φℓmω = e−iωt+imϕRℓmω(r)Sℓmω(θ), where Sℓmω are the s = 0 spin-weighted
spheroidal harmonics with angular numbers ℓ, m [261] and the radial solution can
be defined in terms of an asymptotic series involving a three-term recursion rela-
tion [269, 270]. The modes are required to be regular at the horizon, Φ ∼ e−ikHr∗

as r∗ → −∞, where kH = ω −mΩH and ΩH is the angular frequency of the outer
horizon ΩH = a/(2Mr+). At infinity, the two families satisfy

Φ ∼ r−1eikr∗ , r∗ → ∞ (QNMs), (7.6)
Φ ∼ r−1e−ikr∗ , r∗ → ∞ (QBSs), (7.7)

where k =
√
ω2 − µ2.

, ⟨⟨⟩⟩

Figure 7.1. The relativistic product between two ℓ = m = 1 QBSs in Schwarzschild, as a
function of the counter-term regularization point ϵ = r̄/r+ − 1, for different scalar field
masses. The red curve is a power-law fit, showing convergence to zero. In the top-left
corner, we show the absolute value of the radial mode-functions around the BH. Modes
are normalized to have ⟨⟨n, n⟩⟩ = 1 in the regularization limit.

Because the radial solutions have non-compact support, and for ωI < 0 actually
diverge as r∗ → −∞ (QNMs and QBSs) and as r∗ → +∞ (QNMs), we must find a
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suitable, finite extension of the bilinear form (7.4). In analogy with Ref. [268], we
extend the definition of the bilinear form to a complex radial integration contour C,
such that the radial integral is absolutely convergent. We define the bilinear form
over a pair of QNMs or QBSs with complex frequencies ω1, ω2 by integrating over a
complex r∗ contour such that

arg r∗ + arg(ω1 + ω2) = −π/2, r∗ → −∞ , (7.8)

and running along the real axis elsewhere. If the product is over one or two QNMs,
we also take

arg r∗ + arg(±k1 ± k2) = π/2, r∗ → ∞ , (7.9)

where the plus (minus) sign holds for QNMs (QBSs).
Explicitly, the bilinear form on modes reads

⟨⟨Φ1,Φ2⟩⟩modes = iδm1m2e
−i(ω1−ω2)t

∫
C
dr

1
∆K(r)R1R2, (7.10)

where

K(r) = α12(r2 + a2)2(ω2 + ω1) − 2Mraα12(m1 +m2) − γ12(ω2 + ω1)a2∆, (7.11)

α12 = 2π
∫ π

0
dθ sin θS1S2, (7.12)

γ12 = 2π
∫ π

0
dθ sin3 θS1S2. (7.13)

Note that, as demonstrated for Kerr QNMs in Ref. [268], this product can be
used to project initial data onto modes, resulting in the known mode excitation
coefficients [271, 272, 273]. In the hydrogenic limit, this reduces to the familiar inner
product on the (real) hydrogenic mode functions,

⟨⟨Φ1,Φ2⟩⟩ → δm1m2

∫ ∞

0
dr

∫ π

0
dθ r2 sin θR1R2S1S2 = ⟨Φ1|Φ2⟩H , (7.14)

up to an overall factor. In this limit, no regularization is required.

7.3.1 The counter-term subtraction method

For QBSs in Schwarzschild, it is convenient to adopt an alternative regularization
involving counter-term subtraction [274]. This is particularly useful when mode
solutions are only known numerically. Consider for simplicity the bilinear form (7.4)
in Schwarzschild. It is immediate to see that in this case the integrals in r and
θ factorize, with the latter reducing to the orthogonality condition for spherical
harmonics,

⟨⟨Φ1,Φ2⟩⟩ = iδm1m2δl1l2 (ω1 + ω2)
∫ ∞

r+
dr
r2

f
R1R2, (7.15)

where f = 1 − 2M/r. It is convenient to define the scalar function R(r) = X(r)/r,
so that the radial integral becomes simply

⟨⟨Φ1,Φ2⟩⟩ ∼
∫
drf−1X1X2 =

∫
dr∗X1X2. (7.16)
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In the near-horizon limit, the solution X can be described by the series expansion

X(r) ∼
+∞∑
n=0

Xn
r+ ∼

+∞∑
n=0

e−iωr∗(r − r+)nbn(ω). (7.17)

At leading order, the mode behaves as

X0
r+(r) ∼ e−iωr∗ ∼ (r − r+)r+ωI . (7.18)

When the mode is stable (ωI < 0) this term diverges at the horizon. To regularize
this divergence, we simply subtract the near-horizon integral of the leading order
term,

⟨⟨Φ1,Φ2⟩⟩Schwarzschild QBS = iδm1m2δl1l2 (ω1 + ω2) lim
r̄∗→−∞

[∫ ∞

r̄∗
dr∗X1(r′

∗)X2(r′
∗)

+ i

ω1 + ω2
X1(r̄∗)X2(r̄∗) + (higher orders)

]
. (7.19)

Note that this method is suitable to regularize the horizon divergence of both
(massless or massive) QNMs and QBSs, as their leading-order behavior in the
near-horizon expansion coincides.

This method can be extended to regularize the divergence of any orderN = n1+n2
in the horizon expansion (7.17),

Xn1
r+X

n2
r+ ∼ (r − r+)N (r − r+)r+(ωI1+ωI2). (7.20)

The N -th term in the expansion is regular if r+ωI1 + r+ωI2 + N ≥ 0. However,
QBSs with interesting (i.e., potentially detectable) phenomenology are long lived
modes, M |ωI | ≪ 1. In this limit, all terms beyond the leading order are regular,
and the subtraction of the leading order divergence (7.19) is sufficient.

The complex contour and the counter-term subtraction method give equivalent
definitions of the mode product. To see this, we separate the integral into

⟨⟨Φ1,Φ2⟩⟩ ∼
∫

C
dr∗X1X2 =

∫
C+
dr∗X1X2 +

∫ +∞

r̄∗
dr∗X1X2. (7.21)

where C+ : r∗ = r̄∗ + ρeiβ and β is an angle in the complex plane chosen to satisfy
condition (7.8). Assuming the modes are very bound M |ωI | ≪ 1 and in the limit of
r̄∗ → −∞, we find that the first integral is equal to

e−i(ω1+ω2)r̄∗eiβ
∫ 0

∞
dρ e−i(ω1+ω2)ρeiβ

[
1 + O(ρ−1)

]
= i

ω1 + ω2
e−i(ω1+ω2)r̄∗

[
1 + O(ρ−1)

]
= + i

ω1 + ω2
X1(r̄∗)X2(r̄∗)

[
1 + O(r̄−1

∗ )
]
. (7.22)

This is precisely the counter term defined in (7.19).
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7.4 Mode orthogonality
With the finite bilinear form in hand, from property 2 we obtain

(ω1 − ω2)⟨⟨Φ1,Φ2⟩⟩ = 0 (7.23)

for a pair of QNMs or QBSs with frequencies ω1, ω2. Then, either ⟨⟨Φ1,Φ2⟩⟩ = 0 or
ω1 = ω2, proving that QNMs and QBSs are orthogonal. In particular, modes of the
two families are also mutually orthogonal.

We now numerically compute the product (7.19) between two QBSs in Schwarzschild
with different radial numbers2 n. We do so in the hydrogenic (α = Mµ ≪ 1) and
relativistic (α ≃ 1) regimes. To compute the QB frequencies and radial solutions,
we use the Leaver continued fraction method [269]. We perform product integrals
(7.19) numerically using Mathematica.

Figure 7.1 shows the product between the ℓ = m = 1 fundamental mode and the
first overtone as a function of the integral regulator ϵ = r̄/r+ − 1. Different panels
span the hydrogenic regime and the relativistic regime. The product between the
two modes goes to zero as a power-law as ϵ → 0 in all cases, confirming numerically
the orthogonality to a precision of order 10−7. For higher values of α, we are able
to probe the integral for smaller r due to better convergence resulting from milder
divergences at the horizon. We obtain similar results also for higher radial overtones.

7.5 Relativistic perturbation theory
We now describe our relativistic approach to compute transitions between modes in
the presence of a potential δV ,

OΦ + δV Φ = 0 . (7.24)

We begin with an ansatz for the scalar field in terms of a superposition of modes
with time-dependent amplitudes,

Φ =
∑

q

cq(t)Φq, (7.25)

where the usual time dependence of Φq is left implicit. This ansatz does not fully
capture the solution because QB and QN modes, while being orthogonal, do not
form a complete basis [271]. However, it should be valid at intermediate times, after
the prompt emission from the initial perturbation and before the effect of scattering
off the BH potential becomes dominant. The duration of this intermediate regime
is set by the amplitudes and decay rates of the modes, and is therefore longer for
long-lived modes, which are most relevant for observations.

Substituting the mode decomposition in (7.24) and using the bilinear form to
project onto a mode n, we obtain∑

q

⟨⟨Φn,Ocq(t)Φq⟩⟩ + ⟨⟨Φn, cq(t)δV Φq⟩⟩ = 0. (7.26)

2The product between states with different ℓ,m numbers is trivial, as their orthogonality in
Schwarzschild follows from the orthogonality of the spherical harmonics. The orthogonality between
different ℓ modes becomes non trivial in Kerr [268], due to the spin-weighted spheroidal harmonics.
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We now use the fact that the Teukolsky operator vanishes on mode solutions, and
that modes are orthogonal and have frequency ωq. Because the bilinear form (7.5)
contains derivatives with respect to the Boyer-Lindquist time, we need to take care
in taking the excitation coefficients out of the product. We assume derivatives of
the excitation coefficients to be of the same order as the external potential, ċ ∼ δV ,
c̈ ∼ δV 2, etc., so we drop all derivatives above the first to keep only the leading
order in δV .

Our equation for the coefficients cn then reads,

2iωnċn⟨⟨Φn,Φn⟩⟩ + O(δV 2) =
∑

q

cq⟨⟨Φn, δV Φq⟩⟩. (7.27)

Therefore, just like in quantum mechanics,3 we find that perturbations can induce
mode mixing through the matrix element ⟨⟨Φn, δV Φq⟩⟩, where ⟨⟨·, ·⟩⟩ now stands for
the bilinear form (7.5), augmented with suitable regularization.

7.6 Frequency shift
We apply our relativistic perturbative framework to calculate the frequency shift of a
superradiant mode in Kerr due to its self-gravity. For simplicity, and following [263],
we take a semi-Newtonian approximation for the gravitational potential of a mode,

δV (r) = −2µ2
[

1
r

∫ r

r+
d3r′T t

t +
∫ ∞

r
d3r′T

t
t

r′

]
, (7.28)

where T is the (relativistic) stress-energy tensor of the (unperturbed) scalar field
and the integration is carried out over flat space.4

To estimate the correction δωn to the mode frequency, we restrict the ansatz
(7.25) to a single mode, and take the coefficient cn(t) ∝ e−iδωnt. Rearranging (7.27),
we find

δωn = − ⟨⟨Φn, δV Φn⟩⟩
2ωn⟨⟨Φn,Φn⟩⟩

. (7.29)

This approach is similar in spirit to that outlined in Refs. [276, 277, 278, 266]. In
the nonrelativistic limit, this formula reduces to that found in Refs. [169, 263]. Note
that superradiantly unstable QBSs, which have ωI > 0 and decay at infinity, have
no divergence at the horizon and therefore require no regularization.

We now calculate numerically the frequency shift (7.29) for superradiant modes
with ℓ = m = 1. For a given coupling α, we set the BH spin to be close to the
superradiant bound mΩH ≳ ωR, the same setup as [263]. For this application, we
use the Black Hole Perturbation Toolkit to compute the modes’ spin-weighted
spheroidal harmonics [279].

3In the nonrelativistic limit, our equation reduces to the standard formula in quantum mechanics
(including the quantum mechanics inner product), modulo a factor of 2ωn ∼ 2µ due to our definition
of the potential (see, e.g., [275]).

4We note that simply introducing the relativistic volume element in this integration leads to
additional divergences. However, a fully relativistic calculation of the self-gravity for this example is
beyond the scope of this work. As we show numerically, such corrections are subleading compared
to those that come from the bilinear form.
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Figure 7.2. Frequency shift due to the self-gravity of a superradiant mode in Kerr
(ℓ = m = 1, n = 0). We compare our result based on the relativistic product with the
hydrogenic approximation, and with the fully relativistic (numerical) frequency shift
from Ref. [263]. For the analytic results, we plot δω/Mcloud, which should be a good
approximation of the derivative for small cloud masses.

In Fig. 7.2, we compare for several α our perturbative calculation of δω/Mcloud
against the numerical relativity estimate of ∂ω/∂Mcloud from [263]. We find excellent
agreement, including significant improvement over the hydrogenic approximation,
which begins to fail around α ≃ 0.3. For α = 0.4, the error is reduced from 28%
to 7%. The remaining disagreement is likely due to the approximation that δω
is linear in the cloud mass (∂ω/∂Mcloud ≃ δω/Mcloud) and to our semi-Newtonian
approximation for the potential.

7.7 Application to tidal potential
As another example, we consider the tidal, Newtonian potential arising from a
non-spinning binary companion to a (Schwarzschild) black hole endowed with a QB
state. In the hydrogenic approximation, this was shown to give rise to transitions
between modes of the QB spectrum [92, 267].

A binary companion induces a perturbation in the background metric gµν =
gµν

0 + δgµν . This leads to a shift in the potential of the scalar field (at leading order)
δV ∼ δgtt ∼

∑
ℓpmp

rℓpYℓpmp , where the subscript distinguishes the angular numbers
of the perturbation [92].5 We neglect the time dependence of the potential due
to the companion’s motion. This could be introduced after the calculation of the
matrix element in an adiabatic approximation [92], or taken fully into account in
the relativistic matrix element.

We compute the level mixing due to this external potential between modes
with ℓ = 1, m = 1,−1, and n = 0, 1 (or |211⟩ and |31 −1⟩ in the hydrogenic
notation6). Note that this transition is allowed in the case of tidal quadrupolar

5In our formalism, it is possible to consistently include relativistic corrections to the tidal
potential. However, a full description of the binary system is beyond the scope of this work.

6In this notation, states are labelled by the three quantum numbers |ñℓm⟩, where ñ = ℓ+ n+ 1
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Figure 7.3. Relative difference in the matrix element of the companion’s tidal potential,
computed with our bilinear form and in the hydrogenic approximation. The discrepancy
increases with α, as the hydrogenic approximation breaks down.

perturbations ℓp = 2 by the angular selection rules due to the angular dependence of
the perturbed potential [92]. These selection rules survive in the relativistic limit (at
least in Schwarzschild) as the bilinear form reduces to the standard inner product
for spherical harmonics. We will therefore focus on the radial part of the matrix
element.

In the hydrogenic approximation, the matrix elements of δV read

⟨ñ1ℓ1m1|δV |ñ2ℓ2m2⟩H ∼
∫ ∞

0
dr r4RH

ñ1ℓ1m1R
H
ñ2ℓ2m2 , (7.30)

where RH
nℓm are the hydrogenic wavefunctions,

RH
ñℓm(r) =

√(2µα
ñ

)3 (ñ− ℓ− 1)!
2ñ(ñ+ ℓ)!

(2αµr
ñ

)ℓ
e− µαr

ñ L2ℓ+1
ñ−ℓ−1

(2µαr
ñ

)
. (7.31)

Notice that the hydrogenic wavefunctions are everywhere regular and are integrated
from the origin, as already discussed.

The matrix element appearing in the fully relativistic perturbative expansion
(7.27), on the other hand, reads

⟨⟨n1ℓ1m1, δV n2ℓ2m2⟩⟩ ∼
∫ ∞

r+(1+ϵ)
dr r2f(r)X1(r′)X2(r′) +

ir2
+

ω1 + ω2
X1(R)X2(R) ,

(7.32)

Notice that the potential modifies the boundary regularization term at the horizon.
In the nonrelativistic limit, the full radial solutions X become real and tend to the
hydrogenic approximation: RH

nℓm(r) ≈ Re(Xnℓm(r))/r.
We evaluate the relativistic matrix element (7.32) on numerical Klein-Gordon

solutions. We find that this converges to a finite nonzero value as we take the

is the principal quantum number.
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integral regulator ϵ → 0, confirming that the tidal potential gives rise to level-mixing
between the two modes under consideration.

In Fig. 7.3 we show the relative difference between the hydrogenic matrix element
appearing in Ref. [92] and our fully relativistic treatment (7.32), for a range of
scalar masses α. While the matrix elements obtained with the two methods are
overall comparable, the relative error clearly increases for higher α, as the hydrogenic
approximation starts to loose accuracy.

Interestingly, whilst the relative error is below 1% for α ≈ 0.05, it can be as high
as 10% already for values of α ≃ 0.2, where the radial solutions are still relatively
accurate (within at most 5%). This suggests that relativistic corrections to the
mode product itself—included in our fully relativistic bilinear form, but not in the
quantum-mechanics inner product—contribute significantly to the matrix element.
Previous work on mode mixing focused on relativistic corrections to the decay width
of the modes [97], or resorted to fully numerical methods [96].

7.8 Conclusions
In this chapter, we introduced a bilinear form for massive scalar-field perturbations of
Kerr and showed that modes are orthogonal with respect to this product. Our bilinear
form replaces the standard quantum mechanics inner product—often employed
in a hydrogenic approximation—making no assumption on the strength of the
gravitational coupling α. We also introduced an approach to compute perturbative
corrections to mode evolution due to an applied potential, and applied this to recover
frequency shifts due to the self-gravity of a superradiant state. For large values of α,
accurate results were previously only obtainable using numerical relativity.

Our bilinear form and perturbative framework have both conceptual and practical
importance.

Other applications could be to compute corrections due to self-interaction terms
such as quartic potentials [169], or in the sine-Klein-Gordon equation for the QCD
axion [204]. In future work, we also hope to explore transitions between QN and QB
modes, and to rigorously derive angular selection rules for massive perturbations in
Kerr using the bilinear form.

Another natural extension would be to generalize our product to massive spin-1
fields. This scenario presents a number of difficulties as the Proca equation is not
separable using the standard Teukolsky formalism. Nevertheless, an ansatz yielding
separability of the Proca equation in Kerr spacetime was recently discovered [280, 82],
and could allow for a generalization of the bilinear form.

Finally, in the context of BH binaries, the gravitational product [268] could
be used with the second-order Teukolsky equation [281, 282] to estimate nonlinear
corrections to the BH ringdown. This could be used to inform waveform development
and address recent questions on nonlinear effects during the ringdown [283, 284, 285,
264, 265].
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Part II
Tests of General Relativity using

gravitational waves
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Chapter 8

Testing GR: an introduction

In 1916, after linearizing the field equations in the weak-field limit, Einstein showed
that a natural prediction of GR was the existence of transverse GWs travelling at
the speed of light. A century after, on September 2015, the LIGO-VIRGO collabo-
ration reported for the first time a direct detection of a GW signal produced by a
binary BH system [13]. This historical event marked the birth of GW astronomy,
and provided for the first time access to the strong-field, highly-relativistic regime.
Nowadays, the collaboration released three catalogue of events [286, 287, 288], cor-
responding to nearly 100 coalescences composed of BHs and NSs binaries. These
events already allowed to perform sensitive tests of GR in the strong field regime
(see e.g. [14, 15, 16, 17, 18]). Up to now, none of the tests showed clear evidence in
support of physics beyond GR. Nevertheless, the new generation detectors Einstein
Telescope [289, 290] and Cosmic Explorer [291], together with the future space-based
Laser Interferometer Space Antenna (LISA) [292], will allow to reach unprece-
dented sensitivities, and therefore to test even extremely more feeble deviations
[293, 294, 295, 296, 297].
Moreover, just a few months ago in June 2023, several Pulsar Timing Array
collaborations– NANOGrav, EPTA, PPTA, CPTA – released observational data
showing clear evidence of a stochastic GW background at nHz frequencies, most
likely originating from supermassive BH binaries [298, 299, 300, 301, 302, 303, 304,
305, 306].
Therefore, the plethora of present and future GW observations offer a unique op-
portunity to probe the nature of gravity in different highly dynamical systems–
ranging from stellar mass binaries to EMRIs and supermassive BH binaries– with
an unrivalled precision. Most crucially, while previous tests were based on weak-
gravity and quasi-stationary assumptions [34, 35], where the relevant velocities are
non-relativistic and the gravitational field is weak with respect to the energy of the
system, GWs allow to probe the strong gravity regime, where deviations from GR
may be more prominent.
The evolution of a BH binary can be divided into three stages. During the inspiral
phase, the two BHs evolve adiabatically, and get closer to each other due to the
continuous emission of GWs. During this phase, the orbital velocities of the two
bodies are only mildly relativistic, and the evolution can be therefore described by
adopting a post-Newtonian (PN) approach. Afterwards, during the merger phase a
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common horizon is formed. In this regime, the system turns highly dynamical and
non-linear, and the PN formalism breaks down. Hence, fully numerical simulations
are necessary to describe this stage. After the merger, the system is composed of a
highly perturbed remnant, that afterwards relaxes to a Kerr BH during the final
stage, known as ringdown.
When considering modifications to GR, depending on the details of the underlying
theory, deviations might be more easily detectable in particular types of systems.
For example, systems at high redshift may be way more suitable with respect to
low-redshift ones to probe theories that modify the propagation features of GWs .
The former are ideal targets of future space-based interferometers and future third-
generation ground-based detectors 1 Another notable example comes from quadratic
gravity theories [308, 309], where higher order curvature terms in the action are
naturally suppressed by the inverse of the curvature radius (see e.g. [310, 311]).
Hence, stellar-mass objects may be more suitable to detect deviations rather then
supermassive BHs, where the curvature radius is much larger.
Moreover, different detectors are sensible to different stages of the GW waveform.
In particular, while ground-base detectors are extremely sensible to the late-inspiral
and merger, space-based interferometers are unique to probe thousands of cycles in
the sensitivity band during an extreme mass-ratio inspiral. Because of this, even the
smallest deviation to the rate of change of the binding energy during the inspiral –
e.g. because of the presence of an extra channel of emission besides GWs – could
be more feasibly detected using EMRIs (see e.g. [312, 313, 314]). Finally, PTAs
are sensible to extremely low frequency waves obtainable only during the early
inspiral of supermassive BHs, but cannot probe the late inspiral or the merger phase.
Consequently, they are able to probe GR at large separation and low frequencies,
but cannot probe theories that deviate from GR only in the latest stages. For these
reasons, different detectors and sources offer complementary ways to test GR in
different ways [315, 17].

As a final remark, in order to perform competitive tests of GR using binary
black holes, a detailed understanding of the binary parameters (e.g. eccentricity and
precession) and the impact of the surrounding environment is imperative. Indeed,
these effects may mimic or mask modifications to GR, jeopardizing possible tests. In
particular, unlike in the NS binaries case, BHs in binaries are likely to possess a high
spin and strongly precess. While this entails a richer phenomenology, it also makes it
more difficult to perform GR test. Hence, accurate waveform models accounting for
these effects are crucial [316, 317, 318, 319, 320]. Together with intrinsic parameters,
also environmental effects can potentially jeopardize the robustness of GR test. For
example, the presence of accretion disks around BHs can induce dynamical friction,
accretion or planetary migration during the inspiral phase. While these effects are
not expected to be relevant for most EMRIs detectable with LISA [33], they are
instead expected to play a crucial role in supermassive BH binaries detectable with
PTAs [321, 322, 323, 324, 325, 326, 327, 328, 329]. A more detailed discussion of
this aspect will follow in chapter 10.

1Notably, the latter can potentially reach z ∼ 100 for binaries with total mass M ≈ 10 − 30M⊙
at a signal-to-noise ratio ≈ 8 [307]. Conversely, current ground-based detectors are limited to z ∼ 1.
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In this thesis, we will focus on tests of GR during the inspiral phase, both in the
case of EMRIs and supermassive BH binaries. Moreover, we will focus on null tests
of GR, by adopting a model-agnostic approach and search for generic deviations,
without assuming specific beyond GR theories. In the following, we begin with a
brief description of the typical features of the systems of interest.

8.1 Extreme mass-ratio inspirals

In EMRIs, a stellar mass compact object (1 − 10M⊙) spirals around a supermassive
BH (105 − 109M⊙), such that the mass ratio q is extremely small q ≈ 10−4 −
10−8. Such supermassive BHs are expected to reside at the center of most large
galaxies. Indeed, from a precise observation of stellar kinematics, we know that
most neighboring galaxies host one. Also in our very own galaxy, stellar dynamics
provide evidence for a BH with a mass ∼ 4 × 106M⊙, called Sgr A* [330]. Therefore,
EMRIs are expected to form whenever stellar-mass objects are captured from the
nuclear star cluster surrounding the massive BH. After the capture, the dynamics
is expected to initially be described by very eccentric orbits accompanied by the
emission of bursts of GWs (when the small object is near the pericenter), and then
into the evolution to a more circular inspiral [331]. In this latter phase, the system
emits continuously GWs in the mHz range, making EMRIs ideal targets for LISA.
Moreover, EMRIs represent probably the most promising systems to test with
exquisite precision the nature of spacetime in a strong gravity regime. Indeed, due
to the extreme mass-ratio, GW emission in the early inspiral phase affect the orbit
in a much longer timescale than the orbital one, i.e. Tinspiral ∝ q−1 >> Torbital.
Hence, the evolution of the system is remarkably adiabatic, and the secondary object
is expected to perform an incredible number of orbits (proportional to q−1) while
emitting GWs in the LISA band. In particular, even at the very end of the inspiral,
the secondary spends two years in the vicinity of the Innermost Stabel Circular Orbit
(ISCO), emitting ∼ 105 GW cycles [332]. Thus, the signal encodes an extremely
detailed map of the spacetime features, and will allow to probe the mass and spin of
the primary (and therefore its "Kerrness") with unrivalled accuracy [333, 334, 331].
Remarkably, while EMRIs can probe deviations from GR with extreme accuracy by
probing the primary objects, they can also potentially unveil these modifications
from the motion of the secondary. This feature is extremely important because,
as already mentioned, some theories such as quadratic gravity ones induce a more
prominent deviation on stellar mass objects rather than supermassive ones.
As a notable example, in a recent series of paper it was shown how, if the secondary
carries a scalar charge, the extra emission of scalar radiation in addition to GWs
cause a dephasing in the orbit which leaves a clear imprint in the waveform observable
by LISA [335, 312, 311, 313, 314, 336, 337]. These studies were performed both for
specific beyond GR theories and in a model-agnostic approach, by encapsulating a
large class of theories. Such works have subsequently been generalized to the vector
case [338, 339]. In the following chapter, we will extend this analysis to the case of
a dipole setup rather than a monopole charge, and highlights the main differences in
the phenomenology.
Last but not least, if the primary is endowed with a specific environment, EMRIs
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can test its features with accuracy. For example, in the case of a superradiant cloud,
the emitted signal is characterized by specific features which are observable by LISA
[92, 93, 222, 97, 96, 95, 266] (see also chapter 7 for related work). Another notable
(and less exotic) example comes from LISA-based probes of accretion physics, up to
now only accessible with EM observations [340, 341, 33, 342].

EMRIs are therefore ideal target to test both physics beyond GR and the SM
[297, 292].

8.2 Supermassive BH binaries and pulsar timing arrays
A neutron star is the spinning remnant of a massive star. After a supernova process,
the remnant consist of a structure of stellar mass dense material consisting mostly
of neutrons. Neutron stars are highly spinning, as during the collapse the angular
momentum ωr2 is conserved, and since the radius decreases dramatically, the rotation
period can become as small as ∼ O(1)ms. Similarly, during the collapse the magnetic
flux is conserved, and therefore the remnant is characterized by extreme magnetic
fields ∼ 1012G or higher. Because of this, high-energy particles in the neutron
star magnetosphere emit powerful radiation in the radio band, moving on open
magnetic field lines over the magnetic poles. If moreover the magnetic field is not
aligned with the axis of rotation, which is typically the case, the radio beam sweeps
a circle with the rotation orbital period. Hence, an observer receives periodic short
radio signals along the line of sight, much like a lighthouse effect. Remarkably,
due to their large inertia, pulsars are extremely stable rotators, and therefore the
timing of the signals is precise enough to allow to consider them "natural clocks"
(see e.g. [343]). Nevertheless, a number of effects can induce small modifications or
modulations in the time of arrival (TOA) of the pulses: the motion of the earth,
the effect of the gravitational field of the solar system, the presence of a binary
companion and the dispersion effects induced by the interstellar plasma, that alters
the group velocity of the pulses [344, 345]. Hence, one can define a "time residual"
as the difference between the expected TOA and the measured one. Most notably,
also GWs can produce a residual in the signals by inducing a redshift. Hence, if
one take into account a correct modelling of all the other effects inducing residuals,
one can actually use signals from a system of well-timed pulsars (a "pulsar timing
array") as GW detectors [346, 347]. The residual can be simply computed as the
integral of the redshift R(t) ≡

∫ t
0 z(t′)dt′. For a GW, one obtains [315]:

R ∼ h/f , (8.1)

such that for residuals of ≈ 100ns, GWs with frequencies f ≈ 10−9 − 10−8Hz and
strain h ≈ 10−15 would induce an observable effect. Therefore, as PTAs are sensible
to ≈ 10nHz frequencies, they can be used to probe GWs emitted from the early
inspiral phase of supermassive (> 108M⊙) BH binaries. These binaries would emit
GWs continuously as they slowly inspiral, and the signals could be detected either
individually or as a stochastic background.
A natural question would nevertheless be how to disentangle GWs as a source of
residuals from other possible effects. Remarkably, Hellings and Downs (HD) [348]
were able to compute the correlations between the residuals of a pair of pulsars
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caused by the stochastic GW background as a function of the angle between the
pair. Hence, the HD correlation curve is a smoking gun of GW-induced residuals
and can be used to disentangle other possible origins.
The total energy emitted in GWs by a population of supermassive BH binaries in
the universe was first computed by Phinney under the assumption of circular orbits
in the Newtonian limit at leading order [349]:

dEGW
df

= π

3
(GM)5/3

G(πf)1/3 , (8.2)

where f is the frequency of the signal and M is the chirp mass of the binary. In terms
of a different observable, this corresponds to a scaling of the GW spectrum ΩGW ∝
fdEGW/df ∝ f2/3. Nevertheless, it was soon realized that the scaling obtained by
Phinney in the vanilla model would actually be extremely modified by the effects of
the environments surrounding the binary [321, 322, 323, 324, 325, 326, 327, 328, 329].
Indeed, such environment can introduce dissipative effects at negative PN orders,
which are therefore pivotal in the early inspiral. Examples include, e.g., dynamical
friction (-5.5 PN) and stellar scattering (-5 PN). In particular, these effects would
modify the spectrum by leading to a steeper scaling. Most crucially, even the
presence of eccentricity leads to a similar effect [350, 351]. Hence, a deep knowledge
of the binaries features and the environment is required to deduce solid predictions
from measurements.

In recent years, some PTA collaborations provided for the first time evidence for
a common spectrum of stochastic nature.

In 2020 the NANOGrav collaboration reported evidence for a stochastic spec-
trum [352], which nevertheless did not exhibit clear evidence of an HD angular
correlation.
Nevertheless, in June 2023, several PTA collaborations– NANOGrav [298, 299],
EPTA (in combination with InPTA) [300, 301, 302], PPTA [303, 304, 305] and
CPTA [306]– found clear evidence for a stochastic background characterized by an
HD angular correlation, thereby confirming its quadrupolar nature. The scaling of
the reported spectrum, ΩGW ∝ f (1.6,2.3) at 1σ, is in tension with the vanilla SMBH
binary scaling by 2σ. Nevertheless, as already mentioned environmental effects are
expected to alleviate such tension. Hence, even though different explanations of
cosmological origins for the spectrum could also faithfully reproduce the observed
data (examples are first-order phase transitions [353, 354, 355, 356, 357, 358, 359,
360, 361, 362, 363, 364, 365], cosmic strings and domain walls [366, 367, 368, 369,
370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383], or scalar-induced
GWs generated from primordial fluctuations [384, 385, 386, 387, 388, 389, 390, 391,
392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406] ), the SMBH
scenario remains the leading explanation.
In principle, many beyond GR theories also introduce dissipative effects at negative
PN order, thereby acting on the spectrum similarly to some environmental effects.
Example include dipole radiation (-1 PN), extra-dimentions or a varying Newton’s
constant (both at -4 PN) (see e.g. [17, 18, 407]). Therefore, given that BHs in the
PTA band have extremely large orbital separations in the early-inspiral, one can
expect such corrections to play a major role in such systems. Since negative PN
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deviations may be prominent in these systems, and also lead to a steeper scaling,
PTAs measurements can potentially be used to develop novel tests of GR. In chapter
10 we develop a framework to map different beyond GR theories into a modified
SGWB spectrum in a model-agnostic way, and show that current data already allow
to place competitive constrains on specific theories.
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Chapter 9

EMRIs and fundamental dipoles

Summary
Even if globally neutral, in various scenarios compact objects can have a nonvanishing
dipole moment. Examples include neutron stars with magnetic dipoles, black-hole
microstates in the string-theory fuzzball scenario, and classical black holes in modified
theories of gravity with spin-induced scalarization or Lorentz-violating terms. A
fundamental dipole moment would give rise to rich phenomenology, for example
to intrinsic precession and extra emission channels in binary systems. We show
that extreme mass-ratio inspirals (EMRIs) detectable by future gravitational-wave
interferometers allow us to study a fundamental dipole on the secondary object in
a model-agnostic fashion. By developing a general model for a fundamental scalar
dipole, we compute the extra flux associated with it. This effect is suppressed by
the square of the mass ratio relative to the case of fundamental charges, making its
detection with EMRIs very challenging for the typical dipole moments predicted
in various models. On the other hand, for the same reason the impact of an extra
dipole for constraints on extra fundamental charges is likely negligible, making the
latter constraints more robust.

9.1 Compact objects and fundamental dipoles
The famous no-hair theorems predict that, in a large class of theories, black
holes (BHs) are described by the Kerr-Newman solution and do not have any
extra charge other than the electromagnetic one. Circumventing these no-go theo-
rems has motivated both theoretical work – aimed at finding theories in which BHs
can have hair – and phenomenological work – aimed at finding the consequences
of this extra hair (see, e.g., [17, 408]). The most natural and best studied case is
when BHs are endowed with extra fundamental charges, which give rise to dipo-
lar radiation in binary systems and can be probed with binary pulsar timing and
gravitational-wave (GW) inspirals (see [17] for a review).

The absence of dipolar emission in binary pulsars [249] and in GW events [407, 16]
already puts stringent constraints on the existence of fundamental charges in various
contexts.

In the future, extreme mass-ratio inspirals (EMRIs) – one of the main targets
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of future space detectors such as LISA [409] – will provide a unique probe to
search for extra fundamental charges [297, 410], either in the context of specific
modified theories of gravity [335, 312, 311] or in a model-agnostic fashion, as recently
shown [313, 314, 336, 337] for scalar fields (see Refs. [338, 339] for extensions to the
vector case).

In addition to new fundamental charges, there is strong theoretical and phe-
nomenological motivation for models in which compact objects are globally neutral
(hence evading standard dipole-emission constraints) but can nevertheless have higher
multipole moments. The most natural example are magnetars, which are endowed
with strong magnetic dipole moments (see [411] for a review). Furthermore, in the
context of modified gravity theories, BHs could have a fundamental dipole moment
in Lorentz-violating theories [412], in dynamical Chern-Simons gravity [309, 413],
and in theories featuring spin-induced spontaneous scalarization [414, 415, 416, 417]
(see [418] for a recent review). Finally, in the context of BH microstates emerging
in the string-theory fuzzball scenario [419, 420, 421], a long-lasting problem is to
find consistent solutions which are globally neutral. Remarkably, this was recently
achieved with topological solitons [422, 423], which are globally neutral but have an
intrinsic dipole moment.

Motivated by the above scenarios in various contexts, in this chapter we wish to
study the impact of fundamental dipoles for GW tests of fundamental physics with
EMRIs.

9.2 Setup

9.2.1 Theoretical framework

Let us consider the following generic action [313]

S[g,Φ, ψ] = S0[g,Φ] + αSc[g,Φ] + Sm[g,Φ, ψ], (9.1)

where Φ is a massless scalar field,

S0[g,Φ] =
∫

d4x

√
−g

16π (R− 1
2∂µΦ∂µΦ), (9.2)

Sm is the action of the matter fields ψ, while the action Sc describes a generic
non-minimal coupling between gravity and the scalar field, whose coupling constant
is α. As in Refs. [313, 314, 336, 337], we will assume that the theory is continuously
connected to GR in the α → 0 limit and that either α has dimensions [α] = (mass)n

with n ≥ 1 or that the theory is such that no-hair theorems hold. Note that this
assumption encapsulates a large number of theories: while in most scalar-tensor
theories of gravity the no-hair theorem holds (e.g. Brans-Dicke, see [424, 237]), a
notable example of a theory that evades this constrain but is still described by this
framework is scalar Gauss-Bonnet gravity, where n=2.

An EMRI is a binary system in which a small compact object with mass mSCO =
2µ is spiraling around a supermassive BH with mass M ≫ µ. Owing to the small
mass ratio, q = µ/M ≪ 1, one can model the secondary using the "skeletonized
approach" [425, 426, 427], in which the secondary object is treated as a point particle.
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Nevertheless, as we want to describe an object endowed with a dipolar field, we will
use the skeletonized approach to model the secondary as an elementary dipole made
by two point particles with mass µ displaced by a constant separation δyµ, which
we assume to be small with respect to the length scale of the exterior spacetime,
∼ M . Therefore, the action of the matter fields reduces to

Sm[g,Φ] = −
∑

i=1,2

∫
dλmi(Φ)

√
gµν

dyµ
i

dλ
dyν

i

dλ , (9.3)

where the two worldlines of the particles are given by yµ
1,2(λ) = yµ(λ) ± 1

2δy
µ with

yµ(λ) world-line of the center of mass of the dipole.
From the action, we can now derive the field equations and solve them by

perturbatively expanding the fields at the leading order in the mass ratio. The
Einstein equations for the gravitational field read

Gµν = Rµν − 1
2gµνR = T (s)

µν + αT (c)
µν + T p

µν , (9.4)

where T (s)
µν is the stress energy tensor of the scalar field, T (c)

µν is the term arising from
the variation of the non-minimal coupling term Sc, while T p

µν is the stress-energy
tensor of the two-particle dipole,

T p µν = 8π
∑

i=1,2

∫
dλmi(Φ)δ

(4)(xα − yα
i (λ))√

−g
dyµ

i

dλ
dyν

i

dλ . (9.5)

Varying the action with respect to the scalar field yields

□Φ + 8πα√
−g

δSc

δΦ = 16π
∑

i=1,2

∫
dλm′

i(Φ)δ
(4)(xµ − yµ

i (λ))√
−g , (9.6)

where the prime denotes derivative of a function with respect to its argument.
As discussed in [313, 314], due to the mass dimensions of the coupling α, GR

modifications to the background are suppressed by the mass ratio of the binary (or
absent if the no-hair theorems are satisfied). Hence, the exterior spacetime of the
primary can be approximated as (or is exactly) the Kerr metric. In these settings,
one can neglect the terms proportional to α in Eqs. (9.4) and (9.6), since they are
suppressed by the mass ratio. In absence of the secondary, the resulting set of
equations coincide with those of general relativity with a free scalar field, for which
the no-hair theorem applies. Therefore, the background scalar field is just a constant
Φ0.

By expanding (9.6) at linear order Φ = Φ0 +φ, we obtain the following equation
for the perturbation φ:

□φ = 16π
∑

i=1,2

∫
dλm′

i(Φ0)δ
(4)(xµ − yµ

i (λ))√
−g , (9.7)

where the operator □ is evaluated on the background Kerr metric g0
µν . The same

expansion leads mi(Φ) in Eq. (9.5) to be evaluated at Φ = Φ0. Thus, at the leading
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order the gravitational equations (9.4) coincide with the standard ones for two
infinitely close point masses in general relativity.

Let us now discuss the physical meaning of the terms mi(Φ0) and m′
i(Φ0) by

generalizing the argument of Ref. [314] to the case of our two-particle system. These
functions can be evaluated in a region which is sufficiently close to the particles
(relatively to the length scale of the exterior spacetime, ∼ M), but sufficiently far
away from them with respect to length scale of the particle themselves, given by their
Schwarzschild radius ∼ µ, so that we can evaluate the equations in the weak-field
limit. We therefore choose a reference frame {x̃µ} centered at the center of mass
of the compact object and consider Eqs. (9.5) and (9.7) in an intermediate region,
µ ≪ r̃ ≪ M , where r̃2 = x̃ix̃i. Let us first consider Eq. (9.5) evaluated at Φ = Φ0.
As in this region we are in the weak-field limit, the stress-energy tensor of a particle
reduces to its matter density and thus it follows that m1(Φ0) = m2(Φ0) = µ.

We can now turn to the study of Eq. (9.7). Expanding the latter to leading order
in the infinitesimal displacement δyµ ≪ xµ in these coordinates yields

∇2φ = 16πA(Φ0)δ(3)(x̃i) + 16πB(Φ0)δỹi∂iδ
(3)(x̃j), (9.8)

where A(Φ0) = 1
2(m′

1(Φ0)+m′
2(Φ0)) and B(Φ0) = 1

2(m′
1(Φ0)−m′

2(Φ0)). If B(Φ0) = 0,
then the solution φ has exactly the same form as in [314], and therefore A(Φ0) can
be associated with the monopolar scalar charge per unit of mass of the object (we
shall denote this quantity by d). As we instead wish to describe an intrinsically
dipolar field configuration, for the moment we ignore this term. Setting A(Φ0) = 0
we recognize the equation for the potential of a dipole, which is solved by

φ = 4B(Φ0)δỹix̃i

r̃3 . (9.9)

By direct comparison with the potential of a dipole with dipole vector P i = µdδỹi,
which is

φ = P ix̃i

r̃3 , (9.10)

it is clear that we can interpret 4B(Φ0)δỹi as a dipole vector and therefore B(Φ0) =
1
4µd, m′

1(Φ0) = −m′
2(Φ0) = 1

4µd where, as mentioned, d is the scalar charge per unit
of mass of the secondary. Finally, the equation for the scalar field reads

□φ = 4πT , (9.11)

where

T = µd

[∫
dλ
δ(4)(xµ − yµ(λ) + δyµ

2 )
√

−g −
∫

dλ
δ(4)(xµ − yµ(λ) − δyµ

2 )
√

−g

]
. (9.12)

The above discussion shows that our system can indeed be understood as a scalar
dipole made of two particles with the same mass but opposite scalar charge, whose
center of mass inspirals onto a standard supermassive (Kerr) BH. This suggests to
introduce the dipole moment tri-vector per unit of mass-squared:

pi = d

µ
δyi. (9.13)
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Notice that this is a dimensionless quantity, in analogy with the dimensionless charge
d.

In the case in which A(Φ0) ̸= 0, then the secondary has a nonvanishing net
charge as well as a dipole moment. While we are mostly interested in the case of
zero net charge, later on we will also consider this scenario, as our formalism allows
to analyse deviations from scalar emission from a fundamental charge due to the
presence of an extra dipole component.

9.2.2 Scalar equation via Teukolsky formalism

The inhomogeneous Klein-Gordon equation (9.7) can be solved via Teukolsky for-
malism [261]. First of all, we must characterize the wordlines of the two particles,
yµ

i (λ), that appear on the right-hand side of Eq. (9.7). Since for an EMRI the
inspiral timescale is much longer than the orbital time scale, Tinspiral ≫ Torbital, we
can adopt an adiabatic approximation, which allows us to consider the center of
mass of the dipole as being in nearly geodesic motion. This approximation facilitates
the evaluation of the emitted energy flux Ė from the inspiral at each time. For
simplicity, we will consider equatorial, circular orbits of the Kerr metric and use
Boyer-Lindquist coordinates {t, r, θ, ϕ}. The geodesic of the centre of mass in this
setting is described by the following constants of motion, which describe the energy,
angular momentum, and angular velocity of the center of mass, respectively,

Ec =
a
√
M + √

r0(r0 − 2M)

r
3/4
0

√
2a

√
M + √

r0(r0 − 3M)
, (9.14)

Lc =
√
M(r2

0 − 2a
√
Mr0 + a2)

r
3/4
0

√
2a

√
M + √

r0(r0 − 3M)
, (9.15)

Ωc =
√
M

a
√
M + r

3/2
0

, (9.16)

where r0 is the radial coordinate of the geodesic and Ma is the angular mo-
mentum of the Kerr BH. Hence, the wordline of the center of mass is yµ(λ) =
(tp(λ), r0, π/2,Ωctp(λ)). We will assume that the displacement δyµ is constant, i.e. it
does not depend on the affine parameter λ. Note that in general, if the displacement
is not aligned with the spin of the primary, the interaction between the latter and the
scalar dipole will induce precession even in the case of initially circular and equatorial
orbits. Hence, for generic orientations of the dipole moment, our assumption of
a constant displacement is only valid on timescales that are much shorter than
the precession timescale, such that this effect can be neglected. The precession
timescale is shorter than, or at most comparable (for relativistic orbits) to the inspiral
timescale, but much larger than the orbital one, i.e. Tinspiral ≫ Tprecession ≫ Torbital,
see e.g. [428] 1. Hence, while our formalism does not allow us to consistently evolve

1More quantitatively, one can infer the orbital timescale from the angular velocity Torb ∼
(r3/M)1/2. The precession and inspiral timescales on the other hand, are inversely proportional
to the mass ratio: Tprecession ∼ r5/2/µM1/2, Tinspiral ∼ r4/µM2, so that in the extreme mass-
ratio limit they are way larger than the orbital one. Furthermore, the precession timescale become
comparable to the inspiral one only for relativistic orbits around the ISCO r ∼ O(M), while for
most of the evolution Tinspiral >> Tprecession.
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the binary through the entire inspiral (for generic displacements), it safely allows us
to evaluate the scalar fluxes throughout the orbital motion. Of course this limitation
is absent if the displacement δyµ is orthogonal to the equatorial plane, since there is
not precession in that case.

With this in mind, we can simplify the field equation (9.11) by expanding the
trace of the stress energy tensor with respect to the constant displacement between
the two particles, δyµ = (δt, δr, δθ, δϕ). This yields

T ≃ 1√
−g (δt∂t + δr∂r + δθ∂θ + δϕ∂ϕ)(

√
−gTp) , (9.17)

where Tp has the same expression of the source of the scalar field in the setting in
which the secondary is endowed with a scalar monopolar charge:

Tp = µd

Σ sin θ|ṫp|
δ(r − r0)δ(θ − π

2 )δ(ϕ− Ωct) , (9.18)

with Σ = r2 + a2 cos2 θ and ṫp = dtp(λ)/dλ. Finally, we can perform a Fourier
transform and expand both the scalar field and the source in spin-weighted spheroidal
harmonics

φ(t, r,Ω) =
∫

dω
∑
l,m

Xlm(r, ω)√
r2 + a2

S0lm(θ, ω)eimϕe−iωt , (9.19)

4πΣT =
∫

dω
∑
l,m

Tlm(r, ω)S0lm(θ, ω)eimϕe−iωt . (9.20)

This decomposition allows us to decouple the angular and radial dependence of the
scalar field. Indeed, we obtain the standard inhomogeneous differential equation for
the radial field Xlm(r, ω):[

d2

dr2
∗

+ V

]
Xlm(r, ω) = ∆

(r2 + a2)3/2Tlm(r, ω) , (9.21)

where V is the effective potential and can be found, for example, in [429]. We can
obtain Tlm as a function of T by inverting Eq. (9.20) using the properties of the
spheroidal harmonics:

Tlm(r, ω) = 2
∫

dtdθdϕΣ sin θTS∗
0lme

−imϕeiωt . (9.22)

We can now substitute Eq. (9.17) into Eq. (9.22) and perform the integrals in θ and
ϕ, through integration by parts and the properties of the δ function. We finally
obtain

Tlm = 4πµd
|ṫ|

δ(mΩc − ω)
[
S∗

0lm(π2 ,mΩc)δr∂rδ(r − r0) − d
dθS

∗
0lm(π2 ,mΩc)δθδ(r − r0)

+ (δϕ− Ωcδt)S∗
0lm(π2 ,mΩc)imδ(r − r0)

]
. (9.23)
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Note that the displacements along the t and ϕ directions are proportional to each
other2. This is a consequence of the chosen equatorial circular motion. In fact, for
circular equatorial orbits, performing a displacement δϕ corresponds to moving the
particle along the orbit by an angle proportional to Ωcδt and vice-versa. In particular,
for prograde orbits such that Ωc > 0, by considering a positive displacement δϕ = Ωcδt
the sum of these two terms is zero. This is because the angular term δϕ, if positive,
shifts the particle along the circular orbit in a clockwise way. A shift δt along time
instead, corresponds to ϕ = Ωc(t + δt), i.e. ϕ − Ωcδt = Ωct, so that at time t the
particle is actually displaced by an angle −Ωcδt = −δϕ with respect to its original
position in the counterclock direction. For retrograde orbits, the effect is clearly
reversed. In general, as these terms are proportional, we can neglect from now on
shifts along time, and simply re-absorb them as shifts along the ϕ direction.

9.3 Dipole-induced scalar fluxes

9.3.1 Analytic derivation

The solution of the inhomogeneous equation (9.21) can be found using the stan-
dard Green function in terms of two independent solutions of the corresponding
homogeneous equation. The latter have the following asymptotic behavior:

X
∞,r+
lmω ∼ e±ir∗k∞,+ as r → ∞, r+ (9.24)

where k+ = ω−mΩH , ΩH being the angular velocity of the BH horizon, and k∞ = ω.
The solution of the inhomogeneous equation reads

Xlmω(r) = W−1X∞
lmω

∫ r

r+
dsTlmωX

r+
lmω√

s2 + a2
+W−1X

r+
lmω

∫ ∞

r
dsTlmωX

∞
lmω√

s2 + a2
, (9.25)

where W is the Wronskian of the two homogeneous solutions. To evaluate the fluxes
we are interested in the asymptotic behaviour of the solution (9.25) at infinity and
at the horizon. Using Eqs. (9.23) and (9.24), we get

Xout
lmω = Z∞

lmωδ(mΩc − ω)eimΩcr∗ , , (9.26)
X in

lmω = Z
r+
lmωδ(mΩc − ω)eim(Ωc−ΩH)r∗ . (9.27)

where
Z

∞,r+
lmω = W−1 4πµd

|ṫ|
(R + Θ + Φ̃)X

r+,∞
lmω (r)√
r2 + a2

∣∣∣∣∣
r=r0

, (9.28)

with

R = S∗
0lm(π2 ,mΩc)δr∂r, (9.29)

Θ = −dS∗
0lm

dθ (π2 ,mΩc)δθ, (9.30)

Φ̃ = imS∗
0lm(π2 ,mΩc)δϕ. (9.31)

2Note also that both terms are proportional to the azimuthal number m. While this is obvious
for the derivative with respect to ϕ, it arises also for the time derivative because the latter brings a
factor ω, and circular motion implies ω = mΩc.
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The fluxes at infinity and at horizon can be computed from the t− r component
of the scalar field stress-energy tensor,

F∞,r+ =
dE∞,r+

dt = lim
r→∞,r+

∫
dΩ ΣT (s) r

t , (9.32)

Finally, using Eq. (9.28), the fluxes read:

F∞ = dE∞
dt =

∑
l,m

|Z∞
lmω|2m2Ω2

c , (9.33)

Fr+ =
dEr+

dt =
∑
l,m

|Zr+
lmω|2m2Ωc(Ωc − ΩH). (9.34)

In the next section, we will compute numerically the dipole-induced scalar fluxes
and highlight the differences with respect to the monopolar case. For an immediate
comparison, we report here also the quantities Z̃∞,r+

lmω characterizing the monopolar
case:

Z̃
∞,r+
lmω = W−1 4πµd

|ṫ|
S∗

0lm(π2 ,mΩc)
X

r+,∞
lmω (r)√
r2 + a2

∣∣∣∣∣
r=r0

. (9.35)

Even by a first qualitative analysis, a crucial difference can already be highlighted
from dimensional considerations. From Eq. (9.28), one sees that the inhomogeneous
solution, both at the horizon and at infinity, depends on the sum of three terms
proportional to the components of the dipole moment vector, δrd/µ, δθd/µ, δϕd/µ,
respectively. First, we point out that the radial displacement is of the order of
the secondary length scale, δr = O(µ). Moreover, the term (9.29) features ∂r

which is O(M−1). As for the angular displacements, they can be roughly estimated
as δθ, δϕ ∼ arcsin(µ/r0) ≈ µ/r0 ≲ µ/M , from which δθ, δϕ = O(q). Thus, the
terms (9.29), (9.30), (9.31) are all of the order O(q). This immediately tells us that
Eq. (9.28) scales as the mass ratio squared, q2, and the fluxes are proportional to q4.

In the case of a monopole instead, the fluxes are proportional to q2. Therefore,
emission from a dipole is intrinsically suppressed by a factor of q2.

If we instead consider a configuration where both a scalar monopole and a scalar
dipole are present (as we shall do in Sec. 9.3.4), the fluxes will be proportional to
the square of the sum of the two terms (9.35) and (9.28). Hence, due to the double
product of these two terms, the lowest order correction to the scalar monopolar
flux due to the presence of the dipole will be proportional to q3. This resembles
the contribution of the spin of the secondary compact object to the gravitational
fluxes [430, 431, 432], which also enters at next-to leading order in the mass-ratio.

9.3.2 Numerical results

In this section we discuss the numerical results for the fluxes in the purely dipolar
case. We consider an EMRI around a nearly-extremal Kerr BH with spin a = 0.99M .
As we shall discuss, even if this choice maximizes the effect of the dipole, the latter
is typically negligible. In all cases we compute the fluxes by summing the multipolar
contributions up to l = 17 and for all m = −l,−l + 1, ..., l − 1, l.

The GW emission is studied by varying the radial coordinate r0 of the center of
mass of the secondary, and therefore its tangential velocity v = Ωcr0, which increases
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as r0 decreases. We will confront the dipole fluxes with the ones obtained in the
monopolar case in the same setting [312, 314].

Recalling that, without loss of generality, we can set δt = 0, we can focus
on the fluxes given by the three main possible orientations for the dipole, which
are pi = d(δr, 0, 0)/µ, pi = d(0, δθ, 0)/µ, and pi = d(0, 0, δϕ)/µ, respectively (see
Fig. 9.1).

ΩH

r0
δr

δϕ

δθ

⃗p = d
μ

(δr,0,0)

⃗p = d
μ

(0,δθ,0)

⃗p = d
μ

(0,0,δϕ)

r0 − δr/2 ⃗p

⃗p

⃗p

−

−

−

+

+

+

Figure 9.1. Schematic representation of an EMRI with a fundamental secondary dipole
moment p⃗. We show the the three independent orientations of the dipole considered in
this work. A generic orientation can be expressed as a linear combination of these three.

Given that the mass ratio enters the fluxes as an overall factor, it is convenient
to normalize both the dipolar and monopolar fluxes normalized in a suitable way.
For a given orientation of the dipole, we can define the normalized fluxes FD and
FM as

FM = (4π)2q2d2FM , FD = (4π)2q4p2FD. (9.36)
Here FD (FM ) is the flux obtained from Eqs. (9.33) and (9.34) using the Zlmω given
in Eq. (9.28) (Eq. (9.35)) for the dipolar (monopolar) case. Also, p is the magnitude
of the dimensionless dipole vector, see Eq. (9.13). Using this normalization, FD and
FM are independent of the dipole moment, charge, and mass ratio. However, for
the purpose of a comparison one should keep in mind that, for the physical fluxes,
FD/FM = O(q2) ≪ 1.

Figure 9.2 shows the behaviour of normalized dipole emission (solid curves) in
the pi = d(0, δθ, 0)/µ case (in which the dipole is orthogonal to the equatorial plane
and therefore precession in absent) in comparison to the normalized monopolar
emission (dashed curves). In this configuration, for any orbit, the dipole emits a
normalized flux that is always smaller than in the monopolar setup at least by one
order of magnitude, both at horizon and at infinity. This is due to the dependence
on dS∗

0lm
dθ (π

2 ,mΩc) in the dipole emission. Indeed, it is easy to see that when the
derivative of the spheroidal harmonic is computed at θ = π/2, the (polar) m = ±l
contribution to the fluxes, which usually is the dominant one, is identically zero.
The first non-zero contribution comes from the axial mode m = ±(l − 1), which is
typically smaller.

In Fig. 9.3 we show the behaviour of normalized dipole emission (solid curves) in
the pi = d(δr, 0, 0)/µ setting, where the dipole moment lays on the equatorial plane
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Figure 9.2. Solid curves: normalized scalar emission at infinity (black) and at horizon
(orange) for a fundamental dipole with normalized moment pi = d(0, δθ, 0)/µ, namely
the case in which the dipole is parallel to the spin of the primary BH. Dashed curves:
for comparison we show the normalized scalar emission at infinity (black) and at horizon
(orange) for the case of a fundamental charge.

in radial direction. We notice that the relative importance of the dipolar flux with
respect to the monopolar one increases in regions of the spacetime with a stronger
gravitational field. The normalized flux at infinity peaks at the innermost-stable
circular orbit (ISCO), where it is larger than the normalized monopolar one by
almost two orders of magnitude.

Figure 9.4 shows the normalized dipole emission (solid curves) in the pi =
d(0, 0, δϕ)/µ setup. This trend shown in this plot is similar to the previous one.
Overall the dipolar flux in this setting is always smaller than in the case of radially
displaced dipole, but significantly larger than in the case of dipole aligned with the
BH spin (Fig. 9.2).

Note that, as expected, in all three cases the fluxes increase as the small compact
object gets closer to the ISCO since relativistic effects are amplified.

In the next section we will discuss the possible detectability of these fluxes, after
restoring the normalization factors in Eq. (9.36).

9.3.3 Estimates for the fundamental dipole in various models

In order to give a rough estimate of the actual effects of fundamental dipole moments,
we need to consider the physical fluxes in Eq. (9.36) and plugging in realistic values
for the (dimensionless) scalar charge and dipole moment.

Using Eq. (9.36) and the numerical results of the previous section, we now wish to
roughly estimate the minimum value of p that could possibly give detectable effects.
An order-of-magnitude estimate can be obtained by computing the ratio between
the physical dipolar and monopolar fluxes, FD/ FM , and extract the minimum value
of p for which the fluxes are comparable, FD/ FM ≈ O(1).

In the monopolar case, the smallest charge that would lead to a detectable effect
for the scalar emission from a monopole is d ≈ 10−2. This was shown in [314] both
by computing the GW dephasing due to the scalar emission and by performing
a more rigorous parameter estimation. We can therefore estimate whether the
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Figure 9.3. Same as Fig. 9.2 but for for the case of a radial dipole moment along the
equatorial plane.

Figure 9.4. Same as Fig. 9.2 but for the case of a dipole moment with δr = δθ = 0.

dipole emission is comparable to the flux generated by the monopole setup with this
minimum detectable value for the scalar charge, using realistic values of p. We also
assume a mass-ratio q = 10−4 in order to minimize the suppression factor between
dipole and monopole while remaining well within the extreme mass-ratio limit.

The fluxes ratio reads

FD

FM
= FD

FM

(
pq

d

)2
= 10−4

(
q

10−4

)2 (0.01
d

)2 FD

FM
p2. (9.37)

Near the ISCO, for nearly-extremal BHs, the maximum normalized ratio is FD/FM ∼
102, as shown in Fig. 9.3. This leads to

FD

FM
∼ 10−2

(
q

10−4

)2 (0.01
d

)2
p2 . (9.38)

Therefore, in order to require a dipolar flux comparable to the monopolar one,
p ≈ 10.

To assess whether this value for our fundamental dipole is realistic, we consider a
few significant examples. The first one is the magnetic dipole moment of a neutron



9.3 Dipole-induced scalar fluxes 149

star. Of course in this case the dipole moment is due to the electromagnetic field,
but we will use the intuition from our scalar dipole as a proxy. The dipole moment of
a neutron star can be estimated as BR3, where B is the typical magnetic field and R
the radius of the star [433]. If we assume standard parameters for a magnetar [411],
B ≈ 1015G and R ≈ 12 km, we obtain a dipole moment p ≈ 10−2. Thus, from
Eq. (9.38), even in the case of extreme magnetic fields and in the most optimistic
scenario the dipole flux is 106 times smaller than the minimum detectable monopole
flux.

The same occurs for the dipole moment of the recently constructed globally
neutral topological solitons [434]. Such solutions are constructed by two opposite
charges held at a given distance. While their dipole moment depends on the
parameter space, in our units these solutions are characterized by p ≪ 1 [434].

Furthermore, in the context of quadratic gravity theories with scalar fields coupled
to quadratic curvature terms (which most notably include scalar Gauss-Bonnet and
dynamical Chern-Simons theories) dipole hair can grow dynamically [413]. In this
scenario the dipole moment is completely determined by the value of the monopole
hair yielding p ∼ d. In Chern-Simons gravity, dipole hair is proportional to the BH
spin and is therefore bounded also in this case [413]. Likewise, fundamental dipoles
can be produced in theories with spin-induced scalarization [414, 415, 416, 417] at
the level of p ∼ d.

Overall, for generic values of d, Eq. (9.38) implies a very large magnitude,
p ≈ 103d, for the dipole flux to be comparable to the monopole one for q = 10−4.
Furthermore, the estimate (9.38) is already very optimistic, as it assumes the smallest
detectable value of a scalar charge d, a moderate mass-ratio q = 10−4, and the
maximum possible normalized ratio FD/FM , obtained near the ISCO of a nearly
extremal central BH. If these assumptions are relaxed (i.e., for smaller mass ratios,
larger values of the charge, moderately spinning BHs, and less relativistic orbits),
the flux ratio is even more severely suppressed.

We conclude that, for typical values of the dipole moment predicted in various
models, the effect of a dipole flux is negligible.

9.3.4 Mixed case: charge+dipole

Until now, we have neglected the presence of a putative scalar charge and focused
purely on the dipole contribution, assuming a globally neutral secondary. One might
wonder if, in a scenario where both a scalar charge and a dipole are included, the
corrections to the total flux due to the dipole are more significant. Indeed, as already
mentioned, in this scenario the lowest order contribution from the dipole scales as
q3 instead of q4. In this section, we will therefore compute the fluxes in this mixed
case and show that, also in this case, one needs large values of the dipole moment
(p ≈ 1) in order to have appreciable deviations from the purely monopolar case.

We have studied the relative difference in the same optimistic scenario of the
previous section, i.e. a = 0.99M , q = 10−4 , d = 10−2, by considering different values
of the dipole moment, namely p = 10−2, 0.1, 1, 10. Moreover, we have considered the
purely radial dipole case pi = d(δr, 0, 0)/µ, since our previous analysis showed that
in this orientation the dipole contribution is maximized. Figure 9.5 shows the total
fluxes (continuous lines) and the purely monopolar ones (dashed lines) as functions
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of the orbital velocity and for increasing values of p. Below each panel we also show
the corresponding relative difference between monopole+dipole and purely monopole
cases.

It is clear that also in this mixed case the presence of a nonvanishing dipole
moment has a small impact on the total emission. For realistic values as p ≈ 0.01,
the total flux is larger than the the purely monopolar case at most by ≈ 0.1%. If
we assume a larger dipole moment, p ≈ 1, the maximum deviation from the purely
monopolar case is at most 15%, whereas for p ≈ 10 the monopolar and dipolar
contributions are of the same order. Nevertheless, as already mentioned, such values
of p are unrealistic and these corrections are obtained in the most optimistic scenario.

9.4 Conclusions
Motivated by various scenarios predicting globally neutral compact objects endowed
with a dipole moment, we have developed a model-agnostic framework to compute
the GW emission from a fundamental scalar dipole in EMRIs.

We found that the extra flux associated with the dipole moment is suppressed by
the square of the mass ratio relative to the case of fundamental charges, making its
detection with EMRIs very challenging for the typical values of the dipole predicted
in various models. Even in the most optimistic scenarios, we estimated that, as long
as the dimensionless dipole moment p ≲ 10, its effect would be negligible for LISA.

This negative conclusion is based on a simple comparison between the dipole and
monopole fluxes. Although the strong suppression suggests that our conclusion is
solid, it would be important to confirm this expectation through a proper parameter
estimation, along the lines of [314, 339] for the case of fundamental charges. In
our case, however, this would come with the extra cost of properly taking into
account the dipole precession during the evolution. Indeed, we have found that
the only case in which precession is absent (when the dipole is parallel to the
spin of the primary) is also the one in which dipole emission is more suppressed.
For the most promising cases (any other orientation of the dipole) one needs to
consistently evolve the dynamics of the dipole moment, similarly to the case of a
secondary spin [435, 436, 437, 438]. It is also possible that precession helps make
the effects of the dipole moment more prominent, as recently found in the context
of post-Newtonian theory for comparable-mass binaries [439].

Although in our settings the effect of a fundamental dipole on the EMRI fluxes
seems pessimistically small, for the same reason we estimate that if the secondary
is endowed with both a charge and a dipole, the effect of the latter are typically
negligible for constraints on and detectability of the former. This suggests that the
estimates in [313, 314, 336, 337, 338, 339] should be robust against the inclusion of
extra dipole effects. The mixed case is less suppressed by the mass ratio and is in
fact very similar to that of an ordinary EMRIs with a spinning secondary [430, 432]
for which the secondary spin is indeed not measurable with LISA, at least when
neglecting precession [431]. In this context it would be interesting to include our
effect in a more accurate self-force model, see [440] for very recent related work.

Finally, while the case of a fundamental scalar dipole might be interesting on its
own in the context of modified gravity and physics beyond the Standard Model, we
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have also used it as a proxy for an intrinsic electromagnetic dipole, which is of direct
astrophysical interest for magnetars. It would be very interesting to extend our work
to the vector case, generalizing [338, 339] to the case of fundamental vector dipoles.
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Figure 9.5. First and third row of panels: mixed case fluxes normalized by (4π)2µ2d2 (solid
lines) compared to normalized monopolar fluxes (dashed lines) for increasing values of p
(p = 0.01, 0.1, 1, 10). Second and fourth row of panels: corresponding relative difference
between the fluxes at infinity for the same values of p. The spin of the BH is fixed at
a = 0.99M and the orientation of the dipole is given by pi = d(δr, 0, 0)/µ.
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Chapter 10

Novel tests of gravity using the
stochastic GW background

Summary
Gravity theories that modify General Relativity in the slow-motion regime can
introduce nonperturbative corrections to the stochastic gravitational-wave back-
ground (SGWB) from supermassive black-hole binaries in the nano-Hertz band,
while remaining perturbative in the highly-relativistic regime and satisfying current
post-Newtonian (PN) constraints. We present a model-agnostic formalism to map
such theories into a modified tilt for the SGWB spectrum, showing that negative
PN corrections (in particular -2PN) can alleviate the tension in the recent pulsar-
timing-array data if the detected SGWB is interpreted as arising from supermassive
binaries. Despite being preliminary, current data have already strong constrain-
ing power, for example they set a novel (conservative) upper bound on theories
with time-varying Newton’s constant (a −4PN correction) at least at the level of
Ġ/G ≲ 10−5yr−1 for redshift z = [0.1 ÷ 1]. We also show that NANOGrav data are
best fitted by a broken power-law interpolating between a dominant -2PN or -3PN
modification at low frequency, and the standard general-relativity scaling at high
frequency. Nonetheless, a modified gravity explanation should be confronted with
binary eccentricity, environmental effects, nonastrophysical origins of the signal, and
scrutinized against statistical uncertainties. These novel tests of gravity will soon
become more stringent when combining all pulsar-timing-array facilities and when
collecting more data.

10.1 Tests of gravity using PTAs

Pulsar timing arrays (PTAs) offer a unique way to probe gravitational-wave (GW)
astrophysics at the nano-Hertz (nHz) scale. In 2020, the NANOGrav collaboration
first reported evidence in their 12.5 year dataset [352] for a common spectrum of a
stochastic nature, which provided the first hint of a stochastic gravitational wave
background (SGWB) signature. However, in these data, there was no statistical
evidence for a quadrupolar spatial correlation (also denoted as Hellings-Down (HD)
curve), necessary to interpret the signal as a GW background consistent with
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General Relativity (GR). Remarkably, the more recent PTA data released in 2023
by the NANOGrav [298, 299], EPTA (in combination with InPTA) [300, 301, 302],
PPTA [303, 304, 305] and CPTA [306] collaborations, found evidence for a HD angular
correlation, typical of an homogeneous spin-2 GW background and consistent with
the quadrupolar nature of GWs in GR [348].

The latest NANOGrav 15 yr (henceforth NANOGrav15) data found evidence for
a smooth power law, ΩGW ∝ f (1.6,2.3) at 1σ. It is well known that a SGWB sourced
by supermassive black hole (SMBH) binaries would be characterized by a scaling
law ΩGW ∝ f2/3 [349], which is currently disfavoured at 2σ by the NANOGrav15
data [326, 327]. Nevertheless, environmental and statistical effects may play a relevant
role, and lead to a steeper scaling [321, 322, 323, 324, 325, 326, 327, 328, 329]. Even
though with current data it is not possible to rule out a cosmological origin for the
observed signal – such as coming from first-order phase transitions [353, 354, 355, 356,
357, 358, 359, 360, 361, 362, 363, 364, 365], cosmic strings and domain walls [366,
367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383], or
scalar-induced GWs generated from primordial fluctuations [384, 385, 386, 387, 388,
389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406]
(see also [441, 442, 443, 444, 445, 446, 447]) – the SMBH hypothesis remains the
leading explanation. Assuming the signal had astrophysical origin, one can greatly
constrain the scenario and the physics governing SMBH binaries.

In principle, also modifications to GR (see, e.g., [34, 315, 17] for some reviews)
may play a crucial role and lead to a different prediction than the standard scaling
expected for SMBH binaries (including correlation patterns deviating from HD
[448, 449, 450, 451]). Indeed, many known theories beyond GR induce new effects
at negative post-Newtonian (PN) orders. Examples include dipole radiation in
scalar-tensor theories at −1PN, or the effects of extra-dimensions or a time-varying
Newton constant, both at −4PN (see e.g. [17, 18, 407]). Given that BH binaries
in the PTA band have extremely large orbital separation during the early-inspiral
phase, one could expect negative PN modifications to GR in this regime to play a
much more relevant role than in the coalescence phase typically explored by ground-
and space-based detectors [16, 452, 453, 297, 410].

In this work, we analyze the impact of generic effects at negative PN orders in light
of the recent results of the PTA collaborations. We show that the recently detected
SGWB allows for novel tests of GR. On the one hand, slow-motion modifications to
GR can alleviate the current tension in PTA data and, on the other hand, we can use
current data to place stringent upper bounds on putative negative-PN modifications,
e.g. theories predicting a time-varying Newton’s constant, G(t), in an unconstrained
region of their parameter space [454].

10.2 SGWB spectrum in modified gravity theories
The Hamiltonian of a binary system, corresponding to the centre of mass binding
energy reads, at the Newtonian level,

E = µv2/2 −Gm1m2/r , (10.1)
where m1,m2 are the masses of the objects, r is the relative orbital separation,
v is the relative orbital velocity, and µ is the reduced mass. Here we adopt a
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theory agnostic approach and consider model-independent modifications to GR. In
particular, we consider dissipative corrections to the rate of change of the binding
energy, at generic PN order1:

Ė = ĖGR
[
1 +B

(Gm
r

)q]
, (10.2)

where m = m1 + m2 is the total mass and ĖGR = 32
5 Gµ

2ω6r4 is the standard
GR energy flux. This approach was widely considered in the literature in the
contest of the parametrized post-Einsteinian (ppE) framework [455, 456, 407, 457].
Nevertheless, in the ppE formalism these corrections are always assumed to be much
smaller than the GR term, and hence treated perturbatively. Here we remove this
assumption, as we are interested in a seldom explored regime where these terms
might dominate over the GR ones at the nHz scale. To compute the impact of this
modification in the energy spectrum of GWs, we can simply express the latter as

dEGW
dω

= ĖGR
ω̇

. (10.3)

As we focused on purely dissipative corrections to GR, the binding energy is not
modified, and one can therefore assume the standard Kepler’s law relating the orbital
radius to the frequency at the leading order, r = (Gm/ω2)1/3. Using the latter, and
combining Eqs. (10.1) and (10.2), we can compute the rate of change of the orbital
frequency,

ω̇ = 96
5 µG

5/3m2/3ω11/3
[
1 +B

(Gm
r

)q]
. (10.4)

Finally, the modified GW spectrum reads

dEGW
dω

= −
1
3G

2/3µm2/3ω−1/3

1 +B(Gmω)2q/3 . (10.5)

In the B = 0 limit this equation coincides with the standard GR one, where the
only dissipation channel is ordinary GW emission, and leads to the standard scaling
ΩGW ∝ fdEGW/df ∼ f2/3, where f = ω/π is the GW frequency. On the other hand,
if

B(Gmπf)2q/3 ≫ 1 , (10.6)

the modified scaling reads
ΩGW ∝ f

2
3 (1−q) . (10.7)

Modifications of the energy flux for negative PN orders (q < 0) lead to a steeper
scaling, as expected. In particular, a dominant −2PN correction (q = −2) would give
ΩGW ∝ f2, compatible with the peak of NANOGrav15 posteriors for the tilt [298],
as we shall also discuss later on. Taking q = −2 as an example, from Eq. (10.6) one
has

B ≫ 4 × 10−7
(

m

109M⊙

)4/3 ( f

nHz

)4/3
. (10.8)

1One can also include a similar parametrization for the conservative corrections to the binding
energy of the binary [455, 456]. For our purposes nevertheless, it is sufficient to focus only on
dissipative corrections. Indeed, typically conservative corrections arise at higher post-Newtonian
order and are therefore subdominant in the early inspiral [407, 18].
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On the other hand, the requirement that the same correction remains perturbative
during the inspiral of a coalescing binary imposes B ≪ (GmωISCO)−2q/3 ∼ 0.03 (for
q = −2 and where ωISCO is the reference frequency of the innermost stable circular
orbit), regardless of the binary mass. Thus, there is a wide range in which the
coupling B satisfies the inequality (10.8) while introducing a small correction in the
coalescence phase. This range becomes even wider for more negative PN corrections.

Note that this general formalism includes several classes of gravity theories [18],
but also several environmental effects that provide dissipation mechanisms at negative
PN orders [33, 255, 458], leading to a steeper scaling [322, 459, 328]. Examples
include accretion and dynamical friction (q = −5.5), stellar scattering (q = −5), and
interaction with circumbinary gas (q = −3.5). Finally, large eccentricity (e ≳ 0.6)
also provides a steeper scaling [350, 351] which can be fitted by multiple power-law
phases with q ≈ −7.1 and q ≈ −2.8.

10.3 The case of varying G
Before delving into an actual confrontation with PTA data in the next section,
let us discuss the strong constraining power of current data through a heuristic
argument and considering a specific example. Alternatives to GR can violate the
strong equivalence principle and in some case break local invariance [34]. Some of
them predict a spacetime variation of the effective Newton constant, for example
mediated by a scalar field on cosmological scales [36] or in the presence of energy
leakage into small extra dimensions [460, 461]. Here we apply our formalism to the
simplest and most studied case, promoting G to a function of time, G(t), with G0
being its present value [462, 463]. Several constraints to the first derivative of the
Newton constant, Ġ, have been considered at different scales. At cosmological scales,
bounds come from Big Bang nucleosynthesis [464, 465, 466] and cosmic microwave
background [467], which estimated Ġ/G0 ≲ 10−12 yr−1, while in the solar system the
most stringent constraint comes from a detailed analysis of Mercury’s orbits, yielding
Ġ/G0 ≲ 10−14 yr−1 [468]. Nevertheless, the former constraint assumes a linear
scaling of G(t) throughout the entire cosmic history, while the latter is obtained
in the solar system at zero redshift. On the other hand, GWs offer a unique probe
of local variation Ġ at intermediate epochs [463, 469], being thus complementary
to the aforementioned constraints. Depending on the specific GW source, one can
place constraints at different redshift z. In particular, PTAs are sensible to systems
at z ≈ [0.1 ÷ 1] [326], and hence they can provide complementary constraints to
the low-redshift ones which were placed using binary pulsars [462, 470, 471] and
LIGO [16]. On the other hand, the future space mission LISA will be able to provide
bounds at similar redshifts [463, 472, 473, 469]. Here we show that using the recent
PTA detection of the SGWB it is possible to place competitive bounds already with
current data. The GW emission power in these theories depends on the time-varying
Newton constant,

ĖGW = 32
5G(t)

[
πMcG(t)f(t)

]10/3
, (10.9)

where Mc is the binary chirp mass. Using Eq. (10.1) (with G → G(t)) and the
balance law, one can compute an expression for the secular variation of the GW
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Figure 10.1. The posterior distribution for ΩGW in each frequency bin fi reported by the
NANOGrav collaboration, including HD correlations (gray violins). We also show the
best fit spectra obtained by inserting a specific PN correction in the model, i.e. assuming
a BPL spectrum with nT = 2/3(1 − q) at f < fb and nT = 2/3 at f > fb. The black
dashed line shows the best fit assuming GR scaling ΩGW ∝ f2/3.

frequency valid at all orders in Ġ [469]:

ḟ = 96π8/3

5 G5/3M5/3
c f11/3 −

(Ġ
G

)
f . (10.10)

The first term above is the standard GR one, while the second term is the modification
due to the variation of G. Using the above relations, one can straightforwardly
compute Eq. (10.3). If the first term dominates over the second one in Eq. (10.10),
one obtains the standard scaling ΩGW ∝ f2/3, while in the opposite regime, i.e. if Ġ
is large enough, one obtains the scaling

ΩGW ∝ f10/3 , (10.11)

which corresponds to q = −4, i.e. to a −4PN order effect, in agreement with the ppE
mapping of this correction in the perturbative regime [463, 18]. Hence, theories with
a time-varying G can be directly mapped into our generic framework. The obtained
scaling (10.11) deviates more than 3σ from the recent NANOGrav15 measurement,
which can in turn be used to place constraints on Ġ. Assuming for simplicity that
all binaries have same redshift and equal masses, m1 = m2 = m/2, one finds that
the spectrum (10.11) is obtained if

Ġ/G0 ≫ 4.6 × 10−9yr−1
(

f

nHz

)8/3 ( m

109M⊙

)5/3
, (10.12)

which is therefore excluded by PTA measurements.

10.4 Confrontation with NANOGrav 15 Dataset
After the heuristic analysis above, we now focus on the most constraining PTA
dataset, which is the one reported by the NANOGrav collaboration [298]. Assuming
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Figure 10.2. Fit of the NANOGrav15 dataset, assuming a BPL model with break frequency
at fb. For f > fb we always assume nT = 2/3 as predicted by GW-driven, circular
SMBH binaries in GR. Left: The low-frequency tilt nT is left free to vary. As fb increases,
the constraint becomes more stringent, and converges towards the single power-law
result. The colored vertical lines indicate the 2σ range for nT (f < fb) while the dashed
vertical lines indicate nT = 2/3 and 10/3 corresponding to GR and −4PN corrections,
respectively. Right: The low frequency tilt is fixed assuming a given negative qPN
correction, nT = 2/3(1 − q) for q = −1, . . . ,−6. The posterior distribution for fb

indicates the preference for negative PN corrections (i.e. steeper spectra than ∝ f2/3).
As a consequence, we always find lower bounds on fb, while for q ≲ −3 upper bounds are
also obtained. The light vertical lines indicate the location of the NANOGrav frequency
bins.

the signal to be a power-law (PL), this corresponds to a fraction energy density in
GW today as [474]

ΩGW(f) =
2π2A2f2

yr
3H2

0

(
f

fyr

)nT

, (10.13)

where H0 is the current Hubble rate, fyr ≡ (1 yr)−1 ≃ 32 nHz, whereas A and
nT are the amplitude and spectral tilt, respectively. In Fig. 10.1, we show the
posterior distribution for the SGWB abundance ΩGW(f) (gray violins), obtained by
the NANOGrav collaboration fitting their data with the inclusion of HD correlations,
in the first 14 bins.

We perform a maximum likelihood analysis to derive bounds on the tilt of the
spectrum as a function of frequency, and compare this with the circular inspiral
prediction ΩGW ∝ f2/3. The full log-likelihood is computed as

ln L(θ) =
∑

k

ln pk (ΩGW(fk|θ)) , (10.14)

where θ is the parameter vector characterising the models (e.g., amplitude and tilt
for the power-law model), while pk is the likelihood for each frequency bin k.

First, we assume that the SGWB spectrum is described by a power law in a
certain number of the lowest frequency bins, hereafter denoted as Nbin. We show
the resulting 2σ range for the spectral tilt in Table 10.1 (PL case).

We can also assume the SGWB spectra to be described by a broken power-law
(BPL) where the low-frequency tilt (f < fb) is fixed assuming a given negative PN
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frequency [nHz] Nbin n(PL)
T n(BPL)

T

f2 = 3.96 2 3.0+2.9
−2.4 2.2+2.8

−1.8

f3 = 5.93 3 2.3+1.7
−1.5 1.9+1.5

−1.1

f4 = 7.92 4 2.0+1.4
−1.2 2.1+1.2

−1.0

f5 = 9.88 5 2.1+1.2
−1.1 2.0+0.1

−0.8

f6 = 11.9 6 2.1+1.2
−1.1 2.2+0.9

−0.8

f7 = 13.9 7 2.1+1.2
−1.1 2.2+0.8

−0.8

f8 = 15.8 8 2.4+1.0
−0.9 1.8+0.8

−0.7

f9 = 17.8 9 2.2+0.9
−0.8 2.0+0.8

−0.7

Table 10.1. We report the range of nT at 2σ obtained fitting the first Nbin frequency bins
with a power-law (PL), or with a broken power-law (BPL), where we set nT = 2/3 only
at fi > fb. The first frequency bin is at f1 = 1.98 nHz.

correction, nT = 2/3(1 − q), while ΩGW ∝ f2/3 for f > fb. In our model (10.5), this
occurs naturally: for fixed q and B, fb corresponds to saturating Eq. (10.6), namely
fb = B

− 3
2q /(πGm).

The corresponding 2-σ range for nT , assuming different values of fb (correspond-
ing to the location of each NANOGrav15 bin) are also shown in Table 10.1. This
second version of the bounds are slightly more stringent, as additional information
is brought by considering all NANOGrav15 posteriors, while assuming the high
frequency range is described by the GW prediction. In Fig. 10.2 (left panel), we
show the corresponding posterior distribution for nT (f < fb), assuming the BPL
model.

One can also perform a different analysis and focus on a single PN correction (i.e.
fixing q) and derive the best fit parameters for the location of the break frequency
fb. The posterior distribution for fb shown in the right panel of Fig. 10.2 has
always significant support in the NANOGrav band, thus indicating the preference
for negative PN corrections (i.e. steeper spectra than f2/3). In all cases, we find
lower bounds on fb, while upper bounds are also obtained when q ≲ −3.

The constraints set on fb can be directly translated into constraints on the
parameter B using Eq. (10.6). We show this in Fig. 10.3, assuming for simplicity
that all binaries have the same total mass. The absence of support for B = 0 in
all cases with q < 0 is due to the existing tension in PTA data with the standard
scenario ΩGW ∝ f2/3.

For q = −4 the posterior on B can be mapped into a bound on Ġ/G0, assuming
the latter to be approximately constant at the source’s redshift z ∼ 0.5 dominating
the signal [326], see Fig. 10.4. Even in the most conservative scenario (m = 109M⊙),
the bound on Ġ/G0 is comparable to the projected bounds that LISA is expected to
place using quasi-monochromatic sources [469]. Due to the Ġ ∝ m5/3 dependence,
in more optimistic scenarios (m < 109M⊙) the bound is only slightly less stringent
than what will be achievable in the LISA era by detecting SMBH coalescences
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Figure 10.3. Posterior distribution of B derived assuming only one PN correction is
active at the time. We left the explicit dependence on the total mass of the binaries,
conservatively normalised to the value of m = 109M⊙. These constraints are derived
from the BPL posteriors on fb in Fig. 10.2.
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Figure 10.4. Posterior distribution of Ġ/G0 assuming two values for the binary mass,
m = 109M⊙ and m = 108M⊙.

and extreme mass-ratio inspirals [463, 472, 473] at similar redshift (z ≈ [0.1 ÷ 1]).
Overall, the bound on Ġ/G0 is also several orders of magnitude better than the
current bounds with LIGO/Virgo black-hole2 binaries [18, 16], consistently with the
fact that a small-velocity nonperturbative modification in the nHz band can become
perturbatively small in the relativistic regime.

10.5 Conclusions and outlook
We argued that the recent groundbreaking PTA detection of a SGWB provides novel
avenues to test gravity in the slow-motion regime. The novel constraints derived
here are already competitive with those that the future LISA mission will place using
nonrelativistic binaries. More accurate and stringent constraints should be derived
by taking into account the mass distribution of SMBH binaries and its uncertainties.
Furthermore, we expect that the upcoming joint analysis involving all collaborations
within the International PTA framework will soon strengthen the constraints derived
in this work. Likewise, the PTA posteriors on the tilt will shrink in time as longer
duration datasets will be analyzed. Following the estimates provided in Ref. [476],
one may expect the uncertainty on the spectral tilt to scale with the observation

2Neutron-star binary GW170817 sets a bound Ġ/G0 ≲ 10−8 yr−1 [475], which anyway refers to
much smaller redshift, z ≈ 0.01.
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time as σnT ∝ T
−0.9(5−nT )
obs (∝ T−0.4

obs ) in the intermediate (weak) signal regime, with
additional improvements given by the growing number of observed pulsars.

Depending on the specific modified gravity theory, binary pulsars [477, 17] can
provide more stringent constraints on negative PN terms than PTAs. However, a
direct comparison is challenging, since the coupling B can be source-dependent, for
example being zero for pulsars and nonzero for SMBHs, as it happens in several
theories for black-hole dipolar emission [407, 477]. As expected, PTA constraints are
more stringent for more negative PN terms. For example, even if a −1PN modification
were excluded at each frequency bin, the bounds derived from Eq. (10.6) at the nHz
scale for q = −1 would be at most the level of B ≲ 6 × 10−4. This is more stringent
than those that can be obtained with LIGO at design sensitivity, but much less
stringent than the projected bounds on B with LISA sources [407, 472, 473].

In addition to placing competitive constraints on modified gravity, a more
ambitious possibility is to invoke slow-motion, beyond-GR effects to alleviate or solve
the tension in the latest PTA data if the detected SGWB is interpreted as arising from
SMBH binaries. While we showed that this is in principle possible without violating
current constraints, one should be careful with degeneracies with astrophysical
effects [321, 322, 323, 324, 325, 326, 327, 329], including large eccentricity [350,
351], and environmental modifications such as stellar scattering, interaction with
circumbinary gas, and dynamical friction [322, 459, 328]. In this context, since our
framework can accommodate both beyond-GR and environmental effects, it can
be used to disentangle these modifications (which often enter at different negative
PN order) through dedicated Bayesian inferences with more constraining future
datasets. Finally, future work can be devoted to confront our general model with
the hypothesis that the signal is due to, or contaminated by, sources of cosmological
origin [327].
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Chapter 11

General conclusions and future
prospects

In this thesis, working on two parallel tracks, I discussed some systems where
astrophysical black holes allow for a rich phenomenology beyond the SM and GR. In
the first case, I focused on the role of environmental effects and interactions in BH
superradiance. In particular, I showed how both features can dramatically change
the evolution of superradiant instabilities in different scenarios.
Plasma-driven superradiant instabilities were poorly understood, as a rigorous
application of plasma physics was never performed to describe the system. In chapter
3, I adopted a detailed plasma modeling that superseds the previous toy models
and showed how an efficient instability can develop at a linear level. Nevertheless, I
subsequently considered the fully non-linear system and shown how non-linearities
alter the capability of the plasma to confine EM radiation, and completely quench
the instability. The framework adopted to study linear photon-plasma effects in
curved spacetime can be adapted to a number of different studies. For example, it is
well known that plasma may hinder our ability to test BH charges using GWs, by
suppressing the EM emission in the inspiral and in the ringdown [96]. Nevertheless,
also in this case, current studies rely on toy models and lack a robust plasma
modelling using consistent plasma physics. Hence, a future extension will be to
employ the formalism outlined in section 3.2 to these systems. Most crucially, while
in the SM case non-linear effects hamper the instability, in chapter 4 I discussed how
a "dark" plasma can completely quench dark photon superradiant instabilities already
at a linear level. Indeed in this case, an additional dark plasma effective mass, easily
achievable in compelling dark matter models, alters the lifetime of the dark photon
modes, rendering the instability ineffective. Also in this case a natural extension
would be to generalize the analysis to the spinning case, possibly using the numerical
tools for non-separable plasma profiles developed in section 6. Another outcome
of the thesis is to highlight, in chapter 5, the importance of plasma in parametric
instabilities triggered in the contest of axion superradiance. It was shown that plasma
can inhibit the decay of an axion into two photos as it dresses the photons with
an effective mass. Therefore, the presence of parametric EM instabilities induced
by axion clouds can be strongly suppressed. The development of the instability
depends on the ratio between the axionic coupling and the plasma density. Also in
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this scenario, an urgent and crucial extension would be to consider more realistic
plasma geometries and to include in the analysis the already mentioned non-linear
photon-plasma interactions. Most crucially, the presence of plasmas around an
astrophysical BH also plays a pivotal role in scalar tensor theories. In chapter 6 I
discussed how an accretion disk around a BH provides, in these theories, an effective
mass for the scalar degree of freedom of the gravitational sector, and can therefore
induce a superradiant instability. While the system resembles the plasma-driven
instabilities discussed in chapter 3, most of the obstacles hampering the latter can be
circumvented in this case. The linear analysis suggests that this effect can be used
to impose competitive constrains on these theories. Nevertheless, a fully non-linear
analysis is imperative to understand whether confinement can become ineffective in
this regime, as in the plasma-photon case discussed in section 3.4. Finally, in chapter
7 I introduced a bilinear form for scalar perturbations under which quasi-bound
states are orthogonal at a fully relativistic level. This bilinear form allows to develop
a relativistic perturbation theory that supersedes the widely used non-relativistic
approximation [92]. This framework opens a number of possible studies. For example,
natural extensions would be to generalize it to spin-1 field , but also to perform a
detailed study of relativistic transitions between energy levels of a BH-boson cloud
in the presence of a binary companion [266].

In the second part of the thesis I discussed how EMRIs and supermassive BH
binaries allow for novel tests of GR. In the first case, in chapter 9, I studied an
EMRI system where the secondary object is endowed with a fundamental scalar
dipole. I showed how during the inspiral the contribution to the fluxes from
the scalar dipole is negligible, at variance with the well-known monopolar case
[335, 312, 311, 313, 314, 336, 337]. In chapter 10 I focused instead on tests of gravity
using PTAs. I showed how the recently detected SGWB allows for novel tests of
gravity. In particular, I showed how it already allows to place stringent constrains on
some beyond GR theories. Crucially, a notable feature of the introduced framework
is the capacity to accommodate both beyond GR effects and environmental ones.
Given that the latter are expected to play a prominent role in these systems
[321, 322, 323, 324, 325, 326, 327, 328, 329], a natural extension of the study would
be to disentangle them from beyond GR effects using future data through robust
Bayesian inference.
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Appendix A

Polar sector in the cold plasma,
non-spinning limit

Here we derive the full potential for the photon-plasma polar sector in the different
setups considered in section 3.2. We first consider a homogeneous plasma (ωpl =
const) and then a generic radially-dependent density profile, i.e. ωpl = ωpl(r).
Finally, we generalize the equation for the polar sector in the collisional case.

A.1 Homogeneous plasma case

From Eq. (3.21), it is possible to find an expression for u(2) in terms of u′
(3). This

expression can be inserted in Eq. (3.22) to get a single second order equation for the
decoupled variable u(3):

u′′
(3) − u′

(3)
2f2l(l + 1)ω2 + (f − 1)f2r2ω4

pl − fω2
pl
(
f(f + 1)l(l + 1) + 2(f − 1)r2ω2)+ (f − 1)r2ω4

fr
(
fω2

pl − ω2
)

(f
(
l2 + l + r2ω2

pl

)
− r2ω2)

+ u(3)

ω2 −
f
(
l2 + l + r2ω2

pl

)
r2

 f−2 = 0. (A.1.1)

Eq. (A.1.1) is still not in the form of a Schroedinger-like equation. We therefore
perform the following substitution: u(3) = G(r)ψ(r), where G is an unknown function
such that with this transformation equation Eq. (A.1.1) assumes the form d2ψ/dr2

∗ −
V (r)ψ = 0. We find G(r) = r−1

√
fr(l2 + l + r2ω2

pl) − r3ω2
√
r(fω2

pl − ω2)
−1

and we
finally arrive at a Schrodinger-like equation in terms of the tortoise coordinate where
the potential has the following cumbersome form

V (r) = d(r)
4 (ω2 − fωpl2) (fl(l + 1)r + fr3ωpl2 − r3ω2) , (A.1.2)
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with

d(r) = −ω4
[
f4
(
3l2(l + 1)2 + 72l(l + 1)r2ω2

pl

)
+2f3

(
−18l(l+1)

(
l2 + l + 1

)
r2ω2

pl

− l2(l + 1)2(2l(l + 1) + 1) − 36l(l + 1)r4ω4
pl − 20r6ω6

pl

)
− f2l2(l + 1)2

]
−ω8

(
−12fl(l + 1)r4 − 20fr6ω2

pl

)
−4r6ω10−ω2

[
2f5ω2

pl

(
−3l2(l + 1)2 − 29l(l + 1)r2ω2

pl

)
+f4

(
4l2(l + 1)2(2l(l + 1) + 1)ω2

pl + 48l(l + 1)r4ω6
pl + 4l(l + 1)(9l(l + 1) + 5)r2ω4

pl + 20r6ω8
pl

)
+ 2f3

(
l2(l + 1)2ω2

pl + l(l + 1)r2ω4
pl

) ]
− 4f6l(l + 1)ω4

pl

(
l2 + l + 4r2ω2

pl

)
−2f5ω2

pl

(
−2l2(l + 1)2

(
l2 + l + 1

)
ω2

pl − 6l(l + 1)r4ω6
pl − 2l(l + 1)(3l(l + 1) + 1)r2ω4

pl − 2r6ω8
pl

)
−ω6

(
f2
(
48l(l + 1)r4ω2

pl + 4l(l + 1)(3l(l + 1) + 5)r2 + 40r6ω4
pl

)
− 30f3l(l + 1)r2 − 2fl(l + 1)r2

)
.

(A.1.3)

Note that V → −ω2 as r → 2M and V → ω2
pl − ω2 as r → ∞.

A.2 Non-homogeneous plasma case
The case of a generic radially-dependent plasma density proceeds in the same fashion
as the homogeneous case. We find the same expression for the function G with ωpl
replaced by ωpl(r). As in the previous case we then arrive to a Schrodinger-like
equation with an effective potential

V (r) = d(r)
4 (ω2 − fωpl(r)2) (fl(l + 1)r + fr3ωpl(r)2 − r3ω2) , (A.2.4)
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where

d(r) = ω4
[
36f3l(l+1)r2

(
−2f + l2 + l + 1

)
ωpl(r)2+f2l2(l+1)2(f(−3f+4l(l+1)+2)+1)

− 4f3l(l + 1)rωpl(r)
(
(9f − 5)r2ω′

pl(r) − fr3ω′′
pl(r)

)
+ 4f4l(l + 1)r4ω′

pl(r)2 + 72f3l(l + 1)r4ωpl(r)4 + 40f3r6ωpl(r)6
]
+

ω2
[
2fωpl(r)2

(
f2l2(l + 1)2(f(3f − 4l(l + 1) − 2) − 1) + 4f4l(l + 1)r4ω′

pl(r)2
)

− 4f5l2(l + 1)2r2ω′
pl(r)2 + 4f4l(l + 1)rωpl(r)3
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2(7f − 3)r2ω′

pl(r) − 2fr3ω′′
pl(r)

)
− 48f4l(l + 1)r4ωpl(r)6 − 2f3l(l + 1)r2(f(−29f + 18l(l + 1) + 10) + 1)ωpl(r)4

− 4f3l(l + 1)rωpl(r)
(
f2l(l + 1)rω′′

pl(r) + 2fl(l + 1)ω′
pl(r)

)
− 20f4r6ωpl(r)8

]
− 2f2ωpl(r)4

(
6f4l(l + 1)r4ω′

pl(r)2 − 2f3l2(l + 1)2
(
−f + l2 + l + 1

))
+ω6

(
−48f2l(l + 1)r4ωpl(r)2 − 40f2r6ωpl(r)4 + 2fl(l + 1)r2(f(15f − 6l(l + 1) − 10) + 1)

)
+ 4f5l(l + 1)r3ωpl(r)5

(
(1 − 5f)ω′

pl(r) + frω′′
pl(r)

)
+ 12f5l(l + 1)r4ωpl(r)8

+ 4f4l(l + 1)rωpl(r)3
(
f2l(l + 1)rω′′

pl(r) + (f + 1)fl(l + 1)ω′
pl(r)

)
− 4r6ω10

−4f5l(l+1)r2(4f−3l(l+1)−1)ωpl(r)6+4f5r6ωpl(r)10+ω8
(
12fl(l + 1)r4 + 20fr6ωpl(r)2

)
(A.2.5)

In this case the asymptotic behavior reads V → −ω2 as r → 2M and V →
ω2

pl(r → ∞) −ω2 as r → ∞. Obviously, the effective potential in Eq. (A.2.4) reduces
to Eq. (A.1.2) when ωpl = const.

A.3 Collisional plasma case
The polar sector in the presence of collisions on a nonspinning background depends
on the function F (r) ≡ G(r)/H(r), where

G(r) =fτω2
pl[(3f + 1)f3/2l(l + 1) − 2i(f + 1)fl(l + 1)τω + 2i(f − 1)fr2τωω2

pl

− 4i(f − 1)r2τω3 + 4(f − 1)
√
fr2ω2] + 2iω(τω + i

√
f)2

[
2f2l(l + 1) + (f − 1)r2ω2

]
(A.3.6)

H(r) = 2r
[
fτω2

pl − ω(τω + i
√
f)
] [

(
√
f − iτω)

(
fl(l + 1) − r2ω2

)
− ifr2τωω2

pl

]
.

(A.3.7)
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Appendix B

Field decomposition in Kerr

B.1 List of coefficients
In the following, we list the coefficients appearing in the decomposition of the plasma
equations in a Kerr background, Eqs. (3.21), (3.22) and (3.23),

Ãl =0, (B.1.1)

ηl = − 2al(l + 1)Mω2

(r(r − 2M))3/2u(4), (B.1.2)

Al = i

r11/2(r − 2M)5/2
[

− 2amMr(M − r)(2M − r)2u′′
(3)

+ (2M − r)(2amM
(
2M(M − r) − r4ω2

)
+ l(l + 1)r4ω(2M − r))u′

(3)

+ 2amM(2M − r)r(2M2 − 3Mr + r2)u′
(2) + 2amMr3ω2(r −M)u(3)

+ (r − 2M)(4amM
(
M2 −Mr − r4ω2

)
− r4ω(r − 2M)

(
l2 + l + r2ω2

pl

)
+

r7ω3)u(2)
]
, (B.1.3)

Bl = − 2aM
r11/2(r − 2M)5/2

[
r(2M − r)

(
2M2 − 3Mr + r2

)
u′′

(4) + (2M − r)
(
−2M2 + 2Mr + r4ω2

)
u′

(4)

+ (M − r)
(
l2(2M − r) + l(2M − r) + r3ω2

)
u(4)

]
, (B.1.4)

αl = iω

r3/2(r − 2M)3/2
[

− r(r − 2M)2u′′
(3) + 2M(2M − r)u′

(3) +
(
r(r − 2M)2u′

(2) + 2M(r − 2M)
)
u(2)

+ ω
(
2amM − r3ω

)
+ r2(r − 2M)ω2

plu(3)
]
, (B.1.5)

ζl = − 2aM
r9/2(r − 2M)3/2

[
− l(l + 1)(M − r)(2M − r)u′

(3) − r4ω2(2M − r)u′
(2) − l(l + 1)r3ω2u(3)

+
(
l2
(
2M2 − 3Mr + r2

)
+ l

(
2M2 − 3Mr + r2

)
+ r3ω2(3M − 2r)

)
u(2)

]
,

(B.1.6)
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δl = − 4aM
r9/2(r − 2M)3/2

[
r(r − 2M)2u′′

(4) + 2M(r − 2M)u′
(4) (B.1.7)

+
(
l2(2M − r) + l(2M − r) + r3ω2

)
u(4)

]
,

γl = 4iamM
r9/2(r − 2M)3/2

[
r(r − 2M)2u′′

(3) + 2M(r − 2M)u′
(3) − r(r − 2M)2u′

(2)

(B.1.8)
+ r3ω2u(3) + 2M(2M − r)u(2)

]
,

βl = − iω

(r(r − 2M))3/2
[

− r(r − 2M)2u′′
(4) + 2M(2M − r)u′

(4)

+
(
ω
(
2amM − r3ω

)
+ l2(r − 2M) + l(r − 2M) + r2(r − 2M)ω2

pl

)
u(4)

]
.

(B.1.9)

B.2 Polar sector in Kerr
In the following, we outline the procedure to derive the polar potential from
Eqs. (3.21), (3.22), by neglecting the terms multiplied by Ql,m and using the expres-
sions given in Appendix B. From Eq. (3.21), it is possible to obtain an expression
for u′

(2) as a function of u(2), u(3), u
′
(3) and u′′

(3). This expression can be then in-
serted in Eq. (3.22), obtaining an equation that only contains u(2), u(3), u′

(3) and
u′′

(3). Thus, by solving this equation, it is possible to write u(2) as a function of
the degree of freedom u(3) and its derivatives, u(2)(r) = F [u(3), u

′
(3), u

′′
(3)]. Inserting

this in Eq. (3.22) allows us to obtain an equation for the decoupled variable u(3),
which in general contains third-order radial derivatives. However, the latter are
O(ã2) and can therefore be neglected to linear order in the BH spin. The resulting
equation is a second-order equation for the decoupled variable u(3) in the form
a2(r)u′′

(3) + a1(r)u′
(3) + a0(r)u(3) = 0, where the coefficients ai are functions of r and

are at most linear in the BH spin. As in the nonspinning case, therefore, only one
degree of freedom is propagating in the polar sector.

The differential equation for u(3) can also be written in a Schrödinger-like form
through a variable redefinition and in terms of the tortoise coordinate. At first order
in the spin, V → −(ω2 − 2mωΩH) near the horizon and V → ω2

pl − ω2 at infinity.
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Appendix C

Derivation of the 3 + 1 form of
the plasma-photon equations

Here we perform the explicit computation to obtain the field equations in the 3 + 1
form. For the EM field we avoid to rewrite the procedure and we refer directly
to [152]. We will thus consider only Eqs. (3.4), (3.6).

C.1 Decomposition of Eq. (3.4)

Let us rewrite Eq. (3.4) for clarity:

uν∇νu
µ = e

m
Fµνuν . (C.1.1)

we have to project it separately on nµ and on Σt.

Projection on nµ

Contracting Eq. (3.4) with nµ we obtain

nµu
ν∇νu

µ = e

m
Fµνuνnµ. (C.1.2)

In the right hand side we have
e

m
Fµνuνnµ = − e

m
Eνuν = − e

m
Eν (3)uν , (C.1.3)

where in the last step we used the fact that Eµ lies on Σt. The left hand side requires
more manipulation. In particular we have that

nµu
ν∇νu

µ = uν∇ν(nµu
µ) − uµuν∇νnµ

= −uν∇νΓ − uµuν∇νnµ. (C.1.4)
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Let us now consider only the second term:

uµuν∇νnµ = uµuνδλ
ν ∇λnµ = uµuν(hλ

ν − nλnν)∇λnµ

= uνuµhλ
ν∇λnµ − uνnνu

µaµ

= uνuµhλ
νδ

σ
µ∇λnσ + Γuµaµ

= uνuµhλ
νh

σ
µ∇λnσ − uνuµhλ

νn
σnµ∇λnσ

+ Γuµaµ. (C.1.5)

Here we used the definition of the projection operator hµ
ν = δµ

ν +nµnν , the definition
of Γ, and defined the 4-acceleration of the Eulerian observer, aµ = nν∇νnµ = Dµ lnα.
Given that nµnµ = −1 the second term in the last line vanishes. Furthermore, by
recognizing that Kµν = −hλ

νh
σ

µ∇λnσ, we can write the first term as −Kµνu
µuν .

Substituting all these terms in Eq. (C.1.2) we obtain

−uµ∇µΓ +Kµνu
µuν − ΓuµDµ lnα = − e

m
Eµ (3)uµ. (C.1.6)

Using now the decomposed form of uµ (Eq. (3.71)) we can write

∂tΓ = βi∂iΓ − αU i∂iΓ + αΓKijU iU j − ΓU i∂iα+ e

m
αEiUi. (C.1.7)

Projection on Σt

Let us now project Eq. (3.4) with hµ
ν :

hµ
σu

ν∇νu
σ = e

m
hµ

σF
σνuν . (C.1.8)

In the right hand side we have
e

m
hµ

σF
σνuν = e

m
hµ

σ(nσEν − nνEσ + (3)ϵσνλBλ)uν

= − e

m
nνuνE

µ + e

m
(3)ϵµνλBλuν = e

m
ΓEµ + e

m
Γ (3)ϵµνλBλUν .

(C.1.9)

In the left hand side, instead, we start by substituting the decomposition (3.71):

hµ
σu

ν∇νu
σ = hµ

σu
ν∇ν(Γnσ + (3)uσ) = hµ

σu
νnσ∇νΓ + Γhµ

σu
ν∇νn

σ + hµ
σu

ν∇ν
(3)uσ

= Γhµ
σ(Γnν + (3)uν)∇νn

σ + hµ
σ(Γnν + (3)uν)∇ν

(3)uσ

= Γ2hµ
σa

σ − ΓKµ
ν

(3)uν + Γhµ
σn

ν∇ν
(3)uσ + hµ

σ
(3)uνDν

(3)uσ,
(C.1.10)

where in the third step we used the orthogonality between nµ and hµ
ν , while

on the fourth step we used the definition of the 4-acceleration aµ and the extrinsic
curvature Kµν . The covariant derivative Dµ has been introduced according to the
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definition Dν
(3)uµ = hσ

νh
µ

λ∇σ
(3)uλ. Let us now rewrite this equation in terms of

Uµ:

hµ
σu

ν∇νu
σ = Γ2aµ − Γ2Kµ

ν Uν + ΓUµnν∇νΓ
+ Γ2hµ

σn
ν∇νUσ + UνUµΓDνΓ

+ Γ2hµ
σUνDνUσ. (C.1.11)

Now we wish to rewrite the spatial components of this equation in the form
of an evolution equation, and for this purpose we use a procedure similar to the
one in Eqs. (A14) - (A20) of [152]. First we note that for any 3-vector (3)V µ,
Ln

(3)V ν = nµ∇µ
(3)V ν − (3)V µ∇µn

ν , so that

hν
σn

µ∇µ
(3)V σ = hν

σLn
(3)V σ + hν

σ
(3)V µ∇µn

σ

= hν
σLn

(3)V σ − (3)V µKν
µ . (C.1.12)

Now, the Lie derivative can also be written in terms of partial derivatives, and
setting ν = i we obtain

hi
σn

µ∇µ
(3)V σ = hi

σLn
(3)V σ − (3)V jKi

j

= 1
α
∂t

(3)V i − βj

α
∂j

(3)V i +
(3)V j

α
∂jβ

i

− (3)V jKi
j , (C.1.13)

where we made use of the explicit expressions of hµ
ν and nµ.

If we now substitute Eq. (C.1.13) in the i-th component of Eq. (C.1.11), we get

hi
σu

ν∇νu
σ = Γ2ai + ΓU inν∇νΓ + U iU jΓDjΓ

+ Γ2

α

(
∂tU i − βj∂jU i + U j∂jβ

i
)

+ Γ2U jDjU i − 2Γ2Ki
j U j . (C.1.14)

Next, nν∇νΓ = 1
α [∂tΓ − βi∂iΓ], which is given by Eq. (C.1.7). Substituting in

Eq. (C.1.14) we obtain

hi
σu

ν∇νu
σ = Γ2ai + Γ2U iKjlU jU l − Γ2U iU j ∂jα

α

+ Γ2

α

(
∂tU i − βj∂jU i + U j∂jβ

i
)

+ e

m
ΓU iEjUj + Γ2U jDjU i − 2Γ2Ki

j U j . (C.1.15)

We are now ready to replace Eq. (C.1.15) and the spatial components of
Eq. (C.1.9) in the original equation (C.1.8) and isolate the evolution operator.
The result is:

∂tU i = βj∂jU i − U j∂jβ
i − αai − αU iKjlU jU l

+ α

Γ
e

m

(
−U iEjUj + Ei + (3)ϵijlBlUj

)
+ 2αKi

j U j + U iU j∂jα− αU jDjU i . (C.1.16)
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C.2 Continuity equation in 3 + 1 variables
Let us now use the variables that we have introduced to rewrite the continuity
equation Eq. (3.6). Using the decomposition uµ = Γ(nµ + Uµ) and the definition
of the electron density seen by the Eulerian observer, nEL = Γne, we can rewrite
Eq. (3.6) as

0 = ∇µ[neΓ(nµ + Uµ)] = ∇µ[nEL(nµ + Uµ)]
= nµ∇µnEL + Uµ∇µnEL + nEL∇µn

µ + nEL∇µUµ . (C.2.17)

Expressing nµ∇µnEL in terms of Lie derivatives, Eq. (C.2.17) can be written as an
evolution equation for nEL:

∂tnEL = βi∂inEL + αKnEL − αU i∂inEL − αnEL∇µUµ. (C.2.18)
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Appendix D

Convergence and homogeneity of
non-linear photon-plasma
simulations

D.1 Convergence tests
We have evaluated the accuracy and the convergence properties of our code by
checking how the constraint violations scale with the resolution in two test setups
taken from the simulations presented in the main text.

Specifically, we considered the following quantities

CVGauss = ∂iE
i − enEL + ρ(ions), (D.1.1)

CVPlasma =
√

Γ2(1 − UiU i) − 1, (D.1.2)

which, whenever nonzero, represent the violations of the Gauss law (3.77) and of
the normalization condition in Eq. (3.84), respectively.

In order to asses the reliability of our code we show here the convergence in the
two most challenging nonlinear regimes: WB and blowout (although not shown,
the convergence of the linear regime is excellent). Starting from the former, we
repeated the simulation with AE = 1 whose characteristic are described in Sec. 3.4.3,
using a lower resolution ∆x = ∆y = ∆z = 0.4, and increasing the grid size to
[−4, 4] × [−4, 4] × [−1450, 1150] in order to maintain 21 grid points along the x and
y directions. We also doubled the time step to ∆t = 0.2, in order to keep the CFL
factor constant.

Figure D.1 shows the constraint violations CVGauss (left panel) and CVPlasma
(right panel) along the z axis at t = 830, slightly before WB happens (cf. lower panel
of Fig. 3.15). In general, while for both the constraint violations there is a region
where they are dominated by noise, in the central region they show an excellent
fourth order scaling, and convergence is lost only for 65 ≲ z ≲ 75, where the WB
phenomenon is taking place.

We now move to consider the convergence in the blowout regime. We repeated
the simulation with AE = 1000 using grid steps ∆x = ∆y = ∆z = 0.4 while
maintaining the CFL factor constant. As in the previous case we extended the
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Figure D.1. Scaling of the violations of the Gauss Law (left panel) and the condition
uµuµ = −1 along the z axis, for the simulation in the nonlinear regime with AE = 1.
CVGauss and CVPlasma are extracted at t = 830, when the WB phenomenon starts taking
place. Overall the code converges extremely well, except in the region around the spike
of nEL, where the constraint violation displays a peak. The insets show a magnification
of the constraint violations around this region.

grid to [−4, 4] × [−4, 4] × [−750, 850] in order to have the same number of grid
points along the transverse directions x and y. We show the scaling of CVGauss and
CVPlasma on the z axis at t = 190 in the left and right panel of Fig. D.2, respectively.
We can see that the code converges extremely well, except in the region just behind
the peak of the plasma density (cf. lowest panel of Fig. 3.13). However, we note
that the extension of the region where convergence is lost decreases as the resolution
increases, and that fourth-order scaling is restored in the plasma-depleted region.
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Figure D.2. Convergence of CVGauss(left panel) and CVPlasma(right panel) along the z axis
for the simulation in the nonlinear regime with AE = 1000. The constraint violation
is computed at t = 190, when the system is in the blowout regime. As we can see it
satisfies fourth-order scaling except in the region close to the “transported” plasma and
behind it, where the constraint violations have a peak. This can be better appreciated
in the inset, that contains a magnification of the constraint violation around this region.

Given the excellent convergence properties in the nonlinear regime, we conclude
that the code is reliable and produces accurate results at the resolutions used in this
work.
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Figure D.3. Profiles of E⃗ and nEL along the transverse directions x (left) and y (right) at
z = 240 for the simulation with initial amplitude AE = 1000. These data are extracted
at t = 180, where the system is already in the blowout regime, and in the spatial
region where the plasma density peaks. All the profiles are constant in x and y, with
values consistent between the two plots. This confirms that the homogeneity property is
conserved during the 3 + 1 simulations.

D.2 Homogeneity of the fields along the transverse di-
rection

Throughout all this work we used numerical grids whose extension along the trans-
verse directions x and y is significantly smaller than in the z direction. This has
the advantage of reducing considerably the computational cost, and can be done by
exploiting the planar geometry of the system under consideration. In this appendix,
we wish to show that homogeneity of the variables along the transverse directions
is preserved also at late times during the evolution, so that this grid structure is
compatible with the physical properties of the system for the entire duration of the
simulations.

For this purpose we consider the simulation in the nonlinear regime with AE =
1000, and we extract the profiles of Ex, Ey, Ez, and nEL along the x and y axes at
z = 240. This operation is performed at t = 180 when the system is already in a
blowout state, and the value of the z coordinate is chosen to be where plasma is
concentrated at this time.

We show the results in Fig. D.3, where the left and right panels represent the
profiles along the x and y axes, respectively. We see that all the profiles are constant
along the axes, and that the values are consistent between the two plots, confirming
that the system maintains homogeneity along the transverse direction.
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Appendix E

The master differential equation
of spin-1 fields in plasma

E.1 The master differential equation

In the following, we will rearrange the system of Eqs. (4.6)-(4.8) into a single master
equation for the DP field. To do so, let us define the following projection operator

hαβ = gαβ + uαuβ , (E.1.1)

which projects vectors onto hypersurfaces whose normal vector is the fermionic four
velocity. Then, we can decompose the derivative of the four-velocity as [130]

∇µu
ν = θν

µ + ων
µ − uµu

ρ∇ρu
ν , (E.1.2)

where the tensors θαβ and ωαβ are the deformation and vorticity tensors, defined as
the symmetric and antisymmetric part of the tensor vµν = hµαhνβuα;β:

θµν = 1
2(vµν + vνµ) , (E.1.3)

ωµν = 1
2(vµν − vνµ) . (E.1.4)

Finally, we can decompose the background field strength in to an electric component
Eν ≡ F νµuµ and a magnetic one Bµν ≡ hµ

αhν
βFαβ, which leads to a definition of

the Larmor tensor for the DP: ωL
µν = − qχ

mχ
Bµν .

To reassemble the system of equations into a single one, we can express the
perturbed four-velocity in terms of the DP field by projecting Eq. (4.6),

ũρ = hρ
ν

qχn
(∇µF̃

νµ + µ2Ṽ ν) , (E.1.5)

and insert it into Eq. (4.7) to obtain

hµ
α(∇σF̃

ασ + µ2Ṽ α)∇µu
ν + uµ∇µh

ν
α(∇σF̃

ασ + µ2Ṽ α) − 1
n
uµ∂µn h

ν
α(∇σF̃

ασ + µ2Ṽ α) =

(E.1.6)

ωχ 2
pl F̃

νµuµ + qχ

mχ
F νµhµα(∇σF̃

ασ + µ2Ṽ α)
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where we defined a plasma frequency for the oscillations induced by the DP propa-
gation in the plasma, ωχ 2

pl = q2
χn/mχ.

We still want to rearrange this equation into a more convenient form, to ob-
tain Eq. (4.10). In the following, we provide a step-by-step calculation, focusing
individually on each term of Eq. (E.1.6). Let us start by handling the first term:
we decompose the first derivative of the four velocity in the standard way, via
Eq. (E.1.2),

(∇σF̃
ασ + µ2Ṽ α)(gµ

α + uµuα)∇µu
ν = (E.1.7)

(∇σF̃
ασ + µ2Ṽ α)(gµ

α + uµuα)(θν
µ + ων

µ − uµu
ρ∇ρu

ν) .

Next, we use the following identities: uµθ ν
µ = uµω ν

µ = 0 and (gµ
α+uµuα)(−uµu

ρ∇ρu
ν) =

0 (where the latter follows from uµuµ = −1) so that the first term simply becomes

(θν
α + ων

α)(∇σF̃
ασ + µ2Ṽ α) . (E.1.8)

Now let us manipulate the second term of (E.1.6). We have

uµ∇µh
ν

α(∇σF̃
ασ + µ2Ṽ α) = uµhν

α∇µ(∇σF̃
ασ + µ2Ṽ α)

+ (∇σF̃
ασ + µ2Ṽ α)uµ(uα∇µu

ν + uν∇µuα) . (E.1.9)

As for the third term, we shall use the continuity equation (4.5) to get

− 1
n
uµ∂µn h

ν
α(∇σF̃

ασ + µ2Ṽ α) = 1
n
n∇µu

µ hν
α(∇σF̃

ασ + µ2Ṽ α) (E.1.10)

= θhν
α(∇σF̃

ασ + µ2Ṽ α) ,

where θ = θµ
µ is the trace of the deformation tensor. As for the fourth and fifth

terms on the right side of Eq. (E.1.6), we just leave them in their original form.
Let us now apply the operator hξ

ν on every term. From (E.1.8) it is easy to see
that the first term becomes simply (θξ

α +ωξ
α)(∇σF̃

ασ +µ2Ãα), as the deformation
and vorticity are orthogonal to the four-velocity. As for the second term, we can use
hξ

νu
ν = 0 and hξ

νh
ν

α = hξ
α. We thus have

uµhξ
α∇µ(∇σF̃

ασ + µ2Ṽ α) + (∇σF̃
ασ + µ2Ṽ α)uµuαh

ξ
ν∇µu

ν = (E.1.11)
uµhξ

α∇µ(∇σF̃
ασ + µ2Ṽ α) + (∇σF̃

ασ + µ2Ṽ α)uαu
µ∇µu

ξ ,

where we used uν∇µuν = 0. By using the momentum equation on the second term
uµ∇µu

ξ we obtain

hξ
αu

µ∇µ(∇σF̃
ασ + µ2Ṽ α) + qχ

mχ
uαF

ξβuβ(∇σF̃
ασ + µ2Ṽ α) . (E.1.12)

As for the third term, from (E.1.10) it is simply

θhξ
α(∇σF̃

ασ + µ2Ṽ α) , (E.1.13)

where we used hξ
νh

ν
α = hξ

α. The fourth term simply becomes

hξ
νω

χ 2
pl F̃

νµuµ = ωχ 2
pl F̃

ξµuµ + ωχ 2
pl u

ξuνF̃
νµuµ = ωχ 2

pl F̃
ξµuµ , (E.1.14)
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where we used the anti-symmetric nature of the field strength. As for the fifth and
last term of Eq. E.1.6, upon projection it gives

qχ

mχ
hξ

νF
νµhµα(∇σF̃

ασ + µ2Ṽ α) . (E.1.15)

Since by the definition Bab = h c
a h d

b Fcd and ωL ab = − e
mBab, we can rewrite this

term as
−ω ξ

L α(∇σF̃
ασ + µ2Ṽ α) . (E.1.16)

Assembling all terms together leads to the final Eq. (4.10), describing the propaga-
tion of a massive spin-1 particle in a cold, collisionless plasmic medium in curved
spacetime.



179

Appendix F

DP field equations in the
multipolar expantion

F.1 Static case
We assume an unmagnetised background plasma, ωL

µν = 0. The four velocity of a
static plasma is uα = (f−1/2, 0⃗), satisfying the normalisation condition uµu

µ = −1.
From Eq. (4.4), the electric field has then only one nonvanishing radial component
Eα = (0,mχ/qχ Γr

00(u0)2, 0, 0), where Γµ
αβ are the Christoffel’s symbols. In this case it

can be seen that the vorticity and deformation tensors are both zero, ωαβ = θαβ = 0.
By performing the multipolar expantion and working in the frequency domain we
obtain the following set of equations:

−ω(f(l(l + 1) + r2µ2) − r2ω2 + fr2ωχ 2
pl )u(2)

+ifr(ω2 − fωχ 2
pl )u(1)

+fr(−ir(ω2 − fωχ 2
pl )u′

(1) + fωu′
(3)) = 0 , (F.1.1)

−l(l + 1)r(ω2 − fωχ 2
pl )u(1) − if l(l + 1)ωu(2)

+ir2ω(fµ2 − ω2 + fωχ 2
pl )u(3)

+ifω(l(l + 1)ru′
(2) − 2Mu′

(3) − fr2u′′
(3))) = 0 , (F.1.2)

(f(l + l2 + r2µ2) − r2ω2 + fr2ωχ 2
pl )u(4)

−f(2Mu′
(4) + fr2u′′

(4)) = 0 . (F.1.3)

where u′
(i) = ∂ru(i), we have suppressed the l superscript, and the radial depen-

dence of ωχ
pl = ωχ

pl(r). Now we have three equations for the four wavefunctions
u(1), u(2), u(3), u(4). We can close the system with the Lorenz condition

−ir2ωu(1) − rf(u(2) − u(3) + ru′
(2)) = 0 . (F.1.4)

By solving the Lorenz equation for u1 and plugging it in to the polar field equations
we obtain Eqs. (4.13), (4.14).
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F.2 Free-fall case
In the free-fall configuration, plasma particles follow geodesics, i.e. the background
DP field is set to Fµν = 0, Eα = ωαβ

L = 0.
A free-fall plasma does not have vorticity, ωαβ = 0, but has a nonvanishing

deformation. The nonzero components are

θ 0
0 =

√
2(M/r)3/2

2M − r
, θ r

r =
√
M/r√

2(r − 2M)
, θ θ

θ = −
√

2M
r3/2 ,

θ ϕ
ϕ = −

√
2M
r3/2 , θ r

0 = M

r2 , θ 0
r = − M

(r − 2M)2 . (F.2.5)

The trace of this tensor is also different from zero and therefore there are extra
terms in Eq. (4.10) with respect to the static case. Working again in the frequency
domain, we obtain the following set of equations:

A1u(4) +A2u
′
(4) +A3u

′′
(4) +A4u

′′′
(4) = 0 (F.2.6)

B1u(2) +B2u
′
(2) +B3u

′′
(2) +B4u(1) +B5u

′
(1) +B6u

′′
(1) +B7u

′′′
(1) +B8u(3) +B9u

′
(3) +B10u

′′
(3) = 0

(F.2.7)
C1u(2) + C2u

′
(2) + C3u

′′
(2) + C4u(1) + C5u

′
(1) + C6u(3) + C7u

′
(3) + C8u

′′
(3) = 0

(F.2.8)

These consist of a single, third-order axial equation for the wavefunction u(4)(r), and
two equations for the polar wavefunctions u(1)(r), u(2)(r) and u(3)(r). The system
can then be closed using the Lorenz condition given by Eq. (F.1.4). The coefficient
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of the above equations are listed in the following:
A1 = − 4Mr5/2(λ+ r2µ2)ω + 2r7/2ω(λ+ r2(µ2 − ω2)

+ 2i
√

2M3/2r(−2λ+ r2(6µ2 − 5ω2)) + 4i
√

2M5/2(λ− 3r2µ2)
+ i

√
2Mr2(λ+ 3r2(−µ2 + ω2)) + 2r11/2ωfωχ 2

pl ) , (F.2.9)

A2 = − 2f
√
Mr(−2

√
2iM2 + 2

√
Mr5/2ω +

√
2r2i(λ+ r2(µ2 − ω2) + r2ωD 2

pl )
−

√
2iMr(−1 + 2λ+ 2r2µ2 + 2r2ωχ 2

pl )) , (F.2.10)

A3 =f2r3(2
√

2iM3/2 + 3i
√

2Mr − 2r5/2ω) , (F.2.11)
A4 =2

√
2if3√

Mr5 , (F.2.12)
B1 =6

√
2(Mr)3/2λ− 4

√
2M5/2√

rλ+ 4
√

2(Mr)5/2µ2 − 8iM3rω + 18iM2r2ω

− iMr3(3 + 2λ+ 2r2µ2)ω − 2
√

2M3/2r7/2(µ2 − 4ω2)
−

√
2Mr5/2(2λ+ r2ω2) + ir4ω(λ+ r2(µ2 − ω2)) + if2r6ωωχ 2

pl , (F.2.13)

B2 = − f
√
Mr5/2(2

√
2M(λ+ r2µ2) + 10iM3/2√

rω − i
√
Mr3/2ω

−
√

2r(λ+ r2(µ2 − 2ω2))) , (F.2.14)
B3 =2if2Mr5ω , (F.2.15)
B4 = − 16M2rλ+ 4M3(3λ− r2µ2) − i

√
2Mr7/2(−1 + λ+ r2µ2)ω

+ 2
√

2iM3/2r5/2(λ+ r2µ2)ω + r5ω2 +Mr2(5λ− 2
√

2Mriω

+ r2(µ2 − 2ω2)) − f3r5ωχ 2
pl , (F.2.16)

B5 =fr2(4M2(λ+ r2µ2) − 2Mr(λ+ 2r2µ2) −
√

2Mir5/2ω

− r4ω2 + f2r4ωχ 2
pl ) , (F.2.17)

B6 =f2√
Mr3(2M3/2 −

√
Mr + 2

√
2ir5/2ω) , (F.2.18)

B7 =2f3Mr5 , (F.2.19)
B8 = − if

√
Mr2ω(2M3/2 − 3

√
Mr + i

√
2r5/2ω) , (F.2.20)

B9 =f2r5/2(−2
√

2M3/2 +
√

2Mr − 2iMr3/2ω − iωr5/2 , (F.2.21)
B10 =

√
2Mr3/2(8M3 + 6Mr2 − r3 − 12M3/2√

rMr , (F.2.22)
C1 =frλ(2

√
2M3/2 + 2iωr5/2 +

√
2Mr(−1 + 2r2ωχ 2

pl )) , (F.2.23)

C2 =r(−4
√

2λM3/2r +
√

2Mλr2 + 4
√

2M5/2λ+ 4iMr5/2λω − 2ir7/2λω) ,
(F.2.24)

C3 = − 2
√

2Mr2(λr(−4M + r) + 4M2λ) , (F.2.25)
C4 =r2λ(ω(i

√
2M(6M − r) + 2r5/2ω) − 2fr5/2ωχ 2

pl ) , (F.2.26)

C5 = − 2
√

2Mifr4λω , (F.2.27)
C6 =r2(−12

√
2M5/2µ2 + 2

√
2M3/2r(6µ2 − 5ω2) + 3

√
2Mr2(−µ2 + ω2)

+ 4iMr5/2ω(µ2 + ωχ 2
pl ) − 2ir7/2ω(µ2 + ωχ 2

pl − ω2)) , (F.2.28)

C7 =2f
√
Mr(2

√
2M2 + 2i

√
Mr5/2ω −

√
2r4(µ2 + ωχ 2

pl − ω2)

+
√

2Mr(−1 + 2r2(µ2 + ωχ 2
pl )) , (F.2.29)

C8 =f2r3(2
√

2M3/2 + 3
√

2Mr + 2ir5/2ω) , (F.2.30)
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where for simplicity we defined λ = l(l + 1).
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Appendix G

Benchmarks for evolution of
scalar fields

The purpose of this appendix is to study in some detail the time evolution of free
massive scalar fields in the vicinity of a Schwarzschild BH. Even though SR requires
a spinning BH and thus the use of the Kerr metric, timescales are prohibitively large.
Nevertheless, the main focus of our work is on physics related to the existence of
scalar clouds, more than to what caused them in the first place.

As such, we mimic SR growth without the need of a spinning BH (see Section G.2
below) and therefore we consider a Schwarzschild spacetime for simplicity. We still
need to guarantee that, on the required timescales, a bound state exists, so that it
can mimic well the true SR clouds. Fortunately, massive scalars around non-spinning
BHs do settle on quasi-bound states which, while not unstable, have extremely large
lifetimes. Thus, we want to show first of all that our numerical framework reproduces
well such states.

G.1 Bound states
The initial data whose time evolution we will study, are the quasi-bound states of
a massive scalar field, which are solutions localised in the vicinity of the BH and
prone to become unstable in the SR regime (if the BH is allowed to spin). There
exist various methods to find such quasi-bound solutions, either by direct numerical
integration or using continued fractions [269, 209, 69, 208]. In this work, we use
Leaver’s continued fraction approach [269]. It is crucial to have accurate solutions
describing pure quasi-bound states, as deviations from such a pure state may trigger
excitations of overtones, resulting in a beating pattern [84].

In Boyer-Lindquist (BL) coordinates (tBL, rBL, θBL, φBL), the scalar field bound
state is given by1

Ψℓm = e−iωtBLe−imφBLSℓm (θBL)Rℓm (rBL) , (G.1.1)

where Sℓm(θBL) are the spheroidal harmonics. In a Schwarzschild geometry, the angu-
lar dependence is fully captured by the familiar spherical harmonics Sℓm(θBL)eimφBL =

1We include spin here for generality, although we evolve the scalar field in a Schwarzschild
background
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Yℓm(θBL, φBL). The radial dependence is given by

Rℓm (rBL) = (rBL − rBL,+)−iσ (rBL − rBL,−)iσ+χ−1 ×

erBLq
∞∑

n=0
an

(
rBL − rBL,+

rBL − rBL,−

)n

,
(G.1.2)

where
σ = 2MrBL,+ (ω − ωc)

rBL,+ − rBL,−
, q = ±

√
µ2 − ω2 ,

χ = M
µ2 − 2ω2

q
.

(G.1.3)

Here, rBL,± = M ±
√
M2 − a2

J are the inner (−) and outer (+) horizon, ωc = mΩH =
maJ/(2MrBL,+) is the critical SR frequency, aJ is the spin of the BH and to obtain
quasi-bound states, one should consider the minus sign in the expression for q. Since
all the terms in these expressions are known in closed form, we only need to solve
for the frequency of the mode of interest, ω. This is found by solving the following
condition for ω:

β0 − α0γ1
β1−

α1γ2
β2−

· · · = 0 , (G.1.4)

where all the coefficients can be found in e.g. [69]. In (G.1.2), the amplitude of
the scalar field is defined arbitrarily (as long as one neglects the backreaction
of the field on the background geometry). Hence, we must choose a suitable
normalization. We will normalize the field by assigning a predetermined value
to the maximum of the radial wavefunction. In previous works [172, 171], the
hydrogenic approximation was used instead, where the wavefunction is defined as
Ψ = Ψ0rBLMµ2e−rBLMµ2/2 cos (φBL − ωRt) sin θBL, where ωR is the real part of the
eigenfrequency. In order to allow for a direct comparison with those works, we relate
our normalization, the maximum value of the real part of the field, (Rℓm)max, to
this parameter Ψ0. They are related by

(Rℓm)max = 4Ψ0
√

2π/3
e

, (G.1.5)

where the factor
√

2π/3 comes from the normalization of the spherical harmonics
ℓ = 1 modes, and should be adapted accordingly for higher multipoles. We will
introduce relevant quantities in terms of Ψ0.

For numerical purposes, BL coordinates are not ideal due to the coordinate
singularity at the horizon. Therefore, we employ Kerr-Schild coordinates, which are
horizon penetrating coordinates [84]. The coordinate transformation from BL to
Kerr-Schild (KS) coordinates is given by

dtKS = dtBL + 2MrBL

∆ drBL, drKS = drBL,

dθKS = dθBL, dφKS = dφBL + aJ

∆drBL ,
(G.1.6)

where ∆ ≡ r2 − 2Mr + a2
J . Using this coordinate transformation in (G.1.1), we can
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construct the bound state scalar field as

Ψℓm = e−iωtKS (rKS − rKS,+)P (rKS − rKS,−)Q
(
rKS − rKS,+

rKS − rKS,−

)R

Yℓm (θKS, φKS)Rℓm(rKS) ,

(G.1.7)
where P = 2iωMrKS,+

rKS,+−rKS,−
, Q = − 2iωMrKS,−

rKS,+−rKS,−
, R = imaJ

rKS,−−rKS,+
. Unless otherwise stated,

we use KS coordinates without the subscript. In our non-spinning BH case, Q =
R = 0. The remaining extra term instead exactly cancels the divergence of the field
at the BH horizon. We test our numerical setup by constructing the bound state
initial configurations for scalar fields with mass couplings µM = 0.1 and µM = 0.3
and evolving them in a Schwarzschild background.

In the left panel of Fig. G.1, we show the non-vanishing multipolar component of
the field for µM = 0.1 and µM = 0.3, where we only display a fraction of the time
evolution such that individual oscillations are visible. For µM = 0.1, the scalar field
is exceptionally stable on timescales longer than 5000M . For µM = 0.3, there is a
decrease in the amplitude of a few percent on those timescales, which does not have
severe consequences. In fact, this problem can be resolved by increasing the spatial
resolution.

As a last check, we show in the right panel of Fig. G.1 the Fourier transform for
both µM = 0.1 and µM = 0.3 and compare it with the real part of the eigenfrequency
of the fundamental mode. We find an excellent comparison, showing that we are not
triggering any overtones.

G.2 Artificial superradiance
Studying SR for scalars is numerically challenging, since timescales for SR growth
are very large. Fortunately, an effective SR-like instability can be introduced by
adding a simple C∂Ψ/∂t term to the KG equation as shown in (5.4). This “trick”
was first used by Zel’dovich [47, 48, 210] and it can mimic the correct description of
many SR systems. The addition of this Lorentz-invariance violating term causes an
instability on a timescale of the order 1/C, where we can tune C to be within our
numerical limits. For reference, let us report the timescales in our problem.
“Normal SR”:

tSR ∼ 48
(
aJ

M
(µM)−9

)
M when µM ≪ 1 , (G.2.8)

“Artificial SR”:
tASR ∼ 1

C
M , (G.2.9)

“EM instability”:

tEM ∼ 10k−1
a

(
M

Mc

)1/2
(µM)−3 = 5(µM)−1M , (G.2.10)

which is the EM instability timescale that was found in [171] and where we used
ka ≥ 2( M

Mc
)1/2(µM)−2M−1.

Accordingly, for a reasonable mass coupling of µM = 0.1, and while optimizing
SR growth with a maximally spinning BH, normal SR timescales are on the order
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Figure G.1. Left top Panel: The ℓ = m = 1 component of a scalar field around a
Schwarzschild BH. Figure shows fraction of the time evolution of the initial conditions
from (G.1.7). The field is extracted at rex = 100M and µM = 0.1. Inset shows δΨ11,
which is the difference between the numerical output and the theoretically predicted
fundamental mode ΨFund

11 ∼ cos (ωRt)e−ωIt, where ωR, ωI are the real and imaginary part
of the eigenfrequency, respectively. These were independently computed using Leaver’s
method. Left bottom Panel: Same for µM = 0.3 and extraction radius rex = 40M .
There is an apparent decay of the field on timescales shorter than those implied by the
quasi-bound state decay. This effect is due to finite resolution, and its magnitude is
small enough such that we can ignore it in our study. Right Panel:Fourier transform
of the dipole component of the scalar field for µM = 0.1 and µM = 0.3 when the field
is extracted at rex = 100M and rex = 40M , respectively. Fourier transform is taken
on the entire time evolution of Figure G.1. Dashed lines indicate the (real part of the)
frequency of the fundamental mode for µM = 0.1 and µM = 0.3. Clearly, we are not
triggering any overtones.
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of tSR ∼ 1010M . This should be compared to the EM instability, which is on
tEM ∼ 50M .

To test whether we implemented the artificial SR growth in the correct way,
we set C = 5 × 10−4M−1 and evolve the scalar field. From Fig. G.2, we can see
that the artificial SR is correctly implemented in the code, as it leads to the desired
exponential evolution of the field.

2000 4000 6000
t/M

10−2

10−1

100

Ψ
11

Numerical

eCt

Figure G.2. The time evolution of Ψ11 extracted at rex = 100M with C = 5 × 10−4M−1

and µM = 0.1. We show the growth of the scalar field from the initial conditions (G.1.7),
using Zel’Dovich trick described in the main text.
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Appendix H

Wave extraction

From the simulations, we extract the radiated scalar and vector waves at some radius
r = rex. For the scalar waves, we project the field Ψ and its conjugated momentum
Π onto spheres of constant coordinate radius using the spherical harmonics with
spin weight sw = 0:

Ψℓm(t) =
∫

dΩ Ψ(t, θ, φ) 0Y
∗

ℓm(θ, φ),

Πℓm(t) =
∫

dΩ Π(t, θ, φ) 0Y
∗

ℓm(θ, φ) .
(H.0.1)

To monitor the emitted EM (vector) waves, we use the Newman-Penrose formal-
ism [478]. In this formalism, the radiative degrees of freedom are given by complex
scalars. For EM, these are defined as contractions between the Maxwell tensor
and vectors of a null tetrad (kµ, ℓµ,mµ, m̄µ), where kµℓµ = −mµm̄µ = −1. The
null tetrad itself is constructed from the orthonormal timelike vector nµ and a
Cartesian orthonormal basis

{
ui, vi, wi

}
on the spatial hypersurface. Asymptotically,

the basis vectors
{
ui, vi, wi

}
behave as the unit radial, polar and azimuthal vec-

tors, respectively. For our purposes, the quantity of interest is the gauge-invariant
Newman-Penrose scalar Φ2, which captures the outgoing EM radiation at infinity
and is defined as

Φ2 = Fµνℓ
µm̄ν , (H.0.2)

where ℓµ = 1√
2(nµ − uµ) and m̄µ = 1√

2(vµ − iwµ). Decomposing the Maxwell tensor
gives

Fµν = nµEν − nνEµ +DµAν −DνAµ , (H.0.3)

where Eµ = Fµνn
ν and Aµ is the spatial part of the vector field Aµ. The real and

imaginary components of Φ2 are then given by

ΦR
2 = − 1

2

[
ER

i v
i + uivj

(
DiAR

j −DjAR
i

)
+ EI

iw
i + uiwj

(
DiAI

j −DjAI
i

)]
,

ΦI
2 = 1

2

[
ER

i w
i + uiwj

(
DiAR

j −DjAR
i

)
− EI

iv
i − uivj

(
DiAI

j −DjAI
i

)]
.

(H.0.4)
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Similar to the scalar case, we obtain the multipoles of Φ2 at a certain extraction
radius rex, by projecting Φ2 onto the sw = −1 spin-weighted spherical harmonics.

(ΦR
2 )ℓm(t) =

∫
dΩ
[
ΦR

2 (t, θ, φ) −1Y
R

ℓm(θ, φ) + ΦI
2(t, θ, φ) −1Y

I
ℓm(θ, φ)

]
,

(ΦI
2)ℓm(t) =

∫
dΩ
[
ΦI

2(t, θ, φ) −1Y
R

ℓm(θ, φ) − ΦR
2 (t, θ, φ) −1Y

I
ℓm(θ, φ)

]
.

(H.0.5)

Throughout this work, we will often show |(Φ2)ℓm| =
√

(Φ2)∗
ℓm(Φ2)ℓm.
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Appendix I

Formulation as a Cauchy
problem

In this appendix, we formalize our equations of motion (5.2) as an (initial value)
Cauchy problem and we discuss the initial data.

I.1 3+1 Decomposition

The equations of motion of our axion-photon-plasma system are given by (5.2).
In this work, we will ignore the dynamics of gravity and solve the Klein-Gordon,
Maxwell and plasma equations on a fixed spacetime background. In order to evolve
the system in time, we use the standard 3+1 decomposition of the spacetime (see
e.g. [479]). The metric then takes the following generic form:

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
, (I.1.1)

where α is the lapse function, βi is the shift vector and γij is the 3-metric on the
spatial hypersurface. Furthermore, we introduce the scalar momentum as

Π = −nµ∇µΨ , (I.1.2)

where nµ is the unit normal vector to the spatial hypersurface, which takes on the
form nµ = (1/α,−βi/α). The vector field Aµ can be decomposed as

Aµ = Aµ + nµAφ , (I.1.3)

where
Ai = γj

iAj and Aφ = −nµAµ . (I.1.4)

We also introduce the EM fields

Ei = γi
jF

jνnν and Bi = γi
j
∗F jνnν , (I.1.5)

which are defined with respect to an Eulerian observer. As for the plasma quantities,
we decompose the fluids’ four velocities as [480]

uµ
e = Γe(nµ + Uµ), uµ

ion = Γion(nµ + Vµ) . (I.1.6)
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where Uµ,Vµ are again defined with respect to an Eulerian observer. From the
normalization of the four velocities, the Lorentz factor is then:

Γe = −nµu
µ = 1√

1 − UµUµ
, Γion = 1√

1 − VµVµ
. (I.1.7)

Note that even though we include the ion quantities in (I.1.6) and (I.1.7) for generality,
we do not actually use them in this work as we ignore the oscillations of the ions
(assumption (ii)). Finally, we introduce the charge density as seen by an Eulerian
observer as

ρ = −nµj
µ . (I.1.8)

Since jµ is the sum of the currents of the two fluids, we can express (I.1.8) also as
ρ = ρe + ρion.

Using the above definitions, we obtain the following evolution equations for the
full axion-photon-plasma system (for the decomposition of the momentum equation,
we refer to Appendix C; for the EM part, see e.g. [152]):

∂tΨ = −αΠ + LβΨ ,

∂tΠ = α
(
−D2Ψ + µ2Ψ +KΠ − 2kaE

iBi

)
−DiαDiΨ + LβΠ ,

∂tAi = −α (Ei +DiAφ) −AφDiα+ LβAi ,

∂tE
i = αKEi − αDj

(
DjAi −DiAj

)
−
(
DiAj −DjAi

)
Djα+ α

(
DiZ − ji

)
+ 2kaα

(
BiΠ + ϵijkEkDjΨ

)
+ LβE

i ,

∂tAφ = −AiDiα+ α
(
KAφ −DiAi − Z

)
+ LβAφ ,

∂t(ΓeUi) = α

(
qe
me

Ei + ϵijkU jBk − Γeai − U jDj (ΓeUi)
)

+ LβΓeUi ,

∂tρe = −Di(αji) + αρeK + Lβρe ,

∂tZ = α
(
DiE

i + 2kaB
iDiΨ − ρ

)
− καZ + LβZ ,

(I.1.9)
where we have introduced a constraint damping variable Z to stabilize the numerical
time evolution. Furthermore, we define Di as the covariant derivative with respect to
γij , the extrinsic curvature as Kij = 1

2α [−∂tγij +Diβj +Djβi] and K as its trace.
Note that the absence of the evolution equations for the ions due to assumption (ii).

Finally, we get the following constraints:
DiB

i = 0 ,
DiE

i = ρ− 2kaBiD
iΨ ,

(nµ + Uµ)∇µΓe = ΓeU iU jKij − ΓeU iai − qe
me

EiUi .

(I.1.10)

Upon ignoring the gravitational term in the momentum evolution equation (assump-
tion (v)), this last constraint is trivially satisfied on the linear level.

I.2 Background metric
As discussed in Appendix G.1, we employ Kerr-Schild coordinates in our numerical
setup to avoid the coordinate singularity at the horizon. These are related to



I.3 Evolution without plasma 192

Cartesian coordinates by

x = r cosφ sin θ − aJ sinφ sin θ ,
y = r sinφ sin θ + aJ cosφ sin θ ,
z = r cos θ .

(I.2.11)

In these coordinates, the metric takes on the following form:

ds2 = (ηµν + 2Hlµlν)dxµdxν , (I.2.12)

where

H = r3M

r4 + a2
Jz

2 ,

lµ =
(

1, rx+ aJy

r2 + a2
J
,
−aJx+ ry

r2 + a2
J
,
z

r

)
,

r =
[1

2

(
x2 + y2 + z2 − a2

J +
√

(x2 + y2 + z2)2 + 4a2
Jz

2
)]1/2

,

(I.2.13)

where we consider Schwarzschild, i.e., aJ = 0. Furthermore, we define

α = 1√
1 + 2H

,

βi = 2Hli ,
γij = δij + 2Hlilj ,

Kij = ∂i (Hlj) + ∂j (Hli) + 2H(l∗)k∂k (Hlilj)√
1 + 2H

,

(I.2.14)

which are the lapse function, shift vector, spatial metric, and the extrinsic curvature,
respectively.

I.3 Evolution without plasma
Since the simulations with and without plasma have a slightly different structure,
we separate these clearly in the following sections. First, we consider the full set of
equations in the absence of plasma. These belong to the simulations Ii and Ji from
Sections 5.3 and 5.4. They are

∂tΨ = −αΠ + LβΨ ,

∂tΠ = α
(
−D2Ψ + µ2Ψ +KΠ − 2kaE

iBi

)
−DiαDiΨ + LβΠ ,

∂tAi = −α (Ei +DiAφ) −AφDiα+ LβAi ,

∂tE
i = αKEi − αDj

(
DjAi −DiAj

)
−
(
DiAj −DjAi

)
Djα+ αDiZ

+ 2kaα
(
BiΠ + ϵijkEkDjΨ

)
+ LβE

i ,

∂tAφ = −AiDiα+ α
(
KAφ −DiAi − Z

)
+ LβAφ ,

∂tZ = α
(
DiE

i + 2kaB
iDiΨ

)
− καZ + LβZ .

(I.3.15)
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Note that these are the same as considered in [172, 171].

Initial Data − To construct the initial data for our simulations, we must solve
the constraint equations (I.1.10). By doing so on the initial time-slice, the Bianchi
identity will ensure they are satisfied throughout the evolution. As explained in
Appendix G.1, we use Leaver’s method to construct the scalar field bound state.
For the electric field, we use initial data analogous to [172, 171]. In particular, we
choose a Gaussian profile defined in (5.5).

I.4 Evolution with plasma
In the simulations with plasma, we linearize the axion-photon-plasma system due to
the complexity of the problem, and we neglect ion perturbations. We express the
perturbed quantities with a tilde, such that

Ai = Ai
b + εÃi, Ei = Ei

b + εẼi, Aφ = Ab,φ + εÃφ ,

U i = U i
b + εŨi, Γe = 1 , ρ = ρb,e + ρb,ion + ερ̃e .

(I.4.16)

where we denote background quantities with a subscript b and where ε is the
arbitrarily small parameter in the perturbation scheme. For simplicity, we consider
a quasi-neutral, field-free background plasma, i.e., Ei

b = Ai
b = Ab,φ = 0, and

ρb,e = −ρb,ion. The problem at hand naturally introduces two distinct reference
frames: the Eulerian observer rest frame and the plasma rest frame. The relative
velocity between the two is the background quantity U i. We consider a plasma
co-moving with the Eulerian observer, such that the plasma is static in the spacetime
foliation. Since the background field of the electron charge density does not vanish,
according to (I.1.9) it should evolve as

∂tρb = αρb,eK + Lβρb,e . (I.4.17)

We are mainly interested in the evolution of this variable in a localized region
of spacetime far away from the BH, i.e., the axion cloud, and thus the evolution
of (I.4.17) due to strong gravity terms is extremely slow compared to the linear
system. Therefore, we neglect its evolution similarly to the gravitational influence
on the evolution of the background velocity (assumption (v)).

Before proceeding, there is one other subtlety. The plasma response to the
perturbing EM field is proportional to the electron charge-to-mass ratio, which
is extremely large qe/me ≈ 1022. Nevertheless, as we are linearizing the system,
and therefore neglecting the backreaction of the EM field onto the axion field, the
amplitude of the former is arbitrary in our scheme. If we were to consider the
full problem including backreaction instead, the amplitude of the axion field would
clearly introduce a scale. Due to this freedom, we rescale the EM variables as

Ēi = qe
me

Ẽi ,

Āi = qe
me

Ãi ,

Z̄ = qe
me

Z .

(I.4.18)
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Then, we can write down the full set of equations including the plasma as

∂tΨ = −αΠ + LβΨ ,

∂tΠ = α
(
−D2Ψ + µ2Ψ +KΠ

)
−DiαDiΨ + LβΠ ,

∂tĀi = −α
(
Ēi +DiĀφ

)
− ĀφDiα+ LβĀi ,

∂tĒ
i = αKĒi − αDj

(
DjĀi −DiĀj

)
−
(
DiĀj −DjĀi

)
Djα+ α

(
DiZ̄ − ω2

plŨ i
)

+ 2kaα
(
B̄iΠ + ϵijkĒkDjΨ

)
+ LβĒ

i ,

∂tĀφ = −ĀiDiα+ α(KĀφ −DiĀi − Z̄) + LβĀφ ,

∂tŨi = αĒi + LβŨi ,

∂tω̃
2
pl = −Di(αω2

plŨ
i) + αω̃2

pK + Lβω̃
2
pl ,

∂tZ̄ = α
(
DiĒ

i + 2kaB̄
iDiΨ − ω̃2

p

)
− καZ̄ + LβZ̄ ,

(I.4.19)
where ω2

pl is the plasma frequency, and ω̃2
pl its perturbation:

ω2
pl = qe

me
ρb,e ,

ω̃2
pl = qe

me
ρ̃e .

(I.4.20)

Note that due to the rescaling, there is no charge-to-mass ratio of the electrons
and the field equations are written only in terms of the plasma frequency, which is
O(1/M).

As we detail in the following subsection, including a linearized fluid model in the
equations of motion, causes the system (I.4.19) to become ill-posed upon using a
damping variable.1 However, this damping variable is essential in constraining Gauss’
law and without it, the simulations diverge for large EM values. As a resolution, we
slightly adjust our equations by not including the perturbed plasma frequency, ω̃p,
in the evolution equation of the damping variable Z, i.e.,

∂tZ̄ = α
(
DiĒ

i + 2kaB̄
iDiΨ

)
− καZ̄ + LβZ̄ . (I.4.21)

This is a minimal change as the perturbed plasma frequency does not enter any other
evolution equation of the system in the linearized regime, yet it does restore the
well-posedness of our setup. We justify this approach in two ways; (i) we evolve the
system with and without the damping variable for large plasma frequencies (where
the EM values remain small) and we find excellent agreement between the two, and
(ii) for small plasma frequencies, where the EM field is allowed to grow, the effects
of the plasma are negligible, and therefore ignoring ω̃p leads to a subleading error
compared to the EM values.

Initial Data − For the plasma part, we assume quasi-neutrality (cf. assumption
(iii)), i.e., ρ = −nµ(eneu

µ
e − Zenionu

µ
ion) = ene − Zenion = 0. As shown in (I.1.10),

the constraint equation for the plasma is trivially satisfied on the linear level, and
1The ill-posedness originates from the linearization of the fluid equation, whereas the full

non-linear system of equations is strongly hyperbolic and thus well-posed [481, 482]
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thus the initial data listed in the previous section solves all of our constraints. As
for the electronic density, in principle, depending on the specific environment we are
interested in, we can assume different spatial profiles [115, 116, 32], which correspond
to a space-dependent effective mass for the photon. However, the length-scale of
interest to us, i.e., the size of the axion cloud, is typically much shorter than length-
scale on which the effective mass varies. Hence, for simplicity, we assume a constant
density plasma.

I.5 Hyperbolicity of fluid model

The evolution equations (I.4.19) are not strongly hyperbolic and therefore do not form
a well-posed system. Consequently, the existence of a unique solution that depends
continuously on the initial data is not guaranteed and any numerical approach is
bound to fail. In this appendix, we proof that our system is not strongly hyperbolic.

Based on [483], we introduce an arbitrary unit vector si and consider the principal
part of the system, i.e., we consider only the highest derivative terms from (I.4.19):

∂t[∂2
sψ] ∼ −α∂s

(
∂sĀφ

)
+ βs∂s[∂2

t ψ] ,

∂t(∂sĀA) ∼ −α∂sĒA + βs∂s(∂sĀA) ,
∂t(∂sĀφ) ∼ βs(∂sĀφ) − α∂s[∂2

sψ] ,
∂tĒA ∼ −α∂s(∂sĀA) + βs∂sĒA ,

∂tĒs ∼ α∂sZ̄ + βs∂sĒs ,

∂tZ̄ ∼ α∂sĒ
s + βs∂sZ̄ ,

∂tŨs ∼ βs∂sŨs ,

∂tŨA ∼ βs∂sŨA ,

∂tω̃
2
pl ∼ −αω2

pl∂sŨs + βs∂sω̃
2
pl ,

(I.5.22)

where the index A denotes the component projected into the surface orthogonal to
si, and [∂2

sψ] can be written as

[∂2
sψ] = ∂sĀs + Z̄ . (I.5.23)

Defining the principal symbol of ([∂2
sψ], Āφ) (Z̄, Es), (∂sĀA, ĒA), and (Ũs, ω̃

2
pl) as

PG , PC , PP , and PF , respectively, we get:

PG =
(
βs −α
−α βs

)
, PC =

(
βs α
α βs

)
,

PP =
(
βs −α
−α βs

)
, PF =

(
βs 0

−αω2
pl βs

)
.

(I.5.24)

We see that the eigenvalue for PF is degenerate with βs and the eigenvector is (0, b)T ,
where b is an arbitrary value. Therefore, the principal symbol does not have a
complete set of eigenvectors, and the system is not strongly hyperbolic. If we ignore
ω̃2

pl in Z, it becomes decoupled from Maxwell’s equations, and the only relevant
variable for the fluid part that remains, is the linearized four velocity Ũi. As is
shown in (I.5.22), the principal part for Ũi is just canonical the advection term.
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I.6 The 3+1 linearized momentum equation
The full computation of the 3+1 split of the momentum equation was already showed
in Appendix C. The final form of the equation is (C.1.16). As explained earlier
nevertheless, we now simplify the plasma to make it more suitable to our numerical
setup. By linearizing this equation, which also implies Γ ∼ 1, we are left with

∂tUi = α

(
q

m
Ei − ai

)
+ LβUi . (I.6.25)

Finally, we also neglect gravity, which brings us to our final equation:

∂tUi = α
q

m
Ei + LβUi . (I.6.26)
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Appendix J

Numerical convergence and
higher multipoles

J.1 Numerical convergence
In our numerical framework, we employ the method-of-lines, where spatial derivatives
are approximated by a fourth-order accurate finite-difference scheme and we integrate
using a fourth-order Runge-Kutta method. Furthermore, Kreiss-Oliger dissipation
is applied to evolved quantities in order to suppress high-frequency modes that
come from the boundaries between adjacent refinement regions. The numerical
simulations are performed using the open source Einstein Toolkit [484, 485].
For the evolution of the scalar and vector field, we extent the ScalarEvolve [486,
487, 488] and ProcaEvolve thorns [489, 490], respectively. We use Multipatch to
interpolate between different grids in our numerical domain [491, 492]. In particular,
to connect the central Cartesian grid with the spherical wavezone. Additionally,
Carpet communicates between refinement levels with second-order and fifth-order
accuracy in time and space, respectively. The Courant number in all our simulations
is 0.2, such that the CFL condition is satisfied. To check whether our numerical
results respect the required convergence, we evolve the same configuration with a
coarse (hc), medium (hm) and fine (hf) resolution. The convergence factor can then
be calculated according to

Qn = fhc − fhm

fhm − fhf

= hn
c − hn

m
hn

m − hn
f
, (J.1.1)

where n is the expected convergence order. In our case, we take as the coarsest level
hc = 1.8M , then hm = 1.2M and hf = 1.0M . As can be seen in Fig. J.1, we obtain
a convergence order between 3 and 4. We have performed similar tests for the other
simulations in this work (with or without C and with or without the plasma) and we
find similar conclusions.

J.2 Higher multipoles
In the main text, we have shown the dominant contribution coming from the dipole
ℓ = m = 1 mode (cf. Figs. 5.2-5.4). In general however, higher order multipoles
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Figure J.1. Convergence analysis of the ℓ = m = 1 multipole of Ψ, extracted at rex = 20M
for µM = 0.2 and C = 10−3. The green line shows the expected result for third-order
convergence (Q3 = 5.64), while the purple line is the expected result for fourth-order
convergence (Q4 = 7.85).

are also produced. In Figs. J.2 and J.3, we show a subset of those from the scalar
and vector field, respectively. In both figures, we consider simulation I3, where SR
is turned off and we start in the supercritical regime. Three features are worth
noting; (i) only axion modes with odd ℓ can be produced from our initial data.
An explanation for this selection rule is provided in Appendix L; (ii) the Fourier
transform of the vector field shows additional peaks with a frequency slightly lower
than µ/2 and two near 3µ/2. As discussed in the main text, these should be
interpreted as “photon echos” created by outwards traveling photons that interact
with the axion cloud; (iii) in Fig. J.2, we observe that some of these up-scattered
photons can recombine with “normal” photons (ω ∼ µ/2) to form axion waves with
a frequency of twice the boson mass.
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Figure J.2. Top Panel: Time evolution of various multipole modes of the scalar field
in the supercritical case (simulation I3). The field is extracted at rex = 400M and
µM = 0.3. Interestingly, even ℓ modes are not excited, while odd ℓ modes are, which
we explain in Appendix L. Bottom Panel: The Fourier transform of the multipole
modes shown in the top panel, where the gray dashed line denotes the frequency of
the fundamental mode (ω0). The peaks around ω = 2ω0 (brown dashed line) seen in
the inset originate from interactions between “up-scattered” photons (ω = 3ω0/2) with
“normal” photons (ω = ω0/2).

500 1000 1500 2000 2500

t/M

10−6

10−5

10−4

10−3

M
|(Φ

2
) `
m
|

` = 1,m = 1

` = 2,m = 2

` = 3,m = 1

` = 4,m = 0

` = 4,m = 2

0.10 0.15 0.20 0.25 0.30

Mω

0

1

2

3

4

5

M
(Φ̃

2
) `
m

×10−5

` = 1,m = 1

` = 2,m = 2

` = 3,m = 1

` = 4,m = 0

` = 4,m = 2

0.4 0.5
0

5

×10−7

Figure J.3. Top Panel: Time evolution of various multipole modes of the Newman-
Penrose scalar |(Φ2)ℓm| in the supercritical regime. Considered simulation is I3. Field
is extracted at rex = 400M and µM = 0.3. Bottom Panel: Fourier transform of the
multipole modes shown in the top panel. The gray and brown dashed line indicate the
frequencies at ω0/2 and 3ω0/2, respectively.
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Appendix K

Superradiant and Plasma
Mathieu equation

K.1 Superradiant Mathieu equation

By solving the superradiant Mathieu equation (5.8) numerically for different values
of C, we are able to find a growth rate (5.9) for the EM field in flat spacetime,
while assuming a homogeneous axion condensate. Remarkably, this estimate is even
accurate in describing the super-exponential growth of the EM field in presence of
SR, when considering the full setup on a Schwarzschild background (including the
finite-size effects of the cloud with λesc). In this appendix, we show a few examples
of the numerical solutions to (5.8) and we use a multiple-scale method to derive the
growth rate analytically.

Figure K.1 shows various numerical solutions to the superradiant Mathieu
equation (5.8). For C = 0, the solution is well-described by the standard Mathieu
growth rate (red dashed line). For non-zero values of C instead, the standard
Mathieu prediction becomes inaccurate and the numerical solutions are well fitted
by the super-exponential growth rate (5.9) (black dashed lines).

Multiple-scale analysis − Regular perturbation theory fails to describe some
types of problems at late times. This is due to the presence of secular terms, causing
non-uniformities to appear between consecutive orders in the perturbation series. An
example of this happening is when solving the Mathieu equation, where a multiple-
scale analysis is more suitable (see e.g. [493]). In the following, we will show its
effectiveness for solving the superradiant Mathieu equation and with that, provide
an analytical explanation of the numerically fitted growth rate (5.9).

Let us consider the superradiant Mathieu equation (5.8), where we expand the
exponential as

d2y

dT 2 + (b+ 2δ(1 + CT ) cosT ) y = 0 , (K.1.1)

and we assume δ to be small. We can introduce two timescales, a fast timescale T ,
and a slow one, T = δT , which we treat as independent variables. By assuming a
dependence on both variables, i.e., y(T ) → y(T, T ) and expanding all the parameters,
i.e., y = y0(T, T ) + δy1(T, T ) and b = b0 + δb1, we can use the additional freedom
from treating T as a new variable to eliminate secular terms. This causes the solution
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Figure K.1. Numerical solutions to the superradiant Mathieu equation (5.8) for different
values of C. Horizontal axis shows the rescaled time T = µt. Red dashed line shows
the “standard” Mathieu growth rate, while black dashed lines are obtained from the
analytic growth rate (5.9) and describe the numerical solutions well. Chosen parameters
are µ = 0.2, pz = 0.1, kaψ0 = 0.1.

to hold for longer times compared to a “normal” perturbative approach. Assuming
the SR term also to be small, i.e., C = δC, we can introduce yet another timescale,
the very slow one, T = δ2T . Upon expanding again b = b0 + δb1 + δ2b2, we obtain

d2y

dT 2 +
(
b+ δ(b1 + 2 cosT ) + δ2(b2 + 2CT cosT )

)
y = 0 . (K.1.2)

In the spirit of the multiple-scale method, we “promote” y to depend on all the
timescales as independent variables and then expand, i.e., y(T, T ,T) = y0(T, T ,T) +
δy1(T, T ,T) + δ2y2(T, T ,T).

We can now consider (K.1.2) order-by-order. At zeroth order, we have:

∂2
T y0 + b0y0 = 0 , (K.1.3)

where b0 = 1/4 at the inset of the first unstable Mathieu band. Consequently, at
this order, we obtain the solution: y0 = A(T ,T)eiT/2 + c.c. Hence, the solution at
the fast timescale T just describes the harmonic behavior. At first-order, we have

∂2
T y1 + 1

4y1 = −2∂T∂T y0 − (b1 + 2 cosT ) y0 . (K.1.4)

The right-hand side of this equation contains secular terms. However, we can use
the extra dependence of y0 on the slow timescale to remove it, namely by requiring
i∂T A(T ,T) = −b1A(T ,T) + A∗(T ,T). Solving this leads to the dependence of
the zeroth-order solution on the slow timescale, i.e., y0 = A(T)e

√
1−b2

1T eiT/2 + c.c.
Similarly, the dependence on the very slow timescale can be used to eliminate secular
terms in the second-order equation.1 Following this procedure, we obtain for the
zeroth-order solution:

y0 ≈ e
√

1−b2
1T eiT/2eCTT + c.c. (K.1.5)

At sufficiently large times (T ≫ 1/C), the growth rate is thus dominated by eCTT =
eδCT 2 .

1As these computations become quite cumbersome, we do not report them here.
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Finally, by comparing (K.1.1) with (5.8), we identify δ = pzψ0ka/µ
2 and pz = µ/2,

such that, after rescaling the physical time t = T/µ, the growth rate is eλt with

λt = µ

2 kaψ0Ct
2 , (K.1.6)

which is the dominant growth rate at late times we found in (5.10) (up to a factor
of 2).

The multiple-scale method thus produces a solution with three timescales; (i) the
“fast” timescale that corresponds to the harmonic oscillations with a frequency at half
the boson mass, (ii) the “slow” timescale belonging to the standard Mathieu growth
rate, and (iii) the “very slow” timescale which originates from the super-exponential
growth induced by SR and becomes dominant at late times. In conclusion, the
Mathieu equation provides us, once again, with a simple analytical explanation to
the behavior of the full system.

K.2 Plasma Mathieu equation
In this appendix, we study the axion-photon-plasma system in flat spacetime. This
analysis closely follows [199], yet now in the context of a Mathieu-like equation.
Furthermore, we generalize their work by including a momentum equation rather
than assuming Ohm’s law.

The starting point is the equations of motion (5.2) in Minkowski. Similar to
Section 5.4.2, we assume the wave vector to be along the ẑ direction, i.e., p⃗ = (0, 0, pz),
the EM ansatz (5.6), and a homogeneous axion condensate defined as

Ψ = 1
2(ψ0e

−iµt + ψ∗
0e

iµt) . (K.2.7)

By linearizing (5.2), one can straightforwardly solve the momentum equation and find
the velocity of the electrons with respect to the EM field. Once again, due to their
large inertia, we neglect the perturbations of the ions and treat them as a neutralizing
background. Since the longitudinal and transverse modes in linear photon-plasma
theory in flat spacetime are decoupled, we focus on the latter, obtaining

uk = − qe
me

αkei(p⃗·x⃗−ωt) , (K.2.8)

where k = x̂, ŷ are the transverse directions. We can now insert this expression in the
current that appears on the right-hand side of Maxwell’s equations, i.e., jk = qeneu

k
e ,

to obtain two decoupled equations for the transverse polarizations, αk. Finally,
by adopting the field redefinition yk = eiωtαk, rescaling the time as T = µt and
projecting along a circular polarization basis e± such that y = yωe±, we find the
Mathieu equation in the presence of plasma to be [212]

∂2
T yω + 1

µ2

(
p2

z + ω2
pl − 2µpzψ0kasinT

)
yω = 0 . (K.2.9)

One can readily see that in the absence of a plasma, i.e., ωpl = 0, the vacuum
Mathieu equation is recovered [172].
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Figure K.2. Top Panel: Solutions of the plasma Mathieu equation (K.2.9) for different
values of the plasma frequency. Here, we choose µ = 0.2, pz = 0.1 and kaψ0 = 0.2.
Bottom Panel: A similar setup as above, yet now the axionic coupling is varied and
ωpl = 0.15 > µ/2. The other parameters are the same as above. As can be seen, for
large values of kaψ0 the instability is restored.

The top panel of Fig. K.2 shows numerical solutions to the plasma Mathieu
equation (K.2.9) for different values of the plasma frequency. For ωpl = 0, the
solution develops an instability which is well described by the analytic solution of
the vacuum Mathieu equation (red dashed line). By increasing ωpl, the growth rate
of the instability becomes smaller as the interval of the momentum corresponding to
the instability shrinks until the solution becomes stable when ωpl ≥ µ/2. We find
good agreement with the instability interval predicted in equation (19) from [199], by
exploring a wide region of the parameter space. Interestingly, even when ωpl ≥ µ/2,
the instability band can be widened by increasing the value of kaψ0, making it
possible to restore the instability even for dense plasmas. This effect can be seen in
the bottom panel of Fig. K.2. By fixing ωpl = 0.15 (with µ = 0.2), the instability is
restored for large enough values of kaψ0.

Band analysis − In [199], the maximum growth rate in the low axionic coupling
regime is found where the condition p2

z + ω2
pl = µ2/4 holds. While in [199], this

result does not have an immediate interpretation, our redefinition of the system
in terms of the Mathieu equation provides a simple explanation to this condition;
from (K.2.9), it follows immediately that the instability bands are located where

p2
z + ω2

pl = n2 µ
2

4 with n ∈ N . (K.2.10)

Therefore, the maximum growth rate of [199] can be interpreted as the first, dominant
instability band, i.e., where n = 1. Note that, as long as the axionic coupling
is sufficiently low, the dispersion relation of the photon is not modified by the
condensate, and thus ω2 ≈ p2

z + ω2
pl, with ω the frequency of the photon. Therefore,
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|ỹ ω
(t

)|
[a
.u
.]

n = 1

n = 2

n = 3

Figure K.3. The Fourier transforms of three numerical solutions to the plasma Mathieu
equation (K.2.9) with µ = 0.3 and pz = 0.15. The peaks have been arbitrarily normalized
and we revert t = µ−1T for the Fourier transform. The considered parameters for the
plasma frequency and the axionic coupling for n = 1, 2, 3 are ωpl = 0, 0.2, 0.43 and
kaψ0 = 0.02, 2, 2.8, respectively. The dashed lines indicate nµ/2 and show that each of
the solutions lies in a different instability band.

similar to the vacuum case, the instability bands correspond to frequencies which
are multiples of µ/2.

For large enough ωpl, i.e., when ωpl ≥ µ/2, the condition (K.2.10) can never be
satisfied for n = 1. However, crucially, it can still be satisfied for n > 1, which
corresponds to exciting higher bands and thus restoring the instability.2 In Fig. K.3,
we show that this is indeed the case by numerically solving (K.2.9) and taking
the Fourier transform. The dark-blue line which peaks at µ/2, has ωpl = 0 and
a moderate value of kaψ0 = 0.02, and thus behaves according to the parametric
mechanism by triggering the first band. When we consider a higher plasma frequency,
ωpl = 0.2 > µ/2, it is not possible to excite the first instability band anymore.
However, as we increase the axionic coupling to kaψ0 = 2, the instability is restored
in the second band with a frequency µ (blue line). We can continue for even higher
plasma frequencies, e.g. ωpl = 0.43, which for an axionic coupling of kaψ0 = 2.8,
triggers the third instability band at ω = 3/2µ (turquoise line). Note that the chosen
values of ωpl in the three solutions approximately satisfy (K.2.10) for n = 1, 2 and 3.

2Higher bands of the Mathieu equation are narrower than the first one, making the available
parameter space for an instability smaller. However, since these bands widen for large values of the
axionic coupling kaψ0, even for n > 1 an efficient instability can be triggered.
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Appendix L

Selection rules

Using spherical harmonics, the equations of motion can be decomposed, and, as we
will show, allows us to predict which modes are excited from the axionic coupling.
This approach yields a consistency check of our simulations in the case where SR
growth is absent. Using the electric field Ei and the magnetic field Bi, the Maxwell
equations can be written as

∂tE
i = αKEi + βj∂jE

i − Ej∂jβ
i − ϵijkDj(αBk)

+ 2kaα
(
ϵijkEkDjΨ +Binα∂αΨ

)
,

∂tB
i = βj∂jB

i −Bj∂jβ
i + αKBi + ϵijkDj(αEk) ,

(L.0.1)

where ϵijk = − 1√
γE

ijk and Eijk is the totally anti-symmetric tensor with E123 = 1.
We focus on a Schwarzschild BH which has the following metric:

ds2 = −f(r)dt2 + 1
f(r)(r)dr2 + r2γ̂ABdxAdxB , (L.0.2)

where f(r) = 1 − 2M
r , and γ̂ABdxAdxB = dθ2 + sin2 θdφ2. From the spacetime

symmetry, the electric and magnetic field can be decomposed using the scalar
spherical harmonics Yℓm(θ, φ) and the vector spherical harmonics ∇̂AYℓm and Vℓm,A =
ϵ̂BA∇̂BYℓm. Here, ϵ̂AB is the anti-symmetric tensor with ϵ̂θφ = sin θ. Using these
harmonics functions, we expand the electric, magnetic and scalar field as follows:

Er =
∑
ℓm

Eℓm,rYℓm + c.c. ,

EA =
∑
ℓm

{
Eℓm,S

∇̂AYℓm√
ℓ(ℓ+ 1)

+ Eℓm,V Vℓm,A + c.c.
}
,

Br =
∑
ℓm

Bℓm,rYℓm + c.c. ,

BA =
∑
ℓm

{
Bℓm,S

∇̂AYℓm√
ℓ(ℓ+ 1)

+ Bℓm,V Vℓm,A + c.c.
}
,

Ψ =
∑
ℓm

ΨℓmYℓm + c.c. ,

(L.0.3)
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where A = {θ, φ} and Eℓm,r, Eℓm,S , Eℓm,V , Bℓm,r, Bℓm,S , Bℓm,V , and Ψℓm are all
coefficients that depend on t and r only. Time or space derivatives are denoted with
a dot or prime, respectively. Since both the scalar and vector spherical harmonics
are orthogonal functions, the Maxwell equations with axionic coupling can be
decomposed. We find the coefficients for the electric field to be:

Ėℓm,r = −ℓ(ℓ+ 1)
r2 Bℓm,V − 2ka√

fr2

∑
ℓ′m′
ℓ′′m′′

4∑
I=1

C
(r,I)
ℓmℓ′m′ℓ′′m′′X(I),ℓmℓ′m′ℓ′′m′′ ,

Ėℓm,S = −
√
ℓ(ℓ+ 1)

2 (f ′Bℓm,V + 2fB′
ℓm,V ) − 2ka

√
ℓ(ℓ+ 1)

∑
ℓ′m′
ℓ′′m′′

4∑
I=1

C
(S,I)
ℓmℓ′m′ℓ′′m′′X(I),ℓmℓ′m′ℓ′′m′′ ,

Ėℓm,V = −fBℓm,r +
f ′Bℓm,S + 2fB′

ℓm,S

2
√
ℓ(ℓ+ 1)

− 2ka ×
∑
ℓ′m′
ℓ′′m′′

4∑
I=1

C
(V,I)
ℓmℓ′m′ℓ′′m′′X(I),ℓmℓ′m′ℓ′′m′′ .

(L.0.4)
Then, we proceed with the coefficients for the magnetic field:

Ḃℓm,r = ℓ(ℓ+ 1)
r2 Eℓm,V ,

Ḃℓm,S =
√
ℓ(ℓ+ 1)

2
(
f ′Eℓm,V + 2fE ′

ℓm,V

)
,

Ḃℓm,V = fEℓm,r −
f ′Eℓm,S + 2fE ′

ℓm,S

2
√
ℓ(ℓ+ 1)

,

(L.0.5)

and finally the coefficients for the scalar field:

Ψ̈ℓm = −f
(2
r

+ f ′
)

Ψ′
ℓm

− f2Ψ′′
ℓm + f

(
ℓ(ℓ+ 1)
r2 + µ2

)
Ψℓm − 2kaf

×
∑
ℓ′m′
ℓ′′m′′

4∑
I=1

C
(Ψ,I)
ℓmℓ′m′ℓ′′m′′X(I),ℓmℓ′m′ℓ′′m′′ ,

(L.0.6)

where X(I),ℓmℓ′m′ℓ′′m′′ is found by

X(1),ℓmℓ′m′ℓ′′m′′ =
∫

d2ΩY ∗
ℓmYℓ′′m′′Yℓ′m′ ,

X(2),ℓmℓ′m′ℓ′′m′′ =
∫

d2ΩY ∗
ℓmY

∗
ℓ′′m′′Yℓ′m′ ,

X(3),ℓmℓ′m′ℓ′′m′′ =
∫

d2ΩY ∗
ℓm∇̂AYℓ′′m′′Vℓ′m′,A ,

X(4),ℓmℓ′m′ℓ′′m′′ =
∫

d2ΩY ∗
ℓm∇̂AY ∗

ℓ′′m′′Vℓ′m′,A .

(L.0.7)

Upon defining the prefactor

Qℓℓ′ℓ′′ = ℓ(ℓ+ 1) + ℓ′(ℓ′ + 1) − ℓ′′(ℓ′′ + 1)
2 , (L.0.8)
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we find for C(r,I):

C
(r,1)
ℓmℓ′m′ℓ′′m′′ = Qℓ′′ℓ′ℓEℓ′′m′′,V Ψℓ′m′ − r2Bℓ′′m′′,rΨ̇ℓ′m′ ,

C
(r,2)
ℓmℓ′m′ℓ′′m′′ = Qℓ′′ℓ′ℓE∗

ℓ′′m′′,V Ψℓ′m′ − r2B∗
ℓ′′m′′,rΨ̇ℓ′m′ ,

C
(r,3)
ℓmℓ′m′ℓ′′m′′ = Eℓ′′m′′,SΨℓ′m′√

ℓ′′(ℓ′′ + 1)
,

C
(r,4)
ℓmℓ′m′ℓ′′m′′ =

E∗
ℓ′′m′′,SΨℓ′m′√
ℓ′′(ℓ′′ + 1)

,

(L.0.9)

for C(S,I):

C
(S,1)
ℓmℓ′m′ℓ′′m′′ = −Qℓ′′ℓℓ′

(
fEℓ′′m′′,V Ψ′

ℓ′m′ + Bℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

C
(S,2)
ℓmℓ′m′ℓ′′m′′ = −Qℓ′′ℓℓ′

(
fE∗

ℓ′′m′′,V Ψ′
ℓ′m′ +

B∗
ℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

C
(S,3)
ℓmℓ′m′ℓ′′m′′ = fEℓ′′m′′,rΨℓ′m′ − f√

ℓ′′(ℓ′′ + 1)
× Eℓ′′m′′,SΨ′

ℓ′m′ + Bℓ′′m′′,V Ψ̇ℓ′m′ ,

C
(S,4)
ℓmℓ′m′ℓ′′m′′ = fE∗

ℓ′′m′′m,rΨℓ′m′ − f√
ℓ′′(ℓ′′ + 1)

× E∗
ℓ′′m′′,SΨ′

ℓ′m′ + B∗
ℓ′′m′′,V Ψ̇ℓ′m′ ,

(L.0.10)

for C(V,I):

C
(V,1)
ℓmℓ′m′ℓ′′m′′ = −Qℓ′ℓℓ′′fEℓ′′m′′,rΨℓ′m′ +Qℓ′′ℓℓ′

(
f√

ℓ′′(ℓ′′ + 1)
Eℓ′′m′′,SΨ′

ℓ′m′ − Bℓ′′m′′,V Ψ̇ℓ′m′

)
,

C
(V,2)
ℓmℓ′m′ℓ′′m′′ = −Qℓ′ℓℓ′′fE∗

ℓ′′m′′,rΨℓ′m′ +Qℓ′′ℓℓ′

(
f√

ℓ′′(ℓ′′ + 1)
Eℓ′′m′′,SΨ′

ℓ′m′ − Bℓ′′m′′Ψ̇ℓ′m′

)
,

C
(V,3)
ℓmℓ′m′ℓ′′m′′ = −

(
fEℓ′′m′′,V Ψ′

ℓ′m′ + Bℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

C
(V,4)
ℓmℓ′m′ℓ′′m′′ = −

(
fE∗

ℓ′′m′′,V Ψ′
ℓ′m′ +

B∗
ℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

(L.0.11)
and finally for C(Ψ,I):

C
(Ψ,1)
ℓmℓ′m′ℓ′′m′′ = fEℓ′m′,rBℓ′′m′′,r + Qℓ′′ℓ′ℓ

r2

( Eℓ′m′,SBℓ′′m′′S,√
ℓ′ℓ′′(ℓ′ + 1)(ℓ′′ + 1)

+ Eℓ′m′,V Bℓ′′m′′,V

)
,

C
(Ψ,2)
ℓmℓ′m′ℓ′′m′′ = fEℓ′m′,rB∗

ℓ′′m′′,r
Qℓ′′ℓ′ℓ

r2

( Eℓ′m′SB∗
ℓ′′m′′,S√

ℓ′ℓ′′(ℓ′ + 1)(ℓ′′ + 1)
+ Eℓ′m′,V B∗

ℓ′′m′′,V

)
,

C
(Ψ,3)
ℓmℓ′m′ℓ′′m′′ = 1

r2

(
Eℓ′m′,V

Bℓ′′m′′,S√
ℓ′′(ℓ′′ + 1)

+ Eℓ′m′S√
ℓ′(ℓ′ + 1)

Bℓ′′m′′V

)
,

C
(Ψ,4)
ℓmℓ′m′ℓ′′m′′ = 1

r2

(
Eℓ′m′,V

B∗
ℓ′′m′′,S

r2
√
ℓ′′(ℓ′′ + 1)

+ Eℓ′m′S√
ℓ′(ℓ′ + 1)

B∗
ℓ′m′V

)
.

(L.0.12)
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Figure L.1. The time evolution of various multipole modes of the Newman-Penrose scalar
Φ2 in the subcritical regime. The considered simulation is I2, where the field is extracted
at rex = 20M and µM = 0.3. Each of the curves has been rescaled according to the
order found in (L.0.15).

In our simulations, we monitor the Newman-Penrose variable Φ2, and the coefficient
for spin-weighted spherical harmonics is

(Φ2)ℓm =
√
ℓ(ℓ+ 1)

2r

{
−
(

Bℓm,V + Eℓm,S√
ℓ(ℓ+ 1)

)
+i
(

−Eℓm,V + Bℓm,S√
ℓ(ℓ+ 1)

)}
.

(L.0.13)
The non-vanishing components of our initial data (see Appendix I.3) are

Ψ1,±1 ∼ Ψ0 ,

E10,V (t = 0, r) = 1
2

√
π

3E
φ(r) ,

(L.0.14)

where Eφ(r) is defined in (5.5). Since this is a perturbative approach, we focus on
the subcritical regime and assume Eφ(r) is order O(ϵ). Using the above equations,
we can obtain the order of each mode of (Φ2)ℓm as

(Φ2)1,0 ∼ O(ϵ) ,
(Φ2)1,±1 ∼ O(kaΨ0ϵ) ,
(Φ2)2,±1 ∼ O(kaΨ0ϵ) ,
(Φ2)2,±2 ∼ O((kaΨ0)2ϵ) ,
(Φ2)3,±3 ∼ O((kaΨ0)3ϵ) .

(L.0.15)

In Fig. L.1, we show |(Φ2)ℓm| in the subcritical regime (I2), and rescale all multipoles
according to (L.0.15). As can be seen, using the rescaling, all curves are on the same
order, demonstrating that our simulations show consistent behaviour.

As alluded to in Section 5.3, from our initial data only odd ℓ scalar multipoles
can be produced. We can now proof this. From Yℓm(π − θ, φ+ π) = (−1)ℓYℓm(θ, φ),
we find that X(1),ℓmℓ′m′ℓ′′m′′ and X(2),ℓmℓ′m′ℓ′′m′′ are non-zero when ℓ+ ℓ′ + ℓ′′ is an
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even number, and X(3),ℓmℓ′m′ℓ′′m′′ and X(4),ℓmℓ′m′ℓ′′m′′ are non-zero when ℓ+ ℓ′ + ℓ′′

is odd number.
Then, equations (L.0.9)-(L.0.11) show that the non-vanishing modes of our initial

data, Ψℓm and Eℓm,V (see (L.0.14)) with odd ℓ can only excite Eℓm,r and Eℓm,S with
even ℓ, while it excites Eℓm,V with odd ℓ.

Next, (L.0.5) implies that the non-vanishing component of Eℓm,r and Eℓm,S with
even ℓ excites Bℓm,V with even ℓ, while the non-vanishing component of Eℓm,V with
odd ℓ excites Bℓm,r and Bℓm,S with odd ℓ.

Finally, (L.0.12) shows that the non-vanishing component of Eℓm,r, Eℓm,S and
Bℓm,V with even ℓ, and Eℓm,V , Bℓm,r and Bℓm,S with odd ℓ only excites Ψℓm with
odd ℓ. Therefore, the non-vanishing components of the simulation starting from
initial data (L.0.14), only excite Ψℓm with odd ℓ. These results are consistent with
our simulations, see Fig. J.2.
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