
Citation: D’Agata, A.; Ponza, D.;

Stroiu, F.A.; Vardopoulos, I.; Rontos,

K.; Escrivà, F.; Chelli, F.; Alaimo, L.S.;

Salvati, L.; Nickyain, S.S. Toward

Sustainable Development

Trajectories? Estimating Urban

Footprints from High-Resolution

Copernicus Layers in Athens, Greece.

Land 2023, 12, 1490. https://doi.org/

10.3390/land12081490

Academic Editors: Rongxu Qiu, Jing

Wu, Jeffrey London and Qianbo Wu

Received: 31 May 2023

Revised: 22 July 2023

Accepted: 26 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Toward Sustainable Development Trajectories? Estimating
Urban Footprints from High-Resolution Copernicus Layers in
Athens, Greece
Alessia D’Agata 1 , Daniele Ponza 1 , Florin Adrian Stroiu 1, Ioannis Vardopoulos 2 , Kostas Rontos 3 ,
Francisco Escrivà 4, Francesco Chelli 5, Leonardo Salvatore Alaimo 6 , Luca Salvati 1,* and Samaneh Sadat Nickyain 7

1 Department of Methods and Models for Economics, Territory and Finance, Faculty of Economics,
Sapienza University of Rome, Via del Castro Laurenziano 9, I-00161 Rome, Italy; alessia.dagata@uniroma1.it (A.D.);
ponza.1792885@studenti.uniroma1.it (D.P.); stroiu.1743606@studenti.uniroma1.it (F.A.S.)

2 Department of Regional and Economic Development, School of Applied Economics and Social Sciences,
Agricultural University of Athens (AUA), 33100 Amfissa, Greece; ivardopoulos@post.com

3 Department of Sociology, University of the Aegean, 81100 Mitilini, Greece; k.rontos@soc.aegean.gr
4 Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Blasco Ibàñez,

28, ES-46010 Valencia, Spain; francisco.escriva@uv.es
5 Department of Social and Economic Science, Polytechnic University of Marche, Piazzale Martelli 8,

I-60121 Ancona, Italy; f.chelli@univpm.it
6 Department of Social Sciences and Economics (DISSE), Faculty of Political Sciences, Sapienza University of

Rome, Piazzale A. Moro 5, I-00185 Rome, Italy; leonardo.alaimo@uniroma1.it
7 Planning and Design Faculty, Agricultural University of Iceland, Hvanneyri, 311 Borgarbyggð, Iceland;

samaneh@lbhi.is
* Correspondence: luca.salvati@uniroma1.it; Tel.: +39-06-4976-6418

Abstract: Land imperviousness reflects settlement growth and urban sprawl. Grounded on a com-
parative approach, a set of multidimensional statistical techniques were adopted here to quantify the
evolution of land imperviousness from Copernicus High-Resolution Layers (HRLs) in a representa-
tive case study of Southern Europe (Athens, Greece). A two-way data matrix reporting the percent
share of the surface land exposed to different sealing levels (101 classes ranging continuously from
0% to 100%) in the total municipal area was computed for two years (2006 and 2018) individually
for 115 municipalities in metropolitan Athens. This matrix represented the information base needed
to derive place-specific urban footprints and a comprehensive (global) profile of land impervious-
ness. Results of a Detrended Correspondence Analysis (DCA) delineated a metropolitan structure
still organized along the density gradient, moving from dense settlements in central locations with
dominant land classes sealed for more than 90% of their surface area to completely pervious land
(0%) typical of rural locations. While the density gradient became less steep between 2006 and 2018,
it continued to aliment a socioeconomic polarization in urban and rural districts with distinctive
profiles of land imperviousness. Intermediate locations had more mixed imperviousness profiles as a
result of urban sprawl. Differential profiles reflect place-specific urban footprints with distinctive
land take rates.

Keywords: urban sprawl; soil sealing; urban planning data mining; indicators; sustainable urban
development; Mediterranean Europe

1. Introduction

As a result of economic development, urban expansion rates in recent times have
accelerated in both intensity and spatial coverage, exerting impacts on both ecosystems and
societies [1–3]. Being structurally different from the abrupt growth of cities in emerging
economies [4–7], European urban regions expanded at a more regular pace, while altering
(more or less rapidly) the surrounding (natural and cultural) landscapes, thus creating
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mixed and indistinct metropolitan continuums [8–10]. The rapid expansion of Mediter-
ranean cities after World War II aroused much interest in this perspective, being interpreted
as a mixed socioeconomic process [11–13], sharing functional traits with both classical
(North)European development paths and the more intense growth processes typical of
emerging economies [14–16]. For such reasons, urban expansion in Mediterranean Europe
requires continuous monitoring [17,18], since an increasing amount of agricultural and
forest lands have been converted to (residential and industrial) settlements in both central
and peripheral locations [19–22].

This process pushed traditional urban–rural gradients toward a more complex spatial
organization reflecting polycentric (or scattered) settlements [23–25]. Economic growth—with
the progressive restructuring of the production base taken as a response to population
concentration and compact urbanization [26]—was demonstrated to fuel the expansion of
low-density, spatially discontinuous settlements as a result of urban sprawl [27–29], leading
to accelerated rates of soil consumption [30–32]. In this perspective, the sprawl caused a
latent restructuring of metropolitan regions [33–35], reshaping the traditional polarization
in urban and rural areas typical of Mediterranean Europe [36–39]. Urban sprawl has often
been related to the development of second homes—thanks to an increasing preference
for suburban areas—and strip expansion of industrial (or service) settlements—thanks to
accessibility gains and an increasing preference for suburban areas [40–42]. While allowing
people more living space and enterprises more spacious working places, the growth of
discontinuous settlements had negative impacts for sustainable development [43], deter-
mining a sudden increase in energy demands, human health issues, a latent (quantitative
and qualitative) decline of soil resources, and socioeconomic inequalities at large [44–47].
Based on its complexity, the sprawl requires additional investigation of the corresponding
land imperviousness profiles, as a peculiar trait of the joint expansion of residential and
industrial settlements [48–50].

It is widely recognized how ‘patterns’ and ‘processes’ of sprawl have been increasingly
analyzed in a mostly decoupled manner, pointing out the inherent diversity in the underly-
ing ecological and economic approaches [51–54]. However, recomposing the disciplinary
divide in functional and structural issues [55–57] is necessary to re-comprise morphological
dynamics and the related socioeconomic processes into a broader ‘holistic’ perspective
able to understand the role of different economic and social agents at the base of urban
expansion [58–60]. As a result of such complex dynamics [61], place-adapted profiles of
land imperviousness derived from high-resolution, remotely sensed thematic layers of
land-use were considered an appropriate information base to (i) estimate (global and local)
urban footprints, (ii) quantify the net land consumption rate over given time intervals, and
(iii) evaluate the intrinsic sustainability of recent development paths in a given metropolitan
area [60–64]. Direct and indirect measures of urban footprints and a renewed estimation of
land take, as well as specific insights into the sustainable development path of metropolitan
regions, are demanding research tasks that are particularly relevant and urgent in light
of the Agenda 2030 Sustainable Development Goals (SDGs), with a focus on SDG11 (safe,
inclusive, resilient, and sustainable cities) [65–67].

Based on these premises, the present work has two basic motivations: the first is
methodological and proposes an exploratory data mining strategy for the analysis of
place-specific land imperviousness profiles [68]. This objective is based on a sequence
of (parametric and non-parametric) multivariate statistical techniques interpreting the
complex and latent relationships between input variables, namely, the share of impervi-
ous classes in total municipal area [69]. Revealing such relationships—both linear and
non-linear—will enhance the information content of the (two-way) input data matrix
from a space-time perspective [70]. The second motivation is conceptual and suggests
an interpretation of the characteristic footprint of each municipality from a sustainability
perspective [71]. Starting from the results of the multivariate statistical technique which
presents the maximum goodness-of-fit to input data, changes over time in urban footprints
have also been read as a proxy for land consumption [72]. On the basis of this preliminary
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evidence, and considering the exploratory vision of the statistical analysis adopted in our
study, we have finally distinguished local-scale settlement structures on the basis of specific
land imperviousness profiles [73–75]. The discrimination between vertical settlements,
dominated by scale economies and governed by agglomeration factors [76], and horizon-
tal ones, reflecting the intense suburbanization of recent decades [77], is a particularly
deserving issue that merits further investigation.

2. Methodology
2.1. Study Area

Our investigation adopts metropolitan Athens (3000 km2) as the study area, whose
physical boundaries were delineated in line with the definition of cities in Urban Atlas,
a major initiative of the European Environment Agency (EEA). The study area encom-
passes the major part of Attica, a NUTS-2 (Nomenclature of Statistical Territorial Units
from Eurostat) administrative region in Central Greece, including Athens, the Greek cap-
ital city, and its surroundings [78]. The Greater Athens’ area (nearly 400 km2 classified
as the first conurbation of Greece, as far as both population and area are concerned)
was included in this definition, together with its peri-urban and rural surroundings
(2600 km2) [79]. Population density was above 10,000 inhabitants/km2 in central locations
and decreased to 2000–5000 inhabitants/km2 in suburban districts [80]. Rural locations had
up to 1000 inhabitants/km2, on average [32]. City growth was continuous and particularly
intense for the whole of the last century [22]. More recently, suburban development fueled
the expansion of spatially discontinuous settlements into agricultural and natural land,
determining an accelerated rate of soil loss [24]. During economic crisis (2008–onwards),
building activity decreased markedly in the area. However, this decrease was more intense
in downtown Athens and Piraeus, and in other dense municipalities with less availability
of free spaces to develop. The number of building permits released in the Greater Athens’
area, in both downtown and the surrounding municipalities, documents the intensity
of building activity during the entire study period. While the crisis depressed building
activity especially between 2010 and 2014, the previous years (2006–2009) and the following
years (2015–2018) were characterized by a moderate construction rate. This includes both
new buildings and enlargement of existing buildings, which is an important component
of Athens’ growth, especially in the context of limited available buildable spaces. In sev-
eral municipalities around downtown Athens and belonging to the Greater Athens’ area,
however, settlement growth was rather evident also during the crisis.

2.2. Data Sources and Elementary Variables

We used High-Resolution Layers (HRLs) of soil sealing released by the European
Environment Agency (EEA) under the main initiative of Land Copernicus within the
Global Monitoring for Environment and Security (GMES) framework [79]. Raster HRLs
with complete European coverage have been produced every three years since 2006
(i.e., 2006, 2009, 2012, 2015, 2018), and, in the last release (2018), they were fully harmonized
in both time and space and freely available in GeoTiff format [79]. We assumed two raster
files from the Fast Track Service on Land Monitoring as the reference geo-spatial database
elaborated in the present study [81]. More specifically, we considered the maps available at
the first (2006) and last (2018) production waves as a basic information source for mapping
impervious surfaces, defined as pavement structures (roads, sidewalks, driveways, and
parking lots) covered by asphalt, concrete, brick, stone, and rooftops [82]. These layers are
geo-referenced binary raster files, including sealed and non-sealed pixels, derived from
multi-sensor ortho-rectified satellite imagery. We considered only two comparable layers
with 100 m spatial resolution (regular grid) for both 2006 and 2018. We avoided using more
detailed rasters (20 m grid for 2006 and 10 m for 2018) for the sake of full comparability over
time. Spatially detailed Google Earth imagery was taken as a supplementary data source
validating HRLs [83]. Classification accuracy was tested considering estimates of omission
error, commission error, and overall accuracy [84]. Classification accuracy of sealed and
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non-sealed land resulted in much higher than 85% per hectare, with both omission and
commission errors remaining systematically below 15% [37]. In each map, non-sealed
pixels were representative of completely pervious (i.e., natural) soils [85]. Sealed pixels
were in turn classified according to with the intensity (namely level) of soil sealing at
the local scale [86], expressing a continuous degree of land imperviousness ranging from
0% to 100% in a 100 m regular grid [87].

2.3. Indicators of Land Imperviousness

With the aim of delineating soil sealing spatial patterns and trends on the municipal
scale in metropolitan Athens, a comprehensive investigation of local profiles of land
imperviousness was based on a multidimensional analysis of indicators derived from
the aforementioned HRLs (2006 and 2018). More specifically, the composition of sealed
land in each municipality was delineated considering 101 classes of land imperviousness
(0%, and from 1% to 100%) estimated as the percent surface area of each class in the total
municipal area [79]. To achieve this objective, we used the ‘Tabulate area’ tool provided
with ArcGIS (ESRI Inc., Redwoods, Redlands, CA, USA) after the overlap between each
land imperviousness raster map and the shapefile containing the municipal boundaries [78].
The ‘Tabulate area’ procedure computed selected statistics, including the count of the raster
values recorded on the 100 m grid and belonging to a given (vector) spatial unit [79].

2.4. Statistical Analysis

To illustrate (global and local) profiles of soil sealing in metropolitan Athens, descrip-
tive statistics were run with the aim of providing a coherent delineation of the spatial
degree of land imperviousness using tables, graphs, and maps [54]. Additionally, a mul-
tivariate strategy based on a composite chain of five separate techniques was adopted
here to summarize the complex relationship at the base of land imperviousness profiles in
Athens as a contribution to planning design and policy implementation for urban footprints’
containment and metropolitan sustainability at large [49]. More specifically, the (multi-
variate) latent relationship between the spatial extent of the different soil sealing classes in
each municipality (namely, the local-scale ‘footprint profile’) of metropolitan Athens was
studied over time (2006 and 2018, see Figure 1) considering the results of five statistical
analyses run sequentially. Techniques included a Principal Component Analysis (PCA), a
Principal Coordinate Analysis (PCoA), a non-metric Multidimensional Scaling (n-MDS),
a Correspondence Analysis (CA), and a Detrended Correspondence Analysis (DCA). All
these techniques were aimed at decomposing complex data matrices by variable, using
criteria oriented toward the ‘correlation’ notion (PCA and, in part, PCoA), the ‘similarity’
notion (nMDS), or the association notion (CA, DCA).

2.4.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) identifies hypothetical variables (namely, com-
ponents) that account for the largest proportion of the variance in a given (input) matrix
organized as a two-way, multivariate dataset with variables by column (namely, the per-
cent share in total municipal area by land imperviousness class) and observations by row
(namely, municipalities) [88]. Components were algorithmically constructed as linear
combinations of the original variables, maximizing the individual information from the
input matrix [50,52]. PCA was frequently used with the aim of reducing a given dataset
into a small number of components for plotting purposes under the assumption that the
most important components (usually the first two) are correlated with other underlying
variables [88]. Eigenvalues, reflecting the variance associated with each component ex-
tracted, were determined from the spectral decomposition of the correlation matrix using
the Singular Value Decomposition (SVD) algorithm [25]. The use of a correlation matrix (in-
stead of a variance-covariance matrix) guarantees an implicit standardization of the input
variables [68]. The percentage of variance accounted for by each extracted component was,
thus, derived from the respective eigenvalue [45]. Optimal PCA representations of a given
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data matrix imply that the first extracted components account for the largest proportion of
variance compared with the remaining components [89]. In this study, components with
eigenvalues > 1 were selected and analyzed by computing loadings (that reflect the intrinsic
correlation between variables—land imperviousness classes—and components) and scores
(that reflect the intrinsic linkage between units—municipalities—and components) [56]. A
biplot summarizing the position of loadings and scores in the same factor plane was finally
adopted to illustrate the outcome of this multivariate analysis [58].
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2.4.2. Principal Coordinate Analysis (PCoA)

PCA results were coupled with those from a Principal Coordinate Analysis (PCoA),
another ordination method (also known as Metric Multidimensional Scaling) that extracts
both eigenvalues and eigenvectors from a matrix containing correlations, distances, or
similarities between all data points [80]. Many correlation, distance, or similarity metrics
were frequently adopted when running PCoAs [52]. Using Euclidean distances gives out-
comes similar to those from a PCA. In this study, we checked the results of four metrics
(Euclidean, Manhattan, parametric Pearson correlation, and non-parametric Spearman
Rho co-graduation) reflecting both correlation and similarity approaches [56]. Eigenval-
ues giving a measure of the variance accounted for by the corresponding eigenvector
(i.e., coordinate) were calculated separately for each coordinate, giving in turn the percent-
ages of variance accounted for by these components [90]. The ‘metric’ values have been
raised to the power of c (the ‘transformation exponent’) before eigenanalysis is fixed to 2, a
standard coefficient in most quantitative exercises [91]. A scatter plot was drawn to project
each variable in the coordinate system given by the PCoA [92]. Each axis was scaled using
the square root of the eigenvalue, and a minimum spanning tree option was performed on
the base of the selected metric in the original space [93].
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2.4.3. Non-Metric Multidimensional Scaling (n-MDS)

Paralleling the experimental design adopted above (Section 2.4.2), an n-MDS using
Euclidean, Manhattan, correlation, and rho metrics was adopted here as an assumption-
free and flexible exploratory technique evaluating the overall similarity in the spatial
distribution of land imperviousness classes in Athens [92]. More specifically, n-MDS
identified meaningful (latent) dimensions explaining the observed similarities between
input variables [93]. Irrespective of the similarity metric, n-MDS arranges the investigated
variables in a geometrical space with a (particularly low) number of dimensions (usually two)
so as to reproduce the observed distances over space based on a similarity matrix [85]. In
this perspective, n-MDS is considered a multivariate analysis that provides an implicit
assessment of the role of space in the geometrical configuration of observations [86]. By
‘rearranging’ objects in an efficient manner, n-MDS provides a geometrical configuration
that best approximates the observed distances based on similarity metrics [90]. The analysis
verifies how well the distances between objects can be reproduced by the new configuration,
using a function minimization algorithm that evaluates different configurations with the
goal of minimizing the so-called ‘lack of fit’ [91].

2.4.4. Correspondence Analysis (CA) and Detrended Correspondence Analysis (DCA)

To corroborate the results of previous analysis’ steps, Correspondence Analysis (CA),
another ordination method somewhat similar to PCA and specifically addressing the
issue of compositional data [91], was run in our study. CA is especially suitable when
observations are expected to show unimodal responses to the underlying parameters,
which become rare for lower and higher values. This is in contrast to PCA, which assumes
a linear response across the whole range of values [94,95]. Following Greenacre [90],
the CA algorithm finds the eigenvalues and eigenvectors of a matrix containing the Chi-
squared distances between all columns based on SVD [96]. Eigenvalues, giving a measure
of the association accounted for by the corresponding eigenvector, were given for each
eigenvector [92]. The percentages of similarity accounted for by these components were
also provided [93]. A scatter plot visualized all data points (both variables and observations)
within the coordinate system given by the CA [97].

It is important to note that compositional data that sum to a constant by design,
such as proportions summing to 1 or percentages summing to 100, may contain ‘spuri-
ous’ correlations because as one value increases, the others may have to decrease [91].
As a consequence, some multivariate analyses can be negatively affected by this serial
autocorrelation structure. By analyzing observations in rows and imperviousness classes in
columns, a Detrended Correspondence Analysis (DCA) following the algorithm proposed by
Decorana [97], with modifications according to Oxanen and Minchin [90], was implemented
here with the aim of overcoming (or, at least, mitigating) the compositional issue intro-
duced above. Similarly to a classical CA, eigenvalues for a maximum of four ordination
axes were extracted and indicate their relative importance in explaining the observed
spread in the raw data [88]. Detrending is a sort of normalization procedure carried out in
two steps. The first step involves an attempt to ‘straighten out’ points lying in an arch,
which is a common occurrence in the compositional issue illustrated above [86]. The second
step involves a sort of ‘spreading out’ the points to avoid clustering of the points at the
edges of the plot [85]. While seeming like a sort of arbitrary procedure, we assume DCA
represents a meaningful support for compositional data interpretation over both time
and space.

3. Results

Using boxplots, Figure 2 outlines the statistical distribution of the degree of soil sealing
for each municipality in the study area, separately for 2006 (left) and 2018 (right). These
plots illustrate the average level of land imperviousness and its (statistical) deviation along
the urban–rural gradient in metropolitan Athens as a function of the municipal area. Het-
erogeneity was a systematic characteristic of the sample in both 2006 and 2018, preventing
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the use of parametric/inferential statistical methodologies based on the normality assump-
tion and sophisticated econometric techniques aimed at specifying the main determinants
of land imperviousness all over the study area. The use of exploratory multivariate tech-
niques, as extensively illustrated in the following paragraphs, was aimed at interpreting
such heterogeneity over time and space. Generally speaking, the largest heterogeneity in
the statistical distribution of municipal area was found for the highest classes of land imper-
viousness, namely between 90% and 100%. Additionally, urban expansion in metropolitan
Athens was visible when comparing data between 2006 and 2018 since classes between
80% and 100% of land imperviousness experienced a moderate increase in their average
surface area and the related dispersion around the mean. This sort of latent densification
was observed (more or less intensively) irrespective of the distance from the inner city;
however, the densest neighborhoods of downtown Athens were rather stable in their soil
sealing profile (see also the diachronic maps in Figure 1), likely because of the chronic
shortage of buildable land in a landscape traditionally saturated by buildings since the
1950s. This evidence was not completely true for the surrounding (urban) municipalities,
having dense settlements and some free space (vacant land) that were developed even
during the crisis (2007–onwards). Moreover, the steepness of the (decreasing) gradient of
municipal area moving from classes that reflect a low intensity of soil sealing (e.g., <20%)
to classes that reflect a medium-high intensity of soil sealing (e.g., >50%) intensified in
2018 compared with 2006.
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Taken together, these results suggest a particularly complex (spatial) configuration of
land imperviousness across the study area and heterogeneous profiles of soil sealing at
the scale of municipalities. In this direction, Figure 3 provided some additional diagnos-
tics (histograms and normal probability plots) indicating the substantial deviation of the
elaborated data from a normal statistical distribution, thus suggesting the use of specific
(exploratory) techniques.

By fulfilling the specific characteristics of the input data, the results of five exploratory
techniques of multivariate statistics were proposed in Table 1, considering the first three
latent dimensions extracted in each run. Results indicate how the variance explained in each
extracted dimension (from one to three) increases moving from a simplified multivariate
technique (PCA) decomposing the correlation matrix (based on linear Pearson coefficients)
of input variables to more flexible techniques (namely PCoA, n-MDS, and CA) adopting
similarity metrics—a less precise approach that is revealed to be more robust when complex
data patterns are analyzed. The visual clarity of the outcomes of all the statistical techniques
mentioned above seems to have moderately improved from 2006 to 2018. DCA finally



Land 2023, 12, 1490 8 of 17

provided a more appropriate extraction of the most relevant analysis’ dimensions. This
finding seems to be fully in line with the technical properties of this technique, appropriately
treating compositional data and intrinsically removing the serial autocorrelation eventually
occurring in the input variables.
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Figure 3. Visual diagnostics illustrating the intrinsic characteristics of the statistical distribution of 
land imperviousness degree in metropolitan Athens. 
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land imperviousness degree in metropolitan Athens.

Table 1. Basic results of the multivariate extraction of the first three latent dimensions of soil sealing
spatial complexity from the input data matrix by year and statistical technique (PCA: Principal
Component Analysis, PCoA: metric multi-dimensional scaling, n-MDS: non-metric multidimensional
scaling, CA: Correspondence Analysis, DCA: Detrended Correspondence Analysis).

Axis PCA PCoA n-MDS CA DCA

2006
1 28.3 39.4 39.9 38.4 52.5
2 24.7 10.3 11.4 17.4 9.4
3 10.1 5.0 6.1 9.5 4.1

2018
1 32.0 41.7 41.3 41.0 55.0
2 24.2 18.7 18.9 18.8 7.9
3 10.1 9.1 8.8 8.5 4.3

Figure 4 illustrates the most relevant findings obtained from the multivariate tech-
niques described above. All findings clearly indicate the presence of peculiar, and possibly
complex, latent data structures that require a specific analysis in order to remove the in-
fluence of compositional issues, as the ‘horseshoe’ distribution of the observation cloud
projected along axes 1 and 2 clearly outlines, irrespective of the applied technique. These
visual results, together with the numerical outcomes reported in Table 1, suggest the use
of Detrended Correspondence Analysis as an exploratory technique appropriate to treat
the latent complexity in the dataset, providing a coherent description of columns/cases
(localities) and rows (land imperviousness classes) from the input matrix. Additionally, in
line with the classical results of a PCA, a biplot of DCA will provide a more complete repre-
sentation of the intimate relationship between cases (municipalities) and rows, contributing
to the delineation of a more defined (local) profile of land imperviousness.
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Figure 4. Selected outputs of the multivariate analyses presented in Table 1: (upper panel) biplot
(land imperviousness classes vs. municipalities) of Principal Component Analysis (Axis 1 vs. Axis 2);
(middle panel) dimensional plot (coordinate 1 vs. coordinate 2) illustrating the position of land
imperviousness classes using non-metric Multidimensional Scaling (comparable results obtained
from Principal Coordinate Analysis, not shown here); (lower panel) component plot (coordinate 1
vs. coordinate 2) illustrating the position of land imperviousness classes using a Correspondence
Analysis (left graphs’ line: 2006; right graphs’ line: 2018); numerical labels indicate the ELSTAT
(Hellenic Statistical Authority) code uniquely associated with each municipality in the study area for
census purposes.

By illustrating a large part of the total matrix variance along dimensions 1 and 2,
the results of a Detrended Correspondence Analysis (Figure 5) provided the necessary
explanation of the complex relationship between locations and the spatial distribution
of soil sealing, delineating place-specific profiles of land imperviousness in metropolitan
Athens. Small changes in the biplot (locations vs. imperviousness degree) were visually
identified when comparing the results of the 2006 and 2018 runs. Generally speaking, DCA
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identified two main axes, possibly corresponding to distinctive geographical gradients in
the study area, which basically explained more than 80% and more than 10% of the total
variance, respectively.Land 2023, 12, x FOR PEER REVIEW 11 of 19 
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2018) reflect the latent trend toward settlement expansion in the Greater Athens’ area, 
more recently associated with mixed compact-dispersed urban growth especially in the 
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Figure 5. Results of a Detrended Correspondence Analysis showing the relationship between cases
(municipalities) and rows (land imperviousness classes) in the input data matrix of metropolitan
Athens; 2006 (a) and 2018 (b); numerical labels (from 1 to 100) indicate each individual class of soil
sealing as DCA projection on Axes 1 and 2; the position of municipalities was projected with blue
dots in the same graph (see also Figure 4 for numbering explanation).
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By providing a complete description of data complexity, Dimension 1 delineated
a gradient of soil sealing from low to medium-high intensities of land imperviousness
(from 0% to nearly 80% in 2006, from 0% to nearly 85% in 2018), which was in turn
associated with rural municipalities (placed on the left side of the horizontal axis) or peri-
urban (or moderately urban) municipalities (projected on the right side of the axis). In
other words, rural municipalities were associated with a systematically low degree of
land imperviousness, while peri-urban and moderately urban municipalities reflected the
dominance of intermediate classes of soil sealing (namely, between 50% and 80%).

The moderate differences found between 2006 and 2018 biplots (namely, the gradient
associated with Dimension 1 and spanning from 0% to 80% in 2006 and to 85% in 2018)
reflect the latent trend toward settlement expansion in the Greater Athens’ area, more
recently associated with mixed compact-dispersed urban growth especially in the munici-
palities surrounding Athens and Piraeus. This result indicates how settlement growth in
metropolitan Athens determined a slow but progressive expansion of high impervious-
ness classes, thus consolidating a mono-centric, dense structure typical of large Mediter-
ranean cities. Despite accounting for a restricted proportion of variance compared with
Dimension 1, Dimension 2 delineated a different gradient moving from medium-high to
very high degrees of soil sealing in the study area (namely, from 80% to 100% in 2006 or
from 85% to 100% in 2018). Urban municipalities with compact and hyper-dense settle-
ments were appropriately ordered along this axis, up to the most concentrated (based on
both buildings and population) municipalities in central Athens (e.g., Piraeus, Dafni, Agios
Ioannis Rendis, Keratsini, Drapetsona, Nikea). Downtown Athens was projected in an
intermediate position because of the large surface area devoted to urban gardens, parks
(Ethnikos Kipos, Likavitòs, Archaelogical area of Akropolis-Filopappos, Pedion ton Areos,
Singrou grove, Acadimia Platonos, Attiko Alsos, and the central cemetery), and other
natural/cultural amenities that intrinsically reduced the average level of soil sealing at the
municipal level. The spatial organization of both rows’ and columns’ points projected along
the two axes (basically illustrating two orthogonal gradients of soil sealing) may confirm
that the two latent dimensions represent distinctive settlement structures likely associated
with distinctive socioeconomic processes at the base of a classical rural–urban gradient
(Dimension 1) and a strictly urban gradient benefiting from scale economies (Dimension 2)
generated by agglomeration, concentration, and activity diversification.

4. Discussion

Causing departures from a purely radio-centric expansion path, metropolitan trans-
formations have determined—especially in Europe—a shift from traditional mono-centric
structures (with characteristic, high-density settlements) toward a (more or less marked)
shift to spatially discontinuous, low-density morphologies [98–100]. With this perspective
in mind, comparative and diachronic analyses of land imperviousness profiles may delin-
eate a simplified, rough measure of urban footprints, estimating the intrinsic sustainability
of a given development path [101]. The data mining strategy implemented in this work
proved useful when decomposing the intrinsic complexity of a compositional data matrix
that illustrates the local profile of land imperviousness [102]. In particular, the sequence of
multivariate analyses we have used in the present work exercise highlights the usefulness
of a DCA for the extraction of latent dimensions of soil sealing spatio-temporal complex-
ity [103]. The first two dimensions identify, in both 2006 and 2018, two local profiles of
‘land imperviousness’, the one characterized by the dominance of settlement typologies
with a medium-low percentage of soil sealing, the other grounded on systematically higher
percentages of soil sealing [104]. The level of soil sealing discriminating between the two
dimensions was visually estimated at around 79% imperviousness degree in 2006 and 84%
in 2018. The first typology, associated with Dimension 1 (which explains the maximum
variability extracted from the input data matrix), included rural, peri-urban, and quasi-
urban contexts, with highly variable settlement density ranging from 100 inhabitants/km2

to nearly 5000 inhabitants/km2. This dimension ordered municipalities from left to right
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according to a density gradient, which reflects settlement compactness [105]. The mu-
nicipalities on the left side of the axis are markedly rural, economically marginal, and
geographically peripheral [106]. The municipalities on the right side of the axis are, on
the contrary, typically urban, economically dynamic, and geographically accessible [107].
Unlike Dimension 1, which included a large number of municipalities, a smaller number of
municipalities were associated with Dimension 2. A similar structure of municipalities was
observed in 2006 and 2018, and the soil sealing classes were ordered from the bottom (low-
est values around 80–85%) to the top (highest values up to 100%). Municipalities associated
with Dimension 2 were ordered according to a settlement concentration gradient, from the
bottom to the top of the axis. Municipalities with denser settlements and more concentrated
populations were clustered towards the top side of the axis. Conversely, the less concen-
trated (urban) municipalities (with a density always higher than 5000 inhabitants/km2)
were grouped downwards.

The two dimensions were rather stable over time and highlighted two specific settle-
ment types characteristic of large metropolitan areas. In particular, the local land imper-
viousness profile indicates the coexistence of two distinctive morphologies: (i) a vertical
city, typically compact and hyper-dense, which corresponds to the central localities of
the respective mono-centric model (Athens, Piraeus) and the surrounding municipalities,
even denser than the respective centers; (ii) a horizontal city, with a more pronounced
settlement diffusion and a land-use mix oriented along the density gradient [108]. The
two dimensions resulted in being non-additive since they were not oriented along the
same multivariate gradient, being instead orthogonal and, thus, associated with different
economic processes [109]. Based on these premises, it is possible to argue how agglomera-
tion factors in the study area have fueled the formation and consolidation of horizontal
cities along a gradient oriented from rural areas to quasi-urban locations, according to
purely additive socioeconomic processes [80]. The advantages of scale economies acting at
higher densities underlie the formation and consolidation of a vertical city profile typically
associated with central locations [106], which benefited from population concentration and
in turn experiencing negative externalities (e.g., congestion). The empirical results of this
analysis relate morphological dynamics to the socioeconomic dimension of metropolitan
transformations [30], revealing the usefulness of exploratory approaches that can be re-
produced in profoundly different territorial contexts [110], decomposing ‘horizontal’ and
‘vertical’ dimensions of urban growth [111]. In this direction, future studies should focus on
novel indicators [112] of soil sealing, considering multiple sets of local attributes, not only
dealing with municipal size (i.e., surface area or population) but also extended to other
socioeconomic and ecological characteristics of the specific territory under investigation.
Our study definitely clarifies how soil sealing appears with very different profiles at the
local scale, resulting in heterogeneous geographies of land imperviousness that change
over time, mostly revealing place-specific development patterns.

5. Conclusions

Underlying different mechanisms of urban growth, metropolitan regions in advanced
economies experienced functional and structural transformations that reflect new socioe-
conomic trends impacting (directly or indirectly) urban footprints and environmental
sustainability. Taken as a direct manifestation of sprawl, discontinuous settlements were
frequently associated with heterogeneous land-use patterns, spatially variable urban foot-
prints, and accelerated land take rates, leading to unsustainable development. Based on
these assumptions, breaking down the latent dynamics of urban growth into differenti-
ated (e.g., vertical and horizontal) components is a significant contribution to regional
science and spatial planning. By reflecting distinctive economic and social conditions,
the decomposition of urban growth into separate (vertical and horizontal) components
is particularly appropriate when designing policies for the containment of urban sprawl
and a more sustainable metropolitan development. More precisely, the notion of (local)
land imperviousness profiles allows for an adequate representation of urban footprints and



Land 2023, 12, 1490 13 of 17

an indirect estimation of metropolitan sustainability. In this sense, a comparison of local
footprints with a broad socio-spatial analysis of municipalities may delineate the main
socioeconomic determinants of soil sealing at an appropriately operational spatial scale for
both regional/urban planning and local developmental policies.

An additional methodological improvement for future studies—especially dealing
with urban densification—is associated with the improvement of higher resolution layers
of land imperviousness within the Copernicus Land initiative. Despite the fact that some
more detailed geo-referenced layers of soil sealing exist, especially for 2018, we considered
a 100 m grid as the elementary layer from the EEA Copernicus initiative to allow a full
comparison between the two years investigated in this study. A 100 m grid appears to
be the appropriate spatial resolution in this kind of study, considering also the necessity
of obtaining a full harmonization of geo-spatial layers of soil sealing over time (during
the whole extent of the time series, e.g., between 2006 and 2018) and space (e.g., all
over the European continent). A multidimensional analysis of Copernicus HRLs finally
demonstrated that they were a coherent tool for estimating urban footprints and quantifying
spatial patterns (and short-term trends) of land take. The use of more detailed layers
(e.g., with a spatial resolution between 10 m and 20 m) should be evaluated in further studies
documenting explicitly the homogeneity and comparability of geo-spatial datasets of soil
sealing with slightly different resolution grids, as routinely offered by GMES Copernicus
Land Initiative. The empirical results of this study suggests the importance of two releases
of soil sealing layers, the first at less powerful spatial resolution but fully comparable over
the whole time series investigated (e.g., 100 m grid between 2006 and 2018) and the second
at a more powerful resolution (10 m grid) and available only for the most recent years
(e.g., 2012 and 2018). Irrespective of the disseminated variable, future releases of spatial
rasters of GMES Copernicus Land Initiative should take into account both time and space
dimensions, providing the appropriate layer for any research and planning need.
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