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Abstract

Artificial Intelligence and the pervasive presence of Big Data have vigorously
become the technological protagonists of the new millennium.

In the interconnected world in which we live, millions of virtual interactions
take place, thanks to the development of increasingly sophisticated information,
electronic and communications technologies, which allow us to enjoy experiences
that were unthinkable up until twenty years ago.

The availability of an enormous amount of information is also pushing the sci-
entific community relating to automation and control science to move towards a
data-driven paradigm, which is opposed to class methods based on the knowledge
of the mathematical model of the process to be controlled.

This thesis delves into the realm of data-driven control methods in the domains
of terrestrial and satellite communication networks, aiming to prove the capability
of model–free techniques to optimize network performance, rethink the network se-
lection paradigm, tune dynamically transmission power, and improve signal quality,
reliability and availability, allowing for continuous and ubiquitous connectivity.

In order to reach these objectives, this essay presents empirical and simulated
evidence demonstrating the effectiveness of data-driven control methods in improv-
ing the performance and reliability of both terrestrial and satellite networks. The
findings have significant implications for the communication landscape, including (i)
improved network performance and efficiency within terrestrial networks in relation
with critical applications like autonomous driving and Mobile Augmented Reality,
(ii) improved adaptability and dynamic decision-making capabilities, and (iii) sig-
nal degradation mitigation and uninterrupted connectivity even under challenging
atmospheric conditions in satellite networks.

The thesis is organized in three Parts:

Part 1 discusses about the generalities of data–driven control methods rely-
ing on Artificial Intelligence and, in particular, Reinforcement Learning. The
dissertation starts from the difference between methods based on knowledge
of the model and those that rely solely on data coming from sensors, highlight-
ing pros and cons of each one of the two paradigms. Then, the mathematical
foundations of the Reinforcement Learning are provided, with the character-
ization of Markov Decision Processes (the single–agent domain) and Markov
Games (the multi–agent scenario). Eventually, the discussion is shifted from
discrete spaces to continuous states and actions, introducing the challenging
concept of Deep Reinforcement Learning, which exploits a combination of
neural networks to build, train, and test in real–time intelligent agents.



X Contents

Part 2 focuses on the generalities of terrestrial network, with emphasis on the
role of the new generations of cellular networks (5G and beyond) and their
critical applications, including Virtual and Augmented Reality in the cultural
heritage sector. This part of the thesis presents three different control strate-
gies. The first one is a decision framework for the solution of the network
selection and traffic steering problems in downlink–only mobile connections.
The second one instead considers the uplink plane, proposing a continuous
control of transmitting power and image resolution for Mobile Augmented
Reality applications. The third and last one poses the attention on another
critical application domain of terrestrial networks, i.e., self–driving vehicles.
It is shown how it is possible to control vehicle platoons even under the as-
sumption of a complete communication fault.

Part 3 spotlights the sphere of satellite communications, with a debate on the
dualism between radio frequency and free space optics, showing how the latter
constitute a disruptive technology for high–throughput and secure communi-
cation between ground stations and satellite assets. Later on, two Machine
Learning–based control laws for site diversity implementation are exhibited,
the first one using a single geostationary satellite, and the second one operat-
ing with a low Earth orbit satellite constellation.

Eventually, Chapter 11 will draw conclusions on the work carried out, its sci-
entific impact and practical implications, also showing all possible limitations and
blind spots. The path will therefore be traced on possible strategies by which these
limits can be overcome in the future.

The author of this work hopes that future work and research in applied control
science can draw innovative ideas and insights starting from the results exhibited
in this doctoral thesis.1
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Part I

Data–Driven Control





Chapter 1

Why Data–Driven Control?

C ontrol comes from the Medieval Latin contrarotulus, which is a compound
name, given by the union of contra (against, opposite to) and rotulus (diminu-

tive of rota, the Latin word for wheel) [1]. This particular word was used to denote a
practice carried out by scribes in medieval times, who checked accounts and invoices
with a double register.

On the other side, the word automatic derives from the ancient Greek adjective
αὐτόματος, which literally means self–moving and the noun τέχνη (art), thus denot-
ing the specific property of systems capable of carrying out pre–established tasks
without any human help [2].

The combination of these two words produce the well–known term Automatic
Control, which denotes the multidisciplinary field within engineering and mathe-
matics that constitutes the core business and the foundation of this doctoral thesis.

Automatic control is the field of study that aims at governing physical systems
without the human manual intervention. Said systems encompass sensors, actua-
tors, and controllers, all of which are designed with the objective of impacting the
dynamic behavior of the system. Control systems function by continuously monitor-
ing the output or condition of the system using feedback from sensors. Controllers
usually compare this monitored state with a reference signal or setpoint, calculate
the appropriate control action based on the observed error, and execute that action
through actuators to adjust the system’s behavior, trying to minimize the impact
of disturbances or uncertainties.

Thanks to the versatility of this scientific field, control in engineering embraces a
wide range of applications, from regulating the temperature of an industrial furnace,
through governing the steering wheel of an autonomous vehicle, to modulating the
transmission power in wireless telecommunications.
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1.1 Model–Based Control

The process of designing a control system traditionally involves the preliminary cre-
ation of a mathematical model of the system that needs to be controlled. This is
usually done via analyzing the law of physics underlying the specific system or pro-
cess, and translating them into a mathematical language by means of differential
equations. The latter shall provide a quantitative understanding of the system’s
dynamics, which, in a very general shape, can be expressed via a state–space rep-
resentation:1

ẋ = f(t, x, u, w)

y = h(t, x, u, w, n),
(1.1)

where t denotes the time, x ∈ Rn is the state space, u ∈ Rm is the control signal,
w ∈ Ro represents disturbances, y ∈ Rp is the system output2, represented as a
nonlinear static function, and n ∈ Rp is the measurement noise.

Typically, said systems are controlled on the basis of the feedback principle, ac-
cording to which the controller computes its outputs based on the error between
a desired reference and the true output. A typical feedback control scheme is de-
picted in Fig. 1.1. Depending on the system complexity and modeling choices, the
nonlinear state–space representation may be reduced to a linear one:

ẋ = Ax+B1u+B2w

y = Cx+D1u+D2w,
(1.2)

where A ∈ Rn×n is the system dynamical matrix, B1 ∈ Rn×m is the input–to–
state matrix, B2 ∈ Rn×o is the disturbance–to–state matrix, C ∈ Rp×n is the
state–to–output matrix, D1 ∈ Rp×m is the input–to–output matrix and, eventually,
D2 ∈ Rp×o is the disturbance–to–output matrix.

Since the famous work by James Clerk Maxwell [4], which is considered to be
the first automatic control system based on feedback, a myriad of control techniques
based on the model of the system to be controlled have been proposed in the liter-
ature. Some of these techniques represent the standard for the control of industrial
automation systems and are therefore used successfully every day.

1Here we are assuming that the system dynamics varies just in time, and not in space. In
the latter situation, the system’s states or parameters are called distributed and its mathematical
model shall rely on partial differential equations [3]. A typical example of a system whose dynamics
changes also with respect to the space is the movement of a drum or membrane when struck or
urged by a force perpendicular to its surface.

2In the vast majority of physical system, the output does not depend on the control u.
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Figure 1.1. Feedback Control Scheme. The block C denotes the controller, whereas S
indicates the system to be controlled. The variable e = r − y defines the error between
the reference signal r and the measured outputs ỹ = y+ n. All the other quantities are
the same as in (1.1).

The most famous model–based control techniques can be summarized as follows:

• Proportional–Integral–Derivative (PID) control is one of the most commonly
used techniques in the linear domain [5]. The control inputs is adjusted based
on the error (the difference between the desired and actual system output).
PID controllers consist of three gains: proportional (P), integral (I), and
derivative (D), which shall be tuned to achieve certain desired performance in
terms of rise time or overshoot.

• Frequency–based control. It can be used only in the linear domain and as-
sumes the system is represented as a transfer function directly linking the
input u and the output y of the system described in (1.2), thus having

P1(s) = C(sI −A)−1B1 +D1, (1.3)

where s ∈ C is a complex variable. Methods in the frequency domain include
the root locus design and the synthesis of corrective networks to modify phase
margin and crossing pulsation [6].

• Linear Quadratic Regulator (LQR) is used as well in the linear case to realize
control actions minimizing a certain cost function while satisfying given con-
straints. It is useful in all the situations in which the goal is to save energy
or time while having saturation or state constraints. A similar technique, the
Linear Quadratic Gaussian (LQG), incorporates both state feedback control
and state estimation using Kalman filters [7].



6 1. Why Data–Driven Control?

• Model Predictive Control (MPC), which extends concepts typical of optimal
control by adding the notion of control horizon and prediction horizon. The
former determines the sequence of control inputs to be applied, the latter
denotes the period over which the system behavior is forecasted. As in optimal
control, MPC can handle state and input constraints and it can be applied as
well to nonlinear systems.

• Feedback Linearization. It belongs to the nonlinear control techniques: it
deals with manipulating the input so that the system looks linear, at least
in the input–output representation. The internal dynamics which cannot be
linearized takes the name of zero dynamics [8].

• Backstepping: it is extremely useful for highly nonlinear systems, and it con-
structs a chain of control laws, each one stabilizing a subset of the entire
system dynamics [9].

• Robust control involves a long series of control methods which suppose some
(or all) parameters within the mathematical model are unknown or uncer-
tain [10]. Hence, the aim is to stabilize the system around its equilibrium
whatever the value of said parameters. One of the most famous technique in
the nonlinear domain relies on sliding model control, in which one enforces the
system to follow a specific sliding surface insensitive to parameter variations
and external disturbances [11].

• Adaptive control. The governor in this case is designed to handle systems with
varying dynamics, with parameters adaption based on the observed system
behavior.

Although control techniques based on mathematical models are the standard in
industry and are continually evolving in academia, they have important limitations.

One of the most relevant difficulties in model–based control is the capability
of obtaining accurate mathematical models, capable of capturing the real dynamic
behavior of a certain process. This can be easily done with simple mechanical or
electrical systems, but real–world systems are often complex and made of intercon-
nection of a myriad of subsystems, which may interact in a stochastic fashion.

It is very likely that parameters related, e.g., to viscous friction in the aerody-
namics of an aircraft, rotational inertia of rigid bodies, or biological systems cannot
be modeled via a specific stationary constant, thus leading to time–varying or un-
certain state–space models, which are really challenging to control. Moreover, the
intrinsic physical complexity of a system or interconnection of systems may render
their modeling a time consuming task, since models’ parameters should be tuned
properly to reproduce the behavior of the real system. When someone succeeds in



1.2 From the Model–Based to the Data–Driven Framework 7

creating such a complex mathematical model, usually it is embedded into a com-
puter simulation program, thus enabling the so–called Digital Twin paradigm [12],
in which one can test control actions in a simulated environment, which is crucial
to preserve the security of fragile expensive physical systems like mobile robots or
drones.

However, no matter how precise a certain mathematical model is, there may be
real–world situations in which the boundary conditions change or the environment
in which the system operates is modified either through human intervention or
nature–related phenomena. In such cases, control actions which are effective and
robust on digital twins may become ineffective when applied to the real system,
thus leading to instability of state trajectories.

Eventually, the last critical aspect relies on real–time implementation of con-
trol laws based on a mathematical model. Whatever the technique used, feedback
control signal usually depends statically or dynamically on the system outputs or
upon the state of an asymptotic observer. When the system nonlinearities are too
complex, the control law may become too complex, thus leading to latency in sen-
sor measurement and actuator actions. High latencies or delay effectively violate
the real-time operation constraint of the system. In this respect, a typical control
approach which cannot be applied in real–time for a class of complex nonlinear sys-
tem is the one relying on the minimization of a cost functional (MPC and optimal
control). This because discrete micro–controllers embedded on real–world systems
do not have a sufficient computational power to compute within the time limits the
optimal control signal based on the state measurements coming from sensors [13].

These challenges underscore the importance of considering alternative control
methods, such as data-driven control, in all the scenarios where developing control
laws in the traditional model-based way is infeasible or impractical. Data-driven
methods can offer more flexibility and adaptability in cases where accurate models
are challenging to obtain or, when developed, are too complex to be controlled by
model–based controllers.

1.2 From the Model–Based to the Data–Driven Frame-
work

Data-driven control methods, as the name suggests, represent a class of control ap-
proaches relying on the use of data to design, optimize, and adapt control strategies
to a variety of processes and dynamical systems [14]. These methods have gained
significant attention and relevance in the last decade with the advent of Big Data,
advanced sensors, and Machine Learning (ML) techniques.
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Data-driven control methods offer several advantages over traditional model-
based control approaches, as they can be more flexible, adaptable, and suitable for
complex systems where accurate models are challenging to develop.

In general, all the techniques developed in literature relying on data–driven
methods have as a prerequisite the availability of real–time information about the
observable states of a certain physical systems, which can be directly measured
through sensing devices. This feature is exactly the same as that found in closed
loop control systems in the model-based domain: however, the use made of the
signals coming from the sensors is clearly different.

Indeed, data–driven control methods do not rely on explicit mathematical mod-
els, and this is why they are also called model–free [15].

It is important to highlight that this claim does not imply that data–driven tech-
niques cannot be implemented when a mathematical model of the system is present.
The term model–free, indeed, refers to the working principle of the controller, which
outputs its control signals without taking into account the model’s equation, but
relying on intelligent learning–driven algorithms. However, the control actions can
be either applied to a real–world process through actuators or they may be first
tested on a simulated environment or a digital twin. The former situation implies
the complete absence of a mathematical model, since the intelligent agent directly
interacts with a real system, whereas the latter scenario envisages the presence of
a model which simulates the system behavior, even if such model is not accessible.
Hence, in a typical setting, data–driven methods are first tested on a digital twin
or simulator, and then deployed in the real world, especially in the case of systems
where random actions can lead to serious instability (just think about the automatic
control of insulin infusion in type 1 diabetic patients [16]).

Another key feature of model–free controllers is their adaptability to dynamic
changes over time, since they adapt their outputs by learning from observation
data coming from the process. This property guarantees as well robustness against
uncertain or stochastic parameters and unknown disturbances acting at any level
in the open–loop control chain.

Eventually, some data–driven control methods allow real-time optimal decision–
making, since they are previously pre–trained offline before the deployment on the
real–world [17]. Moreover, data–driven controllers can continuously learn and up-
date their control law while performing further real–time training on the process,
thus capturing external events or accidents that might be not present during the
training phase. This fundamental property overcomes the limitations imposed by
model–based controllers, whose control laws are valid only when the modeling as-
sumptions hold.
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From the dissertation just concluded, it is clear that the main limitation of
data-driven methods is precisely their availability, reliability and variability. When
the sensing devices measure the system outputs with a certain non–negligible noise
level, data–driven control methods may learn control policies based on noisy data
not corresponding to the true behavior of the system. Moreover, another not–so–
evident drawback is the one of overfitting, namely the situation in which the control
strategy becomes too specific to the training data and may not generalize well to
new situations [18].

In the last years data-driven control techniques have been successfully applied in
various domains, including industrial automation [19], mobile robotics [20], satellite
communications [21], smart grids [22], and healthcare [23,24].

Over the years the scientific community has developed a variety of data-driven
control methods which exploits completely different mathematical reasonings and
theory in order to design, learn and optimize control strategies. The choice of a
certain method depends on the specific application, the quality and quantity of
available data, and the complexity of the control problem.

Various perspectives are employed in the literature to categorize data–driven
model–free control techniques. For instance, one viewpoint, as outlined in [25], cen-
ters around the control system structure. The first category posits that the optimal
controller is embedded in the controller structure with one or more unknown param-
eters, which is derived from experimental knowledge about the process structure.
This approach transforms controller design into a direct identification problem for
the controller parameters. The second category encompasses controllers designed
based on various function approximations or equivalent process descriptions, such
as neural networks, fuzzy models, or Taylor approximation. In this case, controller
parameters are fine-tuned by minimizing a specified performance criterion using
input-output data, including offline and online data.

Another subdivision, the one adopted in this thesis, categorizes data-driven
algorithms based on how the controller is synthesized: in one go, or iteratively.

In what follows we recall some of the most famous and used techniques in the
data–driven framework.

• Iterative Feedback Tuning (IFT), detailed in [26–28], is a well-recognized it-
erative data-driven technique that refines controller parameters iteratively by
following the gradient direction of an objective function. IFT is applicable
when there is an initially parameterized controller with a known finite objec-
tive function value.

• Simultaneous Perturbation Stochastic Approximation (SPSA), described in [29,
30], employs gradient-based stochastic approximation algorithms that rely on
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estimated gradients of the objective function. SPSA is beneficial for its abil-
ity to reduce implementation costs by requiring only two objective function
evaluations per iteration.

• Iterative Correlation-based Tuning (CbT) [31] operates within the model ref-
erence control framework and focuses on the correlation between the reference
input and tracking error. A decorrelation procedure is applied to make the
tracking error converge to zero.

• Noniterative CbT is similar to the method described above, but uses a corre-
lation approach to deal with measurement noise and has been demonstrated
to outperform other data-driven techniques statistically [32].

• Fuzzy Logic Control. It is a rule-based control approach that can be data-
driven. Fuzzy controllers use linguistic rules and fuzzy sets to handle imprecise
information and adapt to changing conditions [33].

• Iterative Regression Tuning (IRT) [34] minimizes an objective function de-
pendent on controller tuning parameters and aggregates performance specifi-
cations. IRT employs a gradient-based search, either using simulations of the
control system behavior or local linear models derived from finite difference
approximations and real-world experiments.

• Iterative Learning Control (ILC) states that performance of optimal controller
can be improved by using experience gained from previous experiments. ILC
can be formulated as iterative parametric optimization, making it applicable
to reference input tuning in two-degree-of-freedom control systems [35].

• Unfalsified Control is a data-driven MFC approach that, based on measured
input-output data, falsifies controllers that fail to satisfy the performance spec-
ifications. The only one which does not falsify the data is implemented [36].

• Virtual Reference Feedback Tuning (VRFT) is a non-iterative technique that
minimizes the difference between control system outputs and a reference model
[37,38]. VRFT searches for the global minimum of the objective function op-
timum, being reduced to an identification problem as far as the controller and
not the process is concerned. In the case of restricted complexity controller
design, the achieved controller is a good approximation of the restricted com-
plexity global optimal controller. VRFT is a one-shot algorithm, i.e., it can
be applied using a single set of input data generated from the process, with
no need for additional specific experiments nor iterations.

• Extremum Seeking Control uses a probing signal and demodulation to recover
the gradient of the objective function. The stability of this adaptive control
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system structure is proven with the averaging method in terms of showing
that the system converges to a small neighborhood of the extremum of the
objective function [39,40].

• Machine Learning Algorithms: ML is at the core of many iterative data-
driven control systems. Algorithms such as neural networks, support vector
machines, decision trees, random forests, and gradient boosting can be used to
learn control policies directly from data, adapting to changing system condi-
tions and disturbances [41]. Reinforcement Learning (RL), a subset of ML, is
an iterative control method where an intelligent agent learns to interact with
a dynamic environment through trial and error. RL agents learn to modify
their parameters and control the process based on received rewards.

Among all the data–driven techniques presented above, this work focuses its
attention on the last one, namely ML–based control. The next section will present
the basics of ML, characterizing the first two out of its three areas.

1.3 Machine Learning

Machine Learning is a subfield of Artificial Intelligence (AI) that focuses on the
development of algorithms and statistical models that enable computer systems
to learn and improve their performance on a specific task through experience and
data, rather than being explicitly programmed [41]. In ML, computers are trained
to recognize patterns, make predictions, or make decisions based on data, often with
the goal of improving their performance over time. At its core, ML represents a
data-driven approach to problem-solving. Rather than relying on explicit program-
ming, ML algorithms learn from data and adapt to make predictions, decisions,
or recommendations [41]. The key processes within ML include data collection,
data preprocessing, model selection, training, and evaluation. Through this cycle,
models are created and refined to extract patterns, make predictions, and provide
insights.

The field of ML has witnessed remarkable advancements in the past two decades,
transitioning from a scientific curiosity in research labs to a practical technology
extensively utilized in various commercial applications. In the realm of AI, ML
has become the preferred approach for developing functional software for tasks like
computer vision, speech recognition, natural language processing, robot control, and
more. Many AI developers now acknowledge that, for numerous applications, it is
more effective to train a system by providing examples of desired input-output be-
havior rather than manually programming it to anticipate responses for all possible
inputs.
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The impact of ML, however, extends beyond AI, permeating various sectors
and industries that deal with data-intensive problems, such as consumer services,
complex systems fault diagnosis, and logistics chain management [42]. Moreover,
it has had a broad influence on empirical sciences, including fields like biology,
cosmology, and social science, where ML methods have been employed to analyze
high-throughput experimental data in innovative ways.

The ML machinery exploits wide dataset and data repository which serve as the
input of any ML–based technique. These data are used to build function approxi-
mation in order to assess a relation between input and output pairs. Said function
can be explicitly represented in a parameterized form, or it can be implicit and
obtained through a search process or optimization procedure. Regardless of the
representation, the key objective is to find parameter values that optimize a given
performance metric or Key Performance Indicator (KPI).

A diverse array of ML algorithms has been developed to address various data
and problem types. These algorithms search through a large space of potential
programs, guided by training experiences, to find the program that optimizes the
performance metric. They differ in the way they represent candidate programs
(e.g., decision trees, mathematical functions, programming languages) and how
they search through this program space (e.g., optimization algorithms, evolutionary
search methods).

A central scientific and practical objective in the ML field is to theoretically
characterize the capabilities and inherent challenges of specific learning algorithms
and learning problems. This involves understanding how accurately an algorithm
can learn from a specific type and volume of training data, its resilience to modeling
assumptions or training data errors, and whether a given learning problem can be
feasibly solved. These characterizations often employ frameworks from statistical
decision theory and computational complexity theory.

For this reason, ML as a field resides at the intersection of computer science,
statistics, and various disciplines concerned with automatic improvement, inference,
and decision-making under uncertainty, drawing insights from fields like psychology,
evolutionary biology, adaptive control theory, education, neuroscience, organiza-
tional behavior, and economics. While there has been increased interdisciplinary
collaboration in recent years, there is still much untapped potential for synergies and
diverse formalisms and experimental methods from these disciplines in the study of
systems that improve through experience.

Traditionally, ML is commonly categorized into three major types: Supervised
Learning (SL), Unsupervised Learning (UL), and Reinforcement Learning (RL).
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1.3.1 Supervised Learning

In the SL domain, algorithms learn from labeled data to make predictions. This
type of ML is widely used for two types of task:

1. Classification, in which the goal is categorize records or images among a mul-
titude of discrete classes or categories. A typical example is the classification
of incoming emails, deciding whether they are spam or not spam.

2. Regression, whose aim is to creates functions capable of predicting continuous
variables, like house prices or market trends.

In the SL setting, training data is represented as a set of (x, y) pairs, and the
objective is to generate a prediction

y∗ = f̂(x∗), (1.4)

as a response to a given query x∗. The input data x can take the form of tradi-
tional vectors/tensors or more complex entities such as documents, images, DNA
sequences, or graphs. Similarly, a wide range of output types y have been investi-
gated. While a significant focus has been on binary classification problems, where y
takes one of two values (e.g., healthy or ill), research has also delved into multiclass
classification (where y can take on one of K labels), multilabel classification (where
y is assigned several of the K labels simultaneously), ranking problems (where y
establishes a partial order within a set), general structured prediction problems
(where y is a combinatorial object like a graph, with components that must satisfy
a set of constraints), and hybrid classification, in which y is given by a combination
of discrete and real-valued components.

One of the key issues in SL pertains to features of the input vector x. In many
regression or classification problems, training data are characterized by heteroge-
neous meaning and structures. As an example, a training set may contain data
about longitude, latitude, humidity and atmospheric pressures, thus leading to fea-
tures having completely different ranges and magnitudes. The scale of individual
features can influence a lot the Neural Network (NN) model’s performance, since
features with larger magnitudes might dominate those with smaller magnitudes
during the learning process. This can lead to the model being biased toward fea-
tures with larger scales, potentially causing the model to perform poorly. Moreover,
gradient-based optimization algorithms, such as gradient descent, converge faster
when the input features are within a similar range [41]. Features with disparate
scales can lead to slow convergence, making it difficult for the algorithm to find the
optimal solution in a reasonable time.
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The straightforward solution for this issue is the introduction of normalization
and standardization techniques which transform the input features of the training
and test dataset to ensure that they have a consistent and standardized range.

The most important normalization techniques are:

1. Min–Max Scaling, in which the original data x is changed in the following way

x̃ = x− xmin
xMAX − xmin

, (1.5)

so that the normalized feature x̃ ∈ [0, 1].

2. Standardization, which transforms features to have a zero mean and a stan-
dard deviation equal to one:

x̃ = x− µ
σ

, (1.6)

where µ and σ are the mean and the standard deviation of the original feature,
respectively.

The problem of feature normalization will be further analyzed in the follow-
ing chapters, when dealing with heterogeneity of the observable state space of a
dynamical system.

Regarding the mapping f̂(·) that needs to be built, multiple forms have been
proposed in literature, including decision trees, decision forests, logistic regression,
support vector machines, neural networks, kernel machines, and Bayesian classi-
fiers [43]. Regardless the methodology, all the procedures used for learning f̂(·)
from data draw inspiration from optimization theory and numerical analysis, using
arguments related to the minimization of a function via gradient descent [41].

A particularly impactful recent advancement in SL pertains to Deep Neural
Network (DNN), which consist of multilayer networks composed of threshold units3,
each performing a simple parameterized operation of its inputs [44]. The structure
of a typical DNN is depicted in Fig. 1.2.

The subdomain of SL pertaining to DNN is called Deep Learning (DL). DL sys-
tems employ gradient-based optimization techniques to adjust parameters through-
out such multi-layered networks based on errors defined at their output. Leveraging
modern parallel computing hardware, such as graphics processing units initially de-
veloped for gaming, it has become feasible to construct DL systems containing bil-
lions of parameters, which can be trained on extensive collections of images, videos,
records and speech samples accessible on the internet. These large-scale DL systems

3Said units are called neurons because they are a simplification of a human neural network, a
concept from biology.
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Figure 1.2. A DNN architecture with a single–neuron input layer, three triple–neuron
hidden layers and a double–neuron output layer.

have made significant strides in recent years, particularly in the domains of com-
puter vision [45,46], speech recognition [47], and healthcare [23] yielding substantial
improvements in performance compared to earlier approaches.

1.3.2 Unsupervised Learning

While a significant portion of the practical achievements in the field of ML has
been derived from SL methods, which are instrumental in discovering meaningful
representations, efforts have also been directed toward developing DL algorithms ca-
pable of unveiling valuable input representations without relying on labeled training
data [41]. This broader challenge is known as Unsupervised Learning (UL), repre-
senting the second paradigm in the realm of ML research.

UL, in a broad sense, revolves around the analysis of data that lacks explicit
labels while making certain assumptions about the underlying structural properties
of the data, aiming to find patterns, relationships, or structures within the data.
UL involves two main problems:

1. Dimensionality reduction, in which one may assume that data points lie on a
low-dimensional manifold and endeavor to explicitly identify and characterize
that manifold through data analysis. Methods for dimension reduction, such
as principal components analysis, manifold learning, factor analysis, random
projections, and autoencoders [48, 49], embody different specific assumptions
about the underlying manifold, like whether it is a linear subspace, a smooth
nonlinear manifold, or a collection of submanifolds.

2. Clustering, dealing with partitioning observed data and establishing rules for
predicting future data, all in the absence of explicit labels that indicate the
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Figure 1.3. Automatic categorization of data points in a two–feature space using three
clusters.

desired partition. Several clustering techniques has been developed, each re-
lying on specific assumptions regarding the nature of the cluster. The most
famous ones are K–Means and Spectral Clustering [50, 51]. In Fig. 1.3 it is
possible to see the result of a K–Means algorithm.

Both clustering and dimension reduction place considerable emphasis on the
challenge of computational complexity, especially since their aim is to harness the
vast datasets available when one forgoes the use of supervised labels.

1.3.3 Reinforcement Learning

Reinforcement Learning is all about learning by interacting with an environment. It
constitutes a fundamental technique in autonomous systems control and, in general,
AI. In this approach, the information available in the training data falls between that
of SL and UL. Instead of having training examples that explicitly specify the correct
output for a given input, RL assumes that the training data (or the system’s output)
provides indications as to whether an action is correct or not, thanks to a feedback
reward mechanism. Typical RL problems involve general control-theoretic context,
in which the learning task revolves around acquiring a control strategy (referred
to as a policy) for an agent operating in an unknown dynamic environment. This
learned strategy is designed to select actions for any given state, with the objective
of maximizing the expected cumulative reward over time [52].

The control methods enlightened in this essay rely entirely on data–driven tech-
niques belonging to the field of RL. In the next chapter the mathematical foundation
of RL control will be shown off.



Chapter 2

Markov Decision Processes and
Reinforcement Learning

B ridges in research between control theory, operations research and computer
science have strengthened over the years, with formal mathematical formula-

tions serving as points of intersection with RL. Algorithms belonging to the latter
domain often draw upon concepts well-established in the control theory literature,
including policy iteration, value iteration, rollouts, and variance reduction [52]. RL
methods constitute the most important and successful examples of data–driven con-
trol techniques, since they do not rely on any model of the process1, learning control
actions through a learning procedures.

2.1 Mathematical Framework of Markov Decision Pro-
cesses

The mathematical framework used to model decision–making problems under uncer-
tainty or stochasticity in the RL context relies on Markov Decision Process (MDP).
It provides a structured way to model situations where an agent interacts with an
environment over a sequence of discrete time steps, making decisions to maximize
expected cumulative rewards. In the AI literature, usually the terms environment
and agent substitute the more control–theory related nouns process and controller,
respectively.

1There also RL methods exploiting the model of the process, but this work does not consider
them.
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Formally, a MDP can be defined as a tuple

MDP =< S,A, P (·), R(·) >, (2.1)

where:

• S is the finite set of all possible states that the environment can be in. Each
state represents a specific observable configuration.

• A is the finite set of all possible actions an agent can take over the environment.

• P (s′|s, a) = Pr(st+1 = s′|st = s, at = a) defines the probability of transi-
tioning2 from state s to state s′ when the agent takes the action a. The
function P (·) is conditionally independent of all previous states st−1, st−2, . . .

and actions at−1, at2 , . . . , thus satisfying the Markov property3.

• R(s′, s, a) is the immediate reward the agent gets from the environment after
passing from s to s′ due to action a.

MDP are an extension of Markov chains, which are objects representing a se-
quence of possible events whose probability depends only on the state reached in the
previous event. Differently from Markov chains, MDP add actions (allowing choice)
and rewards (giving motivation). It follows that, conversely, if only one action exists
for each state and all rewards are the same, a MDP collapses to a Markov chain.

The agent behavior in the MDP framework is called policy, and can be defined
formally as

π(·) : S → A, (2.2)

i.e. a function whose domain lies within the state space S and whose image coincides
with the action set A.

The goal of an agent in a MDP is to find an optimal policy π∗ that maximizes
the expected cumulative reward, also known as return. The latter is defined as the
sum of the discounted reward over time:

G = R0 + γR1 + γ2R2 + · · · =
∞∑

t=0
γtRt, (2.3)

where γ ∈ [0, 1) is the discount factor, representing how much the agent values
future rewards compared to immediate rewards. A higher discount factor (γ ≈ 1)

2Note that the concept of transition probability function mimics the generic concept of nonlinear
dynamics in traditional control systems. P (·) expresses how the environment evolves over time,
just like the vector field f(·) in (1.1).

3In mathematics, the term Markov property refers to the memoryless property of a stochastic
dynamical process, i.e. its future evolution is independent of its history [53].
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gives more weight to future rewards, whereas γ ≈ 0 is used in problems in which
the the immediate system’s behavior is more important than the future one.

Hence, from (2.2) and (2.3), the optimal policy can be computed as

π∗ = argmaxπVπ(s) = E
[
G|s0 = s, π(·)

]
, (2.4)

where Vπ(s) is called state–value function, representing how good is for the system
to be in a certain state. Defining V ∗(s) as the maximum possible value of Vπ(s), it
holds

V ∗(s) = max
π

V π(s). (2.5)

Markov Decision Processes provide a solid theoretical foundation for modeling
and solving sequential decision-making problems in various engineering domains,
including robotics, telecommunications, resource allocation, and finance.

Solving MDP with finite state and action spaces can be accomplished using
various techniques, such as dynamic programming. The latter methods can be
specifically designed for MDPs with finite state and action spaces, where transition
probabilities and reward functions are explicitly provided. This implies that dy-
namic programming is a framework used to solve MDP problems when an explicit
mathematical model of the transition probability P (·) is available.

Standard algorithms belonging to this class requires the storage of two arrays
indexed by state: one for the value V (s) and the other for the policy π(s). In
general, at the end of the procedure, the policy shall contain the optimal solution
π∗, while Vπ∗(s) will hold the discounted sum of the expected rewards to be obtained
when following policy π∗ from state s0.

There are two main algorithms belonging to the field of dynamic programming:

1. Value iteration [54], in which π(s) is not used and embedded iteratively into
the computation of the state–value function Vπ(s), which proceeds as follows:

Vi+1(s) = max
a

∑
s′

P (s′|s, a)(R(s, s′, a) + γVi(s)), (2.6)

with V0(s) being an initial random guess.

2. Policy iteration [55], in which both Vπ(s) and π(s) are explicitly computed
step after step until a stable policy is reached. The first step is then

Vπ(s) =
∑
s′∈S

Pπ(s)(s, s′)
[
R(s, π(s), s′) + γVπ(s′)

]
, ∀s ∈ S (2.7)
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Figure 2.1. The feedback–based scheme of RL.

and the second is

πnew(s) = arg max
a∈A(s)

∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γV π(s′)

]
. (2.8)

The assumption of perfect knowledge of the environment dynamics constitutes
an important limitation, since these methodologies cannot be applied in a data–
driven control framework where models are not available.

2.2 Reinforcement Learning

When the transition probability P (·) is not known, it is possible to rely on RL
techniques, in which the agent learns the optimal policy through experience. The
working principle of any RL algorithm is shown in Fig. 2.1: it is possible to notice
that the scheme preserves the feedback mechanism of classical control theory, in this
case adding a double feedback due to the presence of the reward signal.

All MDPs handled through RL require the estimation of the value function
Vπ(s). This approach may provide useful information, but there is a lack of in-
formation related to the transition from one state to the other, which depends on
the specific action one takes. Hence, the state–value function concept can be ex-
tended including the explicit dependency on the action, thus having the so–called
action–value function Qπ(·) for a given policy π(s) [52]:

Qπ(s, a) = Eπ[Gk|sk = s, ak = a], ∀s ∈ S,∀a ∈ A. (2.9)

Action–value functions satisfy recursive relationships through the Bellman Equa-
tion, which expresses a link between the action-value function of a state with the
action-value function of the next state
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Qπ(s, a) = Eπ[Gk|sk = s, ak = π(sk)]

= Eπ[Rk+1 + γGk+1|sk = s, ak = a]

=
∑
s′

P (s′|s, a)(R+ γ
∑
a′

π(a′|s′)Qπ(s′, a′)),
(2.10)

where (s′, a′) is the next state-action couple with respect to (s, a). Hence, solving a
MDP through RL means finding the optimal action-value function

Q∗(s, a) = max
π

Qπ(s, a), (2.11)

for which it holds the Bellman principle of optimality [52]:

Q∗(s, a) =
∑
s′

P (s′|s, a)(R+ γmax
a′

Q∗(s′, a′)). (2.12)

2.2.1 Monte Carlo Methods

Monte Carlo Methods take the name from the numerical procedures developed by
scientists of the Manhattan Project to solve numerically integrals which could not be
solved analytically [56]. In these methods, the learning process is done by observing
the current state, taking an action, collecting the reward, and repeating it again.
This process is called experience sampling. The only accessible knowledge, i.e. the
reward and the states, helps to estimate the state-value function.

The Monte Carlo techniques can be divided into three main parts:

• Monte Carlo Prediction, used to estimate the state value function of a given
policy π, making use of a set of episodes. The latter is a crucial concept in the
RL framework, denoting a finite temporal sequence of states, actions, reward
and new states, thus characterizing the history of the interaction between the
controller and the process. Each episode is made of a set of discrete time steps
within a user–defined control horizon. In Monte Carlo Prediction, an empirical
mean return, instead of the expected return, is used. This calculation can be
done via two different algorithms:

1. Every-Visit Monte Carlo, where the return is calculated for each state s
whenever it is visited in each episode. Then, the mean of the state value
Vπ(s) is calculated by dividing the sum of all the returns by the number
of visits.

2. First-Visit Monte Carlo, in which the return of the state s is considered
only when it is visited for the first time within an episode.
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• Monte Carlo Exploring Starts trains a policy using only the returns. The idea
behind this method is similar to the one of Policy Iteration in the dynamic
programming framework; instead of using the state–value function for the im-
provement, the action–value Qπ(s, a) is exploited, and it evaluates the policy
at each episode of interaction with the environment. This method has as main
drawback the necessity of running for many episodes to converge [52].

• Monte Carlo Control introduces the fundamental concept of stochastic policy,
thus selecting either random actions out of the |A| available with probability
ε or the best action according to the state–action function with probability
1 − ε. By considering this policy, the exploration of all the actions in all the
states is ensured.

2.2.2 Temporal Difference Learning Methods

In the Temporal Difference (TD) framework, like in Monte Carlo, the transition
probability is not known. The main difference is that these methods work online
to update the estimation of the action–value function. For this reason, TD control
is considered to be an upgrade of Monte Carlo RL, thanks to continuous learning,
the non-necessity of having an episode and terminating states, and the low variance
of the estimation. In addition, TD methods may take into account reward signal
delays, since sometimes it cannot be obtained immediately after performing a certain
action.

The three main algorithms belonging to TD learning can be summarized as
follows:

• TD(0) Learning

• SARSA

• Q–Learning.

TD(0) Learning

This learning method aims to estimate the state value function by using a single-
step update, it is an evaluation method for a given policy π. The estimation is done
based on the immediate reward and the next state’s value estimate according to the
given policy π. In the TD(0) algorithm, the update is done right after obtaining
the reward and reaching the new state. The update rule at time t+ 1 is defined as

V (st)← V (st) + α [Rt+1 + γV (st+1)− V (st)] , (2.13)

where α ∈ R is the learning rate representing the step of the update.
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The TD(0) algorithm is described in Alg. 1.

Algorithm 1 TD(0) Learning
1: Input: Policy π to be evaluated
2: Output: Updated state–value function V (s) ∀s ∈ S
3: Initialization: V (s) ∈ R ∀s ∈ S except that V (terminal) = 0
4: for episode e← 1 to ∞ do
5: Initialize s
6: for each time step t in the episode do
7: a = π(s) action given by policy π at s
8: Perform action a and observe R′ and s′

9: V (s)← V (s) + α [R′ + γV (s′)− V (s)]
10: s← s′

11: end for
12: end for

SARSA

The name SARSA comes from the sequence considered in the training phase, which
is

s→ a→ r → s→ a

i.e., State-Action-Reward-State-Action. SARSA is an on–policy TD control method,
meaning that it finds the next action by following a given policy used also for the
update rule, which is:

Q(st, at)← Q(st, at) + α [R(st, at, st+1) + γQ(st+1, at+1)−Q(st, at)] . (2.14)

The complete algorithm is described in Alg. 2. It is possible to see that the update
is done at every transition from a nonterminal state, exploiting the quintuple

(st, at, Rt+1, st+1, at+1).

Q-Learning

As in SARSA, also the Q–Learning algorithm exploits the action–value function
Q(s, a). In this case, however, the learning phase follows an off–policy, meaning
that the way actions are chosen during training do not change. The name comes
from the presence of a specific object, the Q–table, used to store data related to the
action–value function Q(s, a). Due to the presence of a terminal state, the learning
is carried out in deterministic episodes: in each one of them, the agent continues
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Algorithm 2 SARSA
1: Output: Updated action–value function Q(s, a)
2: Initialization: Q(s, a) ∈ R∀s ∈ S, a ∈ A except that Q(terminal, ·) = 0
3: for episode e← 1 to ∞ do
4: Initialize s
5: a = action given by policy π at s based on the Q-table
6: for each time step t in the episode do
7: Perform action a and observe r(s′) and s′

8: a′ = action given by policy π at s′ based on the Q-table
9: Q(s, a)← Q(s, a) + α [R′ + γQ(s′, a′)−Q(s, a)]

10: s← s′

11: a← a′

12: end for
13: end for

interacting with the environment and changing the Q–values until it reaches the
target state from the initial random one. The Q-table can be filled with random
initial values, then, the agent detects the current state s and chooses an action a to
be performed. After performing the action, the agent observes the reward R(s, s′, a)
and the new state s′ and updates the table by considering the new knowledge. The
generic entry (s̄, ā) of the Q–table can be interpreted as the mathematical quantity
representing how good is performing an action ā when the environment state is s̄.
The update rule in the Q–Learning method depends on the temporal difference
which makes use of the error and the presence of a learning rate:

Q(st, at)← Q(st, at) + α

[
R(st, at, st+1) + γmax

a∈A
Q(st+1, a)−Q(st, at)

]
. (2.15)

The advantage of using Q-Learning over SARSA is the fast-iteration with the
environment, since the policy does not have to be updated online. On the other
hand, SARSA is more stable than Q-Learning and is preferred when considering
safety constraints in the environment [57]. The complete Q–Learning algorithm is
given in Alg. 3.

Q–Learning is a foundational technique in the field of data–driven control since
it does not require a model of the system’s dynamics, making it suitable for decision–
making problems in unknown or complex environments. However, Q–Learning be-
comes impractical in high–dimensional state and action spaces4 and can only work
with discrete actions and state spaces. This latter feature may require the dis-
cretization of continuous spaces, thus leading to information loss.

4This issue is known in literature as the curse of dimensionality.
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Algorithm 3 Q-Learning
1: Output: Updated Q–table Q(s, a)
2: Initialization: Q(s, a) ∈ R ∀s ∈ S, a ∈ A except that Q(terminal, ·) = 0
3: for episode e← 1 to ∞ do
4: Initialize s
5: for each time step t in the episode do
6: Choose the action a according to off–policy π(s)
7: Perform action a on the environment and observe R′ and s′

8: Q(s, a)← Q(s, a) + α

[
R′ + γmax

a′∈A
Q(s′, a′)−Q(s, a)

]
9: s← s′

10: end for
11: end for

For this reason, since in all engineering fields most of control problems involve
continuous spaces, there is the need of developing more advanced algorithms capable
of learning patterns and policies suitable for complex control tasks.

2.3 Multi–Agent Reinforcement Learning

The notion of MDP is usually applied to single–agent systems, i.e. systems in
which a single controller is present. In many practical problems, however, there
are multiple agents interacting within the same environment. To properly address
these scenarios, the concept of Markov Game is introduced.

Markov Game, also known as Stochastic Game, is a formal framework used to
model multi-agent decision-making in a sequential, stochastic environment. Math-
ematically, a Markov Game is defined as

MG =< I,Si,Ai, P,Ri >, (2.16)

where:

• I = {1, . . . , N} denotes a finite set of agents, where N is the number of
agents. Each one of them is a decision–maker and can take actions over the
environment.

• Si is the private state space of the i–th agent, representing both local infor-
mation of the controller status or global information related to the process.
The joint state space can be defined as

S = S1 × · · · × SN .
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• Ai is the set of actions that agent i can take. The joint space is defined as

A = A1 × · · · × AN .

• P : S × A × S → [0, 1] defines the probability of going from one state to
another one given a certain set of action. Also in the multi–agent case, the
transition probability function satisfies the Markov property.

• Ri : Si × Ai × Si → R is the private reward of each agent i, which provides
feedback based on the chosen action and corresponding state.

The challenging problem related to Markov Games is that each agent needs to
find its optimal policy πi : Si → Ai which shall maximise the expected cumulative
reward.

Solving a Markov Game involves finding a set of optimal policies for all agents,
considering the interactions between them. The solution relies on the notion of
Nash equilibrium [58], where no agent has an incentive to unilaterally change its
policy. This concept has proven to be fundamental in numerous disciplines, such as
macroeconomics, finance and social interactions.

In the context of Markov Games, a Nash equilibrium is defined as follows.
Given a Markov Game with N agents, each agent i selects a policy πi. Moreover,

define as π = (π1, . . . , πN ) the joint policy given as the combinations of policies of
all agents. A joint policy π∗ is a Nash equilibrium if, for each agent i, no unilateral
change in policy by agent i can improve its expected reward while keeping the
policies of other agents fixed. Mathematically, a joint policy π∗ is a Nash equilibrium
if, ∀ i = 1, . . . , N and ∀π′

i alternative policy

E
[
Ri|π∗

]
≥ E

[
Ri|π

′
i, π

∗
−i

]
, (2.17)

where π∗
−i represents the equilibrium policies for all agents except agent i. In simpler

terms, in a Nash equilibrium, each agent’s policy choice is optimal given the policies
of the other agents. No agent can improve its situation by changing its strategy
alone, assuming the strategies of the other agents remain unchanged.

Markov Games can model scenarios where agents may need to cooperate or
compete with each other, providing a formal framework for modeling scenarios
involving multiple decision-makers, such as collaborative multi–robot tasks or com-
petitive access to shared computing or connectivity resources. For these reasons,
Markov Games are widely used and solved in the context of Multi Agent Reinforce-
ment Learning (MARL), in which multiple intelligent agent following the RL basic
principles interact together.



2.3 Multi–Agent Reinforcement Learning 27

A generic MARL problem can be categorized into three scenarios:

1. Cooperative, in which agents are tasked with collaborating to address a com-
mon objective, striving to collectively maximize a shared reward. A typical
example is a fleet of UAVs trying to accomplish a certain task, like formation
control.

2. Competitive, where agents engage in a zero-sum game where only one agent
can ultimately prevail. As a result, agents focus on maximizing their indi-
vidual rewards while simultaneously seeking to minimize the rewards of their
peers. Typical examples of competitive scenarios include gaming activities or
resource allocation such as car racing, blackjack, and chess.

3. Mixed, with the goal of striking a balance between cooperation and competi-
tion. Notable examples include team sports played by humanoid robots.

Moreover, depending on the specifics of the training and execution phase of the
specific RL algorithm, cooperative MARL algorithms can be classified into three
distinct learning paradigms [59].

2.3.1 Decentralized Training and Centralized Execution

In the Decentralized Training and Decentralized Execution (DTDE) framework,
each agent operates with its own policy, which maps its local observations to a
unique action distribution represented as πi : Si → Ai. Importantly, these agents
do not share information, and each agent independently learns its policy. This ap-
proach can be applied to large–scale multi–agent systems, where a centralized con-
troller cannot be applied. One drawback of this approach is the lack of information
sharing, that causes the non-stationarity in the environment, making the learning
process more challenging. Despite these limitations, DTDE paradigms has found
broad applications in solving tasks such as cooperative navigation and formation
control [60]. The typical structure of a DTDE algorithm is shown in Fig. 2.2.

2.3.2 Centralized Training and Centralized Execution

The Centralized Training and Centralized Execution (CTCE) paradigm employs a
centralized learner with the objective of acquiring a unified policy for all agents,
denoted as π : S → A. This collective policy translates distributed observations
into a set of action distributions for each individual agent. An essential prerequisite
in the CTCE approach is seamless and instantaneous communication among agents.

In cases with a relatively larger number of agents, the CTCE paradigm confronts
a challenge known as the curse of dimensionality. This arises because the total
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Figure 2.2. DTDE Architecture.

state-action space, considering all agents, can grow exponentially, rendering the
quest for an optimal joint policy infeasible. To mitigate the dimensionality issue,
a common strategy is to decompose the joint policy into individual agent policies,
allowing them to train independently while facilitating information exchange among
themselves [61].

However, this approach introduces a new problem referred to as the lazy agent
problem, in which one agent may have a reduced incentive to learn an effective
policy because its actions might hinder another agent from acquiring a superior
policy, ultimately resulting in lower collective rewards. In the context of the lazy
agent problem, team members exhibit varying levels of performance but still share
the same cumulative reward. To address this challenge, researchers have put forth
a range of learning and non-learning methods that assign credit to each agent based
on their individual contributions [62].

Fig. 2.3 shows the standard CTCE architecture.

2.3.3 Centralized Training and Decentralized Execution

Both the CTCE and DTDE approaches present few drawbacks, which is why a
modern MARL paradigm, the Centralized Training and Decentralized Execution
(CTDE) combines elements of both to design advanced algorithms. In this hybrid
paradigm, each agent possesses its own policy, mapping its local observations to
individual action distributions. Notably, a key departure from CTCE is that any
supplementary information provided during the training phase is discarded during
testing.

In the training phase, agents have the capacity to enhance their learning speed
and address non-stationarity in the environment by sharing resources, including
computational resources and acquired knowledge. Mutual information allows agents
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Figure 2.3. CTCE Architecture.

Figure 2.4. CTDE Architecture.

to connect action outcomes with their respective agents, thereby facilitating resource
sharing, such as computational power and accumulated knowledge. Later on, dur-
ing the execution phase, each agent acts independently from the others, but using
the local policy learned thanks to sharing information with the others during the
training phase [63].

The CTDE general scheme is highlighted in Fig. 2.4.





Chapter 3

From Discrete to Continuous
Spaces

T he algorithms in the previous chapter work fine only with finite and discrete
states and actions. Hence, it is very likely that Q–Learning or SARSA cannot

be applied to solve real–world problems in which either spaces are discrete but
contains a huge number of possible combinations, or they are continuous, meaning
that both system outputs and controls lie in the set of real numbers R.

For this reason, a paradigm shift from the traditional tabular representation is
needed, with the aim of shaping in a different way the state–value function Vπ(s)
or the action–value function Qπ(s, a).

3.1 Function Approximation Methods

The main idea is to estimate the action–value function as a generic function ϕ(·)
parameterized by a set of parameters ϑ:

Qπ(s, a) ≈ ϕ(s, a|ϑ). (3.1)

This framework lies within the context of function approximation methods, which
have gained the attention of the AI and control scientific community since the early
90’s [52].

At the beginning of the training procedures, the function parameters ϑ are
usually initialized randomly and later on they are adjusted (in a very similar way
of SL), trying to reach an optimal policy.

There are several techniques belonging to this class of methods, differentiating
one from the other for the shape of the function approximating the action–value
Qπ(s, a). The most used ones are reported as follows:
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• Linear Function Approximation: the function is linear in its features and in the
state. Even if it may seem a simplistic approach, it guarantees explainability
and interpretability [64] of the agent behavior, making it suitable for many
practical RL problems.

• Fourier Approximation: it approximates the value function using a linear com-
bination of sinusoidal functions. They are well-suited in control problems in
which the optimal action and the corresponding states repeats over time [65].

• Tile Coding: the state space is partitioned into overlapping tiles, each one as-
sociated with a feature vector (usually with linear properties), and the value
function is approximated as a weighted sum of these features [66]. This ap-
proach is particularly useful when the state space is discrete but may contain
a huge number of samples.

• Decision Trees and Random Forests: this approach is very similar to tile
coding, since also in this case the state space is partitioned into regions, each
one getting a specific value [67].

• Ensemble Methods: they combine multiple models (linear, nonlinear, stochas-
tic) trying to improve approximation accuracy avoiding overfitting. The most
known techniques in this field are the bootstrap aggregating (or bagging) and
boosting [68].

• Neural Networks: since a generic NN is a nonlinear mapping from the input
space x to the output space y (as shown in the section related to SL), they can
be used as a matter of fact as nonlinear function approximator of state–value
and action–value functions in the RL domain. It has been shown in literature
that this latter method outperforms all the previous ones.

The works and research activities related to this PhD thesis refers entirely to
function approximation methods carried out through NN. In this framework, SL
and RL are linked together in order to build intelligent agent observing states and
rewards coming from the environment (feedback principle) and computing actions
as the output of a complex nonlinear function of the state, represented as a neural
network.

3.2 Deep Q–Learning

One of the greatest scientific successes of the last decade in the field of AI is linked
to the development of the Deep Q–Learning, an algorithm that extends the well-
known and consolidated Q–Learning allowing to deal with MDP characterized by
continuous states and discrete actions.
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Figure 3.1. Graphical representation of a Deep Q–Network.

This algorithm appeared for the first time in 2013, in a research work which on
a first glance may seem to have nothing in common with control theory [69]. The
authors present an intelligent algorithm capable of beating the CPU in the classic
Atari arcade games, like Arkanoid, Pong and Space Invaders [70]. In particular,
this RL algorithm takes as input RGB frames coming from the game, displaying
the current situation, and provides as output discrete commands to be executed by
the user character within the game. The function approximator used is a Convo-
lutional Neural Network (CNN), a particular type of DNN designed specifically for
classification tasks involving RGB images [71]. The research results show that this
new algorithm outperforms the other ones used in the domain of RL, being able to
surpass even human experts in some of the games.

The work in [69] gave the green light to a new research frontier in the field of
data-based control methodologies: Deep Reinforcement Learning (DRL). As the
name suggests, DRL refers to the set of techniques exploiting the combination of
DNN and RL.

Deep Q–Learning is the first example of using NN for approximating action-value
functions. In this framework, the DNN function approximator takes the name of Q–
network (see Fig. 3.1). The idea behind is the same as in Q–Learning: the DNN is
trained following an off–policy mechanism, with the introduction of the fundamental
notion of experience replay. The latter is a computer–science technique through
which it is possible to store agent’s experiences at each time step t, provided as the
tuple et = (st, at, rt, st+1) in a dataset D = e1, . . . , eN .

The Q–Learning update is then applied using some random samples from the
dataset D. After performing the experience replay step, the agent selects the action
according to a given policy π.
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The Q–network is trained by minimizing a sequence of loss functions Li(θi):

Li(θi) = E
[
(yi −Q(s, a|θi))

]
, (3.2)

where θi represents weights and biases of the NN, namely the trainable parameters,
and yi is the target action–value function at iteration i, computed as

yi = E
[
R+ γmax

a′
Q(s′, a′|θi−1)

]
. (3.3)

It is important to notice that the target values depend on the network weights at the
previous iteration θi−1: this is in contrast with the concept of true label introduced
in the SL domain. The targets in that case, indeed, are fixed and provided as the
ground truth during the training phase.

Starting from (3.2) it is possible to define the gradient of the loss function

∇θi
Li(θi) = E

[
(R+ γmax

a′
Q(s′, a′|θi−1)−Q(s, a|θi))∇θi

Q(s, a|θi)
]
. (3.4)

Rather than computing the full expectations in the above gradient, it is often
computationally expedient to optimize the loss function by numerical algorithms
based on the gradient descent principle. As already stated, Deep Q–Learning is
an off–policy algorithm since it learns the optimal policy following a pre–defined
behavior distribution which shall ensure an adequate exploration of the state space.
The most frequent choice, as in standard Q–Learning, is to pick the ε–greedy strat-
egy, thus choosing a random action with probability ε, and the best action so far
with probability 1− ε [52]. The Deep Q–Learning algorithm is detailed in 4.

Algorithm 4 Deep Q-Learning with Experience Replay
1: Initialization: Replay memory D of capacity N and action-value function Q

with random weights
2: for episode e← 1 to M do
3: Initialize s
4: for each time step t← 1 to T do
5: Select action at following ε–greedy strategy
6: Perform action at and observe Rt and st+1
7: Store the transition (st, at, rt, st+1) in D
8: Sample from D a random minibatch of transitions (sj , aj , rj , sj+1)

9: Set yj =

 rj for terminal sj+1
rj + γ max

a∈A(sj+1)
Q̂(sj+1, a, w) for non terminal sj+1

10: Perform a gradient descent step according to (3.4)
11: end for
12: end for
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After the breakthrough brought by Deep Q–Learning, other works have shown
how it is possible to improve the algorithm’s performance by adding other features,
like a double NN in a dueling scenario [72]. However, these kind of algorithms have
an important drawback: they cannot deal with environment requiring continuous
actions. The latter situation is very common in control practice: other approaches
and refinements are then required.

3.3 The Policy Gradient Mechanism

Policy gradient methods are a class of RL algorithms that focus on directly learning
the policy π, without explicitly modeling or estimating the value function V (s) or
Q(s, a). These methods aim to optimize the policy, parameterized as a probability
distribution over actions, by adjusting the parameters in order to maximize the
expected cumulative reward, which can be seen as a cost function

J(θ) = E
[ ∞∑

t=0
γtRt

]
. (3.5)

The learning step updating the policy parameters is performed using again a gradient–
descent methodology, so that the policy is updated in the direction along which the
gradient increases.

Policy gradient methods can naturally handle stochastic policies, which can be
useful for those MDP which are characterized by a non–deterministic dynamics.
However, their most important feature relies on the fact that this family of RL
methods can be applied to both continuous and discrete action spaces, thus solving
the limitations of the Deep Q–Learning domain.

One of the most simple algorithm implementing the notion of policy gradient is
known as REINFORCE, or Monte Carlo Policy Gradient Control [73]. It estimates
the gradient of the expected return with respect to the policy parameters using the
following formula

∇θJ(θ) = Eπθ

[
Gt∇θ log πθ(at|st)

]
, (3.6)

where Gt =
∑T

k=t+1 γ
k−t−1R(sk, ak). This gradient estimator encourages actions

that lead to higher rewards to have higher probabilities and actions with lower
rewards to have lower probabilities. The full algorithm is presented in Alg. 5.

The REINFORCE algorithm does not come without issues. It is affected by
a high variance in their gradient estimates, which can lead to slow and unstable
learning, since it does not include any policy trust region.
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Algorithm 5 REINFORCE: Monte-Carlo Policy Gradient Control
1: Input: a differentiable policy parameterization
2: Algorithm parameter: learning rate α
3: Initialization: Policy parameter θ
4: repeat
5: Generate an episode s0, a0, r0, . . . , sT −1, aT −1, rT −1
6: for each time step t← 0 to T − 1 do
7: Gt =

∑T
k=t+1 γ

k−t−1rk

8: θ ← θ + αγtG∇θπθ(at|st)
9: end for

10: until forever

3.3.1 Proximal Policy Optimization

An algorithm that takes into account the parameter updates by adding constraints
on the size of policy updates and considers other aspects is the Proximal Policy
Optimization (PPO) [74].

PPO is a policy gradient method that has a different objective function to en-
able multiple epochs of minibatch updates. This on-policy method has a simpler
implementation with respect to other algorithms that have similar features, like
Trust Region Policy Optimizer. PPO makes use of the estimation of the advantages
(the difference between the action value and state value function according to π) in
such a way the convergence to the optimal policy is faster. In PPO, the objective
function J(θ) to maximize is a variation of the Clipped Surrogate Objective used
in the Trust Region Policy Optimization (TRPO) [75]. The maximization problem
of the Clipped Surrogate Objective is defined as follows [74]:

max
θ

Êt

[
πθ(at|st)
πθold

(at|st)
Ât

]
subject to Êt [KL [πθold

(·|st), πθ(·|st)]] ,
(3.7)

where Ât represents the estimation of the advantages at time step t calculated as
Ât = Q̂t−V̂t, θold represents the parameter of the policy before the update, KL[·, ·] is
the Kullback–Leibler divergence operator and Ê represent the empirical expectation
(averaging on the collected values over time steps t).

The function to be maximized in (3.7) is obtained in such a way that its gradient
is similar to the gradient in (3.6). The gradient of the objective function can be
rewritten as:

Êt

[∑
a

Qπ(st, a)∇θ log πθ(a|st)
]

= Êt

[∑
a

(Qπ(st, a)− b(st))∇θ log πθ(a|st)
]
,

(3.8)
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where b(st) is any function, even a random variable, that does not vary with the
action a. The equality is given due to the fact that the added amount

∑
a

b(st)∇θ log πθ(a|st)

is equal to zero:

∑
a

b(st)∇θ log πθ(a|st) = b(st)∇θ

∑
a

log πθ(a|st) = b(st)∇θ1 = 0. (3.9)

A possible choice for the function b(st) could be the state–value function or its
estimation V̂ (st). Also, in this case, the policy gradient theorem [52] is used to
calculate the gradient:

∇θJ(θ) = Êt [(Qπθ
(st, a)− Vπθ

(st))∇θ log πθ(at|st)]
= Êt

[
Ât∇θ log πθ(at|st)

]
.

(3.10)

At this point, remains only to show that the previous equation differentiates the the
function to maximize in (3.7). For this scope, the chain rule is applied to calculate
the derivative of the objective function:

∇θ log f(θ)|θold
= ∇θf(θ)|θold

f(θold) = ∇θ

(
f(θ)
f(θold)

) ∣∣∣∣
θold

. (3.11)

Thus, the policy gradient, found previously, does actually differentiate, for small
policy changes, the objective function to maximize in TRPO. On the other hand,
the use of the constraint in this case limits large updates in the policy parameters
to avoid instability during the learning. Nevertheless, the given constraint makes
the optimization problem very complex, that’s why a modification of the PPO is
used in such a way the same goal is achieved. Instead of considering a constrained
optimization problem, another objective function is used:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (3.12)

where
rt(θ) = πθ(at|st)

πθold
(at|st)

, (3.13)

and ϵ is a hyperparameter denoting the amplitude of the clipping range. The r(θ)
is the probability ratio between the new updated policy outputs and the outputs
of the previous old version of the policy network. r(θ) > 1 if the action is more
likely now than it was in the old version of the policy, conversely 0 < r(θ) < 1 if
the action is less likely now than it was before the last gradient step.
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The multiplication by Ât gives an idea about how well or worth the policy is
acting with respect to the baseline, which is the state value function. The use of this
objective function will continue improving the parameterized policy but the clipping
part will limit the updates forcing them to stay within the region [1− ϵ, 1 + ϵ].

Keeping in mind that the advantages could be positive or negative, for better or
worse performance of the policy, the min operator will work differently in these two
cases. When Ât is positive, the objective function, for a certain t, has the maximum
value of Ât · (1 + ϵ) if rt(θ) > 1 + ϵ otherwise the increase is linear. On the other
hand, when Ât is negative, the maximum value for the objective function in t is
Ât · (1− ϵ) if rt(θ) < 1− ϵ.

In this way, the step done in the optimization is limited in both cases. When the
policy acts better than expected (positive Ât), the action update is not overdone
thanks to the clipping. On the contrary, when the action is worse than expected
(negative Ât), the clipping prevents the overdone update which would reduce largely
its probability in the future.

In addition, to combine the strengths of policy gradients and value-based meth-
ods, PPO makes use of the Actor–Critic architecture1. In this scheme, the policy
(actor) is optimized using policy gradients, while a value function (critic) is used
to estimate the expected return and to reduce the variance in gradient estimates.
The critic network, during the learning, is updated frequently according to the ex-
perience collected by the interaction between the agent and the environment. Due
to the fact that PPO uses an estimation of the state value function, the final PPO
objective function is:

LP P O
t (θ) = LCLIP +V F +S

t (θ) = Êt

[
LCLIP

t (θ)− c1L
V F
t (θ) + c2S[πθ](st)

]
, (3.14)

where c1, c2 > 0, S represents the entropy bonus to ensure sufficient exploration and
LV F

t is a squared-error loss
(
Vθ(st)− V̂t

)2
. Note that the estimation of the state

value function, by the critic network, is done by making it share the parameters
with the actor network, this is why the squared error of the state value function is
put in LP P O

t .
The algorithm of the PPO is shown in 6: the policy πθold

is used to interact with
the environment creating episode sequences. For each episode, the advantages are
calculated by using the estimated state value function, then after many episodes,
the gradient descent is used on the policy by making use of the past experience and

1The name Actor–Critic derives from the way of learning typical of children. Indeed, when
human beings are very young and not yet rational, they learn to distinguish good policies from the
bad ones by listening to adults’ hints and suggestions.
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the objective function (for better performance it is suggested Adam [74]). A way to
calculate the advantages, proposed in [74], is:

Ât = −V (st) + Q̂(st, at) = −V (st) + rt + γrt+1 + · · ·+ γT −t+1rT −1 + γT −tV (sT ),
(3.15)

where T is the number of timesteps and t specifies the time index in [0, T ]. Notice
that all the calculations in PPO exploits a fixed length of the trajectory segments.
In 6 it was used N as the number of actors which could be the same as N runs of
the interaction with the environment.

Algorithm 6 PPO, Actor-Critic Style
1: for iteration=1, 2, . . . do
2: for actor=1, 2, . . . , N do
3: Run policy πθold

in environment for T timesteps
4: Compute advantages estimates Â1 . . . ÂT

5: end for
6: Optimize LP P O wrt θ with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

3.3.2 Deep Deterministic Policy Gradient

The event finally bridging the gap between the RL and control theory was the
publication of the Deep Deterministic Policy Gradient (DDPG) algorithm [76] in
2015. Authors adapt and extend the ideas underlying the success of Deep Q–
Learning to the continuous action domain, providing an actor–critic, model–free,
off–policy algorithm able to operate over continuous action spaces. In the article it is
shown that DDPG is able to robustly solve a lot of typical tasks in control theory, like
inverted pendulum stabilization, cartpole swing-up, dexterous manipulation, legged
locomotion, and car driving. Moreover, the performance is competitive with those
found by a standard control methodology with full access to the system dynamics.

Even in this case, as in PPO, the goal is to learn a policy maximizing the
expected return (see (3.5)), exploiting the concept of action–value function. As
many others RL algorithms, DDPG make use of the recursive relationship known as
Bellman equation, where the target policy can be described in general as a function
µ : S → A, so that

Qµ(st, at) = E
[
R(st, at) + γQµ(st+1, µ(st+1))

]
. (3.16)
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As seen in the previous chapter, Q–Learning implements

µ(s) = argmaxa′∈AQ(s, a′), (3.17)

but in general µ(·) may be any complex nonlinear function.
In the DDPG framework, theQ(s, a) is approximated through NN parameterized

by the set of parameters θQ, which are optimized by minimizing the loss function

L(θQ) = E
[
(Q(st, at|θQ)− yt)2

]
, (3.18)

where
yt = R(st, at) + γQ(st+1, µ(st+1)|θQ). (3.19)

To implement the target policy, the actor–critic framework is again exploited,
thus defining a parameterized actor function µ(s|θµ), which deterministically maps
states into actions. The critic is given by the action–value function Q(s, a|θQ) and
is updated by performing gradient descent steps on (3.18). It is worth noting that
also the target yt depends on θQ (see (3.19)), and thus the gradient of the loss
function should involve the differentiation of yt, but in DDPG this is ignored.

As per the actor, it is updated using the chain rule on the gradient of (3.5):

∇θµJ = E
[
∇θmuQ(s, a|θQ)|a=µ(s|θµ)

]
= E

[
∇aQ(s, a|θQ)|a=µ(s|θµ)∇θµµ(s|θµ)

]
.

(3.20)

As it happens in Deep Q–Learning, also DDPG uses the concept of experience
replay to learn extracting random samples of experiences ei = (si, ai, ri, si+1) from
the buffer D.

Since the critic NN Q(s, a|θQ) is also used in calculating the target value (the
actor NN), the gradient descent performed on the loss function may lead to di-
vergence. For this reason, in [76] authors modify the concept of target networks
already present in [69], applying it to the actor–critic case. This is done through
the creation of a copy of the actor and the critic NN, Q′(s, a|θQ′) and µ′(s|θµ′). The
idea is to update their weights slowly during the training phase, assigning to the
target weights θ′ the learned values of the two real actor–critic weights θ:

θ′ ← τθ + (1− τ)θ′, (3.21)

where τ ≪ 1 is a crucial parameter expressing how much one should trust the
learned weights. This update rule allows to avoid gradient divergence.
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Eventually, as for the exploration within the environment, this is one of the
critical aspects which can decree convergence or not. In the continuous domain,
it is not possible to follow the standard ε–greedy policy, since it is not possible to
sample randomly an action from a finite set. In DDPG the exploration is carried
out by defining an exploration policy

µN (st) = µ(st|θµ
t ) +N , (3.22)

where the random variable N denotes a noise distribution from a given process.
One of the possible choices is to pick the Ornstein–Uhlenbeck noise [77], related to
the Brownian motion in fluids.

When working with physical systems, it is common that the observation have
dissimilar physical units and magnitudes2. This discrepancy can pose challenges for
the network’s effective learning and complicate the task of finding hyperparameters
that can generalize across environments with varying state value scales. This issue
is directly correlated to the train data normalization problem in SL, discussed on
Chapter 1.

One way to tackle this issue is to manually adjust the features so that they
have similar ranges across different environments and units. Authors in [76] address
this problem by adopting a recent DL technique known as batch normalization,
introduced in [78]. This method normalizes each dimension within a minibatch,
ensuring that they have a mean and variance equal to one. Furthermore, it maintains
a running average of the mean and variance, which is used for normalization during
testing, such as during exploration or evaluation in our context. In DNN, this
technique is employed to minimize covariance shifts during training by ensuring
that each layer receives standardized input. Hence, in DDPG batch normalization
is applied to the state observation seen by the agent, which can be effectively learn
across a wide range of tasks involving various unit types without the need for manual
adjustments to ensure that the units fell within a specific range.

The full DDPG algorithm is shown in Alg. 7.

Part of this thesis will focus its attention on the application of the DDPG control
algorithm to multi–agent systems in telecommunication networks: it will be shown
how it is possible to train agents in competitive and collaborative scenarios, realizing
control task like reference tracking and energy minimization.

2Think about a pendulum on a cart. The pendulum angle ϕ varies periodically in the specific
interval [0, 2π], while the cart horizontal position x may assume any real value.
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Algorithm 7 Deep Deterministic Policy Gradient

1: Initialize randomly the networks Q(s, a|θQ) and µ(s|θµ) with weights θQ
0 and

θµ
0

2: Initialize target networks Q′(·) and µ′(·) with weights θQ′

0 ← θQ
0 and θµ′

0 ← θµ
0

3: Initialize the replay buffer D
4: for episode=1, 2, . . . ,M do
5: Set a random process N for action exploration
6: Observe the first state s1
7: for t=1, 2, . . . , T do
8: Select action at = µ(st|θµ) +Nt

9: Apply at on the environment and observe rt and st+1
10: Store transition et = (st, at, rt, st+1) in D
11: Sample a random minibatch ei = (si, ai, ri, si+1) from D
12: Set the target yi = ri + γQ′(si+1, µ

′(si+1|θµ′)|θQ′)
13: Update critic minimizing the loss L(θQ) = 1

N

∑
i(yi −Q(si, ai|θQ))2

14: Update the actor policy using the gradient rule in (3.20)
15: Update the target networks weight following (3.21)
16: end for
17: end for

3.4 Classification of Reinforcement Learning Algorithms

Apart from the algorithms presented so far, there are other four algorithms worth
mentioning. Each one of them allows to handle continuous state spaces and con-
tinuous actions, like PPO and DDPG. These techniques are summarized in what
follows.

• Soft Actor–Critic (SAC) is a DRL algorithm that falls under the category
of off–policy methods. As DDPG, it is designed for continuous action spaces.
SAC combines elements of actor-critic architecture with entropy regularization
to encourage exploration [79]. The entropy regularization helps balance the
trade-off between exploration and exploitation in a more principled way. As
all the other DRL techniques, the DNN in SAC is trained using samples from
a replay buffer.

• Asynchronous Advantage Actor–Critic (A3C) is a distributed, on–policy re-
inforcement learning algorithm that leverages multiple actor-learner agents
to train a single shared NN policy and value function simultaneously. It is
designed for both discrete and continuous action spaces and exploits the no-
tion of advantage function to assess the quality of actions taken and improve
the policy. It has been particularly successful in solving complex tasks in
environments with high-dimensional observations [80–82].
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• Q–Learning with Normalized Advantage Functions (NAF) is an off–policy
DRL algorithm designed for continuous action spaces. It reuses the concept of
advantage function from A3C, approximating both state–value and advantage
function using NN, providing a more accurate estimation of the value of taking
specific actions in continuous action spaces [83]. As a matter of fact, this
algorithm is a direct extension of Deep Q–Learning to continuous actions.

• Twin Delayed Deep Deterministic Policy Gradient (TD3) is an off-policy re-
inforcement learning algorithm designed for continuous action spaces. It is
an extension of the Deep Deterministic Policy Gradients (DDPG) algorithm
and introduces several modifications to enhance its stability and performance,
like the creation of a smooth target value estimate to mitigate overestimation
bias [84]. Moreover, it maintains two Q–networks to further stabilize training.

Tab. 3.1 summarizes the algorithms described in this thesis, categorizing them
based on the type of policy used (on–policy VS off–policy), state and action spaces
(discrete VS continuous) and the type of value function.
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Part II

Terrestrial Networks





Chapter 4

Enhancing Cultural Heritage
with 5G–Powered Augmented
Reality

T errestrial communication networks are interconnected systems that rely on
land–based electrical components to transmit data and information between

a transmitting device and a receiving device, both located on the Earth’s surface.
Hence, in terrestrial communications wired and wireless signals cross and remain
into the Earth’s atmosphere.

Terrestrial communication networks are implemented on various transmission
mediums, which constitute the physical pathways through which data and informa-
tion are transmitted from one point to another. Terrestrial means of transmissions
can be divided into wired and wireless ones:

1. Wired. Data transmission is realized through a direct cabled link between
the transmitter and the receiver. All wired terrestrial communications are
implemented using either copper or fiber optics cables.

• Copper cables have been the baseline of terrestrial communication for
decades. There are two primary types of copper wires: (i) twisted-pair
cables, consisting of copper wire pairs twisted together and traditionally
used for voice communication and digital subscriber line (DSL) internet
connections, and (ii) coaxial cables, comprising a central conductor sur-
rounded by insulation and a metallic shield, typically used for broadband
services [85].

• Fiber optic cables are one of the most advanced and widely used wired
technologies. They consist of thin strands of glass or plastic fibers that
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transmit data in the form of binary code (1s and 0s) as pulses of light.
Fiber optics offer tremendous advantages with respect to copper cables,
including high bandwidth, low signal attenuation, immunity to elec-
tromagnetic interference, and the capability for long-distance transmis-
sion [85]. They provide the highest data transfer speeds among wired
technologies, which render fiber optics the ideal communication technol-
ogy to handle demanding applications requiring high data–rates, like live
High–Definition video–streaming and cloud computing.

In general, wired communications are characterized by their high reliability,
due to the absence of signal degradation or interference, security, and high
data transfer rates with low latency. These aspects have as main drawbacks
the maintenance cost, users’ mobility impossibility and the absence of a wide
coverage areas.

2. Wireless. Data transfer is conceived without cables, exploiting instead elec-
tromagnetic waves. The electromagnetic radiation used for wireless transmis-
sion is commonly called radio wave and covers the frequency range from 3
KHz to 300 GHz [86]. The electronic device that allows to transmit radio sig-
nals is called a radio transmitter ; if it is only capable of receiving it is called
a radio receiver ; if it is capable of both receiving and transmitting it is called
a transceiver.

In order to cover the distance between the transmitting radio and the receiving
radio, it is necessary to use an antenna: a transducing device capable of
transforming an electrical quantity into electromagnetic signals. The length
and shape of the transmitting and receiving antennas are proportional to the
wavelength of the frequency used. In order to transmit information from a
transmitter to a receiver, it is necessary to define a frequency within the radio
spectrum and a modulation scheme.

Wireless communications realized through radio waves is used in copious ap-
plications including terrestrial television, cellular networks – relying on cell
towers or base stations that provide coverage to mobile devices like tablets
or smartphones – and Wi–Fi networks, short-range communication technolo-
gies often used for local area networks (LANs) and in–home or in–office net-
works [86].

Wireless technologies have several advantages over the wired counterpart, in-
cluding full mobility of users (think about listening to the radio while in a
moving car), flexibility due to easy reconfiguration, and possibility to access
remote areas and scalability, since a single wireless signal can serve a huge
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number of users, like it happens in radio and television broadcasts [86]. It
is straightforward that wireless communication have drawbacks in all aspects
where the wired counterpart is strongly robust, like interference and security.

The second part of this thesis will focus its attention on wireless cellular net-
works, which allow users to make phone calls, send messages and access the internet
while on the move.

4.1 Cellular Networks

A cellular telecommunications network (also called cellular network or mobile net-
work) is a network that allows telecommunications in all points of a territory divided
into small areas, called cells, for cellular mobile radio telephony, each served by a
different Base Station (BS).

4.1.1 Base Stations

A BS is a radio transceiving system and it represents the basic cellular telephony
infrastructure used in radio links of cellular mobile networks at the radio interface
of the cellular system. Each BS belongs to a given Radio Access Technology (RAT),
term through which one defines the physical connection method for a radio–based
communication network. A generic BS does not act as a repeater, as in the case of
radio links, but generates it and transmits it over the air, or receives it working at
the physical level and datalink level of a network architecture [86]. In this essay,
the term Access Point (AP) will be used as a synonym of BS1.

In cellular telephony, from a topological point of view, radio BSs are logical
switching or relay nodes in the radio interface of the cellular radio system, while
from a transmission point of view they reroute the service request towards the same
covering radio cell perform logical and physical functions of regenerative repeaters.
A typical functionality, in addition to establishing a connection with the user ter-
minal during communication, is also to spread a broadcast signal on the respective
coverage cell to the various user terminals present which informs of the availability
of the service and from which to obtain the known levels of field. Conversely, from
the terminal it receives information about its presence in the cell useful for the
various roaming functions.

Typically, radio BS are composed of transceiver antennas placed at a certain
height on support pylons which are in turn placed in raised locations with respect to

1From a technical point of view, usually APs refer to indoor devices like routers and switches,
and BSs denote outdoor devices like roof antennas and similar.
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the coverage area of the radio cell to avoid disturbances and fixed radio propagation
obstacles such as reliefs and vegetation, thus maximizing the coverage area, useful
signal strength, signal-to-noise ratio and carrier/interference ratio. Thus, in urban
environments the antennas are typically placed on the roofs of buildings (public
or private) with the operator paying the owners of the building a rental fee for
the concession of the installation in compliance with the regulations imposed on
electromagnetic pollution, while in semi-urban and rural environments are located
on small elevations and hills clear of vegetation.

4.1.2 Mobile Devices

BS provide connectivity services to users through systems called in general Mobile
Devices (MDs) or User Equipments (UEs). The latter can be defined as user devices
capable of transmitting and receiving data thanks to a wireless cellular network [86].
This functionality is realized through a special equipment mounted in each UE,
called wireless network card.

A UE, in addition to the transceiver functions, in order to realize a successful
communication with a BS must also have the following capabilities:

• Be able to synchronize and lock both to the frequency of the cell to which
it belongs and temporally with the time-slot or frame dedicated to the user
within the cell band during the radio connection. Typically at a logical level
this procedure is implemented after measuring the power levels of the signal
sent by the various base stations of neighboring cells and choosing the one
with the highest power to maximize the signal/noise ratio or therefore the
quality of the transmission.

• Periodically report its presence to the radio base station of the cell to which it
belongs through a identification code (of the user, of the mobile phone, of the
SIM card) to allow roaming, i.e. to be traced within the same network of an
operator or by networks mobile phones from other operators. Typically this
functionality is achieved directly when connecting to the radio cell which will
therefore keep the information on all connected terminals in memory. This
user information is then dynamically stored in a database available to the
entire network.

• Adapt the power level emitted during a transmission according to the actual
distance from the base station of the respective coverage cell, thus limiting the
interference contribution on the neighboring co-channel cells and improving
the efficiency of energy consumption or according to the real conditions of
radio propagation present. This functionality is made possible by the constant
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measurement of the Signal–to–Noise Ratio (SNR) with the base station. It
follows that the power consumption (sum of transmission contribution and
pre–processing contribution) of a MD during a transmission depends on the
distance from the base station within the coverage cell, and is greater in
transmission than in reception, where only the energy required for processing
is needed.

• Practice handover, i.e. the change of communication channel within the same
cell or between different cells when the terminal moves to the area of com-
petence of another cell (cell switching) without interrupting communication.
This functionality also involves the constant measurement of the power level
of the signal received from radio base stations of neighboring cells and the con-
nection to the destination cell when a certain pre–established power threshold
is exceeded compared to that of the signal of the originating cell. This is
then followed by synchronization over time and the reporting of identification
for roaming. Some cellular telephone systems allow connection to other cells
neighboring the one of residence even when the traffic in this cell is too high
to be supported, thus guaranteeing greater service availability.

• Carry out the usual source coding and channel coding in transmission and
the respective reverse coding (decoding) in reception if the communication is
digital (as in all modern cellular networks). Furthermore, in any case, the UE
will also have to provide for the encryption of the data in transmission and the
respective deciphering in reception to guarantee the privacy or confidentiality
of the communication on the radio medium.

Apart from the above mentioned features, which are present in any UE, the
latter can be classified according to the ways in which the connection with the base
network station is created:

1. Multi–Mode Terminal. Modern mobile radio terminals also have the abil-
ity to connect to the various mobile radio communication systems available in
a territory, thanks to automatic switching procedures from one system to an-
other and to multiple transceiver devices, i.e. therefore having multiple forms
of connectivity available depending on the estimated quality of transmission
in the various systems detected and/or costs. These features are in turn made
possible by the interoperability between existing wireless technologies thanks
to appropriate handover procedures from one system to another which attempt
as much as possible to keep the same browsing session alive, while varying the
quality specifications of transmission service by passing from one system to
another. A MD whose network controller card have interfaces to multiple
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RATs, but that can connect to one and only one BS at a time is referred to
as multi–mode device. Everyday commercial devices like smartphones and
tablets belong to this category. As a example, they can connect either to a
4G–LTE BS or to a Wi–Fi AP, but they cannot exploit both communications
simultaneously.

2. Multi–Homed Terminal. These are UEs which can establish connections
with multiple BSs at a time (also belonging to different RATs). This features
is enabled when the network adapter within the MD comprises two or more
antennas.

4.1.3 Radio Access Technologies

As already stated, a RAT is a standard physical method allowing connectivity
between an UE and an AP. Focusing on cellular networks, RAT refers to the various
established standards since the early 80s’. From the first-generation (1G) analog
systems to the cutting-edge 5G networks, each generation has introduced technical
features that have shaped the way we communicate and access data on our mobile
devices. Cellular RATs can be divided according the their generation (G), and their
evolution is summarized as follows:

1G. It stands for First Generation. In the 1980s, 1G signaled the beginning of
cellular communication. These early devices were mostly analog and had lim-
ited voice communication capability [87]. Frequency Division Multiple Access
(FDMA) was the principal multiple access approach, in which each user’s
calls were assigned a unique frequency. Because the bandwidth allocated to
1G networks was rather narrow, data transfer capabilities were limited, hence
1G was not used for data services bu just for voice communication.

2G. It was a significant advancement in mobile technology. It introduced digi-
tal cellular networks, which improved call quality and enabled limited data
services. The introduction of digital signals in 2G networks improved voice
quality and increased call capacity. As multiple access techniques, Time Di-
vision Multiple Access (TDMA) and Code Division Multiple Access (CDMA)
were utilized, allowing many users to share the same frequency spectrum [87].
The ability to send and receive text messages was enabled, and it quickly
became a popular feature. While data capacity was restricted, 2G networks
enabled services such as mobile web browsing and email, and roaming capa-
bilities allowed users to move across regions and nations while maintaining
connectivity.
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3G. Mobile networks resulted in significant advances in data speed as well as the
introduction of mobile data services. 3G networks provided much higher data
rates, allowing for speedier internet access and multimedia services. Universal
Mobile Telecommunications System (UMTS) [88] was a well-known 3G tech-
nology that featured CDMA-based multiple access and higher data speed, in
the context of video calls, mobile TV and video streaming. For efficient data
transmission, 3G networks incorporated packet-switched technology.

4G. Networks implementing this technology constituted a paradigm breakthrough
in mobile technology, allowing for greater data speeds and ushering in the
era of mobile internet and multimedia services. Long–Term Evolution (LTE)
is the main 4G technology, providing much faster data speeds than 3G [88].
Orthogonal Frequency Division Multiple Access (OFDMA) was the primary
multiple access technique, enabling for more efficient spectrum utilization and
increased network capacity. 4G networks reduced latency, allowing real-time
applications such as video calls and online gaming to run more smoothly.

5G. Said networks are at the forefront of mobile technology, providing unmatched
data rates, minimal latency, and compatibility for upcoming applications. 5G
offers much faster data rates, using mmWave frequencies to provide extremely
high data speeds reaching multiple gigabits per second.

A technical comparison of the five technologies is carried out in Tab. 4.1.
It appears now clear that a wireless telecommunication link is possible when the

three main ingredients presented above are present: (i) a RAT, (ii) an AP and (iii)
a MD.
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4.2 The 5G Technology

Compared to the third and fourth generations of cellular networks that favored the
spread of the Internet on mobile devices, 5G represents a certain rather clear discon-
tinuity. There are three evolutionary dimensions that have made this generational
transition unique:

• Enhanced Mobile Broad Band (eMBB). It focuses on greater network
access speeds up to 10 Gbps. This features enable the possibility to enjoy
several application services (not manageable by 3G and 4G networks due to
bandwidth limitations), like streaming 4K and 8K videos and games without
buffering. Moreover, while eMBB primarily targets enhanced broadband for
users, it indirectly benefits IoT applications by providing a robust network
foundation for connected devices.

• Massive Machine–Type Communication (mMTC), which addresses the
exponential growth of Internet of Things (IoT). Through mMTC, 5G handles
the massive number of sensors, smart devices, and industrial applications that
are expected to join the IoT ecosystem, reducing their energy consumption
and thus extending their battery life. This is particularly useful in a variety
of scenarios such as smart cities, agriculture, environmental monitoring, and
industrial automation. The 5G standards assesses that a generic 5G BS can
handle up to 1 million devices per km2.

• Ultra Reliable Low Latency Communication (URLLC), intended for
use in applications requiring extremely low latency (≈ 1 − 2 ms) and high
reliability. This use case is critical for critical domain applications such as: (i)
autonomous vehicles, improving safety and allowing real–time communication
between vehicles and between vehicles and infrastructure [59]; (ii) healthcare,
enabling remote surgery and telemedicine [89]; and (iii) industrial automation
for human–robot real–time cooperation and predictive maintenance [90].

5G introduces a higher complexity both at infrastructure and protocol level.
This complexity of 5G, while on the one hand increases the infrastructural challenges
relating to coverage, frequency and connection, on the other opens up applications
and business opportunities that are barely imaginable with 4G standards.

In this part of the discussion we focus on the main architectural innovations
relating to 5G.

• High Data–Rates and Low Latency. The new mobile radio network
guarantees greater calculation and data transmission speed as well as lower
latency and response times. The increase in the available frequency spectrum
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(in Italy it ranges from 700 MHz to 26 GHz), combined with the introduction
of dynamic antennas, capable of multiplying the capacity of the system, allows
5G to achieve greater efficiency of the allocated spectrum.

• Virtualization and Slicing. 5G can be implemented in specialized logi-
cal networks. Network slicing allows you to create multiple virtual networks
on the same physical infrastructure by exploiting virtualization techniques of
both transmission and calculation resources. This means that a 5G network
guarantees the full functioning of multiple applications in parallel, which can
be managed by new players.

• Computing and Mobile Edge Computing. The fifth generation enables
large-scale edge computing with high computational capabilities and low la-
tency in accessing computing resources. This property transforms the 5G
network into a truly programmable platform for user applications. The phys-
ical positioning of the servers that provide this most interesting computing
capacity is towards the periphery, precisely at the edge.

• Coverage dedicated to high frequencies. For many B2B 5G applications,
high traffic requires ad hoc coverage capable of meeting the performance re-
quirements of these applications. In this sense, millimeter wave technologies
are of fundamental importance for defining high-capacity coverage such as
those in high-traffic urban areas or in indoor contexts.

The 5G technology was launched a few years ago and there are still few users
who have MDs capable of supporting this radio technology, just as there are still few
areas in which BSs capable of providing connectivity services have been installed.
As an example, Fig. 4.1 show a heat map of 5G (purple) vs 4G connectivity (orange,
red) in Italy2. It can be noted that 5G is present along the highways and in the
main cities, while it is completely absent in most rural areas, which are in any case
covered by the 4G RAT.

4.3 Virtual and Augmented Reality

5G has the potential to unlock a wide range of applications across various industries,
transforming how we interact with technology and enabling innovative solutions.
Two significant areas where 5G is expected to have a profound impact are Virtual
Reality (VR) and Augmented Reality (AR).

2The map refers to October 21, 2023 and the reference network operator is TIM.
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Figure 4.1. Heat map of 5G coverage in Italy. Image source: [91]

4.3.1 Virtual Reality History

Virtual Reality is a technology that immerses human users in a computer–generated
fully virtual world, effectively replacing their real-world surroundings with a simu-
lated one. The ultimate VR system would make it nearly impossible for users to
differentiate the virtual environment from reality. This concept, initially introduced
in a science fiction work called Pygmalion’s Spectacles3 in the 1930s, envisioned a
set of goggles that could engage a user’s five senses to offer an experience of fictional
realms [92].

In the 1960s, Heilig developed the Sensorama, the first prototype of VR system.
It was a multi-modal theater cabinet capable of displaying stereoscopic 3D images,
stereo sound, aromas, winds, and vibrations during film presentations [93]. Then,
in 1968, Ivan Sutherland presented the first functional see-through head-mounted

3Pygmalion is a character from Greek mythology. He was a sculptor and the king of Cyprus,
most famous for creating a beautiful statue of a woman, which he carved out of ivory or marble.
The myth says he invested so much time and effort into his sculpture that he fell in love with it, so
much so Pygmalion prayed to the goddess Aphrodite to bring the statue to life. Aphrodite, moved
by his love and dedication, granted his wish: the statue was miraculously transformed into a living
woman. The modern notion of VR actually arises from the myth of Pygmalion, who falls in love
with a fictitious woman, immersing himself entirely in a parallel world completely detached from
the reality of things.
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display (HMD) with head-tracking capabilities [94]. This groundbreaking system
allowed users to observe computer-generated 3D wireframe objects seamlessly inte-
grated into their real environment, marking the official birth of VR/AR.

Notably, one of the earliest large-scale networked VR systems was SIMNET, a
military simulation created for DARPA in 1983 [95]. In the late 1980s, the Naval
Postgraduate School introduced NPSNET, a battlefield simulation system capable
of accommodating hundreds of users simultaneously [96].

In 1987, Jaron Lanier coined the term ’virtual reality’ and founded a company
called VPL Research. One of their early products, the EyePhone, considered one
of the first commercial HMDs, found its way into numerous research laboratories,
contributing to the initial surge of interest in virtual reality in the early 1990s.

Today’s booming VR industry is largely attributed to the emergence of cost-
effective smartphone-based head-mounted displays (HMDs). One of the pioneering
systems was the FOV2GO papercraft HMD, developed at the University of Southern
California in 2012. It was from the same research group that the Oculus Rift was
launched the same year. According to ABI Research’s most updated forecasts [97],
the global VR market is valued at approximately $16.7 billion in 2023.

Currently, standard VR systems generate some realistic images, sounds, and
other sensations that simulate a user’s physical presence in a virtual environment
using either VR headsets or multi-projected environments. A person who uses VR
equipment can look around the virtual world, move around in it, and interact with
virtual features or items. VR headsets with a head-mounted display and a small
screen in front of the eyes are commonly used to create the effect, but it can also
be achieved through specially designed rooms with multiple large screens.

VR applications include entertainment (immersive gaming) and education (med-
ical, military, and automotive training).

4.3.2 Augmented Reality History

Augmented Reality is a technology that overlays computer-generated information
onto the real world, effectively enhancing our surroundings to make tasks easier.
Traditionally, the objectives of AR have revolved around task-driven enhancements,
presenting the most relevant information at precisely the right time and location.
On the contrary, another version of this system seamlessly integrates virtual content
within the real world or modifies existing objects in a manner imperceptible to the
user. The term Augmented Reality was coined by Caudell and Mizell in 1992 for
the HMD-based system they developed for wire bundle assembly at Boeing [98].

In 1999, the marker-based open-source tracking library, ARToolKit, was re-
leased, further catalyzing the development and dissemination of augmented real-
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ity [99]. Later on, in the late 2000s, AR gained public recognition through the
entertainment industry with games like The Eye of Judgment in 2007, considered
the first consumer AR game, and the Nintendo 3DS in 2011. To date, the AR game
Pokémon Go alone has attracted over 200 million players and generates more than
$2 million in daily revenue worldwide. According to Fortune Business Insights [100],
the global AR market is projected to grow from $62.75 billion in 2023 to $1,109.71
billion by 2030.

4.3.3 Challenges of AR/VR

From a technical perspective, VR and AR systems share substantial similarities.
Both necessitate sensing (input) and display (output) subsystems, as well as a scene
management subsystem. Sensing subsystems must track user position (and motion)
and accept various command inputs. Display subsystems render a 3D scene based on
the user’s position and provide sensory information like sound. The hardware and
software architecture for both systems are quite alike, if not identical. Minimizing
end-to-end latency, from motion to photon, is crucial for both VR and AR, as
latency negatively affects user comfort in VR and visual quality in AR, among other
adverse effects. Accurate position tracking (or registration in augmented reality) is
essential for both systems, but it is often more challenging to achieve for AR due to
the mobile nature of its applications. In general, display hardware for AR is more
complex to develop than for VR, primarily because of the intricate optics involved
in see-through displays and the interaction between virtual content and the real
environment. AR systems typically involve drawing supplemental material, making
the rendering requirements often higher than in VR, where the entire scene must
be drawn every frame, often at higher frame rates.

Notably, VR/AR challenges are related to:

• Latency: achieving low latency is a crucial challenge in AR/VR systems. This
is due to the fact that said systems require high computational capabilities
in order to process terabytes of data either to reconstruct or to navigate and
render models in real–time. Sensor delay is usually imperceptible in modern
devices like HoloLens and VR headsets, since they are wired to a graphical
workstation like PS5 or similar. However, latency introduced in the wire-
less network communication domain can affect user experience, especially in
gaming and haptic applications [101].

• Bandwidth: bandwidth limitations become significant in applications requir-
ing the transmission of large amounts of data in a small fraction of time, such
as 3D reconstruction, telepresence and remote surgery.
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• Quality of Service (QoS): maintaining consistent QoS is essential for applica-
tions like video conferencing and multiplayer gaming. Frequent disconnects
or degraded image quality can deter users from adopting AR and VR tech-
nologies.

• Availability: for a widespread adoption, AR and VR systems must be highly
available, similar to the ubiquitous access to mobile phones made possible by
3G and beyond networks. Nowadays this is not true, since AR and VR can
be implemented only on specific hardware not accessible to everyone.

• Security and Safety: as AR and VR extend beyond in-home use, ensuring
security and safety becomes a priority. Protecting private information, setting
application privileges, and preventing physical dangers (e.g., distractions) are
critical considerations.

• Social Adoption: like any technology, AR and VR adoption will take time and
must consider societal rules, safety mechanisms, and devices that intelligently
regulate user interactions. Smart networks can also contribute to the safe and
practical use of virtual systems.

The challenges and issues presented above can be handled with great perfor-
mance in wired AR and VR systems, in which users’ headset is directly connected
to a graphical workstation equipped with a powerful video card. However, this
framework does not allow for user movement: people enjoying AR and VR applica-
tions are typically forced to remain within a specific room and can move just by few
meters. Actually, this limitation may be irrelevant in VR systems, since user can
move within the virtual environment even with a joystick, but it becomes crucial in
the AR framework, especially when reconstruction tasks are required. If users are
not able to freely move in a given area, they cannot capture with the video camera
some real images on which to mount virtual objects.

As stated in the previous section, the 5G infrastructure represents a significant
advancement over 4G–LTE, offering speeds up to 10 Gbps per device and reducing
latency to less than 1 ms. This RAT is then a valid candidate to benefit applications
demanding ultra high bandwidth and ultra low latency, like VR and AR.

The exploitation of the 5G technology constitutes the enabler for the intro-
duction of massive and distributed Mobile Augmented Reality (MAR) and Mobile
Virtual Reality (MVR) applications, i.e., network system in which the AR technol-
ogy is implemented in MD capable of connecting to a 5G BS, thus avoiding the
traditional wired setting and allowing users to freely move. This new and fascinat-
ing technology can revolutionize the way we interact with objects and other people,
and has direct implications in various application fields, including:
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• Gaming and Entertainment: improving network connectivity through 5G
will allow real-time personalized streaming and will enhance player localiza-
tion, interactions, and the sharing of AR content even when users are not
at home. Moreover, games involving haptic interfaces will become more ad-
vanced, since low-latency haptic devices and controllers will enable realistic
tactile feedback with latencies less than 1 ms [101].

• Vision Augmentation: beyond adding virtual elements to the real world,
vision augmentation seeks to improve or modify human vision using AR tech-
nology. This can include altering focus, integrating optical elements, and
providing x–ray or predictive vision interfaces [101]. 5G will facilitate instant
access to offloaded processing for more effective augmentations and digital
assistance, even when the user is moving at high speed by car or train.

• Cultural Heritage: MAR through 5G can combine digital information with
real-world experiences through MDs, providing tourists and cultural enthusi-
asts with innovative ways to engage with archaeological sites, museums, and
other heritage locations. MAR applications can offer interactive and immer-
sive experiences for visitors. The latter, while freely moving into an archaeo-
logical park, can point their UE camera at a historical site, thus reconstructing
historic buildings as they appeared at the time they were built, or modified as
if they were placed in a dystopian and futuristic context [102]. This activity
allows for the creation of virtual storytelling experiences that bring history
and culture to life. In this way, users can witness historical events, meet im-
portant figures, or explore ancient civilizations through interactive narratives,
making learning more engaging and memorable.

4.4 The VADUS Project

The integration of 5G and MAR in the cultural heritage sector is the ambitious
goal of one of the research projects the author of this thesis has worked on and
contributed to in his whole PhD period.

The project is called Virtual Access and Digitization of Unreachable Sites (VADUS)
– grant agreement No 4000132720 – (https://business.esa.int/projects/vadus),
and has received funding from the European Space Agency (ESA) in relation with
the call ARTES 20 by ESA ITT AO/1-10065/19/NL/AF Applications integrating
space asset(s) and 5G networks in L’Aquila, the Abruzzo region, Roma Capitale and
Municipality of Torino (L’ART).

As already stated in the previous section, AR/VR technologies are powerful
tools for developing new services to enhance tourists’ experiences when visiting

https://business.esa.int/projects/vadus
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archaeological sites and monuments. However, currently available services have
some drawbacks: users are constrained at a static position and personalization is
very limited, whereas the spectacularization of the experience overwhelms the rigor
of the scientific basis of the virtually reconstructed or recreated artifacts.

VADUS aims to overcome these constraints by introducing new solutions and
digital contents for a fully immersive experience, free of mobility and duration con-
straints, by providing high-quality 3D models enriched with multimedia, informa-
tive, and scientific content. As the name suggests, VADUS refers mainly to indoor
environments which are not accessible to the public: this can occur either because
the rooms are at risk of collapse (catacombs or similar) or because the mosaics,
graffiti, paintings and frescoes present within these environments are particularly
fragile to atmospheric and environmental agents.

Three different case studies and pilot sites have been identified in the context of
the VADUS project:

1. The House of Diana, located in the archaeological park of Ostia Antica,
near Rome, Italy.

2. The Pietro Micca Museum, located in the city center of Turin, northern
Italy.

3. The House of the Griffins and the Isiac Hall, both located in the Palatine
Forum, archaeological park of Coliseum, Rome, Italy.

All these three sites are characterized by indoor environments that nowadays tourists
cannot visit.

Regarding the project technical concepts, they comprise elements belonging to
very different scientific sectors:

• Mapping of real environments with laser scanning technologies (RGB–ITR and
LIF hardware – see Fig. 4.2) to create high-definition 3D models of inaccessible
sites, and to analyze the composition of frescos, walls, and artifacts.

• Digitization of the obtained 3D models as a chain of image frames and spatial
videos, typical of a VR application. As it can be seen from the example
in Fig. 4.3, the 3D images are faithful to the original environment and are
characterized by high quality (Full HD 1080p resolution).

• Storage of VR models in a server (back–end) based on the cloud computing
protocol, reachable from the user’s MD (front–end) via a terrestrial cellular
network (for example 4G LTE or 5G).

• Development of a VR application for smartphones, through which users can
move around the virtual environment, effectively visiting environments that
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(a) Inaccessible room in the House of Di-
ana.

(b) ENEA operators next to a LIF ma-
chine.

Figure 4.2. Images taken during the measurement campaign at the House of Diana.
Courtesy of ENEA.

(a) Original picture.

(b) 3D reconstructed model.

Figure 4.3. An example of 3D reconstruction starting from a photo depicting wall frescoes.
Photo credits: [103].
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are not otherwise accessible. All the graphical computations required to move
within the virtual spatial environment are performed remotely by the cloud
server, and not locally in the UE.

• Definition of optimal dynamic strategies for choosing the BSs to connect to,
and for allocating traffic and computational resources, also taking into account
service personalization. The latter allows each user (tourist or professional)
to choose from a list of services and select the ones that best match his/her
expectations, such as zoom and details selection.

The next chapter will focus on the last topic, which poses an important technical
issue about the interdependencies between a VR application and the terrestrial
network infrastructure. It will be shown how it is possible to exploit data–driven
control methods as a service for bridging the gap between VR/AR and the 5G
technology.



Chapter 5

The Multi-RAT Network
Selection Problem

I n everyday life it is quite trivial to choose the way we connect to terrestrial
networks with our MDs. Since they are implemented as multi–mode terminals,

it is possible to select just one AP at a time. In this way, usually, users connect to
a private Wi–Fi network when they are at home, whereas they connect to mobile
networks through their telephone operator when they are outside home, or maybe to
the free Wi–Fi network in a city square or airport. However, this standard approach
in terrestrial communication is usually not enough to guarantee the bandwidth and
throughput requirements imposed by AR and VR applications, especially because
it is common that a certain BS is overloaded due to requests from other users1.

This chapter tackles the technological limitations imposed by the multi–mode
framework, considering the exploitation of multi–homed UEs, which can activate
more than one connection at a time. The control problem, referred to as multi-RAT
network selection problem, consists in determining the best way of splitting users’ re-
quests among different communication channels while satisfying the challenging QoS
requirements. The problem is tackled through an innovative user–centric AI–based
multi–agent traffic steering control framework. The proposed control architecture,
developed both for single- and multi-homed devices, is able to dynamically satisfy
users’ requests by simultaneously exploiting multiple telecommunication channels,
even belonging to different RATs.

1This is a frequent situations in scenarios like concerts or sport events, where there are thousands
of people asking connectivity to the very same BS. This happens because each UE connects to the
antenna guaranteeing the best Signal–to–Noise Plus Interference Ratio (SINR). In this way, the BS
is saturated and MDs are not capable of satisfying not even the mildest services, such as sending
a text message.
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It will be shown that the multi–agent formulation of the control problem, to-
gether with a fast training phase, guarantees the scalability of the proposed traffic
steering algorithm. The performance of the proposed solution have been evaluated
both in crowded and not crowded cultural sites with respect to several Key Per-
formance Indicators, and computer simulations prove that the proposed approach
outperforms other widely adopted connectivity protocols in terms of guaranteed
QoS and traffic load distribution.

All material in this chapter refers to [104].

5.1 State of the art

5.1.1 Motivations

As discussed widely in the previous chapter, AR/VR services have become powerful
tools in many application fields including industry [105–107], education [108–111],
health [112–114] and cultural heritage [115–117]. In the last years, the latter ap-
plication domain experienced a slowdown mainly due to technological constraints
and human factors [118]. AR and VR services, indeed, are challenging applications
stressing and often exceeding the capacity of telecommunication networks.

So far, VR and AR technologies have been provided to end-users by means of
smartphones, tablets or headsets characterized by limited on-board processors and
storage capacities or wired to consoles (such as Personal Computers or PlayStation)
which, in this case, shall have wide graphical processing capabilities. This means
that, up to now, due to bandwidth and latency limitations, VR and AR can be
exploited only when a user is near to a graphic computation source [101]. As a
matter of fact, providing a fully virtual tour via a VR/AR visor requires specific
and powerful GPUs, that usually cannot be mounted on a headset for users’ comfort
reasons. In this respect, it has been proven that the 4G-LTE technology does not
guarantee lag-free and dropout-free 3D viewing experiences [119].

On the other hand, as specified in the 3GPP 5G standard, 5G communication
technologies can arrange up to 10 Gbps data-rate per device which are from 10
to 100 times faster than 4G [120]. Furthermore, the 5G infrastructure can pro-
vide a latency less than one millisecond over the radio path and the mid-haul (e.g.,
Multiaccess Edge Computing - MEC) and back-haul components. These are some
of the features rendering 5G the true technological enabler of VR and AR applica-
tions [121]. Another key technology bridging 5G and VR/AR services is represented
by paradigms such as the edge and cloud computing protocols [122]. Indeed, under
said protocols, the 5G infrastructure embeds hardware resources for performance
monitoring, network optimization and processing. More in detail, cloud computing



5.1 State of the art 67

provides groups of high-performance servers allowing end-users’ devices to perform
heavy computational tasks. Edge computing, instead, allows to perform said heavy
tasks to high-performance resources located at the border of the network thus re-
ducing latency. Another relevant peculiarity of 5G technologies for the provisioning
of VR and AR applications is represented by the possibility of seamlessly integrating
multiple RATs. In this case, the telecommunication network is referred to as hetero-
geneous network and the algorithms allowing to steer UEs traffic over multiple RATs
are referred to as multi-connectivity algorithms. In other words, user devices, which
in this respect are usually called multi-homed devices, can exploit the resources of
multiple APs, even belonging to different RATs [123, 124]. This means that, in
this scenario, a given UE is able to access the (heterogeneous) telecommunication
network through multiple points.

Before reviewing the literature, it is worth highlighting the different problems
that arise in the considered context from the telecommunication point of view:

• User Assignment (UA): the problem consists in understanding the best AP or
set of APs a given user should be connected to.

• Resource Allocation (RA): it consists in determining the best way of allocat-
ing wireless resources (e.g., transmitting power, channels, ...) in presence of
bandwidth limitations.

• Development of multi-RAT algorithms: it refers to the definition of control
algorithms able to steer traffic considering different typologies of RATs.

• Development of multi-connectivity algorithms: it deals with the design of
traffic steering algorithms in which a given UE can be simultaneously served
by multiple APs belonging to different RATs.

• Task offloading: it refers to the definition of control algorithms allowing to
exploit computing resources at the edge of the network to minimize latency
and to optimize users’ experiences.

In this respect, this chapter is devoted to the design of multi-connectivity algo-
rithms to fairly distribute users’ requests over the available APs which may belong
to different RATs. Hence, all the above-mentioned problems will be addressed.

5.1.2 Related works

Previous works (e.g., [122,125]) have shown that edge computing frameworks, more
than the cloud-based ones, allow to satisfy strong requirements in terms of time
delay and video quality constraints. It has been proved that placing graphical re-
sources at the edge in standard 2D mobile gaming applications improves by 20% the
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users’ perceived QoE [126]. In the Extended Reality (XR) domain, edge computing
allows to handle archaeology-based AR/VR applications which are characterized
by 360° 3D models with huge dimensions in terms of Gigabytes. This is because
such 3D models can be stored on remote edge/cloud servers which, in turn, allow
to adopt less powerful wearable devices in terms of computational power (trans-
lating in cheaper devices with longer battery life). In this respect, several works
addressed the traffic offloading problem for a full exploitation of edge computing
resources [127–131]. Furthermore, due to their ultra-low latency, such contents can
be elaborated in the GPUs of edge servers and then accessed in real-time by end-
users guaranteeing acceptable levels of the perceived QoS, referred to as Quality of
Experience (QoE).

For a full exploitation of multiple RATs it is necessary to solve the so-called
multi-RAT assignment problem consisting in the selection of the most appropriate
RATs able to satisfy given QoS or QoE constraints. The problem, which was already
present and studied for older generation networks [132], like 3G UMTS, has assumed
more and more importance over the years, thanks to the widespread diffusion of 4G-
LTE and 5G-NR wireless base stations. There are many criteria that can be used
to perform said selection, such as the avoidance of APs’ congestions, the reduction
of the latency experienced by users and so on.

Several model-based and data driven solutions have been proposed in the litera-
ture for solving the multi-RAT assignment problem. As an example of model-based
techniques, in [133] the authors solve the multi-RAT assignment problem by means
of a dynamic game-theoretic approach. Similarly, in [134], the authors present an
algorithm based on Wardrop’s equilibria for adversarial routing. In this framework
each UE is considered as a player of a game demanding for network resources. Each
player (i.e., each UE) aims at minimizing a selfish objective function which de-
pends on the other players’ actions. In [135], it is presented an approach based on
MPC, which uses a model of the telecommunication network; the authors defined a
global objective function to be minimized aiming at reducing the overall connection
energy and usage costs. Under specific conditions, these approaches are able to pro-
vide optimal solutions to the network selection problem. However, they are prone
to scalability issues when the dimension of the problem significantly increases.

On the other hand, ML–based approaches are particularly suited for solving the
multi-RAT network assignment problem, as they allow to handle highly stochastic
dynamical processes such as those represented by heterogeneous networks. It is
indeed almost impossible to estimate in advance how many users will request the
service, their positions and velocities, as well as disturbance that may affect in a
negative way the signal power between a generic UE and the APs to which it is
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connected. ML approaches exploit data observed from the environment and do not
estimate the system model, as it happens in MPC or in Optimal Control problems.

In the last years, RL and DRL techniques have been successfully applied to
multi-RAT systems. The data-driven techniques proposed in the literature are ei-
ther centralized or distributed. In the first framework, there is a unique controller
that steers the traffic for all users and access points, whereas in the distributed
case each user (or access point) has its own local control unit to make decisions
and act. In the latter case, each user competes for getting the requested data-rate
from the available base-stations. As an example of this kind of techniques, in [136]
the authors solve the QoS management problem in heterogeneous communication
networks relying on a hierarchical control architecture based on RL. In [137], the net-
work selection problem is tackled by means of an approach based on Markov Games
and friend-or-foe RL. In [138] the authors adopted DRL techniques for creating a
multi-connectivity system referred to as DeepRAT. In [139], the authors combine
Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs) to derive opti-
mal strategies to solve the multi-RAT network assignment problem, considering just
multi–mode terminals.

To address scalability issues, several works proposed decentralized and multi-
agent control frameworks. As an example, in [140], the authors define a multi-agent
DRL framework and use a Dueling Double Deep Q-Network (D3QN) to learn nearly
optimal policies. A multi-agent DRL framework has also been proposed in [141]
to address the energy-efficient task offloading problem. In this case, the authors
adopted the DDPG algorithm to learn the optimal policy. In [142], the authors pro-
pose a multi-agent Q-Learning algorithm to tackle the resource assignment problem
in Multi-User Multiple-Input Multiple-Output (MU-MIMO) systems. In [143], the
authors proposed a distributed multi-agent RL algorithm to solve the multi-RAT
access problem. The proposed user-centric solution further reduces the complexity
of the algorithm by means of Nash Q-Learning allowing to reduce the dimension of
the strategy space in the learning process. In [144], a distributed multi-agent RL
control framework has been proposed for power control in heterogeneous wireless
networks.

The development of multi-RAT systems (and related control algorithms) rep-
resents a fruitful research topic. However, some issues have not been tackled yet.
To the best of the authors’ knowledge, in the literature there are no studies ad-
dressing the integration of multi-RAT assignment algorithms considering VR/AR
applications running on multi-homed terminals [145].

The research gaps highlighted in this section are summarized in Table 5.1: the
features used to characterize the reviewed articles are:
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Table 5.1. Research gaps in the literature

Reference F1 F2 F3 F4 F5 F6 F7

[116] ✗ ✗ ✗ ✓ ✗ ✗ ✓

[123] ✓ ✗ ✗ ✗ ✗ ✓ ✗

[125] ✗ ✗ ✗ ✓ ✗ ✓ ✗

[126] ✗ ✓ ✓ ✗ ✗ ✗ ✓

[127] ✗ ✗ ✗ ✓ ✓ ✓ ✗

[128] ✗ ✓ ✓ ✗ ✓ ✓ ✗

[129] ✗ ✓ ✗ ✗ ✓ ✗ ✗

[130] ✗ ✓ ✓ ✗ ✗ ✗ ✓

[131] ✗ ✓ ✓ ✗ ✗ ✓ ✗

[132] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[133] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[134] ✓ ✓ ✗ ✗ ✗ ✗ ✗

[135] ✓ ✓ ✗ ✗ ✓ ✗ ✗

[136] ✓ ✓ ✓ ✗ ✗ ✗ ✓

[137] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[138] ✗ ✓ ✓ ✗ ✓ ✗ ✗

[140] ✗ ✓ ✓ ✗ ✓ ✗ ✗

[141] ✗ ✓ ✗ ✗ ✗ ✗ ✗

[139] ✗ ✗ ✓ ✗ ✓ ✗ ✗

[142] ✗ ✓ ✓ ✗ ✗ ✗ ✗

[143] ✗ ✗ ✓ ✗ ✗ ✗ ✓

[144] ✓ ✓ ✓ ✗ ✓ ✗ ✓

[145] ✗ ✓ ✓ ✗ ✗ ✗ ✗

• F1: consideration of multi–connectivity algorithms by means of which each
UE is considered to be a multi–homed terminal.

• F2: adoption of a scalable control logic with respect to the UEs’ number.

• F3: model-free nature of the adopted control framework.

• F4: consideration of AR/VR streaming services.

• F5: development of energy-aware control algorithms.

• F6: consideration of moving UEs.

• F7: user-centric nature of the proposed solution.

5.1.3 Contributions

The main features of the proposed control framework are as follows:

• the ability to simultaneously exploit multiple RATs for matching challenging
QoS constraints;
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• model-free, user-centric multi-agent formulation of the network selection prob-
lem allowing to tackle scalability issues;

• adaptive bitrate assignment to reduce the transmission power required for
streaming services;

• particularization of the considered control problem in the context of AR and
VR services for cultural heritage applications.

The proposed control framework can be used in different ways. From the one
hand, cultural sites’ operators (or city managers) can understand how to dimension
the telecommunication infrastructure to support AR and VR services based on
forecast operational scenarios. On the other hand, the proposed solution can be
deployed to optimize the actual fruition of heavy streaming services. Being the
considered connection downlink only (i.e., users do not send data to servers through
APs), the task offloading problem does not apply to the issue tackled hereby.

In what follows, the control problem discussed above will be stated and modeled
formally, with the description of the proposed MARL formulation. Eventually,
extensive simulations will validate the effectiveness of the proposed approach with
respect to system’s KPIs.

5.2 System Model and Problem Formulation

The considered multi-RAT network selection problem, depicted in Figure 5.1, con-
sists in understanding how to assign connectivity requests of a set users to a given
set of APs. As already mentioned, this work considers multi–homed user terminals
and heterogeneous wireless networks, in which the APs belong to different RATs.
More in detail, let N be the number of UEs requiring connectivity services from
a set of M APs. The APs coverage area and the set of users define the so-called
connectivity environment object of the network selection problem.

As depicted in Figure 5.2, at each discrete time instant k, the i-th user requires
a given data-rate wi(k) (expressed in bit/s) for a specific service. User requests,
in terms of data-rate, have been modeled as square-wave signals with random duty
period and different amplitude per each user. High values represent heavier services,
like the ones required for mobile AR/VR. UEs are characterized in terms of their
buffers qi(k) capturing the amount of traffic requested by the i-th user but not
satisfied. The data-rate assigned by the j-th AP to the i-th UE is denoted with
ui

j(k) and represents the control variable in the considered control problem. The
load of the j-th AP is denoted with lj(k) and is expressed as the percentage of
allocated Physical Resource Bloks (PRBs).
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Figure 5.1. Multi-RAT connectivity scenario for cultural sites.

Figure 5.2. Interaction between the i-th UE and the j-th AP.

The buffer dynamics of the i-th UE can be described by

qi(k + 1) = qi(k) + Ts

wi(k)−
M∑

j=1
uj

i (k)

 ,∀i = 1, . . . , N, (5.1)

where Ts is the sampling time.
The considered communication type is downlink only, meaning that all the users

require streaming services and not server uploading services. Users are assumed to
be able to freely move in a 2D environment, according to the law

pi
UE(k + 1) = pi

UE(k) + Tsv
i
UE(k), ∀i = 1, . . . , N, (5.2)

where pi
UE(·) = [xi

UE yi
UE]⊤ and vi

UE(·) = [vi
UE,x vi

UE,y]⊤ are the position and
velocity of the i-th UE, respectively. Furthermore, their initial position pi

UE is
randomly chosen at the beginning of each training episode, thus allowing to learn
the optimal policy in any scenario. The position pj

AP of APs is considered fixed,
but application scenarios in which connectivity is provided by moving UAVs may
be easily addressed by considering the following law

pj
AP(k + 1) = pj

AP(k) + Tsv
j
AP(k), ∀j = 1, . . . ,M, (5.3)
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Table 5.2. Multi–connectivity nomenclature

Symbol Description
Ai Action space of the i-th UE
dj

i Distance between the i-th UE and the j-
th AP

h Number of quantized levels used for UEs’
queues

i Index used to refer to UEs
j Index used to refer to APs
k Generic discrete time instant
lj(k) Load of the j-th AP at time k
M Number of APs
N Number of UEs
pi

AP(k) Position at time k of the j-th AP
pi

UE(k) Position at time k of the i-th UE
qi(k) Queue of the i-th UE at time k
Si State space of the i-th UE
Ts Sampling time
ui

j(k) Bitrate assigned at time k by the j-th AP
to the i-th UE

vi
AP(k) Velocity at time k of the j-th AP
vi

UE(k) Velocity at time k of the i-th UE
wi(k) Bitrate requested at time k by the i-th

UE
wj

i (k) Bitrate requested at time k by the i-th
UE to the j-th AP

z Number of quantized levels used for APs’
loads

where pj
AP(·) = [xj

AP yj
AP]⊤ and vj

AP(·) = [vj
AP,x vj

AP,y]⊤ are the position and
velocity of the j-th AP, respectively.

The power of the signal between UEs and APs is computed using the Signal
to Noise plus interference Ratio (SINR) [146] and a Free-Space Path Loss (FSPL)
model [147].

5.3 Multi-Agent Reinforcement Learning Formulation

The user-centric network selection problem can be modeled exploiting the MDP
and the MARL framework, both presented in the first part of this essay.

In the hereby proposed multi–agent formulation, the state si ∈ Si of the i-th
UE is the (M + 1)-dimensional vector defined as

si = [q̃i l̃1 ... ˜lM ], (5.4)
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where q̃i and l̃j (with j = 1, . . . ,M) are discrete levels used to capture the UEs’
queue levels and the APs’ loads, respectively. Said discrete levels are defined as
follows:

q̃i =


0 if qi < q̄0

1 if q̄0 ≤ qi < q̄1

2 otherwise

∀i = 1, . . . , N, (5.5)

l̃j =



0 if lj < l̄0

1 if l̄0 ≤ lj < l̄1

2 if l̄1 ≤ lj < l̄2

3 otherwise

∀j = 1, . . . ,M. (5.6)

Let h and z be the number of the quantized levels chosen for the UEs’ queues
and APs’ loads, respectively. The cardinality of Si is then

|Si| = hzM , ∀i = 1, . . . , N. (5.7)

In the considered network selection problem, UEs are multi-homed terminals
which can simultaneously connect to one or more APs at any given time. Hence,
the i-th UE control action ai ∈ Ai can be defined as the M -dimensional vector

ai = [p1 · · · pM ], (5.8)

where the Boolean entries pj ∈ {0; 1} specify if the i-th UE requests connectivity
services to the j-th AP (i.e., if pj = 1) or not (i.e., pj = 0). It follows the the
dimension of the i-th UE action space is

|Ai| = 2M , ∀i = 1, . . . , N. (5.9)

The reward function Ri(·) per each user i is defined as follows:

Ri(·) =

+1 if |ai| > 0 ∧ (qi > 0 or wi > 0)

−1 otherwise
, (5.10)

where |ai| is the L1-norm of ai capturing the number of APs the i-th UE is trying
to connect to. Note that, with this modeling choice, the agents receive a positive
reward when they request connectivity services (i.e., when |ai| > 0) and they are
requesting traffic (i.e., wi > 0) and/or their queue is not empty (i.e., if qi > 0).

Every time that a user requests connection to more than one AP, the request wi

is split among the base stations taking into account the relative distance between
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the UE and AP. In particular, the formula for the generic wj
i can be easily obtained

as follows

wj
i = wi

1− dj
i∑

j d
j
i

|ai| − 1 , (5.11)

where dj
i is the Euclidean distance between the i-th UE and the j-th AP. This

modeling choice allows to reduce the energy required for the streaming services,
since the UEs do not waste a high amount of power for sending traffic to remote
APs.

Let ûi be the i–th user data–traffic request. This control signal follows a
discrete–time PID control rule, which aims at discharging the user’s queue [148]:

ûi(k) = KP e(k) +KI

k∑
h=0

e(h) +KD[e(k)− e(k − 1)], (5.12)

where e(k) = q(k) − qdes(k) = q(k) is the error and KP , KI and KD are the
PID gains. It is worth noting that each user is free to tune its own PID gains,
implementing mild or urgent control actions.

Moreover, let ũj
i be the maximum amount of data–rate that the j–th AP can

afford to the i–th user. Then, the real traffic data received by the user is given by

uj
i = min{ûj

i , ũ
j
i}. (5.13)

If ui
j = wj

i at each time step, then the i-th user data-rate request is perfectly satisfied
by the j-th access point. Each episode (or communication round) terminates after T
steps, i.e., the amount of time after which no UE requests communication services.

Note that, thanks to the modeling choice reported in (5.5)–(5.6), the dimensions
of the agents’ state spaces Si and action spaces Ai are limited and, more specifically,
they do not grow exponentially with the number of UEs. This, in turn, means that
it is not mandatory to rely on DRL techniques to approximate the action-value
functions. Furthermore, as already mentioned, under specific conditions, the Q-
Learning algorithm is guaranteed to stochastically converge to the optimal policy.
This is not the case with DRL approaches for which convergence to the optimal
solution can be proved only from an empirical point of view.

For these reasons, a variant of the Q–Learning algorithm 3 has been chosen,
adapting it to the multi–agent scenario. The proposed Multi–Agent Q–Learning
algorithm is presented in Algorithm 8.
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Algorithm 8 Multi-Agent User-Association Q-Learning
1: Inputs: learning rate α ∈ [0, 1); discount rate γ ∈ [0; 1]; small ε > 0
2: Output: Qi(s, a)∀i
3: Define the number of training episodes E
4: Initialize Qi(s, a), ∀s, ∀a, ∀i
5: for ep = 1, . . . , E do
6: reset si, ∀i = 1, . . . , N
7: for t = 1, . . . , T do
8: for each user i = 1, . . . , N do
9: get observation si

10: choose action ai following ε-greedy policy
11: based on Equation (5.11), compute wj

i (k),∀j
12: perform action ai considering the computed wj

i and observe the next
state s′

i and the obtained reward r′
i

13: perform Q-Learning update rule over Qi(s, a)
14: si ← s′

i

15: end for
16: end for
17: update α
18: update ε
19: end for

Table 5.3. APs Features

AP µ Frequency Bandwidth Power Max Data–Rate Position

AP1 1 800 MHz 20 MHz 20 W 1000 Mbit s−1 [200 800]⊤ m
AP2 1 1700 MHz 40 MHz 20 W 1000 Mbit s−1 [500 100]⊤ m
AP3 1 1900 MHz 40 MHz 20 W 1000 Mbit s−1 [800 800]⊤ m

5.4 Simulations and Results

5.4.1 Simulations’ environment, parameters and KPIs

The simulations were carried out on a computer equipped with an Intel Core i5-
10210U quad-core CPU @ 1.60 GHz and 16 GB of RAM and exploited the Network
Simulator Environment described in [149]. In such environment, each user is able
to activate and deactivate connections with the available APs. As detailed in the
next sub-sections, the proposed control framework has been tested in two different
scenarios: in the first one, a non–crowded area with few tourists has been con-
sidered, whereas the second one presents a more crowded area. In both scenarios
user can have at their disposal M = 3 BSs implementing the 5G-NR technology,
whose technical features (like numerology µ, frequency and transmission power) are
reported in Table 5.3.
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The thresholds’ values q̄0, q̄1 and l̄0, l̄1, l̄2 (see (5.5)–(5.6)) used to define discrete
levels to define the values of UEs’ queues qi and APs’ loads lj , respectively, have
been defined as follows:

qτ = [0.4 0.7]⊤

lτ = [0.2 0.5 0.8]⊤.
(5.14)

The Q-Learning training parameters have been chosen in the following way. The
number of training episodes has been set to E = 20000; the initial learning rate α0

is equal to 1 and evolves according to the following decay law

α(e) = 1
0.05e+ 1 , (5.15)

where e is the generic episode; the initial ε-greedy policy parameter is equal to 1
and decays following the law:

ε(e) = exp
( −e

0.2E

)
. (5.16)

Eventually, the discount rate γ is set to 0.9 and the initial action-value function
Qi(s, a), is the zero matrix ∀i.

Furthermore, a loss function per each user has been defined as

ei(k) = (Qold
i (s, a)−Qnew

i (s, a))2, (5.17)

in order to monitor how much time does the training process take to maximize the
reward. At the beginning of each episode the UEs’ initial positions in the environ-
ment are chosen randomly, in such a way as to allow for the widest generalization
possible. Users are assumed to freely move in a squared area with sides 1 km.

The proposed Multi-RAT approach has been compared with two other connec-
tivity protocols:

1. Max–SINR. It is the standard approach for commercial user devices [150].
With this protocol the device is multi–mode and it can establish connection
with just one AP at a time. The latter is chosen as the one guaranteeing the
highest SINR.

2. Single–RAT Q–Learning. In this case, an intelligent agent is trained for solving
the network selection problem, enabling only one connection at a time.

The obtained results have been evaluated also through the definition of five
KPIs, defined as follows:
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• KPI 1: percentage of time instants in which users experience queues (the
lower, the better).

• KPI 2: percentage of users who never experience queues (the higher, the
better).

• KPI 3: percentage of users who experience saturated queues (the lower, the
better).

• KPI 4: percentage of time instants in which there are saturated queues (the
lower, the better).

• KPI 5: base stations’ load distribution fairness, computed as the average
standard deviation of APs levels (the lower, the better). Supposing to have
M APs, each one with load lj(k) at time k, and control horizon Kf , the load
balancing metric is computed as

KPI 5 =

Kf −1∑
k=0

σAP(k)

Kf
, (5.18)

where

σAP(k) =

√√√√√ M∑
j=1

(lj(k)− lµ(k))2

M
, (5.19)

with lµ(k) being the average AP load at time k.

The remainder of this section is organized as follows. Section 5.4.2 focuses on
the algorithm’s training phase and shows how the proposed algorithm converges. In
Section 5.4.3, the learned policy is deployed in a simulation environment character-
ized by few users and is aimed at comparing the performances of different algorithms
when telecommunication resources are not scarce. Eventually, Section 5.4.4 tests
the same learned policy in a crowded scenario in which telecommunication resources
are not enough to match all users’ connectivity requests.

5.4.2 Training phase

To deal with scalability issues, the training of the Single- and Multi-RAT intelligent
agents has been performed considering a single agent (i.e., a single user). To take
into account the multi-agent nature of the environment in which the trained agents
will be deployed (in other words, to consider the mutual impact between users),
several environment’s parameters have been randomized in different steps of the
training algorithm. More in detail, at the beginning of each training episode, a
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Figure 5.3. Averaged reward and loss during the training phase.

random position is assigned to the agent to be trained and, in addition, during the
episode, it moves with a random speed.

Furthermore, during the episode, before the agent selects an action (i.e., before
it decides to which APs the connectivity requests should be send), the APs’ loads
are also randomized, in order to simulate the impact of others external users on the
telecommunication network. The learned policy is then assigned to the N agents
(i.e., to the N UEs). Each episode lasts 30 seconds, with sampling time Ts = 0.1 s,
thus leading to Ttrain = 6× 106 training steps.

This training strategy is justified by the findings of other works such as [151]
and [152]. With respect to these works, the considered application domain does not
suffer from the challenges outlined by the authors posed by adopting homogeneous
policies in multi-agent environments. As pointed out by the authors, adding small
noises in the action and/or state space would allow to overcome such issue. In
this work, it has been assumed that all users have the same requirements in terms
of QoS constraints. Future works may consider different QoS requirements for
different classes of users. In this case, an homogeneous policy shall be learned for
each one of said users’ classes. Using this approach, it is possible to realize a fast
and agile training phase, which lasts only around 17 s both for the Multi–RAT and
the Single–RAT agent.

Fig. 5.3 displays the reward averaged over 2000 episodes and the loss averaged
over 12000 training steps, respectively. Both agents are able to learn a policy which
maximizes the reward within the chosen number of episodes. It is worth noticing
that since both loss functions converge after few steps, it is possible to further
improve the training phase, e.g., by reducing the number of episodes or letting ϵ

converge more rapidly to zero.
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5.4.3 Non–overcrowded Scenario

In the first simulation, the performances of the proposed algorithms are evaluated
in not overcrowded scenario envisaging N = 9 users. The simulation emulates a
virtual tour lasting 30 min with sampling time equal to the one used in the training
phase. The computational time to perform the test is around 1.22 s per each user,
meaning that the network control paradigm could be implemented with negligible
delay also in applications that require Ts < 1 min.

Figure 5.4 and Table 5.4 report the loads on the three APs and the values of the
considered KPIs, respectively. As expected, in a scenario in which telecommunica-
tion resources are not scarce, all three algorithms are able to match users requests.
However, from the values of KPI 5 (capturing the APs’ load distribution fairness),
it can be observed that the Multi-RAT Q-Learning algorithm is able to distribute
loads more fairly (by one order of magnitude) than the other algorithms. The
Single-RAT Q-Learning algorithm, on the other hand, has performances sligthly
worse than the Max-SINR algorithm. This could be solved by tuning the rewards
obtained by the Single-RAT intelligent agent. In general terms, it can be said that
in absence of scarcity of resources, advanced user association techniques do not pro-
vide significant improvements besides a better usage of network resources (which,
from the network operators’ point of view, may represent a relevant aspect).

Table 5.4. Non–overcrowded scenario simulation results

Connectivity Protocol KPI 1 KPI 2 KPI 3 KPI 4 KPI 5

Multi–RAT 0% 100% 0% 0% 0.001
Single–RAT 0% 100% 0% 0% 0.07
Max–SINR 0% 100% 0% 0% 0.03

5.4.4 Crowded Scenario

In the second simulation, the performances of the proposed algorithms are evaluated
in an overcrowded scenario with N = 45 users. Since the amplitude of user requests
and the environment are the same as in the first simulation, in this case the scenario
emulates a narrow crowded zone (like a real archaeological park) with many users
requesting high quality VR/AR streaming services. As per computational times,
the same considerations carried out in the first simulation apply.

The loads on the three APs are shown in Figure 5.5. It can be noted that
the Max–SINR approach causes high occupancy levels on AP2 and AP3, with an
inefficient usage of the first AP. On the other hand, the Multi–RAT approach al-
lows to achieve better load balancing on the APs with respect to both the other
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(a)

(b)

(c)

Figure 5.4. Loads on the three BSs, non–overcrowded scenario.



82 5. The Multi-RAT Network Selection Problem

Table 5.5. Crowded scenario simulation results

Connectivity Protocol KPI 1 KPI 2 KPI 3 KPI 4 KPI 5

Multi–RAT 1.48% 74.67% 0% 0% 0.001
Single–RAT 26% 0% 88% 1.28% 0.05
Max–SINR 25.33% 42% 54.67% 4.9% 0.2

approaches. In particular, with respect to the Single–RAT algorithm, with the
Multi-RAT algorithm the maximum burden on the APs lasts less.

Table 5.5 shows the values of the five considered KPIs. By analysing such
data, it is clear that the Multi-RAT Q-Learning algorithm outperforms the others
techniques with respect to all the considered KPIs. In particular, it can be noted
that such algorithm allows to avoid saturated queues for all the duration of the
visit. For what concerns the Single-RAT Q-Learning algorithm, it can be seen that
it performs better with respect to the Max-SINR algorithm in terms of load fairness
(KPI 5: 0.05 vs 0.2) and in terms of percentage of time instants in which there are
saturated queues (KPI 4: 1.28% vs 4.9%). This latter aspect is directly related to
lags experienced by users during virtual tours.

Concerning the first three KPIs, the Max-SINR algorithm seems to perform bet-
ter than the Single-RAT algorithm. Indeed, the Max-SINR algorithm shows better
performances with respect to the percentages of time instants in which users experi-
ence queues (KPI 1: 25.33% vs 26%) and of users who experience saturated queues
(KPI 3: 54.67% vs 88%). Furthermore, the Max-SINR algorithm outperforms the
Single-RAT algorithm in terms of the number of users who never experience queues
(KPI 2: 42% vs 0%).

From this analysis, it emerges that the Single-RAT tries to distribute the con-
sequences of a lack of resources among all the users, whereas with the Max-SINR
algorithm the number of users who never experience lags is higher. More specifically,
the Single-RAT algorithm minimizes the number of time instants in which there are
saturated queues at the price of having more users experiencing queues. Hence,
with respect to the Max-SINR algorithm, the Single-RAT is more fair not only in
the AP load distribution (see KPI 5) but also regarding the resources assigned to
the users.

5.5 Discussion and Future Works

In the framework of applications for the enhancement of cultural heritage, this work
tackled the problem of guaranteeing smooth AR and VR tours in urban and remote
cultural sites. The availability of such services allows to provide virtual access to
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Figure 5.5. Loads on the three BSs, crowded scenario.
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areas not open to the public and to guarantee the accessibility to cultural sites to
people with mobility difficulties. This work was aimed at supporting user-centric
virtual tours removing constraints regarding the computational power of the smart
devices used for visualizing AR and VR contents and the need of using wired devices
while guaranteeing users freedom of movement and choice of contents.

The proposed solution is based on MARL and exploits a Q-Learning algorithm
to learn the optimal policies. Said solution has been developed both for single- and
for multi-homed devices. The latter leverages on an important feature of the 5G al-
lowing to simultaneously exploiting multiple RATs. The adopted training strategy
proved to be very fast (less than 20s) allowing to converge to the maximum ob-
tainable reward. The performances of the Multi-RAT and Single-RAT Q-Learning
algorithms have been compared with the ones of the Max-SINR algorithm, which is
a widely adopted connectivity protocol. While the performances of the Multi-RAT
algorithm always outperformed the other two algorithms, the Single-RAT and the
Max-SINR algorithms showed behaviors requiring a discussion. Indeed, simulations
show that the Single-RAT algorithm allows to minimize the global service discom-
fort whereas the Max-SINR algorithm favors those users with better SINR values.
The proposed Q-Learning strategies allow to achieve more fair performances both
from the network operators point of view (in terms of APs’ loads distribution) and
from the users’ point of view (distributing drops in performances among all the
users).

Future research in this area could expand on the proposed solution in the fol-
lowing directions:

• Algorithmic Enhancement: to reduce the risk of overwhelming APs, one can
customize the allocation of data based on the unique characteristics of each
AP. This means limiting data requests to less advanced RATs. Additionally,
incorporating DNNs to approximate the action-value function in Q-Learning
can enhance scalability, but caution is needed since it may not guarantee
optimal resource allocation, and fine-tuning of hyper-parameters can affect
result reproducibility.

• Modeling Enhancement: considering scenarios where UEs can send data to
APs and integrating computing resources for traffic offloading can lead to
more efficient control algorithms tailored to specific use cases.



Chapter 6

Power and Resolution Control
in Mobile Augmented Reality
Applications

T he previous chapter focused its attention to the issue of network selection
considering just the downlink phase of the communication, i.e. the phase in

which the MD gets the data from a cloud or edge server via a set of heterogeneous
BSs which shall provide connectivity services.

However, in applications like MAR, it is crucial to consider performance also
during the uplink phase, i.e. when the UE sends data to a server via the BS. Since
most of the devices cannot perform directly heavy graphical computations like 3D
reconstruction or virtual object placement, they shall rely on a remote machine for
processing images and videos. This process is called offloading.

This task can be performed using three paradigms, which differentiate them-
selves with respect to the location where data processing occurs:

1. Cloud Computing. It entails storing, managing, and processing data at re-
mote data centers, usually located far away from the final users (in the order of
hundreds of kilometers). It offers on-demand access to a variety of computing
resources accessible through an internet connection. This approach is highly
scalable, allowing businesses to easily expand their resources as needed with-
out purchasing and deploying complex hardware locally. Furthermore, cloud
providers typically provide high levels of dependability and uptime. The main
disadvantage is that it may introduce latency, which can be problematic for
real-time applications. Furthermore, because cloud services rely on an inter-
net connection, they can be disrupted if there are network issues or network
congestions [153].
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2. Edge Computing. It is the practice of processing data closer to the source
or edge of the network, usually on local devices or gateway servers. This
method is intended to reduce latency and improve real-time processing capa-
bilities. Because data is processed closer to its source, edge computing sig-
nificantly reduces latency [153]: this is especially important for applications
that require real-time or near-real-time responses, like MAR or autonomous
guidance. Moreover, this paradigm reduces the amount of data to be sent
over the internet to a cloud server, thus saving energy and costs. However,
edge computing solutions can be limited in scalability because edge devices
are typically less powerful and have fewer resources than cloud servers.

3. Fog Computing. Fog computing is an extension of edge computing in which
computing resources are deployed at an intermediate layer between edge de-
vices and the cloud. It aims to address some of edge computing’s scalability
and resource constraints, offering a scalable solution by introducing interme-
diary nodes that can aggregate and process data from edge devices before
sending it to the cloud (or avoiding to do so) [153]. While not as low-latency
as edge computing, fog computing is still faster than pure cloud computing.
Moreover, Data processing can be distributed across fog nodes, allowing for
the execution of more resource-intensive tasks, and exploiting, as an example,
the framework of Federated Learning. However, implementing and managing
a fog computing infrastructure can be complicated and time-consuming, as
fog node deployment can be costly in terms of hardware and maintenance.

This chapter will focus its attention on the so–called Mobile Edge Computing
(MEC) paradigm, in which a MD requires computation resources to an edge resource
which is geographically located near to the device itself or attached to the BS the
MD connects to.

While traditional offloading strategies rely on static optimization or heuristics,
here a multi–input data–driven dynamic control of uplink power and image com-
pression rate will be carried out, introducing a Policy Broadcasting DRL approach,
based on the DDPG algorithm. The proposed solution is aimed at matching the
challenging Quality of Service constraints, in terms of maximum round–trip latency
and minimum resolution accuracy, while minimizing the energy consumption. Sim-
ulations will show the effectiveness and scalability of the proposed approach for
real–time applications.

All material in this chapter refers to [154].
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6.1 Motivations and Related Works

The rapid evolution of wireless communication technologies has driven a paradigm
shift in the design and deployment of wireless networks. One of the key develop-
ments has been the emergence of Heterogeneous Networks (HN) characterized by
(i) the integration of wireless communication systems belonging to different RATs
and (ii) the coexistence of various network elements, such as macrocells, microcells,
picocells, and femtocells [155]. The pivotal enabler of the HN deployment is 5G,
the fifth generation of wireless communication technology, which is able to address
the challenges posed by the increasing demand for higher data rates, low latency,
massive device connectivity, and diverse user application requirements [156]. The
evolution of wireless communication technologies is accompanied by the widespread
diffusion of mobile devices for daily use, such as tablets and smartphones. Regarding
the latter, the number of mobile network subscriptions worldwide reached almost
6.4 billion in 2022, and is forecast to exceed 7.7 billion by 2028 [157].

Over the years, these digital devices made available to users have become in-
creasingly sophisticated and are equipped with powerful processors (CPUs), very
high resolution screens, video cameras and sensors of different types. This allows
smartphones and tablets to run very complex applications and functions aimed at
teleworking, virtualization and entertainment [158]. In the latter domain, one of
the key emerging technology is MAR, which has become an integral part of various
industries, ranging from e–commerce and gaming to education and healthcare [159].

In general, AR refers to the integration of computer-generated sensory informa-
tion, such as visuals, sounds, and haptic feedback, into the real-world environment
through user devices. This technology extends human perception by overlaying
virtual objects onto our physical surroundings, creating an immersive and interac-
tive user experience [160]. However, in the MAR context, the inherent constraints
posed by limited computational resources and battery capacity within MDs make
the accomplishment of object analytics while adhering to stringent low-latency re-
quirements a challenging endeavor. Since usually MDs like smartphones or headsets
cannot mount built–in GPUs, they need to perform computation offloading towards
network cloud servers, which arrange object detection or creation of tasks, sending
back the augmented frames to MDs [161]. This operation usually is characterized
by high latency, not allowing to enjoy real–time AR applications.

To address this challenge, the concept of MEC, standardized by the European
Telecommunications Standards Institute (ETSI) [162], emerges as a promising so-
lution. The MEC offers computational resources to MDs at the network edge,
positioned physically closer to MDs than conventional cloud servers. This allows to
reduce the network communication latency, enabling real–time MAR application.
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Recent research endeavors have focused on efficient computation offloading to
MEC servers, taking into account latency, bandwidth, and computational resource
limitations as Key Performance Indicators (KPIs) [127,163,164]. These works have
been enriched considering also accuracy and resolution control [165], and MD’s
cache management [166] which constitute the distinct attributes of object analytics
within the realm of MAR. While the above papers adopt a static nonlinear opti-
mization, several other works consider the problem of uplink power management
from a control systems perspective. As an example, in [167], the authors demon-
strate the internal stability of standard power allocation dynamic procedures. More
recent works (e.g., [168–173]), instead, have focused the attention on data–driven
control methodologies, namely RL [174]. A multi–agent Q-Learning formulation has
been described in [175] where the authors consider a multitude of users requesting
streaming services at the same time. In [176], the authors exploit DRL to deal not
only with power control, but also with user association in a HN environment.

However, none of the mentioned works have considered, jointly, the problem of
dynamic uplink power allocation and image resolution control for MAR applications
in a MEC scenario.

This research advances the state of the art introducing the following innovations:

• simultaneous data-driven control of uplink power allocation and image com-
pression by means of DRL, exploiting users’ spatial information and imple-
menting continuous control actions;

• definition of a Policy Broadcasting approach, through which the training phase
of the RL procedure is limited to one agent only, whereas the execution is
broadcast to multiple agents;

• introduction of a novel reward function leveraging on the trade-off between
image accuracy and energy consumption, while guaranteeing operational con-
straints.

In the next sections, the Policy Broadcasting learning/execution approach will
be detailed, and the MAR wireless network system will be modeled as a dynamical
system. Building upon this, the simulations and results will be presented, highlight-
ing the advantages of the proposed control architecture. Eventually, a brief final
discussion will highlight the practical implications of the study’s insights, outlining
potential avenues for future researches.
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6.2 Policy Broadcasting Reinforcement Learning

Building upon a standard MDP formulation, as in the previous work, here a Policy
Broadcasting Reinforcement Learning (PBRL) approach is introduced. A unique
policy is learned during the training phase (see Algorithm 9) and then it is broadcast
to multiple agents, which perform in parallel their actions during the execution
phase, sharing the same environment (see Algorithm 10). This algorithmic choice
allows to deal with one of the typical drawbacks of RL algorithms in multi-agent
scenarios which is represented by the required training times. When the agents
share an homogeneous nature, it is possible to save computational time by training
only a single agent instead of dedicating a local training for each of the agents.

Algorithm 9 PBRL Single Agent Learning Phase
1: Initialize policy π randomly
2: for episode ← 1 to end do
3: Initialize state s
4: while s is not terminal do
5: Take action a according to exploration strategy
6: Observe reward r and new state s′

7: Update internal state and policy π
8: end while
9: end for

Algorithm 10 PBRL Multi Agent Execution Phase
1: Initialize vector state s = [s1, . . . , sN ]
2: while s is not terminal do
3: for agent i ← 1 to end do
4: Observe state si

5: Select action ai using policy π
6: Receive reward ri and new state si,′

7: Update internal state
8: end for
9: end while

The training phase relies on the Deep Deterministic Policy Gradient (DDPG)
algorithm 7, which, as seen in the first part of this thesis, can tackle problems with
continuous action and state spaces.

6.3 MAR System Modeling

Let us consider a single–cell MEC system, consisting of an edge server wired (e.g.,
by means of optical fiber) to a 5G Base Station (BS), whose fixed 2D position is
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Coverage Area

Figure 6.1. MAR system scenario.

xBS =
[
xBS

1 xBS
2

]T
. The server hosts a virtual machine with guaranteed GPU

capabilities for object detection and image augmentation purposes. The MDs are
single–antenna devices, sparsely scattered within the coverage area of the BS and
each one of them occupies a non–overlapping bandwidth W of the BS, running an
active session of a MAR application. The latter aim is to capture images with
the smartphone camera, send them to the edge server, thus receiving back the
new images with modified and augmented information. The MDs have the same
technological characteristics and cannot communicate one with each other. The
system scenario is depicted in Fig. 6.1.

Consider now a single MD, and suppose its owner is allowed to move only within
the coverage area of the BS with speed v =

[
v1 v2

]T
while running its session, thus

moving according to the first order differential equation

ẋ = v, (6.1)

where x =
[
x1 x2

]T
. Moreover, suppose that the user can estimate, at any given

time, its position x through a GPS–like navigation system.

Let p be the transmission power of the MD, then the Signal to Noise ratio (SNR)
can be defined as:

SNR = pGMDGBSh

WN
, (6.2)

where GMD and GBS are respectively the transmitter and receiver gains, N is the
noise power spectral density, and h is the attenuation of radio energy, modeled
following the free-space path loss propagation model as:
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h =
(

λ

4πd

)2
, (6.3)

where λ is the signal wavelength, and d = ||x − xBS|| is the Euclidean distance
between the mobile device and the base station.

As a result, remembering the Shannon–Hartley theorem, the uplink transmission
rate cannot exceed the amount

R(p) = W log2
(
1 + SNR

)
. (6.4)

All the images captured by a MD undergo a compression process before being
sent to the edge server which ultimately processes them.

We assume that the MD has compression capacity V , and captures K-pixel raw
images which are compressed to s pixels, each one containing σ bits of information.

The accuracy of the image processing task can be computed as follows:

A(s) = 1− 1.578 exp(−6.5× 10−3s1/2). (6.5)

Assuming that the server is capable of providing a minimal computation speed
of f (TFLOPS), the processing workload is given by:

ψ(s) = 7× 10−10s3/2 + 0.083. (6.6)

The latency occurring for a round trip path can be divided into four components,
defined as follows:

• LIC = σK/V is the latency related to image compression at the i-th MD level.

• LT = σs/R(p) is the latency due to the 5G connection between the MD and
the BS.

• LBS
ES is the latency between the BS and the edge server. This quantity can be

neglected compared to the other terms.

• LES = ψ/f is the latency related to processing workload at the edge server
level.

Hence, the total cumulative latency is

L(p, s) = LIC + LT + LES. (6.7)

Eventually, energy consumption arguments at MD level are considered. Let
E(p, s) be the total energy consumed by the MD. It is made by two elements:
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• EIC = εσ(K − s) is the energy spent for image compression, with ε being the
energy consumption for compressing 1 bit of data.

• ET = pLT is the energy related to data transmission.

In what follows the mathematical formulation presented above is mapped on a
MDP, in order to exploit the DRL control framework.

The state of the agent is given by

S = ⟨d⟩, (6.8)

i.e., it corresponds to the relative distance from the BS. This modeling choice, to-
gether with the assumption of the existence of non–overlapping bandwidths, allows
to apply the PBRL approach, thus training only a single agent, and then deploying
its policy to multiple MDs.

The action space
A = ⟨p, s⟩ (6.9)

is composed of the transmitting power p ∈ [pmin, pmax], and the image resolution
after compression s ∈ [smin, smax].

The goal of the agent is to solve the power allocation and image processing
problems in such a way that QoS and QoE KPIs are satisfied. To this end, let
µ and δ be the maximum sustainable latency and the minimum feasible accuracy,
respectively. Hence, it is possible to define the following two usage constraints:

L(p, s) ≤ µ

A(s) ≥ δ.
(6.10)

In addition, for energy saving purposes, it is desirable to govern image com-
pression and data transmission spending the least possible amount of energy. As a
result, the reward is defined as follows:

r = −
(
E(p, s) + αQ(s)

)
− sgn

(
L(p, s)− µ

)
+ sgn

(
A(s)− δ

)
, (6.11)

where Q(s) = 1 − A(s) is the accuracy loss, α is a weight factor balancing energy
minimization and accuracy loss, and sgn(·) is the sign function.

6.4 Simulations and Results

In order to validate the effectiveness of our proposed approach, we consider a sce-
nario of 10 MDs moving inside a square having a side l = 300 [m], with the BS
located at the center of the square. This scenario is typical of archaeological parks
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Table 6.1. System Parameters’ Numerical Values

Parameter Value Unit
f 0.5 TFLOPS
GBS 15 -
GMD 3 -
λ 5× 10−3 m
K 4× 105 pixel
N 3.98× 10−16 W
pmax 3.5 W
pmin 0 W
smax 4× 105 pixel
smin 0 pixel
σ 24 bit/pixel
V 1× 108 bit/s
W 1× 106 Hz

that offer AR services: each tourist is equipped with a MD and is free to move
within a limited area.

The numerical parameters of the MAR system are summarized in Table 6.1.
As for the users’ QoS and QoE, the constraints parameters have been set such

as δ = 0.85 [%], µ = 0.85 [s]. The cost parameter, fixed as α = 4, weights more the
accuracy than the energy consumption.

A single agent is trained for Eep = 200 episodes, each one lasting T = 30 [s],
and adopting an integration of the system dynamics (6.1) using the Runge–Kutta
4th order method with time step dt = 0.1 [s].

At the beginning of each episode the agent starts from a random distance d0

from the BS and he moves with random velocity v ∈ [0 1.11]2,T [km/h], to mimic
a typical human walking behavior. The episode ends if A(s) and/or L(p, s) become
unfeasible or if the time limit T is reached.

During the evaluation procedure, the learned policy resulting from the training
phase is deployed to all MDs, which start at different distances from the BS and
move with different random velocities vi(t). The system dynamics evolve for the
same amount of steps per episode as in the training phase.

The DDPG hyperparameters have been carefully selected as follows: the actor
learning rate βa = 1 × 10−3, the critic learning rate βc = 2 × 10−3, the discount
factor γ = 0.9, and the memory capacity is selected as 1000 transitions. Both the
actor and critic share the same neural architecture composed of three layers, the
first two made of 512 and 128 neurons with ReLU as the activation function [177].
The last layer of the critic is made of a ReLU single neuron, whereas the last layer
of the actor network has the tanh (·) as activation function for the actor.
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Figure 6.2. Accuracy Ai(s) evaluation for each MD i = 1, . . . , 10.

Figure 6.3. Latency Li(s) evaluation for each MD i = 1, . . . , 10.

Training and evaluation are carried out in almost 1 hour using Tensorflow and
Keras on an Intel Xeon platform with 13 GB of RAM and Nvidia Tesla T4.

Figures 6.2-6.3 show the effectiveness of the proposed approach in terms of
meeting the accuracy A(s) and latency L(p, s) requirements respectively. Although
each MD moves with a random velocity, each agent is able to choose the correct
action pair ⟨pi(t), si(t)⟩ which guarantees continuity of service at every instant.

The dotted red line in both figures shows the KPI-correspondent value to be
satisfied. In particular, the highest accuracy value is achieved by the tenth MD,
A10,max = 0.8787 [%], while the second agent achieves the lowest latency.

Figure 6.4 shows the behavior of the second MD (the others are similar), which,
starting from a distance of 152.69 [m] from the BS, dynamically adjust its transmis-
sion power p2(t) and image resolution s2(t) to ensure QoS to its user. It is worth
noting that the MD increases its uplink power and decreases the image quality when
the user moves away from the BS, as expected.

Overall, each MD has a different initial distance from the BS, and its owner
moves with different dynamically changing random speed, influencing his position,
as shown in Figure 6.4 for the second agent. The mean values (computed over the
evaluation steps) for distance d̄i, transmission power p̄i and image resolution s̄i are
reported in Table 6.2 for all MDs, i = 1, . . . , 10.



6.4 Simulations and Results 95

(a) Image compression s2(t).

(b) Transmission power p2(t).

(c) Distance from the BS d2(t).

Figure 6.4. Time evolution of relative distance, power, and compression rate (second
agent).



96 6. Power and Resolution Control in Mobile Augmented Reality Applications

Table 6.2. Distance, transmission power and image resolution mean values for all MDs

Index d̄i p̄i s̄i

1 129.05 205.40 1.50× 105

2 152.78 277.10 1.48× 105

3 118.04 174.69 1.51× 105

4 124.03 190.35 1.50× 105

5 133.35 219.02 1.49× 105

6 96.94 131.79 1.53× 105

7 129.74 207.56 1.50× 105

8 125.37 194.27 1.50× 105

9 141.66 246.69 1.49× 105

10 87.08 114.09 1.56× 105

Table 6.3. Average energy consumption Ēi(p, s) for all the MDs (Joule)

Index Ēi(p, s)
1 0.21
2 0.25
3 0.20
4 0.21
5 0.22
6 0.18
7 0.22
8 0.21
9 0.23
10 0.17

The same is done for the energy consumption, whose mean values Ēi(p, s) for
each MD are reported in Table 6.3.

To summarize, in this chapter a novel RL-based paradigm to cope with the com-
putation offloading QoS–constrained problem for a MAR application in the MEC
scenario has been proposed. Leveraging on the PBRL control approach, the knowl-
edge of MDs’ distance from the BS turns out to be sufficient to satisfy latency
and accuracy requirements in scenarios where all MDs move within the BS’s cov-
erage area with random velocity. The introduction of an energy consumption term
within the reward function extends MDs’ battery life, thus guaranteeing continuity
of service.

Future works may involve the introduction of more complex connectivity pro-
tocols in the context of multi Radio Access Technology networks, thus mixing the
image resolution and power control with the MD–BS association problem.



Chapter 7

Resilient Systems Against
Telecommunication Failures

T he previous chapters covered decision-making and control problems applied to
the field of mobile augmented reality. Now, another application with stringent

constraints in terms of latency and safety is considered: autonomous driving.

7.1 Autonomous Driving and Connected Automated Ve-
hicles

Over the last decades progressive urbanization and the increase in private cars has
posed critical transport and mobility challenges, especially in densely populated
cities. According to the WHO, traffic accidents are the leading cause of death for
children and young adults between 5 and 29 years, and approximately 1.3 million
people die each year by road traffic crashes [178]. Most of the latter are caused by
human drivers’ errors, which are due to long reaction times, non–cooperativeness
or to the irrationality in taking actions while driving their cars.

Since the 80s’, the automotive industry has been shifting towards higher levels
of automation, thus introducing the notion of autonomous driving.

Autonomous driving, also known as self-driving or driverless driving, refers to
a vehicle’s ability to operate and navigate without the intervention of a human.
To perceive their surroundings, make driving decisions, and control the vehicle,
autonomous vehicles are outfitted with advanced sensors, cameras, radar, Lidar,
and AI software. The ultimate goal of self-driving cars is to provide a safe and
efficient mode of transportation with little or no human intervention.

The Society of Automotive Engineers (SAE) has established six levels of driving
automation [179]:
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1. Level zero signifies a complete absence of automation, and it was the state of
the art during the whole previous century up to the 90’s.

2. Level one denotes basic driver assistance systems, like adaptive cruise control,
anti-lock braking systems, and stability control. Most of the commercial cars
that we use daily fall into this category.

3. Level two represents partial automation, which includes advanced assistance
systems such as emergency braking and collision avoidance. Thanks to ad-
vancements in vehicle control knowledge and industry experience, level two
automation has become a feasible technology.

4. Level three introduces conditional automation, allowing the driver to focus
on tasks other than driving during regular operation. Nevertheless, the driver
must promptly respond to an emergency alert from the vehicle and be prepared
to take control. Level three automated driving systems are constrained to
specific operational design domains, such as highways.

5. Level four can only operate within limited roads where specialized infrastruc-
ture or detailed maps are available. If these areas are exited, the vehicle must
automatically park itself, concluding the trip.

6. Level five requires no human attention and characterize the full driving au-
tomation. These cars can function on any road network and in all weather
conditions. As of now, no production vehicle is equipped with level four or
level five driving automation: Toyota Research Institute has indicated that no
one in the industry is anywhere close to achieving level five automation [180].

Implementing level four and above driving automation in urban road networks is
a formidable and unresolved challenge. Environmental variables, from unpredictable
weather conditions to the intricacies of human behavior, make the problem highly
stochastic and unpredictable.

In fact, in the last years several fatal accidents [181, 182] occurred with au-
tonomous vehicles implementing the fourth automation level, thus raising an im-
portant ethical and judicial question.

One of the key characteristic of autonomous driving is the fact that each vehicle
is connected to the internet exploiting a terrestrial network. This means that self–
driving vehicles can communicate either between themselves or with other entities in
any given environment. These vehicles are called Connected Autonomous Vehicles
(CAVs). This paradigm introduces several benefits in terms of improved safety,
predictive traffic management, and enhanced infotainment.

In scientific literature, two types of connectivity for self-driving vehicles are
distinguished:
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1. Vehicle to Vehicle (V2V) communication allows vehicles to communicate
directly with other vehicles in the vicinity. It is an essential component of
CAVs and plays an important role in improving road safety. This paradigm is
critical because vehicles can share information about their speed, position, and
heading to detect and avoid potential collisions, allowing them to maintain safe
following distances by adjusting their speed in real-time [183]. Furthermore,
autonomous vehicles can be alerted to the presence of emergency vehicles or
traffic conditions in order to optimize fuel consumption.

2. Vehicle to Everything (V2X) realizes communication between vehicles
and other elements of the transportation ecosystem, such as infrastructure,
cloud or edge servers, pedestrians, and cyclists [184]. Said paradigm is in turn
divided into three large areas:

• Vehicle to Infrastructure (V2I). It allows vehicles to exchange data
with roadside infrastructure like traffic lights and road signs [185]. This
allows for better traffic management and routing.

• Vehicle to Pedestrian (V2P). It occurs when vehicles and pedestrians
interact. This can include providing pedestrians with warning signals and
ensuring their safety in urban areas.

• Vehicle to Network (V2N). It extends vehicle network connectivity,
allowing them to access real-time data from the cloud such as traffic
conditions, weather updates, and road closures.

7.2 State of the art

It has already been shown how controlled CAVs can overcome human drivers’ limits
and mitigate the frequent negative effects due to man driving a non–autonomous
car [186,187].

The collective behavior of multiple (CAVs) is governed by their mutual aware-
ness of individual states, such as inter-vehicle distance and speed. This awareness
is achieved through inter-vehicle sensing and communication. The information ob-
tained from these processes is a crucial input for each local controller, greatly in-
fluencing the overall collective behavior. A set of CAVs moving together on the
road can be modeled using different information flow topologies (IFTs), through
which it is possible to model the set of CAVs as a multi–agent system described
mathematically using a directed graph [188].

A wide number of studies have tackled control issues of multi–agent CAVs.
Standard approaches involve linear consensus control [189], distributed robust con-
trol [190], sliding–mode control [191], and model predictive control [192, 193]. The
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objective of the mentioned works is to synchronize the speeds of all vehicles within
the same group (internal stability), while also maintaining desired spacing between
adjacent vehicles (string stability). This approach aims to enhance traffic capacity,
improve overall traffic safety, and reduce fuel consumption.

During the last years, researchers began to use machine learning in transporta-
tion research [194] and, in particular, for the management of CAVs [195]. In addition
to the use of supervised learning models for vision and perception purposes [196],
several works examined the potential of Reinforcement Learning (RL) control for
CAVs platoons [59, 197]. In particular, the Multi–Agent Reinforcement Learning
(MARL) domain [198] appears to be suitable to tackle the distributed control of
CAVs: in this scenario, multiple agents take decisions and perform actions over a
shared environment to maximize their long–term return. One of the first works
adopting MARL for CAVs control demonstrated the effectiveness of a centralized
controller in dampening traffic oscillations and reducing the electric vehicle energy
consumptions [199]. Authors in [200] have proposed a communication proximal pol-
icy optimization algorithm to reduce the fuel consumption, and a similar approach
has been used in [201] in a mixed scenario where CAVs need to interact with human–
driven vehicles (HDVs). Other recent articles used Deep Reinforcement Learning
(DRL), focusing on the minimization of crash risk [202], on formation control under
communication failures [203], on human passengers’ comfort over CAVs [204], and,
eventually, on safety improvement at intersections [205].

None of the above mentioned articles deals with the implementation of traffic
rules for safe autonomous driving with complete telecommunication fault, i.e. when
the vehicles are not connected to a wireless network and, hence, cannot exchange
information one with each other. The original contributions in this chapter are:

• the implementation of a non-cooperative control framework for autonomous
vehicle platooning relying on inter-vehicle sensing only;

• evaluation of traffic rules adherence in safe distance assessment;

• modeling and generation of traffic waves compelling HDVs behavior.

In the next sections, a fully automated hybrid vehicle platoon will be formally
modeled as a multi–agent dynamical system, and the consequent control approach
will be detailed. The validity of the proposed solution will be proven through various
simulations, and future work directions building up on limitations and blind spots
will be itemized.

The proposed control methodology and relative simulations and results refer
to [206].
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Figure 7.1. AVs platooning system scenario. Each AV is equipped with a range sensor to
estimate the space gap from the vehicle ahead.

7.3 Mathematical Model

The system scenario is depicted in Fig. 7.1: it consists of a set of N AVs following
a HDV, which is considered to be the leader of the platoon. Each vehicle cannot
exchange information with the other ones, but it can rely on a distance sensor
mounted on the front bumper, which allows to measure how far the next vehicle is.

Dynamical models of a single AV are usually split into three main compo-
nents [207,208]:

1. longitudinal dynamics;

2. bounce and pitch dynamics;

3. lateral, yaw and roll dynamics.

This work focuses on the longitudinal dynamics, which is parallel to the ground
and oriented along the direction of motion. Said dynamics is inherently nonlinear,
and in literature it is usually linearized for tractable issues. The most used models
are the single integrator [209] whose control input is the vehicle longitudinal velocity,
the double–integrator [210, 211] in which the input is the vehicle acceleration, and
the third–order model [212] that takes into consideration the powertrain internal
dynamics.

In this work we use a fully nonlinear second–order model to describe the longi-
tudinal dynamics of the AV, resulting from considering all the forces acting on the
vehicles modeled as a point-mass.

Consider a single AV. Let x = [x1 x2]T = [p v]T ∈ R2 be the state of the dy-
namical system, corresponding to its position and velocity. The resulting dynamics
is described via the following equations:


ẋ1 = x2

ẋ2 = 1
m

(
FT − FAV − FG − FDRAG

) , (7.1)
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where FT is the longitudinal thrust, FAV = µv

Rw
mg cosα the rolling friction, FG =

mg sinα the gravity acting on a slope, and FDRAG = 1
2ρairCdAv(vw + x2)2 is the

aerodynamic drag. In particular, g is the gravitational acceleration, α is the slope
of the surface, ρair the air density, vw the speed of the wind, µv the rolling friction
coefficient, Rw the wheel radius, m the mass, Cd the drag coefficient and Av the
cross-sectional area of the vehicle.

Assuming that the control input is the acceleration u = FT
m
∈ R, (7.1) can be

written as
ẋ = f(x) +Bu, (7.2)

in terms of the vector fields

f(x) =


x2

− µv

Rw
g cos(α)− g sin(α)−

+ 1
2mρairCdAv(vw + x2)2

 , B =
[
0
1

]
. (7.3)

The longitudinal dynamics of the HDV leader is modeled as a double integrator,
with its input ul, corresponding to its acceleration, as a noisy sinusoidal wave,
mimicking the typical human behavior in traffic-waves conditions. Let xl = [pl vl]T

be the state of the leader, composed of its position and velocity respectively, then
the dynamical equations are as follows:ẋ

l
1 = xl

2

ẋl
2 = ul

, (7.4)

where ul = (A + Â) sin
(
(ω + ω̂)t

)
, with A, ω its amplitude and pulse, and Â ∈

N (µÂ, σÂ), ω̂ ∈ N (µω̂, σω̂) their corresponding noises.
While the sinusoidal function resembles the ordinary “start and stop” traffic

scenario, the employment of the additive noises to both its amplitude and pulse try
to model human interventions, such as sudden braking or full throttle events.

Building up on the mathematical framework of Markov Games, the mathemat-
ical model presented so far can be translated as follows.

The state space of the i-th AV is given by

Si = ⟨vi(t), di
i−1(t)⟩, (7.5)

where vi(t) ∈ [vmin, vmax] represents its sensed velocity, and di
i−1(t) ∈ [dmin, dmax]

the measurement of its distance from the vehicle in front.
Note that each AV uses its own local information to solve its corresponding

MDP, hence there are as many actors as the number of vehicles, and each one of
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them contributes equally to the environment update. Therefore, the dimension of
each MDP does not vary with the number of agents, improving the scalability of
the proposed approach.

The action space of each agent corresponds to the vehicle acceleration input,
which is a saturated one:

Ai = ⟨ui(t)⟩, ui(t) ∈ [umin, umax]. (7.6)

Given the platooning problem, our proposed approach is to steer the velocity
vi(t) of the i-th agent towards a desired value vi

d(t), which is computed as a function
of its distance from the vehicle in front di

i−1(t), so that the latter becomes a safe
distance. In other words, in accordance to traffic regulations, we adjust vi(t) to
make sure that di

i−1(t) is an adequate stopping distance.
By approximating the i-th agent with a point-mass, vi

d(t) results from solving
the following second–order equation:

di
i−1(t) = vi

d(t)2

|umin|
+ vi

d(t) tr, (7.7)

where tr is the AV reaction time.
Hence, the immediate reward ri(t) is shaped as follows:

ri(t) =


−100, if di

i−1(t) < dmin

−
(
vi(t)− vi

d(t)
)2
, if dmin < di

i−1(t) < dmax

−
(
vi(t)− vmax

)2
, otherwise

. (7.8)

Due the intrinsic nature of the control problem, the chosen data–driven method
to control in a distributed fashion the non–coperative AVs’ platoon relies on a multi–
agent DDPG, with a DTDE approach (see Fig. 2.2 in Chapter 2).

7.4 Simulations and Results

In order to validate the robustness of our proposed approach, we consider a platoon
of five AVs following a HDV.

Note that each AV differs from the others in terms of its mass mi, length li,
wheel radius Ri

w, and drag area Ai
d = Ci

dA
i
v. Table 7.1 details their values, in

accordance with [213] and manufacturer data.
The road over which the vehicles are traveling is supposed to have no slope (α =

0 [°]), in Standard Ambient and Temperature Pressure (SATP) (ρ = 1.225 [kg/m3]),
with tarmac in good condition (µv = 0.015), in presence of head wind (vw =
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Table 7.1. AVs’ mechanical and aerodynamical characteristics

Nr. Name l [m] m [kg] Rw [m] Ad [m2]
1 Mercedes Benz A180d 4.41 1353 0.48 0.33
2 Opel Calibra 4.5 1190 0.31 0.5
3 Hummer H3 4.74 2654 0.41 1.56
4 BMW i8 4.69 1560 0.35 0.54
5 Tesla Model S P85 4.97 2307 0.36 0.56

1.78 [m/s]) and constant gravity (g = 9.81 [m/s2]). Moreover, it is assumed that
vehicles move on a highway road with maximum speed vmax = 36.1 [m/s], without
the possibility to reverse (vmin = 0 [m/s]).

All the AVs are equipped with a radar sensor with maximum range dmax =
150[m], whose measurement is corrupted via a Gaussian noise signal n(t) ∈ N (0, 0.14).
In addition, we consider a safe minimum distance between vehicles dmin = 3 [m].

The action of each agent lies between umin = −4 [m/s2] and umax = 6 [m/s2],
which results to be common values for standard vehicles, while the Gaussian noise
signal Â, with µÂ = 0.3375 and σÂ = 0.58, corrupts the amplitude of the leader’s
acceleration, and ω̂, with µω̂ = 0.05 and σω̂ = 0.22, its pulse.

Since all RL algorithms only deal with discrete-time dynamics, the equations in
(7.1) have been discretized via the Runge-Kutta 4th order method, with time step
dt = 0.1 [s], which corresponds as well to the reaction time tr before applying the
braking action.

Each agent is trained for E = 300 episodes, each one lasting T = 30 [s], for a
total of 300 steps (T/dt).

Starting from its initial state xi
0 = [pi

0 vi
0]T at t = 0 [s], the i-th agent has to

adjust its speed vi(t) according to its measured distance di
i−1(t) from the vehicle

in front. Having multiple AVs, at each time step t, they apply simultaneously the
acceleration actions on the environment, observe the corresponding rewards and
next states, and subsequently are trained in parallel. The episode ends if an agent
gets too close to the vehicle in front, namely di

i−1(t) < dmin, or if the time limit T
is reached.

The hyper parameters of DDPG are carefully selected as follows: the actor
learning rate α = 0.001, the critic learning rate β = 0.002, the discount factor
γ = 0.9, and the memory capacity is selected as 1000 transitions. Both the actor
and critic share the same neural architecture composed of three layers, the first two
of 512 and 128 neurons with ReLU [177] activation function, and the last one of one
neuron only, with tanh as activation function for the actor.
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Figure 7.2. Mean reward r (solid line) and individual reward ri, i = 1, . . . , 5 (dotted
lines).

At the beginning of each training procedure (t = 0 [s]), the nominal initial
state xi

0 = [pi
0 vi

0]T of the i-th agent is perturbed via an additive Gaussian noise
signal in such a way the position is corrupted by p̂i

0 ∈ N (0, 1), and the velocity by
v̂i

0 ∈ N (0, 0.55).

Simulations are conducted using Tensorflow and Keras on an Intel i9 9900k
platform with 128 GB of RAM and a Nvidia GTX 3090, which allows the training
procedure to be completed in 33.54 [min] for each agent.

Figure 7.2 shows the results achieved by each agent at the end of each training
episode e = 1, . . . , E, namely the changes in reward as the session progresses; the
dotted lines corresponds to the reward ri of each agent i = 1, . . . , 5, whereas the
blue solid line is the mean reward r.

While the first four agents achieve convergence, each maximizing its own reward,
after an exploration phase which lasts roughly 100 episodes, the last agent seems
to require a more episodes, as it is shown by the negative peaks in its reward r5 at
episodes 110, 153, and 160, causing a drop in the cumulative mean reward r. This
could be explained considering that its initial distance from the vehicle in front and
velocity is smaller than the ones of the others, as shown in Figure 7.3 detailing the
evolution of platoon’s position over time during the evaluation phase.

Vehicles start from the initial state, namely

x1(0) = [310, 220, 140, 70, 5]T

x2(0) = [28.0, 20.8, 22.7, 25.0, 19.3]T

xl
1(0) = 400 [m]

xl
2(0) = 25.0 [m/s],

(7.9)
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Figure 7.3. Platoon’s position evolution over time during evaluation phase.

Figure 7.4. Leader velocity vl(t) over time.

and their dynamics is propagated for the same amount of steps as in the training
phase.

As time goes by, each agent successfully keeps a safe distance from the vehicle in
front by adjusting its own velocity, proving to have successfully learned the dynamics
of the agent in front, as well as its own. In particular, given the velocity of the leader,
which is shown in Figure 7.4, the first agent is able to follow its desired speed profile
with a Mean Absolute Error (MAE) of e1

r = 0.1405, as shown in Figure 7.5. AVs’
velocity errors are detailed in Table 7.2.

Overall the agents keep a mean distance of 88.17 [m] from the vehicle in front,
meaning that they are capable of adjusting their control action to reach their goal
(see Figure 7.6).

Figure 7.7 demonstrates the ability of the proposed control law in tracking the
velocity reference, and, in the meantime, steering all the velocities towards a com-
mon value.

To summarize, this chapter presented a fully scalable non-cooperative multi-
agent platooning strategy for maintaining safe distance between vehicles. The pro-
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Table 7.2. Agents’ Velocity MAE

Nr. MAE
1 0.1405
2 0.1567
3 0.0359
4 0.2217
5 0.0553

Figure 7.5. Comparison of desired and actual velocity of the first agent over time.

Figure 7.6. Platoon’s acceleration evolution over time.
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Figure 7.7. Platoon’s velocity evolution over time.

posed method is based on information derived from agents’ local sensing, specifically
the measurement of their inter-distance, and does not require inter-vehicle commu-
nications. Simulations show that using a velocity signal as a reference for each
agent, each of which is modeled by its own longitudinal dynamics, allows for safe
vehicle inter-distance enforcement as well as steering the platoon’s velocity towards
a common value while adhering to traffic rules.

The effectiveness and robustness of the proposed approach are demonstrated by
the evaluation of agents with different mechanical and aerodynamic properties, as
well as a novel model for HDV-issued traffic waves. Future work could include the
consideration of the longitudinal dynamics in the presence of road offset (bumps or
ditches – α ̸= 0), energy optimization arguments, vehicle lateral dynamics, or traffic
scenario enrichment including road obstacles like pedestrians, cyclists or trucks.



Part III

Satellite Networks





Chapter 8

From Radio Frequency to Free
Space Optical Communications

S atellite communication is a form of wireless communication that involves the
transmission of signals between Earth-based stations and artificial satellites or-

biting the Earth. Hence, differently from terrestrial communication networks, the
data transmission takes place outside the Earth’s atmosphere, with transmitter and
receiver being located at high distance one with each other. Typical applications
of this kind of technology includes satellite TV broadcasting, internet access, po-
sitioning and tracking, weather and Earth surface monitoring, military operations,
and scientific research.

A satellite communication system is realized through three main components:
space segment, ground segment and the transmission medium.

8.1 Space Segment

The space segment consists of artificial satellites orbiting in space, which act as
relay stations for transmitting signals between ground stations. The space segment
may include three different types of satellites, according to their orbits’ height:

• Geostationary Earth Orbit (GEO) Satellites. They are positioned at
an altitude of approximately 35,786 km above the equator [214]. Their main
distinctive feature is that they maintain a fixed position relative to the Earth’s
surface, orbiting at the same rotational speed as the Earth. This results in
a stationary coverage area which does not change in time. For this reason,
GEO satellites offer a wide, continuous coverage area, making them ideal for
broadcasting and providing consistent connectivity over specific regions. The
majority of satellite TV services exploit this kind of satellite. As an example,
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the GEO satellite HotBird 13◦ East is the one used for TV services all around
Europe [215]. However, the long distance between GEO satellites and Ground
Stations (GSs) results in higher signal latency, which may not be suitable for
time-sensitive applications.

• Medium Earth Orbit (MEO) Satellites. Their orbits height ranges from
around 2,000 to 35,786 km above the Earth’s surface [214]. These satellites
provide relatively broad coverage areas, making them suitable for global and
regional communication services. The Global Positioning System (GPS) and
the Galileo Navigation System are examples of MEO satellite constellations.

• Low Earth Orbit (LEO) Satellites. They are positioned at altitudes
ranging from approximately 180 to 2,000 km above the Earth’s surface [214].
This property results in lower signal latency and shorter signal travel times
compared to higher orbits. The latter are completed in roughly 90 to 120
minutes, providing frequent coverage of different regions across the world. Due
to their low altitude, at any given time LEO satellites offer a poor coverage
area, and this is why they are usually deployed in large constellations. The
most famous ones are the Iridium and the Starlink. LEO fleets are well–suited
for mobile satellite services, such as satellite phones and broadband internet
access in remote areas, also for real–time applications.

A summarized comparison of the three main types of space segment is reported
in Tab. 8.1.

Table 8.1. Comparison of LEO, MEO, and GEO Satellite Systems

Feature LEO MEO GEO
Altitude 180 - 2,000 km 2,000 - 35,786 km 35,786 km
Orbit Time 90 - 120 minutes 2 - 24 hours 24 hours
Coverage Area Small footprint Medium footprint Wide footprint
Latency Low Moderate High
Number of Satellites Large constella-

tion
Medium constel-
lation

Individual satel-
lites

Signal Strength Weak Moderate Strong
Coverage Frequency Frequent passes Intermittent

passes
Continuous cover-
age

Applications Global internet,
remote sensing

GPS, regional
communication

Television broad-
casting, fixed ser-
vices

Examples Starlink, Iridium GPS, Galileo Hotbird 13◦ East
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8.2 Ground Segment

The ground segment encompasses the Earth-based stations that transmit and re-
ceive signals to and from the satellites. These stations are equipped with specialized
satellite communication equipment, such as antennas and transceivers, to establish
communication links, thus ensuring seamless connectivity between remote locations
and global communication networks [216]. GSs are responsible for controlling satel-
lite operations. They manage satellite movements, transponder allocation, and pay-
load configuration. Furthermore, they continuously monitor the health and status
of satellites, contributing to their operational longevity.

Data received by GSs is then distributed to various end-users, ranging from
individual consumers to government agencies, research institutions, and commercial
enterprises. This data may include telecommunications traffic, internet services,
TV broadcasts, weather data, and more. Moreover, the ground segment is crucial
for ensuring the security and integrity of satellite communications. It manages
encryption, authentication, and data protection measures to safeguard sensitive
information transmitted over the network.

Each GS is equipped with hardware components capable of traducing the receiv-
ing signals into useful data information. Other components of the ground segments
include control rooms intended for satellite orbits over–watch, and modules fro
precise time synchronization and satellite tracking [216]. The ground segment of
satellite communications has seen significant technological advancements over the
years, such as software–defined GSs and automatic reconfiguration via AI. These
innovations have contributed to enhanced efficiency, increased data throughput, and
the expansion of satellite communication services.

8.3 Transmission Medium

The transmission medium denotes the technology through which the wireless com-
munication is realized. There two main types of mediums: radio–frequency and
optics.

8.3.1 Radio Frequency Satellite Communications

Traditionally, satellite communications are implemented using Radio Frequency
(RF), a method that uses electromagnetic radio waves to exchange information
between Earth-based stations and artificial satellites orbiting the Earth. This mode
of communication uses radio frequencies in the electromagnetic spectrum to trans-
mit and receive signals through space, enabling a wide range of applications such
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as telecommunication, broadcasting, data exchange, and global connectivity. RF–
based satellite communications can provide global coverage over large Earth’s zones,
enabling communication in remote and geographically isolated areas where terres-
trial infrastructure is limited or absent. This is particularly important for disaster
response, remote research, and global connectivity [214]. Moreover, satellite com-
munication is known for its reliability. It is less susceptible to local outages or
infrastructure failures, serving as a critical lifeline for emergency services, military
operations, and other vital communication needs.

RF satellites are also widely employed for broadcasting, facilitating the simulta-
neous transmission of content to large audiences (up to 1 million of users for a single
GEO satellite). This makes them a cost-effective medium for media companies to
distribute TV, radio, and multimedia content. Moreover, when handled through
LEO fleets, RF-based satellites are capable of transmitting substantial volumes of
data rapidly, rendering them suitable for applications that demand high bandwidth,
such as broadband internet, video conferencing, and data transfer.

This transmission mean suffers from two main drawbacks. The first is related
to limited spectrum, which is finite and shared among various systems, including
other satellite networks and terrestrial communication systems. As the demand
for satellite services increases, spectrum congestion can lead to interference issues,
reducing the QoS and potentially causing signal degradation [214]. The second
limitation relies on security concerns, since RF communication can be vulnerable
to interception and jamming. Unauthorized access to or interference with satellite
signals can compromise the confidentiality and integrity of data transmitted over
satellite networks [217].

8.3.2 Free Space Optical Communications

In the telecommunications domain, Free Space Optics (FSO) indicates all those
wireless communications which, instead of making use of radio carriers in the form of
a radio communication, make use of electromagnetic carriers belonging to the range
of optical or infrared frequencies or wavelengths, aimed at transporting information
between a transmitter, called optical satellite, and a receiver, called Optical Ground
Station (OGS) [218].

FSO is not a new concept in engineering. Throughout history, optical communi-
cations have taken on various forms and have been utilized for millennia. The first
optical communication system was invented in ancient Greece by Polybius1, who

1Polybius was a Greek statesman and military commander born around 200 BC and died around
118 BC. He made great contributions to the development of military decision-making strategies,
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devised an alphabetic signaling system using torches, showing how it was possible
to communicate crucial information without sending human messengers.

Hundreds of years later, optical communication has been used in the photophone
system invented in 1880 by Alexander Graham Bell and Charles Sumner Tainter.
This technology was referred to as optical telegraphy in the subsequent years, and
it was mostly used for military purposes during World War I and World War II.

The event which revolutionized the actual implementation of FSO also outside
the Earth’s atmosphere was the invention of lasers in the 60s’. The latter still
represent the most widespread technological means for the physical creation of both
terrestrial and satellite optical communication systems.

The first successful laser–communication space–to–ground link was carried out
by Japan in 1995 between the JAXA’s ETS-VI GEO satellite and the National
Institute of Information and Communications Technology (NICT)’s OGS in Tokyo
achieving a data–rate of 1 Mbps [220]. Few years later, the ESA satellite Artemis
achieved the world’s first laser intersatellite link in space in November 2001, pro-
viding an optical data transmission link with the CNES Earth observation satellite
SPOT 4. The data–rate was 50 Mbps over a distance of 40,000 km [221].

From there, continuous advancements and improvements were achieved by the
scientific community, until April 28, 2023, when National Aeronautics and Space
Administration (NASA) and its partners achieved another significant milestone in
the future of space communications: 200 Gbps throughput on a space-to-ground
optical link between an orbiting satellite and Earth, the highest data rate ever
achieved by optical communications technology [222].

A FSO transceiver schematic illustration is depicted in Fig. 8.1.
FSO offers several advantages over traditional radio frequency (RF) communica-

tion systems when used in space-based applications. In particular, the main benefit
of FSO communication relies on data transfer rates. Indeed, a FSO system based
on lasers can achieve much higher data transfer rates with respect to RF communi-
cations. This is due to the fact that laser light has a much shorter wavelength than
RF waves: the wavelength of laser light falls within the optical spectrum, typically
in the range of 400 to 700 nanometers (nm), while RF waves can have much longer
wavelengths, ranging from millimeters to meters [224]. The shorter wavelength of
laser light allows for higher frequency modulation, which means that data can be

together with the development of sophisticated communications systems based on the use of torches
and live firebrands. However, he is best known for his work The Histories, a historical account of
the Mediterranean world from 264 BC to 146 BC, covering the period of the Punic Wars and the
rise of the Roman Republic as a dominant power. His work is considered one of the foundational
texts in the study of ancient history and politics [219].
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Figure 8.1. FSO transceiver representation. The optical part of the device is the receiver
optics (centre left). The input beams (cyan) are focused by the optics onto the detector
(centre right), which then passes the signal to the data processor (far right). Outgoing
data is passed from the processor to a laser transmitter (centre), which sends the data as
output beams (pink) via the transmitter optics (centre left). Background image taken
from [223].

encoded onto the carrier signal at much higher frequencies. This enables a more
significant number of data bits to be transmitted per unit of time.

Moreover, laser communication systems can exploit a larger portion of the elec-
tromagnetic spectrum, including multiple wavelength channels, to transmit data
simultaneously. This multiplexing capability increases the total data capacity of
the communication link.

Other advantages of FSO systems over the RF counterpart rely on (i) the
smaller divergence of the laser beam, which enables a higher concentration of optical
power [225], (ii) lower interference thanks to a point-to-point communication with
a direct line of sight [226], (iii) lower latency over longer distances [227], and (iv)
more robust security due to the inherent difficulty to intercept FSO signals without
being located precisely in the path of the beam [228].

However, FSO communication systems come also with drawbacks and limita-
tions related to atmospheric turbulence. The latter can significantly impact the
performance of FSO system, causing most of the time (i) scintillation of the re-
ceived optical signal [229], (ii) beam wander [230], and (iii) beam divergence [231].

In general, the effects of adverse weather conditions on FSO systems become
more pronounced as the distance between the transmitter and the receiver increases.
This is why, in the satellite telecommunications domain, a FSO link between an OGS
and a satellite is typically operated by means of LEO satellites.

Hence, the main problem in the FSO domain relies on defining control strategies
to mitigate the laser signal degradation effects brought by thick clouds, fog, rain,
and other similar inclement weather conditions.
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8.4 The HyDEMO Project

As shown in the previous sections, laser–based satellite communication technology
holds the potential to extend terrestrial network functionalities to satellite net-
works, addressing the digital connectivity challenges across a range of applications.
These applications encompass (among the others) virtual private networks, edge
computing, advanced 5G/6G services, internet connections to and from space, and
communication with airborne assets. These applications go beyond the current ca-
pabilities of satellites. The High Throughput Optical Network (HydRON) project,
launched by the ESA aims to develop these new technologies in space for European
and Canadian industries [232].

HydRON is part of ESA’s Advanced Research in Telecommunications Systems
(ARTES) 4.0 Strategic Programme Line, specifically under the Optical & Quantum
Communications–ScyLight program. This vision introduces an Optical Transport
Network concept that combines extremely high throughput Optical Ground Space
and Optical Inter-Satellite Links, with in-orbit routing capabilities that seamlessly
integrate into existing terrestrial networks.

The primary objective of the HydRON Demonstration System is to advance
the development and validation of HydRON technology integrated into terrestrial
networks, with a capacity of terabits per second. The demonstration system will en-
compass the end-to-end network, including critical key technologies and a minimum
viable service. It will showcase networking capabilities with seamless interoperabil-
ity with high-capacity terrestrial networks and will present an operational concept
reflecting a scalable HydRON framework. The latter will include two space-based
laser communication payloads in LEO and GEO satellites, interconnected with each
other, along with several OGS and terrestrial fiber optic networks.

Contents in the next two chapters have been inspired by the research activities
the author of this thesis has been carried out in the context of HydRON.





Chapter 9

Intelligent Ground Station
Selection in GEO Optical
Communication Systems

O ne of the most frequent problems of satellite communications is bad weather
conditions. In such a situation, any communication going from the satellite

to the ground may suffer significant interference [233]. Since geostationary satel-
lites cover very widespread geographical areas, it is possible to exploit the different
weather conditions of each zone covered by the satellite. In order to limit bad
weather effects, two or more ground stations (GS) receiving the same satellite sig-
nal may be linked, so that if the signal suffers some attenuation in an area, the other
ground stations, located in areas where the weather is favourable, may compensate
said attenuation. The communication loss is mitigated by continuously forwarding
the signal to the OGS(s) under untoward weather conditions, at least until the latter
improve. This technique is called site diversity [234].

9.1 The Site Diversity Technique

Site diversity refers to the practice of using multiple geographically diverse ground
stations or receiving sites to improve the reliability and availability of communica-
tion links in the context of telecommunications and satellite communications. This
strategy is crucial for systems that require high availability and minimal downtime,
such as satellite communication systems, and is particularly important for critical
applications such as military and emergency services communications.

Site diversity is frequently used in satellite communication as part of a larger
strategy to maximize link availability and minimize signal degradation. It is par-
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ticularly important for systems requiring continuous, high-reliability connectivity,
such as military, emergency response, and critical infrastructure communications.
When combined with advanced satellite tracking and switching technologies, site
diversity can provide seamless and reliable communication.

When the communication channel is optical, we refer to optical site diversity
and optical ground stations (OGS). In this setting, the communication is switched
from the satellite to one of the other OGSs for the needed amount of time. In order
to design in an accurate way the site diversity technique, a statistical analysis is
needed to determine the probability of rain events in a given area. In literature, this
assessment has been done either through direct measurement campaigns [235, 236]
or by exploiting statistical models. Among them, the most used ones are the log-
normal model for the single-site distribution of rainfall intensity [237] and the Monte
Carlo simulation for the prediction of join statistics of rain attenuation in multiple
locations [238].

Together with the choice of a statistical model for rain prediction, some metrics
are needed to define the performance of the site diversity technique against the
nominal downlink/uplink optical communication between the OGS affected by rainy
conditions and the satellite itself. The site diversity performance is usually measured
as a function of several parameters, including baseline orientation, communication
link frequency, path elevation angle and site separation [239].

In multi-station site diversity scenarios [238], it is possible to establish a link
between the weak OGS and one of the others: this makes it necessary to choose the
station from which to broadcast. Of course, the choice of which OGSs to point at any
time instant is driven by a series of KPIs and follows an optimal routing/resource
allocation logic [240, 241]: the most important one is the link availability (i.e.,
the probability that both the optical links are not working should be minimized),
but other design drivers for the multi-station site diversity algorithms include the
energy consumption for the movement/re-pointing of LCTs, which impacts on the
total power budget for the on-board payload, the topology of the OGSs network
(i.e., specific OGSs network topologies may prevent the possibility to re-route the
user traffic from one OGS to the others, thus limiting the subset for choosing the
second OGS to be the second LCT pointed towards), user plane latency and jitter
(i.e., specific application may require stringent latency requirements and/or minimal
jitter; this may prevent some OGSs to be selected as backup optical link) and on-
board switching capabilities (i.e., the impossibility for the switching matrix on board
of the satellite to switch traffic from one LCT to the other in case of handover).
Moreover, the installation of redundant OGSs represents a waste of investment for
the network operator. Hence, recently, several works focused on the minimisation



9.1 The Site Diversity Technique 121

of the number of required OGSs to guarantee a given system performance (e.g.,
availability).

In [242] a two-parts joint optimisation method is proposed for ground stations’
positioning and backbone network improvement, whereas authors in [243] use ge-
netic algorithms to minimise two objective functions in high-frequency satellite net-
works. A more rigorous mathematical formalisation of the optimisation problem is
given in [244], where authors exploit a branch and bound algorithm. A different
optimisation approach relies on the hypothesis that OGSs have been already po-
sitioned and the problem focuses on how to choose the set of OGSs to connect to
in order to maximise the availability. In [245] authors calculate the correlated and
uncorrelated availability for OGS networks in the scenario of space-to-ground opti-
cal communication links with GEO satellites. An efficient optimisation algorithm
is presented, in order to choose the best OGS starting from five years of cloud data.
It is shown how many OGSs deployed in a very wide area can guarantee a network
availability near to 100%. A complementary optimization approach is proposed
in [246], with the selection of the minimum number of ground stations satisfying
the monthly availability requirements of the total network, so minimizing service
and maintenance costs. Eventually, in the scenario presented in [247], the optimisa-
tion process consists in selecting the best ground station among several candidates,
trying to provide a reliable connectivity through large-scale site diversity. Results
show that the optimal choice mostly depends on the altitude and the zenith angle
of the set of ground stations.

Unlike the aforementioned existing works in literature, this article makes use
of a deep learning-based weather forecasting algorithm [248] to define a predictive
handover strategy. The latter’s main features are:

• proactive decisions based on weather forecasts. This approach allows to con-
sistently reduce the time window in which the system is unavailable for trans-
mitting user traffic;

• exploitation of limited on-board computing capabilities, with the installation
of a ready-to-go deep learning models;

• customization of artificial intelligence models with respect to each OGS area,
to improve prediction accuracy and, consequently, the availability of the han-
dover service;

• implementation of an automatic and dynamic switching between the LCTs
mounted on the satellite.

Hence, the proposed control framework can be used in a fully online fashion to
decide in advance the backup rotation and switching operations between the LCTs.
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Figure 9.1. Communication between a set of OGS and a GEO satellite.

The next section will detail the main features of the system scenario and the
related control problem.

The contents of this chapter entirely rely on the work carried out in [249].

9.2 Problem Modeling

In optical satellite telecommunication systems, the visibility between Optical Ground
Stations (OGSs) and on-board Laser Communication Terminals (LCTs) is funda-
mental to successfully transmit data. This means that, as the weather conditions
change, a proper site-diversity technique has to be applied to guarantee service
availability. Indeed, only favorable weather conditions can guarantee the necessary
SNR for such type of communications, while clouds may completely block the laser
signal.

Here we consider a set of N terrestrial OGSs, located far away one from each
other, and a single geostationary satellite equipped with 2 LCTs (see Fig. 9.1).
One of the LCTs is active and transmits/receives user data to/from the OGS it
is pointing to. We refer to this first LCT as the primary one. The other LCT,
called backup, instead, points towards a different OGS and it is not used for the
transmission of user traffic, even if it is ready to handover the primary LCT in case
it is needed. Moreover, the backup LCT has the capability of dynamically changing
its pointing direction by means of rotations of the terminal itself, a feature that will
constitute the core of the developed control strategy.

The OGSs on the ground are supposed to be interconnected (so realizing a
traditional site diversity scheme) and to be able to handle handover procedures in
case of switching between primary and secondary LCTs. Each OGS zone could
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be characterized by the most diverse weather conditions: from sunny to overcast
cloudy, from hazy to foggy and from rainy to snowy. The proper transmission of
user traffic through the primary LCT is not possible in case of inclement weather
conditions (rain, thunderstorm, snow, fog, and others), whereas, on the contrary,
the communication between the GEO satellite and the primary LCT–pointing OGS
is considered to be viable under mild weather conditions, such as sunny or partly
cloudy skies.

9.3 Proposed Deep Learning Control Strategy

The first phase of the strategy hereby presented relies on the exploitation of a set
of area-tailored Deep Learning models for weather forecasting. The AI machin-
ery, which is a supervised one, takes as input historical numerical weather data
characterizing each OGS geographical zone. Each data is labeled with the actual
weather condition at that specific time, with a temporal resolution TR that must
be compliant with the time constants characterizing the LCTs’ rotation and switch-
ing operations. The goal is to predict future weather conditions by looking at the
meteorological data in the previous hours or days, trying to find a pattern between
the available features (atmospheric pressure, temperature, etc.) and the weather
condition.

To achieve this aim, the most promising neural network structure is the Recur-
rent Neural Network (RNN).

9.3.1 Recurrent Neural Networks

An RNN is a type of artificial neural network designed for processing time sequences
of data. Unlike traditional feedforward neural networks, which have a fixed archi-
tecture, RNNs are equipped with loops or recurrent connections that allow them to
store memory about previous inputs [250]. This memory enables RNNs to process
sequences of data, such as time series, natural language, or any other data with a
temporal or sequential structure.

The long-short term memory (LSTM) network was first suggested in [251] to
address the well-known problem of vanishing gradient that characterises RNNs. The
LSTM structure is therefore ideally adapted to handle time-series data, such as the
one we are addressing in our work. By specifying a certain time window Tp of length
TW , the AI model tries to predict weather at time k + 1 by looking at the actual
weather encountered in the TW previous time instants, i.e.:

Tp =
{
k, k − 1, . . . , k − TW − 1

}
. (9.1)
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At their core, LSTMs are comprised of memory cells that enable them to store
and manipulate information over extended sequences. These memory cells have
three crucial components:

1. Cell State: it is like a conveyor belt that runs through the entire LSTM net-
work. It can transport information across time steps without much modifica-
tion. The cell state can be updated, allowing it to capture relevant information
and discard irrelevant details.

2. Hidden State: also known as the output state, carries information from pre-
vious time steps to the current one. It acts as a working memory that helps
LSTMs remember past information that is crucial for making predictions or
decisions.

3. Gates: LSTMs employ three types of gates to control the flow of information:

• Forget Gate: this gate decides what information from the cell state should
be discarded or kept. It takes as input the previous hidden state and the
current input and outputs a value between 0 and 1 for each component
of the cell state, where 0 means forget and 1 means keep.

• Input Gate: this gate determines what new information should be added
to the cell state. It computes a candidate cell state and decides which
parts of it should be added to the current cell state.

• Output Gate: the output gate controls what information should be out-
put as the hidden state. It takes the current cell state and the input,
and it generates the new hidden state.

In this work, each LSTM network is trained on local OGS meteorological data,
because if not so it would be difficult for a single predictor to generalize across the
various climates of the OGSs’ geographic regions, which can actually be located at
very different latitudes.

9.3.2 Control Logic

The second control phase, which is the online one, begins as soon as all the models
have been trained: they are deployed on board the satellite, ready to make inference
on future weather data. The inference at time k estimates the probability that the
considered OGS will be under bad weather conditions at time k+ 1. Consequently,
the OGS will be monotonically increasingly sorted with respect to the computed
probabilities.

Let OGSk
p and OGSk

b be the OGSs towards which the GEO satellite points the
primary LCT and backup LCT, respectively, at time k. Moreover, let OGSk

∗ be the
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OGS with the lowest predicted probability for having bad weather (not considering
the two OGSs mentioned before) and let pk+1

p , pk+1
b and pk+1

∗ the predicted rain
probability for the primary LCT OGS, the backup LCT OGS and the lowest proba-
bility, respectively. The control strategy exploits two tunable parameters, namely τ1

and τ2, in order to perform backup rotations and primary-backup switchings. The
proposed control algorithm is summarized in 11 and the correspondent functional
architecture is depicted in Fig. 9.2.

Algorithm 11 Control Strategy for Site Diversity
Inputs: Actual weather data at each time k

1: Initialize OGS0
b and OGS0

p

2: for each time instant k do
3: predict weather conditions pk+1

i , ∀i = 1, . . . , N
4: if pk+1

b ≥ max{τ1, p
k+1
∗ } then

5: rotate backup LCT from OGSk
b to OGSk

∗
6: pk+1

b ← pk+1
∗

7: OGSk+1
b ← OGSk

∗
8: else
9: OGSk+1

b ← OGSk
b

10: end if
11: if pk+1

p ≥ max{τ2, p
k+1
b } then

12: OGSk+1
p ← OGSk+1

b

13: OGSk+1
b ← OGSk

p

14: else
15: OGSk+1

p ← OGSk
p

16: end if
17: end for

9.4 Simulations and Results

9.4.1 Simulation setup

In order to demonstrate the capabilities of the hereby designed control algorithm,
the LSTM deep neural network was trained on a publicly available weather dataset
covering approximately 5 years of weather data (from October 1, 2012 to November
30, 2017), with temporal resolution TR = 1 h, for several cities in the USA and
Canada [252]. The available features for training are the following:

• humidity;

• atmospheric pressure;

• wind direction;
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...

Figure 9.2. Sketch of the Proposed Control Architecture.

• temperature;

• wind speed;

• month of the year;

• weather conditions within the time window prediction Tp.

The missing data for each feature was filled in by taking up the numerical value
of the feature of the previous entry: this approach makes it possible not to break
the hourly time sequence of the meteorological data.

As per the weather, the dataset contains a very detailed description of the
weather conditions. The latter have been mapped into binary labels for training
the model: label 0 has been assigned to clear sky, few/scattered clouds and haze,
which correspond to mild weather conditions allowing satellite–OGS communica-
tion, whereas the label 1 indicates inclement weather.

For the training phase, the data from October 1, 2012 up to December 20,
2016 have been selected. The model accuracy has been evaluated by splitting the
remaining part of the dataset with respect to the four seasons, in accordance with
the 2016 and 2017 astronomical tables [253].

The chosen LSTM model architecture is depicted in Fig. 9.3 and the selected
hyperparameters are the following:

• number of epochs E = 5;

• Adam optimizer with constant learning rate η = 0.001;

• time window length TW = 24;

• dropout rate ζ = 0.2.



9.4 Simulations and Results 127

Figure 9.3. LSTM Neural Network Architecture.

The LSTM model performance has been compared to the accuracies of other
three state-of-the-art machine learning models:

• support vector machine (SVM) with linear kernel;

• standard feedforward neural network (NN), having as architecture the same
as the one occurring downstream the two LSTM layers of the LSTM deep
learning model;

• a single standard feedforward neural network (SNN) trained on the data of
all locations. In this case, the satellite would use just one model instead of
having one of them for each OGS location.

As per the evaluation of the control strategy, the following metrics/KPIs have
been defined:

• link availability LA, defined as

LA = ns

nt
, (9.2)

where ns is the number of times the primary LCT is able to handle user traffic
and nt is the whole time period length used in the simulation;

• outage probability OP = 1− LA;

• number of rotations R made by the backup LCT;

• number of switching S between primary and backup;

• number of outages due to wrong predictions nW , i.e., the number of times the
primary LCT is pointed towards an OGS that is under adverse weather con-
ditions and for which the AI model has predicted instead a favorable weather
condition.
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Figure 9.4. Map of the ten locations in the north-east side of the American continent.

The experiment was run with parameters τ1 = 0.1 and τ2 = 0.2 in Algorithm 11.
The dataset has been used to perform two groups of simulations, characterized

in the following subsections.
The goal of the simulations of our proposed control system is to show that it

does not deteriorate the system availability, i.e., by do not selecting an OGS with
unfavorable weather conditions when there is at least one between the remaining
ones that has good weather conditions.

9.4.2 10–Cities Simulation

A set of 10 cities in the north-east of North America continent has been selected
as candidate for locating OGSs, as depicted in Fig. 9.4. The number of cities and
their relative distances were chosen as to replicate the EU-99 topology studied in
the early phases of the HydRON project [254].

The training phase was performed on a computer equipped with a NVIDIA
GeForce RTX 3050 and 16GB RAM, using Python3.8 and the Tensorflow/Keras
libraries [255]. The training computational time when using the LSTM approach
is around 13 s for each city. Similar times are required by the other approaches.
This property suggests that either the training phase may be performed online, for
instance when an update of the models with respect to new weather data is required.

The LSTM model performance against all seasons, in terms of test accuracy,
have been reported in Tab. 9.1.

We show the comparison between the four AI architectures considering just the
test accuracies obtained in the spring test set, since equivalent conclusions can be
drawn for the other three seasons. In Fig. 9.9 it is possible to notice that the LSTM–
based model outperforms the other three ones in every considered locations, and,
as expected, the SNN model has worse performance with respect to the NN model,
trained in a tailored way per each OGS location.
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Table 9.1. LSTM accuracies per season

City Winter Spring Summer Autumn

New York 0.984 0.986 0.982 0.989
Montréal 0.988 0.981 0.963 0.974
Boston 0.993 0.989 0.987 0.989
Chicago 0.973 0.978 0.952 0.971

Charlotte 0.976 0.976 0.972 0.975
Pittsburgh 0.991 0.984 0.979 0.988

Detroit 0.997 1.000 0.996 0.998
Kansas City 0.992 0.990 0.983 0.990

Toronto 0.999 0.999 0.985 0.988
Indianapolis 0.992 0.986 0.981 0.992
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Figure 9.9. Comparison between test accuracy for the four considered model in the spring
season.
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Figure 9.10. Map of the four USA locations tackled in the second simulation.

The results with respect to the above-mentioned KPIs, obtained with the four AI
models architectures, are revealed in Fig. 9.5-9.8. It is possible to notice that when
using the LSTM model, the GEO satellite performs more rotations and switchings,
but achieves the highest score with respect to LA and nW . In particular, with
the LSTM model, almost no outages are due to a misprediction of the weather
conditions of the next timestep, leading to the maximum possible availability for
the chosen set of OGSs.

9.4.3 4–Cities Simulation

In the second simulation we addressed 4 USA locations (see Fig. 9.10), different
from the previous ones. For such 4-cities topology a dedicated availability study
has been provided by the OT4NGsat project [256]. The results obtained with the
LSTM approach are evaluated during the 2017 spring season with respect to the
outage probability KPI, namely OP . Fig. 9.11 represents a graph with semilog
scale on the y–axis in which we first plot the outage using only one OGS located
in Los Angeles, secondly the one obtained adding Albuquerque and so on, up to
the fourth OGS, located in Philadelphia. From the figure it is possible to see
that the final result, when using all the four locations, is OP = 0.03. The latter
matches perfectly with the theoretical availability study provided by OT4NGsat,
which foresees OP = 0.033 when using 4 OGSs.

9.5 Discussion and Future Works

This work tackled the problem of site diversity in optical satellite communication,
in order to maintain high-availability even in case of unfavorable weather conditions
at some OGSs. In this work we considered a scenario composed by a GEO satellite
equipped by 2 LCTs, one of which is active and the other one is used as backup.
The goal of this paper is to proactively select the best OGSs to be pointed at
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Figure 9.11. Outages when using one, two, three and four OGSs, respectively.

any point in time and to switch between active and backup in case bad weather is
envisaged in the next timestep. The proposed algorithm for site diversity is based
on Deep Learning weather forecasting for selecting the best OGSs to point to and
for deciding the handover between active and backup LCT. The training phase is
conducted offline, whereas the inference models of each OGS area can be mounted
onboard the satellite, allowing a hard real–time implementation with hourly time
resolution.

The proposed algorithm has been simulated and tested against historical weather
data in two different simulative scenarios. From the results it is possible to notice
that the proposed algorithm is able to succeed in reducing the number of outage
events, so guaranteeing a wide time window link availability.

Future works may consider to model the energy requirements for the rotational
movement of the LCTs, so as not to exceed a total on-board energy budget. More-
over, a similar approach could be investigated for MEO/LEO satellites and for
multiple (and even inter-satellite) links.



Chapter 10

Data Path Control for LEO
Satellite–Driven
Communications

I n today’s ever-connected world, the demand for high-speed, reliable, and secure
data transmission has never been greater. The proliferation of data-intensive

applications, such as streaming video [257], cloud computing [258], and the Inter-
net of Things (IoT) [259], continues to place unprecedented strain on traditional
communication networks. To meet these growing demands, the development of in-
novative communication technologies has become imperative. Among them, FSO
has emerged as a promising solution to address these challenges, as broadly dis-
cussed in the previous chapter.

10.1 The Synergy Between FSO and LEO Satellite

LEO satellites play a pivotal role in the advancement of FSO communication. Sit-
uated at altitudes between 180 and 2,000 km above the Earth’s surface [260], LEO
satellites have relatively short orbital periods, typically completing one orbit around
the Earth in 90-120 minutes [261]: this frequent orbiting allows for better coverage
and faster data transmission.

Due to their relatively low altitude, atmospheric effects, such as signal attenua-
tion due to rain fade and atmospheric turbulence, have a reduced impact on a FSO
system compared to GEO satellites. This results in more reliable and consistent
FSO communication links, characterized by low latency, high data throughput and
improved signal strength, making them a preferred choice for real-time, high-data-
rate FSO applications [262].
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Moreover, this type of satellite can be deployed in large constellations [263,
264], which provide continuous global coverage and improve the overall reliability
of the FSO communication. This aspect is crucial for applications that require
uninterrupted connectivity, such as satellite-based internet services.

LEO satellites are commonly used in the space industry for scientific research
and Earth observation purposes and for military operations, as well as for commu-
nication, navigation, and remote sensing applications [265].

On the other hand, LEO satellites present two main disadvantages compared
with the GEO ones. The first one deals with their shorter lifespan, requiring periodic
orbital adjustments to maintain their position in the orbit, or replacements of units
within the fleet [266, 267]. The second one is related with visibility issues: since
LEO satellites’ rotation speed is much higher than the Earth’s rotational speed,
FSO terrestrial signals have to be handed over to another satellite within the fleet.
A satellite handover is performed when the serving satellite is below a minimum
elevation angle relative to the corresponding OGS: this may have a significant impact
on the communication quality, because of communication loss during the handover
process [268].

Despite these downsides, LEO satellites represent the ideal technology for op-
tical satellite communications, problems related to laser signal attenuation in the
presence of adverse atmospheric conditions remain. To address these technological
difficulties, various methodologies have been proposed by the scientific community.

10.2 Related Works

Researchers and engineers have created a variety of strategies and technologies to
solve the problems of power attenuation in FSO systems due to atmospheric fading.
A standard procedure rely on adaptive optics [269,270]. Systems implementing this
technology correct for turbulence-induced distortions by changing the geometry of
optical components like mirrors or deformable lenses based on real-time observations
of air turbulence. This technique aids in optical beam stabilisation and minimises
scintillation effects.

Other techniques rely on filtering and error correction, in which proper filters
and modulation methods try to filter out noise coming from the interference of fog
or clouds [271]. Since in many situations it is not possible to filter out the noise, it
is possible to employ broader laser beams to reduce the effects of beam spreading
brought on by turbulence [231]. This strategy, nevertheless, could result in slower
data transfer rates [272]. Eventually, another common standard approach is to
implement redundant FSO lines, equipping satellites or OGSs with more than one
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laser communication terminal (LCT) [249], or FSO/RF hybrid systems [273], in
order to enhance the communication system reliability.

The aforementioned fading mitigation techniques intervene at the hardware level
on the individual receiver or transmitter, but do not take into consideration any
changes to the architecture or topology of the communication system.

In order to limit bad weather effects, it is possible to intervene at architecture
level linking in a wired fashion two or more OGSs within a same network. In this
way, if the signal suffers some degradation in an area, the other OGSs, located
in areas where the weather is favourable, may compensate said attenuation. The
communication loss is mitigated by continuously forwarding the signal to the OGS(s)
under untoward weather conditions, at least until the latter improve. This technique
is called site diversity [234].

The site diversity has proven to be a disruptive approach for the reliability
of FSO communications, since it (i) enables geographical diversity to reduce the
likelihood of simultaneous signal degradation at all sites [234], (ii) realises spatial
separation to ensure that the OGSs locations are subject to different weather pat-
terns and atmospheric conditions [274], and (iii) involves using multiple antennas at
each site, pointing in different directions or at different elevation angles. This con-
figuration allows the system to quickly switch between antennas to find the clearest
signal path, thus improving the link availability and reducing the number of outages
or dead times [275].

Although the site diversity technique adds complexity and high cost to the
infrastructure, the benefits in terms of improved reliability and availability often
justify its implementation, particularly for mission-critical applications.

Said technique employs sophisticated control and switching mechanisms to mon-
itor the quality of signals received at different sites in real-time. When one site ex-
periences signal degradation, the system automatically switches to an alternate site
with better signal quality. These switching mechanisms were initially manual and
human-driven, while nowadays are usually based on statistical analysis of weather
forecasts [235–238], with the switching system being controlled by intelligent algo-
rithms.

The choice of which OGS to point at or to transmit from is driven by a series
of Key Performance Indicators (KPIs) and follows an optimal routing/resource al-
location logic [240, 241]. The most important KPI for any satellite communication
system is the link availability, but other design drivers for the multi-station site
diversity algorithms may include (i) the energy consumption for the movement/re-
pointing of LCTs, which impacts on the total power budget for the on-board pay-
load, (ii) the topology of the OGSs network (i.e., specific OGSs network topologies
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may prevent the possibility to re-route the user traffic from one OGS to the others),
(iii) user plane latency and jitter, and (iv) on-board switching capabilities.

Since the installation of redundant OGSs may represent a waste of investment for
the network operator, several works focused on the minimisation of the number of
required OGSs to guarantee a minimum given system performance [242–244]. A dif-
ferent optimisation approach relies on the hypothesis that OGSs have been already
positioned and the problem focuses on how to choose the set of OGSs to connect to
in order to maximise the availability. In [245] authors calculate the correlated and
uncorrelated availability for OGS networks in the scenario of space-to-ground opti-
cal communication links with GEO satellites. An efficient optimisation algorithm
is presented, in order to choose the best OGS starting from five years of cloud data.
It is shown how many OGSs deployed in a very wide area can guarantee a network
availability near to 100%. A complementary optimisation approach is proposed
in [246], with the selection of the minimum number of ground stations satisfying
the monthly availability requirements of the total network, so minimising service
and maintenance costs. Eventually, in the scenario presented in [247], the optimisa-
tion process consists in selecting the best ground station among several candidates,
trying to provide a reliable connectivity through large-scale site diversity. Results
show that the optimal choice mostly depends on the altitude and the zenith angle
of the set of ground stations.

Recent advancements in artificial intelligence (AI), particularly in the field of
Reinforcement Learning (RL), have opened up new possibilities for optimising satel-
lite communication strategies. Authors in [249] propose an AI-based predictive han-
dover strategy for optical communications between a GEO satellite equipped with
two LCTs and an OGS network, making use of machine learning–based weather
forecasts. Other works making use of AI and RL focused on the resource allocation
and traffic splitting for RF satellite communications [276–279], shifting attention
from the OGS network level to the one of the LEO constellation.

However, none of the above-mentioned works have tackled the issue of defining
an intelligent handover and path planning procedure for a FSO–based point-to-point
communication system between terrestrial OGS networks and a LEO fleet.

This chapter will combine the LSTM–based weather forecast technique presented
in 9.3.1 with a centralized Q–Learning controller, in order to tackle the problem of
minimizing the outage probability. The main innovations of the present work are:

• multi–hop data routing between two OGS networks that cannot communicate
directly, but only passing through a LEO satellite fleet;

• weather predictions over the OGSs areas via Supervised Learning exploiting
historical hourly weather data;
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Figure 10.1. System Scenario.

• a centralised control law realised through an intelligent agent exploiting the
RL framework with an intrinsic optimisation of the link availability.

The subsequent section within this chapter will detail the mathematical model-
ing of LEO satellites’ and Earth’s dynamical motion, with a control approach based
on the combination of Long Short–Term Memory (LSTM) networks and centralized
Q–Learning. Extensive simulations on three case studies will show the effectiveness
of the proposed approach with respect to other benchmark solutions.

The contents of this chapter entirely rely on the scientific article issued in [280].

10.3 Mathematical Modeling of a Multi–Hop LEO–Driven
Data Transfer

Let us consider a FSO–like communication system made by two OGS networks, one
transmitting data from Ntr OGSs and the other one acting as receiver with Nre

stations. Each of the two zones can be subject to different atmospheric conditions,
going from sunny to cloudy to stormy, which affect the data delivery from the
transmitting to the receiving zone. The two sets of OGSs cannot communicate using
terrestrial wired or wireless technologies, but they must rely on a LEO constellation
composed of Nsat satellites. The communication is a point–to–point one realised
through laser beams. The system scenario is depicted in Fig. 10.1.

In what follows, a detailed mathematical modeling of the overall communication
system is presented, including the formulation of the orbiting LEO satellites equa-
tions of motion, the ground–to–satellite and inter–satellite visibility assessment, and
the MDP characterization.
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Figure 10.2. Earth Centered Inertial reference frame.

10.3.1 Satellite equations of motion

Low Earth Orbit satellites are considered one of the best options for satellite com-
munication due to their short orbital period, which provides wide coverage and an
high service availability.

In order to define a LEO constellation, the orbit of each satellite must be char-
acterized. In this work we suppose that each satellite follows exactly its initial
orbit with deviating from it with time1. Given an inertial frame of reference and
an arbitrary epoch (a specified point in time), exactly six parameters are neces-
sary to unambiguously define an arbitrary and unperturbed orbit. These are the
semi-major axis a, the eccentricity e, the inclination i, the argument of perigee ω,
the longitude of the ascending node Ω, also denoted as the Right Ascension of the
Ascending Node (RAAN) for geocentric orbits, and the true anomaly f [281], [282].

The orbital parameters can be used to compute, at every epoch, the position and
velocity of the satellite around that orbit. To describe the motion of satellites, it is
usually used a coordinate frame which is inertial and fixed with respect to the stars,
namely the Earth Centered Inertial (ECI) reference frame [283]. In particular the
x–y plane coincides with the equatorial plane of Earth. The x-axis is permanently
fixed in a direction relative to the celestial sphere, which does not rotate as Earth
does. The z-axis lies at a 90◦ angle to the equatorial plane and extends through the
North Pole (see Fig. 10.2).

1In the real world, satellites progressively abandon their initial orbit due to the presence of
external variable forces like solar radiation pressure. Hence, they have a certain lifetime after
which they shall be replaced.
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Let us define as Rx(ϕ), Ry(η) and Rz(ψ) the standard rotation matrices:

Rx(ϕ) =


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (10.1)

Ry(η) =


cos η 0 − sin η

0 1 0
sin η 0 cos η

 (10.2)

Rz(ψ) =


cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (10.3)

Algorithm 12 shows how to pass from the orbital parameters to the satellite position
and velocity in the ECI coordinates.

Algorithm 12 Orbital Parameters to ECI coordinates
Inputs: a, e,Ω, i, ω, f
Parameters: µ = 3.986004418× 1014[m3/s2]
Outputs: r, v
p = a(1− e2) {semilatus rectum}
cf = cos f, sf = sin f
r = p/(1 + e(cf)) {Safe Division}
v =

√
mi/p {Safe sqrt and safe division}

Define a rotation matrix based on angles and axes
ang =

[
ω i Ω

]T

axes =
[
3 1 3

]T

M = ang2mat(ang, axes)
Compute position and velocity in ECI
Transpose M
r ← rM

[
cf sf 0

]T

v ← vM
[
−sf e+ cf 0

]T

At this point it is possible to define the satellite equations of motion as a second-
order differential equation which is dependent on the satellite position vector r:

r̈ = −µ r

∥r∥3
, (10.4)

where ∥r∥ is the euclidean norm of the position vector and µ = 3.986004418× 1014

[m3/s2] is the geocentric gravitational constant.
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10.3.2 Visibility Analysis

In order for the satellite to exchange information with an OGS or with another
satellite there is a condition which needs to be analysed, the visibility. The latter is
a very important concept since it can determine if a certain information exchange
can happen or not and how good is the communication channel in terms of noises.
Visibility can be of two kind: (i) geometric visibility, which is related to the fact
that the relative position vector between one satellite and the other does not have
to intersect the Earth, and (ii) electronic visibility, which deals with analysing the
elevation angle and Carrier to Noise ratio (C/N0). The angle of elevation is the
angle between the horizontal line and the line of sight which is usually above the
horizontal line. The C/N0 expresses how high is the noise component with respect
to the information carrier: the lower the ratio is, the more the noise is prevalent
and vice-versa.

Since this work does not focus on the quality of the communication link, some
assumptions have been made to simplify the analysis:

1. The information exchanged between the satellite and the OGS and between
one satellite and another one is always good with a negligible amount of noise.

2. The satellite is visible by the OGS if the elevation angle is greater than a
certain threshold, in order to exclude the case of interference of buildings in
the vicinity of the OGS.

3. The satellite is visible with respect to another one if the geometric visibility
condition is satisfied.

In the following subsections the implementation of the visibility algorithms re-
lated to assumptions 2 and 3 will be detailed.

Ground Station to Satellite Visibility

As already explained, a satellite is considered visible from an OGS if the elevation
angle is above a certain threshold. The elevation angle is computed with respect to
the horizontal plane of the OGS, so the East-North-Up (ENU) coordinate frame has
been considered, which is the reference frame of the ground station’s antenna. This
implies a change of coordinates of the satellite position and velocity vectors from
the ECI reference frame to the ENU frame. This transformation can be performed
by applying two rotations to the original coordinates: the first one to pass from
the ECI to the Earth Centered Earth Fixed (ECEF) coordinates, the second one to
pass from the ECEF to ENU coordinates.
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Since the ECEF reference frame is non-inertial and is rotating along with the
Earth, a new dynamic equation must be introduced to take this rotation into ac-
count. Defining θ as the angle of rotation of the Earth, the latter’s rotational
dynamics can be easily written as:

θ̇ = ωE , (10.5)

where ωE = 2π/86400 ≈ 7.29 × 10−5 [rad/s] is the angular velocity of the Earth.
In Algorithm 13 and Algorithm 14 the steps to compute the two rotations are
detailed. In the following, the notation xRF with RF ∈ {ECI, ECEF, ENU} denotes
the reference frame of the generic vector x, while the notation xRF,c with c ∈
{x, y, z} denoting the three components of the generic vector x expressed in the RF
coordinates.

Algorithm 13 ECI to ECEF coordinates transformation
Inputs: rECI, vECI, θ
Parameters: ωE

Outputs: rECEF, vECEF
R = Rz(θ)
rECEF = RrECI
a = vECI,x + ωErECI,y
b = vECI,y − ωErECI,x
c = vECI,z

ṽ =
[
a b c

]T

vECEF = Rṽ

Algorithm 14 ECEF to ENU coordinates transformation
Inputs: rECEF, ϕ, ν {ϕ, ν: lat and long of the GS}
Outputs: rENU

R =

 − sin ν cos ν 0
− cos ν sinϕ − sin ν sinϕ cosϕ
cos ν cosϕ sin ν cosϕ sinϕ


rENU = RrECEF

As a last step, from the ENU coordinates it is possible to compute the Azimuth
(A), Elevation (E) and Range (ρ) of the satellite with respect to the OGS’s antenna.
For our case only the elevation angle will be used in the visibility analysis. Algorithm
15 details the mathematical steps to compute these three parameters.
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Algorithm 15 ENU to Azimuth, Elevation, Range parameters
Inputs: rENU
Outputs: A,E, ρ
ρ = ∥rENU∥
σ = rENU/ρ
E = arcsin σz [rad]
A = arctan (σx, σy) [rad]

Satellite to Satellite Visibility

Due to the short field of view of the LEO satellites, in order to exchange information
between two sites far away from each other, a constellation of satellites is needed.
This implies the creation of a communication link between two satellites of the same
constellation in order to reach the remote site efficiently. The concept of visibility
applies also in this case. To simplify the analysis only the geometric visibility is
considered. Algorithm 16 details the procedure for the geometric visibility check.

Algorithm 16 Geometric visibility check between satellite A and B
Inputs: rA, rB

Parameters: REarth = 6378136.3 [m]
Outputs: isSatVis [bool]
Initialize output
isSatVis = False
norm = ∥rA∥
if rA == rB (the same point in space) then

isSatVis = True
return isSatVis

else
rC = rA − rB (relative position vector)
min dist = Minimum distance between rC and the centre of the Earth
if min dist ≥ REarth then

isSatVis = True
end if
return isSatVis

end if

10.3.3 Markov Decision Process Formulation

The system dynamics described above has been translated to a MDP in order to
exploit the RL framework.

The state space is
S =< t >, t = 0, . . . , T, (10.6)
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Figure 10.3. Map of the receiving OGSs in Israel.

where t is the generic time step and T is the final step within the transmission
window period.

The action space is

A =< OGST,SAT1,SAT2,OGSR >, (10.7)

where OGST is the index of the transmitting OGS, SAT1 is the index of the first
satellite receving data from the transmitter, SAT2 is the index of the second satellite
receiving data from the first one, and OGSR is the index of the receiver.

Eventually, the reward function models the success rate of the end-to-end han-
dover and is defined in the following way:

R =

+1, if transmission is successful

−1, otherwise.
(10.8)

10.4 Simulations and Results

In order to simulate and validate our control approach, two geographical areas from
two different continents have been considered, namely:

1. the east coast of United States and Canada, with Ntr = 10 transmitting OGSs
located in the main cities, as in Fig. 9.4;

2. the territory of Israel, with Nre = 6 receiving OGSs, shown in Fig. 10.3.

To perform the weather forecast for all the OGS zones, the very same strategy,
LSTM structure and numerical hyparameters described in 9.4.1 have been chosen.

The LSTM model performance on unseen data (from December 21, 2016 to
November 30, 2017) against all seasons and per each city, in terms of test accuracy,
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Table 10.1. LSTM accuracies per season (both transmitting and receiving sites)

City Winter Spring Summer Autumn

New York 0.984 0.986 0.982 0.989
Montréal 0.988 0.981 0.963 0.974
Boston 0.993 0.989 0.987 0.989
Chicago 0.973 0.978 0.952 0.971

Charlotte 0.976 0.976 0.972 0.975
Pittsburgh 0.991 0.984 0.979 0.988

Detroit 0.997 1.000 0.996 0.998
Kansas City 0.992 0.990 0.983 0.990

Toronto 0.999 0.999 0.985 0.988
Indianapolis 0.992 0.986 0.981 0.992
Beersheba 0.944 0.956 0.966 0.998

Tel Aviv District 0.977 0.955 0.966 0.991
Eilat 0.932 0.923 0.968 0.999
Haifa 0.944 0.982 0.987 0.999

Nahariyya 0.989 0.985 0.945 0.997
Jerusalem 0.991 0.981 0.959 0.998

have been reported in Tab. 10.1. It is evident that the neural network model is
able to predict correctly almost all the weather conditions within the test set, both
in the transmitting zone (east coast of North America) and in the receiving zone
(Israel), thus representing a powerful tool to estimate in advance the precipitation
or thick clouds probability over the zone in which the OGS is located.

The RL–based controller hyperparameters for the training phase have been se-
lected as follows:

• γ = 0.9;

• ε0 = 1 with episodic decay law with respect to the generic episode η:

ε(η) = e
−

η

βNep ,

with β = 0.2 being the decay rate and Nep the number of episodes;

• α0 = 1 with episodic decay law with respect to the generic episode η:

α(η) = e
−

η

1000 .

As for the evaluation phase, the controller performance has been figured out
over a transmission period of T = 2 days.
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The AI-based control law has been evaluated in terms of link availability, defined
as follows:

LA = NS

NT
, (10.9)

where NS is the number of times a successful data transmission is achieved, and NT

is the total number of transmissions attempted.
Results with respect to the above–defined KPI have been compared with other

benchmark routing approaches in the FSO domain, listed as follows:

• B1. Both transmitting and receiving OGSs and both LEO satellites are chosen
randomly.

• B2. Transmitting and receiving OGS are chosen with a reactive approach
based on the current weather condition, and the satellites are chosen with the
min range technique, following the reasoning and modelling provided in [284].

• B3. Transmitting and receiving OGS are chosen with a reactive approach
based on the current weather condition, and the satellites are chosen as those
with the maximum elevation angle.

• B4. Transmitting and receiving OGS are chosen with the LSTM–based weather
forecasts, and the satellites are chosen with the min range technique.

• B5. Transmitting and receiving OGS are chosen with the LSTM–based weather
forecasts, and the satellites are chosen as those with the maximum elevation.

The proposed control approach has been tested over three different case stud-
ies, in which the communication between the two OGSs networks is realised with
different LEO constellations:

• Case study 1. Nsat = 15 satellites from the Iridium constellation.

• Case study 2. Nsat = 15 satellites from the Starlink constellation.

• Case study 3. Nsat = 30 satellites given by the combination of satellites from
case study 1 and case study 2.

The satellite orbital parameters and generic data have been gathered via Two–
Line Elements (TLEs) files from [285]. A Two–Line Element file is a data format
encoding a list of orbital elements of an Earth-orbiting object for a given point in
time.

The propagation of the satellites motion over time is performed by using the
4-th order Runge-Kutta algorithm as integrator with fixed time step dt = 1 minute.

All the simulations have been carried out using Tensorflow framework on Python3.10
on a machine equipped with an Intel Core i5-10210U CPU and 16GB RAM.
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Figure 10.4. Iridium case study: season–related reward trend of the RL controller
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Figure 10.5. Iridium case study: season–related link availability comparison

10.4.1 Iridium Constellation

In this case study the number of episodes for training the RL controller has been
set as Nep = 100. The season–related cumulative reward trend over the training
episodes is shown in Fig. 10.4. In all the four cases, the reward converges to a
steady–state value in terms of data transmission success rate, which is higher in the
autumn season due to the presence of a higher number of hours with favourable
weather conditions both at transmitting and receiving zone.

The comparison of the performance of the proposed approach with respect to the
benchmark solutions is shown in Fig. 10.5. It is worth noting that the RL controller
together with a LSTM–based weather prediction achieves higher link availability
with respect to the other standard techniques for FSO communication.

10.4.2 Starlink Constellation

In this case study the number of episodes for training the RL controller has been
set as Nep = 100. The cumulative reward trend per season is shown in Fig. 10.6: it
converges to a steady–state value in terms of data transmission success rate.
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Figure 10.6. Starlink case study: season–related reward trend of the RL controller.
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Figure 10.7. Starlink case study: season–related link availability comparison.

Fig. 10.7 depicts the comparison of the performance of the RL controller with
respect to the benchmark solutions. The proposed control strategy achieves the
best performances in terms of link availability. However, it shall be noticed that
the overall performances are worse with respect to those achieved by means of the
Iridium constellation. As an example, in the autumn season the RL controller guar-
antees LA = 0.401 using Starlink satellites and LA = 0.499 with Iridium satellites:
similar results hold for the other seasons. This is due to the fact that the Star-
link constellation orbits have been designed to cover mainly the North–American
continent, thus guaranteeing poor coverage within the Israel territory.

10.4.3 Mixed Constellation

In the last case study the number of episodes for training the RL controller has
been increased to Nep = 300, in order to allow a broader exploration due to the
availability of double the amount of LEO satellites with respect to the previous case
studies.

Fig. 10.8 and 10.9 show training and evaluation performances against all seasons.
As expected, the increased number of satellites guarantees higher cumulative reward
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Figure 10.8. Mixed case study: season–related reward trend of the RL controller.
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Figure 10.9. Mixed case study: season–related link availability comparison.

trend and, hence, link availability for the FSO transmission. This is due to the fact
that increasing the number of satellites leads to a wider coverage over the Earth
surface: this allows to establish a successful communication with guaranteed inter–
satellite visibility for longer periods. Also in this case, the performances of the
proposed control algorithm are better than the benchmark ones.

10.5 Future Works

In this work a mixed AI and RL approach for FSO point-to-point communication
has been proposed. This technique exploits weather prediction algorithms to im-
prove the quality of the communication link, as well as a dynamical data–driven
optimisation for maximising the link–availability in a data transmission scenario
between two terrestrial OGS networks communicating through LEO satellites. The
proposed decision and control approach has been compared with several benchmark
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solutions, achieving better performances in all seasons over the three analysed case
studies in which different LEO constellations have been exploited.

However, some limitations hold. The developed RL–based algorithm does not
take care about the frequent rotation of the LCT due to the OGS–satellite and inter–
satellite dynamical switching, and no physical considerations on signal attenuation
and beam spreading due to atmospheric condition and relative distance have been
made.

Future works could focus on the problems defined above, proposing control al-
gorithms that take signal attenuation into consideration, introducing link budget
and beam spreading modelling, also with strategies aimed at saving energy on the
various LEO devices.





Chapter 11

Conclusions

I n an era marked by the breakthrough of Big Data and an ever-growing demand
for seamless and reliable network connectivity, the application of data-driven

control methods to both terrestrial and satellite networks represents a promising
avenue to optimize performance, adapt to dynamic conditions, and deliver on the
lofty expectations of modern communication systems. This thesis has embarked
on a journey to explore, understand, and harness the potential of data-driven con-
trol methods in the context of telecommunication networks. With an array of
methodologies, analyses, and case studies, this research has sought to advance our
understanding of how data-driven approaches can reshape the landscape of commu-
nication.

The comprehensive investigation into terrestrial networks has unveiled the re-
markable potential of data–driven control methodologies in

• providing intelligent user association and traffic steering solutions for multi–
homed user terminals which can establish multiple connections into the het-
erogeneous world of cellular networks. Said automatic control laws may enable
the full mobile fruition of high demanding applications, like Virtual and Aug-
mented Reality;

• reducing user equipment energy consumption and costs by dynamically regu-
lating uplink power and image compression rate in Mobile Augmented Reality
applications, simultaneously satisfying rigorous constraints on latency and im-
age or video accuracy;

• keeping safety and robustness in the autonomous driving scenario under a
complete telecommunication fault which does not allow vehicles to communi-
cate with each other or with any other infrastructure. In this domain, it has
been shown how it is possible to implement a full distributed DRL control to
keep a safe distance between vehicles in a platoon.
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From these results, it seems clear that the adaptability of RL and DRL methods
to real-time monitoring and decision-making provides terrestrial networks with a
dynamic edge, enabling them to adapt to shifting patterns and evolving user de-
mands.

In the realm of satellite networks, data-driven control methods have been instru-
mental in addressing unique challenges, particularly those related to signal quality
and availability. This essay has demonstrated that

• it is possible to design a predictive control strategy for implementing site di-
versity in GEO–driven satellite communications, exploiting historical weather
data to decide in advance to which Optical Ground Station the Laser Com-
munication Terminal shall point;

• the combination of predictive weather forecasts with centralized RL control
allows to design an optimized data path between two ground networks com-
municating through a LEO fleet, guaranteeing link availability according to
the satellites orbital motion.

All these approaches have been validated through empirical evidence and sim-
ulations, underscoring their efficacy in reducing signal degradation and supporting
uninterrupted communication. The satellite sector may now benefit from these
findings, shifting towards data–driven approaches on the promise of uninterrupted
connectivity, even in the face of atmospheric turbulence.

While this PhD thesis has advanced the general understanding of data-driven
control methods in terrestrial and satellite networks, it is imperative to acknowledge
that this is just the beginning of a transformative journey. There are several exciting
avenues for future exploration:

• Intermodal Integration. The integration of terrestrial and satellite networks
presents an intriguing area for future research. Data-driven control methods
can facilitate seamless handovers and load balancing between these networks,
optimizing coverage and performance, potentially allowing users to simulta-
neously exploit both terrestrial and satellite–like Access Points.

• Security and Privacy. As data-driven control methods proliferate, this thesis
recalls the need for heightened attention to cybersecurity and data privacy.
Ensuring the robustness of these networks against threats and preserving user
privacy are pivotal.

• Energy Efficiency. In an increasingly eco-conscious world, the ecological tran-
sition imposes the development of data-driven control methods to optimize
energy consumption within communication networks and reduce air pollu-
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tion. This will imply the design of data–driven control techniques capable of
balancing network performance with environmental sustainability.

In conclusion, this PhD thesis has embarked on a mission to harness the power
of data-driven control methods for the benefit of terrestrial and satellite networks.
The findings and insights derived from this research serve as a proof to the potential
benefits of these methodologies. Automated terrestrial networks may now have a
more efficient means to meet the burgeoning demands of an interconnected world,
whereas AI–driven satellite optical networks are better equipped to transcend the
atmospheric challenges that have long hampered their reliability. As we move for-
ward, the convergence of these methodologies is poised to reshape the landscape of
communication, making the dream of seamless and ubiquitous connectivity a reality.

As the journey continues, the spirit of inquiry, innovation, sustainability and
multi–disciplinary collaboration must persist towards the creation of a seamless,
immersive and ubiquitous digital world.





Appendix A

Implementation of a
Reinforcement Learning Agent
in Python

T he appendix is devoted to a quick tutorial about the implementation of a
Reinforcement Learning agent in the programming language which has been

used to obtain all the simulations in this thesis: Python.

Python1 is a high-level, versatile, and interpreted programming language world-
wide known for its simplicity and readability. Python has steadily gained popularity
over the years and is now one of the most widely used programming languages in
the scientific community. It is known for its clean and easy-to-read syntax, which
makes it an excellent choice for beginners and experienced programmers alike. Its
first version (the 1.0) was released in January 1994 and currently (by October 2023)
the newest version is the 3.12.0.

It is widely used in various domains, including web development, data science,
machine learning (NumPy, pandas, and TensorFlow), and automation. Thanks to
the simplicity in realizing complex DNNs and gradient–descent algorithms, Python
represents undoubtedly the best choice to implement and test DRL algorithms.

The following sections show how it is possible to implement a DDPG controller
in Python, applied to an academic nonlinear dynamical system, the pendulum.

1The name Python was inspired by the British comedy group Monty Python, which the Python
founder Guido van Rossum loved. The Python world often includes references to Monty Python
in various places, such as class and module names, and documentation.
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A.1 The Environment

The motion of a pendulum oscillating in a two–dimensional plane can be expressed
through the following dynamics:

ẋ1 = x2

ẋ2 = −g
l

sin(x1)− bx2 + u,
(A.1)

where x1 = θ represents the pendulum angular position, x2 = ω represents its
angular velocity, g is the gravity acceleration on the Earth, l is the rod length, b is
the viscous friction coefficient, and u is the control input in the form of an angular
acceleration.

The Python code implementing the environment ready for the interaction with
a RL–based controller is attached in what follows.

1 # Library for vector computations
2 import numpy as np
3

4 class Pendulum :
5 # Initialization
6 def __init__ (self , t0=0, dt =0.1 , tf =30):
7 # Gravity acceleration on Earth
8 self.g = 9.81
9 # Length of the rod

10 self.l = 1
11 # Friction
12 self.b = 0.4
13 # Random initial state
14 self.state = np. random .rand (2)
15 self.dt = dt
16 self.t0 = t0
17 self.tf = tf
18 self.steps = 0
19 # Maximum number of steps within an episode
20 self. MAX_steps = int (( self.tf - self.t0) / self.dt)
21 # Control saturation
22 self.u_max = 2
23 self.u_min = -2
24 self. num_states = 2
25 self. num_actions = 1
26

27 #Right -hand part of the nonlinear dynamics
28 def f(self , x, u):
29 # States
30 x_1 = x[0]
31 x_2 = x[1]
32 # Nonlinear dynamics
33 dx_1 = x_2
34 dx_2 = -self.g/self.l * np.sin(x_1) - self.b * x_2 + u
35 return np.array ([dx_1 , dx_2 ])
36
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37 # Single integration step
38 def rk4_step (self , u):
39 x = self.state
40 h = self.dt
41 # Calculate one RK4 step
42 k1 = self.f(x,u)
43 k2 = self.f(x + 0.5 * k1* h,u)
44 k3 = self.f(x + 0.5 * k2 * h,u)
45 k4 = self.f(x + k3 * h,u)
46 # Compute the new state
47 new_x = x + h / 6.0 * ( k1 + 2 * k2 + 2 * k3 + k4)
48 self.state = new_x
49

50 # Compute reward
51 def computeReward (self):
52 return -(self.state [0]) **2
53

54 #Apply control action on the environment
55 def step(self , action ):
56 #Apply saturation on the actuator command
57 u = np.clip(action , self.u_min , self.u_max)
58

59 # Integrate the nonlinear dynamics with RK4
60 self. rk4_step (u)
61

62 # Compute reward
63 reward = self. computeReward ()
64

65 # Increment the number of steps
66 self.steps += 1
67 terminated = False
68 truncated = False
69

70 #The run ends if the integration reaches
71 #the maximum steps
72 if self.steps == self. MAX_steps :
73 terminated = True
74 # Additional info , if any
75 info = {}
76 return self.state , reward , terminated ,
77 truncated , info
78

79 #Reset the environment after the episode ends
80 def reset(self):
81 self.steps = 0
82 # Random initial state
83 self.state = np. random .rand (2)
84 return self.state

It can be seen that the environment is given by a Python class which includes
the following essential functions:

• __init__ is the initializer, with info on the system parameters, initial state
(random), the timespan (initial time, final time, and sampling time), and
control saturation;
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• step is the function realizing the application of the control action on the
environment;

• rk4_step performs the integration using the Runge–Kutta 4th order method;

• reset re–initializes the environment when an episode begins, so that the steps
return to zero and the initial state is again a random one.

A.2 The Agent

The agent is implemented according to the RL algorithm chosen. In this case, the
choice fell on the DDPG algorithm.

The first thing to do is to define the actor and critic DNNs. They are standard
NN with some hidden layers. In Python, they are implemented using Tensorflow
and Keras libraries. Their graphical representation is depicted in Fig. A.1.

1 def get_actor ():
2 # Initialize weights between -3e-3 and 3-e3
3 last_init = tf. random_uniform_initializer ( minval = -0.003 , maxval

=0.003)
4

5 inputs = layers .Input(shape =( num_states ,))
6 out = layers .Dense (256 , activation ="relu")( inputs )
7 out = layers .Dense (256 , activation ="relu")(out)
8 outputs = layers .Dense (1, activation ="tanh", kernel_initializer =

last_init )(out)
9

10 #The output is now between -1 and 1
11 model = tf.keras.Model(inputs , outputs )
12 return model
13

14 def get_critic ():
15 # State as input
16 state_input = layers .Input(shape =( num_states ))
17 state_out = layers .Dense (16, activation ="relu")( state_input )
18 state_out = layers .Dense (32, activation ="relu")( state_out )
19

20 # Action as input
21 action_input = layers .Input(shape =( num_actions ))
22 action_out = layers .Dense (32, activation ="relu")( action_input )
23

24 # Both are passed through seperate layer before concatenating
25 concat = layers . Concatenate ()([ state_out , action_out ])
26

27 out = layers .Dense (256 , activation ="relu")( concat )
28 out = layers .Dense (256 , activation ="tanh")(out)
29 outputs = layers .Dense (1)(out)
30

31 # Outputs single value for give state - action
32 model = tf.keras.Model ([ state_input , action_input ], outputs )
33 return model
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(a) Critic Network. In blue the two inputs
(states in the upper side, actions in the
lower site), in brown the dense layers and
and the output (the Q–value), and in pur-
ple the concatenation.
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(b) Actor Network. In blue the in-
put layer (the state), in brown
the dense layers and the output
layer (the action).

Figure A.1. Example of actor and critic networks.

The agent policy is given using a Gaussian noisy exploration with exponential
annealing standard deviation. Note how, after the application of the random vari-
able, there is a check over the validity of the action. Indeed, since the activation
function of the last layer of the actor network is the tanh ·, the output of the neural
network is always between −1 and 1, and it should remain so even after adding the
noise.

1 def get_noise_policy ( episode ):
2

3 beta = 0.2
4 sigma = np.exp( episode / (beta* total_episodes ) )
5 noise = sigma * np. random .rand ()
6

7 return noise
8

9 def policy (state , noise):
10

11 # Actions are the output of the actor having as input
12 # a specific state
13 sampled_actions = tf. squeeze ( actor_model (state))
14

15 # Adding noise to action
16 sampled_actions = sampled_actions .numpy () + noise
17

18 # Make sure action is within bounds
19 legal_action = np.clip( sampled_actions , -1, 1)
20

21 return [np. squeeze ( legal_action )]
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As for the experience replay mechanism, the buffer D has been implemented as
a Python class, with fixed capacity and batch size for training.

1 class Buffer :
2 def __init__ (self , capacity =500000 , batch_size =256):
3

4 # Maximum number of experiences
5 self. buffer_capacity = capacity
6

7 # Training experience
8 self. batch_size = batch_size
9

10 # Its tells us num of times record () was called .
11 self. buffer_counter = 0
12

13 self. state_buffer = np.zeros (( self. buffer_capacity , num_states
))

14 self. action_buffer = np.zeros (( self. buffer_capacity ,
num_actions ))

15 self. reward_buffer = np.zeros (( self. buffer_capacity , 1))
16 self. next_state_buffer = np.zeros (( self. buffer_capacity ,

num_states ))
17

18 def store(self , obs_tuple ):
19

20 # Takes (s,a,r,s ’) obervation tuple as input
21 # and stores it in the buffer .
22 # If the capacity is exceeded , the process begin
23 # again replacing the first istance in the buffer
24

25 index = self. buffer_counter % self. buffer_capacity
26

27 self. state_buffer [index] = obs_tuple [0]
28 self. action_buffer [index] = obs_tuple [1]
29 self. reward_buffer [index] = obs_tuple [2]
30 self. next_state_buffer [index] = obs_tuple [3]
31

32 self. buffer_counter += 1
33 @tf. function
34 def update (
35 self , state_batch , action_batch , reward_batch ,

next_state_batch ,
36 ):
37

38 with tf. GradientTape () as tape:
39 target_actions = target_actor ( next_state_batch , training =

True)
40 y = reward_batch + gamma * target_critic (
41 [ next_state_batch , target_actions ], training =True
42 )
43 critic_value = critic_model ([ state_batch , action_batch ],

training =True)
44 critic_loss = tf.math. reduce_mean (tf.math. square (y -

critic_value ))
45

46 critic_grad = tape. gradient ( critic_loss , critic_model .
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trainable_variables )
47 critic_optimizer . apply_gradients (
48 zip( critic_grad , critic_model . trainable_variables )
49 )
50

51 with tf. GradientTape () as tape:
52 actions = actor_model ( state_batch , training =True)
53 critic_value = critic_model ([ state_batch , actions ],

training =True)
54 actor_loss = -tf.math. reduce_mean ( critic_value )
55

56 actor_grad = tape. gradient (actor_loss , actor_model .
trainable_variables )

57 actor_optimizer . apply_gradients (
58 zip(actor_grad , actor_model . trainable_variables )
59 )
60

61 # We compute the loss and update parameters
62 def learn(self):
63 # Get sampling range
64 record_range = min(self. buffer_counter , self. buffer_capacity )
65

66 # Randomly sample indices
67 batch_indices = np. random . choice ( record_range , self.

batch_size )
68

69 # Convert to tensors
70 state_batch = tf. convert_to_tensor (self. state_buffer [

batch_indices ])
71 action_batch = tf. convert_to_tensor (self. action_buffer [

batch_indices ])
72 reward_batch = tf. convert_to_tensor (self. reward_buffer [

batch_indices ])
73 reward_batch = tf.cast( reward_batch , dtype=tf. float32 )
74 next_state_batch = tf. convert_to_tensor (self.

next_state_buffer [ batch_indices ])
75 self. update ( state_batch , action_batch , reward_batch ,

next_state_batch )

The last needed function is the one responsible for the update of the target
networks, according to the rate τ .

1 @tf. function
2 def update_target ( target_weights , weights , tau):
3 for (a, b) in zip( target_weights , weights ):
4 a. assign (b * tau + a * (1 - tau))

A.3 Training Phase

As a first step, the RL agent needs to be trained for a certain number of episodes.
Hence, all the needed variables are initialized and the training loop is implemented
in the following way.
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1 # Initialize the environment
2 env = Pendulum ()
3

4 num_states = env. num_states
5 num_actions = env. num_actions
6

7 actor_model = get_actor ()
8 critic_model = get_critic ()
9

10 target_actor = get_actor ()
11 target_critic = get_critic ()
12

13 # Making the weights equal initially
14 target_actor . set_weights ( actor_model . get_weights ())
15 target_critic . set_weights ( critic_model . get_weights ())
16

17 # Learning rate for actor - critic models
18 critic_lr = 0.002
19 actor_lr = 0.001
20

21 # Define optimization algorithm based on gradient descent
22 critic_optimizer = tf.keras. optimizers .Adam( critic_lr )
23 actor_optimizer = tf.keras. optimizers .Adam( actor_lr )
24

25

26 total_episodes = 150
27

28 # Discount factor for future rewards
29 gamma = 0.99
30 # Target networks update rate
31 tau = 0.005
32

33

34 buffer = Buffer (50000 , 256)
35

36 #%% DDPG TRAINING
37

38

39 # To store reward history of each episode
40 ep_history = []
41

42 for ep in range( total_episodes ):
43

44 prev_state = env.reset ()
45 episodic_reward = 0
46

47 noise = get_noise_policy (ep)
48

49 while True:
50

51 tf_prev_state = tf. expand_dims (tf. convert_to_tensor (
prev_state ), 0)

52

53 action = policy ( tf_prev_state , noise)
54

55 action = action [0]
56
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57 # Get state and reward from the environment
58 state , reward , ter , tru , info = env.step( action )
59

60

61 # Store transition in the buffer
62 buffer .store (( prev_state , action , reward , state))
63

64 # Increase the cumulative reward
65 episodic_reward += reward
66

67 # Perform a training step
68 buffer .learn ()
69

70 # Update target networks
71 update_target ( target_actor .variables , actor_model .variables ,

tau)
72 update_target ( target_critic .variables , critic_model .variables

, tau)
73

74 # Check if the episode is terminated
75 done = ter or tru
76 if done:
77 break
78

79 prev_state = state
80

81 ep_history . append ( episodic_reward )
82 print(" Episode * {} Cumulative Reward * {}". format (ep ,

episodic_reward ))

After the training process has terminated its execution, one may save the weights
and biases of the four nNNs, in such a way to not waste again time. Indeed, the
training process may require long execution time, usually from ten minutes up to
entire days.

1 # Save the weights
2 actor_model . save_weights (" pendulum_actor .h5")
3 critic_model . save_weights (" pendulum_critic .h5")
4 target_actor . save_weights (" pendulum_target_actor .h5")
5 target_critic . save_weights (" pendulum_target_critic .h5")

A.4 Evaluation Phase

In the second phase, the agent is deployed into the environment with the updated
weights, in order to evaluate its performance (e.g., the tracking of a reference signal).
This is done loading the pre–saved weights and running the agent for just one episode
over the environment, following its policy without noise.

1 actor = get_actor () # Create an empty model
2 critic = get_critic () # Create an empty model
3 target_actor = get_actor () # Create an empty model
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4 target_critic = get_critic () # Create an empty model
5

6 actor. load_weights (" pendulum_actor .h5")
7 critic . load_weights (" pendulum_critic .h5")
8 target_actor . load_weights (" pendulum_target_actor .h5")
9 target_critic . load_weights (" pendulum_target_critic .h5")

10 #%%
11

12 state = env.reset ()
13

14 state = env.reset ()
15 tot_rew = 0
16

17 # Trajectories
18 theta = []
19 omega = []
20 control = []
21 theta. append (state [0])
22 omega. append (state [1])
23

24 done = False
25 while not done:
26

27 tf_prev_state = tf. expand_dims (tf. convert_to_tensor (state), 0)
28

29 # In the evaluation phase the agent is deterministic
30 action = policy ( tf_prev_state , 0.0)
31

32 u = action [0]
33 control . append (u)
34

35 next_state , reward , ter , tru , info = env.step(u)
36

37 tot_rew += reward
38 done = ter or tru
39 state = next_state
40

41 theta. append (state [0])
42 omega. append (state [1])

The user–defined variables control, theta, and omega are useful in order to
evaluate the system trajectories and the applied control effort.
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