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Abstract

Earth Observation (EO) satellites currently acquire images to be then stored in their
on-board memory, until they fly over a ground station, when they shall transmit a
high amount of data in a short time. Thus, a high data rate is requested, but this is
constrained by the power available on-board, in turn limited by the dimensions and
masses of solar panels and batteries. However, not all data transmitted to ground are
actually useful to the application. A solution can be obtained by endowing satellites
with on-board processing capacity and Inter-Satellite Links (ISLs) to make them able
to offload data processing to other satellites whenever they have not enough resources
to accomplish the processing task. This would allow for an on-board extraction of
the useful information from acquired images, leading to an increased efficiency in
bandwidth usage and to a reduction of both the time needed to deliver information
to the ground station and of the energy to be used by ground stations to process
information. However, transmission, storage, and computational capacity available
for in-orbit processing are valuable resources and could be not always available. For
this reason, it is necessary to design strategies to appropriately allocate bandwidth
and processing resources on satellites and to leverage the possibilities opened by the
network of satellites made possible by ISLs, while optimizing a desired metric. In
this thesis, I propose strategies to minimize operating costs of EO satellite networks,
to save energy due to image processing on ground stations, and to support in-orbit
training of machine learning models in a distributed manner to allow for faster
accuracy convergence while reducing both the bandwidth and on-ground energy
consumption with respect to centralized learning solutions. In particular, I first
introduce and solve an optimization problem to allocate transmission, memory and
processing resources to minimize the total operating cost to be paid for transferring,
elaborating and storing EO data. Furthermore, since the proposed optimal strategy
is NP-hard, I also define and evaluate two heuristics to be applied in real orbital
scenarios, proving that they outperform benchmark solutions. Second, I introduce
two optimal strategies to maximize energy saving on ground stations by leveraging
at most in-orbit EO image processing. In particular, in the first strategy I do
not take into account any constraint on the level of usage of on-board batteries
to optimize operative life. Since this strategy results to be NP-complete, I also
introduce a heuristic to be applied in real orbital scenarios. Instead, the second
optimal strategy aims to maximize ground station energy saving while also optimizing
satellite operative life by assuring that batteries are not discharged under a certain
threshold. Results obtained with all the proposed strategies also provide useful
insights on how the on-board CPU clock frequency has to be chosen to obtain
optimal results, given limitations on energy available on satellites. Finally, I propose
a communication strategy to support in-orbit distributed training of deep learning
models by leveraging the satellite network made of both intra-orbital and inter-orbital
ISLs. In particular, the proposed distributed learning strategy provides for satellites
exchanging locally trained models within themselves, without having to lean on
a central parameter server as it happens in federated learning schemes available
in literature. Obtained results show that such strategy allows for reaching model
convergence in a shorter time if compared to federated learning-based schemes.
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Introduction

One of the most important limitations Earth Observation (EO) satellites have to
face is related to the transmission of a huge amount of information to the ground in
a limited time, given by the instants during which a ground station is visible. In
fact, nowadays satellites typically acquire images when flying over regions of interest,
store them into on-board memories, and then downlink all gathered images to a
ground station when flying in an appropriate visibility region. To accomplish the
deliver of this high amount of data, it would be then necessary to increase either the
downlink data rate or the number of ground stations, both being unscalable with
the increase of collected data. In particular, the data rate for transmissions from a
satellite is constrained by the power available on board, in turn constrained by the
dimensions and masses of solar panels and batteries.

Instead, a novel way to face these limitations can be given by Orbital Edge
Computing[1], providing for endowing satellites with processing capabilities enabling
them to elaborate acquired data directly on-board, so as to reduce the amount of
information to be delivered on ground. In fact, it is important to underline how not
all data transmitted to the ground are useful to the application. For example, in a
forest we may be only interested in detecting if there is a fire and transmit only this
information, while we are not interested in downlinking the full image to be then
elaborated. Thus, an on-board selection of the information to be transmitted thanks
to an on-board data processing could avoid waste of bandwidth, since only useful
information is transmitted[2, 3, 4, 5]. This also reduces the time needed to deliver
information to the ground station, since inter-satellite links (ISLs) among satellites
of the constellation can be used to transfer the data from the satellite which gathered
it to the satellite in visibility of the station at any time[6, 7, 8]. However, to obtain
these benefits, strategies have been identified to decide where data shall be processed
(satellite or ground station) [9, 10, 11]. All of these solutions assume that when the
task is processed by the satellite, the data processing can be only performed by the
acquiring satellite, and the impact of the limited bandwidth in the LEO satellite
network is not considered. Furthermore, energy usage minimization on-board of
satellites is the focus of several research works. For example, a strategy to allocate
processing and bandwidth resources in EO constellations to minimize the energy
used by satellites, providing again for processing to happen either on the satellite
acquiring the image or on ground has been proposed in [11], while the algorithm
proposed by authors of [12] aims to optimize the use of satellite batteries to extend
their operational life. However, these works do not take into consideration that once
a satellite is in orbit, energy generation always happens (e.g., solar panels always
generate power when exposed to solar radiation), and the amount of generated
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energy is only dependent on the exposition of solar panels to the sun, regardless
of the actual energy demand [13]. For this reason, this amount of energy could
be leveraged to in-orbit process acquired images, in order to reduce the energy to
be spent on ground for data elaboration purposes. This possibility is even more
interesting by considering that energy harvested by satellites is completely renewable,
while this is not always the case on ground. Thus, in-orbit processing may also help
to achieve green communications objectives[14].

The next research frontier is in understanding how satellites can collaborate
among themselves to accomplish in-orbit processing in a shared manner, in such
a way that, if a satellite has not enough resources to elaborate information it
gathered on-board, it can offload the processing task to another satellite which,
instead, has enough resources to accomplish it [15]. This is made possible by the
fact that satellites may form a network by means of ISLs, on which data can be
shared. However, information can be routed on this network in several ways, and
there may be more than a satellite able to accomplish data processing within the
constellation. For this reason, it is essential to define strategies to jointly allocate
resources and place processing to obtain desired performance, for example, in terms
of minimization of the operating cost of the constellation, or of reduction of the
energy usage on ground stations taking full advantage of in-orbit operations. The
definition of such strategies has an increased difficulty if compared to similar solutions
designed for terrestrial applications, due to the fact that, in an orbital environment,
link availability depends on the relative position between each couple of nodes, and
this changes with time [16]. Thus, such strategies shall be defined by taking into
account dynamic topologies.

It is also important to underline how satellite network made possible by ISLs can
also support in-orbit training of machine learning (ML) models without having to
transfer datasets of acquired images to a central node where training happens. In this
way, it is possible to save bandwidth and, in case the central training node is given by
a ground station, an energy saving on ground is also obtained, since the amount of
training to be done on the Earth is reduced or even zeroed. In particular, at the best
of my knowledge federated learning (FL) is the most investigated solution to train
machine learning model in-orbit. In fact, FL provides for each satellite to train a local
model only with a local dataset made of the images it acquired, and then to share
only locally trained model with a node in charge of aggregating all local models to
calculate a global model which is finally sent to all satellites[17, 18, 19, 20]. However,
limited communication opportunities between satellites and the aggregating node
may still limit the ability of this learning scheme to converge in a reasonable time.
For this reason, it may be interesting to leverage satellite networks to make model
sharing among couples of satellites possible, in such a way that each satellite has all
the needed information to calculate the global model by itself, without having to
rely on a central aggregating node.

This thesis contributes to the research in the application of OEC to EO missions
by proposing and investigating communication strategies to support three different
goals. First, an optimal strategy to jointly allocate resources and place processing
in a time-varying topology representing an EO satellite constellation is proposed to
minimize the operating costs due to transmission, storage and processing of acquired
images, by taking advantage of both ISLs and data reduction associated to potential
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in-orbit processing. Differently from other works, in my proposal satellites leverage
ISLs to form orbit-wide networks where information can be exchanged, and in this
way service processing is not restricted to the source satellite or its neighbours,
but can happen on any satellite of the constellation. Since the proposed optimal
solution is NP-hard, two heuristics are also introduced for applications to real orbital
scenarios. Second, an optimal strategy to leverage at most in-orbit processing to
minimize the energy consumption on ground stations due to image processing is
proposed and investigated, and, again, since the optimal solution is NP-complete, a
heuristic to be applied to real orbital scenarios is introduced and validated. Another
strategy which jointly optimizes the on-ground energy saving and the on-board
battery operative life is also proposed and investigated. Finally, a communication
strategy to allow for training machine learning models directly in-orbit by means
of distributed learning strategies is discussed. The performance of the proposed
distributed learning-based schemes with respect to federated learning-based ones
are investigated, in particular to evaluate the improvement in time needed to reach
validation convergence when distributed learning is applied.

The rest of this thesis will be organized as follows. In Chapter 1, an overview of
the literature concerning the research areas within which the thesis can be placed
is provided. In Chapter 2, strategies to jointly allocate bandwidth and processing
resources to minimize the total operating costs are proposed and evaluated against
state-of-the-art solutions. Instead, Chapter 3 is dedicated to the proposal and
discussion of strategies to minimize the energy consumption due to image processing
on ground by leveraging in-orbit processing, again by numerically demonstrating
their performance over state-of-the-art solutions. Chapter 4 will be devoted to the
proposal and investigation of a communication strategy enabling distributed learning
in networks of EO satellites. Finally, the main results of this thesis are summarized
in the Chapter dedicated to Conclusions.
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Chapter 1

Background and Literature
Overview

In this chapter, I introduce the research context within which this thesis can be
included. The different research areas related to this work are first introduced
in Section 1.1. For each of them, a detailed discussion of the works available in
literature is proposed in Section 1.2.

1.1 Motivation and Scope
The exponential development of digital technologies and services is completely
coupled with the development of networks able to guarantee the possibility to
interconnect a high number of devices displaced even in remote zones. For example,
digital services supporting air and maritime transportation, or disaster prevention and
relief, provide for a continuous interaction among remote devices and control stations
placed in urban centres. However, terrestrial networks are not able to guarantee
connection in remote areas, because of physical impediment (e.g., difficulties in
placing antennas supporting airplanes or ships in the ocean), or scarce return of
investment, since antennas in remote areas support only a small number of users.
A solution to this issue can be given by satellite constellations in Low Earth Orbit
(LEO), which can assure global coverage while maintaining low latency with respect
to older Geostationary Orbit (GEO) telecommunication constellations. For this
reason, commercial solutions like SpaceX Starlink[21] or Amazon Kuiper[22] currently
being designed and deployed are thought to assure high bandwidth, low latency
connectivity everywhere. In general, Non-Terrestrial Networks (NTNs) are gaining
more and more importance because of their potential application in 5G[23] and
future 6G[24], in particular integrated to terrestrial or aerial networks (e.g., networks
of unmanned aerial vehicles or high altitude platforms) to obtain what is known as
Satellite-Air-Ground Integrated Networks (SAGINs)[25].

However, connectivity could be not enough. In fact, recent applications rely
always more on offloading tasks to a device different from the user one (e.g., Artificial
Intelligence-based or Internet of Things applications), with constraints in the latency
experienced by the user[26]. Thus, even though satellites can guarantee connectivity
in remote areas, since the application requires a processing far from the user (e.g.,
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in cloud), the latency could exceed the Quality of Service (QoS) requirements. An
innovation, thus, can be given by extending the Multi-access Edge Computing
(MEC) techniques to the space segment, to leverage satellites not only to guarantee
connectivity, but also to provide computational capacity to execute services near
to the user. This technique has been introduced in literature under the name of
Orbital Edge Computing (OEC)[1, 26].

This innovation can lead to advantages not only for terrestrial users, but it can
also support Earth Observation (EO) missions to overcome currently issues related
to the transmission of a high amount of data to ground stations only during the short
visibility time. In fact, an EO satellite currently acquires images which are then
stored in the on-board satellite memory, until it passes over a ground station, when
it shall transmit a high amount of data in a short time[1]. Thus, a high data rate
is requested, but this is constrained by the power available on the satellite, which
is in turn constrained by the dimensions and masses of solar panels and batteries.
However, not all data transmitted to the ground are useful to the application. For
example, for a hypothetical service providing optical imagery of cities, images where
clouds cover the scene of interest are useless, but nowadays they are still transmitted
to the ground station where they are finally discarded. This is a waste of bandwidth
resource which is very scarce for downlink because of constraints on available power
on the satellite. However, an on-board selection of the information to be transmitted
thanks to an on-board data processing could avoid waste of bandwidth, since only
useful information is transmitted[2, 3].

In this context, a constellation of EO satellites endowed with Edge Computing
capabilities can lead both to an increased efficiency in bandwidth usage, since
processed data (i.e., useful information only) is transmitted to the ground station,
and to a reduction of the time needed to deliver information to the ground station,
since inter-satellite links (ISLs) among satellites of the constellation can be used to
transfer the data from the satellite which gathered it to the satellite in visibility of
the station at any time. This is different from the current scenario where the source
satellite waits to pass over a ground station to transmit data, which can lead to a high
delay between the information gathering and its availability on ground. However,
to obtain these benefits it is necessary to deploy a strategy able to decide where
data shall be processed (i.e., in-orbit or on ground and, in the former case, on which
satellite of the constellation) and, jointly, determining the route the information has
to follow.

A further important benefit of OEC can be found in the saving in energy
consumption on ground stations obtained when data are processed in-orbit. In
particular, it can be noticed that, once a satellite is in orbit, energy generation
always happen (e.g., solar panels always generate power when exposed to solar
radiation), and the amount of generated energy is only dependent on the exposition
of solar panels to the sun. In other words, we allocate in advance an amount of energy
by providing for a certain worst-case energy budget, and the satellite always makes
it available, regardless of its actual use, and since it is generally generated through
solar panels, it is completely sustainable energy. Instead, the energy consumption
of ground stations is related to the actual energy request, being correlated to the
amount of data to be processed, and that energy is generated on demand. In
particular, the higher the processing on ground is, the higher the ground station
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energy consumption is, and the more energy has to be produced to satisfy this need.
Furthermore, energy available on ground is typically given by mixed resources, thus,
it could be only in part renewable, if not completely non-renewable. Even in case
ground stations are provided with totally renewable energy, any saving on the use of
this energy can be made available to the energy grid. For this reason, by defining
appropriate strategies to decide how information has to be routed within the satellite
network made possible by ISLs, and where images have to be processed (taking into
account limitations on transmission bandwidth, storage, processing capacity and
energy available on board of satellites), it is possible to achieve green networking
performance by minimizing the energy use on ground for data elaboration, while
assuring that all images are processed.

Finally, under the application viewpoint, one of the key enabling solutions to
extract information from acquired images, both on satellites and on ground, is given
by deep learning techniques[2, 27]. However, the accuracy of these algorithms is
strictly related to the availability of large datasets for training purposes[28]. In case
of EO-related applications, these datasets involve the availability of a high number
of satellite images on the device where model are trained. For example, in this
scenario we would have to transfer all the acquired images to the training node (i.e.,
a ground station or a specific satellite), where model training is executed. However,
this would again require for a high amount of bandwidth, i.e., high transmission data
rate to transfer a high amount of data in a short visibility time. Another solution
could be given by making satellite sharing their own datasets in such a way that
each satellite can train the model by itself on a dataset given by the union of its
own dataset and the ones appertaining to the other satellites in the constellation.
However, this solution can be again limited by the available bandwidth and by
the computational capacity available on-board, since training a model on a larger
dataset requires an increased computational effort. Instead, federated learning can
be fruitfully leveraged in this scenario, since this technique provides for each satellite
to train a local model only with its own dataset, and then to share its trained model
with a central server, which receives models trained by the different satellites and
aggregates them into a new global model which is finally shared with all the satellites,
and this repeats until convergence is reached[17]. It is important to underline that
this solution is more appropriate in the orbital environment because only the models
are shared instead of all datasets, and models have a reduced size with respect to
datasets of satellite images. Furthermore, local training happens with a reduced
amount of data (i.e., a single satellite dataset, being obviously smaller than the
union of the datasets appertaining to all satellites). However, since communication
with a ground station (or, in general, with a node acting as a central parameter
server) is limited by short visibility time, local model gathering and consequent
global model transmission to all satellites may need a long time because of limited
communication windows, and this has a negative impact on the time needed to reach
model convergence, which is strictly related to the completion of these model sharing
rounds. For this reason, a distributed learning solution where satellites share their
own models among themselves, without leaning on a central parameter server, is
worthy further investigation.
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1.2 Literature Overview
From the scope of this thesis presented in Section 1.1, it follows that this research
work can be framed into several research areas. First, since I am exploring the
possibilities offered by a satellite network, this work is related to NTNs and their
integration with other networks to obtain the SAGINs. However, since I am providing
for endowing satellites with on-board processing capabilities, this thesis also falls into
the research field related to the extension of edge computing capability to satellites.
Finally, since I am focusing on the specific application to EO, this thesis can be also
framed in the context of the exploitation of mega-constellation to in-orbit process
EO data, with a particular focus on research related to energy aspects in this specific
field and on how machine learning can be leveraged within EO constellations.

1.2.1 Non-Terrestrial Networks and Space-Air-Ground Integrated
Networks

Research on NTNs is mainly related to the potential leverage of satellites in the
context of 5G and 6G. Authors of [23] provide a survey on how such satellite
networks may be leveraged in 5G. In particular, this work first provides a description
of NTNs, then moving to the discussion of the use cases and architectures that
these networks may assume in the 5G context, underlying their fundamental role
in guaranteeing service continuity (i.e., 5G can be accessed from remote areas not
covered by terrestrial networks by leveraging NTNs), ubiquity (i.e., making the 5G
network available even though terrestrial networks are not because of, for example,
natural disasters) and scalability (i.e., traffic can be offloaded to the NTN from the
terrestrial one). This work also includes an overview of the activities by 3GPP on
NTNs in 5G, topic further explored in [29] with a focus on design aspects related
to standardization. Finally, the survey identifies mobility, propagation delay and
radio resource management as open issues in the leverage of NTNs in 5G, and it
introduces the importance that such networks may have in future 6G applications.
In particular, the same authors propose a scheme to deal with the problem of radio
resource management in [30].

The application of NTNs to 5G and 6G is also the topic of survey [31], which
focuses on the integration of NTNs and Terrestrial Networks in Space-Air-Ground
Integrated Networks (SAGINs), whose space component is given by satellites, while
the air component is made by unmanned aerial vehicles (UAVs) and High Altitude
Platforms (HAPs). In this survey, the integration of such networks in the 5G and 6G
context are investigated under the point of view of the time evolution, of use cases
(i.e., Internet of Things and MEC) and architecture (in particular, physical, media
access control and network layer), providing the state-of-the-art of both academic
and industrial research and development effort.

More on satellite networks to support 6G can be found in [32], whose authors
shine a light on both the possibilities opened by NTNs in the 6G context and on the
design challenges of such networks to obtain the desired performance in terms of
latency and coverage. The same authors, in [33] proves how satellites can support
millimeter wave (mmWave) communication with high capacity, and for this reason
they represent an enabling technology in the implementation of 6G.
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All the previously mentioned articles underline how latency represents one of the
most important issues in NTNs and SAGINs. Consequently, strategies to deal with
latency appears to be one of the most explored topics in literature. For example,
the authors of [34] identify some of the most important issues related to LEO
mega-constellations integrated with ground networks (e.g., latency, jitter, unstable
routing and scarce network reachability) and formulate and solve an optimization
problem aiming to integrate the two network segments while minimizing latency
and ensuring routing stability. Latency is also the focus of the work [35], presenting
a solution providing for both flow allocation and the selection of cloud or satellite
relay servers to ensure real-time communications exploiting mega-constellations.

It is also interesting to notice an increasing interest in the application of Artificial
Intelligence (AI) techniques for resource allocation and network management in
NTNs and SAGINs. For example, the ANChOR project[36] financed by the European
Space Agency (ESA) provides for an AI-based tool to orchestrate resources in 5G
satellite and terrestrial networks by following a data-driven approach[37]. This can
be extended also to beyond 5G (B5G) and 6G networks, for example by leveraging
techniques based on Long Short-Term Memory (LSTM)[38]. This approach represents
an extension to the orbital domain of AI-based resource allocation strategies for
terrestrial network function virtualization (NFV), providing for the use of LSTM
to predict the future amount of traffic, and, consequently, the number of cores to
be allocated for a virtual network function instance, as proposed by authors of
[39, 40, 41]. Instead, in the specific context of 6G, AI can be applied to integrate
terrestrial networks and NTNs while improving the energy-efficiency of maritime
networks[42].

Several applications of AI techniques to NTNs and SAGINs provide for the
use of reinforcement learning (RL)[43]. For example, authors of [44] propose a
Q-learning-based strategy to allocate capacity resources in satellites networks made
by three layer, given by satellites in LEO, Medium Earth Orbit (MEO) and GEO. In
work [45], RL is leveraged to obtain a routing algorithm in LEO satellite networks.
Similarly, in [46], a strategy based on deep reinforcement learning (DRL) to deal
with the multi-commodity flow problem in NTNs made by LEO satellites is proposed.
Instead, authors of work [47] propose a solution based on DRL to deal with traffic
offloading, since traditional strategies appears to unsatisfactorily cope with traffic
offloading in a context of high dynamism related to both topology and traffic. Finally,
in the specific context of the use of SAGINs in 5G, B5G and 6G, resources to new
users can be reserved by means of RL-based network slicing, as described in work
[48].

Another AI-based technique that appears to be often applied in the context
of NTNs and SAGINs is Federated Learning (FL)[49]. For example, in case NFV
is used in SAGINs, authors of [50] propose a FL-based algorithm to deal with
the embedding of service function chains (SFCs) in SAGINs, showing significant
improvements in terms of revenues, revenue-cost ratio and acceptance rate with
respect to other state-of-the-art solutions. Instead, in work [51], FL is leveraged to
allow for anomaly detection in traffic within a SAGIN. Finally, the application of
FL in the context of B5G and 6G SAGINs has been also investigated in literature.
In particular, authors of [52] first introduce how FL-based strategies can be applied
to optimize different objectives by appropriately managing network resources; then,
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the specific application to traffic offloading is evaluated. Instead, authors of [53]
demonstrate the ability of FL-based NTNs for 6G to guarantee lower communication
overhead and latency than state-of-the-art solutions.

1.2.2 Edge Computing in orbital environment

As far as edge computing applied to satellite networks is concerned, this technology
can be leveraged to both provide service to terrestrial mobile users by satellite or
support EO missions. In this subsection, I will only introduce works related to the
former context, while research on the latter application will be discussed in detail in
the next subsection, dedicated to the literature on leveraging satellite networks and
in-orbit processing in EO missions.

Authors of [54] carried out a study of architectures, technologies and challenges
related to the extension of MEC to SAGIN. MEC techniques are leveraged in
[55] to improve the QoS in networks made by satellite and terrestrial nodes, by
means of appropriate resource allocation, computation offload and task scheduling
schemes. Strategies to deal with resource scheduling are also the topic of work [56],
which proposes two algorithms to allocate computing resources and manage ISLs
by leveraging advanced K-means algorithm and a spanning tree strategy based on
breadth-first-search. However, authors of [57] shine a light on the fact that most
of the research on task-offloading in satellite networks does not take into account
the actual ability of the different satellites in taking part into offloading, related to
how loaded they are. For this reason, the authors propose an algorithm based on
particle swarm optimization to schedule tasks taking into account delay and energy
consumption. Another interesting strategy to tackle the problem of computation
offloading is proposed in [58], whose authors propose a game-theoretic scheme to
obtain an optimal solution under the point of view of response time and energy
consumption. Instead, authors of [59] propose an online algorithm to place processing
within satellite networks in such a way to provide robustness-aware service coverage.

Several research papers focus on the support that satellite networks endowed
with edge computing capability can give to terrestrial Internet of Things (IoT)
applications. In particular, architecture and scheduling strategies to support IoT
through satellite edge computing have been proposed[60]. Authors of [61] point out
how, by endowing satellites with computing capability to support IoT, it is possible
to obtain an improvement of the QoS in terms of time needed to accomplish the
computation and energy consumption. However, this improvement is dependent on
the task offloading strategy applied. For this reason, there is a high research interest
in designing such strategies, taking into account the peculiar characteristics of IoT
applications. For example, authors of [62] propose a scheme based on directed acyclic
graphs and on an attention mechanism combined with proximal policy optimization
to deal with the problem of multi-task offloading in satellite IoT, allowing for a
cost-effective resource allocation even in case tasks are not independent from each
other. Instead, work [63] is devoted to the proposal of a computation offloading
and resource allocation algorithm to minimize the energy consumption of terrestrial
terminals. Finally, it is interesting to notice how satellite edge computing can also
support Internet of Vehicles (IoV), as it is shown in [64], which proposes a framework
where a SAGIN endowed with edge computing capability supports the IoV, with
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the leverage of a deep imitation learning strategy to deal with task offloading and
caching to optimize both the time needed to complete the task and the use of satellite
resources.

Research on the extension of MEC to the orbital environment is also strictly
related to the research on the application of NFV to satellite networks. In fact, NFV
can be seen as a particular application of in-orbit processing, where the computation
is used to provide network functions. For this reason, it may be interesting to
provide an overview of the state-of-the-art on this field. For example, authors of
[16] first propose an optimization problem to deal with the virtual network function
(VNF) placement and routing in a satellite network, modelled by means of a software
defined time evolving graph; then, an algorithm to solve the proposed problem is
introduced and evaluated. The same authors further explored this research strand
by proposing a method to obtain the optimal solution of the VNF orchestration
problem in orbital environment[65], and a linear programming problem to deal with
service provision and resource allocation in a LEO network aiming to minimize the
use of ISLs because of their instability[15]. Another interesting approach to place
VNFs is presented in [66], where game theory is leveraged to obtain a placement
able to minimize the deployment cost while maximizing the number of served user
requests. Instead, authors of [67] present a genetic algorithm-based strategy to place
VNF by balancing delay and resource allocation. Finally, authors of [68] focus on
an intent-driven approach to the VNF placement, where user intents are parsed by
means of a bidirectional LSTM network.

NFV is in turn strictly related to software-define networking (SDN). It may be
thus interesting to explore how this technique has been studied for applications
in the aerospace domain. For example, authors of [69] provide a first proposal
for an implementation of SDN in networks of UAVs and electric vehicles, where a
satellite acts as a network controller. Instead, authors of [70] underline how the
application of SDN to NTNs can allow to reach the objectives of 5G and B5G
networks. However, architectures based on satellites have peculiar characteristics
making traditional terrestrial algorithms not directly applicable in this context. For
this reason, they propose an ad-hoc, centralized routing algorithm, able to take into
account the QoS requirements, based on the Bresenham’s and Dijkstra’s algorithms.
However, authors of [71] point out how a centralized strategy introduces overhead
related to reconfiguration and migration. For this reason, they focus on a strategy
to optimally place the controller and assign satellites to the controller, and they
evaluate the amount of this overhead. Also authors of [72] focus on the problem of
controller placement, and propose a strategy to deal with it by taking into account
the typical properties of a satellite constellation (e.g., the fact that satellites move
and links are not always available). A way to deal with the controller and placement
problem in this context with a reduced computational effort is given by [73], whose
authors propose techniques based on simulated annealing and genetic algorithm
to solve this problem with near-optimal results. Finally, authors of [74] present a
software-based testbed to study SDN in networks integrating terrestrial nodes and
satellites occupying orbits different from GEO.
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1.2.3 Satellite Networks and Edge Computing in Earth Observation
Constellations

Mega-constellations are gaining more and more interest in supporting EO applications.
For example, authors of [75] point out how the current scheme providing for EO
data gathering made by GEO satellites or ground stations leads to high latency and
shows scarce scalability. For this reason, they propose a solution to reduce EO data
delivery latency by taking advantage of LEO mega-constellations, considering the
dynamical topology of such a network. Always to deal with the problems related
to delivery time and scalability, authors of [76] present both optimization-based
and heuristic-based solutions leveraging multi-path in LEO satellite networks for
EO applications. Work [77] can be placed into the same research strand, since
its authors propose an optimization-based strategy to deliver data to ground by
leveraging networks of EO satellites endowed with ISLs, by taking into account node
mobility and resource constraints. Instead, authors of [78] focus on proposing a
strategy to increase the throughput in the context of EO by jointly optimizing image
acquisition and transmission schedule. Similarly, the author of [79] proposes different
algorithms to tackle the problem of observation and communication scheduling by
considering random requests for acquisition tasks, while a different optimization
problem formulation, neighbourhood search and genetic algorithm are also proposed
in [80].

It may be interesting to understand how this technology may have even a stronger
impact if applied not only on a single satellite, but within a constellation. Under
this point of view, authors of [75] introduced a solution to obtain lower EO data
delivery latency by taking advantage of mega-constellations, while authors of [6]
improved the timeliness of EO data by leveraging load-balancing in EO constellations
endowed with in-orbit processing capability. Since on-board data processing requires
energy, authors of [11] propose an algorithm to minimize the energy consumption
on satellites while guaranteeing desired latency. Instead, the focus of the algorithm
proposed by authors of [12] is the optimization of the use of satellite batteries to
extend their operating life by minimizing the depth-of-discharge (DoD). However,
this may lead to an increased latency in service processing, at the expense of possible
requirements on the QoS in terms of timeliness.

Given the possibilities opened by leveraging satellite networks in the context
of EO in case satellites have the possibility to process data on-board, it may be
interesting to discuss the state-of-the-art of on-board processing technology, mainly
related to AI-based applications. In this context, authors of [81] identify processing
capability and radiation environment as potential issues preventing the application
of AI in-orbit, and at the same time discuss how satellites designed to have a shorter
operative life and mainly based on commercial-off-the-shelf (COTS) components
may foster the leverage of AI algorithms on-board. In-orbit processing capability
has been demonstrated by the ESA Φ-Sat-1 Mission [2], where AI techniques are
run on a satellite to select data to be downlinked, discarding the ones not useful
to the application (e.g., by recognizing the presence of clouds in acquired images).
Further demonstration of the opportunities opened by running AI algorithms on-
board of EO satellites will be provided by ESA Φ-Sat-2 Mission[82]. Among these,
AI-based image compression scheme will be also experimented on-board[83]. Such
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demonstration reinforces the research on AI algorithms to be executed in-orbit. In
particular, an algorithm for ship detection on board of synthetic aperture radar
(SAR) based on deep learning has been proposed by authors of [84], while authors of
[85] present a pipeline to process hyperspectral images on board of cubesats. Work
[86] focuses on the proposal of an algorithm based on convolutional neural networks
(CNNs) to on-board detect volcanic eruption by processing acquired multispectral
images. Instead, the robustness of the application of CNN on hyperspectral images
when atmospheric perturbation or noise is added is analysed by authors of [87].
However, it is important to underline that in-orbit processing consume energy on-
board of satellites. For this reason, authors of [88] investigates the application of
spiking neural networks in this context as an energy-efficient solution to process
data on satellites, in particular in case of scarce energy availability, like in cubesats.
Finally, it may be interesting to discuss how these algorithm may be implemented on
board of satellites. Field programmable gate array (FPGA) appears to be the most
interesting technology to implement such strategies. For example, authors of [89]
leverage FPGA to implement an on-board ship detection scheme on SAR images.
Similarly, a solution to detect ship, wind and sea state on SAR images directly
on-board by means of an FPGA and a CPU is proposed in [90]. Instead, authors of
[91] propose the leverage of FPGA to obtain an hardware acceleration of quantized
CNN dedicated to the on-board classification of cloud coverage in acquired images.

Research works cited in the previous paragraph mainly provides for the applica-
tion of AI strategies on a single satellite. However, it would be interesting to leverage
the computational capacity available within the entire constellation, by appropriately
making use of the satellite network made available by ISLs. On this research strand,
it is possible to identify a high interest in federated learning techniques in LEO
satellites, which can be frutifully applied in the EO mission context. A comprehen-
sive presentation of the state-of-the-art federated learning strategies in mega-LEO
constellations is given by [17], where three federated learning scenarios in orbital
environment are discussed, depending on the availability of links between a node
acting as a parameter server (where local models are aggregated to update a global
model) and the satellites, as well as the communication opportunities within the
constellation itself. In particular, the paper identifies the scenario where inter-orbital
ISLs are available as the most promising for further research. The same authors
proposed a deeper investigation of the three federated learning scenarios in further
works. In particular, in case of sporadic connection possibilities to a parameter
server, as it happens in case no ISL is available or only a ground station takes part to
the federated learning process, an asynchronous federated learning strategy has been
proposed in [19]. Similarly, authors of [92, 93] propose an asynchronous FL strategy
leveraging HAP as a parameter server. However, the convergence speed of such a
scheme may be compromised by model staleness. As explored in [20], a solution
to this problem can be given by leveraging the predictability in communication
opportunities with the ground station, which allows for the proposal of a scheduling
algorithm to optimally decide when the model parameter exchange between ground
stations and satellites shall happen. Instead, in [18], authors focused on the case
in which only intra-orbital ISLs are available, proposing a communication scheme
enabling synchronous federated learning with a parameter server placed on the
ground or in a satellite not appertaining to the constellation.
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Chapter 2

Processing and Bandwidth Cost
Optimization in Orbital Edge
Computing satellite networks

In this chapter, I formalize and solve an optimal bandwidth and computing resource
allocation problem in LEO satellite constellation for EO applications aiming to
minimize the total operating cost due to data transmission, storage and processing.
In order to deal with the complexity of the proposed optimization problem, I also
present two heuristics requiring different computational effort. In the proposed
problem formalization, processing can happen on any node of the network (i.e.,
either on the data source satellite, on any other satellite of the constellation or on
ground station). This is an important difference with other strategies proposed
in literature[9, 10, 11], providing for processing to happen either on the acquiring
satellite or on ground stations. Instead, the strategies proposed in this chapter allows
for leveraging computational capacity available not only on the single satellites,
but within the entire constellation. Another difference is in the fact that while
the proposed strategies aim to reduce the total operating cost, most of literature
mainly focuses on the optimization of the time needed to deliver information on
ground[6, 7, 8]. After having validated the proposed heuristics by comparing their
results to the optimization problem ones, I apply them to a real orbital scenario,
showing their ability to reduce total cost and, at the same time, also to reduce data
delivery delay to ground with respect to state-of-the-art solutions.

Results shown in this chapter have been published in [94, 95].

2.1 Reference Scenario and Problem Statement
In the analysed scenario, I consider satellites to be arranged on different orbital planes.
I also assume that satellites can communicate among themselves by leveraging ISLs.
In particular, communication is not restricted to couples of satellites belonging to
the same orbital plane, but can also happen among couples of satellites on different
orbital planes, depending on the distance. Finally, I will consider each satellite to
have a given processing capacity to elaborate data on-board, and a memory to store
information.
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Figure 2.1. Example of the reference scenario.

In the considered scenario, the source of any service is placed into the constellation
itself, while, since I am studying EO applications, data shall be always downlinked
to the Earth, which can be seen as a sink for all services. In particular, whenever
a satellite flies over a predefined region, it acquires images of it. At this point,
it can either process the image on-board, store it or send it to a visible ground
station (if any) or to another satellite in the constellation. In case data is sent to
another node, the receiving node can in turn process the received data, store it in
its memory or send it to another node, and so forth. To further clarify this scenario
and its difference with the state-of-the-art operational scheme, let me introduce the
example shown Fig.2.1. In this case, satellite A flies over a region to be monitored
and acquires images. In the current state-of-the-art operations, it can only store the
acquired information in its memory until it reaches position A

′ in its orbital motion,
when it enters the visibility region of ground station GS2 and has to downlink the
data. Instead, in my solution satellite A can leverage the ISL with satellite B and
transfer data to it, in such a way that the information can be delivered to ground
station GS1 passing through B, reducing the delivery delay. Furthermore, in my
solution both A or B, as well as the ground stations, can process data. This is
particularly important in case, for example, the bandwidth on link B-GS1 is enough
to transmit a processed data, but not to host an unprocessed one. In this case, by
processing on either A or B, link B-GS1 would be able to host data and, thus, would
again allow for obtaining a reduction in information delivery delay with respect to
the state-of-the-art operations.

It is then evident that appropriate strategies to be followed by satellites in
choosing which action shall be taken while dealing with a produced or received piece
of information can be designed to obtain any desired behaviour. In particular, in
this chapter I focus on proposing centralized joint resource allocation and processing
placement strategies aiming to minimize the overall operating cost by leveraging the
satellite network and on-board processing capacity, in such a way that an image
generated by a satellite can be processed on any network node (i.e., the source
satellite, any other satellite or a ground station), optimizing the use of valuable
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resources like available bandwidth and on-board processing capacity. The proposed
strategies are centralized since they rely on the fact that link availability between
each couple of nodes is known by orbital mechanics and, for the same reason, image
acquisition periods of each satellite are scheduled by control stations on Earth.
Furthermore, both topology and service generation repeats periodically, because
of the periodic motion of both Earth and satellites. Thus, it is possible to run
algorithms on Earth to offline define the route and processing node for each service
in order to optimize any desired metric, and then instruct the satellites to behave as
defined by the algorithm output.

2.2 Network and Service Modeling
After having described the application scenario in Section 2.1, let me translate it
into an abstract model. In particular, I will introduce a model for the dynamic
topology and one for the services. Sets and parameters introduced in the following
description are summarized in Tab.2.1.

2.2.1 Dynamic topology

If compared to routing and processing resource placement in most terrestrial networks,
the orbital scenario has an increased complexity given by the satellite and Earth
motion making topology time-varying. However, dynamical topology and service
generation repeats after a period Tc (i.e., it can be assumed a cyclostationary
behaviour for both topology and service generation), since both the satellite motion
and the Earth rotation are periodic. Formally, this scenario can be generalized by
using a time-evolving graph G = (N , E , T )[15], a mathematical structure able to
model the dynamic behaviour of the network topology due to satellite and Earth
motion. In particular, in a time-evolving graph, nodes (identified by the set N ),
edges (identified by the set E) and layers (identified by the set T ) (see Fig.2.2) can
be distinguished.

Figure 2.2. Example of time-evolving graph referring with T = 3 time periods (i.e., layers),
NS = 7 nodes.
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Table 2.1. Reference scenario sets and parameters

Set or parameter Description
G = (N , E , T ) time-evolving graph identified by nodes (set N ), edges (set E)

and layers (set T )
Tc cyclostationary period for both topology and service generation
τ discrete time cycle duration
T number of time cycle of duration τ in a cyclostationary period
lt layer in the set T , with t ∈ [0, . . . , T − 1] (i.e., time cycle)
ni node in the set N , with i ∈ [0, . . . , NS − 1]
NS number of nodes (either satellites or vGS)
Γi processing capacity associated to the ni node (in Mbps)
γp

i cost to be paid for unit processing on the ni node (in $/Mbps)
vGS Virtual Ground Station represented by the nNS−1 node
Ee intra-layer edge set (i.e., transmission links)
Em inter-layer edge set (i.e., memory links)
et

i,j intra-layer edge (i.e., transmission link) in Ee, with i, j ∈
[0, . . . , NS − 1] | ni, nj ∈ N

Ct
i,j capacity associated to the et

i,j transmission link
γei,j cost of the unit transmitted data amount on the et

i,j transmission
link (in $/Mb)

mt
i inter-layer edge (i.e., memory link) in Ee, with i ∈

[0, . . . , NS − 1] | ni ∈ N
Mi data storage capacity of the mt

i memory link
γmi cost to be paid for the unit data stored on the i-th node (i.e.,

on mt
i memory link, in $/Mb)

Σ set of all generated services
fh service in Σ, with h ∈ [0, . . . , NT − 1]
NT total number of generated services
fh

s fh service source satellite index
fh

0 fh service pre-processing size
fh

1 fh service post-processing size
fh

t fh service generation time cycle
fh

d number of time cycles after generation within which fh service
shall be delivered to the vGS

Layers are the structures of the time-evolving graph making possible to deal
with dynamic topology. In particular, it is possible to discretize the time in cycles
of duration τ during which topology remains fixed (i.e., links between couples of
satellites or between a satellite and a ground station remain available during the
complete time cycle). Thus, each layer lt ∈ T with t ∈ [0, . . . , T − 1], where T is
the number of time cycles of duration τ in a cyclostationary period of duration Tc,
represents a particular topology realization (i.e., links between nodes at the time
cycle to which the layer is referred).

As far as nodes are concerned, each node ni ∈ N with i ∈ [0, . . . , NS − 1], where
NS is the total number of nodes, represents either a satellite or any ground station
enabled to receive data on the planet Earth. The i-th node is endowed with a
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processing capacity Γi (in Mbps), to the use of which a cost γp
i (in $/Mbps) is

associated, representing the cost to be paid for the unit processing amount. It is
not necessary to introduce a node for each ground station on Earth enabled to
receive and elaborate data from the constellation. In fact, since the destination
is always any enabled ground station on Earth, it is only necessary to introduce
a node representing the sink of information (hereafter named as Virtual Ground
Station, vGS), which will be connected, during each time period, to all the satellites
having visibility of any enabled ground station within that period. It is important
to underline how this choice does not affect the solution of the joint routing and
processing placement problem. In fact, I will consider that all the enabled ground
stations are equal (i.e., having enough memory and processing capacity to process
all services, as well as same operating costs) and that all the satellites being able to
communicate with a ground station in a certain time are connected to the vGS node.
Thus, since any ground station is always the destination for all services, this does
not affect the routing within the satellite constellation. As an arbitrary convention,
the index of the vGS node will be represented by i = GS = NS − 1.

Finally, the set of edges E is given by the union of two sets, one representing
intra-layer edges (Ee), the other inter-layer edges (Em). Intra-layer edges et

i,j ∈ Ee,
with i, j ∈ [0, . . . , NS − 1] | ni, nj ∈ N and t | lt ∈ T , represent the availability of a
transmission link from node ni to node nj during the t-th time period (i.e., they have
value equal to 1 if the link is available, 0 otherwise). The link availability is known
by orbital mechanics. In particular, I assume an Additive White Gaussian Noise
channel[15], and I consider a link between two satellites to be available whenever
the satellites have a distance di,j ≤ di,jmax , where di,jmax is the maximum distance
for which a minimum desired Eb/N0|min ratio is assured and is defined as follows:

di,jmax = c

4πν

√
PtG2

kB Ts Ri,j Eb/N0|min
(2.1)

where c is the speed of light, ν is the carrier frequency, Pt is the transmission
power, G is the antenna gain, kB is the Boltzmann’s constant, TS is the system noise
temperature and Ri,j is the transmission data rate. Instead, I assume a link between
a satellite and a ground station to be available whenever the satellite is visible
from a ground station with a minimum elevation angle Elmin. Link availability
influences the amount of data that can be transmitted. In particular, even though
transmissions have a fixed data rate, actually each transmission link is associated to
a capacity Cet

i,j
= Ri,j · τ̂ t

i,j/τ in Mbps, whose value depends on the transmission
data rate Ri,j of i-th node towards the j-th node and the actual visibility time τ̂ t

i,j

between the couple of nodes during the t-th time period, and a cost γei,j (in $/Mb)
representing the cost to be paid for the unit transmitted data amount between the
two nodes. Instead, inter-layer edges mt

i ∈ Em represents a memory link on the i-th
node. In particular, if a service occupies the mt

i edge, it means that it is kept in
the memory of the i-th node during the full t-th time period, until the beginning
of the next time period. Each memory link mt

i is associated with a capacity Mi in
Mb, representing the maximum data storage capacity on the i-th node, independent
of time period, and with a cost γmi (in $/Mb) representing the cost to be paid
for the unit data stored on the i-th node. It is important to underline how the
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obtained time-evolving graph is a quasi-static representation of the dynamical orbital
environment. In fact, instead of having a graph where each node simply represents
a satellite (i.e., a graph with NS nodes) and the presence of edges between nodes
is a function of time, each node of the graph does not simply represent a satellite,
but a satellite at a given time cycle (i.e., a graph having NS · T nodes), where the
presence of edges is not function of time and the actual visibility time between
satellites or satellites and vGS is embedded in the capacities associated to each edge.
Let me clarify this claim with an example. Let me suppose to have two satellites i
and j and a cyclostationary period made of T = 2 time cycles of duration τ . Let
me suppose that by analyzing the satellite orbital motion, their distance is small
enough to assure communication with the desired Eb/N0 from the beginning of the
cyclostationary period to time τ/6. In my formalization, instead of having a graph
with two nodes representing the two satellites and a time-dependant edge, which is
available only for τ/6 with capacity Ri,j , there will be a graph with four nodes, the
first two representing the two satellites in the time cycle from time 0 to time τ , and
the second two representing the two satellites in the time cycle from time τ to time
2τ . Since the couple of satellites can communicate only for a time equal to τ/6 from
the beginning of the repeat cycle, an edge connecting the nodes representing the
two satellites in the first time cycle is only added, while the second couple of nodes
will have no edge. Furthermore, in order to take into account that communication
is possible only during a fraction τ̂0

i,j = τ/6 of the first time cycle, the added edge
will not have a capacity equal to the transmission data rate, but a reduced capacity
given by C0

i,j = Ri,j · τ̂0
i,j/τ = Ri,j/6. It is important to underline how the power

of this formalization is given by the fact that the time-varying properties of links
within the constellation have been translated into ad-hoc nodes and edges, in such a
way that each layer of the time-evolving graph, which includes all nodes and edges
referred to the same time cycle, represents a snapshot of the topology in time, and
the sequence of these snapshots, i.e., the full graph, returns a representation of the
dynamical topology enabling the application of classical graph algorithms without
any modification to deal with time-varying properties. This simplifies both the
formulation of the optimization problem and the proposal of heuristic algorithms,
since the classical Dijkstra’s algorithm can be leveraged, as it will be discussed in
the following sections.

2.2.2 Services

After having introduced the time-evolving graph, let me elaborate more on services
generated by the satellites. Service generation is related to image acquisition which
happens when a satellite flies over a region of interest. But the occurrence of this
event is related to the relative position of satellites and Earth, and since their motion
is periodic, also service generation will be cyclostationary, and it will have the same
period as the topology variation. The cyclostationary behaviour of both topology and
service generation, characterizing the Earth Observation application I am considering
in this thesis, allows to only have to consider allocations in a cyclostationary period,
since these will repeat all mission long. In particular, I suppose that each satellite can
generate a service requiring a processing given by a single task, aiming at reducing
the data size. Obviously, what is discussed in this chapter can be extended to take
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into account services requiring more than a single task. Each service fh ∈ Σ, where
Σ is the set of all generated services in a cyclostationary period and h ∈ [0, . . . , NT ],
where NT is the total number of generated services in a cyclostationary period, is
described by a tuple {fh

s ; fh
0 ; fh

1 ; fh
t ; fh

d }, where fh
s represents the source node, fh

0
the service size before processing in Mb, fh

1 the task size after processing (again, in
Mb), fh

t the time cycle during which the service is generated and fh
d the maximum

number of periods after the service generation one within which the service shall be
delivered to a ground station.

2.3 Optimization Problem
The design of a framework able to jointly deal with routing and processing placement
in an EO constellation endowed with OEC capabilities can be based on different
tools. The most rigorous one is given by an optimization problem, which I will
formalize in this section, starting from the formalization given in [15], aiming to
orchestrate virtual network function over a LEO constellation modelled as a time-
evolving graph by minimizing the use of ISLs, and by extending it to take into
account the data reduction due to processing. Instead, the main idea underlying my
optimization problem definition is that in the scenario described in Section 2.2 it
is possible to identify three operating costs due respectively to data transmission,
storage and processing. Thus, an optimization problem aiming to propose a routing
and processing placement able to minimize a total operating cost given by the sum
of transmission, memory and processing costs can be defined. From the scenario
description it is also easy to identify the constraints to be defined, mainly linked
due to transmission link bandwidth, storage and processing capacity of each node.
Furthermore, appropriate constraints to assure that all services are processed (by
any satellite or ground station) and to guarantee flow conservation on nodes are
necessary. However, routing and processing placement are coupled and this could
result in non-linear constraints (e.g., link bandwidth usage depends on if that link is
crossed by a processed or unprocessed service, since data size would be different).
For this reason, in order to obtain an Integer Linear Programming formulation
(ILP) for the optimization problem, two virtual links to deal with different data size
before and after processing will be introduced, and their mapping to physical links
leads to additional constraints. This formulation is similar to the Service Function
Chain (SFC) mapping in elastic optical network[96]. However, the problem stated
in this chapter differs from well studied virtual network mapping ones because of
the dynamicity of the substrate network and because of the data reduction which
happens when processing happens, which at the best of our knowledge has not
been considered in other works on virtual network mapping problem in dynamic
networks like satellite ones. In particular, the introduction of virtual links leads
to a virtual topology composed by three nodes and two links (see Fig.2.3). Two of
the virtual nodes have a straightforward mapping with the physical topology, since
they correspond to the source satellite at generation period and the destination (i.e.,
the virtual ground station node at the deadline period). Instead, the remaining
virtual node represents the processing node, which maps to the physical node chosen
as processing node. As far as the two virtual links are concerned, they connect,



2.3 Optimization Problem 20

Figure 2.3. Example of virtual and physical topology mapping. Virtual source node S is
mapped to node 1 of the physical topology, while virtual destination node D is mapped
to node 6 (GS) of the physical topology. Virtual processing node P is mapped to physical
node 3. For this reason, the first virtual link is mapped on links a, b, since they carry
unprocessed information, while the second virtual link is mapped on links c, d, e, since
they carry processed data.

respectively, the source virtual node to the processing virtual node and the processing
virtual node to the destination virtual node. Thus, the first virtual link will only
host services with a data amount given by the pre-processing data size, while the
second virtual link will only host services with a data amount given by the post-
processing data size. Finally, in this model I will consider negligible contention and
the limitations due to power available on-board of satellite will be included in the
transmission and computational capacities.

Let me introduce the three binary decision variables of the optimization problem:

yt,h,p
i,j =


1 if the p-th virtual link of the h-th service is mapped on the

et
ij edge (transmission link)

0 otherwise
(2.2)

zt,h,p
i =


1 if the p-th virtual link of the h-th service is mapped on the

mt
i edge (memory link)

0 otherwise
(2.3)

wt,h
i =

{
1 if the h-th service is processed by the i-th node
0 otherwise

(2.4)

The first two variables are linked to the routing part of the problem, dealing
with transmission and memory links, respectively. Instead, the third variable refers
to the processing resource placement of the problem.

The objective of the presented optimization problem is to minimize the total
cost given by the sum of the following expressions:

κp =
NT −1∑
h=0

T −1∑
t=0

NS−1∑
i=0

wt,h
i ·

fh
0
τ
· γp

i (2.5)
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κe =
NT −1∑
h=0

T −1∑
t=0

NS−1∑
i=0

NS−1∑
j=0
j ̸=i

1∑
p=0

yt,h,p
i,j · fh

p · γei,j (2.6)

κm =
NT −1∑
h=0

T −1∑
t=0

NS−1∑
i=0

1∑
p=0

zt,h,p
i · fh

p · γmi (2.7)

where (2.5) represents the processing cost (i.e., the component of the total cost
due to service processing), (2.6) the transmission cost (i.e., the component of the
total cost due to service transmission), while (2.7) is the memory cost (i.e., the
component of the total cost due to service storage).

Let me now introduce the constraints of the optimization problem as follows:

NT −1∑
h=0

1∑
p=0

yt,h,p
i,j · fh

p ≤ Ct
i,j · τ, ∀i, j ∈ [0..NS − 1], j ̸= i, t ∈ [0..T − 1] (2.8)

NT −1∑
h=0

1∑
p

zt,h,p
i · fh

p ≤Mi, ∀i ∈ [0..NS − 1], t ∈ [0..T − 1] (2.9)

NT −1∑
h=0

wt,h
i · f

h
0 ≤ Γi · τ, ∀i ∈ [0..NS − 1], t ∈ [0..T − 1] (2.10)

NS−1∑
i=0

fh
t +fh

d∑
t=fh

t

wt mod T,h
i = 1, ∀h ∈ [0..NT − 1] (2.11)



z
fh

t mod T,h,0
fh

s
+

NS−1∑
j=0

j ̸=fh
s

y
fh

t mod T,h,0
fh

s ,j
= 1− w

fh
t mod T,h

fh
s

z
fh

t mod T,h,1
fh

s
+

NS−1∑
j=0

j ̸=fh
s

y
fh

t mod T,h,1
fh

s ,j
= w

fh
t mod T,h

fh
s

, ∀h ∈ [0..NT − 1] (2.12)

(
1− δt,fh

t
δi,fh

s

) (
1− δt,fh

t +fh
d

δi,NS−1
){[((

1− δt,fh
t

)
z

(t−1),h,0
i +

NS−1∑
a=0
a̸=i

yt,h,0
a,i

)
+

−
((

1− δt,fh
t +fh

d

)
zt,h,0

i +
NS−1∑
b=0
b ̸=i

yt,h,0
i,b

)]
−
[((

1− δt,fh
t

)
z

(t−1),h,1
i +

NS−1∑
a=0
a̸=i

yt,h,1
a,i

)
+

−
((

1− δt,fh
t +fh

d

)
zt,h,1

i +
NS−1∑
b=0
b ̸=i

yt,h,1
i,b

)]
− 2wt,h

i

}
= 0

∀h ∈ [0..NT − 1], i ∈ [0..NS − 1], t ∈ [fh
t ..fh

t + fh
d ] mod T

(2.13)



2.3 Optimization Problem 22

1∑
p=0

z
(t−1) mod T,h,p
i +

NS−1∑
a=0
a̸=i

yt mod T,h,p
a,i

 ≤ 1,

∀h ∈ [0..NT − 1], i ∈ [0..NS − 1], t ∈ [fh
t ..fh

t + fh
d ] mod T

(2.14)

1∑
p=0

zt mod T,h,p
i +

NS−1∑
b=0
b̸=i

yt mod T,h,p
i,b

 ≤ 1,

∀h ∈ [0..NT − 1], i ∈ [0..NS − 1], t ∈ [fh
t ..fh

t + fh
d ] mod T

(2.15)

1∑
p=0

z
(fh

t +fh
d −1) mod T,h,p

NS−1 +
1∑

p=0

NS−2∑
i=0

y
(fh

t +fh
d ) mod T,h,p

i,NS−1 = 1, ∀h ∈ [0..NT − 1] (2.16)

(2.8) imposes that, during each time period, each transmission link cannot
transmit more data than the maximum data amount transferable during a time
period. Similarly, each node cannot store more data than its own storage capacity
(2.9), and cannot process more data than possible, given the maximum processing
capacity (2.10). (2.11) enforces that all services are processed, either by a satellite
or by a ground station. (2.12)-(2.16) deals with both virtual link mapping and flow
conservation. In particular, (2.12) ensures that the link outgoing the source node
at service arrival period shall belong to the first virtual link if the service is not
processed on the source node at the service generation period, to the second virtual
link otherwise. Instead, on each intermediate node (i.e., any node different from
both the source satellite at the service generation period and the vGS at the deadline
period), (2.13) guarantees that if the node has an incoming link carrying the service
data, it will also have an outgoing link. In particular, if the node processes the
service, the incoming link shall appertain to the first virtual link, while the outgoing
link shall appertain to the second virtual link. Instead, if no processing occurs
on the node, incoming and outgoing links shall appertain to the same virtual link.
Furthermore, it is important to take into consideration that nodes related to the
service generation period cannot receive data from memory links; conversely, nodes
related to the service deadline period cannot store data on memory links. This is
obtained by taking advantage of the Kronecker delta notation such that:

δuv =
{

1 if u = v

0 otherwise
(2.17)

Furthermore, (2.14) and (2.15) prohibit an intermediate node to have, respectively,
more than one incoming or more than one outgoing link related to a certain service.
Instead, (2.16) ensures that there is one and only link incoming the ground station
node and carrying the service data at the service deadline period and ensures that the
information reaches the ground station at least at the deadline cycle. Furthermore,



2.4 Heuristics 23

by leveraging the fact that in EO applications the destination of the information is
any of the enabled ground stations, not a specific one, it is only needed to write this
constraint with respect to the vGS node, without worrying about the actual number
of ground stations enabled to receive data. This also assures the scalability of this
formulation with the number of ground stations, since increasing the number of
ground stations, any extra complexity is added to the problem. It is also important
to underline how the cyclostationary behaviour of both topology and especially
service generation related to the EO application allows to write an optimization
problem formulation related to a cyclostationary period only, since what happens
in this period repeats during all the operative life. Instead, in case of aperiodical
service generation, but still having the possibility to determine services a priori,
the problem (either optimization or heuristic) should have been formulated for
the full time span during which resources have to be allocated, at the expense of
scalability. Indeed, in case of aperiodical service generation without the possibility
to predetermine the service demand, the optimization problem formulation should
have been completely different, since the problem should have considered computing
and processing resource allocation one task at a time, on a network being partially
loaded by services already allocated. In particular, the definition of the problem
on a cyclostationary period only can be noticed by the fact that constraints (2.8)-
(2.10) are defined only on time cycles within a cyclostationary period, while in
constraints (2.11)-(2.16), since the service delivery deadline could be greater than the
cyclostationary period duration, the modulo operation is leveraged to consider that
all that would happen after the end of the cyclostationary period shall be considered
at its beginning, because of the periodic repetitions.

Finally, it is important to notice that constraints and objective introduced in this
section suppose to have a perfect knowledge of the unit processing, transmission and
memory costs. However, at the best of my knowledge, precise values for these costs
are not known at the moment, but may be in the future. For this reason, in the
numerical evaluation of the proposed strategy I will consider these costs as multiple
of the unit processing cost to be paid to process data on the ground station, which I
suppose to be the easiest unit cost to be found. In particular, I will consider an α
parameter representing the ratio between the unit processing cost on satellites over
the unit processing cost on ground, and a ρ parameter identifying the ratio between
the unit cost of handling information on a link (either for transmission or memory)
and, again, the unit cost of data processing on ground station. Furthermore, the
only impact of the data processing on this solution is given by the data reduction
which can be obtained, that I will represent by means of the ε parameter identifying
the ratio between unprocessed and processed service size.

2.4 Heuristics
In order to overcome the complexity of the proposed optimization problem, I
introduce two heuristics aiming to jointly route and place processing of services in
satellite constellations endowed with OEC capability. A summary of additional sets
and variables used in the pseudocodes with respect to the reference scenario is given
in Tab.2.2. The first heuristic is an Exhaustive Search, formalized in Alg.1.
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Table 2.2. Heuristics sets and variables

Set or variable Description
Λ ordered set containing, for each fh service, a tuple containing

the chosen path and another tuple with the chosen processing
node and time cycle

Ω set of rejected services
Θt

i,j tensor variable tracking the memory and transmission resource
allocation in each time period

Πt
i matrix variable tracking the processing resource allocation in

each time period
κ∗ variable tracking the best cost for the current service
i∗, t∗ variables tracking the index of the best processing node and

time cycle for the current service, respectively
λ0∗ , λ1∗ ordered lists of nodes tracking the best path hosting the unpro-

cessed and processed current service, respectively
E0

e , E1
e sets of transmission links able to host unprocessed and processed

current service, respectively
E0

m, E1
m sets of memory links able to host unprocessed and processed

current service, respectively
T 0 set of layers (i.e., time cycles) between current service generation

and delivery deadline time cycles
T 1 set of layers (i.e., time cycles) between current service candidate

processing time cycle and delivery deadline time cycle
G0 graph including only links able to host an unprocessed service

and only time cycles between current service generation and
deadline cycles

G1 graph including only links able to host an unprocessed service
and only time cycles between current service generation and
deadline cycles

Υ0 set of shortest paths to any reachable nodes from the service
source satellite

Υ1 set containing one element, i.e., the shortest paths from the
service source satellite to the vGS at service delivery deadline
period

ζ0 element of Υ0, list of tuples node index/time cycle on the shortest
path from the source satellite to the candidate processing node

ζ1 element of Υ1, list of tuples node index/time cycle on the shortest
path from the candidate processing node to the vGS

ĩ, t̃ candidate processing node index and candidate processing time
cycle, respectively

is, ts current starting node index and time cycle, respectively
id, td current destination node index and time cycle, respectively
κ̃ cost of the current path/processing node couple for the current

service
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The proposed heuristic provides for the following steps. For each service (Line
2):

(i) using the Dijkstra’s Algorithm, calculate the minimum cost path to all nodes
reachable from the source satellite at the service generation cycle within the
service delivery deadline (Line 8), considering only links able to transmit or
store an unprocessed service (Lines 4-7). Each reachable node is candidate to
process the service;

(ii) for each candidate service processing node:

(ii.a) If the node has enough computational capacity to execute the task (Line
12):

(ii.a.1) Apply the Dijkstra’s Algorithm to obtain the cheapest path from the
selected node to the ground station at service deadline cycle (Line 17),
considering only links able to transmit or store a processed service
(Lines 13-16)

(ii.a.2) Calculate the total cost due to processing on the candidate node
(Line 20), as well as transmission and storage both from the source
satellite at service generation cycle to the candidate processing node
and from the candidate processing node to the ground station at the
service delivery deadline cycle (Lines 21-23)

(ii.a.3) If the cost of the candidate couple processing node/path is smaller
than the cost related to the cheapest processing node/path couple so
far, assign the current processing node/path couple as best solution
(Lines 26-29)

(ii.b) If a couple processing node/path has been found (Line 34), append
the cheapest path and processing node couple to the list storing the
routing and processing decision for each service (Line 35) and update
the matrices tracking the current processing allocation (Line 36) and
the bandwidth/memory allocations (Lines 37-39); otherwise, append the
service to the list of rejected services (Line 42).

It can be proven that the proposed algorithm shows polynomial complexity. In
fact, for each of the NT services (Line 2), I first apply the Dijkstra’s algorithm on
a graph having at most NS · T nodes and |E| edges (Line 8), then I apply again
the Dijkstra’s algorithm on a graph having at most NS · T nodes and |E| edges
(Line 17) for each node reachable from the source satellite at service generation
cycle within the service delivery to ground station deadline. In the worst case, the
number of reachable nodes is given by all nodes of the graph, thus the second call
to Dijsktra’s algorithm is executed for at most NS · T times. Recalling that the
complexity of the Dijkstra’s algorithm, in its fastest proposal, is O (E + V log2 V ),
where E and V are the number of edges and vertices of the graph, respectively,
it is straightforward to prove that Exhaustive Search Algorithm complexity is
O
(
NT NST (|E|+ NST log2 (NST ))2

)
, where |E| represents the cardinality of the

edge set.
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Algorithm 1: Exhaustive Search
Input: Σ, N , E , T

1 Initialize: Θt
i,j ← 0, Πt

i ← 0, ∀i, j ∈ [0, . . . , NS − 1], t ∈ [0, . . . , T − 1];
2 for fh ∈ Σ do
3 Initialize: κ∗ ←∞, i∗ ← −1, t∗ ← −1, λ0∗ ← ∅, λ1∗ ← ∅;
4 T 0 ← {lt ∈ T | t ∈ [fh

t , . . . , (fh
t + fh

d )] mod T};
5 E0

e ← {et
i,j ∈ Ee | τCt

i,j ≥ Θt
i,j + fh

0 , ∀i, j ∈ [0, . . . , NS − 1], i ̸= j, t ∈
[fh

t , . . . , (fh
t + fh

d )] mod T};
6 E0

m ← {mt
i ∈ Em |M t

i ≥ Θt
i,i + fh

0 , ∀i ∈ [0, . . . , NS − 1], t ∈
[fh

t , . . . , (fh
t + fh

d )] mod T};
7 G0 ← (N , E0

e ∪ E0
m, T 0);

8 Υ0 ← Dijkstra
(
G0,

{
fh

s ; fh
t

}
, all nodes

)
;

9 if
∣∣Υ0
∣∣ ̸= 0 then

10 for ζ0 ∈ Υ0 do
11 ĩ, t̃← ζ0

last;
12 if Γĩ · τ ≥ Πt̃

ĩ
+ fh

0 then
13 T 1 ← {lt ∈ T | t ∈ [t̃, . . . , t̃ + fh

d ] mod T};
14 E1

e ← {et
i,j ∈ Ee | τCt

i,j ≥ Θt
i,j + fh

1 , ∀i, j ∈ [0, . . . , NS − 1], i ̸=
j, t ∈ [t̃, . . . , t̃ + fh

d ] mod T};
15 E1

m ← {mt
i ∈ Em |M t

i ≥ Θt
i,i + fh

1 , ∀i ∈ [0, . . . , NS − 1], t ∈
[t̃, . . . , t̃ + fh

d ] mod T};
16 G1 ← (N , E1

e ∪ E1
m, T 1);

17 Υ1 ← Dijkstra
(
G1,

{
ĩ; t̃
}

,
{

NS − 1;
(
fh

t + fh
d

)
mod T

})
;

18 if |Υ1| ≠ 0 then
19 ζ1 ← Υ1

0;
20 κ̃← fh

0
τ · γ

p

ĩ
;

21 for p ∈ {0, 1}, a ∈ [0, . . . , max{0, |ζp| − 2]} do
22 is, ts ← ζp

a ; id, td ← ζp
min{a+1,|ζp|−1};

23 κ̃← κ̃+(1− δis,id
δts,td

) ·fh
p · [(1−δis,id

) ·γeis,id
+δis,id

·γmis
];

24 end
25 end
26 if κ̃ ≤ κ∗ then
27 i∗ ← ĩ, t∗ ← t̃;
28 λ0∗ ← ζ0; λ1∗ ← ζ1;
29 κ∗ ← κ̃;
30 end
31 end
32 end
33 end
34 if i∗ ̸= −1 then
35 Λ← Λ ∪ {{λ0∗ ∪ λ1∗

, {i∗; t∗}}};
36 Πt∗

i∗ ← Πt∗

i∗ + fh
0 ;

37 for p ∈ {0, 1}, a ∈
[
0, . . . , max{0,

∣∣λp∗ ∣∣− 2}
]

do
38 is, ts ← λ0∗

a ; id, td ← λ0∗

min{a+1,|λp∗ |−1};
39 Θts

is,id
← Θts

is,id
+ (1− δis,id

δts,td
) fh

p ;
40 end
41 else
42 Ω← Ω ∪ {fh};
43 end
44 end

Output: Λ, Ω



2.4 Heuristics 27

Algorithm 2: Shortest Path-based Heuristic
Input: Σ, N , E , T

1 Line (1)-(7) of Alg.1;
8 Υ0 ← Dijkstra

(
G0,

{
fh

s ; fh
t

}
,
{

NS − 1;
(
fh

t + fh
d

)
mod T

})
;

9 if
∣∣Υ0
∣∣ ̸= 0 then

10 ζ0 ← Υ0
0;

11 for {̃i, t̃} ∈ ζ0 do
12 Line (12)-(31) of Alg.1;
32 end
33 end
34 Line (34)-(44) of Alg.1;

Output: Λ, Ω

In order to further reduce complexity, I also propose another algorithm (Shortest
Path-based Algorithm, Alg.2) which modifies the Exhaustive Search Algorithm only
in the way the candidate processing nodes are selected (Line 8). In fact, in the
Shortest Path-Based Algorithm, the first call to Dijkstra’s algorithm does not return
the paths to all reachable nodes from the source satellite at service generation cycle
within the service delivery to ground station deadline cycle, but only the shortest
path from the source satellite at service generation cycle to the ground station at
the deadline cycle.

Figure 2.4. Example of the difference in candidate processing node identification between
Exhaustive Search and Shortest Path-based Heuristic.

An example of the difference between the two algorithms is given in Fig.2.4, where
it can been noticed that, in case a service generated by node 2 shall be delivered
to the vGS, the Shortest Path-based heuristic would choose only the nodes on the
shortest path between 2 and vGS on a graph containing only links able to host an
unprocessed service (i.e., nodes 2, 3, 4, 9) as candidate processing nodes. Instead,
the Exhaustive Search selects as candidate processing nodes all the ones reachable
from the source node (i.e., in the example, nodes 0, 1, 2, 3, 5, 6, 9), thus leading to
a higher number of processing possibilities to be evaluated. However, this higher
complexity is counterbalanced by an increased ability of the Exhaustive Search in



2.4 Heuristics 28

returning the cheapest solution with respect to the Shortest Path-based Heuristic.
In fact, always referring to the example of Fig.2.4, let me assume that the source
(node 2) is not able to process the service, while any candidate processing node
has enough processing capacity to accomplish the task. Let me also assume that
processing has the same cost on any node, and it is equal to the transmission one.
In this case, the Shortest Path-based Heuristic would place the processing on node
3, with an overall path made of three links (between nodes 2-3, 3-4, 4-9). Instead,
the Exhaustive Search would place the processing on node 6, with an onverall path
reduced to two links (between nodes 2-6 and 6-9), thus, it returns a cheaper solution
by taking advantage of a link only able to host a processed service. Moving to a
formal discussion of the complexity, also in this case the first Dijkstra’s algorithm
call is executed on a graph providing only for transmission and memory links able to
host an unprocessed service. Then, only nodes appertaining to the found path will
be considered as candidate processing node, thus, the second Dijkstra’s algorithm
call will be executed fewer times if compared to the Exhaustive Search algorithm. By
introducing µ as the highest number of nodes crossed by a service in its path from
the source satellite at service generation cycle to the ground station at the service
delivery deadline cycle, it is then straightforward to prove that the complexity for
the Shortest Path-Based Algorithm reduces to O

(
NT µ (|E|+ NST log2 (NST ))2

)
.

It is important to underline that, as in the case of the optimization problem, also
heuristics take advantage of the cyclostationary behaviour typical of EO applications
in both nodes motion (i.e., topology) and service generation. This can be noticed
in the selection of layers, nodes and edges, where I leverage modulo operations to
consider that if the service delivery deadline exceeds the cyclostationary period,
all events occurring after the end of the cyclostationary period shall be considered
at its beginning because of periodic repetitions. Furthermore, the fact that in
EO applications the information destination is any of the enabled ground stations
and not a specific one allows to just calculate the shortest path to the vGS node
at service delivery deadline cycle as the destination, without worrying about the
different available ground stations. This makes the heuristics perfectly scalable with
the number of ground stations, since no further complexity is added by increasing
the number of ground stations.

Finally, it can be noticed that the proposed heuristics try to mimic the optimal
solution, but in a simplified way with respect to the optimization problem, since they
consider one service at a time. This is made possible by the modelling presented in
Section 2.2, representing a dynamic environment into a graph, thus, allowing for
obtaining solutions by leveraging the Dijkstra’s algorithm. In case these heuristics
show good results with respect to the optimization problem, it is then clear that
they can be applied to evaluate the performance of the proposed allocation scheme
(providing for the possibility of task offloading) with respect to state-of-the-art
benchmarks where limited processing possibilities are considered in complex scenarios,
like a real orbital application, where the optimization problem solution would be
impractical.
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2.5 Numerical results
In this section, I will first validate the proposed heuristics by comparison with the
results obtained by solving the optimization problem. Because of its high complexity,
the solution of the optimization problem requires a high computational effort in a
real orbital scenario. Thus, I solve it on a mock-up case study identified to mimic the
orbital scenario but requiring a lower computational effort to obtain the optimization
solution.

After studying the performance of the proposed heuristics, I apply them to a real
orbital scenario, in order to compare them with two benchmark heuristics providing
for, respectively, service processing on the source satellite only or on the ground
station only. Parametric analysis on the processing cost, transmission/memory cost,
ratio between preprocessing and postprocessing data size and evaluation on the
delivery delay to the ground station will be proposed.

Let me introduce parameters which will be the same for both the heuristics
validation and their application to the orbital scenario. The time cycle duration is
given by τ = 10 min, which is a compromise value between the granularity of the
dynamic topology representation and the complexity of obtaining a solution. I will
consider unlimited processing capacity for ground stations, since I assume to have
datacenters with enough capacity to handle all the data amount produced by the
constellation, with a cost γp

GS = γp
NS−1 = 1 $/Mb, while satellites will have:

Γi = max
h∈[0,...,NT −1]

fh
0 /τ, ∀i ∈ [0, . . . , NS − 2] (2.18)

processing capacity (i.e., each satellite can at most process a data amount equal to
the heaviest service in a time cycle), with a cost depending on a parameter α such
that:

γp
i = α · γp

GS , ∀i ∈ [0, . . . , NS − 2] (2.19)

Thus, I assume that all satellites have the same unit processing cost, and for the
sake of clarity I name this cost γp

Sat, where γp
Sat = γp

i = α · γp
GS , ∀i ∈ [0, . . . , NS − 2]

and α represents the ratio between the unit processing cost on any satellite over the
unit processing cost on ground. Notice that, since it is difficult to obtain a real γp

GS

cost, a unit value has been chosen to ease both the readability of the presented results
and their interpretation whenever a real γp

GS cost is available. Following [97], for
the transmission links I will consider a transmission power Pt = 5 W, antenna gain
G = 27 dBi, carrier frequency ν = 26.375 GHz, system noise temperature Ts = 700
K, minimum required Eb/N0 ratio Eb/N0|min = 6 dB, a mean data rate RISL = 1
Mbps in case of ISLs (to study the behaviour of the algorithm in facing scarce
resource availability), Rdl = 520 Mbps in case of downlink to the ground station (as
in the case of Sentinel-2 satellites[98]), and a cost depending on a parameter ρ such
that:

γei,j = ρ · γp
GS , ∀i, j ∈ [0, . . . , NS − 1], i ̸= j (2.20)

Finally, memory cost depends again on a parameter ρ such that:
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γmi = ρ · γp
GS , ∀i ∈ [0, . . . , NS − 2] (2.21)

while I will consider ground stations having unlimited storage capacity with no
associated cost, since I assume again to have datacenters with enough capacity to
handle all the data amount produced by the constellation.

In my evaluation, I will present results related to the total cost (given by the sum
of processing, transmission and memory costs) and to its components processing cost
and link cost, where link cost is given by the sum of transmission and memory costs.
This is related to the fact that both optimization and heuristics have to balance
routing (thus, selection of transmission and memory links) and processing placement
in order to minimize the total cost. Thus, it is more interesting to just compare
these two components, without further divide the link cost into transmission and
memory costs.

Finally, I set preprocessing size fh
0 = 100 Mb ∀h ∈ [0, . . . , NT − 1], and postpro-

cessing size depending on a parameter ε such that:

fh
1 = fh

0 /ε, ∀h ∈ [0, . . . , NT − 1] (2.22)

Before moving to the core of the numerical result presentation, it is important
to underline that, once the topology and services are fixed (i.e., given the orbit,
the number of satellites and their motion within the constellation and with respect
to the Earth), the performance of the proposed strategies will be only related to
three parameters: α, ρ and ε. In fact, the proposed strategies aim to minimize the
total operating cost, and these parameters are all linked to unit costs to be paid
while handling data. In particular, the α parameter represents the ratio between
the unit processing cost on satellites over the unit processing cost on ground. Thus,
I expect that, the higher the α value is, the more a robust strategy should choose
to leverage transmission and memory links to reach the ground station, where the
processing should happen because of lower costs with respect to satellites. However,
this behaviour also depends on the value of ρ parameter, identifying the ratio
between the unit cost of handling information on a link (either for transmission or
storage) and, again, the unit cost of data processing on ground station. In fact,
even though processing on-board of satellites costs more than on ground, placing
processing on a ground station is convenient only if the cost to be paid for making an
unprocessed service reach the ground station is small enough to lead to a lower total
cost with respect to the case the processing happens in orbit. Instead, ε represents
the data reduction ratio due to processing (i.e., the ratio between unprocessed
and processed service size). In particular, I fix the preprocessing size, in such a
way that the choice of ε parameter changes the postprocessing size. I expect that
robust strategies are influenced by this parameter since by processing data in orbit,
the transmission of a reduced amount of information should lead to an increase
in transmission resource availability and to an overall lower total operating costs.
Finally, it is important to underline how I propose a parametrical analysis of the
proposed strategies because of the difficulty in obtaining unit cost for data handling
(either processing or transmission/storage), with the unit processing cost on ground
stations used as reference in both α and ρ parameter definitions since I suppose it to
be the easiest cost to be modeled. Similarly, I do not limit my analysis to a specific
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data processing application, but I study the contribution of data elaboration by only
considering the impact it has on the network by means of the ε parameter (i.e., the
reduction in data amount to be transmitted to the ground station).

2.5.1 Comparison between Optimization Problem and Heuristics

Topology and Services

In order to compare the results obtained by solving the proposed optimization
problem with the two presented heuristics, I will consider a synthetic topology to
mimic the orbital mechanics in a simpler, but not trivial, scenario. In particular, I will
consider NS = 16 nodes (15 of them standing for satellites, the last one for the vGS)
and T = 5 time cycles. Satellite nodes are arranged so as to follow the geometrical
structure: in particular, they are placed on the vertexes of contiguous squares. In
order to simulate the fact that only near satellites are able to communicate, I define
as possible links only the ones connecting nodes on the sides or the diagonal of the
squares. Then, only a certain percentage of all links will be randomly sampled to be
considered available during each time cycle. In order to have a not trivial number
of services in such a small topology (in particular, because of the small number of
considered time cycle to obtain the optimization problem results), I experimentally
choose this percentage to be equal to 70%. Instead, the vGS node is connected
to a different trio of nodes during each time cycle. Finally, let me introduce the
parameters related to the topology. In this scenario, I will consider ρ = 0.01 and
α ∈ [1, . . . , 20]. I will also set each satellite node to have a memory Mmi = 100 Mb
∀i ∈ [0, . . . , NS − 1], in order to better study what happens when a node has to deal
with two services during the same time cycle.

As far as service generation is concerned, by noting that in orbital scenarios not all
satellites generate services simultaneously, I implement this feature in my synthetic
model by setting that only a percentage of randomly selected nodes can generate
services during each time cycle. Again, in order to obtain a non trivial number of
services in such a simplified scenario, I experimentally choose this percentage to be
equal to 30%. Finally, 10 different service sets are generated, each containing 30
random services. Randomness in service generation is related to the source satellite
and the service generation cycle. Instead, I will consider ε = 1 and a deadline equal
to T − 1 = 4 time cycles for all services.
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Results and discussion
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Figure 2.5. Total cost obtained by solving Optimization Problem or by applying Exhaustive
Search and Shortest Path-Based Heuristic.
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Figure 2.6. Processing cost obtained by solving Optimization Problem or by applying
Exhaustive Search and Shortest Path-Based Heuristic.
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Figure 2.7. Number of services processed by satellites obtained by solving Optimization
Problem or by applying Exhaustive Search and Shortest Path-Based Heuristic.
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Figure 2.8. Link cost obtained by solving Optimization Problem or by applying Exhaustive
Search and Shortest Path-Based Heuristic.
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Fig.2.5 shows mean and standard deviation for the total costs, obtained by
solving optimization problem or by applying Exhaustive Search or Shortest Path-
Based Heuristic to the 10 random service sets, reporting the total cost variations
for increasing values of the ratio α between the unit processing cost on satellites
and on ground station. It can be noticed that heuristics lead to a higher total cost
than optimization problem for any value α assumes. However, the three curves have
a similar behaviour for small values of α (i.e., when the unit processing cost on
satellites is almost equivalent to the unit processing cost on ground station). Instead,
as the unit processing cost on satellites increases with respect to the one on ground
station, there is a higher discrepancy (up to 24%) between the total cost obtained
by applying heuristics with respect to the optimization problem. This is due to
the fact that heuristics prefer processing on satellites to minimize the total cost
associated to the single service, without having an holistic vision on all services as in
the optimization problem case. This is also confirmed by looking at the processing
cost in Fig.2.6, where it can be noticed how heuristics have higher processing cost
than the optimization problem. Furthermore, for all the curves, the processing
cost follows a piecewise linear behaviour. During each linear piece, the number of
services processed by satellites remains the same, as it can be noticed in Fig.2.7,
reporting the number of services processed by satellites for each α value, by applying
the different proposed strategies. Consequently, the increasing linear behaviour of
the processing cost in regions of α values where the number of services processed
by satellites is constant is only due to the increase of α (i.e., to the increase of
processing cost on satellites). Instead, a decrease in the number of services processed
by satellites is linked to a break of the increasing linear trend. This behaviour can
be also confirmed by looking at the transmission cost values in Fig.2.8, where it can
be noticed that, in the regions where the processing cost increases (i.e., the number
of services by satellites is constant), the link cost remains constant (i.e., the amount
of data transmitted on links remains the same), while when the increasing linear
trend breaks (i.e., a lower number of services are processed by satellites), the link
cost increases, since there is more unprocessed data to be transmitted on links. It
is also interesting to underline how, for small α values, heuristics tend to use links
more than optimization problem, while, as α increases, optimization problem tends
to pay more for the link use than the heuristics. This is due to the fact that, thanks
to its holistic vision on the complete service set, the more α grows, the more the
optimization tends to place processing on ground with respect to the heuristics, thus,
the more unprocessed data shall be transmitted on the links. However, this higher
cost related to transmission/memory links is counterbalanced by the much lower cost
to be paid for processing, leading to a total cost smaller for optimization problem.
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Figure 2.9. Mean Execution Time in the simplified, yet not trivial, comparison scenario.

Finally, Fig.2.9 shows the mean and standard deviation of the execution time of
Optimization Problem, Exhaustive Search and Shortest Path-based Heuristic in the
considered comparison scenario. It can be noticed that the optimization problem
solution takes a sensibly increased time with respect to the heuristics, and both mean
and standard deviation increase when α increases in case of optimization problem
solution, while they remain constant in case heuristics are applied. This is due to
the fact that α influences the simplicity in finding the optimal solution, while when
using heuristics, the computational time is only related to the number of executions
of Dijkstra’s algorithm and on the complexity of the graph, both being uncorrelated
to α. In particular, it can be noticed how the Shortest Path-based Heuristic leads to
the lowest mean execution time thanks to its reduced number of Dijkstra’s algorithm
applications. Finally, it shall be underlined that even though the reported mean
execution time values are quite low, this is due to the fact that I am considering a
simplified, yet not trivial, scenario. However, execution time is expected to increase
with the number of satellites, time cycles and services, with a much stronger increase
in case of optimization problem solution due to its complexity.

2.5.2 Application of Heuristics to Orbital Scenario

Topology and services

In order to evaluate the proposed joint routing and processing placement scheme
on a real scenario, I developed a Python tool to generate Walker constellations
and propagate the satellite and ground station positions over time. In particular,
I considered a constellation of 24 satellites divided into 6 orbital planes (each
containing 4 satellites). Since I am studying applications for EO, I choose circular
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orbits with typical height (712.84 km) and inclination (98.24 deg), which allows
to obtain a repeat cycle (i.e., the cyclostationary period) equal to 2 sidereal days.
In the orbital simulation, I do not take into account effects due to the Earth’s J2.
As far as ground segment is concerned, I will consider three ground stations of the
European network, placed in Matera (Italy), Kiruna (Sweden) and Kourou (French
Guyana). All this translates into a time-evolving graph having NS = 25 nodes (24
satellite and 1 vGS), and T = 287 time cycles (as a consequence of the 2 sidereal days
repeat cycle divided into 10 minutes slots, as previously discussed). In particular,
the satellite positions over time obtained in the Walker constellation generation are
used to set the intra-layer edges of the time-evolving graph. Specifically, for each
time cycle, if the distance between two satellites i and j remains small enough to
guarantee the communication with the desired Eb/N0|min during a time interval
τ̂ t

i,j within the t-th time cycle, then an intra-layer edge in the time-evolving graph
is added between the nodes representing the two satellites in the considered time
cycle. This edge represents an ISL with a capacity given by Ct

i,j = RISL · τ̂ t
i,j/τ . By

repeating this check over each couple of satellites during each time cycle, all ISLs
are translated into the time-evolving graph which is fed to the resource allocation
strategies. In this way, ISLs are taken into consideration while determining the best
route the information should follow to reach the processing node and, finally, the
ground station. A similar approach is followed while determining the intra-layer
edges between the vGS node with any other node. Starting again from the positions
propagated over time in Walker constellation generation, if the relative position
between a satellite i and any ground station is such that the elevation angle is smaller
than 5 deg during a time interval τ̂ t

i,j within the t-th time cycle, then an intra-layer
edge between the node representing the satellite during the t-th time cycle and the
vGS in the same time cycle is added, with a capacity Ct

i,NS−1 = Rdl · τ̂ t
i,j/τ . I also

consider α ∈ [1, . . . , 34], while ρ will be defined for each of the proposed analysis.
Finally, memory on each satellites is limited to Mi = 3.3 Gb, ∀i ∈ [0, . . . , NS − 2]
to support the worst case load of data in the service generation scenario described
further on.

As far as service generation is concerned, I developed a Python tool to generate
a service as soon as a satellite starts flying over user-defined regions. Furthermore,
if after τs seconds after the previous passage over the region the satellite is still
flying over the selected area, another service is generated. ε parameter value will be
defined for each of the following analysis, while the deadline is chosen as the first
time cycle after the service generation during which there is visibility between any
ground station and the service source satellite (i.e., the earliest time cycle during
which the satellite can potentially downlink all the acquired data, representing the
best solution when no satellite network is available). In this chapter, I will consider
as selected regions Australia and Mexico, with τs = 5 min in order to have at most
two services generated by a satellite during a time cycle as a compromise between
the analysis of the heuristic behaviour and the solution complexity. This leads to
the generation of 673 services.
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Results

I first want to evaluate the behaviour of the proposed heuristics in comparison with
two benchmark algorithms providing for, respectively, processing services on the
source satellite only (during the service generation time cycle or in following one,
named Always First) and processing services on the ground station only (named
Always Ground). By choosing parameters ρ = 0.01 and ε = 100, I obtain the total
cost due to the application of the different algorithms, as function of the α ratio
between unit processing cost on satellites and on ground stations, shown in Fig.2.10.
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Figure 2.10. Total cost obtained by applying the two proposed heuristics and the two
benchmarks, fixing ρ and ε parameters.

It can be noticed how the proposed heuristics well follow the Always First and
Always Ground benchmark, respectively, for low α values and for high α values.
This is due to the fact that, for low α values, the unit processing cost on satellites
is not much higher than the unit processing one on the ground station, and the
slightly higher processing cost is compensated by a lower link cost due to the
transmission/storage of a reduced data amount. As α increases, this convenience is
gradually lost, and the lower link cost is not counterbalanced by the higher cost to
be paid for on-board processing, thus, the algorithm chooses to process more data
on ground station. In this way, there is an intermediate region of α values where the
proposed heuristics outperform the benchmark solutions, since the former have the
ability to choose where placing the service processing in order to obtain the cheapest
balance between processing and routing costs. It is finally evident that for high α
values, there is no convenience in processing on-board any service and, thus, the
proposed heuristics follow the same behaviour as the Always Ground solution.
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Figure 2.11. Processing cost obtained by applying the two proposed heuristics and the
two benchmarks, fixing ρ and ε parameters.
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Figure 2.12. Number of services processed by satellites, by applying the two proposed
heuristics and the two benchmarks, fixing ρ and ε parameters.
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Figure 2.13. Link cost obtained by applying the two proposed heuristics and the two
benchmarks, fixing ρ and ε parameters.

What has been just discussed is also confirmed by looking at the processing cost,
the number of services processed by satellites and the link cost, reported, respectively,
in Figs.2.11, 2.12 and 2.13. The three curves follow the same behaviour commented
with respect to the heuristics and optimization problem comparison. On one hand,
processing cost appears to have a piecewise linear behaviour, where changes in the
slope and sudden decreases are due to a change in the number of services processed
within the constellation. In particular, for small α values the processing cost follows
the same behaviour as the Always First solution, while for high α values the same
costs as the Always Ground benchmark are obtained. On the other hand, the link
cost increases when an increase of the service to be processed on the ground stations
occurs (because of the increase of the data amount to be transmitted or stored on
links), while remains constant when the number of services processed on-board is
constant. These behaviours allow to discuss in deeper detail the reason why the
number of services processed by satellites decreases as α increases. In fact, in case
the number of services processed by satellites remains the same when α increases,
as it happens in case the Always First strategy is applied, there would be a linear
increase of the processing cost with α, while the link cost would remain constant
because the amount of data to be transferred within the network would not change.
Thus, the total cost would increase linearly with α. However, it may be possible to
obtain a lower total cost by deciding to process data on-ground instead of on-board
as α increases, because when α increases, the cost to be paid for unit processing on
satellites with respect to ground stations increases, too. For this reason, the proposed
heuristics tend to place processing on ground when α increases. In fact, in this case,
even though the link cost increases due to the higher amount of unprocessed data to
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be transferred, the obtained saving in processing cost is such that the overall total
cost is smaller than in case more data is processed on-board.

A further comparison on the link cost paid by Exhaustive Search and Shortest
Path-based Heuristic allows to notice that the two solutions have the same trend
but different values for small α values, with Shortest Path-based heuristic paying
a slightly higher cost than Exhaustive Search. Since in the same region the two
heuristics and the Always First benchmark pay the same amount for processing, this
leads to a slightly higher total cost to be paid by the Shortest Path-based Heuristic
than both Exhaustive Search and Always First solution. This effect is linked to the
way in which services are handled by the source satellite during their generation
cycle when the source satellite is busy in processing another service (recall that
satellite processing capacity is set enough to process only one service during each
time cycle). In this case, the processing shall be executed by another satellite or by
the source satellite itself, but in a following time cycle. By applying the Shortest
Path-based Heuristic, the candidate nodes for processing are limited to only the
ones being on the shortest path between the source satellite and the ground station,
evaluated by taking into account only links able to host an unprocessed service.
Thus, only a subset of candidate processing nodes is considered, with no assurance
on the fact that it includes the best one. In fact, the cheapest strategy could be,
for example, reaching a node not being on the shortest path and, after processing,
taking advantage of an higher number of links able to now host the processed service,
due to its reduced data burden, to reach the ground station with a lower link cost.
It is evident that the Shortest Path-based Heuristic is not able to identify these
strategies, unless the best processing node is on the shortest path to the ground
station. Furthermore, the application of this heuristic could also lead to a resource
shortening on nodes and links on the shortest path if they are shared by an high
number of services, and this can further lead to higher total costs. Instead, since
Exhaustive Search evaluates all reachable nodes from the source satellite to the
ground station within the service delivery deadline, it is able to identify the best
strategy for each single service. This difference between the two heuristics reduces
when α increases, since the increased unit cost required for processing on satellites
increases the number of services to be processed on the ground station to pay a lower
total cost. Finally, the Shortest Path-based Heuristic leads to slightly higher costs
than Always First for low α values because in the latter case, since the processing
can only happen on the source node (during the service generation cycle or in a next
cycle), the shortest path from the source satellite at processing cycle to the vGS at
service delivery deadline is obtained on a graph including all links able to host a
processed service, thus, potentially containing an higher number of available links
than the case of Shortest Path-based Heuristic.

I also propose a parametric analysis on the value of the ρ parameter (i.e., by
varying the link cost to be paid for unit data transmission or storage). For this
evaluation, I only consider costs obtained by applying Shortest Path-based Heuristic
and I will fix ε = 10. Total cost is reported in Fig.2.14, processing cost in Fig.2.15,
number of services processed by satellites in Fig.2.16 and link cost in Fig.2.17. From
these plots it is possible to conclude that an increase in the ρ parameter (i.e., an
higher transmission and storage unit cost) corresponds to an increase in total costs.
However, the higher the ρ, the higher is the interval of α values (i.e., of on-board
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unit processing cost) for which there is a convenience in processing services on-board.
This can be easily noticeable by looking, for example, at the value of α after which
the total cost is constant (i.e., it does not increase any more because all services are
processed on the ground stations, thus there is no dependence on the unit cost for
on-board processing). Similarly, it can be noticed that, for any α value, the number
of services processed by satellites increases when ρ increases.
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Figure 2.14. Total cost obtained by applying the Shortest Path-based Heuristics for
different ρ values, fixing ε parameter.
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Figure 2.15. Processing cost obtained by applying the Shortest Path-based Heuristics for
different ρ values, fixing ε parameter.
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Figure 2.16. Number of services processed by satellites, obtained by applying the Shortest
Path-based Heuristics for different ρ values, fixing ε parameter.
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Figure 2.17. Link cost obtained by applying the Shortest Path-based Heuristics for different
ρ values, fixing ε parameter.

Another parametric evaluation studies the behaviour of the Shortest Path-based
Heuristic with respect to the value of parameter ε, to evaluate the impact of the
data reduction amount achievable with processing on the total cost trend. Total
cost is shown in Fig.2.18, processing cost is reported in Fig.2.19, number of services
processed by satellites is represented in Fig.2.20, while link cost is in Fig.2.21. In
this case, it can be noticed that the higher the ε parameter is (i.e., by fixing the
preprocessing data size and reducing the postprocessing one), the lower the total
cost is, and the wider the region of α values for which there is a convenience in
processing services on-board is. The reduction of total cost with respect to the
case in which no data reduction happens decreases as the α parameter increases,
since the convenience in on-board processing progressively decreases as α increases.
However, as ε increases, it is possible to obtain convenience for higher α values,
because the data burden reduction leads to a decrease in link cost which could
counterbalance the higher cost required for on-board processing. Finally, both the
total cost reduction and the width of the region of α values for which there is a
cost saving in on-board processing tends to an asymptotic value as ε increases. This
is justified by the fact that, as the data burden reduction increases, the link cost
saving becomes more marginal while the processing cost remains the same, since it
depends on the preprocessing size, which remains fixed for each value of ε. A further
confirmation of what has been discussed can be found in the number of services
processed by satellites shown in Fig.2.20. In fact, for any ε value, this number
decreases with α. Conversely, for any α value, the number of on-board processed
services increases with ε up to a maximum. This also allows to conclude that the
amount of information processed within the constellation depends also on the nature
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of the service, in particular, on the amount of data reduction due to information
processing.
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Figure 2.18. Total cost obtained by applying the Shortest Path-based Heuristics for
different ε values, fixing ρ parameter.
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Figure 2.19. Processing cost obtained by applying the Shortest Path-based Heuristics for
different ε values, fixing ρ parameter.
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Figure 2.20. Number of services processed by satellites, obtained by applying the Shortest
Path-based Heuristics for different ε values, fixing ρ parameter.
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Figure 2.21. Link cost obtained by applying the Shortest Path-based Heuristics for different
ε values, fixing ρ parameter.

I finally propose an analysis on the mean service delivery delay, defined as the
number of time cycles between the service generation cycle and its deliver to any
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ground station. In fact, minimizing the total cost is related to choosing paths with
an appropriately low number of hops to maintain a low link cost and this should
also translate in a reduced delivery delay. First, even though the objective of the
proposed strategies is to minimize the total cost, not the delay, I show the impact
that resource allocation obtained through the Shortest Path-based Heuristic has on
the mean delivery delay. In particular, Fig.2.22 shows the mean delivery delay as
function of α, fixing ρ = 0.01 and by varying the ε parameter. Recalling that, as
α increases, convenience in processing data on-board of satellites is lost and, thus,
the proposed heuristic behaves like the Always Ground case (i.e., all services are
processed on ground) for high α values, it can be noticed that the mean delivery
delay increases with α. This is due to the fact that the smaller α is, the higher the
convenience in processing data in-orbit is, thus, an increased number of services are
processed on-board of satellites and the following data reduction allows processed
data to leverage an increased number of links to reach the ground station, since
links with smaller capacity can be crossed by the processed, lighter, information. It
follows that in-orbit processing opens the possibility to route information on a path
with a smaller associated cost, and this has an impact on the mean delivery delay,
since information arrives earlier on ground, too. This behaviour is also confirmed
by noticing that the higher the ε, i.e., the higher data reduction due to processing
is, the lower the mean delivery delay is. Finally, the similarity of curves shown in
Fig.2.21 and Fig.2.22 confirms that the mean delivery delay is strictly related to the
usage of transmission and memory links. In fact, by fixing ε value, an increase in link
cost stands for an increase of transmission/memory link usage, and this is reflected
in an increase of the mean delivery delay. Similarly, results reported in Fig.2.23 show
that, by fixing ε = 10 and studying the behaviour of the mean delivery delay with α,
having ρ as a parameter, again the mean delivery delay increases with α, but for each
value of α, it decreases when ρ increases. This is due to the fact that as ρ increases,
the unit cost to be paid for crossing a transmission or storage link increases, thus,
there is more convenience in processing data on-board even for higher α values, in
such a way that total cost lowers thanks to a reduced transmission/storage cost,
since links are crossed by a reduced amount of data. Again, a higher amount of
in-orbit processed information leads to the possibility of leveraging an increased
number of links to reach the ground station, and, finally, to a reduced mean delay in
making the information available on ground.
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Figure 2.22. Mean delivery delay obtained by applying the Shortest Path-based Heuristics
for different ε values, fixing ρ parameter.
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Figure 2.23. Mean delivery delay obtained by applying the Shortest Path-based Heuristics
for different ρ values, fixing ε parameter.
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Furthermore, since by increasing the number of ground stations there are poten-
tially more possibilities to downlink data on ground, I now consider an increasing
number of ground stations, most of which are made available by Amazon Web
Services Ground Station[99]. They are grouped as follows:

• 3 GSs: Matera (Italy), Kourou (French Guyana), Kiruna (Sweden); this ground
station set is the same considered in the previous analysis;

• 6 GSs: Hawaii (USA), Punta Arenas (Chile) and Singapore are added to the
previous set;

• 9 GSs: Ohio (USA), Cape Town (South Africa) and Sidney (Australia) are
added to the previous set;

• 12 GSs: Oregon (USA), Bahrein, Soul (South Korea) are added to the previous
set.

I compare the mean delivery delays obtained by applying the Shortest Path-
based Heuristic (i.e., endowing the constellation with both ISLs and on-board
processing capability), the Always Ground benchmark (i.e., ISLs are available to
obtain a satellite network, but no processing can happen on satellites) and another
benchmark solution, where there are neither ISLs, nor processing capability within
the constellation, thus, satellite can only store services in their own memory and
deliver them to a ground station when they fly over it (named Dowlink to GS only).
The results of this analysis are reported in Fig.2.24. By increasing the number of
ground stations, there is a reduction of the mean delivery delay for all the compared
solutions, since there are more possibilities to downlink data to any ground station.
The highest delay is obtained when there are no ISLs within the constellation and
the satellites cannot process services on-board (i.e., in the operational context of EO
constellations at the time being). However, by only adding ISLs, there is a strong
decrease in mean delivery delay, which is further improved when the constellation
is endowed with both ISLs and the ability to process data on-board. In fact, by
adding ISLs it is possible to reach any ground station in a shorter time than waiting
for flying over it (and this is also linked to a link cost saving); furthermore, since
the number of links able to host the processed data is higher than the ones able to
host an unprocessed information, by endowing the satellite with on-board processing
capability it is possible to obtain the shortest path on a graph with an increased
number of links, and this contributes to further lower the mean service delivery
delay.
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Figure 2.24. Mean service delivery delay obtained by considering an increasing number of
ground stations and fixing α, ρ and ε values.

2.6 Conclusions
In this chapter, I formalized and solved an optimal bandwidth and computing resource
allocation problem in LEO satellite constellations for EO applications, providing
for the leveraging of the satellite network formed by ISLs and by considering that
any node of this network can accomplish processing of EO data, with the aim of
optimizing the use of valuable resources like bandwidth and in-orbit processing.
Because of the high complexity of the optimization problem, I also proposed two
heuristics which have been validated by comparison with the optimal solution in
a simplified, yet not trivial scenario. Results showed the ability of the proposed
heuristics in returning a solution with a total cost not higher than 24% with respect
to the optimal one, but with a lower computational effort. Finally, I applied the
proposed heuristics to a real orbital scenario to evaluate the impact of leveraging
task execution offloading to a satellite different from the originating one, with respect
to state-of-the-art solutions which do not consider this possibility. I showed that
the proposed strategies allow to better leverage resources if compared to benchmark
solutions, leading to lower total operating cost and data delivery delay with respect
to state-of-the-art solutions.
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Chapter 3

Optimization of the Energy
Consumption on Ground
Stations

Orbital Edge Computing can also help to achieve green communications objectives[14]
by reducing the amount of energy required to process EO data on Earth, while
guaranteeing that all acquired images are processed. In fact, even though energy
is a valuable resource on satellites, the on-board energy is pre-allocated due to
the presence of solar panels and batteries and it is always generated and available,
regardless on its actual need and use in time. Instead, energy consumption on the
ground is strictly dependent on the demand, and it increases with the increase of
EO data to be processed by ground stations. Furthermore, while energy harvested
on satellites is completely renewable, this is not always the case on ground. In
this chapter, I first define and solve an optimization problem to jointly allocate
resources and place processing within a constellation-wide network to leverage in-
orbit processing as much as possible. This is very different from approaches followed
in literature, focusing only on a minimization of the energy use on satellites [11] or
on the optimization of battery use to extend satellite operative life [12]. Instead,
the proposed optimization aims at reducing the amount of data to be processed
on ground, thus, to maximize the energy saving on ground stations. Given the
NP-hardness of the proposed optimization problem, I also propose the Ground
Station Energy Saving Heuristic (GSESH) algorithm to evaluate the energy saving
we would obtain on ground stations in a real orbital scenario. However, since these
strategies may lead to a decrease of satellite operative life because of an increased
use of batteries, I propose a more complex optimization problem allowing for jointly
maximizing on-ground energy saving and optimizing on-board battery DoD to
increase the satellite operative life.

Results presented in this chapter have been published in [100, 101].

3.1 Scenario Overview and Problem Outline
In this chapter, the same reference scenario described in Section 2.1 is considered.
As it has been previously discussed, by designing appropriate strategies to decide
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Figure 3.1. Example of different use of the energy available on board of a satellite. In case
a), no processing happens in orbit, while, in case b), the satellite processes the acquired
image. In both cases, when reaching position C, the satellite has fully charged batteries
because it is sunlit.

how each satellite has to deal with each image at every moment (i.e., to determine
whether it shall process it, store it, or transmit it), it is possible to optimize desired
metrics. In this chapter, I focus on proposing resource allocation strategies which
leverage the amount of energy available on satellites to process images directly
in-orbit, allowing for saving energy on ground stations, due to a reduced amount of
data processing to be done on Earth. This is made possible by the fact that energy
on-board of satellites is pre-allocated by endowing them with a certain dimension of
solar panels and batteries, and there may be time instants during which an amount
of available, but unused energy can be leveraged to process data on-board. In
particular, I propose a centralized strategy, justified by the fact that both ISLs
availability and satellite overflight time over region of interests are known in advance
by means of orbital mechanics, making it possible to define routing and processing
placement by running the defined strategies on Earth and then loading the decisions
on satellites. The proposed approach is very different from other works which instead
provide for minimizing energy usage on satellites, since it is a valuable resource given
the limitations in dimension and mass of solar panels and batteries. However, in
my opinion such a minimization does not allow for an efficient use of the energy
available on board. In fact, let me discuss the example in Fig.3.1. In particular,
in both cases a) and b) there is a satellite first acquiring an image of a predefined
region, then moving on its orbit until reaching a position B where satellite is sunlit
and the battery can be charged by means of solar panels, and finally reaching a
position C where the acquired information can be downlinked to the ground. In case
a), no processing happens in-orbit. In particular, the satellite acquires the image,
and when it reaches position B it has half battery charge. However, from B to C the
satellite is sunlit, and during the movement from B to C, battery gets fully charged.
Finally, when the satellite reaches the position C, the acquired image is downlinked
and processed by the ground station. Instead, in case b), the satellite processes the
acquired image when it reaches position B. For this reason, on board battery has a
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smaller charge with respect to position B in the former case. However, in the path
from B to C, the satellite receives enough solar radiation to charge the battery even
though the initial energy is lower. Thus, battery is again fully charged when the
satellite sends the already processed image to the GS in position C, and at the same
time energy on ground is saved. From this example, it follows that, even though
on board energy is a limited and valuable resource, it is renewed whenever the
satellite is sunlit, and for this reason it is not important to minimize its usage, but to
optimize it in such a way that by leveraging, when possible, the energy available on
satellites, the consumption on ground can be reduced. Obviously, the usage of extra
energy available on board of satellites may lead to an increased number of battery
charge-discharge cycles, and this may reduce the operative life of each satellite. For
this reason, in this chapter I first study the energy saving which can be obtained
by leveraging OEC and satellite networks without considering the optimization of
operative life, in order to identify how the processing capacity on-board of satellites
and the amount of available energy influence the on-ground energy saving. Second,
I propose a more complex optimization problem aiming to maximize the on-ground
energy saving, while also optimizing the DoD of on-board batteries.

3.2 Network and Image Processing Service Representa-
tion

Given the similarity of the reference scenario and problem statement discussed
in Section 3.1 with the ones introduced in Section 2.1, it follows that the service
modelling is the same as described in Section 2.2. Instead, I propose a different
formal network modelling to obtain a more elegant formulation of the optimization
problem and heuristic discussed in the following sections. Network and service model
sets and parameters introduced in this Section are summarized in Tab.3.1.

Let me thus introduce the network model leveraged in this chapter. As it has been
previously discussed, since Earth and satellite motions are periodic, a cyclostationary
behaviour for both topology and service generation can be assumed. Again, by
calling Tc the repetition period of the satellites and Earth relative motion, this Tc

period is considered to be discretized in T time cycles, each having τ duration. This
leads to the definition of a graph G = (N , E), where N represents the node set, while
E is the edge set. In particular, to deal with the dynamical behaviour of the topology,
nodes in the graph are not simply a representation of a physical node (i.e., a satellite
or ground station), but of a physical node at a certain time cycle which only deals
with services in a specific processing state (i.e., either unprocessed or processed).
Let me clarify this assumption. The physical nodes composing the topology are
satellites and ground stations. As far as ground stations are concerned, I still assume
that all the ground stations are the same and thus there is no preference on which
ground station images shall reach, and for this reason I only consider a Virtual
Ground Station (vGS) node in the topology, representing any of the ground stations
enabled to receive data from the constellation. Thus, the satellites and the vGS
lead to a topology having NS physical nodes. This translates into a graph whose
node nt,p

i ∈ N , with i ∈ [0, . . . , NS − 1], t ∈ [0, . . . , T − 1], p ∈ [0, 1], represents not
simply the i-th physical node, but the i-th physical node dealing only with services
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Table 3.1. Network and service model sets and parameter

Set or parameter Description
G = (N , E) graph made by node set N and edge set E
Tc cyclostationary period for both topology and service generation
τ discrete time cycle duration
T number of time cycle of duration τ in a cyclostationary period
NS number of physical nodes (either satellites or vGS)
i index in [0, . . . , NS − 1] representing the physical node
t index in [0, . . . , T − 1] representing the time cycle
p index in {0, 1} representing the processing state (0 standing for

unprocessed, 1 processed)
nt,p

i node in the set N
et

{is,ps},{id,pd} edge in E between nodes nt,ps
is

and nt,ps
is

Γi processing capacity associated to the i-th physical node (in
Mbps)

γid,pd
is,ps

energy cost to be paid for a Mb of data crossing et
{is,ps},{id,pd}

edge (in J/Mb)
vGS Virtual Ground Station represented by the i = NS − 1 physical

node
Ct

{is,ps},{id,pd} capacity associated to the et
{is,ps},{id,pd} edge

Mi data storage capacity associated to the i-th physical node (in
Mb)

εi energy available at the beginning of each time cycle on the i-th
physical node (in J)

G antenna gain
νtx carrier frequency
P transmission power
Ris,id

transmission data rate between is-th and id-th physical nodes
B transmission bandwidth
Ts system noise temperature
τ̂ t

is,id
actual visibility time between is-th and id-th physical nodes
during t-th time cycle

k processor effective capacitance coefficient
ncyc number of CPU cycles to process 1 bit
νi clock frequency of the processor on the i-th physical node
Σ set of all generated services
fh service in Σ, with h ∈ [0, . . . , NT − 1]
NT total number of generated services
fh

s fh service source satellite index
fh

0 fh service pre-processing size
fh

1 fh service post-processing size
fh

t fh service generation time cycle
fh

d number of time cycles after generation within which fh service
shall be delivered to the vGS
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in the p-th processing state (with 0 standing for unprocessed, 1 for processed) during
the t-th time cycle. This will allow to define optimal strategies able to consider the
dynamicity of the orbital environment, and by dividing nodes handling unprocessed
and processed services, a straightforward optimization problem formulation can be
obtained, without having to consider virtual links to deal with the impact of data
reduction due to processing on network resources. I arbitrarily assume that the vGS
is represented by the i-th node when i = NS − 1. Furthermore, each physical i-th
node is endowed with a maximum energy εi at the beginning of each time cycle
(expressed in J).

As far as edges are concerned, et
{is,ps},{id,pd} ∈ E , with is, id ∈ [0, . . . , NS−1], t ∈

[0, . . . , T − 1], ps, pd ∈ [0, 1] represents a link between two nodes. Each edge is
associated with a capacity Ct

{is,ps},{id,pd} expressed in Mb. In particular, the following
link types can be distinguished:

• if is ≠ id, ps = pd = p, the edge represents a transmission link, associated
with a capacity representing the maximum amount of information that can be
transferred during the actual visibility time between the two physical nodes in
the t-th time cycle. In particular, assuming an Additive White Gaussian Noise
channel, the actual visibility time τ̂ t

is,id
between two satellite nodes is and id,

with is, id ∈ [0, . . . , NS − 2], during the t-th time cycle is given by the time
interval of the considered time cycle during which the distance dt

is,id
between

the nodes satisfies the following relationship:

dt
is,id
≤ G c

4πνtx

√√√√√ P(
2

Ris,id
B − 1

)
kBTsB

(3.1)

where G is the antenna gain, c is the speed of light, νtx is the carrier frequency,
P is the transmission power, Ris,id

is the transmission data rate between
the nodes, B is the bandwidth, kB is the Boltzmann’s constant, Ts is the
system noise temperature. Instead, in case the destination node is the vGS,
i.e., id = NS − 1, I assume the actual visibility time τ̂ t

is,NS−1 to be the time
interval during the t-th time cycle during which the communication between
the satellite and a ground station is possible with a minimum elevation angle
Elmin. Please notice that, during each time cycle, the vGS node will have an
edge with each node related to satellite being able to communicate with any
ground station during that time cycle. After having determined the actual
visibility time, the capacity is given by:

Ct
{is,p},{id,p} = Ris,id

· τ̂ t
is,id

(3.2)

Thus, the capacity of the transmission link between two different physical
nodes in a certain time cycle represents the maximum amount of data in Mb
that can be transferred from the sending node to the receiving one within a
time cycle. Please notice that, even though the capacity of a transmission link
is generally expressed in Mbps, in this modelling I prefer indicating it in Mb,
since this allows for an elegant formulation of the optimization problem which
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will be introduced further on. Finally, the use of this link is associated with
an energy cost γid,p

is,p (in J/Mb) representing the amount of energy spent in
transmitting 1 Mb of data, given by:

γid,p
is,p = P

Ris,id

(3.3)

In other words, when a generic amount x (in Mb) of data is transferred from
the is-th physical node to the id-th one, the former spends an amount of energy
εtx given by (in J):

εtx = x · γid,pd
is,ps

(3.4)
while I assume that no energy consumption happens on the receiving node.
For this reason, since in the considered model vGS never sends data to the
satellites, but it only receives it, it is straightforward that data transmission
will not contribute to energy consumption on ground.

• if is = id = i, ps = pd = p, the edge represents the storage of the information on
a node during the full t-th time cycle (i.e., a memory link), and it is associated
with a capacity:

Ct
{i,p},{i,p} = Mi (3.5)

representing the memory amount available on the i-th node; I assume that no
energy is needed to store data, i.e., the use of this link is associated with an
energy cost:

γi,p
i,p = 0 (3.6)

This holds for any node. Thus, it follows that storage in memory on ground
will not contribute to the energy consumption of ground stations.

• if is = id = i, ps = 0, p1 = 1, the edge represents the service processing
accomplished by the node during the t-th time cycle (i.e., a processing link),
which is associated with a capacity:

Ct
{i,0},{i,1} = Γi · τ (3.7)

representing the amount of data in Mb which can be processed in a time cycle,
since Γi represents the processing capacity of the node in Mbps. Again, the
processing capacity is expressed in Mb instead of Mbps to obtain an elegant
formalization of the optimization problem presented further on. The use of
this link is associated with a unit energy cost (in J/Mb):

γi,1
i,0 = k · ncyc · ν2

i (3.8)

representing the amount of energy to be spent to process 1 Mb of data, which
depends on the processor effective capacitance coefficient (k), on the number of
CPU cycles to process 1 bit (ncyc) and on the clock frequency of the processor
on the i-th physical node (νi)[11]. It follows that the amount of energy that a
i-th node spends to process an amount x in Mb of data is given by (in J):

εproc = x · γi,1
i,0 (3.9)

Since any node, either satellite or vGS, can process data, this amount of energy
contributes to the energy consumption of ground stations.
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• all combinations of is, id, ps and pd not mentioned before represent edges not
included in the graph, since they have no logical meaning. In the optimization
problem formulation, they will be considered to have no associated capacity
and no energy cost.

To summarize, the proposed modelling provides that each satellite consumes
energy when it transmits or processes data. Instead, the only contribution to energy
consumption on ground is given by the processing happening on ground stations, i.e.,
by the energy spent to cross processing links associated to the vGS in the proposed
model.

3.3 Strategies without limitations on satellite battery
Depth-of-Discharge

In this section, I propose and evaluate strategies to maximize the energy saving on
ground stations related to EO image processing. In the following proposal, I will
not consider any optimization of satellite operative life, being strictly related to the
DoD of on-board batteries[12]. In particular, there will be no distinction on the
on-board energy source (i.e., solar panels or batteries) during each time cycle. This
assumption can be justified by the fact that when a satellite is in eclipse, batteries
should be dimensioned in such a way that, at any time, they are able to provide at
least the same energy generated by solar panels when the satellite is sunlit.

3.3.1 Optimal Strategy

The network and service modeling presented in Section 3.2 leads to a straightforward
formalization of the optimal resource allocation problem to minimize the energy
consumption on ground due to data processing (i.e., to maximize the on-ground
energy saving), under energy, bandwidth, storage and processing capacity constraints.
In particular, since each node in the graph on which the problem is defined represents
a physical node at a certain time, the proposed formulation allows to consider the
dynamic environment. Furthermore, since in my modelling I distinguished nodes
dealing with unprocessed and processed tasks, it is possible to obtain an Integer
Linear Programming (ILP) formulation able to take into account the data reduction
because of processing without having to introduce virtual links and additional
constraints which would increase the problem complexity.

First, I can introduce the binary optimization variables as defined in (3.10).

yt,h
{is,ps},{id,pd} =


1 if h-th task occupies the link from node (is, ps)

to node (id, pd) during t-th time cycle
0 otherwise

(3.10)

It can be noticed that the joint routing and processing placement problem can
be defined as finding the path for each service globally optimizing the desired metric
on the graph previously introduced, since in that formulation links can be related
to either transmission/storage or processing. In particular, recalling that the only
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contribution to energy consumption on ground is given by data processing, I can
express the ground station energy consumption as follows:

εtot
GS =

NT −1∑
h=0

T −1∑
t=0

yt,h
{NS−1,0},{NS−1,1} fh

0 γNS−1,1
NS−1,0 (3.11)

For this reason, I can introduce the objective function as follows, since maxi-
mizing the energy saving on ground stations is equivalent to minimize the energy
consumption on ground:

min εtot
GS (3.12)

The proposed graph also simplifies the formalization of the constraints, which
can be written as reported in (3.13)-(3.17). In their definition, I leveraged the
Kronecker’s introduced in (2.17).

NT −1∑
h=0

(1− δps,pd
) yt,h

{is,ps},{id,pd} fh
ps

+ δps,pd

1∑
p=0

yt,h
{is,p},{id,p} fh

ps

 ≤ Ct
{is,ps},{id,pd},

∀is, id ∈ [0, . . . , NS − 1], ∀ps, pd ∈ {0, 1}, ∀t ∈ [0, . . . , T − 1]
(3.13)

NT −1∑
h=0

NS−1∑
id=0

1∑
ps=0

1∑
pd=0

yt,h
{is,ps},{id,pd} fh

ps
γid,pd

is,ps
≤ εt

is
,

∀is ∈ [0, . . . , NS − 1], ∀t ∈ [0, . . . , T − 1]

(3.14)

(1− δfh
t ,fh

d
) · yfh

t ,h

{fh
s ,0},{fh

s ,0} + y
fh

t ,h

{fh
s ,0},{fh

s ,1} +
NS−1∑
id=0

id ̸=fh
s

y
fh

t ,h

{fh
s ,0},{id,0} = 1,

∀h ∈ [0, . . . , NT − 1]

(3.15)

(1− δi,fh
s

δt,fh
t

δp,0 − δi,NS−1δt,fh
t +fh

d
δp,1){

[
(1− δt,fh

t
) · y(t−1) mod T,h

{i,p},{i,p} +

δp,1 · yt mod T,h
{i,0},{i,1} +

NS−1∑
a=0
a̸=i

yt mod T,h
{a,p},{i,p}

]
−
[
(1− δt,fh

t +fh
d

) · yt mod T,h
{i,p},{i,p}+

δp,0 · yt mod T,h
{i,0},{i,1} +

NS−1∑
b=0
b ̸=i

yt mod T,h
{i,p},{b,p}

]
} = 0

∀i ∈ [0, . . . , NS − 1], ∀h ∈ [0, . . . , NT − 1],
∀t ∈ [ft, . . . , fh

t + fh
d ], ∀p ∈ {0, 1}

(3.16)
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(1− δfh
d

,0) · y(fh
t +fh

d −1) mod T,h

{NS−1,1},{NS−1,1} + y
(fh

t +fh
d ) mod T,h

{NS−1,0},{NS−1,1} +
NS−2∑
is=0

y
(fh

t +fh
d ) mod T,h

{is,1},{NS−1,1} = 1,

∀h ∈ [0, . . . , NT − 1]
(3.17)

In particular, constraint (3.13) ensures that the resource allocation does not
exceed the capacity of each link (notice that thanks to the proposed modeling, this
expression is valid for all transmission, storage and processing links). Constraint
(3.14) limits the energy consumption during each time cycle on each node as the
maximum energy amount available on the node at the beginning of the time cycle.
Constraints (3.15)-(3.17) are related to flow conservations. Specifically, following the
characteristics of the considered EO applications, constraint (3.15) sets the source
node for each service as the one related to the satellite which acquired the image,
dealing with an unprocessed data, at the service generation cycle, and ensures that
node has only an outgoing flow for each service. Specularly, constraint (3.17) sets
the destination node for each service as the vGS dealing with the processed data at
service delivery deadline time cycle, and ensures that node has only an ingoing flow
for each service. Please notice that constraint (3.17) also ensures that all services
are processed and do not prevent a service to reach the ground station before the
service delivery deadline. Finally, constraint (3.16) simply imposes flow conservation
on intermediate nodes on the path each service crosses from source to destination.

As also discussed in Section 2.3, since both topology and service generation are
cyclostationary, it is just necessary to define and solve the problem in a cyclostationary
period, since what happens in that period repeats all mission long. For this reason,
constraints (3.13)-(3.14) shall be written only for the time cycles composing a
cyclostationary period, while in constraints (3.15)-(3.17), since a service delivery
deadline cycle could exceed a the end of the current cyclostationary period, I
leverage modulo operation to bring back all that would happen after the end of the
cyclostationary period to its beginning, since cyclostationary periods repeat always
the same one after another.

Finally, I discuss the complexity of the proposed formulation. In particular, it
can be noticed that it is analogous to the decision multi-commodity flow problem,
to which an additional constraint related to energy is added. For this reason, since
the decision multi-commodity flow problem is NP-complete, the same applies to this
problem.

3.3.2 Heuristic-based Strategy

Since the presented optimal strategy is NP-complete, in order to evaluate the benefits
of the proposed allocation strategy in a complex scenario like a real orbital case, it
is necessary to introduce a heuristic mimicking the optimization problem solution. I
propose a heuristic leveraging the Dijkstra’s algorithm, as detailed in Alg.3. This
algorithm applies on a new graph G̃ =

(
Ñ , Ẽ

)
being a modified version of the graph

presented in Section 3.2, where instead of distinguishing nodes dealing with only two
processing state, a third processing state is also considered, the "in-processing" state.
This is due to the fact that the introduction of the "in-processing" layer allows to
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take into account that a node processing a task can transmit it in the same time
cycle during which processing happens only if the energy remaining after processing
is enough to accomplish the transmission of a processed task. In fact, while this
condition was verified by means of appropriate constraints in the optimization
problem definition, in the case of the proposed shortest-path based heuristic, it is
necessary to input the algorithm with a graph containing only admissible paths.
For this reason, while defining the heuristic, I consider p ∈ {0, 1, 2}, where p = 0
represent a node dealing with unprocessed tasks, p = 1 a node dealing with in-
processing tasks and p = 2 a node handling processed tasks. In particular, while
transmission and storage links remain the same as defined in Section 3.2, processing
links are distinguished as follows:

• if is = id = i, ps = 0, p1 = 1, the edge represents the service processing
accomplished by the i-th physical node during the t-th time cycle (i.e., a
processing link), with associated capacity and energy cost as discussed in the
processing link definition given in Section 3.2;

• if is = id = i, ps = 1, p1 = 2, the edge represents a fictitious link to bridge
nodes in the processing state to nodes in the processed state, associated with
an infinite capacity and no energy cost.

Algorithm 3: Ground Station Energy Saving Heuristic (GSESH)
Input: Σ, Ñ , Ẽ , β

1 Initialize: Λt
{is,ps},{id,pd} ← 0, Ψt

is
← 0,

∀is, id ∈ [0, . . . , NS − 1], ps, pd ∈ [0, 2], t ∈ [0, . . . , T − 1];
2 Initialize: Π← ∅;
2 for fh ∈ Σ do
3 N̂ , Ê ← Extract Subgraph(fh, Λl, Ñ , Ẽ , β);
4 Ĝ ← (N̂ , Ê);
5 Π̂← Dijkstra

(
Ĝ, n

fh
t ,0

fh
s

, n
(fh

t +fh
d ) mod T,2

NS−1

)
;

6 if Π̂ ̸= ∅ then
7 Π← Π ∪ Π̂;
8 for {̂is, p̂s, îd, p̂d, t̂} ∈ Π̂ do
9 Calculate Λt̂

{îs,p̂s},{îd,p̂d} by means of eq.3.18;
10 Calculate Ψt̂

îs
by means of eq.3.19;

11 end
12 for t ∈ [fh

t , . . . , fh
t + fh

d ] do
13 βt mod T

fh
s

← βt mod T
fh

s
− {fh};

14 end
15 else
16 Ω← Ω ∪ {fh};
17 end
18 end

Output: Π, Ω, Λ

Let me comment the main steps of the Ground Station Energy Saving Heuristic
(GSESH) presented in Alg.3. After having initialized the matrices tracking the link
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occupancy and node energy usage in time (Line 1), the following steps are applied for
each service to be allocated. First, a subgraph containing only nodes related to time
cycles between the service generation and delivery deadline cycles and only edges
with enough capacity to host the unprocessed service and related to nodes with
enough energy to accomplish its transmission and/or processing is extracted (Line 3).
Subgraph extraction is obtained by applying Alg.4, which will be discussed in detail
further on. The Dijkstra’s algorithm is then applied on the extracted subgraph,
in order to determine the shortest path from the node associated to the source
satellite in the unprocessed state during the service generation cycle to the node
representing the ground station in the processed state at service delivery deadline
cycle (Line 5). While applying the Dijkstra’s algorithm, distances are related to
energy consumption due to crossing edges between couples of nodes, but since the
goal is to minimize the energy consumption on ground stations, only energy to be
paid to process data on ground stations is considered while calculating path distances,
zeroing any contribution given by crossing a link different from a processing link
of the vGS node. Then, if a path has been found, the path is added to the list of
paths (Line 7), thus, in Lines 8-11, first the matrix tracking the link occupancy is
updated to consider the hosting of the current service on the crossed links by means
of the following expression:

Λt̂
{̂is,p̂s},{̂id,p̂d} = Λt̂

{̂is,p̂s},{̂id,p̂d} + fh
⌈p̂s/2⌉ (3.18)

second, similarly, the matrix tracking the node energy usage in time is updated
to consider the hosting of the current service on nodes crossed by the service with
the following expression:

Ψt̂
îs

= Ψt̂
îs

+ γ îd,p̂d

îs,p̂s
· fh

⌈ps/2⌉ (3.19)

and, finally, the current service is removed from the buffer tracking the services
still to be handled by the algorithm (Lines 12-14); otherwise, the current service
is included into the set of rejected services, i.e., services which cannot be handled
because of lack of resources (Lines 15-17).

As far as the Extract Subgraph algorithm illustrated in Alg.4 is concerned, it
first allows for extracting from the graph only the nodes which can potentially be
traversed by the current service, i.e., all nodes between the service generation time
cycle and the service delivery deadline one (Lines 8-9). Furthermore, this algorithm
also allows the following Dijkstra’s algorithm application dealing with the fact that
links have a finite capacity and nodes have a finite amount of energy. In particular,
in Lines 7-15, the first condition to be verified to include an edge between a couple
of nodes in the subgraph is that the edge has enough capacity to handle the current
service, by checking the following condition:

Λt̂
{is,p},{id,p} + fh

⌈p/2⌉ ≤ C t̂
{is,p},{id,p} (3.20)

Then, a transmission edge between two nodes in the unprocessed (processed)
state is included in the subgraph only if the transmitting node has enough energy
to transmit the unprocessed (processed) service plus a margin. This is checked by
means of the following expression:
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Algorithm 4: Extract Subgraph
Input: fh, Λl, N , E , β

1 Initialize: N̂ ← ∅, Êts ← ∅, Êpf ← ∅;
2 for is ∈ [0, . . . , NS − 2] do
3 Initialize: ϕ← 1;
4 for t ∈ [fh

t , . . . , fh
t + fh

d ] do
5 t̂← t mod T ;
6 Calculate µt̂

is
by means of eq.3.25;

7 for p ∈ [0, . . . , 2] do
8 N̂ ← N̂ ∪ {nt̂,p

is
| nt̂,p

is
∈ N};

9 N̂ ← N̂ ∪ {nt̂,p
NS−1 | nt̂,p

NS−1 ∈ N};
10 for id ∈ [0, . . . , NS − 1] do
11 if conditions in 3.20 & 3.21 are verified then
12 Êts ← Êts ∪ {et̂

{is,p},{id,p} | et̂
{is,p},{id,p} ∈ E}

13 end
14 end
15 end
16 if ϕ = 1 then
17 if conditions in 3.22 & 3.23 are verified then
18 Êpf ← Êpf ∪ {et̂

{is,0},{is,1} | et̂
{is,0},{is,1} ∈ E};

19 if condition in 3.24 is verified then
20 Êpf ← Êpf ∪ {et̂

{is,1},{is,2} | et̂
{is,1},{is,2} ∈ E}

21 end
22 ϕ← 0
23 end
24 else
25 Êpf ← Êpf ∪ {et̂

{is,1},{is,2} | et̂
{is,1},{is,2} ∈ E}

26 end
27 Êpf ← Êpf ∪ {et̂

{NS−1,0},{NS−1,1} | et̂
{NS−1,0},{NS−1,1} ∈ E};

28 Êpf ← Êpf ∪ {et̂
{NS−1,1},{NS−1,2} | et̂

{NS−1,1},{NS−1,2} ∈ E};
29 end
30 end

Ψt̂
is

+ fh
⌈p/2⌉ · γ

id,p
is,p + µt̂

is
· (1− δid,NS−1) ≤ εis (3.21)

Please notice that, in case of memory links, since I assume no energy is required
to store data, this energy condition is automatically verified. Instead, a processing
edge is included in the subgraph only if the node has enough energy to process the
service plus a margin, and I assume that processing on a node can happen only
in the first cycle during which it has enough capacity and energy to accomplish it
(Lines 16-18).

In particular, the availability of processing capacity is checked by means of the
following expression:

Λt̂
{is,0},{is,1} + fh

0 ≤ C t̂
{is,0},{is,1} (3.22)
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while if the following expression is verified, there is enough energy to accomplish
service processing:

Ψt̂
is

+ fh
0 · γ

is,1
is,0 + µt̂

is
≤ εis (3.23)

Finally, a fictitious edge from a node in the processing state to the processed one
is included whenever the node in the processing state has not an incoming processing
edge (i.e., it is reachable only through a storage edge in the processing state), or,
in case there is an incoming processing edge, when the node has enough energy to
process the service and then transmit it in its processed form (i.e., with a reduced
size), plus a margin (Lines 19-21), with this condition being checked by means of
the following expression:

Ψt̂
is

+ fh
0 · γ

is,1
is,0 + fh

1 ·
(

max
id∈[0,NS−1]

γid,2
is,2

)
+ µt̂

is
≤ εis (3.24)

Note that the introduction of the in-processing layer and fictitious links with
respect to the model introduced in Section 3.2 is necessary to make the algorithm
consider that, if processing happens on a node in a certain time cycle, the node
may run out of energy in that time cycle, thus, it cannot transmit the service after
having processed it. Instead, the introduction of a margin in the calculation of
energy availability is necessary because the proposed heuristic is greedy: it tries to
optimize the on-ground energy consumption for the current task without taking into
account that the current resource allocation has an impact on the resources available
for the other tasks still to be handled, leading to a non-optimal solution or even
to the impossibility to allocate resources for all the services. For this reason, while
selecting a link in the subgraph, it is only added if the energy the current service
requires to cross it is small enough to allow the satellite to transmit all its remaining
tasks to the ground station. In particular, the margin calculation is strictly related
to the buffer tracking the services still to be handled by the algorithm in a certain
time period and having a specific satellite as source. This buffer can be imagined
as a list, whose entry β t̂

is
∈ β, with is ∈ [0, . . . , NS − 2], t̂ ∈ [0, . . . , T − 1], is a set

containing services fh ∈ Σ, with h ∈ [0, . . . , NT − 1] generated by the is-th satellite
and such that fh

t ≤ t̂ ≤ fh
t + fh

d . Consequently, the energy margin to be left on the
is-th satellite during the t̂-th time cycle is given by the sum of the preprocessing
size and postprocessing size of all services φ ∈ β t̂

is
, multiplied by the maximum unit

transmission energy cost, following the expression:

µt̂
is

=
∑

φ∈βt
is

(φ0 + φ1) · max
id∈[0,NS−1]

γid,2
is,2 (3.25)

It is important to underline that the proposed margin calculation is empirical,
and its optimization could open interesting research prospective which are out of
the scope of this chapter.

Finally, the complexity of Alg.4 can be easily computed by considering that there
are three nested loops repeating at most for NS − 2, T and 2, respectively, leading
to a complexity given by O

(
N2

ST
)
. Instead, in order to calculate the complexity of

Alg.3, I recall that the most efficient complexity of the Dijkstra’s algorithm is given
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by O (|N | log2 (|N |) + |E|). In the presented scenario, the number of nodes is given
by 3NST , while in calculating the maximum number of edges, it is necessary to
take into account that the maximum number of transmission links is reached when
each couple of satellites can communicate during each time cycle (i.e., there are at
most NST (NS − 1)/2 ∼ N2

ST links), the maximum number of memory links is given
by NS(T − 1), the maximum number of processing links is given by NS , while the
maximum number of fictitious links is given by NST . It follows that |E| ∼ N2

ST .
Finally, the two loops in Lines 8-11 repeats for the maximum path length determined
by Dijkstra’s algorithm and the maximum deadline, which can be assumed to
be equal to T . However, these are lower order contributes. For this reason, the
complexity of Alg.3 can be easily calculated to be O (NT NST (NS + log2 (NST ))),
since for NT times Alg.4 is applied, followed by a Dijkstra’s algorithm execution.

3.3.3 Numerical results

In this section, I numerically evaluate how a strategy to jointly place processing and
route information within a satellite constellation dedicated to Earth Observation
can lower the energy consumption on ground station due to data processing. The
proposed performance investigation is related to the evaluation of the Ground
Station Energy Saving, defined as the percentage difference between the energy
consumption on ground stations when all services are processed on ground and the
energy consumption on ground stations when some services are processed on-board
of satellites. The amount of services processed in orbit depends on the resource
allocation and processing placement strategy applied. In particular, I first evaluate
the energy saving obtained by means of an optimal strategy, and I compare it to the
one obtained by leveraging the GSESH algorithm. In fact, it would be impractical
to solve the optimization problem in a real orbital scenario, thus, I first validate the
GSESH algorithm with respect to the optimal solution in a simpler, but not trivial,
scenario, in such a way that the heuristic can be then leveraged to evaluate the
effectiveness of the proposed solution in a real orbital case. In this latter case study,
performance are compared to two benchmarks[11], the first providing for processing
always happening on ground (Always Ground solution, AG), the second providing
for processing to happen either on the source satellite or on ground (Always First
or Ground solution, FoG). In particular, in the FoG solution all satellites have
processing capacity on-board, but they can leverage it only to process images they
acquired when flying over a region of interest. In other words, satellites cannot
offload processing of images they acquired to another satellite, and if they have
not enough resources to process data, they shall offload it to the ground station.
In my solution, instead, a service processing can be done by any satellite of the
constellation, even different from the one originating it, or by a ground station (i.e.,
if a satellite does not have enough resources to accomplish the task processing, it
can offload it to another satellite having more resources, or, in the worst case, to the
ground station).

The following parameters will be the same for all the analysis. The time cycle
duration will be set to τ = 10 min, as a compromise value between the granularity
of the dynamic topology representation and the complexity of running the algorithm.
In concordance with what happens on Sentinel-2, I consider all services having
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preprocessing size[102]:

fh
0 = f̄0 = 160 Mb, ∀h ∈ [0, . . . , NT − 1] (3.26)

while I set postprocessing size:

fh
1 = f̄1 = 16Mb, ∀h ∈ [0, . . . , NT − 1] (3.27)

The number of CPU cycles to process a service will be considered to be ncyc = 737.5
cycles/bit, regardless of the service and processing node[11]. On ground stations,
since I assume that datacenters have enough processing capacity to process EO
data, I will consider unlimited processing capacity, thanks to an unlimited number
of CPUs, each having a clock frequency νGS = 4.5 GHz (a common value for CPUs
operating in ground computers), while I first assume that only one CPU is available
on board of satellites (due to limitations on available space on-board), each with a
clock frequency:

νSat = α · ν̂Sat (3.28)

where:
ν̂Sat = f̄0 · ncyc/τ (3.29)

stands for the frequency needed on board of satellites to process a task during a
time cycle. Thus, by setting α, the maximum number of services which can be
completely processed by a satellite in a time cycle is set. In particular, the α
parameter influences both the processing capacity available on satellites:

ΓSat = νSat/ncyc = α · f̄0/τ (3.30)

and the unit processing energy cost on satellites:

γi
p = k · ncyc · ν2

i = k · n3
cyc · (f̄0/τ)2 · α2 (3.31)

where k represents the processor effective capacitance coefficient, and it will be
set equal to 10−27[11]. Please notice that, given this energy consumption model,
by increasing α, the number of services which can be processed in a time cycle
linearly increases, but at the same time the energy consumption to process each
service increases quadratically. While I assume that ground stations have unlimited
available energy, satellites nodes have a limited amount of energy available on-board
to be consumed for OEC-related operations (i.e., processing and transmission of
data). In particular, I assume that satellites have an amount of energy:

εi = εSat = ∇ · P̄ · τ, ∀i ∈ [0, . . . , NS − 2] (3.32)

available at the beginning of each time cycle, whose value is dependent on the ∇
parameter indicating the percentage of the maximum power P̄ available on board of
a Sentinel-2 satellite[102]. This assumption is justified by the fact that the power
available on board of satellites is always higher than the amount needed by the
satellite (both for bus devices and payload instruments), then an amount of this
extra power (which is always generated, regardless of its actual consumption) can
be used for OEC operations. For example, in the case of Sentinel-2 satellites, at the
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end of life each satellite has a power available equal to P̄ = 1700 W, but only 1250
W are actually consumed: thus, up to around 25% of available power can be still
used to support OEC. Moving to transmission links, following [97], I will consider a
transmission power Pt = 10 W, antenna gain G = 27 dBi, carrier frequency ν = 26
GHz, system noise temperature Ts = 290 K. I also consider a data rate of RISL = 500
Mbps for ISLs and Rdl = 520 Mbps in case of downlink to the ground station, as
in the case of Sentinel-2 satellites[102]. Finally, memory on each satellite is limited
to Mi = 100 Gb, ∀i ∈ [0, . . . , NS − 2] to support the worst case load of data in the
service generation scenario described further on, while I will consider ground stations
having unlimited storage capacity, since I assume to have datacenters with enough
capacity to handle all the data amount produced by the constellation. Energy cost
to store data in memory will be considered equal to zero.

Topology and services

I consider the same satellite constellation introduced in Subsection 2.5.2, made of 24
satellites distributed over 6 circular orbits with altitude 712.84 km and inclination
98.24 deg. I also consider the same three ground stations described in Subsection
2.5.2. The propagation of the position of satellites and ground stations is obtained by
using a modified version of the Python tool presented in Subsection 2.5.2, allowing for
the translation of the dynamical topology into the graph representation introduced
in Section 3.2. In particular, a topology having NS = 25 physical nodes (24 satellites
and 1 virtual ground station) and T = 287 time cycles is obtained. However, although
this complete graph is considered as real orbital scenario evaluated by means of the
GSESH algorithm, because of the NP-completeness of the proposed optimization
problem, its solution is restricted on a case providing for T = 4 time cycles.

Service generation is obtained by using the same Python tool presented in
Subsection 2.5.2. In particular, each satellite generates a task for each second of
flying over the region of interest. Again, while comparing the optimal solution to
the GSESH algorithm one, I will consider that services are generated when satellites
flies over Italy during four time cycles, since this leads to a total number of 724
services, thus, to a simplified, yet not trivial, scenario. Instead, in the real orbital
scenario, I consider satellites to generate services while flying over Australia and
Mexico during an entire repeat cycle, leading to a total of 111483 services.

Results

The first analysis I propose is a comparison between the energy saving on ground
stations obtained by solving the optimization problem and by applying the GSESH
algorithm. Results are shown in Fig.3.2 and 3.3 for ∇ = 0.1% (i.e., εSat/τ = 1.7 W,
or, equivalently, εSat = 1020 J) and ∇ = 0.2% (i.e., εSat/τ = 3.4 W, or, equivalently,
εSat = 2040 J), respectively, and α ∈ [0, . . . , 16]. The available energy values have
been chosen to evaluate the behaviour of the optimal solution when a small amount
of energy is available on-board with respect to the number of services to be processed.
In this first analysis, the number of services is small with respect to a real orbital
case, but it is high enough to consider a simple, yet not trivial scenario. It can be
noticed that the energy saving curve obtained by applying the proposed heuristic
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Figure 3.2. Ground Station Energy Saving obtained by solving the optimization problem
and by applying the proposed GSESH algorithm, varying the number α of services
processable on a satellite in a time cycle and fixing ∇ = 0.1% to limit the available
energy for OEC operations to the 0.1% of the energy available on Sentinel-2 (1020 J).

follows the same trend of the optimal one, differing from the optimal values not
more than 7.10% when ∇ = 0.1%. However, this difference between the two curves
even drop to zero with a small increase in the amount of energy available on board,
i.e., when ∇ = 0.2%. It is interesting to comment the particular behaviour both
the curves follow. First, it can be noticed that there is an interval of α values
where the energy saving percentage increases, until it reaches a maximum and
then it starts decreasing, finally reaching the same value it would be obtained by
processing all data on ground. This is due to the fact that, by increasing α, there
is a linear increase in the number of tasks which can be processed, but since the
on-board CPU clock frequency also increases linearly with α and the processing
energy consumption increases quadratically with the clock frequency, the energy
consumption for processing a task increases quadratically with α. For this reason,
there is a first interval of α where the energy consumption on ground stations
decreases because the number of services each satellite can process increases. Notice
that the slope of the energy saving curves changes because of the energy margin
limiting the number of services that can be handled by satellites. However, after
a certain value of α (for example, in the case shown in Fig.3.2, after α =6) even
though a satellite has an increased computational capacity, the energy required to
process a task is such that the satellite has not enough energy to process all the α
services it would be able to elaborate, thus, the number of services processed on
board decreases because of energy constraints. For instance, in case shown in Fig.3.2,
the same performance for α = 4 and α = 7 are obtained. In fact, even though
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Figure 3.3. Ground Station Energy Saving obtained by solving the optimization problem
and by applying the proposed GSESH algorithm, varying the number α of services
processable on a satellite in a time cycle and fixing ∇ = 0.2% to limit the available
energy for OEC operations to the 0.2% of the energy available on Sentinel-2 (2040 J).

when α = 7 each satellite has enough computational capacity to process 7 services
during a time cycle, due to the limited energy available on-board, it can only process
around 4 services; thus, the same performance of a less powerful CPU having α = 4
is obtained, since with α = 7 there is a higher power consumption to elaborate every
single task which leads to a higher consumption of the limited amount of energy
available on board. Thus, due to constraints on the energy available on-board, after
a certain value of α, the energy saving on ground stations decreases because a higher
number of tasks are processed on ground, until the region of α values such that only
one full service can be processed in space due to limited on-board energy, where the
energy consumption on ground stations reaches a plateau. Finally, after a certain
value of α (in the case of Fig.3.2, for α ≥ 15), the energy that would be consumed
on-board to process even a single task is higher than the energy available on-board,
thus, no service is processed on-board and tasks are all offloaded to the ground
stations, thus, leading to no energy saving on ground.

After having validated the GSESH algorithm, I apply it to a complete orbital
scenario to evaluate how the possibility to process data on board of satellites and
to leverage the full constellation in processing, in such a way that if a satellite
has not enough resource to process data can offload the elaboration to another
satellite, allows to save energy on the ground station. Results reported in Fig.3.4
for α ∈ [0, . . . , 50] and ∇ = 1% (i.e., εSat/τ = 17 W, or, equivalently, εSat = 10200
J) show that when there is the possibility to process data on board (i.e., in case of
GSESH Algorithm or FoG benchmark solution), energy is saved on ground stations,
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Figure 3.4. Ground Station Energy Saving obtained by applying the proposed GSESH
algorithm and two benchmarks (FoG and AG), varying the number α of services
processable on a satellite in a time cycle and fixing ∇ = 1% to limit the available energy
for OEC operations to the 1% of the energy available on Sentinel-2 (10200 J).

and the ground station energy saving trend follows the same behaviour discussed
before. In particular, the peak energy saving on ground station is reached for an
increased value of α with respect to the case seen for the heuristic validation, since
in this case there is an increased amount of energy available on board (in particular,
∇ = 1% with respect of ∇ = 0.1% of the previous analysis) to handle a higher
number of services. Furthermore, in this complete case study orbital scenario it is
possible to notice that in the region where ground station energy saving decreases
because of limited on-board energy, there are some α value regions where the energy
saving remains constant. This is because of the energy margin limiting the amount
of data each satellite can handle. Finally, as expected energy saving on ground
station is zero when the AG benchmark solution is applied.

I also propose an analysis aiming to study the impact of the amount of energy
available on board of satellites on the percentage of ground station energy saving. In
Fig.3.5, I show the energy consumed on ground stations by varying α ∈ [0, . . . , 50]
and ∇ ∈ {1%, 5%, 10%, 15%}, by applying the GSESH algorithm. It can be noticed
that, by increasing the energy available on board, there is an extension of the region
of α values where the ground station energy saving increases, and the peak ground
station energy saving percentage also increases with ∇. In particular, it can be
noticed that with only the 10% of energy available on Sentinel-2 to be dedicated
to OEC operations, it is possible to obtain 99.95% of ground station energy saving
when α = 27, while with the 15% of energy available on Sentinel-2, the 100% ground
station energy saving is reached when α = 28. Please notice that drops in energy
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Figure 3.5. Ground Station Energy Saving obtained by applying the proposed GSESH
algorithm by varying the number α of services processable on a satellite in a time cycle
and the ∇ percentage of Sentinel-2 energy available for OEC operations.

saving which can be seen in case ∇ = 10% and ∇ = 15% are due to a particular
interaction between the set of services and the empirically determined energy margin
calculation, leading to a drop in services that can be managed by the satellites when
α = 23 and α = 29 respectively.

Finally, I evaluate how the ground station energy saving is influenced by the
number of cores available on board of satellites. In particular, by increasing the
number of cores but leaving α fixed, there is a linear increase in the number of services
which can be processed in a time cycle, and in this case the energy consumption
increases linearly, too, since the CPU clock frequency of each single core remains
the same, and consequently the energy demand of each core does not change. In
particular, results reported in Fig.3.6, where I considered α ∈ [0, . . . , 50] and ∇ = 1%,
show that by increasing the number of cores, the peak ground station energy saving
increases, and the peak is also reached with a lower α value, i.e., with less powerful
cores. This is due to the fact that, at the same α value, by increasing the number of
cores, computational capacity still increases linearly, but the energy consumption
also has a linear increase with the number of cores, since the α value remains the
same. In other words, a dual-core architecture with each core having a CPU clock
frequency such that α = 1 would allow for the same computational capacity of a
single-core architecture where the CPU clock frequency of the core is such that
α = 2, but the dual-core architecture would consume less energy with respect to the
single-core solution, and this helps overcoming the limitation on energy available on
board which would prevent the complete use of the available computational capacity.
However, an increase in the number of cores would increase the on-board computer
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Figure 3.6. Ground Station Energy Saving obtained by applying the proposed GSESH
Algorithm by varying the number α of services processable on a satellite in a time cycle
and the number of cores available on board of satellites, with ∇ =1% of Sentinel-2 energy
available for OEC.

complexity, and would require more space in the limited satellite volume. For this
reason, I limited my analysis to a maximum of 4 cores.

3.4 Strategies with limitations on satellite battery Depth-
of-Discharge

After having introduced strategies to maximize on-ground energy saving related to
EO image processing without any optimization of the satellite operative life, in this
section I propose an extension of the optimal strategy presented in Subsection 3.3.1
to jointly allocate resources and place processing to maximize the energy saving
on ground stations while also minimizing the maximum on-board battery DoD to
optimize satellite operative life. DoD optimization has been also proposed by authors
of [12] as a solution to increase satellite operative life, but they did not take into
account the joint maximization of ground station energy saving.

Differently from Section 3.3, I will consider that energy is provided by solar
panels while a satellite is sunlit and by batteries during eclipse. The following
problem will be defined on a network and service model similar to the one presented
in Section 3.2. The only difference is in the fact that, for each i-th satellite, with
i ∈ [0, . . . , NS−2], the amount of energy available from solar panels that can be used
for OEC operations in a time cycle will be denoted by εi

sp (in J), while the amount
of full-charge energy on batteries which can be used for OEC will be identified by
εi

batt (in J). Instead, energy available on ground stations will be indicated with εGS
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(in J). Finally, I introduce the parameter lti, returning the value -1 if the i-th satellite
is sunlit during the t-th time cycle, with i ∈ [0, . . . , NS − 2] and t ∈ [0, . . . , T − 1],
or the time cycle at which eclipse started if the satellite is in eclipse.

3.4.1 Optimization Problem

Since I aim to optimize first ground station energy consumption and second battery
DoD, the proposed problem is multi-objective. In this Subsection, I formulate and
solve it by following the epsilon-constraint method[103], providing for formulating a
single-objective problem maintaining only one of the original objectives as the new
objective, and considering the remaining ones as constraints. This is possible, for
example, when there exists an expected, or desired, optimal value for objectives to
be considered as constraints. In this case, I will consider the energy consumption
on ground stations as the objective of the proposed single-objective formulation,
while I move the minimization of maximum DoD objective to the constraints, since
the maximum DoD achievable can be seen as a project parameter. This allows to
formulate the problem under discussion by adding the following constraint to the
optimization problem introduced in Subsection 3.3.1:

εt
is

= δis,NS−1 · εGS + (1− δis,NS−1)
{

δltis
,−1 · εis

sp +
(
1− δltis

,−1

) [
εis

batt+

−
(
1− δltis

,t

)NT −1∑
h=0

NS−1∑
id=0

1∑
ps=0

1∑
pd=0

t−1∑
t̃=ltis

yt̃,h
{is,ps},{id,pd} fh

ps
γid,pd

is,ps

]}
,

∀is ∈ [0, . . . , NS − 1], ∀t ∈ [0, . . . , T − 1]

(3.33)

Please notice that also in this case I leveraged the Kronecker’s delta notation
introduced in (2.17). Thanks to this constraint, it is possible to set the appropriate
amount of available energy on each node (satellite or vGS) at the beginning of each
time cycle. In particular, in case the energy on a satellite is being considered, if the
satellite is sunlit during a certain time cycle, it has an energy amount equal to the
extra energy provided by the solar panels during that time cycle (i.e., I assume that
batteries are not used for OEC while sunlit) with respect to the energy request of
both satellite payload and subsystems (i.e., energy that is generated but unused, and
can be thus leveraged for OEC); instead, if the satellite is in eclipse and the eclipse
takes several time cycles, I consider that the energy available during the first eclipse
time cycle is equal to the maximum amount of energy stored in batteries that can be
used for OEC, that can be expressed as function of the DoD parameter representing
the maximum battery DoD related to OEC operations only. This also allows for
the optimization of DoD (which influences the amount of energy from batteries that
can be leveraged for OEC), following the epsilon-constraint method. Please notice
that I consider batteries to be fully charged when eclipse begins. Instead, the energy
available during following eclipse time cycles is equal to the energy available at the
beginning of the eclipse, minus the energy allocated during the previous eclipse time
cycles, in order to take into account the battery discharge.



3.4 Strategies with limitations on satellite battery Depth-of-Discharge 72

Finally, it easily follows that also this new formulation is NP-complete, since it is
analogous to the NP-complete problem stated in Subsection 3.3.1 with the addition
of a further constraint.

3.4.2 Numerical Results

In order to numerically evaluate the optimization problem formulated in Subsection
3.4.1, I consider almost the same parameters introduced in Subsection 3.3.3. The
only differences are the following:

• Given the NP-completeness of the proposed problem, in order to obtain signif-
icant results in a reasonable time, I consider a simple, yet not trivial, scenario.
In particular, I focus on only two time cycles (i.e., T = 2). Furthermore, I
consider that satellites generate images (i.e., services) during each second of
flight over a region identified by a minimum latitude of 36.5° N, maximum
latitude 40.1° N, minimum longitude 13.6° E, maximum longitude 16° E, for a
total of 116 services, all generated during the first time cycle by sunlit satellites.

• In order to study the behaviour of the proposed strategy under energy lim-
itations, given the small number of considered services, I set εi

sp = εsp and
εi

batt = εbatt, ∀i ∈ [0, . . . , NS − 2], with εsp = 600 J and εbatt = 10 ·DoD · εsp.
Thus, it is important to underline that, as it has been introduced in Subsection
3.4.1, the maximum amount of energy stored in batteries that can be used for
OEC depends on the DoD parameter.

• I consider service delivery deadline to the ground as an analysis parameter,
i.e., fh

d = f̄d, ∀h ∈ [0, . . . , NT − 1], with f̄d ∈ {0, 1}.

Results

In Fig. 3.7, I focus on the energy consumption on ground because of image processing,
obtained by applying the optimal strategy for different maximum DoD values,
considering service delivery to ground station deadline equal to zero time cycles. By
increasing DoD, there is an increase in the energy available on satellites in eclipse,
while maintaining the same energy on sunlit ones. It can be noticed that a higher
DoD allows for reaching higher energy saving on ground when appropriate processing
capacity is available on satellites. Furthermore, it can be interesting to note that, for
DoD > 10%, two maxima appear in the ground energy saving curve. This is due to
the fact that for DoD > 10% the maximum energy available on board of satellites in
eclipse during the entire eclipse time is higher than the amount available in a single
time cycle on sunlit satellites. For this reason, as it can be seen in Fig. 3.8, where
DoD = 100%, after a certain α value (α = 5 in the case shown), the number of
services processed on sunlit satellites decreases because of the limited energy available
from solar panels, while the number of services processed by satellites in eclipse
continues to increase linearly with α because of the linear increase of computational
capacity, which can be totally leveraged thanks to the higher energy provided by
batteries with respect to solar panels. In particular, for 5 < α < 8 the increase
in services processed by satellites in eclipse cannot compensate for the decrease in
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Figure 3.7. Energy saving on ground obtained by applying the optimal strategy for different
DoD values, with service delivery to ground station deadline equal to zero time cycles.

images elaborated in sunlit satellites. For this reason, there is an overall decrease
in services processed in-orbit, i.e., an increase in on-ground processing resulting
into a decreased on-ground energy saving in this interval of α values. However, for
8 ≤ α ≤ 10, the increase in services processed by satellites in eclipse is higher than
the decrease in number of services processed by sunlit satellites, thus, the number of
images elaborated in-orbit starts increasing again, increasing the on-ground energy
saving for data processing. This reaches a second maximum because of the fact that,
after a certain α value, the on-board energy consumption for unit processing is such
that also on satellites in eclipse it is no longer possible to process all services for
which there would be processing capacity because of the limited energy available by
batteries. Thus, there is a decrease in the number of services processed in eclipse,
too, leading to an overall decrease in the number of services elaborated in-orbit
which shall be thus processed on ground.
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Figure 3.8. Number of services processed by sunlit satellites, by satellites in eclipse and
total of services processed in orbit by applying the optimal strategy with DoD = 100%
and f̄d = 0.
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Figure 3.9. Energy saving on ground obtained by applying the optimal strategy for different
DoD and f̄d values.
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Figure 3.10. Number of services processed by sunlit satellites, by satellites in eclipse and
total of services processed in orbit by applying the optimal strategy with DoD = 100%
and f̄d = 1.

Finally, in Fig. 3.9 I report the energy saving on ground obtained by applying
the proposed optimal strategy for different DoD and service delivery to ground
station deadline values. In particular, by doubling the deadline (i.e., by setting
f̄d = 1 instead of f̄d = 0), it is possible to obtain higher energy saving on ground,
since the number of time cycles during which services can be processed in orbit is
double, thus, the number of services that can be processed by satellites even with
the same energy constraints (i.e., by fixing εsp and DoD) is potentially doubled.
It can be interesting to further discuss what happens in case DoD = 100% and
f̄d = 1, where the on-ground energy saving curve is constantly equal to 100% for
3 ≤ α ≤ 11. By looking at Fig. 3.10, it is possible to notice that, for these α
values, even though the number of services processed by sunlit satellites decreases
because of the energy limitation previously discussed, the higher energy provided by
the battery and the availability of two time cycles to process data allow satellites
in eclipse to execute all tasks that cannot be elaborated by sunlit satellites, thus,
zeroing the energy consumption for processing on ground stations since all services
are elaborated directly in-orbit.

3.5 Conclusions
In this chapter, I evaluated how the combined application of both satellite networks
thanks to ISLs and edge computing capabilities on board of satellites can be fruit-
fully leveraged by EO satellite constellations to save energy on ground station by
elaborating images directly on board of satellites instead of on ground. This allows
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for better leveraging an amount of unused energy which is pre-allocated on board
of satellites, instead of requiring extra energy on ground. First, I focused on only
optimizing the on-ground energy saving, formalizing and solving an optimization
problem which however resulted to be NP-complete. For this reason, in this context
I also proposed the Ground Station Energy Saving Heuristic (GSESH) Algorithm to
be applied to real orbital scenario. I showed that even with a small amount of energy
available on board of satellites it is possible to obtain a substantial energy saving
on ground stations. In particular, I have verified that the GSESH algorithm allows
for an energy saving in the ground station up to 40% higher than the one achieved
with the benchmark solution in a real scenario. However, although intuitively one
might assume that the higher the computational capacity on board the satellites,
the higher the ground station energy saving (since more data are processed in-orbit),
I showed that the limitation on energy available on board of satellites is such that
there is a CPU clock frequency value for which the maximum ground station energy
saving is achieved, above which this saving starts decreasing because even though
there is a higher computational capacity, the energy to be used to process every
single task also increases and the small amount of energy available on board is
such that there is not enough energy to leverage the full available computational
capacity. This behaviour has been also confirmed by proposing and solving a more
complex optimization problem, aiming at both maximizing on-ground energy saving
and optimizing on-board battery DoD. In this case, obtained results show that the
optimal value of the processing capacity to be installed on-board of satellites has to
be chosen taking into account the amount of energy provided by solar panels while
sunlit and by batteries during eclipse, as well as the maximum DoD reachable and
the service delivery to the ground deadline time.
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Chapter 4

Support to in-orbit Distributed
Learning

One of the key enabling solutions to in-orbit extract information from Earth Obser-
vation images is given by deep learning techniques. However, the accuracy of these
algorithms is strictly related to the availability of large datasets of satellite images
for training purposes. Basic deep learning training schemes would provide for the
transfer of all the acquired images to the training node (i.e., a ground station or a
specific satellite), where model training is executed. However, this would require a
high amount of bandwidth to transfer a high amount of data in a short visibility time.
Instead, federated learning can be fruitfully leveraged in this scenario, since this
technique provides for each satellite to train a local model only with its own dataset,
and then to share its trained model with a central server, which receives models
trained by the different satellites and aggregates them into a new global model which
is finally shared with all the satellites, and this repeats until convergence is reached.
Such strategy has been deeply investigated in literature[17]. In particular, in case of
scarce communication opportunities with the central parameter server, asynchronous
schemes[19] can be leveraged. However, in this case countermeasures to prevent
model staleness negative impact on the convergence speed have to be taken into
consideration[20]. Instead, in case of availability of intra-orbital ISLs, synchronous
federated learning strategies can be leveraged[18]. However, it is important to under-
line that communication with a ground station (or, in general, with a node acting
as a central parameter server) is limited by short visibility time. Consequently, local
model gathering and consequent global model transmission to all satellites may need
a long time because of limited communication windows, negatively impacting the
time needed to reach model convergence, which is strictly related to the completion
of these model sharing rounds. For this reason, I propose a communication strategy
to support a completely distributed learning technique to train a deep learning
model in-orbit, by leveraging the fact that satellites may form a network thanks to
the potential availability of ISLs within and between orbital planes. My proposal is
different from a federated learning approach since the presented strategy does not
rely on a central parameter server, but each satellite receives all the information
needed to calculate an updated global model by itself. Numerical results show that
distributed learning outperforms federated learning in number of learning rounds
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completed in the unit time by increasing the number of satellites, of orbital planes,
of model parameters, of ground stations and by increasing the time needed to
accomplish local learning. This behaviour allows for reaching validation accuracy
convergence in a shorter time, as it has been verified on a land coverage classification
task based on the EuroSAT dataset.

4.1 Network Modeling
Differently from models discussed in Sections 2.2 and 3.2, in this chapter I will not
translate the orbital motion into a graph embedding the time-varying properties
of the system. Instead, these properties will be evaluated in the continuous time
domain. Parameters introduced in this section are summarized in Tab.4.1.

I consider to have a constellation of NSat satellites, equally distributed over Nop

orbital planes. In this scenario, I will assume each orbit to be circular, with altitude
hp, inclination ip and right ascension of the ascending node Ωp, for p ∈ [0, . . . , Nop−1].
I assume that the i-th satellite, with i ∈ [0, . . . , NSat − 1], appertains to the orbital
plane pi = ⌊i·Nop/NSat⌋ and occupies the position ri(t) at time t in the ECI reference
frame. Satellite motion repeats with a period depending on the altitude hp of the
orbit it occupies given by:

Tp = 2π

√
(RE + hp)3

µE
, ∀p ∈ [0, . . . , Nop − 1]; (4.1)

where RE is the Earth’s radius (assuming, without loss of generality, a perfectly
spherical Earth) and µE is the Earth’s gravitational constant.

The distance between the i-th and j-th satellite at time t, with i, j ∈ [0, . . . , NSat−
1], i ̸= j, can be defined by means of the following expression:

d(i, j, t) = |ri(t)− rj(t)| (4.2)

Similarly to Subsections 2.2 and 3.2, the distance between two satellites at time
t allows to determine whether an ISL is available or not by verifying the following
expression:

d(i, j, t) ≤ dmax(i, j) (4.3)

where dmax(i, j) represents the maximum distance between the i-th and j-th
satellite at which communication is possible. Again, under the assumption of
Additive White Gaussian Noise channel, this can be calculated as:

dmax(i, j) = G c

4πνtx

√√√√√ P(
2

Ri,j
B − 1

)
kBTsB

(4.4)

where G is the antenna gain, c is the speed of light, νtx is the carrier frequency, P
is the transmission power, Ri,j is the transmission data rate between the satellites, B
is the bandwidth, kB is the Boltzmann’s constant, Ts is the system noise temperature.
However, it can be useful to distinguish between two types of ISLs which can be
potentially available: intra-orbital and inter-orbital. In particular, the former type
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identifies ISLs between couples of satellites appertaining to the same orbital plane,
while the latter identifies ISLs between satellites on different orbital planes. This
distinction allows me to introduce a condition different from (4.3) to check for intra-
orbital ISLs availability, independently from the time t. In fact, since all satellites
on a same circular orbit move with the same angular velocity, their relative distance
does not change in time. For this reason, intra-orbital ISLs are available if and only
if the following two conditions are verified for any couple of adjacent satellites in the
orbit: 2 (RE + hp) sin

(
2πNop

NSat

)
≤ dmax(i, j)

(RE + hp) cos
(

2πNop

NSat

)
> RE

,

∀i ∈ [0, . . . ,
NSat

Nop
− 1], j = (i + 1) mod

NSat

Nop

(4.5)

where the first condition ensures that the line of sight distance between two
adjacent nodes is smaller than the maximum distance at which communication is
possible, as defined in (4.4), while the second condition ensures that the line of sight
does not intersect the Earth. If these are satisfied for any couple of satellites in the
orbit, intra-orbital ISLs are always active, otherwise, they are always unavailable.
Please notice that I am assuming intra-orbital ISLs to be potentially available only
between a satellite and its adjacent nodes in the orbit.

As far as ground segment is concerned, I consider NGS ground stations on the
Earth enabled to receive data from the constellation. Each ground station moves
with the Earth, thus, its position in time rGSg (t), with g ∈ [0, . . . , NGS ], changes
periodically with a period equal to the sidereal day, TGS = 86164 s. Thus, the
entire system constituted by all satellites and ground stations is periodic, with a
period T = lcm

(
TGS , T0, . . . , TNop−1

)
. I assume that communications between the

i-th satellite and the g-th ground station are possible when the elevation angle of
the satellite with respect to the ground station (i.e., the angle between the tangent
plane to the Earth surface containing the ground station and the vector Earth
center-satellite vector) is higher than a minimum elevation Elmin. This translates in
the following condition:

π

2 −arccos
(

rGSg (t) · ri(t)
|rGSg (t)||ri(t)|

)
≥ Elmin, for i ∈ [0, . . . , NSat−1], g ∈ [0, . . . , NGS−1]

(4.6)
where rGSg (t) · ri(t) represents the scalar product between the position vector of

the ground station and of the satellite, respectively, and Elmin is in radiant. It is
important to underline that, in case a satellite is able to communicate with more
than a ground station at a time, I assume that it is connected with only one of them.
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Table 4.1. Network model parameters

Set or parameter Description
Nsat number of satellites
Nop number of orbital planes
hp orbit altitude
ip orbit inclination
Ωp orbit right ascension of the ascending node
i index in [0, . . . , Nsat − 1] representing a satellite
pi orbital plane occupied by the i-th satellite, with i ∈ [0, . . . , Nsat−

1]
ri(t) position vector of the i-th satellite, with i ∈ [0, . . . , Nsat − 1]
hp altitude of satellites on the p-th orbital plane, with p ∈

[0, . . . , Nop − 1]
Tp period of motion of satellites on the p-th orbital plane, with

p ∈ [0, . . . , Nop − 1]
RE Earth’s radius
µE Earth’s gravitational constant
G antenna gain
c speed of light
νtx carrier frequency
P transmission power
Ri,j transmission data rate between i-th and j-th satellite, with

i, j ∈ [0, . . . , Nsat − 1], i ̸= j
B transmission bandwidth
kB Boltzmann’s constant
Ts system noise temperature
NGS number of ground stations
g index in [0, . . . , NGS ] representing a ground station
rGSg (t) position vector of the g-th ground station, with g ∈ [0, . . . , NGS−

1]
TGS ground station rotation period, i.e., Earth’s sidereal day
T repeat cycle
Elmin minimum elevation angle

4.2 Distributed Learning Communication Strategy
In this section, I introduce my distributed learning-based proposal by first describing
how each satellite can autonomously calculate the updated global model and locally
train its own local model in Subsection 4.2.1. Finally, the communication strategy
supporting the presented distributed learning approach is discussed in Subsection
4.2.2. Parameters introduced in this section are summarized in Tab.4.2.

4.2.1 Local Training Phase

I propose a purely distributed learning solution where satellites exchange their
own models among themselves, and each satellite calculates the updated global
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Table 4.2. Application model parameters

Set or parameter Description
Nr number of distributed learning rounds
Nep number of local learning epochs
Di dataset of the i-th satellite, with i ∈ [0, . . . , Nsat − 1]
|Di| number of samples in the dataset of the i-th satellite, with

i ∈ [0, . . . , Nsat − 1]
wr,e

i local model on the i-th satellite, at the e-th local training epoch
of r-th distributed learning round, with i ∈ [0, . . . , Nsat − 1],
r ∈ [0, . . . , Nr], e ∈ [0, . . . , Nep]

wr
G global model at the beginning of r-th distributed learning round,

with r ∈ [0, . . . , Nr]
Fi local loss function on the i-th satellite, with i ∈ [0, . . . , Nsat− 1]

model by its own, once it has received local models from all the other satellites.
This approach shares the way local models are aggregated in a global one with
the synchronous FL scheme proposed in [18], in turn based on Federated Average
(FedAvg) algorithm[104], but my proposal differs in the fact that in this strategy
there is no central aggregation node, while each satellite is able to calculate the
updated global model by its own. In particular, I suppose that learning happens
in rounds. During each round, first satellites exchange their locally trained models
in such a way each satellite has the models of all the other satellites. Then, each
satellite computes the global model which will be the starting point of the training
phase on a local dataset. After each satellite has finished to locally train the model,
a new round begins with the sharing of the locally trained models. This procedure
goes on until convergence is reached, or after a maximum number Nr of rounds.

Thus, I assume that each i-th satellite, with i ∈ [0, . . . , NSat − 1], has its own
dataset Di, containing a number of samples |Di|, and a local model represented by
the vector wr,e

i , containing the local values for weights and biases at the e-th learning
epoch of the r-th distributed learning round, with r ∈ [0, . . . , Nr], e ∈ [0, . . . , Nep] and
Nep representing the maximum number of local learning epochs, i.e., the maximum
number of times the local model goes through updates over the local dataset during
the round. As previously stated, each r-th round, with r ∈ [1, . . . , Nr], starts with
each i-th satellite sharing its most updated version of locally trained model, i.e.,
the local model after Nep epochs at the end of the previous round, denoted with
wr−1,Nep

i , with all the other satellites. I assume that w0,Nep

i is the local model on
the i-th satellite before any distributed learning round occurs. Once each satellite
has received the local models of all the remaining ones, the global model can be
locally obtained as:

wr
G =

Nsat−1∑
i=0

|Di|
Nsat−1∑

i=0
|Di|

wr−1,Nep

i (4.7)

and the local model on the i-th satellite during the r-th round before any local
learning epoch (i.e., e = 0) is set as:
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wr,0
i = wr

G, ∀i ∈ [0, . . . , Nsat − 1] (4.8)

Finally, each i-th satellite trains its local model by applying the gradient descent
technique considering only the local dataset for Nep epochs. After local training, the
local model will be:

wr,Nep

i = wr,0
i − η

Nep−1∑
k=0

∇Fi

(
wr,k

i

)
, ∀i ∈ [0, . . . , Nsat − 1] (4.9)

with η representing the learning rate, and ∇Fi the gradient operator applied on
the function Fi representing a local loss function, i.e., a loss function evaluated only
on the samples of the i-th satellite dataset.

4.2.2 Model weight distribution phase

Let me discuss in more detail how the distributed learning strategy introduced in
Subsection 4.2.1 can be integrated into the orbital environment by means of an
ad-hoc communication solution. The strategy proposed in this chapter is formalized
in Alg.5. The inputs needed are the number of satellites Nsat, maximum number of
distributed learning rounds Nr, maximum number of local gradient descent epochs
Nep, duration of local learning phase τl, model size ws (in Mb, please notice that I
assume that the number of weights and biases is the same on each satellite, only their
values changes, thus, the model size is the same on each node), data rate between
each couple of i-th and j-th nodes Ri,j , with i, j ∈ [0, . . . , Nsat] and event list E. In
particular, E is an ordered list where events are ordered by their occurrence time,
with the earliest event occupying the first position, i.e., being the E[0] element of
the list. Each event ε ∈ E is characterized by an event type denoted by ε.type,
whose value is ’link-on’ if the event represents the fact that two nodes reached a
relative position such that they are close enough to allow data transmission, it is
equal to ’link-off’ if the event represents two nodes reaching a relative position
such that their distance is not enough to enable communication, or it is equal
to ’transfer_completed’ to indicate that data transmission between two nodes is
completed. Furthermore, each ε event is also associated with a list of involved nodes
ε.N and a time at which the event happens ε.t. Finally, in case the event is ’link-on’
or ’link-off’, the event is also associated to a property ε.LOT indicating the time
at which the link will be unavailable in case the event type is ’link-on’, or the time
at which the link became available in case the event type is ’link-off’ ; instead, in
case the event type is ’transfer_completed’, the event is associated to a property
ε.W representing the models memorized on both the nodes involved in the data
transfer after the transmission ends. At the beginning, the event list contains only
’link-on’ and ’link-off’ events that can be obtained by orbital mechanics, propagating
node positions in time and evaluating their distances as discussed in Section 4.1. In
particular, I evaluate these events only during a repeat cycle T , since because of the
periodicity of both satellite and Earth motion, what happens in a repeat cycle will
be repeated the same in the following ones.
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Algorithm 5: Distributed Learning Strategy
Input: E, Nsat, Nr, Nep, τl, Ri,j ∀i, j ∈ [0, . . . , Nsat − 1]

1 Initialize: r ← 1, k ← False, Λi,j ← 0, Mi ← {w
0,Nep

i }, ∀i, j ∈ [0, . . . , NS − 1];
2 while E ̸= ∅ ∧ r ̸= Nr do
3 ε← E[0] //Extract earliest event;
4 E ← E − {ε} //Remove the extracted event from the event list;
5 t← ε.t //Extract the event time;
6 i← ε.N [0], j ← ε.N [1] //Extract linked nodes;
7 if ε.type is ’link-on’ then
8 Λi,j ← ε.LOT //Set the link-off time;
9 Add Transfer Complete Event(E, i, j, Mi, Mj , Ri,j , Λi,j) //Apply Alg.6;

10 else if ε.type is ’transfer_completed’ then
11 Mi ←Mi ∪ {ε.W}, Mj ←Mj ∪ {ε.W} //Update the list of received models

on both the sharing nodes;
12 for n ∈ [0, . . . , Nsat − 1] do
13 if |Mn| == Nsat then
14 k ← True //At least satellite has received all local models;
15 else
16 k ← False //At least a satellite has not received all local models,

yet;
17 break;
18 end
19 end
20 for n ∈ {i, j} do
21 for m ∈ [0, . . . , Nsat − 1] do
22 Add Transfer Complete Event(E, i, j, Mn, Mm, Rn,m, Λn,m)

//Apply Alg.6;
23 end
24 end
25 else if ε.type is ’link-off’ then
26 Λi,j ← 0 //Set the link as unavailable;
27 end
28 //If all satellites have received local models from the remaining ones, start local

learning phase;
29 if k then
30 Update global model wr

GS by means of eq.4.7;
31 Apply Nep epochs of gradient descent on each satellite in a time τl, until

obtaining wr,Nep

i ,∀i ∈ [0, . . . , Nsat − 1] by means of eq.4.9;
32 //After local learning phase ends, a new round can start;
33 for i ∈ [0, . . . , Nsat − 1] do
34 Mi ← {w

r,Nep

i };
35 for j ∈ [0, . . . , Nsat − 1] do
36 Λi,j ← 0;
37 end
38 end
39 Update Event List(E, t + τl) //Apply Alg.7;
40 r ← r + 1;
41 end
42 end

Output: r
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Moving to the discussion of the different algorithm steps described in Alg.5, in
Line 1 I initialize:

• the current round number r;

• a boolean auxiliary variable k indicating whether the local model distribution
phase is completed or not;

• an auxiliary variable Λi,j whose value is zero if at the current event time no
link is available between the i-th and j-th node, with i, j ∈ [0, . . . , Nsat − 1],
and is different from zero when the link is available, with the specific value
indicating the time at which link will become unavailable;

• an auxiliary list Mi for each i-th node, with i ∈ [0, . . . , Nsat − 1], containing
local models currently kept in memory on the i-th node.

In particular, before the algorithm starts, I assume no link is already available,
since no link-on event has been considered, yet, and I assume each node has in
its memory its own local model only, since no data transfer happened, yet. After
auxiliary variable initialization, next steps will be repeated until event list is not
empty and the maximum round number is not reached. In particular, first the
earliest event in time ε is extracted and removed from the event list (Lines 3-4).
Then, auxiliary variables t, i, j are set to be equal to the event time, and to the first
and second nodes involved in the event, respectively (Lines 5-6). Following steps
depend on the event type. In case of ’link-on’ event, since a new link is available,
Λi,j is set to be equal to the link-off time (Line 8). Furthermore, I assume that as
soon as a link becomes available, the two connected nodes try to share the models
in their memories following Alg.6, which will be discussed in detail further on. In
case model transmissions are possible, a transfer completed event is added to the
event list (Line 9). Instead, in case of ’transfer_completed’ event, first the lists of
received models on both nodes involved in the exchange is updated (Line 11) and
then memories on each satellite in the constellation are inspected to check whether
each of them stores the local models of all the other satellites or not (Lines (12-19).
In case all satellites have all the local models, auxiliary variable k is set to True.
Furthermore, I assume that as soon as a node has received local models, it tries to
share them with other nodes, again leveraging Alg.6 (Lines 20-24). Finally, if local
model distribution phase is completed, global model can be updated (Line 30) and
local learning phase can begin (Line 31). After its end, a new round can begin. For
this reason, Λi,j is reinitialized to be zero for each couple of nodes, and memory Mi

on each i-th node only contains the local model obtained after Nep of local gradient
descent epochs (Lines 33-38). However, before a new round can start, event list shall
be updated to contain only events happening after the local training phase is ended,
following Alg.7 which will be discussed further on (Line 39).
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Algorithm 6: Add Transfer Complete Event
Input: E, ws, i, j, t, Mi, Mj , Ri,j , Λi,j

1 nw ← |Mi|+ |Mj | − 2|Mi ∩Mj | //Number of local models to be exchanged;
2 τt ← ws · nw/Ri,j //Calculate the transmission time;
3 τp ← 2 · d(i, j, t)/c //Calculate the propagation time;
4 if nw ̸= 0 ∧ t + τt + τp ≤ Λi,j then
5 ε̃.type← ’transfer_completed’ //Set new event type as transfer completed;
6 ε̃.t← t + τt + τp //Time of the new transfer completed event;
7 ε̃.N ← [i, j] //Nodes involved in the new transfer completed event;
8 ε̃.W ←Mi ∪Mj //Weights on each involved node after new transfer completed

event;
9 E ← E ∪ {ε̃} //Add the new transfer completed event in the event list;

10 end
Output: E

Let me now discuss steps of Alg.6. As introduced before, it evaluates if it is
possible to complete a data transfer between two nodes and, in positive case, it adds
a transfer completed event in the event list. In particular, I consider that in the
communication between the i-th and j-th node, i sends to j all models that are
in Mi but not in Mj , and vice versa. For this reason, first the number of models
to be exchanged is evaluated by means of the expression in Line 1, as well as the
transmission and propagation delay (Lines 2-3). Then, if the number of models to
be exchanged is different from zero and the link is still available when the potential
transmission is completed (Line 4), a ’transfer_completed’ event is added to the
event list, having the time at which transfer finishes as event occurrence time, i and
j as involved nodes, and the union of Mi and Mj as the models memorized on both
i and j after transfer is completed (Lines 5-8). Finally, the new event is added to
the event list (Line 9).

As far as Alg.7 is concerned, it allows for updating the event list to include only
events happening after the end of local model training phase happening at time t̃,
corresponding to the beginning of a new round. In particular, a new empty event
list is initialized (Line 1). To update the event list, the following steps are applied
for each event in the event list. First, the earliest event in time is extracted and
removed from the event list, then t is set to be equal to the occurrence time of the
extracted event (Lines 3-5). If the event occurs before the beginning of a new round
(Line 6), it can be included in the updated list only if its type is ’link-on’ and if the
link remains active after the beginning of the new round (Lines 7-8): in this case, a
new ’link-on’ event is added to the updated event list, having occurrence time equal
to the beginning time of the new round, and same nodes and link-off time of the
extracted event. Instead, in case the occurrence time of the extracted event is higher
than the time at which the new round begins, the extracted event can be included
in the new event list if it is a ’link-on’ or ’link-off’ event. In particular, in case it
is a ’link-on’ event, it is included in the new event list as it is, while in case it is
a ’link-off’ event, an event having the same event type, occurrence time and nodes
(Lines 20-22) is added in case the occurrence time is different from the new round
beginning time. However, the new event will have an associated link-on time given
by the maximum between the link-on time of the extracted event and the beginning
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of the new round (Line 23). This is due to the fact that the associated link-on event
may occur before the beginning of the new round, but as previously discussed, if a
link becomes available before the new round and it is still available when the round
begins, the associated ’link-on’ event will have a occurrence time equal to the new
round begin time. Furthermore, if the link-on event associated to the link-off one
just added to the new event list is not in Ẽ, it is added to the list (Lines 26-32).
Finally, it can be noticed that no ’transfer_completed’ event appertaining to the
previous event list is included in the new one, since transfers in the previous list are
referred to the previous round.

Algorithm 7: Update Event List
Input: E, t̃

1 Initialize: Ẽ ← ∅;
2 while E ̸= ∅ do
3 ε← E[0] //Extract earliest event;
4 E ← E − {ε} //Remove the extracted event from the event list;
5 t← ε.t //Extract the event time;
6 if t < t̃ then
7 if ε.type is ’link-on’ then
8 if ε.LOT > t̃ then
9 ε̃.type← ’link-on’ //Set event type as link-on;

10 ε̃.t← t̃ //Set event time as the beginning of new round;
11 ε̃.N ← ε.N //Nodes involved remains the same;
12 ε̃.LOT ← ε.LOT //Link-off time remains the same;
13 Ẽ ← Ẽ ∪ {ε̃} //Add the modified event in the event list;
14 end
15 else
16 if ε.type is ’link-on’ then
17 Ẽ ← E ∪ {ε} //Add the current event in the event list;
18 else if ε.type is ’link-off’ then
19 if t ̸= t̃ then
20 ε̃.type← ’link-off’ //Event type remains link-off ;
21 ε̃.t← ε.t //Event time remains the same;
22 ε̃.N ← ε.N //Nodes involved remains the same;
23 ε̃.LOT ← max{t̃, ε.LOT} //Link-on time is the maximum between

current event link-on time and new round start time;
24 Ẽ ← Ẽ ∪ {ε̃} //Add the modified event in the event list;
25 //Find the associated link-on event;
26 ε̂.type← ’link-on’;
27 ε̂.t← ε̃.LOT ;
28 ε̂.N ← ε̃.N ;
29 ε̂.LOT ← ε̃.t;
30 if ε̂ /∈ Ẽ then
31 Ẽ ← Ẽ ∪ {ε̂} //Add the associate link-on event in the event list;
32 end
33 end
34 end
35 end
36 end

Output: Ẽ
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As far as the complexity of the proposed strategy is concerned, it is possible
to notice that it is mainly related to the length of the event list, to the maximum
number of rounds and to the complexity of adding a ’transfer_completed’ event to
the list. In particular, by implementing the event list as an heap queue, adding an
element to the queue has a complexity O (log n), where n is the length of the event
list. By looking at the loop starting in Line 2, it can be noticed that an upper bound
to the number of repetitions of this loop is given by the completion of Nr distributed
learning rounds. In particular, in order to complete a round it is necessary that each
satellite has received local models from all the other satellites. In the worst case, this
is accomplished by means of direct communications between each couple of satellites,
leading to Nsat(Nsat − 1)/2 ’transfer_completed’ events for each round. For this
reason, the complexity of the strategy can be given by O

(
NrN2

sat log n
)
. However,

in the proposed strategy the event list length may increase during each cycle of
the loop, due to the inclusion of new transfer_completed events. An upper bound
to the event list length can be estimated by considering that, in the worst case of
direct communications between each couple of satellites, the list shall include all the
transfer_completed events necessary to accomplish Nr distributed learning rounds
discussed before; furthermore, since local model transfer between each couple of
satellites can be completed only if there is an active link between them, a number of
Nsat(Nsat − 1)/2 ’link-on’ (and, potentially, ’link-off’) events shall be also included
in the list. For this reason, an upper bound to the event list length to guarantee Nr

distributed learning rounds can be given by Nr(Nsat(Nsat−1)/2)2. Consequently, the
complexity of the proposed strategy can be expressed by O

(
NrN2

sat log
(
NrN4

sat

))
.

Figure 4.1. Example of the proposed strategy with 3 satellites. Grey horizontal bars
indicate the availability of a link between a couple of satellites in time, thus, their limits
represent link-on and link-off events. Transfer completed events are represented by
curved arrow ends. Dashed bars indicates events that are not included in the new round
event list. At the bottom, memories of nodes at t0, t1, t3 and t4 are shown.
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In order to better clarify the presented communication strategy, let me introduce
the example shown in Fig.4.1. In particular, I consider a constellation of three
satellites, i.e., Nsat = 3. Initial event list represented by link-on and link-off events
is known because of orbital mechanics, and I assume these events to be represented
by the initial and final extremes of the colored horizontal bars in Fig.4.1, respectively.
At time t0, each node has only its own local model in memory, that I assume to
have been trained on local dataset, as a matter of example, for Nep = 1 epoch, i.e.,
Mi = {w0,1

i }, ∀i ∈ [0, . . . , 2]. However, at t0 a link between nodes 0 and 1 becomes
available, thus, the two nodes tries to share the models in their memories, i.e., node
0 tries to send its model to node 1, and vice versa. Assuming this information
transfer needs a time ∆t,0 such that from t0 to t1 = t0 + ∆t,0 the link between 0
and 1 is always active, a transfer completed event occurs at t1. Furthermore, at t1
memories are such that M0 = M1 = {w0,1

0 , w0,1
1 } and M3 = {w0,1

3 }. Both nodes 0
and 1 will try to share their updated model lists with other nodes at t1, but since
no link is available, no further transfer happens. Next event occurs at t2, when
a link between nodes 1 and 2 becomes available. Thus, node 1 tries to share the
models it has in its memory, i.e., both w0,1

0 and w0,1
1 with 2, and vice-versa. Again,

assuming this information transfer needs a time ∆t,1 such that the link between
nodes 1 and 2 remains active from t2 to t3 = t2 + ∆t,1, transfer is possible and a
transfer completed event happens at t3. Thus, at this time M0 = {w0,1

0 , w0,1
1 } and

M1 = M2 = {w0,1
0 , w0,1

1 , w0,1
2 } and both nodes 1 and 2 try to share their updated

model lists with other nodes. In particular, since at t3 a link between nodes 0
and 1 is active and will be still available during the full time span ∆t,2 needed to
transmit w0,1

2 (the only local model being in node 1 memory but not in node 0 one),
a transmission completed event occurs at t4 = t3 + ∆t,2. Since at this time memories
are given by M0 = M1 = M2 = {w0,1

0 , w0,1
1 , w0,1

2 }, the local model distribution phase
is over and the local learning phase begins. At time t̃ = t4 + τl, a new round can
start, repeating the same steps just described. Please notice that the new round
event list will not contain all events happening between t4 and t̃ (dashed regions in
Fig.4.1). In particular, link-on events happening in this time span are moved to t̃ if
the link is still available at the beginning of the new round, as in the case of the link
between nodes 0 and 2 in the example shown in Fig.4.1.

4.3 Numerical results
In this section, I evaluate the performance of the proposed distributed learning
solution with respect to federated learning-based one [18]. In fact, as previously
discussed, both solutions allow to reduce the bandwidth and the energy consumption
on ground with respect to a centralized learning solution where datasets acquired
by satellites have to be transferred to a ground stations where the model is trained.
However, a performance evaluation of the distributed learning and federated learning-
based solutions should take into account the actual need of this application, i.e.,
to allow for reaching validation accuracy convergence as fast as possible. For this
reason, the two strategies should be compared not in terms of bandwidth usage
(they both already allow to lower the high bandwidth need associated to centralized
learning), but in terms of how efficiently they leverage the available bandwidth,
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given the application need. In particular, the number of completed learning rounds
that can be accomplished in a repeat cycle may be a more insightful indicator, since
the higher the number of completed round is, the higher the convergence speed is,
thus, the better available bandwidth is leveraged to satisfy the application need. For
this reason, I first evaluate the performance of the proposed distributed learning
solution with respect to federated learning-based one by comparing the number of
completed learning rounds that can be accomplished in a repeat cycle, and then I
focus on the validation accuracy convergence time in case a deep learning satellite
image classification model is trained on the EuroSAT[105] dataset. It is important
to better clarify that, in case of distributed learning-based strategy, a learning round
is made of a first inter-satellite model sharing phase, lasting until each satellite has
received models of the remaining ones, followed by a local learning phase; instead, in
case of federated learning-based strategies, a round provides for a first phase during
which all satellites receive the updated global model from the ground, then local
learning phase starts and, finally, local models are transmitted to the ground. In the
proposed analysis, I will consider two schemes in the distributed learning strategy.
In the first one, hereafter named "DL w/ GS", I assume that ground stations can
contribute to model distribution as relay nodes, i.e., when a satellite A flies over
a ground station, it shares the models it has in its memory with the ground, in
such a way that when another satellite B flies over a ground station, it can receive
the models memorized in A directly from the ground, without having to wait to
communicate with A. Please notice that ground stations only act as models relay,
and they do not have to receive all local models from satellites to calculate the global
model, as it happens in federated learning solutions. Furthermore, I assume that
ground stations are all interconnected in such a way that communicating with one
of them is equivalent to communicate with all of them. For this reason, if a ground
station receives models from a satellite, these are immediately available on any other
ground station, too. Instead, the second distributed learning strategy considered
(named "DL w/o GS") does not provide for involving ground stations as relay nodes,
and satellites can share models only by means of in-orbit communications. As
far as federated learning-based schemes considered as benchmarks are concerned,
I consider a strategy leveraging both intra-orbital and inter-orbital ISLs ("FL w/
all ISLs"), a strategy where no inter-orbital communication is possible because of
lack of inter-orbital ISLs ("FL w/o inter-orbital ISLs"), and a strategy providing
for satellites having no ISLs ("FL w/o ISLs"), i.e., satellites cannot communicate
with each other. All the federated learning solutions provide for having ground
stations as parameter servers which, at each round, receive all the local models and
aggregate them into a single global model which is transmitted to all satellites at
the beginning of the following round. Furthermore, in this proposal I will assume
that no aggregation of a partial number of local models happens on nodes neither in
case of distributed learning-based solutions nor in federated learning-based ones.

Proposed analysis will be based on the following parameters: the number of
satellites Nsat, the number of orbital planes Nop, the number of model parameters
(i.e., weights and biases) Nmp, the duration of the local learning phase τl, the
number of ground stations NGS and their location. Please notice that, since model
parameters are usually expressed in float32 format, it easy to obtain the model
size in bit given Nmp, since ws = 32 ·Nmp bit. The values of each parameter will
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be specified for each of the following analysis. Instead, the remaining parameters
will be the same for each analysis. In particular, I will assume to have a Walker
constellation, with circular orbits having altitude hp = 712.84 km, inclination 98.24
deg, repeat cycle T = 2 sidereal days, transmission data rate on both ISLs and
links to the ground stations RISL = RGS = 200 Mbps, transmission power P =
10 W, antenna gain G = 34.31 dBi, transmission frequency νtx = 26 GHz, system
noise temperature Ts = 290 K, bandwidth B = 500 MHz, minimum elevation angle
Elmin = 5 deg.
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Figure 4.2. Number of completed rounds in a repeat cycle for different distributed
learning-based and federated learning-based strategies, obtained by varying the number
of satellites and by fixing the number of orbital planes Nop = 2, the number of model
parameters Nmp = 106, the local learning time τ = 1 min, and placing a single ground
station in Kiruna (Sweden).

First analysis focuses on the impact of the number of satellites in an orbital plane
on the number of completed rounds in a repeat cycle. For this analysis, I consider
the number of satellites to be Nsat ∈ [2, 4, . . . , 18], equally distributed over Nop =
2 orbital planes, and I consider to have only a ground station placed in Kiruna
(Sweden), a typical choice for orbits with the chosen inclination, a local learning
time on satellites τl = 1 min, and model having a number of parameters Nmp = 106.
Results in Fig.4.2 show that any distributed learning-based strategy outperforms
any federated learning-based strategy, regardless the number of satellites. However,
it can be noticed that the number of rounds in a repeat cycle when a distributed
learning-based strategy is applied first decreases with the number of satellites, then
it starts increasing, and finally it decreases again. This is due to the fact that by
increasing the number of satellites, the number of models that each satellite has
to receive to calculate the global model increases, thus, the number of models to
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be shared increases, too. At the same time, by increasing the number of satellites
without changing the number of orbital planes, each orbit has an increased number of
satellites, and this increases the communication possibilities within satellite couples.
However, for 2 < Nsat ≤ 6, the increase in communication opportunities is not
enough to allow the sharing of an increased number of models in the same time span
as in case Nsat = 2, thus, the number of rounds in a repeat cycle decreases. Instead,
for Nsat > 6, the increased number of communications between satellites is such
that, even though the number of models to be shared increases, a complete sharing
is achievable in a smaller time than in case Nsat = 6, thus, the number of rounds in
a repeat cycle increases. In particular, for Nsat ≥ 10, in the same amount of time it
is even possible to share an increased number of models with respect to the case
Nsat = 2, thus, a higher number of round in a repeat cycle is completed with respect
to the ones accomplished when Nsat = 2. However, for Nsat > 14, the number of
rounds completed in a repeat cycle starts decreasing again. This is due to the fact
that, as it can be easily verified by means of expressions in (4.5), the intra-plane ISLs
become always active for Nsat ≥ 14, while they are never active when Nsat < 14.
Thus, for Nsat ≥ 14, as soon as a satellite receives models, it transmits them to
satellites in the same orbital plane, with a delay only depending on the amount
of models to be transferred and on the propagation time, without having to wait
for an intra-plane ISLs to become available. Thus, the model sharing is completed
shortly after any couple of satellites appertaining to different orbital planes is able
to communicate. However, the maximum number of completed rounds is reached
exactly when Nsat = 14, since for a higher number of satellites, even though inter-
plane communications happen slightly earlier because of the increased number of
satellites and, consequently, of the inter-plane communication opportunities, this
does not compensate for the increase in the amount of data to be exchanged because
of the increased number of models to be shared. Thus, for Nsat > 14, there is a
mild decrease in the number of completed rounds in a repeat cycle. Still on the
subject of distributed learning-based strategies behavior, it can be also noticed that
"DL w/ GS" and "DL w/o GS" schemes lead to the same values of the number
of completed rounds in a repeat cycle. This is due to the relative position of the
satellites and the chosen ground station, such that when a satellite flies over the
ground station, it already has in its memory the models available on ground because
it has received them earlier directly from other satellites. This effect will be present
in all analysis where a single ground station in Kiruna is considered, and it will be
further discussed in the analysis related to the number of ground stations. Moving
to federated learning-based strategies, it can be noticed that the best performance
is obtained when all ISLs are leveraged, but the number of completed rounds in a
repeat cycle is smaller than the one obtained in case of distributed learning strategies,
because in federated learning schemes first all models have to reach the ground,
where the global model is centrally determined, and then the ground station has
to uplink the updated global model to all satellites. This also explains why, by
increasing the number of satellites, there is an overall increase in the number of
completed rounds in a repeat cycle, since the higher the number of satellites is, the
higher the number of communication opportunities with the ground is. Finally, it
can be noticed that "FL w/o inter-orbital ISLs" and "FL w/o ISLs" have the same
behavior for Nsat ≤ 12, while the latter leads to an increased number of completed
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rounds in a repeat cycle for Nsat > 12. This is due to the fact that, as discussed
before, for Nsat ≤ 12, no intra-orbital ISL is available, while they are always available
for Nsat ≥ 14. Obviously, the worst performance in terms of completed rounds
is obtained with the "FL w/o ISLs" solution, since by means of this strategy it is
necessary to wait for all satellites to fly over the ground to transmit their models,
and then, after the global model has been aggregated on the ground, it is necessary
to wait again for all satellites to fly over the ground to receive it.
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Figure 4.3. Number of completed rounds in a repeat cycle for different distributed
learning-based and federated learning-based strategies, obtained by varying the number
of orbital planes Nop, by considering 7 satellites on each orbital planes, Nmp = 106

model parameters, local learning time τ = 1 min, and placing a single ground station in
Kiruna (Sweden).

In Fig.4.3, I analyse the impact of the number of orbital planes, chosen to be
Nop ∈ [1, . . . , 5], on the number of rounds completed in a repeat cycle when the
different strategies previously introduced are applied. In particular, in this analysis
I consider again a number of model parameters Nmp = 106, a learning time τl = 1
min and a single ground station placed in Kiruna. Instead, the number of satellites
will be equal to Nsat = 7Nop, in such a way that each orbital plane has 7 satellites
and intra-orbital ISLs are always active, as previously discussed. Again, distributed
learning-based solutions outperform the federated learning-based ones. However,
it can be noticed that by increasing the number of orbital planes, the number of
completed rounds decreases in case distributed learning-based strategies are applied,
while it increases up to a maximum in case "FL w/ all ISLs" is considered. The
behavior of the distributed learning solutions is due to the fact that, even though
by increasing the number of orbital planes the communication opportunities among
satellites on different orbital planes are more numerous, again this increase is not
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enough to allow for the sharing of an increased number of models to conclude a
learning round in the same time span, leading to an overall decrease in number
of completed rounds in a time cycle. However, this decrease becomes milder by
increasing the number of orbital planes, since this reduces the distances between
couples of satellites on different orbits, increasing the number of communication
opportunities until this is high enough to allow for the sharing of an increased
number of models in almost the same time span. Instead, by looking at "FL w/ all
ISLs" solution, it is possible to notice that the number of completed rounds increases
for Nop ≤ 4, and decreases when Nop > 4. This is due to the fact that, by increasing
the number of orbital planes, there are both an increase in the communication
opportunities among satellites appertaining to different orbital planes and in the
communication opportunities among satellites and ground. This leads to the increase
in number of completed rounds for Nop ≤ 4. However, when Nop = 4, any couple
of satellites can communicate, regardless of the occupied orbital plane, because
intra-orbital ISLs are always active and the position of orbital planes is such that at
any time there is at least a satellite of an orbital plane being able to communicate
with a satellite of any other plane. Furthermore, for this number of orbital planes,
at any time there is at least a satellite being able to communicate with the ground.
It follows that any satellite in the constellation can communicate with the ground
station at any time. Obviously, this property will be still valid by increasing the
number of orbital planes, and the number of communication links between orbital
planes will even increase with Nop. However, for Nop > 4, a higher number of models
has to be shared with the ground because of the increased number of satellites, and
this requires a higher amount of time because of the higher amount of data to be
transmitted, leading to a decrease in number of completed rounds in a time cycle
with respect to the case Nop = 4, since the increased number of communication
opportunities is not high enough to allow for the increased number of models to be
transmitted in the same time span. Finally, in case no inter-orbital ISL is leveraged,
like in "FL w/o inter-orbital ISLs" and "FL w/o ISLs" solutions, there is no advantage
in increasing the number of orbital planes, and the number of completed rounds
in a repeat cycle decreases when Nop increases because of the increased number of
satellites having to communicate with the ground to complete a learning round.
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Figure 4.4. Number of completed rounds in a repeat cycle for different distributed learning-
based and federated learning-based strategies, obtained by varying the number of model
parameters and by fixing the number of satellites Nsat = 14, the number of orbital
planes Nop = 2, the local learning time τ = 1 min, and placing a single ground station
in Kiruna (Sweden).

I also analyse the impact of the number of model parameters on the number
of completed learning rounds in a repeat cycle. In particular, I considered Nmp ∈
{105, 106, 107, 108, 109}, I fixed the number of satellites Nsat = 14, distributed over
Nop = 2 orbital planes, I assumed a local learning time τl = 1 min and a single
ground station placed in Kiruna. Please notice that, even though the local learning
time is actually dependent on the number of model parameters, it also depends
on the available computational capacity. For this reason, I left the local learning
time as an analysis parameter that will be investigated further on. Results shown
in Fig.4.4 allow to conclude that distributed learning-based strategies outperform
the federated learning-based ones for any value of the number of model parameters.
However, the number of completed rounds decreases when Nmp increases. This is
due to the fact that, by increasing the number of parameters, there is an increase
in the amount of data to be transmitted, and, consequently, in the time needed to
accomplish the data transfer, making each learning round longer. However, in case
of distributed learning, since it is not necessary to wait to first transfer all local
models to the ground and then receive the updated global model from the Earth,
there is an overall shorter duration of model distribution phase, which allows for
completing a round in a shorter time and, consequently, to have a higher number of
completed rounds in a repeat cycle.
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Figure 4.5. Number of completed rounds in a repeat cycle for different distributed learning-
based and federated learning-based strategies, obtained by varying the learning time and
by fixing the number of satellites Nsat = 14, the number of orbital planes Nop = 2, the
number of model parameters Nmp = 106, and placing a single ground station in Kiruna
(Sweden).

Instead, in Fig.4.5 I investigate the impact of local learning time on the number of
completed rounds in a repeat cycle, considering τl ∈ {1, 10, 20, 30, 40, 50, 60} min, a
number of model parameters Nmp = 106 and, again, Nsat = 14 satellites distributed
over Nop = 2 orbital planes and a single ground station in Kiruna. It can be
noticed that, even though distributed learning-based solutions outperform federated
learning-based ones for small τl values, the difference in the number of completed
rounds in a repeat cycle becomes marginal as τl increases. This is a consequence of
the fact that, by increasing τl, the contribution to the time to complete a learning
round of the local learning time increases with respect to the model distribution time.
In particular, in the overall duration of a learning round, the more τl increases, the
more negligible model distribution time is: for this reason, since the chosen strategy
only impacts on the model distribution phase duration, the differences between the
considered strategies in the number of completed rounds decrease as τl increases.
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Figure 4.6. Number of completed rounds in a repeat cycle for different distributed learning-
based and federated learning-based strategies, obtained by varying the number of ground
stations and by fixing the number of satellites Nsat = 14, the number of orbital planes
Nop = 2, the number of model parameters Nmp = 106, and the local learning time τ = 1
min.

Results in Fig.4.6 give insight on the impact of the number of ground stations
on the number of completed learning rounds in a repeat cycle for the different
considered strategies. In particular, I set the number of satellites Nsat = 14, the
number of orbital planes Nop = 2, the number of model parameters Nmp = 106,
the local learning time τl = 1 min, and I consider an increasing number of ground
stations, mainly provided by Amazon Web Services[99], grouped as described in the
last numerical analysis commented in Subsection 2.5.2.

From Fig.4.6 it is possible to notice that all solutions providing for leveraging
ground stations, i.e., "DL w/ GS" and the three federated learning-based strategies,
improves in terms of number of completed rounds in a repeat cycle when the
number of ground stations increases, as a consequence of the fact that there are
more communication possibilities with ground stations when their number increases.
Furthermore, it is important to underline that since the ground stations are considered
to be interconnected, as soon as a model is available on one of them, it will be
immediately available on each of them, facilitating the model sharing within the
constellation, since a model can be transferred between two satellites not being
able to directly communicate but simultaneously flying over two different ground
stations. This reflects in the fact that the "DL w/ GS" strategy allows for completing
a slightly higher number of rounds in a repeat cycle than the "DL w/o GS", and the
"FL w/ all ISLs" solution achieves almost the same performance as the distributed
learning-based ones for a high number of ground stations.
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Figure 4.7. Validation accuracy in training a VGG16-based satellite image classification
model on the EuroSAT dataset by applying different distributed learning-based and
federated learning-based strategies, obtained by setting the number of satellites Nsat = 14,
the number of orbital planes Nop = 2, the number of model parameters Nmp = 106, the
local learning time τ = 1 min and a ground station in Kiruna (Sweden).

Finally, I evaluate the time of convergence of the validation accuracy when
the different strategies are applied. For this analysis I consider to have Nsat = 14
satellites distributed over Nop = 2 orbital planes, a local learning time τl = 1 min
and a single ground station placed in Kiruna. I also set the maximum number of
learning rounds to be Nr = 100 and the number of local learning epochs Nep = 1. I
consider a land cover classification task based on the EuroSAT dataset[105], made
of 27000 64x64 images, taken by Sentinel-2. Images are classified with respect to 10
classes (AnnualCrop, Forest, HerbaceousVegetation, Highway, Industrial, Pasture,
PermanentCrop, Residential, River, SeaLake), depending on the represented scene.
I am aware of the fact that training a classification model requires labeled data,
and this may be not the case when considering images acquired from satellites to
be used for training without previously transmitting them to the ground. However,
since the focus of this chapter is on the communication strategy underlying the
learning algorithm, I only want to provide some insight on the performance of the
communication scheme by focusing on a general machine learning task, as it happens
also in other works [17, 18, 19, 20, 106], since this insight may be also extended to
more sophisticated machine learning techniques, like self-supervised learning, which
are beyond the scope of this chapter. Furthermore, it is important to underline that,
given the model to be trained, the chosen strategy does not influence the accuracy
obtained when training converges, but only the time needed to reach validation
convergence. Following [107], I consider VGG16[108] as classification model, pre-
trained on ImageNet dataset, to which a regular densely-connected neural network
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of 2048 units with ReLU activation function, a dropout layer with 0.2 drop rate,
and a regular densely-connected neural network of 10 units with softmax activation
function are added. I will assume that only these added layers will be trained, thus,
the number of model parameters to be exchanged will be equal to Nmp = 4216842.
Differently from [107], I assume that the model is not trained on a central node, but
each satellite trains its own local model during local training phase. In particular,
each satellite will have a different dataset, since satellites fly over different areas.
However, after some orbits, each satellite will have flown over a high amount of
different areas, thus, I suppose that in datasets of each satellite there are samples
for all classes, but the distribution of samples on each orbital plane with respect to
the different classes is different. In particular, I randomly split the initial dataset
to separate a 20% of samples for validation. For each image in the training set, I
generate a randomly rotated version and a noisy version of it, and I add the two new
images to the training set for augmentation purposes. In order to obtain the training
sets associated to each satellite, for each class I split the samples between the two
orbital planes in random proportion, and the samples for each class associated to
each orbital plane are equally and randomly associated to each satellite on the orbital
plane. This also allows to obtain non-IID training sets on the satellites. I thus
evaluate the accuracy of the global model (i.e., of the model obtained by aggregating
the locally trained models) on the validation set for each learning round. Since I
know how long each learning round lasts when the different strategies are applied, it
is easy to report the validation accuracy in time, as shown in Fig.4.7. I also evaluate
the time to converge as the time at which validation accuracy reaches a value that
is not improved in the next 10 learning rounds. Values of the time to converge are
summarized in Tab.4.3.

Table 4.3. Time to converge

Strategy Time to converge
DL w/ GS 1.25
DL w/o GS 1.25

FL w/ all ISLs 1.68
FL w/ intra-orbital ISLs 4.13

FL w/o ISLs 558 (23.3 days)

From presented results, it can be noticed that by using strategies providing for
the use of inter-orbital ISLs, like in case of distributed learning-based and "FL w/ all
ISLs" schemes, validation accuracy converges much faster than in case of strategies
where inter-orbital ISLs are not used. This is due to the fact that, as previously
discussed, by leveraging inter-orbital ISLs there is an increase in the communication
opportunities among satellites. Furthermore, distributed learning-based strategies,
thanks to a reduced duration of the model distribution phase, allows to reach
convergence in a shorter time than any federated learning-based solution.

4.4 Conclusions
In this chapter, I proposed and evaluated a distributed learning solution in the
context of EO constellations with satellites forming a network by means of ISLs.
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Similarly to federated learning, the proposed solution allows to train ML models
directly in-orbit, without having to share a dataset of acquired images with a central
node on ground where a centralized model training is accomplished. In this way, it is
possible to obtain a reduction of both bandwidth usage and energy consumption on
ground stations. The proposed solution differs from the federated learning one in the
fact that there is no central node which has to receive the local models to aggregate
them in an updated version of the global model, since I assume that satellites share
local models with each other until each satellite has received the local models of the
others, in order to locally calculate the updated global model. Numerical results
show that distributed learning outperforms federated learning in number of learning
rounds completed in the unit time by increasing the number of satellites, of orbital
planes, of model parameters, of ground stations and by increasing the time needed
to accomplish local learning. These results provide evidence of a more efficient
bandwidth usage in case distributed learning-bases solutions are applied, since a
higher number of learning rounds allows to satisfy the need for reaching accuracy
convergence as fast as possible. This is also confirmed by results related to the time
needed to reach validation accuracy convergence, evaluated on the training of a deep
learning-based land coverage classification model by means of the EuroSAT dataset.
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Conclusions and Future
Developments

In this thesis, I designed and investigated strategies to allocate transmission, storage
and processing resources in a constellation dedicated to EO where satellites form
a network by means of intra-orbital and inter-orbital ISLs. Differently from works
available in literature, I proposed to leverage this network to enable task offloading
within the constellation, in such a way that if a satellite has not enough resources to
elaborate images, this processing can be executed by another satellite. In particular,
the presented strategies aimed to minimize the constellation total operating cost, to
minimize the energy amount consumed by ground stations to process EO images, or
to support in-orbit training of deep learning models by means of distributed learning
techniques.

As far as operating cost minimization is concerned, I first introduced and solved
an optimization problem to jointly allocate processing and communication resources
to reach this goal. Furthermore, since the optimal problem resulted to be NP-hard, I
also proposed two heuristics, which have been validated against optimal results and
applied in a real orbital scenario, proving that they outperform benchmark solutions
where task processing can happen only either on the acquiring satellite or the ground
station. Furthermore, even though these strategies aim to minimize costs instead of
delay, they also outperform state-of-the-art solutions in delivering information to
the ground in a shorter time. An interesting extension of the proposed strategies
would be to consider that an image processing service may be made of different
tasks to be executed in a predetermined order, with each task being potentially
assigned to different satellites within the constellation, in order to complete the
service processing in a shared way. It is also important to underline that the proposed
strategies are centralized. In particular, they provide for a ground control station
knowing the positions of satellites in advance by means of orbital mechanics, and,
consequently, the instants during which each ISL is active and a region of interest
is flown over are supposed to be known a priori. This allows the central ground
control station to define where each image has to be processed and the routes to be
followed during a repeat cycle beforehand. Thus, the resource allocation decision
is uplinked to satellites executing it. However, this operation scheme may be not
robust to link failures, since these cannot be provided in advance. Furthermore, in
case of a change in the regions of interest over which images have to be acquired,
the full resource allocation decision has to be recalculated. In order to overcome
this potential issues, it may be interesting to extend the proposed strategy in a
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distributed and dynamical sense, providing for resource allocation decisions to be
made in time by the single satellites, which collaborate in such a way that a local
decision made by a single satellite contributes to reach a global optimum.

Moving to the minimization of ground station energy consumption related to EO
image processing, I proposed and investigated two optimal strategies to leverage at
most in-orbit processing, avoiding for image elaboration to be executed on-ground.
It is important to underline that different resource allocation decisions may lead
to the same optimal amount of on-ground energy saving. In particular, in the first
optimal strategy I only considered the maximization of energy saving on ground
stations, without taking into account any optimization of the on-board batteries to
preserve satellite operative life. In this case, since the proposed formulation resulted
to be NP-complete, I also introduced a heuristic-based strategy, which has been
validated against the optimal scheme and applied to a real orbital scenario, showing
considerable improvements with respect to benchmark solutions. Instead, a second
optimization problem aimed to jointly maximize the on-ground energy saving and
minimize the on-board batteries depth-of-discharge to optimize the satellite operative
life. Results related to both strategies also provided useful insights on how the
processing capacity (i.e., CPU clock frequency) available on-board of satellites should
be chosen to achieve optimal performance. In particular, results show that these
are not obtained by installing CPUs having the highest clock frequency possible,
since energy consumption quadratically increases with the CPU frequency and
limitations on energy available on-board would prevent the full leverage of the
available computational capacity. A first extension of the proposed strategy would
be, again, to consider that a service may be made of more than a single task. For
this reason, strategies to in-orbit elaborate most of these tasks to save energy on
ground stations may be proposed. Similarly to the strategies aiming to minimize
operating cost, also these strategies are centralized and may be not robust to link
failures or not scalable whenever frequent changes in regions to be monitored happen.
For this reason, an interesting future development of this research would be, again,
the extension of the proposed strategies in a distributed and dynamical manner.
Furthermore, the heuristic proposed in case no limitations on battery usage are
considered provided for the use of an empirically defined energy margin to be left
on nodes to prevent resource shortage due to the greedy behaviour of the proposed
algorithm. However, it may be interesting to investigate further ways to estimate
this margin, or to design strategies that do not have to rely on it. Finally, since
the optimization problem proposed to jointly optimize on-ground energy saving and
in-orbit battery depth-of-discharge is also NP-complete, a near-optimal strategy to
obtain a resource allocation decision in reasonable time in a real orbital scenario
may be proposed.

Regarding the support to in-orbit distributed learning, since such solution allows
to reduce both bandwidth usage and ground stations energy consumption with
respect to centralized learning schemes, I proposed a communication strategy where
satellite networks made of intra-orbital and inter-orbital ISLs are leveraged to
allow for satellites exchanging their locally trained models in such a way each
satellite has the possibility to calculate a global model on its own, without having
to lean on a central aggregating node as it happens in federated learning strategies.
Distributed learning schemes enabled by this communication solution show to
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outperform federated learning-based ones in completing a higher number of learning
rounds in a repeat cycle, and this allows for reaching model convergence in a shorter
time, as it has been confirmed by evaluating a distributed training of a deep learning
satellite image classification model on the EuroSAT dataset. The proposed strategy
provides for each satellite to share all the received models with other satellites,
without any partial aggregation of the received local models in a new single model.
Since this could lead to a further saving in bandwidth and, consequently, to the
completion of a higher number of learning rounds in a shorter time, allowing to
further reduce the time needed to reach model convergence, it may be interesting
to extend the proposed communication scheme to embed both an optimal strategy
enabling satellites to aggregate received weights and biases in partial model to
be shared, and an appropriate management of the received aggregated models to
correctly evaluate the global one.
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