
GNN4IFA: Interest Flooding Attack Detection With Graph Neural Networks

Andrea Agiollo∗¶, Enkeleda Bardhi†¶, Mauro Conti‡§, Riccardo Lazzeretti†,
Eleonora Losiouk‡, Andrea Omicini∗

∗University of Bologna, {andrea.agiollo, andrea.omicini}@unibo.it
†Sapienza University of Rome, {bardhi, lazzeretti}@diag.uniroma1.it

‡University of Padua, {conti, elosiouk}@math.unipd.it
§Delft University of Technology, M.Conti@tudelft.nl

¶Co-first authors

Abstract—In the context of Information-Centric Networking,
Interest Flooding Attacks (IFAs) represent a new and dan-
gerous sort of distributed denial of service. Since existing
proposals targeting IFAs mainly focus on local information,
in this paper we propose GNN4IFA as the first mechanism
exploiting complex non-local knowledge for IFA detection
by leveraging Graph Neural Networks (GNNs) handling the
overall network topology.

In order to test GNN4IFA, we collect SPOTIFAI, a novel
dataset filling the current lack of available IFA datasets by
covering a variety of IFA setups, including ∼40 heteroge-
neous scenarios over three network topologies. We show that
GNN4IFA performs well on all tested topologies and setups,
reaching over 99% detection rate along with a negligible
false positive rate and small computational costs. Overall,
GNN4IFA overcomes state-of-the-art detection mechanisms
both in terms of raw detection and flexibility, and – unlike all
previous solutions in the literature – also enables the transfer
of its detection on network topologies different from the one
used in its design phase.

Index Terms—Network Security, Interest Flooding Attacks,
Graph Neural Networks, Emerging Networks

1. Introduction

The concept of Information-Centric Networking (ICN)
has its roots in the TRIAD project [1] (2000), whose
objective was to replace the IP layer with a content-
centric layer. Afterward, the research community pro-
posed various ICN architectures: among them, Named-
Data Networking (NDN) [2], [3] is considered the most
promising. NDN switches the communication paradigm
from host-based – i.e., where the data is – to content-based
– i.e., what the data is. With this switch, NDN removes
IP addressing and refers to the data using application-
level names. In particular, NDN users look for content
by name via interest requests. Data is delivered to the
requester following Interest’s reverse path, ensuing each
intermediate router’s information states. For this purpose,
NDN routers are equipped with Pending Interest Table
(PIT), which is mainly responsible for reverse-path for-
warding. Given the IP addressing replacement, NDN re-
solves known Denial of Service (DoS) and Distributed
Denial of Service (DDoS) issues—e.g., UDP, ICMP and
SYN flood [4]. Nevertheless, NDN is not immune to

possible flooding attacks. Here, a new type of DDoS – i.e.,
Interest Flooding Attacks (IFA) – represents the case of
one or more compromised nodes issuing a high number of
Interest requests. Thus, the attack exploits the router’s PIT
to congest the network and degrade or deny the legitimate
users’ service while consuming the router’s resources.

Detection and mitigation of IFA have been the focus
of several research proposals [5]–[7]. Generally, in these
proposals, IFA is analysed in small topologies, and the
detection mechanism is based on the local view of each
router. In particular, the routers measure specific statis-
tics that best describe IFA, and after that, the designed
detection technique decides whether the specific router
is under attack. Although valid, such detection schemes
lack the network’s global view, hindering the IFA detec-
tion in cumbersome scenarios. Conversely, from detection
of well-known DDoS attacks in IP networks [8]–[10],
Artificial Intelligence (AI) and Machine Learning (ML)
algorithms have not been widely used for IFA detection.
The lack of large and fully representative IFA datasets is
the catalyst for such a lack. Motivated by the shreds of
evidence mentioned above, we here collect a large IFA
dataset. Afterward, we design an IFA detection technique
based on Graph Neural Network (GNN) that maps the
considered NDN network to a graph, representing the
interactions among routers while overcoming the locality
nature of state-of-the-art proposals. Overall, the contribu-
tions of this paper are the following:

• We collect the first dataset built for SPOTting IFA
Intruders (SPOTIFAI)1. SPOTIFAI includes about
40 IFA scenarios constructed over three network
topologies, corresponding to 21 hours of traffic. The
scenarios used for collecting SPOTIFAI realistically
mirror the IFA behaviour in NDN networks.

• We design GNN4IFA, an IFA detection tech-
nique based on GNNs representing NDN networks
as graphs by mapping routers interconnections.
GNN4IFA has a two-fold design – i.e., Supervised
Attack Detection (SAD) and Unsupervised Attack
Detection (UAD) – according to how we train the
GNNs.

• We evaluate the performance of GNN4IFA in both
configurations using SPOTIFAI.2 Here, we train

1. SPOTIFAI is publicly available at https://tinyurl.com/7zp4z5zv

2. GNN4IFA source code is available at https://github.com/AndAgio/
GNN 4 IFA

615

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Andrea Agiollo. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00043

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
43

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

about 300 SAD and UAD models and study their per-
formance. GNN4IFA reaches a detection rate higher
than 99% and a negligible false positive rate while
demanding short computation time. Additionally, we
compare GNN4IFA with the state-of-the-art ML and
non-ML based techniques, showing how GNN4IFA
outperforms the implemented baselines by up to 6%
accuracy, and 10% and 15% true positive rate, re-
spectively.

• We analyse the generalizability of GNN4IFA detec-
tion on different topologies, showing its robustness
and ease of deployment. To do so, we train SAD
and UAD on one topology while testing them on the
others. GNN4IFA represents the first IFA detection
mechanism capable of generalising between topolo-
gies different from the one used in the design phase.

This article is organised as follows. In Section 2, we
provide a brief background for ICN and GNN, while
in Section 3, we describe the state-of-the-art proposals.
Section 4 introduces the system and threat model and
articulates the requirements for a robust, reliable, and gen-
eralisable IFA detection mechanism. Subsequently, Sec-
tion 5 fully describes SPOTIFAI, from data collection
to its setup. Section 6 and Section 7 present the design
of GNN4IFA and its evaluation, respectively. Finally, we
conclude and present the future directions in Section 9.

2. Background

In this section, we provide an overview of Information-
Centric Networking (ICN) in Section 2.1, Interest Flood-
ing Attacks (IFA) in Section 2.2 and Graph Neural Net-
work (GNN) in Section 2.3.

2.1. Information-Centric Networking (ICN)

Since NDN is the most promising ICN architecture,
we describe NDN and hereafter use the terms ICN and
NDN interchangeably. Unlike host-based paradigms, con-
tent is the core abstraction of NDN [11]. With such
a shift, NDN relies on functionalities such as content
naming, name-based routing, caching, and name-based se-
curity [12]. Each content is recognized through a location-
independent unique name similar to URLs and comprises
one or more variable-length components. NDN communi-
cation follows the pull model — i.e., data is delivered only
upon request. To accommodate name-based forwarding
and caching features, NDN routers must include three
components: (i) PIT that lists unsatisfied interests and their
corresponding incoming interface; (ii) Content Store (CS)
that caches the content; (iii) Forwarding Information Base
(FIB) that lists the name prefixes and their corresponding
outgoing interfaces. In the upstream path, the router first
probes the CS using the name contained in the interest
packet. In case of CS hit, data is immediately forwarded
back to the requester. Otherwise, the router checks the
PIT. If there are existing PIT entries, the router collapses
all requests for the same content and adequately updates
the list of incoming interfaces. Conversely, a new entry
is added. In both cases, the FIB is consulted to forward
the interest packet toward the next hop. Instead, in the
downstream path, PIT is checked for a match. If PIT is

hit, the router forwards the content to the corresponding
interfaces and flushes the PIT entry. Elseway, the router
drops the content packet. Lastly, the router stores the
content in the CS following the caching policies. Thus,
in the downstream path, the router follows the reverse
routing considering only the PIT information.

2.2. Interest Flooding Attacks (IFA)

It takes a minimum effort for a NDN attacker to mount
DoS or DDoS. Name-based routing consumes memory
resources at intermediate routers, exposing PIT and CS
components to potential DoS attacks. For example, an
attacker (or a set of distributed compromised nodes) in-
jects many requests for content to intentionally change
the CS locality or overload the network while denying
the service to legitimate consumers. Here, we focus on
attacks that exploit the PIT, in particular, a saturation of
the router’s PIT through the rapid generation of interests,
aiming to increase the drop rate for incoming interests and
degrade or even deny the service for legitimate consumers.
Such attacks are also known as Interest Flooding Attacks
(IFA). Conversely from known TCP/IP DDoS attacks –
e.g., SYN Flooding, ICMP Flooding or UDP Flooding [4]
– that primarily target the servers, IFA targets the routers’
resources. Based on the requested content, there are three
ways to mount an IFA: (i) IFA for the existing namespace
(static or dynamic); (ii) IFA for non-existing namespace;
(iii) IFA for existing and non-existing namespaces. For
the (i) case, the attacker continuously sends the interest
packets for a set of existing contents that can be either
static or dynamic [13]. Due to the presence of caches in
the intermediate routers, the impact of the IFA launched
with massive requests for static content is limited. Con-
versely, dynamically generated content affects legitimate
consumers while consuming the resources of both routers
and producers. Meanwhile, for the (ii) and (iii) cases, the
attacker can also rely on sending interest requests for non-
existing content. This article considers IFA with existing
dynamic content.

2.3. Graph Neural Networks

GNNs have been recently proposed as Neural Network
(NN) extensions to enable handling graph structured data.
GNNs are mathematically defined to operate upon directed
graphs, whose vertices (respectively, arcs) are labeled with
real-valued vectors representing the information numeri-
cally at hand. We define xv ∈ R

d the vector carrying
information concerning the vertex v, and av,w ∈ R

c the
vector depicting the arc between the vertex v and w—
with c and d representing the dimensionality of the vector.
GNNs rely on the graph convolution operation, defined
as the generalisation of a 2-dimensional convolution over
graph-structured data. The graph convolution is defined
over a vertex v, and its neighbourhood N(v) and applied
simultaneously to each graph node G to update its repre-
sentation. More in detail, the graph convolution relies on
three successive phases:

Propagation. Here, each vertex v in G receives the in-
formation stored in its neighbours xv′ ∀ v′ ∈ N(v),
weighted – via a function Ξ – by the information
av,v′ of the arc between v and v′;

616

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

Aggregation. Here, the information received is aggre-
gated via a predefined aggregation function �;

Transformation. Here, the aggregated information is
transformed – via a function Θ – into a new – more
meaningful – embedding vector and assigned back to
the vertex v as its new state x′

v .

Selection of the propagation, aggregation, and transfor-
mation functions is made on hand and represents a design
choice of the graph convolution.

GNNs have proven to be successful over many graph
processing tasks, such as computational chemistry [14],
social recommendations [15], computer vision [16], and
many others [17], [18]. However, a comprehensive review
of GNNs and the underlying techniques are clearly out
of the scope of this paper: therefore, we refer interested
readers to [19], [20].

3. Related Work

A series of statistical approaches have been first pro-
posed to counteract IFA. Such mechanisms commonly
rely on thresholding one or more metrics of interest.
Depending on the thresholding operation, a set of nodes
is selected to decide which interest requests to drop.
Afanasayev et al. [5] propose one of the first threshold-
based IFA detection on the routers’ satisfaction ratio. After
that, Poseidon [7] extends the analysis, also considering
the PIT space usage while using dynamic thresholds. Also,
Dai et al. [21] focus on PIT usage to identify malicious
namespaces that consume PIT’s entries. ChoKIFA [6]
calculates three thresholds over the name and interest
prefix match and satisfaction ratio. Later, ChoKIFA+ [22]
proposed a detection mechanism based on the PIT con-
sumption based on malicious interests. In addition, Xin
et al. [23] thresholds over name prefix entropy since
the occurrence of interest names changes significantly
under IFA. Furthermore, Salah et al. [24], [25] propose to
detect collusive IFA following double thresholding on PIT
utilisation – i.e., locally and globally on a controller node.
Wang et al. [26] propose the cooperative filter technique
that leverages fuzzy logic and mitigates IFA based on
router cooperation. Lastly, Benmoussa et al. [27] distin-
guish between intentional and unintentional behaviours
due to network congestion. Therefore, the paper proposes
a congestion-aware IFA detection and mitigation.

Although statistical approaches have exhibited promis-
ing results, they all lack generalisability and show re-
stricted application potential. Moreover, the application of
AI to IFA detection still needs to be explored, arguably
due to the lack of meaningful IFA datasets. Zhi et al. [28]
propose to leverage a Support Vector Machine (SVM)
model for IFA detection, training the classifier over the
entropy value of interest names, PIT usage, and interest
satisfaction rate. The proposal was trained and tested in
the small-scale binary tree topology via simulations. Two
works by Kumar et al. [29], [30] analyse alternative ML
approaches, training four classifiers over a set of selected
features from collected IFA traffic. Both their proposals
were trained and tested using a linear, small-scale binary
tree and DFN topology. Chen et al. [31] proposed iForest,
a detection and mitigation IFA mechanism constructed to
detect malicious prefixes based on the PIT usage and the
number of sent interests and received data packets. iForest

is designed and tested only on the small-scale binary tree
topology through simulations. Even though the results of
these works seem promising, most lack transparency in
the traffic collection phase, are evaluated in small-scale
scenarios, and suffer the cost of identifying hand-crafted
features.

Lastly, the interest in applying GNNs for detection
on different tasks has gained attention in the cyberse-
curity research community. King et al. [32] proposed
EULER, a dynamic link prediction mechanism employing
a GNN model upon a Recurrent Neural Network (RNN)
sequence encoder. Such application of GNN differs from
our proposal as it deals with temporal link prediction.
Additionally, Wang et al. [33] also leveraged GNNs for
an anomaly detection mechanism. However, the proposed
detection is for node-level threat detection, differing from
our network-wide mechanism. Ji et al. [34] proposed
NestedGNN, a compromised host detection through a
nested GNN mechanism. NestedGNN differs from our
mechanism as it considers a nested graph composed of
three layers. Concluding, the common denominator of
GNN4IFA and the above-mentioned works is the use of
GNNs in distributed scenarios, reinforcing our claim of
suitability of GNNs for IFA detection.

4. System and Threat Model

In this section we first describe the system model
(Section 4.1) and the threat model (Section 4.2), then we
elaborate on the requirements for our detection mechanism
(Section 4.3).

4.1. System model

We consider a generic NDN network with a vari-
able number of nodes—i.e., consumers, producers, and
network devices. In particular, we consider three state-
of-the-art network topologies: a small-scale binary tree
topology; the DFN (German Research Network) topol-
ogy [35]; the Rocketfuel topology [36]. We chose these
topologies because of the heterogeneous network scenar-
ios they represent. The small-scale topology is a bottle-
neck scenario where a single producer can satisfy all the
content requests. Instead, DFN and Rocketfuel topologies
have more nodes, thus closer to a real-world scenario. In
our topologies, all producers handle requests for the same
set of contents, which falls under a specific namespace.

4.2. Threat model

For the attack scenario, we consider the general pur-
pose of the attacker to be the denial of access to a specific
target set of contents—i.e., specific content namespace.
To this end, the attacker can adopt one of the following
techniques: (i) targeting an existing content namespace;
(ii) useing non-existing content namespaces; (iii) shuffling
both existing and non-existing namespaces. In our threat
model the attacker targets existing content namespace by
issuing many requests for dynamic content in the targeted
namespace: we focus on this sort of IFAs as it represents
the most challenging attack to detect. Unlike (ii) and (iii),
in our setup the attacker can try to hide her malicious be-
haviour by using valid existing namespaces. Instead, IFA

617

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

relying on non-existing content namespaces can usually
be detected by applying namespaces filtering techniques.

Different attacker capabilities can lead to IFA with
varying impacts on the network. The attacker capabilities
we consider are interest request frequency, number of
compromised nodes, and location of compromised nodes
in the network. The attacking frequency represents the
most impactful IFA feature. Thus, we analyse IFA be-
haviour depending on these frequencies and identify the
boundaries for an IFA attack to be considered ongoing.
In practice, relatively low request frequencies used from
the compromised nodes create traffic patterns akin to the
normal traffic—i.e., no compromised nodes. By studying
the effectiveness of IFA via the distribution of PIT sizes
for various request frequencies, we aim to identify the
most relevant attacking frequencies. Lastly, in the consid-
ered threat model, the compromised nodes share the same
properties and are not considered to be coordinated, except
for the start time of the attack. This attack setup represents
the one that best fits a real-world scenario. The attacker
has access to multiple devices, which, once activated, aim
to overflow the network without further coordination.

4.3. Requirements

Designing a robust, precise, and generalisable IFA
detection mechanism requires some criteria to be met:

C1 Global approach. The anatomy of DDoS attacks –
including IFA – is founded on the interaction among
compromised nodes distributed over the network. In
this context, focusing only on local features detected
in each network node emerges to be limited to captur-
ing such interaction and, consequently, less accurate
to detect IFA. Therefore, a more global approach
would be preferable to increase detection precision
while lowering false alarms.

C2 Adaptable to heterogeneous topologies. Generally,
detection mechanisms are designed and tested in
the same – usually small-scale – network topology,
leading to topology-specific solutions. This hinders
their deployment into real-world topologies different
from those considered in the design phase. Thus,
the mechanism should address its transferability over
different topologies during the design phase.

C3 Large and representative network traffic. The com-
mon denominator of all the ML-based IFA detection
mechanisms is the knowledge of the network traffic.
Depending on the mechanism being supervised or un-
supervised, a legitimate or malicious network traffic
might be needed. In particular, supervised detection
is mainly designed using labeled data representing
legitimate and malicious network traffic. Instead,
the unsupervised mechanisms demand legitimate net-
work traffic only.

C4 Robust and efficient detection. The detection mecha-
nism should be fast enough to identify an attack in
real time. Furthermore, if the detection mechanism is
allocated in the routers – which are the target of IFA
– it is more likely to be devastated as soon as the
attacker floods the network. Therefore, the detection
mechanism should be wisely placed in the network.

Our proposal – detiailed in Section 6 – aims at incorpo-
rating all the criteria C1-C4. In particular, we use GNNs

to enable our detection mechanism to extract information
from the whole NDN network rather than focusing on
specific features of single network devices, thus automat-
ically satisfying C1. Meanwhile, relying on graph com-
putation mechanisms, our approach shows generalisability
characteristics missing from state-of-the-art approaches—
see Sections 7.1 and 7.2. GNNs are proven to generalise
well between different graph structures – especially con-
cerning graph classification tasks [37] – and thus allow
our approach to satisfy C2. Moreover, relying on GNNs to
process graph data has also proven to be time efficient, as
different approaches exist to optimise their application to
huge-scale graphs [17], [38]. Therefore, our experiments
show that our approach easily satisfies C4 even on large-
scale NDN networks. Finally, to enable C3, we extract and
propose the most comprehensive – up to our knowledge
– dataset of IFAs in NDN networks—check Section 5.
The proposed dataset spans different topologies and mul-
tiple attack setups, rendering the extracted network traffic
representative of the most heterogeneous IFA attacks.

5. SPOTIFAI: SPOTting IFA Intruders

The availability of open source datasets and code
reproducibility highly impact research related to IFA de-
tection. To the best of our knowledge, no IFA datasets are
available. Therefore, we collected SPOTIFAI by analysing
several IFA scenarios using ndnSIM [39], an open-source
platform that implements the NDN protocol. SPOTIFAI
realistically mirror IFAs behaviour in NDN networks [35].
In Section 5.1, we describe the collected data and the
attacking configuration parameters. Instead, in Section 5.2,
we dive into the experimental details considered during
the IFA implementation and analysis.

5.1. Data Collection

We assume the presence of a central node, assigned by
the Internet Service Provider (ISP), to collect node traces
and apply the IFA detection mechanism. We consider two
configurations for collecting SPOTIFAI: (i) standard –
i.e., if there are no compromised nodes in the network;
(ii) under attack – i.e., if there is an ongoing attack. For
the standard configuration, SPOTIFAI contains five simu-
lations for each topology. Instead, for the configuration
under attack, SPOTIFAI encompasses several scenarios
for each topology, varying the number of compromised
nodes and their attacking frequency. Due to the session-
less nature of NDN networks, collecting data following
the traffic flow is not semantically representative. There-
fore, we have considered 12 features for the analysis of
IFA depicted in Table 1, among which ten are interface
dependent. Concretely, a node with L interfaces collects
10 ∗ L + 2 features. We consider the traffic rate in each
node’s interface, including incoming and outgoing traffic.
Here, we measure the incoming and outgoing rates for
interest and data packets, satisfied interests, timed-out
interests, and NACKs. Additionally, for each router, we
consider the packet drop rate. Finally, we capture the PIT
evolution by tracing the number of entries of PIT during
each simulation. The considered features are selected as
they compose the most comprehensive metrics describing

618

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

each interface’s router states. Additionally, most of the
collected features are used in the state-of-the-art.

TABLE 1: Features description.

Feature
Symbol

Description

f l
1 # of received interests in an interface l

f l
2 # of sent interests through an interface l

f l
3 # of arrived data in an interface l

f l
4 # of sent data through an interface l

f l
5 # of satisfied interests per an incoming interface l

f l
6 # of satisfied interests per an outgoing interface l

f l
7 # of timed out interests per an incoming interface l

f l
8 # of timed out interests per an outgoing interface l

f l
9 # of NACKs per an incoming interface l

f l
10 # of NACKs per an outgoing interface l

f11 cumulative measurements of dropped packets per node
f12 # of PIT entries per node

IFA severeness on the routers and service degradation
strictly depend on the number of compromised nodes and
their request frequency. Moreover, compromised nodes’
location significantly affects the success of mounted IFA,
especially when considering aggregation routers that con-
nect multiple edge routers. Therefore, while collecting
SPOTIFAI, we consider a variable number of compro-
mised nodes with randomly selected locations and variable
request frequency. Thus, we obtain a complete and thor-
ough dataset representing the full spectrum of IFA effects
on NDN networks.

5.2. SPOTIFAI Setup

IFA simulations are carried out using two widely used
topologies in the state-of-the-art: small-scale binary tree
topology and DFN (German Research Network). Con-
versely, from most existing proposals, we consider a more
extensive topology—i.e., Rocketfuel topology [36]. We se-
lect these topologies to enable a fair comparison between
existing works and our approach and extend it to a large-
scale scenario—see Figure 1. The small-scale topology
comprises 18 nodes, including 8 user nodes – i.e., both
legitimate and compromised ones – and a single producer.
The topology corresponds to one of the worst cases for
an IFA detection mechanism where a single producer
satisfies all users’ requests. DFN topology is widely used
by the state-of-the-art IFA detection proposals. It consists
of 29 nodes with 12 user nodes – i.e., compromised and
legitimate nodes – and six producers. The higher number
of producers smoothes the IFA effect since users’ requests
are distributed across multiple producers. For small-scale
and DFN topologies, we fix bandwidth and propagation
delays to 10Mbps and 10ms, respectively. Instead, Rock-
etfuel – i.e., large-scale – comprises 163 nodes. Among
these, 72 nodes are users, 68 gateways, and 23 backbone
nodes. Here, the producer nodes are chosen from the set
of gateways and backbones. We set variable bandwidth
and propagation delay values according to the link types,
as Afanasyev et al. [5] proposed.

To approximate a real network traffic behaviour in
our experiments, we assume that legitimate users issue
requests following the Zipf-Mandelbrot distribution [40].
Their request frequency is selected following a random

uniform distribution in [50, 150] interests/second. Simi-
larly, the compromised nodes follow the exact requests
distribution pattern as legitimate users while using re-
quest frequencies that are multiples of legitimate users’
frequencies. Similarly to other approaches [7], [30], we
limit the maximum PIT capacity to 1200 entries. For every
IFA simulation scenario setup, we perform five runs, each
spanning five minutes. The attack starts in the 50s and
stops at the end of the simulation. For each simulation, the
statistics are collected every second. Table 2 summarizes
the specific parameter values. Overall, SPOTIFAI accounts
for 40 heterogeneous IFA attack scenarios and 250 col-
lected runs. Therefore, SPOTIFAI contains about 21 hours
of collected network traffic.

TABLE 2: Simulation parameters values.

Simulation Parameter Value

Simulation duration 300s
Statistics collection time 1s

Maximum PIT size 1200
Legitimate users frequency U∼[50-150] interests/s

Attackers frequency coefficient [4x, 8x, 16x, 32x, 64x]

Attackers number
Small-scale: 4, 5, 6, 7

DFN: 4, 8, 11
Large: 15, 36, 64

Legitimate users runtime 0-300s
Attackers runtime 50-300s

Most existing proposals do not clearly define the pre-
cise criteria for an IFA to succeed in the scenarios they
consider. We study the network behaviour under different
combinations of compromised nodes’ numbers and the
frequency of their requests to overcome such limitations.
Figure 2 depicts the PIT size – modeled as Gaussian
distribution – for small-scale topology. Here, F refers
to the attacking frequency, and N represents the number
of compromised nodes. As expected and represented in
the zoomed right-hand side plot, increasing compromised
nodes’ frequency – e.g., 8x (red curves), 16x (orange
curves), 32x (pink curves), 64x (light blue curves) – leads
to PIT size values which are distributed along the tail of
the distribution. Thus, the routers’ PITs are saturated for
these frequencies, confirming the IFA effect. Conversely,
following the left-hand side, for lower attacking frequen-
cies – e.g., 4x (black curves) – the PIT size distribution is
similar and overlaps with the legitimate distribution (green
curve). Following the above findings, we consider the 4x
attacking frequency to be similar to the legitimate scenario
and therefore exclude it from IFA setup.

Lastly, to show the IFA effect, we analyse the PIT
consumption on the routers considering a specific at-
tacking frequency and number of compromised nodes.
In Figure 3a, we illustrate the findings for the DFN
topology, considering the frequency of the attack 32x and
8 attacking nodes. Due to space limitations, the reader
can refer to https://tinyurl.com/2pd3k9tt for the small and
large scale topology plots. IFA has different effects on the
routers, depending on their location in the network. For
example, Rout9 (brown line) oscillates at a 200 entries
PIT occupancy, 2x less compared to Rout8 in the small-
scale topology. Furthermore, we illustrate the consumer
satisfaction rate – i.e., the rate of data packets received
for the interest requests – in Figure 3b considering the

619

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The three network topologies considered.

Figure 2: PIT size distribution for small-scale topology.

identical setups. As expected, IFA severeness in denying
the service to the consumers is experienced as soon as
the attack starts. Such effect is harsher for smaller topolo-
gies where IFA quickly floods all the routers. Besides
Figures 2, 3a and 3b that show the behaviour of IFA
in the SPOTIFAI, in Figure 3c we show its statistical
stability in terms of standard deviation over time for the
PIT size. In accordance with Figure 3a, Figure 3c shows
the peak values of the standard deviation of PIT sizes
as soon as IFA starts at time 50s. After that, a stable
standard deviation is observed for all the attack duration,
thus proving the simulation convergence.

6. GNN4IFA

IFAs rely on compromised nodes’ collaboration to
inject an anomalous amount of requests, making them
difficult to detect by standard security frameworks. Indeed,
most – if not all – IFA detection mechanisms inspect
local features to predict anomalous states. However, lo-
cal features might remain unchanged during IFA. Given
sufficient coordinated compromised nodes, it is possible
to correctly mount an IFA by slightly increasing the
number of requests they propagate while keeping the local
behaviour – i.e., features – untouched. These simple yet

sophisticated attacks will likely pass undetected by tradi-
tional detection frameworks. We here propose to leverage
GNNs to identify IFA, given their ability to extract com-
plex non-local information from graph-structured data. In-
deed, GNNs extract the information concerning interaction
among nodes of a graph and elaborate it to obtain the
desired knowledge regarding the graph or nodes state.
We propose to analyse an NDN network using GNNs to
extract information about complex behavioural relations
that may exist between multiple – malicious – nodes.
We first provide an overview of the required steps to run
GNN4IFA (Section 6.1), then we describe how the NDN
traffic is mapped into a graph, representing connections
among nodes (Section 6.2) . Lastly, we present the two
GNN4IFA configurations (Sections 6.3 and 6.4).

6.1. GNN4IFA Overview

Here, we briefly introduce the GNN4IFA pipeline,
consisting of 5 steps, as shown in Figure 4.

1) Feature extraction from traffic: Each router imple-
menting GNN4IFA elaborates its traffic information
to build the set of features necessary to detect IFA
attacks (more details in Section 6.2).

620

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

(a) DFN topology: F=32x, N=8. (b) DFN topology: F=32x, N=8. (c) DFN topology, all setups

Figure 3: Effect of IFA – i.e., PIT consumption, consumer satisfaction rate, and PIT size rolling standard deviation –
on the DFN topology.

2) Features propagation to ISP: The features extracted
by each router are propagated to the ISP which is in
charge of detecting the IFA.

3) Construction of G(t): Upon the reception of routers
features, the ISP builds the graph G(t) representing
the NDN network status. The construction of G(t) is
described more in detail in Section 6.2.

4) Run IFA detector: G(t) is fed to the GNN detection
mechanism that defines if an IFA is ongoing or not.
This detection process can leverage both a supervised
mechanism and an unsupervised approach and is
described more in detail in Sections 6.3 and 6.4.

5) IFA mitigation: Upon attack detection, a mitigation
scheme is deployed over the NDN network, aiming
to reduce the IFA effects. There exist multiple ap-
proaches to mitigate IFAs upon their detection [21],
[41], [42], and we here consider an NDN network re-
lying on one of these mechanisms. Indeed, GNN4IFA
is independent of the IFA mitigation as it can be
coupled with any available scheme. Therefore, a de-
tailed discussion concerning the deployed mitigation
scheme is clearly out of the scope of this paper.

6.2. NDN Networks as Graphs

Before getting into details concerning the proposed
GNN models, we must introduce how to map NDN
networks into practical graphs to be fed to GNNs. The
mapping from NDN scenarios to graph samples is not
trivial, as multiple ways exist to define nodes and edges
between them.

Given an NDN network at a specific time step t,
we present how to map the network state into the graph
G(t). We first focus on the topology of the NDN network
at hand. Here, the interconnections among routers are
considered to be known by the ISP running the detec-
tion mechanism. Generally, the ISP or the local network
maintainer knows how routers are placed. Meanwhile,
user nodes are discarded from the topology, given the

privacy-preserving nature of NDN. Indeed, users cannot
be univocally identified, and it is cumbersome to point out
which users are connected to which router. Nevertheless,
the lack of user nodes in G(t) does not represent a draw-
back. Indeed, router features are sufficient for detecting
IFA since routers are the affected network components.
Moreover, relying on user-node features may hinder attack
detection since compromised nodes may act adversarially
and try to modify their features to avoid being detected.
The graph representing the NDN network is identified by
G(t) = (X(t),A(t)). Here, AN×N expresses the graph
topology and is obtained by mapping interconnections be-
tween routers into a binary adjacency matrix. N represents
the number of routers available in the NDN network, and
the matrix entries are defined as:

ai,j(t) =

{
1, if link(ri, rj , t) = 1

0, otherwise
(1)

where link(ri, rj , t) is a function that outputs 1 if a
physical connection between router ri and router rj exists
at time t, 0 otherwise.

The features representing the states of nodes in G(t)
are obtained using the features f presented in Table 1.
Since most of the selected features contain interface-
specific information, we aggregate the features over a
router’s interfaces following Equation (2).

Fk =

L∑
l=1

f l
k with k = [1, 10] (2)

Here, L represents the total number of interfaces for a
router i, and f l

k represents the kth feature of router i over
its interface l. As f11 and f12 do not focus on router
interfaces, Equation (2) is applied to features k = 1 up to
k = 10. For seek of completeness, we then define F11 =
f11 and F12 = f12. Therefore, for each router i, we obtain
the set of features Fk with k ∈ [1, 12] describing the router
state aggregated over all its interfaces.

For each node i – i.e., router ri – of the graph
the features F are concatenated into a vector xi(t) =

621

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

Feature Extraction
from Network Traffic

Features Propagation
to ISP

Construction of Run IFA Detector

NORMAL

IFA

IFA Mitigation

Figure 4: Overview of GNN4IFA. The routers of the NDN network collect features that characterise the traffic. These
features are propagated to the ISP which is in charge of running the detection mechanism – SAD or UAD – and the
attack mitigation.

[
F1(ri, t) · · · F12(ri, t)

]
. This vector represents the

router state and is time-dependent, as it varies through
time. The obtained vectors are then concatenated to obtain
the matrix XN×12. Mathematically:

X(t) =

⎡
⎢⎣
x1(t)

...
xN (t)

⎤
⎥⎦ =

⎡
⎢⎢⎣
F1(r1, t) · · · F12(r1, t)
F1(r2, t) · · · F12(r2, t)

...
. . .

...
F1(rN , t) · · · F12(rN , t)

⎤
⎥⎥⎦ (3)

Throughout our experiments, we consider a time window t
of one second since SPOTIFAI is collected, keeping track
of the features every second. Therefore, we build a graph
G(t) for every second.

6.3. Supervised Attack Detection (SAD)

Given an input graph G(t) representing an NDN net-
work state, the task of detecting if the network is under
IFA can be easily mapped into a binary classification
task—the most straightforward mapping between IFA de-
tection and GNN training. In particular, we consider a
graph classification task meant to predict a single label for
the whole G(t) that describes whether the NDN network is
under attack – i.e., label 1 – or not—i.e., label 0. We do not
consider mapping IFA detection into a node classification
task. Defining which routers are affected by the IFA and
which ones are immune is not trivial.

To tackle the graph classification task, we build a
simple GNN model relying on μ successive graph con-
volution layers, followed by an average-pooling layer that
aggregates the feature vectors of the convoluted nodes—
i.e., routers. The aggregated network representation is
then passed to a fully-connected classification layer whose
output represents our model prediction. The SAD GNN
is then trained over the NDN network instances obtained
from SPOTIFAI. Finally, since it is supervised, we empha-
sise that SAD requires the training set to contain samples
of both normal NDN network state and attack state.

6.4. Unsupervised Attack Detection (UAD)

In conjunction with SAD, we here present UAD, aim-
ing to obtain a GNN-based model capable of detecting

IFA even when trained solely on samples of NDN normal
states. To this end, UAD relies on self-supervision to
learn to reconstruct masked nodes of a given input graph.
More in detail, similarly to [43] and [44], given a graph
representing the NDN network state, we mask a few nodes
of the graph, obtaining a new nodes’ features matrix XM.
We then pass the masked graph as input to the GNN
model, which is in charge of reconstructing the original
– unmasked – graph via prediction of the features of
the masked nodes. During training, the GNN model is
optimised to minimise the loss function:

L = E(XM, X̃M) (4)

where, E represents a user-defined error function mea-
suring the distance between the predicted nodes’ values
X̃ over the mask M and their true values X. Thus, the
trained UAD model can correctly predict the legitimate
node behaviour.

The main idea behind UAD is that the trained GNN
model can reconstruct the masked graphs for legitimate
NDN states but fails to predict correctly masked anoma-
lous NDN graphs—i.e., graphs of NDN networks under
IFA. Therefore, it is possible to identify IFA via imposing
a threshold τ on the error between the predicted nodes’
values X̃M and their true values XM. Whenever the error
overcomes τ , an anomaly is detected at the running time,
and the model outputs an attack label. During training,
the threshold τ is selected as the p-th percentile value of
errors obtained over legitimate graph samples.

Rather than working solely on time step t, UAD
receives in input the difference between the graph of
the current time step and the previous one—i.e., Gin =
G(t) − G(t − 1). Here, the difference between the two
graphs is computed as the difference between their feature
matrices. This stands since IFAs modifies the network
characteristics over a limited amount of time. Indeed,
the amount of traffic in a network under attack increases
rapidly before reaching a plateau, as shown in Figure 3a
of Section 5.2. Therefore, an anomaly can be detected
over the NDN network only during attack activation time.
Indeed, anomalies cannot be identified over the plateaus
reached a short time after the attack starts since no abso-
lute knowledge of the attack behaviour is considered in
UAD. Figure 5 shows UAD workflow.

622

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

GNN

ATTACK

LEGITIMATE

Figure 5: The UAD workflow. The NDN network is converted into an equivalent graph. Randomly selected nodes are
masked (blue vertices), and the GNN model aims at reconstructing their feature vectors. An attack is detected when
the error score E between reconstructed and original vectors of masked nodes overcomes threshold τ .

7. Performance Evaluation

We here present the results obtained using SAD and
UAD on SPOTIFAI in Section 7.1 and Section 7.2, respec-
tively. In particular, we perform a detailed ablation study
for each model, a thorough analysis of their detection abil-
ity, a comparison with the state-of-the-art, and an analysis
of their detection generalisability, time requirements, and
resource overhead.

7.1. Supervised Attack Detection (SAD)

7.1.1. Ablation study. Relying on graph convolution,
SAD detection performance depends strongly on the se-
lected convolution operation T and the number of con-
volutional layers μ. We investigate different combinations
of T and μ to identify the best setup for SAD. More
in detail, we sample T ∈ {GCN [45], Cheb [46], TAG
[47], GIN [48], SG [49]}, while letting μ span from 1
to 6. We train SAD over two runs of each SPOTIFAI
setup – i.e., the combination of compromised nodes’
request frequency and the number of compromised nodes
– representing 40% of the SPOTIFAI and encompassing
a total of 11920 samples. Among these, 2000 samples are
benign; the remaining 9920 represent malicious behaviour.
Instead, for testing SAD performance – i.e., accuracy and
F1-score – we use the remaining three runs, aggregating
the results. Overall, we use 17880 samples during testing,
among which 3000 samples are benign, and the remaining
14880 represent an attack. Throughout the remainder of
SAD experiments, we maintain the same data proportions
for training and testing.

Figure 6 shows the results of our ablation study over
the small and DFN topologies. The best hyperparame-
ters setup for SAD is represented by the combination
T = GIN and μ = 2. This model reaches more than
98% IFA detection accuracy and F1-score for both small
and DFN topologies. Nevertheless, our study shows that
precise detection can be obtained using all the graph
convolution operations analysed. On the flip side, it is
interesting to notice that higher values of μ lead to per-
formance degradation, possibly due to overfitting issues.

7.1.2. Performance analysis. SAD detection perfor-
mance above shows an aggregate estimation, where met-
rics are averaged over all testing runs. Table 3 shows the
accuracy and F1-score obtained by the best SAD model
– i.e., T = GIN and μ = 2 – on all number of com-
promised nodes and their interest frequency in the DFN
and large topology. Our model successfully detects IFA

for all scenarios, reaching detection accuracy and F1-score
higher than 98% and 99%, respectively. Meanwhile, in the
small-scale topology, our model reaches 100% accuracy
and F1-score over all the setups. As expected and shown
in Table 3, SAD presents higher detection performance
when dealing with compromised nodes setup where IFA
are more severe—i.e., higher request frequency and higher
number of compromised nodes. Moreover, SAD performs
slightly worse on the DFN topology. Indeed, such a topol-
ogy is flooding resistant, lacking communication bottle-
necks. Lastly, we tested the SAD’s robustness by scaling
the percentage of train samples. The results shown in
Table 4 validate the strength of SAD, highlighting small
performance drop over the large topology when training
with only 5% of SPOTIFAI samples, corresponding to
1192 samples. Meanwhile, over smaller topologies SAD
shows no degradation in performance. In conclusion, the
results show SAD’s reliability for detecting IFA in all
setups.

7.1.3. Comparison with ML baselines. We tested our
SAD mechanism with four state-of-the-art baselines that
use ML algorithms for IFA detection [28]–[31]. Here,
two baselines [29], [30] use multiple ML algorithms.
Therefore we compare GNN4IFA to all the available
ML combinations. Due to the lack of publicly available
datasets and source codes used by the baselines, repro-
ducing them becomes a non-trivial task. We replicated
the proposed detection mechanisms by relying on the
SPOTIFAI dataset for extracting the set of features used
by each baseline that are available in the dataset. After
that, the routers’ features at each time step are embedded
into a one-dimensional vector – via concatenation – that
is used for IFA classification. Here, we split the available
data into 20% used for training the baseline, 40% for its
validation, and the remaining 40% for its testing. Table 5
shows the accuracy and F-1 score of the baselines and
GNN4IFA in the three considered topologies. GNN4IFA
SAD achieves identical or comparable results to the base-
lines for the small and DFN topology. Instead, for the large
topology, it outperforms the baselines achieving at least a
6% of improvement in accuracy and a 5% of F-1 score.
Indeed, GNN4IFA reaps the benefits of the knowledge
gained from the large topologies, where it can explore
the complex interaction among compromised nodes during
an IFA. Conversely, the baselines focus only on locally
measured features on the routers while completely lacking
the wide network view.

7.1.4. Comparison with non-ML baselines. We compare
our SAD mechanism with five state-of-the-art non-ML

623

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

Figure 6: SAD ablation study. Accuracy and F1-score are shown concerning the μ and T (see Section 6.3). Left side
plots refer to the small topology, while the right side refers to DFN.

TABLE 3: Accuracy (top) and F1-score (bottom) of SAD over each SPOTIFAI setup for DFN (left) and large (right)
topology. Average score are shown in the last column and row of the tables.

����N
F

8× 16× 32× 64× Avg.

4
92.1% 95.6% 97.0% 95.0% 94.9%
95.5% 97.5% 98.2% 97.1% 97.0%

7
100.0% 99.9% 100.0% 100.0% 100.0%
100.0% 99.9% 100.00% 100.0% 100.0%

11
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

Avg.
97.4% 98.5% 99.0% 98.3% 98.3%
98.5% 99.1% 99.4% 99.0% 99.0%

����N
F

8× 16× 32× 64× Avg.

15
93.1% 100.0% 99.5% 100.0% 98.4%
95.2% 100% 99.7% 100.0% 98.7%

16
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.00% 100.0% 100.0%

65
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

Avg.
97.9% 100.0% 99.8% 100.0% 99.5%
98.4% 100.0% 99.9% 100.0% 99.6%

TABLE 4: Accuracy (top) and F1-score (bottom) of SAD
over SPOTIFAI topologies, when trained on a different
percentage of samples.

Topology 60% 40% 20% 10% 5%

Small
100.0% 100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

DFN
98.5% 98.6% 98.5% 98.5% 98.4%
99.1% 99.2% 99.1% 99.2% 99.0%

Large
99.5% 99.4% 98.3% 98.0% 94.8%
99.6% 99.5% 98.8% 98.5% 96.3%

baselines [6], [7], [24], [26], [27] using the SPOTIFAI
dataset. Given the locality of the baselines, for a fair
comparison, we calculate from SPOTIFAI the underlying
features for each router’s interface, as shown in Table 6.
Each router provides a prediction based on the feature
vectors at a specific time step. After that, the predictions
from all the routers are aggregated into a one-dimensional
vector. To establish a reasonable comparison with our
global SAD mechanism, we consider an attack ongoing in
the case at least one of the routers predicts IFA. Table 6
shows the accuracy and F-1 score for each baseline on
the three considered topologies. GNN4IFA SAD achieves
sharply better accuracy and F-1 score results, confirming
the global detection mechanism’s superiority over local
detection.

7.1.5. Generalisability. We aim to test the ability of
SAD to generalise its detection performance to unseen
topologies. To the best of our knowledge, this work
represents the first approach that studies generalisability

aspects of IFA detection. This component is fundamental
as it shows if and to what extent a detection mechanism
can be deployed in real-world scenarios. Indeed, in con-
creteness, a detection system is expected to be deployable
over multiple heterogeneous networks characterised by
different structures. Given the supervised nature and the
lack of transferability study of the baselines, we present
only the generalisability results of GNN4IFA SAD. To
this end, we train the SAD model on each topology,
obtaining a topology-specific detector. Such a model is
then tested on the other three topologies, computing the
aggregated detection accuracy and F1 score. Table 7 shows
the obtained performance. SAD can generalise from com-
plex to simple scenarios—e.g., from large to the small
topology. On the flip side, due to its supervised nature,
SAD obtains degraded performance when transferred to
larger topologies—e.g., from DFN to large. In particular,
SAD struggles to detect IFA for the lowest values of
compromised nodes request frequency—e.g., 8×. Indeed,
in such scenarios, the network features may resemble
legitimate behaviour and require specific detection knowl-
edge. Such specific knowledge is not obtained when
trained on a smaller topology, where IFA are more severe.
The obtained behaviour is expected, as generalisability
limitations represent well-known issues of supervised ap-
proaches. Overall, the results are encouraging, as they
show how GNN4IFA represents the first detection system
capable of correctly identifying IFA when deployed on a
network that differs from the training one.

7.1.6. Time performance and resource overhead. Com-
putation time requirements are relevant when dealing with

624

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

TABLE 5: SAD comparison with the baselines. Accuracy
(top) and F1-score (bottom) measured on SPOTIFAI using
selected features previously presented in Equation (2).
Legend: MLP - Multi Layer Perceptron, SVM - Support
Vector Machine, RF - Random Forests, DT - Decision
Tree, NB - Naı̈ve Bayes.

Baseline Features
Topologies

Small DFN Large

[29] (MLP)
[F1:F6, F12] 100.0% 100.0% 93.6%

100.0% 100.0% 94.4%

[29] (SVM) [F1:F6, F12]
100.0% 100.0% 93.5%
100.0% 100.0% 94.3%

[28] (SVM)
[F13 =F3

F2
, 100.0% 95.2% 93.5%

F14 = F12
1200

] 100.0% 97.1% 94.4%

[31] (RF)
[F2, F3, 100.0% 100.0% 93.5%
F8, F12] 100.0% 100.0% 94.4%

[30] (DT)
[F1:F8, 100.0% 99.9% 78.6%
F11, F12] 100.0% 99.9% 78.6%

[30] (NB)
[F1:F8, 83.2% 82.3% 60.7%
F11, F12] 90.8% 90.3% 75.6%

[30] (SVM)
[F1:F8, 100.0% 100.0% 93.5%
F11, F12] 100.0% 100.0% 94.4%

[30] (MLP)
[F1:F8, 100.0% 100.0% 93.5%
F11, F12] 100.0% 100.0% 94.4%

SAD (GIN) All 100.0% 98.3% 99.5%
100.0% 99.0% 99.6%

TABLE 6: SAD comparison with the non ML baselines.
Accuracy (top) and F1-score (bottom) measured on SPO-
TIFAI using selected features presented in Table 1.

Baseline Features
Topologies

Small DFN Large

[7] [
fl
1

fl
4

,
fl
12

fl
1

]
99.0% 79.9% 93.9%
99.4% 86.1% 95.3%

[26] [
fl
12

1200
,

fl
7

fl
7+fl

5

]
75.9% 60.7% 94.4%
83.0% 68.7% 95.4%

[24] [
fl
12

1200
,

fl
7

fl
7+fl

5

]
66.5% 81.0% 91.8%
74.8% 87.0% 93.5%

[27] [
fl
3

fl
1

, f l
1, f

l
7, f

l
9]

83.2% 82.3% 61.4%
90.8% 90.2% 76.1%

[6] [
fl
1

fl
4

,
fl
12

fl
1

]
88.3% 43.3% 88.9%
92.4% 47.5% 90.1%

GNN4IFA All 100.0% 98.3% 99.5%
100.0% 99.0% 99.6%

IFA detection. Indeed, lagged predictions lead to unde-
tected IFA, causing network malfunction. To test the SAD
time performance, we keep track of its inference time
over a set of 14 thousand samples. We run SAD on a
consumer laptop – i.e., Apple M1 chip, 16 GB RAM –
obtaining an average prediction time of 0.351 ± 0.005 ms.
Given this performance, it is safe to state that SAD can
be deployed in real-world scenarios to promptly detect
IFA, thus, protecting NDN networks from IFA at their
very early stages. We run more experiments to measure
the CPU and RAM usage for inference and training of
GNN4IFA. Inference over 17880 samples requires a peak
memory usage of 384 MBs and a peak CPU usage of

TABLE 7: Accuracy and F1-score of SAD over SPOTIFAI
topologies, when trained on a different topology.

Topology transfer Accuracy F1-score

Small → Small 100.0% 100.0%
Small → DFN 72.8% 68.0%
Small → Large 72.8% 67.3%
DFN → Small 93.2% 96.1%
DFN → DFN 98.3% 99.0%
DFN → Large 54.9% 32.4%
Large → Small 100.0% 100.0%
Large → DFN 94.0% 94.2%
Large → Large 99.5% 99.6%

100% over two Apple M1 chip (octa-core) cores—the
average CPU usage while testing is only 20%. Meanwhile,
the model training process requires peak memory usage of
349 MBs and 100% CPU usage over a single core. SAD
retraining requires, on average, 180 seconds over a set of
11920 samples. The obtained results show lower overhead
compared to other solutions [50].

7.2. Unsupervised Attack Detection (UAD)

7.2.1. Ablation study. Similarly to Section 7.1.1, we aim
to identify the best hyper-parameters for UAD. Differently,
from SAD, the most influential parameter is represented
by the p-th percentile used to identify threshold τ . There-
fore, we here investigate different combinations of graph
convolution T and p, showing their respective True Pos-
itive Rate (TPR) and False Positive Rate (FPR). UAD is
trained over benign samples only, counting 891 samples in
our experiments, and is tested over 22524 samples built as
a mixture of benign and attack samples. Since UAD relies
on time difference (see Section 6.4), we here consider a
UAD anomaly to be a true positive if raised after the
attack start time. Conversely, it is a false positive if raised
before the attack starts. The UAD model uses 2μ graph
convolutions. The former μ layers work as encoders while
the latter as decoders. We set μ = 2, representing the
best value obtained for SAD. Moreover, we set the mask
sampling probability to 0.3—i.e., randomly sample 30%
of the graph’s nodes. Variations on the masking probabil-
ity do not influence much UAD’s detection performance.
Indeed, IFA produce substantial heterogeneity in nodes
features, making the selection of the nodes to be masked
indifferent. Finally, we use a Mean Squared Error measure
for E . Figure 7 shows the results of this ablation study
over the small and DFN topologies. UAD best setup is
obtained with T = GIN and p = 0.985. Indeed, such
a model reaches 100% TPR and FPR smaller than 2%
for both topologies. As expected, smaller p values lead to
more frequent alarms, as the underlying anomaly detector
is more sensitive to slight variations. This leads to higher
TPR and FPR. Meanwhile, higher p values lead to a more
robust anomaly detector, which avoids raising unjustified
alarms – i.e., small FPR. However, higher p may also lead
to degradation of TPR, which may cause undetected IFA.

7.2.2. Performance analysis. Similarly to Section 7.1.2,
we present a microscopic analysis of UAD detection
performance. Tables 8 to 10 present the TPR and FPR
obtained by the selected UAD model – i.e., T = GIN
and p = 0.985 – for each attack setup—i.e., number of

625

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

Figure 7: UAD ablation study. TPR and FPR are shown with respect to the p-th percentile used to identify threshold τ
(see Section 6.4). Left side plots refer to the small topology, while the right side refers to DFN.

TABLE 8: TPR (top) and FPR (bottom) of UAD over each
SPOTIFAI setup for the small topology. Average scores
are shown in the last column and row of the tables.

����N
F

8× 16× 32× 64× Avg.

4
100.0% 100.0% 100.0% 100.0% 100.0%
2.0% 0.8% 1.2% 0.8% 1.2%

5
100.0% 100.0% 100.0% 100.0% 100.0%
0.8% 2.0% 3.6% 0.8% 1.8%

6
100.0% 100.0% 100.0% 100.0% 100.0%
1.6% 4.8% 2.4% 2.4% 2.8%

7
100.0% 100.0% 100.0% 100.0% 100.0%
2.4% 2.8% 2.8% 2.0% 2.5%

Avg.
100.0% 100.0% 100.0% 100.0% 100.0%
1.7% 2.6% 2.5% 1.5% 2.1%

compromised nodes and their interest frequency. UAD
detects successfully IFA for all scenarios, even if trained
solely on normal status—i.e., network not under IFA. In
particular, our model reaches 100% TPR for each setup
while keeping FPR under control—i.e., around 2% for
most setups. Here, we recall that GNN4IFA does not
produce one inference per packet – as many other state-
of-the-art mechanisms –, but rather relies on a time-step
t inference. Indeed, SAD and UAD receive in input a
graph G(t) – corresponding to the network state over
the time window t – and produce one inference over it.
Thus, GNN4IFA runs once every t seconds, and its corre-
sponding TPR and FPR should be evaluated, considering
this. Concretely, an FPR of 2% would result in 2 false
alarms every 1000 seconds when setting t = 10, rather
than resulting in 20 thousand false alarms per seconds
over a network traffic of 1 million packets per second.
Lastly, we tested the UAD’s robustness by scaling the
percentage of train samples and cross-validating. Table 11
shows the results confirming UAD robustness, even when
training only on 10% of SPOTIFAI corresponding to only
89 training samples—recall that UAD trains on legitimate
samples only.

7.2.3. Comparison with ML baselines. To the best of
our knowledge, all state-of-the-art IFA detection mecha-
nisms rely on supervised ML algorithms. Therefore, for
UAD comparison, we consider the supervised baselines –

TABLE 9: TPR (top) and FPR (bottom) of UAD over each
SPOTIFAI setup for the DFN topology. Average scores are
shown in the last column and row of the tables.

����N
F

8× 16× 32× 64× Avg.

4
100.0% 100.0% 100.0% 100.0% 100.0%
2.4% 3.2% 2.0% 2.0% 2.4%

8
100.0% 100.0% 100.0% 100.0% 100.0%
0.8% 2.0% 2.0% 1.6% 1.6%

11
100.0% 100.0% 100.0% 100.0% 100.0%
1.6% 1.2% 1.6% 1.2% 1.4%

Avg.
100.0% 100.0% 100.0% 100, 0% 100.0%
1.6% 2.1% 1.8% 1.6% 1.8%

TABLE 10: TPR (top) and FPR (bottom) of UAD over
each SPOTIFAI setup for the large topology. Average
scores are shown in the last column and row of the tables.

����N
F

8× 16× 32× 64× Avg.

15
100.0% 100.0% 100.0% 100.0% 100.0%
1.0% 0.0% 1.0% 0.0% 0.5%

36
100.0% 100.0% 100.0% 100.0% 100.0%
0.0% 3.0% 1.0% 2.0% 1.5%

65
100.0% 100.0% 100.0% 100.0% 100.0%
0.0% 0.0% 1.0% 0.0% 0.25%

Avg.
100.0% 100.0% 100.0% 100, 0% 100.0%
0.3% 1.0% 1.0% 0.6% 0.75%

i.e., [28]–[31] – and measure their TPR and FPR. Table 12
shows the results for three topologies. The UAD mecha-
nism of GNN4IFA obtains a TPR identical to the baselines
for the small and DFN topology. Meanwhile, for the large
topology, it outperforms the baselines achieving at least a
10% increase in TPR. Such results confirm the benefits of
leveraging topology information for detecting IFA on large
topologies. Conversely, in topologies with few nodes – i.e.,
small and DFN – the topology information is not strongly
relevant. Thus, detection with GNN achieves performance
similar to the state-of-the-art.

Concerning the FPR, our UAD mechanism maintains
it around 2% for the small and DFN topology, while it can
be considered negligible for the large. Since it is trained on
unlabelled data, higher FPR values are generally expected.
Indeed, training UAD receives no information concerning

626

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

TABLE 11: TPR (top) and FPR (bottom) of UAD over
SPOTIFAI topologies, when trained on a different per-
centage of samples.

Topology 90% 70% 50% 25% 10%

Small
100.0% 100.0% 98.75% 98.75% 97.5%
0.63% 1.52% 2.97% 3.21% 1.45%

DFN
100.0% 100.0% 100.0% 100.0% 100.0%
1.90% 1.4% 1.97% 1.70% 1.47%

Large
100.0% 100.0% 100.0% 100.0% 100.0%
0.73% 0.68% 0.66% 0.51% 1.16%

TABLE 12: UAD comparison with the baselines. TPR
(top) and FPR (bottom) measured on SPOTIFAI using
selected features previously described in Table 1.

Baseline Features
Topologies

Small DFN Large

[29] (MLP) [F1:F6, F12]
100.0% 100.0% 89.4%

0.0% 0.0% 0.0%

[29] (SVM) [F1:F6, F12]
100.0% 100.0% 89.3%

0.0% 0.0% 0.0%

[28] (SVM)
[F13 =F3

F2
, 100.0% 96.9% 89.4%

F14 = F12
1200

] 0.0% 12.4% 0.0%

[31] (RF)
[F2, F3, 100.0% 100.0% 89.4%
F8, F12] 0.0% 0.0% 0.0%

[30] (DT)
[F1:F8, 100.0% 99.9% 64.7%
F11, F12] 0.0% 0.0% 0.0%

[30] (NB)
[F1:F8, 99.9% 100.0% 100.0%
F11, F12] 100.0% 100.0% 100.0%

[30] (SVM)
[F1:F8, 100.0% 100.0% 89.3%
F11, F12] 0.0% 0.0% 0.0%

[30] (MLP)
[F1:F8, 100.0% 100.0% 89.4%
F11, F12] 0.0% 0.0% 0.0%

UAD (GIN) All 100.0% 100.0% 100.0%
2.1% 1.8% 0.75%

the difference between normal and attack traffic, which
is valuable information that is used during the training
of the baseline counterparts. Meanwhile, for the more
extensive topology, UAD yields a more robust approach
in terms of attack detection at the cost of some acceptable
false alarms. Here, the best baseline – i.e., [29] –misses
IFA about 10% of the times. In a real-world scenario,
continuously detecting an attack while having some false
alarms would be preferable compared to missing some of
the attacks to have FPR = 0%.

7.2.4. Comparison with non-ML baselines. Here, we
compare our UAD mechanism of GNN4IFA with the non-
ML baselines, measuring their TPR and FPR as shown
in Table 13. UAD outperforms the baselines in the three
topologies in terms of TPR. Instead, regarding the FPR,
our GNN4IFA UAD outperforms all the baselines for
the large topology, confirming the benefits of the global
knowledge in such scenarios. On the other hand, for
smaller topologies – i.e., small and DFN – UAD reaches
higher, yet negligible values of FPR. Again, such a result
is strongly related to the need for more relevant topology
information in scenarios with limited nodes.

TABLE 13: UAD comparison with non ML baselines.
TPR (top) and FPR (bottom) measured on SPOTIFAI
using selected features previously presented in Table 1.

Baseline Features
Topologies

Small DFN Large

[7] [
fl
1

fl
4

,
fl
12

fl
1

]
98.9% 75.6% 99.9%
0.0% 0.0% 15.5%

[26] [
fl
12

1200
,

fl
7

fl
7+fl

5

]
71.0% 52.3% 94.8%
0.0% 0.0% 6.2%

[24] [
fl
12

1200
,

fl
7

fl
7+fl

5

]
59.7% 77.0% 95.7%
0.0% 0.0% 14.2%

[27] [
fl
3

fl
1

, f l
1, f

l
7, f

l
9]

100.0% 100.0% 100.0%
100.0% 100.0% 100.0%

[6] [
fl
1

fl
4

,
fl
12

fl
1

]
86.0% 31.1% 82.0%
0.0% 0.0% 0.0%

GNN4IFA All 100.0% 100.0% 100.0%
2.1% 1.8% 0.75%

TABLE 14: TPR and FPR of UAD over SPOTIFAI topolo-
gies, when trained on a different topology. Values with ∗
and † correspond to p=0.61 and p=0.995, respectively.

Topology transfer TPR FPR

Small → Small 100.0% 2.1%
Small → DFN 98.3% 0.7%
Small → Large 91.7%∗ 0.0%∗
DFN → Small 98.8% 2.2%
DFN → DFN 100.0% 1.8%

DFN → Large 100.0%† 2.9%†
Large → Small 100% 35.4%
Large → DFN 100% 26.9%
Large → Large 100.0% 0.75%

7.2.5. Generalisability. Differently from SAD, UAD can
generalise from smaller to larger topologies, as shown in
Table 14. Indeed, we obtain a minimal performance degra-
dation when testing UAD on larger topologies. UAD’s
ability to generalise can be attributed to its unsupervised
nature. Indeed, this approach learns solely to represent
legitimate network behaviors, similar to most topologies.
Meanwhile, attacks are detected as deviations from legiti-
mate behaviours that are easily generalisable. However,
UAD needs more generalisation from large to simpler
topologies. The result stems from the high number of
requests seen during training on the large topology due to
the higher number of legitimate and compromised nodes.
The results highlight the superiority of UAD over SAD
and encourage its deployment in real-world scenarios.

7.2.6. Time performance and resource overhead. UAD
is tested on the same consumer laptop of Section 7.1.6,
where it obtains an average prediction time of 0.548 ±
0.004 ms over 22 thousand samples. Interestingly, UAD
is 1.5 times slower than SAD, as it uses twice the convo-
lutional layers μ. Moreover, UAD relies on node features
reconstruction over the mask M and error E computation.
Therefore, UAD needs to produce N inferences, repre-
senting the number of vertices in G, rather than only
a binary prediction. Given this performance, UAD can
compute up to 4 thousand predictions per second, enabling
its deployment in real-world scenarios. Additionally, we
measure the CPU and RAM usage for inference and

627

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

training of UAD. Inference over 29700 samples requires
a peak memory usage of 671 MBs, and the average CPU
usage while testing is only 25.4%. Meanwhile, the model
training process requires peak memory usage of 656 MBs
and 100% CPU usage over a single core. UAD retraining
requires, on average, 8.23 seconds over 891 samples.

8. Limitations

The proposed GNN4IFA mechanism faces certain lim-
itations mainly related to its detection rationale and the
leveraging of AI algorithms for the detection. Lastly, the
collected SPOTIFAI dataset may be subject to potential
biases since it is collected in a simulated environment:
so, we elaborate more on the aforementioned limitations.

GNN4IFA weaknesses. Designing a global IFA detec-
tion mechanism is challenging as it requires coordination
among all the network nodes. Our GNN4IFA is purposely
designed based on the GNN that maps the network to
a graph for a global detection approach. The rationale
behind GNN4IFA classifies the whole graph as under an
IFA or not instead of considering per-router classification.
While approaching this rationale, our GNN4IFA over-
comes the locality issue of current IFA detection mecha-
nisms, it introduces a few limitations. Here, if GNN4IFA
detects an attack, the mitigation mechanism is implied to
be activated on all the routers. However, one could argue
that GNN4IFA can be coupled with proactive mitigation
techniques which limit the routers’ traffic depending on
how severely the attack affects them. Moreover, leveraging
state-of-the-art eXplainable Artificial Intelligence (xAI)
techniques on GNN [51], we could easily identify the most
affected nodes as the most important ones for attack de-
tection and activate the mitigation only on those. Another
limitation related to the GNN4IFA rationale includes the
propagation of collected traffic toward the central entity
in charge of deploying the detection mechanism. Such an
issue can be tackled by relying on ad-hoc overlay – or
underlay – network [10] or embedding the propagation in
the NDN network traffic.

Lastly, GNN4IFA might be susceptible to adversarial
attacks, mainly exploiting the graph structure [52]. Nev-
ertheless, these attacks are mainly successful in white-
box and grey-box scenarios, where the attackers know
the model, the used features, and the labels. Additionally,
mimicry attacks that modify the attack to mimic normal
traffic patterns might disturb the detection robustness of
GNN4IFA. Here, the SAD is bounded by its supervised
nature. Therefore, changes in the attack patterns perturb
its detection accuracy since attacking traffic will pass
undetected. On the other hand, we expect UAD to be more
robust from this perspective since it is trained on benign
traffic. Therefore, the mechanism will detect even slighter
changes in the benign traffic pattern.

SPOTIFAI biases. Collecting the SPOTIFAI, we con-
sidered state-of-the-art IFA simulations where the benign
traffic is usually modeled following a Zipf-Mandelbrot
distribution for consumer requests considering a fixed
requesting frequency. For SPOTIFAI, we approached the
same distribution but changed the requesting frequency of
each consumer in each run. Such an approach is a widely
used set up in simulation-based works [53], [54], reassem-
bling faithfully real-world scenarios. However, SPOTIFAI

is bounded to the simulation environment where it is
collected, limiting the collection of benign samples from
real-world dynamic traffic.

9. Conclusions and Future Works

ICN, and consequently NDN, as a new and not yet
deployed technology has unsolved DoS and DDoS issues.
This paper presents a two-fold contribution in hindering
IFA, a severe DDoS issue where the attacker exploits
routers’ resources to degrade – or even deny – the service
to legitimate users. Initially, we propose the first fully
representative IFA dataset – i.e., SPOTIFAI –, collected
through extensive simulations over different scenarios in
three network topologies. SPOTIFAI is publicly available
for the research community. Then, we design GNN4IFA,
a novel IFA detection technique that leverages GNNs.
GNN4IFA is designed in two configurations – i.e., su-
pervised (SAD) and unsupervised (UAD) – and is tested
using SPOTIFAI. The results show that GNN4IFA can
detect IFA in both configurations. In particular, SAD
approaches 100% accuracy in all the setups, while UAD
reaches a true positive rate of 100% and a negligible false
positive rate. Additionally, comparing our GNN4IFA to
ML-based state-of-the-art mechanisms, we confirmed an
improvement of up to 6% in the detection accuracy for the
supervised configuration and a 10% of true positive rate
increase for the unsupervised configuration. Instead, com-
pared to non-ML state-of-the-art mechanisms, GNN4IFA
ensures a sharp improvement in the detection accuracy up
to 20% and in the true positive rate up to 25%, for the
supervised and unsupervised configuration, respectively.
Lastly, we tested GNN4IFA generalisability by transfer-
ring models from one topology to the others. The results
demonstrate UAD robustness and SAD limitations.

In the future we aim at extending GNN4IFA by de-
signing a proactive IFA mitigation scheme relying on xAI
techniques applied to GNN to identify routers mostly af-
fected by the attack and blocking incoming traffic. More-
over, we plan to model GNN4IFA in a distributed fashion,
designing an ad-hoc communication protocol, to validate
the overhead introduced by our system. Lastly, we also
plan to extend SPOTIFAI, by increasing setups hetero-
geneity and adding IFA leveraging non-existing content.

Acknowledgements

This paper was partially supported by (i) La Sapienza
University of Rome within the Bando Ricerca 2020,
project “Secure ANd PrivatE Information sharing (SAN-
PEI)”; (ii) the CHIST-ERA IV project “EXPECTATION”
(CHIST-ERA-19-XAI-005), co-funded by EU and the Ital-
ian MUR; (iii) project “SERICS” (PE00000014) under
the NRRP MUR program funded by the EU - NGEU;
and (iv) the European Commission under the Horizon
Europe Programme, as part of the project “LAZARUS”
(https://lazarus-he.eu/) (Grant Agreement no. 101070303).

We would also like to thank the anonymous reviewers
for their comments and suggestions that helped us improve
the quality of the paper.

628

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

References

[1] D. R. Cheriton and M. Gritter, “Triad: A New Next-Generation
Internet Architecture,” 2000.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking Named Content,” in
International Conference on Emerging Networking Experiments
and Technologies, 2009, pp. 1–12.

[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named Data Networking (NDN) Project,” Relatório Técnico
NDN-0001, vol. 157, p. 158, 2010.

[4] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mecha-
nisms against distributed denial of service (ddos) flooding attacks,”
IEEE Communication Surveys and Tutorials, vol. 15, no. 4, pp.
2046–2069, 2013.

[5] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang,
“Interest Flooding Attack and Countermeasures in Named Data
Networking,” in IFIP Networking Conference, 2013, pp. 1–9.

[6] A. Benarfa, M. Hassan, A. Compagno, E. Losiouk, M. B. Yagoubi,
and M. Conti, “Chokifa: A New Detection and Mitigation Ap-
proach Against Interest Flooding Attacks in NDN,” in International
Conference on Wired/Wireless Internet Communication, 2019, pp.
53–65.

[7] A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “Poseidon:
Mitigating Interest Flooding DDoS Attacks in Named Data Net-
working,” in IEEE Conference on Local Computer Networks, 2013,
pp. 630–638.

[8] S. Ramesh, C. Yaashuwanth, K. Prathibanandhi, A. R. Basha, and
T. Jayasankar, “An optimized deep neural network based dos attack
detection in wireless video sensor network,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1–14, 2021.

[9] R. F. Fouladi, O. Ermiş, and E. Anarim, “A novel approach for
distributed denial of service defense using continuous wavelet
transform and convolutional neural network for software-defined
network,” Computers & Security, vol. 112, p. 102524, 2022.

[10] A. Agiollo, M. Conti, P. Kaliyar, T.-N. Lin, and L. Pajola, “Detonar:
Detection of routing attacks in rpl-based iot,” IEEE Transactions on
Network and Service Management, vol. 18, no. 2, pp. 1178–1190,
2021.

[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crow-
ley, C. Papadopoulos, L. Wang, and B. Zhang, “Named Data
Networking,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 3, pp. 66–73, 2014.

[12] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker,
“Naming in Content-Oriented Architectures,” in ACM SIGCOMM
Workshop on Information-Centric Networking, ICN, 2011, pp. 1–6.

[13] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in
Named Data Networking,” in International Conference on Com-
puter Communication and Networks, (ICCCN), 2013, pp. 1–7.

[14] V. Fung, J. Zhang, E. Juarez, and B. G. Sumpter, “Benchmarking
Graph Neural Networks for Materials Chemistry,” npj Computa-
tional Materials, vol. 7, 2021.

[15] W. Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, J. Tang, and D. Yin,
“Graph Neural Networks for Social Recommendation,” in The
World Wide Web Conference, WWW. ACM, 2019, pp. 417–426.

[16] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic Graph CNN for Learning on Point Clouds,”
ACM Transactions on Graphics, vol. 38, pp. 146:1–146:12, 2019.

[17] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representa-
tion Learning on Large Graphs,” in Advances in Neural Information
Processing Systems 3, 2017, pp. 1024–1034.

[18] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional
Networks: A Deep Learning Framework for Traffic Forecasting,”
in International Joint Conference on Artificial Intelligence, IJCAI,
2018, pp. 3634–3640.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
Comprehensive Survey on Graph Neural Networks,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 32, pp.
4–24, 2021.

[20] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph Neural Networks: A Review of Methods and
Applications,” AI Open, pp. 57–81, 2020.

[21] H. Dai, Y. Wang, J. Fan, and B. Liu, “Mitigate DDoS Attacks
in NDN by Interest Traceback,” in IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), 2013,
pp. 381–386.

[22] A. Benarfa, M. Hassan, E. Losiouk, A. Compagno, M. B. Yagoubi,
and M. Conti, “Chokifa+: an early detection and mitigation ap-
proach against interest flooding attacks in ndn,” International
Journal of Information Security, vol. 20, no. 3, pp. 269–285, 2021.

[23] Y. Xin, Y. Li, W. Wang, W. Li, and X. Chen, “A Novel Inter-
est Flooding Attacks Detection and Countermeasure Scheme in
NDN,” in IEEE Global Communications Conference (GLOBE-
COM), 2016, pp. 1–7.

[24] H. Salah, J. Wulfheide, and T. Strufe, “Coordination supports
security: A new defence mechanism against interest flooding in
NDN,” in 40th IEEE Conference on Local Computer Networks,
LCN 2015, Clearwater Beach, FL, USA, October 26-29, 2015.
IEEE Computer Society, 2015, pp. 73–81.

[25] H. Salah and T. Strufe, “Evaluating and Mitigating a Collusive Ver-
sion of the Interest Flooding Attack in NDN,” in IEEE Symposium
on Computers and Communication (ISCC), 2016, pp. 938–945.

[26] K. Wang, H. Zhou, Y. Qin, and H. Zhang, “Cooperative-filter:
countering interest flooding attacks in named data networking,”
Soft Computing, vol. 18, no. 9, pp. 1803–1813, 2014.

[27] A. Benmoussa, A. E. K. Tahari, N. Lagraa, A. Lakas, F. Ahmad,
R. Hussain, C. A. Kerrache, and F. Kurugollu, “A novel congestion-
aware interest flooding attacks detection mechanism in named
data networking,” in 28th International Conference on Computer
Communication and Networks, ICCCN 2019, Valencia, Spain, July
29 - August 1, 2019. IEEE, 2019, pp. 1–6.

[28] T. Zhi, Y. Liu, and Z. Yan, “An Entropy-SVM Based Interest
Flooding Attack Detection Method in ICN,” in IEEE Vehicular
Technology Conference, 2018, pp. 1–5.

[29] N. Kumar, A. K. Singh, and S. Srivastava, “Evaluating Machine
Learning Algorithms for Detection of Interest Flooding Attack
in Named Data Networking,” in ACM International Conference
Proceeding Series, 2017, pp. 299–302.

[30] ——, “Feature Selection for Interest Flooding Attack in Named
Data Networking,” International Journal of Computers and Appli-
cations, vol. 43, no. 6, pp. 537–546, 2021.

[31] J. Chen, G. Xing, M. Cui, H. Huo, and R. Hou, “Isolation forest
based interest flooding attack detection mechanism in ndn,” in
2019 2nd International Conference on Hot Information-Centric
Networking (HotICN). IEEE, 2019, pp. 58–62.

[32] I. J. King and H. H. Huang, “Euler: Detecting network lateral
movement via scalable temporal graph link prediction,” in 29th An-
nual Network and Distributed System Security Symposium, NDSS
2022, San Diego, California, USA, April 24-28, 2022. The Internet
Society, 2022.

[33] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang,
X. Shi, and J. Yang, “THREATRACE: detecting and tracing host-
based threats in node level through provenance graph learning,”
IEEE Transactions on Information and Forensics Security, vol. 17,
pp. 3972–3987, 2022.

[34] Y. Ji and H. H. Huang, “Nestedgnn: Detecting malicious network
activity with nested graph neural networks,” in IEEE International
Conference on Communications, ICC 2022, Seoul, Korea, May 16-
20, 2022. IEEE, 2022, pp. 2694–2699.

[35] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, “On
realistic network topologies for simulation,” in Proceedings of the
ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research, 2003, pp. 28–32.

[36] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topolo-
gies with Rocketfuel,” ACM SIGCOMM Computer Communication
Review, vol. 32, no. 4, pp. 133–145, 2002.

[37] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison
of graph neural networks for graph classification,” in 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

629

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

[38] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh, “Cluster-
gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM, 2019,
pp. 257–266.

[39] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the Evolution of
ndnSIM: An Open-Source Simulator for NDN Experimentation,”
ACM SIGCOMM Computer Communication Review, vol. 47, no. 3,
pp. 19–33, 2017.

[40] L. A. Adamic and B. A. Huberman, “Zipf’s Law and the Internet.”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[41] X. Zhang and R. Li, “A charging/rewarding mechanism-based
interest flooding attack mitigation strategy in NDN,” in IFIP/IEEE
International Symposium on Integrated Network Management, IM
2019, Washington, DC, USA, April 09-11, 2019. IFIP, 2019, pp.
402–407.

[42] Z. Wu, W. Feng, M. Yue, X. Xu, and L. Liu, “Mitigation measures
of collusive interest flooding attacks in named data networking,”
Computers & Security, vol. 97, p. 101971, 2020.

[43] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. S. Pande, and
J. Leskovec, “Strategies for Pre-training Graph Neural Networks,”
in International Conference on Learning Representations, ICLR,
2020.

[44] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “GPT-
GNN: Generative Pre-Training of Graph Neural Networks,” in
ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2020, pp. 1857–1867.

[45] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in International Conference on
Learning Representations, ICLR. OpenReview.net, 2017.

[46] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filter-
ing,” in Advances in Neural Information Processing Systems, 2016,
pp. 3837–3845.

[47] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology
Adaptive Graph Convolutional Networks,” CoRR, 2017.

[48] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are
Graph Neural Networks?” in International Conference on Learning
Representations, ICLR, 2019.

[49] F. Wu, A. H. S. Jr, T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying Graph Convolutional Networks,” in International
Conference on Machine Learning, ICML, vol. 97, 2019, pp. 6861–
6871.

[50] Z. Wu, S. Peng, L. Liu, and M. Yue, “Detection of improved
collusive interest flooding attacks using BO-GBM fusion algorithm
in NDN,” IEEE Transactions on Network Science and Engineering,
vol. 10, no. 1, pp. 239–252, 2023.

[51] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” CoRR, vol. abs/2012.15445, 2020.

[52] J. Ma, S. Ding, and Q. Mei, “Towards more practical adversarial
attacks on graph neural networks,” in Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[53] A. Varet and N. Larrieu, “How to generate realistic network
traffic?” in IEEE 38th Annual Computer Software and Applications
Conference, COMPSAC 2014, Vasteras, Sweden, July 21-25, 2014.
IEEE Computer Society, 2014, pp. 299–304.

[54] J. Kepner, K. Cho, K. C. Claffy, V. Gadepally, P. Michaleas, and
L. Milechin, “Hypersparse neural network analysis of large-scale
internet traffic,” in 2019 IEEE High Performance Extreme Com-
puting Conference, HPEC 2019, Waltham, MA, USA, September
24-26, 2019. IEEE, 2019, pp. 1–11.

630

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 09,2023 at 13:01:48 UTC from IEEE Xplore. Restrictions apply.

