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A B S T R A C T

The increasing production of solid waste rate in urban areas plays a critical role in sustainable development. To
mitigate the adverse effects of waste and enhance waste management efficiency, this paper introduces a holistic
approach that notably reduces the overall cost while mitigating social and environmental impacts. Central to the
system's efficacy is the critical process of waste sorting, which enhances the output value of the waste manage-
ment system. While previous studies have not extensively addressed simultaneous waste collection and sorting,
this paper provides an innovative integrated framework. This approach Integrates waste collection with various
bins, followed by their transfer to separation centers. At these centers, waste is categorized into organic and non-
organic varieties, which are then dispatched to a recovery center at the second level. In the context of optimizing
the routes at both levels, this paper presents a green, multi-objective location-allocation model. This model is de-
signed to optimize the number and location of separation center facilities. Since the routing problem is influ-
enced by the facility location model, it is addressed as a multi-depot green vehicle routing problem, integrating
real-time information from IoT-equipped bins. This paper also proposes the vehicle routing problem with a split
pickup, aiming to minimize cost, CO2 emissions, and visual pollution. The developed mathematical models for-
mulate the proposed problem and it is solved by the GAMS optimization software, to apply an exact method,
while Social Engineering Optimization and Keshtel algorithms are deployed to solve the routing problem for
larger sizes. The proposed approach offers a comprehensive and sustainable solution to waste management, fill-
ing crucial gaps in current research and practice.

1. Introduction

Due to the rapid rise of world population, urbanization, and growth
of industrial production, the amount of waste generated worldwide is
projected to surge to 2.2 billion tons over the next thirty years [1]. This
substantial increase leads to an approximate cost of $600 billion for
managing Municipal Solid Waste (MSW) [2]. The MSW concept refers
to the unwanted remnants originating from households, institutions, in-
dustrial establishments, and construction and demolition sites. These
wastes can be broadly categorized into six main groups: bio-waste, plas-
tics, paper, glass, metals, and other miscellaneous waste types [61][3].
On the other hand, with the continuous reduction in available space for
municipal waste in landfills, the spotlight in waste management is pro-
gressively shifting toward thermal waste recovery. As illustrated in Fig.
1a, the significant presence of bio-waste (31 % contribution) within

solid waste streams presents an optimistic potential for energy recovery
via Waste-to-Energy (WTE) technology. This optimistic potential of
WTE technology in harnessing energy from bio-waste further empha-
sizes the importance of exploring and implementing sustainable waste
management strategies.

Biowaste, which encompasses all biodegradable organic waste
along with fossil fuels like oil, coal, and natural gas, is emerging as a
dominant source of renewable energy today [4]. As seen in Fig. 1b,
there has been a notable increasing trend in biopower generation. In
2019, electricity generated globally from biomass reached a total value
of 655 terawatt-hours, underscoring its potential as a significant con-
tributor to meeting worldwide electricity demand. Additionally, the
waste-to-energy market, encompassing digestion and thermal power
generation techniques, mitigates the risks associated with pollutants
emitted from landfills. These pollutants include parasites, volatile or-
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Fig. 1. Biomass contribution and worldwide electricity generation by Biomass (a. Source: http://www.seperate-wastesystems.eu/, b. www.statista.com,World Bioen-
ergy Association; IEA; ID: 481743).

ganic compounds, carbon dioxide, and methane gas. Therefore, trans-
forming waste into energy not only provides a sustainable energy solu-
tion but also plays a crucial role in reducing environmental hazards.

MSW management encompasses a range of activities, including
waste generation, monitoring of storage sites, waste collection, trans-
portation, processing, and disposal [5]. In order to effectively address
waste-related challenges, municipalities require an efficient mechanism
to control waste, monitor the status of waste bins, optimize capacity,
and plan collection routes in a sustainable manner. To address these
needs, an Internet of Things (IoT)-based smart waste management solu-
tion can provide cities with the necessary tools to manage the increas-
ing volume of MSW [65]. The proposed technique relies on data col-
lected from smart bins installed throughout the city to determine the
waste level [6,7].

In this study, the filling status of smart IoT-based bins is simulated
based on real-time information obtained from the smart bins and
through interviews conducted with municipal authorities. The simula-
tion considers two distinct time periods: nighttime collection and day-
time collection, with the latter prioritizing areas with higher levels of
garbage production, such as those near markets or other high-traffic ar-
eas. By incorporating smart waste management practices, the study
aims to address the inefficiencies observed in traditional waste manage-
ment approaches, such as unnecessary collection of waste, leading to
increased costs and delays in waste collection. These inefficiencies can
result in a significant increase of approximately 70 % in annual collec-
tion costs. Additionally, inefficient route planning leads to congestion,
requiring more fuel and trucks to complete the collection process.
Therefore, the carbon footprint associated with waste collection is am-
plified by approximately 50 % .

The proposed smart waste management system aims to mitigate
these issues by leveraging real-time data and optimizing waste collec-
tion routes. By accurately monitoring the fill levels of bins and imple-
menting efficient collection schedules, unnecessary pick-ups can be
minimized, resulting in cost savings and reduced environmental im-
pact. Through the implementation of IoT solutions, garbage vehicles
can be equipped with more efficient routes and receive notifications
from drivers when emptying is required. By utilizing smart IoT-based
bins in both time periods, we gain access to real-time information about
the amount of trash in each bin. This allows us to create a list of bins
that require emptying, enabling us to optimize routing specifically for
this category of bins. This approach eliminates the need to visit all bins,

reducing transportation costs and the associated pollution caused by
unnecessary travel [8,9].

One of the methodological contributions of this proposed study is
the development of a three-step framework that considers the following
models: facility location for separation centers, vehicle routing opti-
mization from separation centers to bins, and from the recovery center
back to the separation centers. The first model focuses on long-term and
strategic objectives, while the second model addresses operational ob-
jectives in routing optimization, resulting in the minimization of trans-
portation costs and the use of the fewest possible number of vehicles for
waste collection. In the proposed waste collection framework, the loca-
tion of separation centers is of particular importance as it impacts trans-
portation costs and pollutant emissions. Moreover, the location of sepa-
ration centers influences the determination of their number. Also, the
location and number of separation centers play a vital role in determin-
ing the routes taken by vehicles for waste collection from bins, delivery
to separation centers, and subsequent transfer to recovery centers. Fi-
nally, the three-step framework is extended to include the optimization
of separation center locations, waste collection from bins to separation
centers, and the transfer of waste to recovery centers. This comprehen-
sive approach aims to address real-world waste collection challenges
and achieve sustainable waste management practices.

2. Literature review

The management of Municipal Solid Waste (MSW) comprises five
critical elements, including source waste handling, collecting and trans-
ferring, dumping, processing, and treating [10,11]. A significant por-
tion of the resources and cost is dedicated to the collection and trans-
portation of waste, accounting for approximately 80 % of the overall
MSW expense. This operation is influenced by different factors, such as
the city's road network, congestion, weather conditions, and citizen in-
teractions [12,13]. Concurrently, waste management's hierarchy un-
derlines the importance of source reduction, recycling, and waste trans-
formation in the overall waste management system. Source reduction
primarily aims to minimize waste generation, while recycling and
waste transformation are significant for reusing materials and have
been the focus of considerable research [14]. Moreover, it is essential to
consider non-decomposable waste since the processing and potential
transportation of non-decomposable waste to recycling centers can lead
to additional costs. In this regard, the optimization of separation center
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Fig. 2. A snapshot of the proposed network.

Table 1
Set of proposed models.
Sets Description

Set of bins,
Set of candidate locations for separation centers,
Set for recovery centers,
Index of demand points,
Index of candidate locations for separation centers,
Index of recovery centers.

locations plays a key role in enhancing the overall efficiency and effec-
tiveness of waste management systems, minimizing costs, and maximiz-
ing resource utilization.

Hence, it is worth noticing that MSW is a labor-intensive manage-
ment system that necessitates strategic efficacy due to the significant
distances (2 to 50 km for European and Central Asian cities) of bins
from separating waste production sites and final destinations such as
disposal or recovery facilities [15]. Given the transportation expenses
for waste, which lie between $20 to $50, formulating an efficient and

sustainable model to reduce costs while minimizing environmental, so-
cial, and economic impacts is necessary [16]. The sustainable develop-
ment goals outlined by the United Nations offer a framework to balance
the mentioned dimensions. Many of these goals can be achieved di-
rectly or indirectly through operational improvements and reductions
in fleet emissions. Numerous techniques have been explored to opti-
mize collection and transportation costs while minimizing environmen-
tal impacts. For instance, the Backtracking Search Algorithm has been
developed to address the capacitated vehicle routing problem by opti-
mizing vehicle routes minimizing distance, fuel consumption, CO2emissions, and collected waste. It introduces the concept of threshold
waste level (TWL) to reduce the number of bins that need to be visited,
with an optimal TWL range of 70 % to 75 % of total bin capacity . [17]
Proposed two multi-objective evolutionary algorithms to solve the ur-
ban waste collection problem considering priorities and the conflicting
goals of minimizing the total distance while maximizing the quality of
service. The results of their tests showed that the evolutionary algo-
rithms outperformed greedy strategies and the current routing method-
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Table 2
Parameters.
Parameters Explanation

Land price of separation center j,
The amount of generated waste in bin i (kg),
The distance between jth separation center and ith bin,
The distance between two separation centers,
Cost of carbon emission associated with transportation between
separation centers and bins,
Cost of carbon emission associated with transportation between
separation centers and recovery centers,
The construction cost of separation centers,
Capacity of jth separation center,
Minimum required capacity if a facility location is opened,
Cost of carbon emission associated with gas consumption at separation
center,
Cost of carbon emission associated with electricity consumption at
separation center,
Minimum allowed distance between two opened separation centers,
The minimum level of using an opened facility,
The maximum level of using an opened facility,
The minimum number of required facilities,
Unitary transportation cost per kilometer.

Table 3
Decision variables.
Variables Description

A binary variable and it equals to one if bin number i is assigned to
separation center j,
Equals to 1 if jth potential location is opened, otherwise it is 0,
Equal to 1 if separation center j is allocated to recovery center Re and 0,
otherwise.

Table 4
Set of proposed models.
Sets Description

Set of all nodes including separation centers, Dummy waste separation
centers, and garbage bins ,
Set for separation centers,
Set for bins,
Set of low capacitated vehicles,
Index of nodes,
Index of nodes.

ology applied in Montevideo. Furthermore, the best results are obtained
for a dynamic version of the problem using real-time information.

Indeed, the implementation of tracing systems to provide real-time
information plays a vital role in sustainable waste management by re-
ducing unnecessary bin visits. As such, the application of IoT technol-
ogy becomes crucial in the design of sustainable MSW management sys-
tems [18,19]. A smart integrated system consisting of four parts based
on the application of IoT was presented by [20]. The proposed system
measures the garbage level using sensors and displays it on a liquid
crystal display, allowing for efficient waste management by reducing
manpower, waste spillage, time, and overall costs. The IoT-based waste
collection system was evaluated by applying modified Entropy mea-
sures and a multi-criteria decision-making method and considering un-
certain parameters [21,22].

Also, the use of IoT for real-time information makes it possible to
have dynamic routing that is currently underutilized in such systems
[23–25]. [26] Designed a greedy adaptive search procedure to deter-
mine the routes for visiting the selected bins that minimize the number
of visited bins. Only bins with the highest fullness level can be selected
to collect because of the maximum shift duration constraints. Jorge et
al., [12] designed a framework to consider dynamic routes for the smart
waste collection system using real-time information and developed a
hybrid metaheuristic algorithm to determine, firstly, the day of collec-

Table 5
Parameters.
Parameters Description

Fixed cost of low capacitated vehicle k,
Carbon dioxide emission penalty for each vehicle per kilometer,
Social impact cost associated with each vehicle k,
The amount of waste in the jth bin (kg),
Vehicle capacity k (kg),
Distance between two nodes i and j,
travel time between two nodes i and j,
Time to load waste from the ith bins,
Maximum time available to collect waste and transport it to waste
separation centers,
Maximum time available for garbage collection,
Maximum allowed emission amount,
Maximum social impact allowed,
scalar for the sub-tour deletion constraint,
A big number,
Transportation cost per unit kilometer,
Priority of bin j which higher value indicates a higher priority,

ths Threshold to determine the high priority bins if the waste exceeds a
predefined value,
maximum allowed transportation cost,
Penalty for violation of collection hours limit.

Table 6
Decision variables.
Variables Description

It is equal to 1 if the vehicle k moves between two nodes i and j,
otherwise is equal 0,
It is equal to 1 if the ith bin is assigned to the k, otherwise is equal 0,
The amount of waste collected between two nodes i and j by the vehicle
k,
The time of the kth truck arriving at the node j,
It is equal to 1 if the arrival time of the kth vehicle to the jth garbage bin
is greater than the maximum time available for garbage collection
otherwise 0,
It is equal to 1 if the ith bin with priority j is assigned to the kth vehicle,
otherwise is equal 0.
Variable for sub-tour elimination constraint,
Total waste collected by vehicles with low-capacity k.

tion and then the bins that must be visited. Moreover, collection of
waste in a two-echelon waste collection, leveraging Industry 4.0 con-
cepts and IoT devices is addressed to minimize operational costs and
environmental impact. The system focuses on optimizing waste collec-
tion from bins to separation centers and the transfer to recycling centers
by implementing meta-heuristic algorithms and novel heuristics [27].

Recently, [28] proposed WMS in smart cities by incorporating real-
time waste bin fill level data obtained through IoT-based devices. Two
different sub-models were proposed based on the vehicle routing prob-
lem: the first determines the optimal routes to collect waste from bin to
separation centers while the second one maximizes the recovery value
and minimizes visual pollution by efficiently transporting waste from
separation centers to recovery centers. Different threshold waste levels
were investigated and a waste level between 70 % and 75 % was found
as the best one to optimize transport efficiency, traveled distance, and
collected waste amount. While dynamic routing is crucial, which opti-
mizes the collection of waste from bins to separation centers and fur-
ther to recovery centers, it's equally important to consider the strategic,
tactical, and operational decisions in WMS. These decisions have signif-
icant impacts on the environmental, social, and economic aspects of
waste management, highlighting their vital role in sustainable develop-
ment [29].

While most of the previous research considered a separate waste
management center for each zone of the smart city, the current paper
highlights that the location and the number of these centers are crucial
elements of the logistic network that directly influence the routing
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Table 7
Set of proposed models.
Sets Description

Set of all nodes including separation centers and recovery centers,
Set of high capacitated vehicles,
Set for recovery center,
Set of separation centers,
Index of nodes,
Index of nodes,

Table 8
Parameters.
Parameters Description

Fixed cost of high capacitated vehicle k,
Carbon dioxide emission penalty for each vehicle per kilometer,
Maximum allowable visual pollution,
Amount of waste in the ith separation canter (kg),
Vehicle capacity k (kg),
Distance between two nodes i and j,
Travel time between two nodes i and j,
Time to load waste from the ith separation centers,
Maximum time available for waste collection,
Maximum time available for waste collection,
Maximum amount of allowed emission,
Maximum social impact allowed,
Maximum allowable transportation cost,
Scalar for the sub-tour deletion constraint,
Transportation cost per unit kilometer.

Table 9
Decision variables.
Variables Description

It is equal to 1 if the vehicle k moves between two nodes i and j,
otherwise is equal 0,
It is equal to 1 if the ith bin is assigned to the k, otherwise is equal 0,
The amount of waste collected between two nodes i and j by the vehicle
k,
variable for sub-tour elimination constraint,
The total amount of waste collected by the kth high-capacitated vehicle,

Avg Average load of vehicles which can be calculated by division of to
number of vehicles,
Total amount of waste collected by all high capacitated vehicles at the
recovery center.

problem solution. However, facility location decisions are long-term
and unchangeable, unlike flexible routing decisions which bins location
problem, for example, has been investigated in several previous works
[30–33]. As routing problems can be solved using real-time data from
sensor-equipped bins, the routes can be updated frequently but the re-
lated problem cannot be integrated with static facility location. This pa-
per extends the previous work by [28]. Instead of assuming different
zones and one separation center for each one, the proposed model de-
velops a green facility location model that determines the number and
location of separation centers and to assign bins to each opened facility.
Moreover, the formulated location problem avoids establishing separa-
tion centers that are near other opened facilities. Regarding the routing
problem, a multi-depot routing problem is suggested, enabling depot
resource sharing to cover all bins. Additionally, constraints are imple-
mented to maximize utilized truck capacity, minimize travel distance,
ensure maximum load, and reducing energy consumption and pollu-
tion.

Moreover, it is important to mention that the sustainability of MSW
management practices calls for a shift from incineration towards more
environmentally friendly options such as composting, which presents a
viable solution for waste transformation [34]. This context forms the
basis of our proposed two-stage mathematical model to address the
routing problem. This system facilitates waste movement from bins to

separation centers and subsequently to recovery centers separately.
Separating them into two distinct models is justified by several motiva-
tions. Firstly, the processing time and storage requirements at separa-
tion centers, where sorting and pre-processing take place, can extend
beyond a day. So, it is more practical to model them separately from
collection and transportation processes. Secondly, since separation cen-
ters can store collected waste for extended periods, the transportation
of waste from these centers to the recovery centers does not need to
happen on the same day as the collection. Also, the storage capacity at
separation centers provides a buffer that decouples the first and second
levels of routing. This buffer allows for differences in the capacity of the
vehicles used in the two routing levels. Lastly, dynamic factors such as
processing rates, demand, and vehicle availability can vary indepen-
dently, and separate models provide flexibility to adapt to these
changes. These motivations highlight the practicality, flexibility, and
efficiency of treating the two routing levels as separate models.

3. Problem statement and mathematical formulation

Problem statement and mathematical formulation are discussed in
this section. The models introduced here address the following issues:
location of waste separation facilities, vehicle routing for urban waste
collection, and transfer of waste from separation to recovery centers.
Each of them is presented in the subsequent subsections. The initial is-
sue involves identifying the optimal vehicle routing within the city cen-
ter, whereas the subsequent issue involves mapping the routes between
the separation center and the recovery center, both of which are situ-
ated on the city's outskirts. Since the routing problem is affected by the
location of the separation center, a location facility problem is proposed
to find the optimal position of separation centers, which is a long-term
decision plan (See Fig. 2).

It is crucial to note that the primary challenge is mainly within the
city center, because of some factors such as changes in travel time and
other uncertain factors that can affect routing problems. Using IoT de-
vices to collect real-time information is a convenient strategy as it pro-
motes efficient decision-making and manages such uncertainties. By
leveraging IoT-based smart waste management systems, municipalities
can enhance their waste management practices, improve operational
efficiency, and contribute to the overall sustainability of their cities. A
key use of IoT devices in waste management systems is the measure-
ment fill-up levels by smart waste bins. In the proposed approach, the
system defines three fill-up levels to monitor the status of waste in the
bins. This information enables cities to efficiently allocate resources
and optimize waste management processes. These three levels are iden-
tified as follows:

• Empty Level: This is the initial stage of the waste bin, indicating
that it has recently been emptied. The empty level serves as a
reference point for the system to monitor the bins' status and
predict the time it takes to fill up again.

• Half Level: The half level is used to check the new status of bins.
It allows the system to anticipate the fill-up time of these bins
based on historical data and patterns. By predicting the fill-up
time, waste collection drivers can incorporate the collection of
bins at the half level during their regular visits, further optimizing
their routes and reducing operational costs.

• Full Level: Upon detecting a full level, the system promptly
notifies both the municipal authority and waste collection drivers
of the need for a high-priority collection service. This ensures that
full bins are promptly addressed and prevents any potential
overflow or inconvenience to residents.
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Fig. 3. The CO2 emission penalty is attributable to electricity and gas consumption.

Table 10
Data related to the location-allocation model.
Parameter Values Unit

1000 –
j, w 6 –

1 –
[1.764e +11, 2.06e +11, 2.1e +11, 3.68e +
11, 1.842e +11, 1.276e +11, 1.83e +11]

IRR

Uniform ∼ [362, 394, 418, 449, 480] Kilogram (Kg)
Uniform ∼ [1.1672, 23,1432] km
Uniform ∼ [0.0012, 26.57] km
[12.2162, 24.8776, 29.6532, 31.7656, 23.8765,
10.9845, 9.1021]

km

6000 CO2 emission per Km
400 Kg CO2 to cost
Uniform ∼ [300,000, 365,159, 456,280, 834,
470, 417,690, 289,340, 414,970]

Kilogram (Kg)

Uniform ∼ [7e +11, 8.1746e +11, 8.33332e +
11, 1.46032e +12, 7.20458e +11, 6.6235e +
11, 7.26198e +11]

IRR

64 Gas conversion factor
0.64 KWh to kg CO2
1000 The British thermal

unit (Btu) per kg
0.15 KWh per kg
1200 Transportation cost

per Km
4 Kilogram (Kg)
1000,000 Btu factor

3.1. Separation center location problem

The number of optimal facilities is determined based on initial fixed
costs, transportation costs, emission costs associated with transporta-
tion services, pollution costs for opened facilities, and capacity utiliza-
tion. Some constraints are introduced to ensure that candidate locations
are not opened near other existing facilities and that the total capacity
must be able to comply with the total generated demand. The single al-
location hub location problem is also considered in this paper, which
implies that each demand point must be allocated and served by only
one of the opened facilities [35]. The costs associated with opening a
potential location include the cost of land and the construction of sepa-
ration centers. Also, the opening costs depend on the different capaci-
ties of each candidate location. In addition to opening costs, the objec-
tive function also considers transportation costs, carbon emission costs
associated with transportation at the first level, and pollution costs re-
lated to gas and electricity consumption at separation centers.

However, the carbon emission cost of vehicles from separation cen-
ters to recovery centers and the deviation from the minimum required

capacity for each opened separation center have been considered sepa-
rately. These costs are included in a second objective function, which
considers the opening of facilities with the required capacity and incen-
tives for larger capacity to minimize operational costs. The model is en-
couraged to open facilities with a capacity closer to the required value
by penalizing the deviation from the minimum required capacity. The
trade-off between minimizing carbon emissions and maximizing capac-
ity utilization is made by defining a weighting factor that gives more
importance to maximizing capacity utilization. The value of this factor
can be adjusted using information integration methods by leveraging
real-time or historical data. This process involves identifying the rele-
vant data sources for the decision-making and setting criteria to adjust
the weighting factor considering various factors such as fluctuations in
energy prices and changes in waste generation rates [36].

The location problem is solved when the emission costs of transport-
ing waste are minimized at both levels, from bins to separate centers
and from separate centers to recovery centers. The two goals are con-
flicting because minimizing the emission costs of the first level forces
the model to open candidate locations near bins while minimizing the
emission costs of the second level aims to close separation centers to re-
covery centers. The model also considers a minimum distance between
every two locations before opening a new location, which can result in
a wider coverage area. The main assumptions are reported in the fol-
lowing.

• The amount of waste generated in each bin is deterministic.
• Only one recovery center is assumed.
• Different construction costs are assumed to open candidate

locations.
• The land price is fixed and equal for all locations.
• The candidate locations are assumed to have different capacities.

The sets of variables, the model parameters, and the decision vari-
ables of the model are reported in Tables 1–3. Eqs. (1)–(10) provide the
formulation of the optimization problem.

(1)

(2)

subject to:
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Fig. 4. The optimal location for separation centers.
©OpenStreetMap contributors—www.openstreetmap.org/copyright.

Table 11
Optimization results of the separation center location problem.

Dimension Number of bins 1000
Candidate Location 6
Recycling center number 1

Objective
elements

Optimal Location for separation center 1 and 3
Optimal number of assigned bins to separation
center number 1

400

Optimal number of assigned bins to separation
center number 6

600

Land cost 2,404,000,000,
000 IRR

Capacity cost 2,110,000,000,
000 IRR

Transportation cost 34,600,000,000
IRR

Pollution penalty from bin and separation
center cost

44,300,000,000
IRR

Separation center pollution penalty cost 27,400,000,000
IRR

Pollution cost penalty from separation center
and recycling center

84,600,000 IRR

Value of the first objective function 1,730,000,000,
000 IRR

Value of the second objective function 83,600,000 IRR
Value of the total objective function 1,730,083,600,

000 IRR

(3)

(4)
(5)
(6)
(7)
(8)

(9)

Table 12
The data related to routing problem to collect waste from bins to separation
centers.
Parameter Values Unit

1000 –
120 –
293,499,996 The cost of utilizing vehicles

S [1,2] Time interval
1100 CO2 penalty per unit distance and vehicle
Uniform ∼ [10,
10 × 106]

Social penalty per unit distance and vehicle
(dollars)

Uniform ∼ [350, 500] Kg
[2500,6000] Kg
Uniform ∼ [0.0096,
8.0603]

km

With respect to distance Time in minutes
2 Time in minutes
320 Time in minutes
250 Maximum time available
400,000,000 Maximum pollution (IRR)
400,000,000 Maximum social impact (IRR)
2 –
1500 Cost per Km
400,000,000 Maximum cost (IRR)
900,000 Penalty for violation of available time

(10)

Eq. (1) represents the first objective, which is composed of land and
construction costs, transportation costs of the first level, carbon emis-
sion costs associated with transportation between separation centers
and bins, and pollution costs related to gas and electricity consumption
at separation centers. Eq. (2) considers the carbon emission costs of ve-
hicles from separation centers to recovery centers. Hence, the locations
must be selected by trading off these two conflicting objectives, with
the aim of minimizing environmental impact of transportation at both
levels and opening facilities with a capacity closer to the required
value. The conflicting objectives force the model to balance the need
for meeting demand with the goal of minimizing operational costs

7
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Table 13
Optimization results of the routing model from bins to separation center
(First period).

Dimension Number of bins 600
number of separation center 2
Total travel time 4678.2689 min
Total distance 1732 km

Objective
elements

maximum traveled distance 45.6732 km
Waste quantity in separation center number 1 274,266 kg
Waste quantity in separation center number 3 0 kg
Number of vehicles 56
Number of assigned bins to separation center
number 1

667

Number of assigned bins to separation center
number 6

0

Sustainability goal 16,143,
426.6 IRR

Vehicle fixed cost 12,450,400 IRR
Transportation cost 10,865,000 IRR
Cost of capacity 457,210 IRR
Penalty of time window 0 IRR
Total cost 37,637,

036.7 IRR

Table 14
Optimization results of the routing model from bins to the separation centers
(second period).

Dimension Number of bins 400
Number of separation center 2
Total travel time 4448.9614 min
Total distance 1568 km

Objective
elements

Maximum traveled distance 41 km
Waste quantity in separation center number 1 114,230 kg
Waste quantity in separation center number 6 109,103 kg
Number of vehicles 53
Number of assigned bins to separation center
number 1

271

Number of assigned bins to separation center
number 6

256

Sustainability goal 15,445,
985 IRR

Vehicle fixed cost 38,429,
000 IRR

Transportation cost 10,976,
000 IRR

Cost of capacity 402,280 IRR
Penalty of time window 0.00 IRR
Total cost 65,253,

447 IRR

through the utilization of larger capacity separation centers. Eq. (3) en-
sures the capacity constraints of the opened separation centers. Eq. (4)
guarantees the assignment of each bin to only one separation center.
Eq. (5) indicates that one potential location can be opened or not, and
all locations should not be necessarily opened. Eq. (6) assigns all estab-
lished separation centers to the recovery centers to calculate the last
part of the first objective function. Eq. (7) represents that a candidate
location can be opened if it is not near other opened facilities. Eq. (8)
ensures that the total waste assigned to each separation center is at
least a certain percentage of its capacity and encourages so a minimum
level of capacity utilization to optimize operational costs. The maxi-
mum capacity utilization is satisfied by Eq. (9) and prevents excessive
capacity utilization that may lead to operational inefficiencies or re-
duced service quality. The number of opened facilities is controlled by
Eq. (10) to balance operational costs and overall system efficiency.

3.2. Mathematical formulation of the routing model from bins to separation
centers

The second model implemented is the Multi-Depot Green Capaci-
tated Vehicle Routing Problem (MDGCVRP), predominantly employed
within urban settings due to environmental considerations. This model

Table. 15
The pattern of routes in the routing model from bins to separation center
(First period).
Vehicle Operational

time (hours)
Amount
of
collected
waste

Vehicle
capacity

Goods
quantity/
capacity

Number
of visited
bin to
empty

Routes

1 102.256495 5761.5 6000 0.835 12 D1 – 100 -
195 - 112 -
20 - 277 -
278 - 10 -
15 - 181 -
161 - 620 -
750 – D1

2 67.059168 3466.1 6000 0.502 7 D1 – 550 -
280 - 451 -
550 - 650 -
452 - 707 –
D1

3 98.722327 6518.2 6000 0.944 13 D1 – 625 -
212 - 222 -
635 - 202 -
222 - 427 -
224 - 325 -
250 - 352 -
228 - 268 –
D1

4 101.142327 6591.8 6000 0.955 14 D1- 589 -
220 - 520 -
35 - 85 - 77
- 12 - 20 -
42 - 32 - 45
- 44 - 49 -
245 – D1

5 102.848185 6575.7 6000 0.953 13 D1 –125 –
325 - 258 -
652 - 265 -
125 - 265 -
254 - 452 -
185 - 249 -
513 - 582 –
D1

employs the use of Low-Capacity Vehicles (LCVs). In this routing
model, the sequence of bin collection is determined along with the opti-
mal number of vehicles required, leading to the minimization of the
fixed vehicle cost. Moreover, bins are equipped with IoT devices and
should be emptied during two distinct periods, maintaining a 70 %
threshold level [37,27]. In the current model, bins are classified based
on two visitation periods (day and night). The main assumptions are re-
ported in the following.

• The amount of waste generated in each bin is deterministic;
• There is no direct trip between the separation centers;
• The travel time between the nodes is pre-defined;
• The amount of waste in the bins is certain;
• The transportation cost per kilometer is the same for all vehicles;
• The carbon dioxide emission penalty is not the same for all

vehicles;
• The social impact cost is not the same for all vehicles and it is the

summation of the weighted impact costs of all the contributed
factors which is represented in monetary terms (e.g., dollars or
euros) for ease of comparison and aggregation with other
objective function elements.

The elements of the model are described in Tables 4–6, while the
mathematical formulation is provided by Eqs. (11)–(30).
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Table 16
The pattern of routes in the routing model from bins to separation center
(Second period).
Vehicle Operational

time (hours)
Amount
of
collected
waste

Vehicle
capacity

Goods
quantity/
capacity

Number
of visited
bin to
empty

Routes

1 100.437792 3378.7 6000 0.563 7 D1 - 359 -
339 - 337 -
248 - 466 -
348 - 362 -
328 - 226 -
405 - 202 -
102 – D1

2 89.269264 4671.3 6000 0.778 10 D1 – 48 -
10 - 11 - 62
- 127 - 26 -
129 - 164 -
132 - 180 –
D1

3 112.725312 6551.55 6000 1.091 14 D1 - 89 - 90
- 49 - 402 -
12 - 54 –
41 - 40 - 68
- 482 - 70 -
39 - 141 -
347 – D1

4 88.631984 4774.8 6000 0.795 10 D1 – 12 -
13 - 11 - 52
- 227 - 27 -
135 - 251 -
235 - 280 –
D1

5 86.92824 5868.45 6000 0.978 12 D1 - 359 -
354 - 337 -
348 - 166 -
148 - 162 -
202 - 205 -
257 - 215 -
405 - D1

(11)

subject to:

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(18)

(21)

(22)

(23)

(24)

(25)

(26)

(28)

9
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Fig. 5. An example of route in the routing model from bins to the separation centers.
©OpenStreetMap contributors—www.openstreetmap.org/copyright.

Fig. 6. Pseudocode of explained solution representation.

(29)

(30)

In Eq. (11), minimization of the total cost composed of carbon diox-
ide emission, social impact, cost of utilizing vehicles, transportation
cost, cost of exceeding the maximum available time to collect, and fi-
nally, total transported load by vehicles is minimized by the last ele-
ment of the objective function. Vehicles are forced to collect waste from
the farthest bins because of this part of the objective function. In this

way, vehicles can travel longer distances with a lower load, thereby
minimizing the amount of fuel consumed based on the load of vehicles.
Moreover, the last element of the objective function rewards higher ve-
hicle utilizations. Thus, the optimization model is incentivized to use
vehicles at their maximum capacity. Eqs. (12) and (13) ensure that each
bin must be visited one time. Eq. (14) guarantees that each bin must be
assigned to one separation center. Eq. (15) provides the continuity of
flow. Eqs. (16) and (17) force vehicles to start and finish their trips at
separation centers. The elimination of sub-tour is guaranteed by Eq.
(18). Eq. (19) determines that the loads of vehicles are zero when they
are departing from separation centers. Eqs. (20) and (21) add the quan-
tity of the waste in a visited bin to the vehicle's load and update the to-
tal weight of collected waste by each vehicle. The capacity constraint of
the vehicles is satisfied by Eq. (22). Eqs. (23) and (24) specify that the
arrival time of the vehicle to a bin is the summation of visiting time at
the previous bin and the travel time between them. The violation of the

10
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Fig. 7. An illustrative example of the solution representation.

Table 17
The proposed levels for the parameters of the meta-heuristic algorithms.
Algorithm Factor Levels

L1 L2 L3

KA A: Population size (n-pop) 750 950 1250 950
B: Percentage of the population of Lucky
Keshtel (PN1)

0.5 0.6 0.7 0.7

C: percentage of N2 Keshtel (PN2) 0.25 0.3 0.35 0.3
SEO A: Collecting data rate(α) 0.

15
0. 2 0.

25
0.25

B: Connecting attacker rate(β) 0.
03

0.
05

0.
07

0.05

C: Number of connections (N) 40 60 80 80

Table 18
Detail objective function, RPD, HT results for each algorithm.

SEO KA

OF RPD HT OF RPD HT

Small-Size 1 970.587294 0.26 14.60 786.025810 0.00 35.45
2 623.369167 0.10 18.15 607.491547 0.07 46.44
3 1571.770609 0.48 21.08 1095.075226 0.00 73.47
4 1443.326234 0.12 34.71 1628.976513 0.28 94.31
5 2512.425661 0.38 41.17 2172.225297 0.18 100.09

Medium-Size 6 1313.652181 0.00 71.44 1590.557534 0.23 167.17
7 2233.581490 0.07 65.45 2104.471854 0.00 244.63
8 2406.191218 0.15 111.80 2635.945074 0.27 287.82
9 3598.036100 0.35 158.50 3164.251401 0.18 374.98
10 4516.893992 0.29 198.55 4230.561568 0.20 494.12

Large-Size 11 5255.841734 0.31 981.02 5091.592361 0.27 2062.62
12 5473.837033 0.18 1237.40 4827.620163 0.03 2998.55
13 5773.298732 0.20 1681.40 5352.035797 0.10 3518.63
14 5931.818440 0.07 1952.02 6193.835699 0.12 4752.89
15 7741.404196 0.14 3152.20 8562.998426 0.27 7029.60

Note: HT: The first-time algorithm that can find the best solution (HT).

maximum available time for each vehicle is monitored by Eq. (25). Eq.
(26) and Eq. (27) ensure the maximum allowable carbon dioxide emis-
sion and social impact, respectively. Accordingly, the maximum avail-
able time of each vehicle and total costs of utilizing vehicles are met by
Eqs. (27) and (28). Eq. (29) ensures that each vehicle is assigned to bins

with a total priority exceeding a predefined threshold. The highest pri-
ority bins are selected first by this constraint.

3.3. Mathematical formulation of the routing model from the separation
center to recovery center

A mix-integer linear model of the Green Split Pick-up Capacitated
Vehicle Routing Problem (GSPCVRP) is applied in this layer, in which
the demand of a node can be divided among multiple vehicles assuming
a homogeneous fixed fleet. High-capacity Vehicles (HCVs) are consid-
ered in this model. To pursue sustainable goals with respect to social
and environmental impacts, the objective is to minimize fleet costs and
total distance traveled. Split pickup services can be beneficial in reduc-
ing the number of vehicles used by improving capacity utilization. In
addition, the model minimizes the variance of loads between vehicles
to create load balancing among vehicles. Following the main assump-
tions are described in the following while the corresponding elements
of the model are defined in Tables 7–9.

• The amount of waste from separation centers is deterministic.
• There is no direct trip between the separation centers.
• The travel time between the nodes is pre-defined and

deterministic.
• The recovery center is considered in this model.
• The transportation cost per kilometer is the same for all vehicles.

The mathematical formulation of the model is provided by equa-
tions from (30) to (45).

(31)

ubject to:

11
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Fig. 8. The comparison of algorithms behavior concerning RPD in small, medium, and large size.

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

12
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Fig. 9. Hitting time values for all test beds.

Fig. 10. Objective values for all test beds.

(41)

(42)

(43)

(44)

(45)

13
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Table 19
The parameters of the routing model from separation centers to recovery cen-
ter.
Parameter Values Unit

0, 1, 6 –
296,599,992 –
[1,32] –
1500 CO2 penalty per unit distance and

vehicle
1200 Visual pollution per HCV k
[0, 171,253, 71,988.5] Kg
10,000 Kg
Uniform ∼ [7.4226,
13.2284]

km

Uniform ∼ [8.9072,
15.8741]

Time in minutes

[0, 10, 10] Time in minutes
480 Time in minutes
1500 Cost per Km
800,000,000 Gas conversion factor
800,000,000 KWh to kg CO2
2 –

Table 20
Optimization results of second-level routing problem - routing model from
separation centers to waste bins.

Dimension Number of separation center 2
Number of recycling center 2
Total travel time 803.445

Objective
elements

maximum traveled distance 41
Waste quantity in separation center 508,699.00
Waste quantity in recycling center 254,349.50
Number of vehicles 26
Number of assigned vehicles to separation center
number 1

26

Number of assigned vehicles to separation center
number 6

6

Sustainability goal 6695,372.02
Vehicle fixed cost 21,127,

670.00
Transportation cost 4686,760.42
Total cost 32,509,

802.44

Table 21
List of routes in the routing model from the recovery center to the separation
centers.
Vehicle Operational

time (hours)
Traveled
distance

Amount of
collected
waste

Vehicle
capacity

Goods
quantity/
capacity

Routes

1 31.74 26.44 9798 10,000 0.9798 Re – 1
– Re

2 31.74 26.44 9848 10,000 0.9848 Re – 1
– Re

3 31.74 26.44 9998 10,000 0.9998 Re – 1
– Re

(46)

The environmental and social dimensions of sustainable goals are
minimized in Eq. (30), as well as total transportation costs and fixed
costs of utilizing vehicles. Moreover, the last element of the objective
function provides a load balancing among vehicles by minimizing the
deviation of loads between vehicles. In this context, the variance is con-
sidered as the sum of the difference between each vehicle's load and the
average load. Eqs. (31) and (32) ensure that each separation center
must be visited at least once to provide split collection. It is possible to

Table 22
The impact of the significant parameters of the model for the separation cen-
ter location on the total cost.
Parameters Parameter change

(%)
Total cost Change in total cost

(%)

Land purchase cost 50 % 1781,754,628,
000

9.30 %

25 % 1,705,754,628,
000

4.60 %

0 % 1629,754,628,
000

0.00 %

-25 % 1553,754,628,
000

-4.60 %

-50 % 1477,754,628,
000

-9.30 %

Cost of creating
capacity

50 % 2232,924,628,
000

37.00 %

25 % 1931,344,628,
000

18.50 %

0 % 1629,754,628,
000

0.00 %

-25 % 1328,174,628,
000

-18.50 %

-50 % 1026,584,628,
000

-37.00 %

Transportation cost 50 % 1648,044,628,
000

1.12 %

25 % 1638,904,628,
000

0.56 %

0 % 1629,754,628,
000

0.00 %

-25 % 1620,614,628,
000

-0.56 %

-50 % 1611,464,628,
000

-1.12 %

CO2 emission cost 50 % 1500,837,933,
800

1.12 %

25 % 1593,068,933,
800

0.56 %

0 % 1585,291,433,
800

0.00 %

-25 % 1577,522,433,
800

-0.56 %

-50 % 1569,744,933,
800

-1.12 %

visit a separation center following a visit to another separation center
or a recovery center due to the constraints. The constraint in Eq. (33) is
defined to assure the conservation of flow, and each separation center
can be visited once by each specific vehicle but can be visited more than
once by different vehicles. The constraint in Eq. (34) guarantees that all
tours must be ended at the recovery center. The elimination of the sub-
tour is provided by Eq. (35). The constraint in Eq. (36) is defined to en-
sure each vehicle is empty at the departure time from the recovery cen-
ter. Eq. (37) coordinates the route construction, transported load, and
split collection decision variables. Constraints in Eqs. (38) and (39) cal-
culate the total weight of collected waste by each vehicle and then de-
termine the total collected waste at the recovery center. The constraint
in Eq. (40) ensures that the total collected waste by each vehicle does
not exceed its capacity. Eq. (41) is designed to ensure the collection of
all the waste in each separation center by different vehicles. Having a
split collection without defining this constraint may result in a portion
of the waste being left in the separation center. Constraints in Eqs. (42)–
(45) are defined to set the maximum limit for carbon dioxide emission,
visual pollution, available time, and maximum possible transportation
costs. A user may use this set of constraints as an option, for instance, if
financial resources are limited.

4. Solution approach

The complexities of urban waste management necessitate creative
and systematic approaches. This section elaborates on the solution
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Table 23
The impact of the significant parameters of the first routing model on the to-
tal cost.
Parameters Parameter change

(%)
Total cost Change in total cost

(%)

CO2 emission cost 50 % 78,622,
392

10.80 %

25 % 74,611,
103

5.20 %

0 % 70,905,
850

0.00 %

-25 % 66,750,
236

-5.80 %

-50 % 62,403,
445

-11.90 %

Fixed cost of
vehicle

50 % 93,510,
204

31.80 %

25 % 82,300,
076

16.06 %

0 % 70,905,
850

0.00 %

-25 % 60,107,
942

-15.20 %

-50 % 49,773,
095

-29.80 %

Transportation cost 50 % 75,468,
867

6.40 %

25 % 74,285,
974

4.70 %

0 % 70,905,
850

0.00 %

-25 % 66,641,
174

-6.10 %

-50 % 64,256,
676

-9.30 %

Table 24
The impact of the significant parameters of the second routing model on the
total cost.
Parameters Parameter change

(%)
Total cost Change in total cost

(%)

CO2 emission cost 50 % 35,857,
490

10.30 %

25 % 34,183,
650

5.10 %

0 % 32,509,
800

0.00 %

-25 % 30,835,
960

-5.10 %

-50 % 29,162,
120

-10.30 %

Fixed cost of
vehicle

50 % 43,073,
640

32.50 %

25 % 37,791,
720

16.20 %

0 % 32,509,
800

0.00 %

-25 % 27,227,
890

-16.20 %

-50 % 21,945,
970

-32.50 %

Transportation cost 50 % 34,853,
180

7.20 %

25 % 33,681,
490

3.60 %

0 % 32,509,
800

0.00 %

-25 % 31,338,
110

-3.60 %

-50 % 30,166,
420

-7.20 %

methodology behind our proposed three-step waste management sys-
tem designed to balance economic efficiency, environmental sustain-
ability, and societal considerations. The proposed methodology is
grounded in three main components: the Facility Location Problem
(FLP), the first-level routing problem, and the second-level routing
problem. The FLP is vital in determining the optimal locations for waste
separation centers, a task complicated by various factors like cost, ser-
vice quality, and meeting customer demands. To tackle this issue, our
study employs a combination of mathematical models and numerical
methods, providing solutions for both small-scale and large-scale in-
stances of FLP. The Simplex Method and Newton-Raphson iterations
form the backbone of our approach to smaller instances, whereas
heuristic or approximation algorithms come into play for larger-scale
problems. Next, the First-Level Routing Problem addresses the crucial
task of waste collection [38]. It involves the strategic planning of vehi-
cle routing to ensure efficient waste collection from various points
within specific timeframes. Due to its dynamic nature and inherent
complexities, this routing problem requires the use of powerful meta-
heuristic algorithms, like the Social Engineering Optimization (SEO)
and Keshtel Algorithm (KA). These algorithms have proven to be effec-
tive in tackling the dynamic VRP that characterizes waste collection.
The Second-Level Routing Problem focuses on the routing model from
the recovery center to the separation centers. Here, we use the linear
programming Simplex method, combined with the GAMS optimization
software, to deliver an efficient and optimal solution. This combination
allows for the accurate determination of optimal routes, hence enhanc-
ing the transportation and logistical aspects of the waste management
system. Incorporating these three components, the proposed methodol-
ogy offers a resilient and adaptable solution to waste management. To
demonstrate the practicality and applicability of this methodology, we
apply it to a case study of a small city in Iran.

4.1. Facility location problem – separation center location problem solution
methodology

Facility Location Problem (FLP) is a crucial optimization challenge
within the field of supply chain management and logistics. Its objective
is to determine the optimal location of facilities, such as warehouses or
factories, considering factors like cost, service quality, and meeting cus-
tomer demands. FLP is formulated as a Multi-Objective Optimization
(MOO) that searches for the optimal facility locations that balance be-
tween minimizing transportation costs and reducing environmental im-
pact. MOO seeks to find a set of solutions that account for conflicting
objectives, rather than a single optimal solution. To tackle this chal-
lenge, the epsilon-constraint method is a widely adopted approach that
is formulated in Eq. (46). It transforms conflicting objectives into con-
straints, designating one objective as the primary optimization goal
while treating the others as constraints with an upper limit (epsilon). By
varying the value of epsilon, a range of solutions along the Pareto fron-
tier, representing optimal trade-offs between objectives, can be gener-
ated.

In the presented problem, the epsilon-constraint method can be em-
ployed to navigate the trade-off between transportation costs and envi-
ronmental impact. By setting an upper limit (epsilon) for the carbon
emission costs and treating it as a constraint, a diverse set of solutions
that offer various compromises between transportation costs and envi-
ronmental sustainability can be obtained. Utilizing the epsilon-
constraint method empowers decision-makers to thoroughly analyze
and select solutions from the Pareto frontier that align with their spe-
cific preferences and priorities. It offers a comprehensive perspective on
optimal trade-offs, facilitating an informed decision-making process
within the context of FLP with multiple conflicting objectives.
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Fig. 11. The impact of the significant parameters of the model for the separation center location on the total cost.
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Fig. 12. The impact of the significant parameters of the first routing model on the total cost.

(47)

Where l and are upper bounds for the objective, (j ).

4.2. Solution approach of routing model from bins to separation centers
solution approach

The first-level routing problem addresses the waste collection of
waste from bins to separation centers. It involves the strategic planning
of vehicle routing to ensure efficient waste collection from various
points within specific timeframes. Due to the inherent complexity of
VRP –recognized as NP-Hard combinational optimization problems–
these exact methods prove insufficient for real-sized scenarios, as they
fail to provide solutions in a reasonable timeframe. Consequently,
heuristic and meta-heuristic approaches have become increasingly pre-

ferred [21,39]. So, to address the proposed problem, two suitable meta-
heuristic algorithms, Social Engineering Optimization (SEO) and Kesh-
tel Algorithm (KA), are applied from both categories[62–64].

The SEO algorithm, a single-based solution metaheuristic, has re-
cently emerged as a successful approach to solving various combinator-
ial optimization problems, including VRP, supply chain network de-
sign, and scheduling problems. The algorithm starts with the genera-
tion of two randomly generated solutions, known as the attacker and
defender, based on their fitness function values. Inspired by the training
and retraining activities observed in the human behavior, the algorithm
designs random experiments for each characteristic of the defender.
The attacker then assesses the defender based on these extracted char-
acteristics and traits. During this process, some features of the attacker
are converted to match those of the defender in the search space, while
simultaneously computing the retraining rate of the attacker based on
the defender. In the subsequent phase, a Social Engineering (SE) attack
procedure is detected as an effective method to alter the defender's po-
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Fig. 13. The impact of the significant parameters of the second routing model on the total cost.

Fig. 14. The impact of the significant parameters of all models on the total cost.
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sition within the feasible space. To respond to a SE attack, the fitness
value of the new defender's position is calculated, and a comparison is
made between the old and new position. The best position is then se-
lected based on these comparisons. If the fitness value of the defender
surpasses that of the attacker, a change in position occurs between the
attacker and defender. Finally, to maintain the effectiveness of the at-
tacker, the defender is replaced by a new random solution within the
search space [40].

In recent years, a population-based metaheuristic algorithm in-
spired by the feeding behavior of Keshtel birds has been developed by
Hajiaghaei-Keshteli [41]. The algorithm draws its core concept from
the natural process in which Keshtel birds search for valuable food
sources in lakes and engage in a swirl and circling procedure until the
food is depleted[66]. At the start of the algorithm, a population of ini-
tial solutions, represented as Keshtel birds, is randomly generated to ad-
dress an optimization problem. The population is then divided into
three distinct groups: N1, N2, and N3. N1 comprises the "lucky" Keshtels
that have successfully located a good food source, while N3 consists of
the poorest solutions in the population. The algorithm calculates the
nearest neighbors around these lucky Keshtels, which is an essential
step in the process. The swirling procedure continues around the cur-
rent food source until a better source is found, and the population be-
longing to N2 moves between the other two groups. In this way, N1 is
responsible for the intensification phase of the algorithm, focusing on
exploiting the promising solutions; however, N2 and N3 contribute to
the diversification phase, ensuring the exploration of the search space.
To enhance the computational efficiency of the algorithm, researchers
have focused on developing solution representations that reduce the
running cost. The specific procedure used to represent the solutions of
the proposed problem is described in detail in the subsequent section.

4.3. Solution approach of routing model from separation centers to waste
bins

To address the routing model from the recovery center to the sepa-
ration centers a simplex method is applied. This method systematically
explores the feasible solution space, iteratively improving the objective
function to determine the optimal solution. Given the presence of linear
constraints and objectives in the routing model, the simplex method is
well-suited for efficiently obtaining an exact solution. To accomplish
this, we employed the GAMS optimization software, which seamlessly
integrates the simplex method into its framework. By leveraging GAMS
alongside the simplex method, we were able to effectively solve the
routing model, optimizing the routes from the recovery center to the
separation centers. This approach successfully addresses the transporta-
tion and logistical intricacies associated with waste management. These
findings emphasize the suitability and effectiveness of utilizing the sim-
plex method within GAMS to solve routing models in waste manage-
ment scenarios. The accurate determination of optimal routes con-
tributes to the efficient operation of the system, enhancing sustainabil-
ity and resource allocation within the waste management process.

5. Computational results

The applicability of a proposed solution is assessed through its out-
comes. This section, therefore, explores the computational results de-
rived from implementing the three-step waste management system and
applies a sensitivity analysis to them. These analyses offer insight into
the system's performance and aim at highlighting its adaptability and
efficiency. The computational results are analyzed in two ways: the pri-
mary results are the immediate outcomes from deploying the proposed
methodology; the sensitivity analysis investigates the models' responses
to variations in key parameters. This comprehensive exploration pro-
vides a thorough understanding of the model's capabilities and poten-
tial improvement areas.

5.1. Model I – solution methodology of the separation center location
problem

A significant aspect of waste management involves the strategic
placement of separation centers. Determining the location of these cen-
ters involves considering multiple factors, including population den-
sity, waste generation rates, proximity to waste sources, existing trans-
portation infrastructure, and potential environmental impacts particu-
larly carbon dioxide (CO2) emission. The objective is not just to mini-
mize transportation costs but also to reduce environmental impacts,
specifically CO2 emissions. This emphasis on CO2 emissions is of critical
importance, because transportation is a relevant contributor to green-
house gas emissions and thereby climate change. To integrate this im-
portant environmental consideration, our model incorporates a penalty
factor for CO2 emissions. This emission penalty is applied to waste
transportation between separation centers and waste bins as well as be-
tween recovery centers and separation centers. The penalty is calcu-
lated based on the distance of transportation and the CO2 emission
penalty per kilometer (TE), as described in Eqs. (43) and (44) respec-
tively.

Additionally, the proposed model considers CO2 emissions from gas
and electricity consumption at each separation center. It is well-known
that energy consumption for operations at these centers contributes sig-
nificantly to the total emissions footprint. The CO2 emission penalty
due to gas consumption at each separation center is determined using
Eq. (45), which follows from the method described by Harris et al.,
[42]. Similarly, the CO2 emission penalty attributable to electricity con-
sumption at each separation center is calculated using Eq 47. The corre-
sponding steps are outlined in Fig. 3. By integrating these emission
penalties, our model offers a holistic approach to urban waste manage-
ment that accounts for both economic and environmental aspects, en-
couraging more sustainable practices. This comprehensive strategy en-
sures that the various sources of emissions in the waste management
process, from transportation to operational energy consumption, are
addressed effectively.

(49)
(50)

(51)

(52)

Moreover, this model is designed to find the best location of the sep-
aration centers. In designing this model, two main points were consid-
ered: the ability of proposed locations to effectively handle the task of
waste separation, and their potential to reduce overall costs. A mathe-
matical model was developed to optimize the selection process in small
size problems. The model is solved for a test problem obtained from a
real case in Iran whose corresponding data are reported in Table 10.
The result of the model strongly suggested that separation centers num-
ber one y(1) and number six y(6) are the best options for setting up
these facilities (See Fig. 4 and Table 11). The proposed model ensures
the capacity of potential locations that effectively handle waste separa-
tion, considering also the costs associated with these locations. For in-
stance, in a specific solution given by the model, separation center
number 1 is given 932 waste bins and separation center number 6 is as-
signed 352 waste bins. This unequal distribution is designed to favor
the first separation center. The reasons for this are several, but include
its strategic location and increased capacity, which leads to lower trans-
portation costs. The main goal of this model is to figure out the best way
to distribute separation centers. It accomplishes this task by finding the
best spots for these centers in areas that have enough room for waste
separation, while also trying to keep the overall costs as low as possible.
Deciding how many waste bins to assign to each center is a complex
task that involves balancing many factors. These include the costs to
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transport waste to each center and the amount of waste each center can
handle. Thus, the model provides a strong plan to manage different sep-
aration centers improving efficiency and reducing costs.

5.2. Routing model from separation centers to waste bins

This section gives detailed computational results of the routing
problem associated with waste collection from bins to separation cen-
ters. The data related to the problem are outlined in Table 14. The
structured design of the waste management network required an initial
solution to the location-allocation model. This crucial first step deter-
mines the count of operational separation centers, setting the stage for
the subsequent processes in the waste management system. In addition
to the transportation and environmental costs, the social impact cost is
considered in this step. Measurement of social impact cost can indeed
be a difficult task due to the multifaceted nature of the factors involved.
However, relevant social and environmental impact is achievable based
on several studies, and they are generally represented in monetary
terms for ease of comparison and aggregation with other objective func-
tion elements. After identifying these factors and their relevance to the
specific situation, data related to these factors need to be collected; for
instance, measurements of noise levels or air pollution caused by waste
collection vehicles, or data regarding additional travel time caused by
these vehicles when inducing traffic congestion. The following stage, as
the most challenging one, involves quantifying these impacts, which re-
quires determining their social cost. Once the impact of each factor is
quantified, it may need to be weighted based on its perceived signifi-
cance or severity. Then, the total social impact costs can be determined
by the summation of the weighted impact costs of all the factors
[10,43,44]. Optimization results of the routing model from bins to sep-
aration center for the first and second periods are reported in Tables
12–16 and the patterns of the resulting routes are illustrated in Fig. 5.

5.2.1. Solution representation
Solution representation is integral to the functionality of the meta-

heuristic algorithm employed: a matrix consisting of three rows, corre-
sponding to bins, separation centers, and vehicles are utilized for the
proposed problem [45–47]. Let us consider the first row of the matrix
which is related to the bins of the proposed problem. This matrix length
depends on the number of bins. The first row gives the sequence of visit-
ing bins based on a random permutation of the number of bins, while
the second row indicates which bin is assigned to each separation cen-
ter. The last row in the matrix represents the assignment of the vehicles
in each separation center to visit the assigned bins. Fig. 6 is the
pseudocode of explained solution representation.

Fig. 7 gives an illustrative example of the solution representation
that contains a randomly generated matrix as a possible solution and
the corresponding routes. In this example, the numbers of objects that
define the problem are generated randomly to take a generic possible
solution. This example contains 10 bins, 2 separation centers, and 3 ve-
hicles. The first row of the matrix [1, 3, 2, 4, 7, 5, 8, 6, 10, 9] indicates
the sequence of bin visits; the second row [1, 1, 2, 1, 2, 2, 1, 1, 1, 2] as-
signs each bin to a separation center; and the third row [1, 1, 1, 2, 1, 1,
1, 1, 2, 1] designates the vehicle for each bin. In this case, bins 4 and 10
are assigned to the truck LCV02 of the separation center number 1
(S_01). Bins 1, 3, 8, and 6 are assigned to the truck LCV01 of the first
separation center, while bins 2, 7, 5, 9 are assigned to a single vehicle
LCV03 that visits the second separation center (S_02).

5.2.2. Parameter level of the proposed metaheuristic algorithm
Since the parameters of a metaheuristic algorithm directly affect its

performance, a fine tuning is necessary to get the desired performance.
In this paper, the Taguchi method is applied to fix the values of each pa-
rameter of the metaheuristic algorithms [48–50][60]. Generally, the
Taguchi method is a robust problem-solving method to improve the

process performance and productivity of algorithms. This method en-
sures the quality of a process by a reasonable test number [51–53]. The
variation of each parameter and its optimal level is determined accord-
ing to the signal-to-noise (S/N) ratio. Two equations for standard ratios
are defined in Eqs. (53) and (54). The parameters Yi and n represent the
response value and the number of observations, respectively. If the re-
sponse is maximum, the “Larger is better” state is considered by Eq.
(53) to optimize the process. Otherwise, the “Smaller is a better” state is
considered when the response is a minimum and is calculated by Eq.
(54) [54–56]. Accordingly, the proposed levels of parameters for each
algorithm are listed in Table 17 and one of them, determined as , is
selected as the best one. Testing all combinations of parameters for
each algorithm is time-demanding because of the Taguchi orthogonal
array. A proportion of these tests should be investigated instead to find
the minimum S/N to select the best levels of parameters [57,58].

(53)

(54)

To ensure comparability of the objective function across different
trials, the relative percentage deviation (RPD) method is employed.
This method normalizes the objective function values, allowing for a
consistent scale of comparison. To calculate the RPD the objective func-
tion values in the algorithm ( ) and the best solution for the trial

are utilized. The RPD is then computed, and the average RPD is
determined for each trial. The Taguchi approach develops orthogonal
arrays according to the mean signal-to-noise ratio estimated by RPD in
Eq. (55).

(55)

5.2.3. Computational results of the proposed algorithms
This section presents a computational study to test the performances

of the proposed metaheuristic algorithms to solve generated random in-
stances, which are classified into three groups: small, medium, and
large size problems. These test problems are solved by each algorithm
thirty times to consider the approximate nature of the metaheuristic al-
gorithms. For each run, three indicators are calculated to evaluate algo-
rithms and finally the average value of each indicator is computed for
each algorithm. Detailed results of the minimum values of the objective
function for each algorithm and other indicators are reported in Table.
18 for each instance.

As depicted in Fig. 8, in small-sized test problems, SEO exhibits a
greater variation in RPD values compared to KA, indicating that SEO's
response time might fluctuate more widely for this set of instances. This
could potentially affect the efficiency of SEO in small-sized problem
sets. For medium-sized test problems, the deviation in RPD values for
SEO increases compared to the small-sized problems, suggesting less
consistency in response times. On the other hand, KA exhibits a tighter
range of RPD values, and is a more consistent performer in terms of re-
sponse time for medium-sized test problems. However, the scenario
changes for large-sized problems. Here, the KA algorithm shows a
higher variation in RPD values than SEO, implying that the former's ef-
ficiency may drop with the increase of the problem size. SEO performs
more consistently in these instances, highlighting its robustness to
problem size in terms of response time. Figs. 9 and 10 illustrate the be-
havior of hitting time and objective function, respectively. Across all
problem sizes, SEO consistently outperforms KA in terms of hitting
time. This suggests that SEO, irrespective of the problem size, is more
likely to arrive at a solution faster than KA. This robust performance of
SEO across different problem sizes underscores its superior efficiency.
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The comparison in terms of the objective function highlights that in
larger test problems both algorithms show considerable deviations in
their solutions. However, SEO exhibits a more tightly clustered set of
outputs, implying better precision and reliability than KA in larger
problem contexts. To summarize, while both algorithms show strengths
in different areas: SEO demonstrates more robust and consistent perfor-
mances across different problem sizes, especially in terms of response
time and hitting time. However, it is important to consider the specific
context and requirements when choosing an algorithm, as KA also
shows potential advantages, particularly in the response time when
handling medium-sized test problems.

5.3. Routing model from separation centers to waste bins

The second level of the routing problem involves the collection of
sorted waste from various separation centers and its transfer to recov-
ery centers. The volume of waste at each separation center can poten-
tially exceed the capacity of each vehicle, thereby necessitating the con-
cept of split pickups. Despite the potential requirement for multiple ve-
hicles to gather all waste from a single separation center, the relatively
small number of such centers, as determined by the facility location
model, allows the efficient use of exact methods to solve the problem
within a reasonable timeframe. This problem has been encoded and re-
solved using GAMS/CPLEX. The data pertaining to the second-level
routing problem are also influenced by the output of the facility loca-
tion model. These data are reported in Table 19. It is important to men-
tion that the distance between every two nodes is calculated based on
the Haversine formula. The optimization results of the second-level
routing problem from separation centers to waste bins is summarized in
Tables 20 and 21.

5.4. Sensitivity analysis

Sensitivity analysis is a method that measures how the impact of un-
certainties of one or more input variables can lead to uncertainties in
the output variables and investigates how small changes in inputs affect
the outcomes. This analysis is useful because it allows to improve the
predictions produced by the model and to reduce it by studying qualita-
tively and/or quantitatively the model response to changes in input
variables. In this section, the capacity of the separation centers v(j) and
the minimum distance md between two separation centers are analyzed
through the sensitivity analysis. The corresponding results are reported
in Tables 22–24. Moreover, the impact of significant parameters on the
total cost for each model is illustrated in Figs. 11–14.

6. Conclusions

Waste collection is a critical step in waste management with signifi-
cant economic, societal, and environmental impacts. This study focuses
on enhancing the efficiency of this crucial component, focusing on the
challenge of insufficient land in urban areas for separation center facili-
ties. Since the usual assumption of one separation center per zone pre-
sents a barrier to progress, incorporating both the facility location and
routing problems within our management system is the goal of this
study. Hence, a location-allocation model is proposed followed by the
formulation of two sustainable routing problems to enable an efficient
collection of waste from bins to separation centers and then to recovery
centers. This novel approach brings a new perspective to the logistics of
waste management and has the potential to significantly improve sys-
tem efficiency.

The facility location model proposes an innovative method to locate
and distribute waste separation centers. Through optimization, optimal
locations such as are proposed based on strategic location, increased ca-
pacity, and overall cost-efficiency. By considering the capacity and

costs associated with potential locations, we offered a strategy to man-
age waste more effectively and economically. Determining the number
and location of facilities is a long-term decision that is made at the
strategic level. So, instead of assuming a predefined number of separa-
tion centers, a multi-objective location-allocation model is presented to
determine the opened facility with sustainable goals in this paper and
solved by the epsilon constraints method in GAMS. Then, the first-level
routing problem was addressed using low capacitated vehicles for the
day and night intervals integrating real-time data from sensor-equipped
bins. The Social Engineering Optimizer and the Keshtel Algorithm were
tested and compared to select the most suitable method to solve the
problem. The former showed the smallest variation in objective func-
tion for small test instances in comparison to the latter, while the oppo-
site conclusion was achieved for larger instances. For the second-level
routing problem, a split pickup approach was utilized because of the
larger amounts of waste to handle in each separation center. The opti-
mization of the route was performed in GAMS/CPLEX with considera-
tions for sustainable goals such as CO2 emissions, social impact, and
economic factors. The results highlight the potential benefits of leverag-
ing real-time data, mathematical modeling, and strategic allocation to
improve waste management systems. Further work could be conducted
to refine the model and test its performance in larger-scale applications.

Future research should consider incorporating transshipment points
into the waste management network, where vehicles can exchange
loads without requiring additional storage capacity. This is particularly
applicable to crowded urban areas, where the use of even low-capacity
vehicles can exacerbate traffic and environmental issues. Therefore, a
practical solution would involve a three-tier routing system, where
waste is collected at these transshipment points before being trans-
ported to separation centers. This approach would require an inte-
grated solution, where the first and second routing levels are solved si-
multaneously, allowing efficient waste collection. Future work should
not only investigate optimal locations for separation centers but also
analyze the optimal number and locations for these transshipment
points within the facility location model. Moreover, future studies
should consider more specific characteristics of real-world scenarios,
such as the handling of hazardous waste, the weight of waste, and the
use of historical data on each bin's filling rate. This would allow for dif-
ferent thresholds for different bins in various zones, leading to more ac-
curate waste collection schedules. Furthermore, the incorporation of
socioeconomic factors of the zones in dynamic routing could signifi-
cantly improve the quality of routes provided by the optimization ap-
proach, making the waste management system even more efficient and
effective.
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