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Abstract

We consider the classic online problem of scheduling on a single machine to minimize total flow time. In
STOC 2021, the concept of robustness to distortion in processing times was introduced: for every distortion
factor 𝜇, an 𝑂 (𝜇2)-competitive algorithm ALG𝜇 which handles distortions up to 𝜇 was presented. However,
using that result requires one to know the distortion of the input in advance, which is impractical.

We present the first distortion-oblivious algorithms: algorithms which are competitive for every input of
every distortion, and thus do not require knowledge of the distortion in advance. Moreover, the competitive
ratios of our algorithms are 𝑂 (𝜇), which is a quadratic improvement over the algorithm from STOC 2021, and
is nearly optimal (we show a randomized lower bound of Ω(𝜇) on competitiveness).

1 Introduction

We consider the classic online scheduling problem on a single machine. Jobs arrive over time, and the completion
of each job requires some processing time on the machine. The goal of the algorithm is to minimize the total
flow time, which is the sum over jobs of their time pending (i.e. from release to completion). This is an online
problem, as the algorithm must decide which job to process at any given time, and is unaware of jobs that have
not yet been released.

The classic setting. In the classic setting, the processing time of a job becomes known to the algorithm upon
the job’s release. This knowledge gives great power to the algorithm: a classic result from the 1950s by Smith
[22] shows that the SRPT (shortest remaining processing time) algorithm is 1-competitive for this problem.

However, the assumption that processing times can be exactly known does not usually hold in practice. For
example, if a job is a computer program, the cases in which the running time is known exactly in advance are
very rare.

The robust model. This lack of knowledge regarding processing times is addressed by the robust scheduling
model, presented in [1]. In this model, upon the release of a job, the algorithm is provided an estimate for the
processing time of the job. Such estimates could be realistically obtained through heuristics, machine-learning
models, or user input. Naturally, one would expect the competitive ratio of an algorithm to improve with the
accuracy of the provided estimations.

We define the overestimation of an input to be the maximum estimated-to-real ratio of a job’s processing time.
Similarly, we define the underestimation to be the maximum real-to-estimated ratio of a job’s processing time.
Finally, the distortion of an input, denoted by 𝜇, is the product of the overestimation and the underestimation
of that input1.

One desires a competitive ratio that is a function of this distortion 𝜇. Formally, for every distortion cap 𝜇 > 1, an
𝑂 ( 𝑓 (𝜇))-competitive algorithm is 𝜇-robust if it remains 𝑂 ( 𝑓 (𝜇))-competitive for all inputs in which 𝜇 ≤ 𝜇 (i.e.
the distortion does not exceed the distortion cap).

*Supported in part by the Israel Science Foundation (grant No. 2304/20).
�Supported by ERC Advanced Grant ”Algorithmic and Mechanism Design Research for Online Markets” (AMDROMA), MIUR

PRIN 2017 Project “ALGADIMAR”.
1The maximum ratios (and not e.g. average ratios) are indeed the correct parameters to consider; see [1].

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited252

D
ow

nl
oa

de
d 

07
/1

4/
24

 to
 1

51
.1

00
.5

9.
19

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



In [1], for every distortion cap 𝜇, a 𝜇-robust, 𝑂 (𝜇2)-competitive algorithm ALG𝜇 is presented. A major drawback
of this result is that the algorithms for different values of 𝜇 are different, which limits their usability. The two
options for using these algorithms are:

� If one knows 𝜇 in advance, one can choose 𝜇 = 𝜇 and use ALG𝜇.

� One can guess a value for 𝜇 and hope that it is close to 𝜇.

The first option is problematic, as knowing the distortion exactly in advance is rather unreasonable. The
second option is quite perilous; we show in Appendix C the poor consequences of choosing the distortion cap 𝜇

inaccurately:

1. When 𝜇 � 𝜇, the algorithm ALG𝜇 is Ω(𝜇)-competitive, i.e. its competitiveness is not a function of the
actual distortion 𝜇 but of the distortion cap 𝜇 (this happens even when there is no distortion!).

2. When 𝜇 = 4𝜇, i.e. when the guess is slightly too low, the algorithm ALG𝜇 has unbounded competitiveness.

Distortion-oblivious algorithms. Based on the previous discussion on robust algorithms, we desire a stronger
guarantee than simple robustness: we would like a single algorithm which works well for every input, with a
competitive ratio that is tailored to the input’s distortion 𝜇 (rather than a distortion cap 𝜇). Formally, the
guarantee provided by robustness is

∀𝜇 > 1 : ∃ALG𝜇 : ALG𝜇 is 𝑂 ( 𝑓 (𝜇))-competitive on inputs with distortion 𝜇

whereas the stronger guarantee would be

∃ALG : ∀𝜇 > 1 : ALG is 𝑂 ( 𝑓 (𝜇))-competitive on inputs with distortion 𝜇

We call an algorithm with this stronger guarantee a distortion-oblivious algorithm. To conclude, the advantages
of a distortion-oblivious algorithm ALG over the robust algorithms

{
ALG𝜇

}
𝜇>1

of [1] are:

1. When 𝜇 � 𝜇, ALG would be 𝑂 ( 𝑓 (𝜇))-competitive while ALG𝜇 would be Ω(𝜇)-competitive.

2. When 𝜇 > 𝜇, ALG would remain 𝑂 ( 𝑓 (𝜇))-competitive while ALG𝜇 would break down completely.

1.1 Our Results In this paper, we present the first distortion-oblivious algorithms for scheduling with the
goal of minimizing total flow time.

1. We present the deterministic, distortion-oblivious ZigZag algorithm. For every 𝜇, ZigZag is 𝑂 (𝜇 log 𝜇)-
competitive for all inputs of distortion 𝜇 (with both underestimations and overestimations).

2. We show an Ω(𝜇) lower bound on competitiveness for every randomized algorithm for inputs with distortion
of 𝜇. This implies that the our two algorithms have a nearly-optimal competitive ratio.

A salient feature of the ZigZag algorithm is that it manages to completely ignore the distortion of jobs observed
through processing. An alternative approach could be to design an algorithm which attempts to learn the
distortion of the input from those observations; using this technique we obtain the following algorithm.

3. We present the deterministic, distortion-oblivious algorithm DL. For every 𝜇, DL is 𝑂 (𝜇 log2 𝜇)-competitive
for inputs of distortion 𝜇 in which processing times are only underestimated (and never overestimated).

Note that this algorithm is unable to handle overestimations, and is thus less general than ZigZag; this is an
inherent result of trying to learn from observed distortions, which we discuss further in Subsection 1.2.

The ZigZag algorithm is superior to DL in both competitive ratio and generality (as ZigZag supports both
underestimations and overestimations); the paper thus focuses on presenting and analyzing ZigZag. We still
present and analyze DL in the appendix, as we believe that the relevant techniques could be of independent
interest.

The nearly-linear competitive ratios of our algorithms improves upon the best previously-known result in [1],
which requires knowing 𝜇 in advance (non-oblivious) and even then is 𝑂 (𝜇2)-competitive. As our lower bound
shows, our algorithms are optimal up to logarithmic factors.
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1.2 Our Techniques Both DL and ZigZag rely on the two scheduling strategies SEPT and SR. On their own,
each of these strategies has an unbounded competitive ratio even in the presence of constant distortion; however,
each strategy has a different merit which DL and ZigZag can exploit.

The first strategy is SEPT – scheduling according to Shortest Estimated Processing Time. In this strategy, we
divide jobs into exponential classes according to estimated processing time, and always work on a job from the
smallest class (i.e. shortest estimate).

While this strategy has unbounded competitive ratio even without the presence of distortion (see Appendix C),
it has the merit of always working on a job of the lowest class – that is, the most cost-effective job available.

The second strategy is SR (“special rule”), presented in [8]. The strategy distinguishes between jobs that have
not been processed at all (‘full’) and jobs that have (‘partial’). This strategy always works on the partial job of
the minimal class, unless there are at least two full jobs of lower class: in that case, the one with the lowest class
is marked as partial.

The main merit of this strategy is that it maintains that the number of partial jobs is at most a constant time
the number of full jobs. This ensures that the algorithm never reaches a bad state in which almost all jobs are
partial and nearly-complete; in such a state, the optimal solution could finish those nearly-complete jobs and be
well ahead of the algorithm. However, as previously stated, the SR strategy fails to be robust: Appendix C shows
that its competitive ratio is unbounded even in the presence of constant distortion (𝜇 = 4).

The DL algorithm. Consider the case in which a full job 𝑟 is of a smaller class than the minimum-class partial
job 𝑞. If the algorithm requires a second full job of class smaller than 𝑞 in order to switch to 𝑟, it follows the SR
strategy. If the algorithm allows the second full job to be of any class, this is very similar to simply following the
SEPT strategy. It turns out that a middle ground that leads to robustness is to require a full job which is up to
log 𝜇 classes above 𝑞. The DL algorithm attempts to implement this rule, but it does not know 𝜇; instead, DL
uses the maximum distortion seen thus far.

This turns out to be sufficient when there are only underestimations (which is when DL is 𝑂 (𝜇 log2 𝜇)-competitive),
but fails in the case of overestimations. An intuitive explanation for this is that when the adversary is given the
ability to underestimate and overestimate jobs, the underestimations will occur in the jobs chosen by the algorithm
(and thus it will learn their distortion well), while the overestimations will occur in the jobs chosen by the optimal
solution (and thus the algorithm will not learn of their overestimation).

The ZigZag algorithm. This failure of DL in the case of overestimations seems inherent to any algorithm that
attempts to learn the distortion from the input. The ZigZag algorithm thus takes a different approach, and
ignores observed distortion completely.

Our ZigZag algorithm maintains a set of partial jobs, i.e. jobs that have been processed to some degree. Each
such job is either a zig job or a zag job. The algorithm always works on the partial job of the lowest class;
however, under some circumstances this partial job could decide to “appoint” a full job of a lower class to be
partial. zig jobs always appoint zag jobs, and do so according to SEPT. zag jobs always appoint zig jobs, and
do so according to SR.

However, for the algorithm to be competitive, we require another component – the zigzag jobs. When a full job
is released between a zag job and the zig job that appointed it, the zag job turns into a zigzag job. zigzag
jobs still appoint zig jobs (like they did as zag jobs), but do so according to SEPT rather than SR.

1.3 Related Work The observation that exact processing times are usually not available in practice also
motivated the nonclairvoyant model. In this model, the algorithm is not given the processing times of jobs,
and must process them blindly; the algorithm only becomes aware of the processing time of a job when the
job is completed. In a sense, the nonclairvoyant model goes to the other extreme – it assumes that nothing is
known about the processing time of a job. This strictness of the model comes at a cost – the best algorithm for
nonclairvoyant flow-time scheduling in [7] requires randomization, and has a competitive ratio that grows with the
number of jobs 𝑛 (specifically, 𝑂 (log 𝑛)). In [20], a matching lower bound of Ω(log 𝑛)-competitiveness was shown
for randomized algorithms, as well as a lower bound of Ω(𝑛1/3)-competitiveness for deterministic algorithms.
Other considerations of the nonclairvoyant scheduling model appear in [14, 7, 15, 6, 12, 11].

A similar model to the model considered in this paper is the semiclairvoyant model in [8]. In this model, one
knows the power-of-2 class of the processing time, but not the exact processing time. This model is different from
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the robust model since the distortion is constant and conforms to the boundaries of classes.

A generalization of the total flow time goal is total weighted flow time, in which each job also has a weight
which scales its flow time. This goal function was studied in e.g. [10, 5, 2, 9]. The best-known upper bounds
are logarithmic in the parameters of the input (processing-time ratio, weight ratio, density ratio). Bansal and
Chan [4] showed that dependence on these parameters is necessary.

The robust model for scheduling was introduced in [1]. For minimizing total flow time, the paper introduced
𝜇-robust, 𝑂 (𝜇2) competitive algorithms for every 𝜇. In addition, the paper also introduced robust algorithms
for weighted flow time with polynomial dependence (quadratic and cubic) on the distortion and logarithmic
dependence on the parameters. All of these robust algorithm require a priori knowledge of the distortion.

A related emerging field is algorithms with predictions, in which algorithms are augmented with predictions of
varying accuracy which relate to the incoming input. Such algorithms are expected to produce a competitive ratio
which is a function of the accuracy of the predictions. In particular, scheduling with predictions for minimizing
total completion time was considered in [21, 13] (these papers assume that all jobs are given at time 0). Scheduling
with predictions has also been studied in the speed-scaling model [3], under stochastic arrival assumptions [18]
and for load balancing [16, 17]. Additional work on algorithms with predictions can be found in [19].

Paper Organization. The ZigZag algorithm is presented and analyzed in Section 3. The DL algorithm is
presented and analyzed in Appendix A. The lower bound for inputs with distortion 𝜇 is given in Section 4. Bad
cases for various existing algorithms are shown in Appendix C.

2 Preliminaries

In the problem we consider, jobs arrive over time. Each job 𝑞 must be processed for 𝑝𝑞 time units until its
completion (𝑝𝑞 is called the processing time or volume of 𝑞). We denote the release time of 𝑞 by 𝑟𝑞.

Upon the release of a job 𝑞, the algorithm is not given the processing time 𝑝𝑞; instead, the algorithm is given an
estimate 𝑝𝑞 to the processing time of 𝑞.

We define 𝜇1 := maxjob 𝑞
𝑝𝑞
𝑝𝑞
, the maximum underestimation factor of a job in the input. We also define

𝜇2 := maxjob 𝑞
𝑝𝑞
𝑝𝑞
, the maximum overestimation factor of a job in the input. (we demand that 𝜇1, 𝜇2 ≥ 1; if

this is not the case for one of these factors, define that factor to be 1.) It thus holds for every job 𝑞 that
𝑝𝑞
𝜇2
≤ 𝑝𝑞 ≤ 𝜇1 · 𝑝𝑞. Finally, we define 𝜇 := 𝜇1 · 𝜇2, the distortion parameter of the input. Note that these

parameters 𝜇1, 𝜇2, 𝜇 are functions of the online input, and thus the algorithm has no prior knowledge of them.

The goal of an algorithm ALG is to minimize the total flow time, which is the sum over jobs of their time in the
system, or

∑
job 𝑞 (𝐶ALG

𝑞 − 𝑟𝑞) where 𝐶ALG
𝑞 is the completion time of 𝑞 in the algorithm. Denoting by 𝛿 (𝑡) the

number of pending jobs in the algorithm at 𝑡 (i.e. jobs that were released but not yet completed), an equivalent
definition of flow time is

∫ ∞
0

𝛿 (𝑡)𝑑𝑡.
The following definition of job classes is used throughout the paper.

Definition 2.1. (job class) We define the class of a job 𝑞, denoted ℓ𝑞, to be the unique integer 𝑖 such that
𝑝𝑞 ∈

[
2𝑖 , 2𝑖+1

)
.

Note that this definition refers to the estimated processing times provided in the input (rather than actual
processing times, or remaining processing times). In particular, the class of a job does not change over time.

3 The ZigZag Algorithm

In this section, we describe and analyze the ZigZag algorithm, a distortion-oblivious algorithm which is 𝑂 (𝜇 log 𝜇)-
competitive for every input with distortion at most 𝜇, for every 𝜇 > 1.

3.1 The Algorithm We now describe the following algorithm for the robust scheduling problem. The
algorithm marks some set of the pending jobs as partial jobs. These partial jobs are the only jobs that may
undergo processing in the algorithm; the remaining jobs, called full jobs, have not undergone any processing.

The algorithm always works on the minimum-class partial job 𝑞 (there can be at most one partial job in any
class). If there exist full jobs of lower classes than 𝑞, the job 𝑞 might choose to “appoint” the minimum-class
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full job to be partial (this newly-appointed job is now the minimum-class partial job, and will thus be processed
next).

This decision depends on the type of 𝑞 as a partial job. Each partial job is one of the three types zig, zag and
zigzag.

1. If 𝑞 is a zig job, it immediately appoints any smaller-class job, and marks this job as zag.

2. If 𝑞 is a zag job, it only appoints the minimum-class full job when there exist (at least) two jobs of class
less than 𝑞. This appointed job is then marked as zig.

3. If 𝑞 is a zigzag job, it immediately appoints any smaller-class job (like zig jobs do), but marks this job as
zig (like zag jobs do).

zig and zag jobs are such immediately from the point of their appointment. zigzag jobs are created in the
following way: when a zag job 𝑞 is the minimal-class partial job, and there exists a full job between the class of
𝑞 and the next-higher-class partial job, the zag job 𝑞 morphs into a zigzag job.

Algorithm 3.1. ZigZag Algorithm

1: while there exist pending jobs do
2: if there is no partial job in the algorithm then
3: Mark an arbitrary minimum-class pending job as a partial zig job.
4: continue to the next iteration of the loop.

5: Let 𝑞 be the minimum-class partial job in the algorithm.
6: Let 𝑞′ be the minimum-class job in the algorithm (partial or full).

7: if 𝑞 is a zig job then
8: if ℓ𝑞′ < ℓ𝑞 then
9: Mark 𝑞′ as a partial zag job.

10: continue to the next iteration of the loop.

11: else if 𝑞 is a zag job then
12: Let 𝑞 be the partial job of the smallest class such that ℓ𝑞 > ℓ𝑞.
13: if there exists a full job of class in [ℓ𝑞 , ℓ𝑞] then
14: Change 𝑞 from a zag job to a zigzag job.
15: continue to the next iteration of the loop.
16: if ℓ𝑞′ < ℓ𝑞 and there exists some other job 𝑞′′ ≠ 𝑞′ such that ℓ𝑞′′ < ℓ𝑞 then
17: Mark 𝑞′ as a partial zig job.
18: continue to the next iteration of the loop.

19: else ⊲ 𝑞 is a zigzag job
20: if ℓ𝑞′ < ℓ𝑞 then
21: Mark 𝑞′ as a partial zig job.
22: continue to the next iteration of the loop.
23: Process 𝑞.

A visualization of the ZigZag algorithm can be found in Figure 1. In this visualization, the pending jobs are shown
inside their classes (the jobs appear as geometric shapes). The jobs can be either full jobs (hollow circles), zig
jobs (blue squares), zag jobs (red rhombus), or zigzag jobs (purple star). The gray arrows show appointment,
where each partial job has necessarily been appointed by the next-higher-class partial job. Note that there is
always at most one partial job per class, and note the alternation between zig (blue) jobs and zag or zigzag jobs
(red and purple). In addition, note that there is always a full job between a zig job and a zigzag job appointed
by it. Similarly, there is always a full job between a zag job and a zig job appointed by it.

An additional visualization of the evolution of job types is given in Figure 2.
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Figure 1: A Possible State of the ZigZag Algorithm (square=zig, rhombus=zag, star=zigzag, circle=full)

In the images above, from left to right:
� 𝑞1 is released and is immediately appointed zig.
� 𝑞2 is released, and is immediately appointed zag by 𝑞1.
� 𝑞3 is released. 𝑞2 does not appoint 𝑞3, since there is only a single job of class less than ℓ𝑞2

.
� 𝑞4 is released, which immediately turns 𝑞2 from zag to zigzag. Then, 𝑞2 immediately appoints 𝑞3 as zig.

Figure 2: A Possible Evolution of Jobs in Algorithm 3.1

In the remainder of this section, we prove the following theorem regarding Algorithm 3.1.

Theorem 3.1. For every 𝜇, Algorithm 3.1 is 𝑂 (𝜇 log 𝜇)-competitive for inputs with distortion 𝜇.

3.2 Analysis We prove Theorem 3.1 through the following lemma, which states a property known as local
competitiveness.

Lemma 3.1. At any time 𝑡, it holds that 𝛿 (𝑡) ≤ 𝑂 (𝜇 log 𝜇) · 𝛿∗ (𝑡).

If Lemma 3.1 holds, Theorem 3.1 follows simply through integrating over 𝑡. The remainder of this section focuses
on proving Lemma 3.1; we henceforth fix time 𝑡 for the remainder of this analysis. In addition, note that if
𝛿∗ (𝑡) = 0 then since the algorithm is non-idling, it must also be that 𝛿 (𝑡) = 0, and Lemma 3.1 holds. Thus, we
henceforth assume that 𝛿∗ (𝑡) ≥ 1.

3.2.1 Bounding 𝛿 (𝑡) by Far-Behind Classes In this subsection, we bound the number of living jobs in the
algorithm by the number of “far-behind” classes, which we define soon.

Definition 3.1. (volume and living jobs notation) For every class 𝑖 and time 𝜏, we define:

� 𝑉
=𝑖
(𝜏) (𝑉≤𝑖 (𝜏)) to be the total remaining volume at 𝜏 of jobs of class exactly 𝑖 (at most 𝑖) in the algorithm.

� Similarly, we define 𝑉∗
=𝑖
(𝜏) (𝑉∗≤𝑖 (𝜏)) to be the total remaining volume at 𝜏 of jobs of class exactly 𝑖 (at

most 𝑖) in the optimal solution.

� Finally, we define Δ𝑉
=𝑖
(𝜏) := 𝑉

=𝑖
(𝜏) −𝑉∗

=𝑖
(𝜏) (and similarly Δ𝑉≤𝑖 (𝜏) := 𝑉≤𝑖 (𝜏) −𝑉∗≤𝑖 (𝜏)).
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We use similar subscript notation with 𝛿 to refer to the number of pending jobs of some class (or class range),
and use superscript ∗ to refer to that amount in the optimal solution.

Definition 3.2. (far-behind classes) For every class 𝑖, we say that 𝑖 is far behind at 𝑡 if Δ𝑉≤𝑖 (𝑡) ≥
2𝑖

𝜇2
.

We also denote by 𝑆 the set of far-behind classes at 𝑡.

In this subsection, we prove the following lemma.

Lemma 3.2. 𝛿 (𝑡) ≤ 𝑂 (𝜇) · 𝛿∗ (𝑡) +𝑂 (𝜇) · |𝑆 |

We first make some observations regarding the algorithm.

Observation 3.1. At every time 𝜏, and for every class 𝑗 , there exists at most one partial job of class 𝑗 at 𝜏.

Observation 3.2. At any time 𝜏, denote by 𝑞1, 𝑞2, · · · , 𝑞𝑘 the partial jobs in the algorithm, by order of
decreasing class (𝑞1 has the largest class). Then each job in {𝑞1, 𝑞3, 𝑞5, · · ·} is a zig job, and each job in
{𝑞2, 𝑞4, 𝑞6, · · ·} is either a zag job or a zigzag job.

Observation 3.3. Since a job 𝑞 becomes partial and until its completion, the algorithm only processes job 𝑞

or jobs of class less than ℓ𝑞. Moreover, during that time interval no full job of class at least ℓ𝑞 becomes partial.

Observation 3.4. Suppose a partial job 𝑞 is being processed at time 𝜏. Then there is at most one job of class
less than ℓ𝑞 (which, if exists, is necessarily full).

Definition 3.3. For every time 𝜏, we denote:

� the number of full jobs at 𝑡 by 𝛿 𝑓 (𝜏).

� the number of partial jobs at 𝑡 by 𝛿𝑝 (𝜏).

Proposition 3.1. Consider any four partial jobs 𝑞1, 𝑞2, 𝑞3, 𝑞4 in the algorithm at 𝑡 such that:

� ℓ𝑞1
< ℓ𝑞2

< ℓ𝑞3
< ℓ𝑞4

� 𝑞1, 𝑞2, 𝑞3, 𝑞4 are consecutive: that is, for every 𝑖 there exists no partial job 𝑞′ such that ℓ𝑞𝑖 < ℓ𝑞′ < ℓ𝑞𝑖+1 .

Then there exists a full job 𝑞 such that ℓ𝑞1
≤ ℓ𝑞 ≤ ℓ𝑞4

.

Proof. Using Observation 3.2, either 𝑞1, 𝑞3 are zig jobs or 𝑞2, 𝑞4 are zig jobs.
Assume henceforth that 𝑞1, 𝑞3 are zig jobs. This implies that 𝑞2 is either a zag job or a zigzag job.
Note that among 𝑞1, 𝑞2, 𝑞3, 𝑞3 became partial first, then 𝑞2 and then 𝑞1; any other order would contradict
Observation 3.3.
If 𝑞2 is a zag job, then consider the point in time 𝑡 ′ in which 𝑞1 became partial. At that point, there was no
pending job of class lower than ℓ𝑞1

. Moreover, there was no partial job of class lower than ℓ𝑞2
at 𝑡 ′ (otherwise,

that job would be alive in 𝑡, contradicting the fact that 𝑞1, 𝑞2 are consecutive). This implies that 𝑞1 became
partial when 𝑞2 was the minimum-class partial job, as part of Line 17 in the algorithm. Line 17 ran at 𝑡 ′

because there had been at least two full jobs of class smaller than ℓ𝑞2
. Thus, after 𝑞1 became partial, there

remained a full job 𝑞 in the class range
[
ℓ𝑞1

, ℓ𝑞2

)
. Applying Observation 3.3 to 𝑞1, we have that 𝑞 is still full

at 𝑡.
Otherwise, 𝑞2 is a zigzag job. In this case, let 𝑡 ′ be the point in time in which 𝑞2 became a zigzag job. This
happened since there was a full job 𝑞 in the class range [ℓ𝑞2

, ℓ𝑞3
]; applying Observation 3.3 to 𝑞2 implies that

𝑞 is still full at 𝑡.
Overall, we have that if 𝑞1, 𝑞3 are zig jobs, then there exists a full job in the class range [ℓ𝑞1

, ℓ𝑞3
]. In the

second case, in which 𝑞2, 𝑞4 are zig jobs, the same argument yields that there exists a full job in the class range
[ℓ𝑞2

, ℓ𝑞4
]. Thus, in both cases the proposition holds.

The following corollary is immediate from Proposition 3.1 by partitioning the partial jobs into groups of four.

Corollary 3.1. It holds that 𝛿𝑝 (𝑡) ≤ 4𝛿 𝑓 (𝑡) + 3.
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Corollary 3.1 allows us to focus on bounding the total number of full jobs, which we now proceed to do.

Lemma 3.3. It holds that
𝛿 𝑓 (𝑡) ≤ 𝑂 (𝜇) · 𝛿∗ (𝑡) +𝑂 (𝜇) · |𝑆 |

Proof. We omit 𝑡 from 𝑉 -notation and 𝛿-notation in the following. Let 𝑖min, 𝑖max be the minimum and maximum
class of a job in the input, respectively.

𝛿 𝑓 =

𝑖max∑︁
𝑖=𝑖min

𝛿
𝑓

=𝑖
(3.1)

≤
𝑖max∑︁
𝑖=𝑖min

⌊
𝑉
=𝑖

2𝑖

𝜇2

⌋
≤

𝑖max∑︁
𝑖=𝑖min

⌊
𝜇2𝑉

∗
=𝑖
+ 𝜇2 · Δ𝑉=𝑖
2𝑖

⌋
≤

𝑖max∑︁
𝑖=𝑖min

⌈
𝜇2𝑉

∗
=𝑖

2𝑖

⌉
+

𝑖max∑︁
𝑖=𝑖min

⌊
𝜇2 · Δ𝑉=𝑖

2𝑖

⌋
where the first inequality is due to the fact that the minimum volume of a full job of class 𝑖 is 2𝑖

𝜇2
and the third

inequality is due to the simple arithmetic trait that b𝑥 + 𝑦c ≤ d𝑥e + b𝑦c.
Observe the expression

∑𝑖max

𝑖=𝑖min

⌈
𝜇2𝑉

∗
=𝑖

2𝑖

⌉
. If 𝛿∗

=𝑖
≥ 1, we have⌈

𝜇2𝑉
∗
=𝑖

2𝑖

⌉
≤

𝜇2𝑉
∗
=𝑖

2𝑖
+ 1 ≤ 𝜇2

2𝑖
· 2𝑖+1𝜇1𝛿∗=𝑖 + 1 = 2𝜇𝛿∗=𝑖 + 1 ≤ (2𝜇 + 1)𝛿∗=𝑖

Otherwise, 𝛿∗
=𝑖

= 0, in which case
⌈
𝜇2𝑉

∗
=𝑖

2𝑖

⌉
= 0 = (2𝜇 + 1)𝛿∗

=𝑖
.

Thus,
∑𝑖max

𝑖=𝑖min

⌈
𝜇2𝑉

∗
=𝑖

2𝑖

⌉
≤ (2𝜇 + 1)𝛿∗. Plugging into Equation (3.1), we have

𝛿 𝑓 ≤ (2𝜇 + 1)𝛿∗ +
𝑖max∑︁
𝑖=𝑖min

⌊
𝜇2 · Δ𝑉≤𝑖 − 𝜇2 · Δ𝑉≤𝑖−1

2𝑖

⌋
(3.2)

≤ (2𝜇 + 1)𝛿∗ +
𝑖max∑︁
𝑖=𝑖min

(⌊
𝜇2Δ𝑉≤𝑖

2𝑖

⌋
−
⌊
𝜇2Δ𝑉≤𝑖−1

2𝑖

⌋)
= (2𝜇 + 1)𝛿∗ +

𝑖max−1∑︁
𝑖=𝑖min

(⌊
𝜇2Δ𝑉≤𝑖

2𝑖

⌋
−
⌊
𝜇2Δ𝑉≤𝑖
2𝑖+1

⌋)
where the second inequality is due to the arithmetic trait that b𝑥 − 𝑦c ≤ b𝑥c − b𝑦c, and the equality is through
rearranging a telescopic sum, while observing that Δ𝑉≤𝑖min−1 = Δ𝑉≤𝑖max

= 0 (since the algorithm is non-idling).

Now, we claim that for every 𝑖 it holds that Δ𝑉≤𝑖 ≤ 2𝑖+1𝜇1. To see this, consider the last time before 𝑡 in which
we worked on a job of class strictly more than 𝑖, and denote this time by 𝑡𝑖. At 𝑡𝑖, there was at most one
pending job of class at most 𝑖 (Observation 3.4), and that job thus had at most 2𝑖+1𝜇1 volume. Since from 𝑡𝑖
the algorithm only worked on jobs of class at most 𝑖, Δ𝑉≤𝑖 (𝑡) ≤ Δ𝑉≤𝑖 (𝑡𝑖) ≤ 𝑉≤𝑖 (𝑡𝑖) ≤ 2𝑖+1𝜇1.

Thus, observe that the expression
⌊
𝜇2Δ𝑉≤𝑖

2𝑖

⌋
−
⌊
𝜇2Δ𝑉≤𝑖
2𝑖+1

⌋
is:

� maximized when Δ𝑉≤𝑖 = 2𝑖+1𝜇1, and its value then is at most 𝜇 + 1.

� only positive when Δ𝑉≤𝑖 ≥
2𝑖

𝜇2
, i.e. when 𝑖 is far behind.
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From these two observations, we can bound
⌊
𝜇2Δ𝑉≤𝑖

2𝑖

⌋
−
⌊
𝜇2Δ𝑉≤𝑖
2𝑖+1

⌋
by (𝜇 + 1) · I(𝑖 is far behind). Plugging into

Equation (3.2), we get that the weight of the full jobs 𝛿 𝑓 is at most

𝑂 (𝜇) · 𝛿∗ +𝑂 (𝜇) · |𝑆 |

as required.

We can now prove Lemma 3.2.

Proof of Lemma 3.2. The lemma results immediately from Corollary 3.1 and Lemma 3.3.

3.2.2 Bounding Far-Behind Classes To complete the bounding of the algorithm’s cost, it is thus enough to
bound the size of the set 𝑆, i.e. number of far-behind classes.

Lemma 3.4. |𝑆 | ≤ 𝑂 (log 𝜇) · 𝛿∗ (𝑡).

Definition 3.4. Define 𝜎 := dlog 𝜇e + 1.

Intuitively, 𝜎 is the minimum number such that a job 𝑞 of class 𝑖 necessarily has less processing time than a job
𝑞′ of class 𝑖 + 𝜎:

𝑝𝑞′ ≥
2𝑖+𝜎

𝜇2
≥ 2𝑖+log 𝜇+1

𝜇2
= 𝜇 · 2

𝑖+1

𝜇2
= 𝜇1 · 2𝑖+1 > 𝑝𝑞

We now perform a sparsification of 𝑆 to obtain the set 𝑆′ in the following manner.

1. Add the minimum class in 𝑆 to 𝑆′.

2. While possible, add the minimum class that is greater than the last-added class by at least 2𝜎.

Observation 3.5. Observe that:

1. |𝑆 | ≤ 2𝜎 · |𝑆′ |.

2. |𝑖1 − 𝑖2 | ≥ 2𝜎 for every 𝑖1, 𝑖2 ∈ 𝑆′.

A visualization of this sparsification process is given in Figure 3. The first image of the figure shows the far-behind
classes of 𝑆 in red. The second image of the figure shows the classes of the sparsified set 𝑆′ in red, where the
classes of 𝑆\𝑆′ are faded (in this example 𝜎 = 2). The purple lines show the range in which classes are excluded.
Note that the distance between any two classes in 𝑆′ is at least 2𝜎 (which equals 4 in this figure).

We henceforth focus on bounding |𝑆′ |.

Definition 3.5. For every class 𝑖, we denote by 𝑡𝑖 the last time until 𝑡 in which the algorithm worked on a job
of class strictly more than 𝑖 (𝑡𝑖 := 0 if this never happened).

Proposition 3.2. If class 𝑖 is far behind at 𝑡, then there exists a pending job at 𝑡 of some class in (𝑖 − 𝜎, 𝑖].

Proof. Consider time 𝑡𝑖, the last time before 𝑡 that the algorithm worked on a job of class strictly more than 𝑖.
Note that during (𝑡𝑖 , 𝑡] the algorithm only worked on jobs of class at most 𝑖, and 𝑖 is far behind at 𝑡; thus, the

total volume of jobs of class at most 𝑖 at 𝑡𝑖 must be at least 2𝑖

𝜇2
.

Now note that at 𝑡𝑖 the algorithm worked on the minimum-class partial job 𝑞 which is of class more than 𝑖. If
this job 𝑞 is zig or zigzag at 𝑡𝑖, this is a contradiction, since it would imply that there are no jobs of class at
most 𝑖 at 𝑡𝑖. Thus, the job 𝑞 is a zag job – but this implies that there is only a single job 𝑞′ of class at most 𝑖

at 𝑡𝑖. This job must thus have at least 2𝑖

𝜇2
volume, which would imply that its class is greater than 𝑖 − 𝜎, and

thus in (𝑖 − 𝜎, 𝑖].
Now, suppose for contradiction that no job of class in (𝑖 − 𝜎, 𝑖] exists at 𝑡. This implies that at some time 𝜏 in
(𝑡𝑖 , 𝑡], the last job of this class range was completed. At that time, there was at most one other job of class ≤ 𝑖,
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Figure 3: The Far-Behind Sparsification Process

and that job (if it exists) was of class ≤ 𝑖 − 𝜎, and thus had strictly less than 2𝑖

𝜇2
volume. Since 𝜏 > 𝑡𝑖, we have

Δ𝑉≤𝑖 (𝑡) ≤ Δ𝑉≤𝑖 (𝜏) <
2𝑖

𝜇2

which is a contradiction to 𝑖 being far behind at 𝑡.

Proposition 3.3. If a zig job 𝑞 of some class 𝑖 is pending at 𝑡, it holds that Δ𝑉≤𝑖−1 (𝑡) ≤ 0.

Proof. Observation 3.3 implies that from the time 𝑞 became partial, the algorithm only worked on 𝑞 or on jobs
of class at most 𝑖 − 1. Consider the last time 𝑡 ′ in which the algorithm worked on 𝑞: at that time, there were
no jobs of classes at most 𝑖 − 1, and from that time the algorithm only worked on jobs of class at most 𝑖 − 1.
Thus,

Δ𝑉≤𝑖−1 (𝑡) ≤ Δ𝑉≤𝑖−1 (𝑡 ′) ≤ 0

Proposition 3.4. Let 𝑖, 𝑖′ be two classes such that 𝑖′ ≤ 𝑖 − 𝜎, 𝑖′ is far-behind, and there exists a full job of
class 𝑖 in the algorithm at 𝑡. Then the optimal solution has a job alive in the class range (𝑖′, 𝑖].

Proof. Denote by 𝑞 the full job of class 𝑖 in the algorithm at 𝑡. If 𝑞 is pending in the optimal solution at 𝑡, we
are done; henceforth assume that the optimal solution has completed 𝑞 by time 𝑡.
We now aim to find a class 𝑗 ∈ [𝑖 − 𝜎, 𝑖] such that Δ𝑉≤ 𝑗 (𝑡) ≤ 0, and claim that this would complete the proof.

To prove this claim, assume that there exists such a 𝑗 . Observe that Δ𝑉≤𝑖′ (𝑡) > 0 (since 𝑖′ is far behind); thus, it
cannot be that 𝑖′ = 𝑗 = 𝑖 −𝜎. Therefore, it holds that 𝑖′ < 𝑗 , which implies Δ𝑉∈(𝑖′, 𝑗 ] (𝑡) = Δ𝑉≤ 𝑗 (𝑡) −Δ𝑉≤𝑖′ (𝑡) < 0,

where the subscript ∈ (𝑖′, 𝑗] restricts the volume to jobs of classes in (𝑖′, 𝑗]. But this implies that the optimal
solution must have a pending job at 𝑡 of some class in (𝑖′, 𝑗], and thus in (𝑖′, 𝑖]. Hence, the claim holds.
We now continue in proving the proposition. We consider 𝑡𝑖−𝜎 relative to 𝑟𝑞, and observe the following two
cases.
Case 1: 𝑟𝑞 ≥ 𝑡𝑖−𝜎. In this case, note that at 𝑡𝑖−𝜎 there existed at most one job of class at most 𝑖 − 𝜎 due to

Observation 3.4. Such a job had volume less than 2𝑖−𝜎+1𝜇1 which is at most 2𝑖

𝜇2
. Thus, 𝑉≤𝑖−𝜎 (𝑡𝑖−𝜎) ≤

2𝑖

𝜇2
.

In the time interval (𝑡𝑖−𝜎 , 𝑡], the algorithm only worked on jobs of class at most 𝑖−𝜎, while the optimal solution
started and completed 𝑞. This implies that

Δ𝑉≤𝑖−𝜎 (𝑡) ≤ Δ𝑉≤𝑖−𝜎 (𝑡𝑖−𝜎) − 𝑝𝑞 ≤ 0

which completes the proof for this case.
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This figure shows the proof of Lemma 3.5. The figure shows five far-behind classes in 𝑆′. Proposition 3.2 implies
that there exists a pending job in each of the four purple-colored class segments. Proposition 3.1 implies that
there is a full job in the blue-colored segment. Finally, Proposition 3.4 implies that the optimal solution has a
pending job in the orange segment.

Figure 4: Proof of Lemma 3.5

Case 2: 𝑟𝑞 < 𝑡𝑖−𝜎. In this case, consider the job 𝑞′ being processed at 𝑡𝑖−𝜎. From the definition of 𝑡𝑖−𝜎, it
must be that ℓ𝑞′ > 𝑖 − 𝜎. If there exists no job of class ≤ 𝑖 − 𝜎 at 𝑡𝑖−𝜎, we are done, since the algorithm only
works on such jobs in (𝑡𝑖−𝜎 , 𝑡], and thus

Δ𝑉≤𝑖−𝜎 (𝑡) ≤ Δ𝑉≤𝑖−𝜎 (𝑡𝑖−𝜎) ≤ 0

Otherwise, there exists a job 𝑟 of class at most 𝑖 − 𝜎 at 𝑡𝑖−𝜎, which implies that 𝑞′ is a zag job at 𝑡𝑖−𝜎. Let
𝑞′′ be the consecutive partial job to 𝑞′, and note that 𝑞′′ is a zig job (observe that a zag job always has a
consecutive job). Now note that:

� ℓ𝑞′ < 𝑖; otherwise, the existence of both 𝑟 and 𝑞 would prevent 𝑞′ from being processed at 𝑡𝑖−𝜎.

� ℓ𝑞′′ < 𝑖; otherwise, 𝑞′ (which is of class less than 𝑖) would have become a zigzag job by seeing 𝑞, in
contradiction to being zag at 𝑡𝑖−𝜎.

Since the algorithm does not work on a job of class more than 𝑖 −𝜎 after 𝑡𝑖−𝜎, the zig job 𝑞′′ remains pending
at 𝑡. Using Proposition 3.3 implies that Δ𝑉≤ℓ𝑞′′−1 (𝑡) ≤ 0. Since ℓ𝑞′′ − 1 ∈ [𝑖 − 𝜎, 𝑖 − 1], we are done.

Lemma 3.5. Let 𝑖1, 𝑖2, · · · , 𝑖5 ∈ 𝑆′ be five classes such that 𝑖1 < 𝑖2 < · · · < 𝑖5. Then there exists a pending job in
the optimal solution at 𝑡 of class in the range [𝑖1, 𝑖5].
Proof. Applying Proposition 3.2 to 𝑖2, · · · , 𝑖5 implies that there exist four jobs 𝑞2, · · · , 𝑞5 such that for every
𝑗 ∈ {2, 3, 4, 5} it holds that ℓ𝑞 𝑗

∈
(
𝑖 𝑗 − 𝜎, 𝑖 𝑗

]
(since the distance between any two of the five classes is at least

2𝜎, these four jobs are distinct).
If a job 𝑞 ∈ {𝑞2, · · · , 𝑞5} is a full job, we apply Proposition 3.4 to the far-behind class 𝑖1 and to 𝑞 to obtain that
the optimal solution has a pending job in the class range

(
𝑖1, ℓ𝑞

]
, which is contained in [𝑖1, 𝑖5], thus completing

the proof.
Otherwise, assume that {𝑞2, · · · , 𝑞5} are all partial jobs. Consider the four consecutive partial jobs starting
with 𝑞2, denoted as 𝑞2, 𝑟1, 𝑟2, 𝑟3, such that ℓ𝑞2

< ℓ𝑟1 < ℓ𝑟2 < ℓ𝑟3 . It necessarily holds that ℓ𝑟3 ≤ ℓ𝑞5
. We apply

Proposition 3.1 to obtain a full job 𝑞 such that ℓ𝑞 ∈ [ℓ𝑞2
, ℓ𝑟3 ], which is contained in (𝑖2 − 𝜎, 𝑖5]. As before, we

apply Proposition 3.4 to 𝑖1 and 𝑞 which yields that the optimal solution has a pending job in the class range
[𝑖1, 𝑖5].

The following corollary is immediate from Lemma 3.5.

Corollary 3.2. |𝑆′ | ≤ 5𝛿∗ (𝑡) + 4

We now return to proving Lemma 3.4.

Proof of Lemma 3.4. Results immediately from Observation 3.5 and Corollary 3.2.
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We can now complete the proof of Lemma 3.1, which implies Theorem 3.1.

Proof of Lemma 3.1. The lemma results immediately from Lemmas 3.2 and 3.4.

4 Lower Bound

In this section, we show a lower bound for the robust scheduling model. This lower bound shows that a sublinear
dependence on the distortion is impossible in either robust or distortion-oblivious algorithms.

Theorem 4.1. For every choice of distortion parameter 𝜇, every randomized (or deterministic) algorithm is
Ω(𝜇)-competitive on inputs with distortion at most 𝜇.

The proof of Theorem 4.1 appears in Appendix B.

5 Discussion and Open Problems

In this paper, we presented the first distortion-oblivious algorithms for total flow time, which also have a nearly
optimal competitive ratio. Thus, this paper essentially closes the problem of robustness/distortion-obliviousness
for total flow time.

It would be interesting to see whether distortion-oblivious algorithms could be designed for other scheduling
goals. A prominent example is weighted flow time: while [1] introduced robust algorithms for this problem, no
distortion-oblivious algorithms are known. One could also consider other goals, such as minimizing mean stretch
(ratio of flow time to processing time). Finally, extending the distortion model to multiple machines and obtaining
distortion-oblivious algorithms seems like another natural direction.
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A The DL Algorithm

In this section, we present and analyze the DL algorithm, a distortion-oblivious algorithm which, for every 𝜇, is
𝑂 (𝜇 log2 𝜇)-competitive for inputs with distortion 𝜇 which contain only underestimations.

A.1 The DL Algorithm

Description of DL. As in the ZigZag algorithm, the DL algorithm maintains a set of partial jobs, which are the
only jobs which undergo processing (and there is at most one such partial job per class).

At any point in time, the algorithm processes the minimum-class partial job 𝑞, unless:

1. there exists a pending (full) job of a lower class, and

2. there exists a third pending job of class less than ℓ𝑞 + 𝜎̂.

If both conditions hold, the minimum-class full job is marked as partial. The global parameter 𝜎̂ is the algorithm’s
estimate for the parameter 𝜎; this parameter 𝜎 = dlog 𝜇e + 1 is as defined in Definition 3.4 for ZigZag. The
parameter 𝜎̂ is updated according to the distortion witnessed by the algorithm (through processing jobs for more
than their estimated processing times).

The DL algorithm is given in Algorithm A.1.

Algorithm A.1. DL Algorithm

1: while there exist pending jobs do
2: if there is no partial job then
3: Mark the minimum-class pending job as partial.
4: continue to the next iteration of the loop.

5: Let 𝑞 be the minimum-class partial job in the algorithm.

6: if there exist two distinct full jobs 𝑞′, 𝑞′′, such that ℓ𝑞′ < ℓ𝑞 and ℓ𝑞′′ < ℓ𝑞 + 𝜎̂ then
7: Mark the minimum-class full job as partial.
8: continue to the next iteration of the loop.

9: Process 𝑞.

10: if 𝑞 has been processed for more than 2𝑖 · 𝑝𝑞 time for some 𝑖 then
11: Set 𝜎̂ ← max(𝜎̂, 𝑖 + 2)

Theorem A.1. For every 𝜇, Algorithm A.1 is 𝑂 (𝜇 log2 𝜇)-competitive for inputs of distortion 𝜇 with no
overestimations (i.e. 𝜇2 = 1).

A.2 Analysis The analysis of DL follows the general structure of the analysis of ZigZag. However, some of
the lemmas and propositions require different proofs.

As in the analysis of the ZigZag, the main lemma shows local competitiveness, and immediately implies
Theorem A.1.

Lemma A.1. Consider an input with distortion at most 𝜇 which is without overestimations (i.e. 𝜇2 = 1). At
any time 𝑡, it holds that 𝛿 (𝑡) ≤ 𝑂 (𝜇 log2 𝜇) · 𝛿∗ (𝑡).

We henceforth fix a time 𝑡 towards proving Lemma A.1, and (as in the ZigZag analysis) assume 𝛿∗ (𝑡) ≥ 1.

A.2.1 Bounding 𝛿 (𝑡) by Far-Behind Classes We use the same notation defined in Definition 3.1. In
addition, we again define far-behind classes; the following is a restatement of Definition 3.2 where we note that
𝜇2 = 1.
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Definition A.1. (restatement of Definition 3.2) For every class 𝑖, we say that 𝑖 is far behind at 𝑡 if
Δ𝑉≤𝑖 (𝑡) ≥ 2𝑖.
We also denote by 𝑆 the set of far-behind classes at 𝑡.

The following lemma bounds the number of living jobs in the algorithm by the number of far-behind classes at 𝑡.

Lemma A.2. 𝛿 (𝑡) ≤ 𝑂 (𝜇 log 𝜇)𝛿∗ (𝑡) +𝑂 (𝜇 log 𝜇) · |𝑆 |

We now focus on proving Lemma A.2.

We define 𝜎 as in Definition 3.4. This parameter 𝜎 is what the variable 𝜎̂ attempts to learn as the algorithm
progresses; note that the value of 𝜎̂ is always at most 𝜎.

Proposition A.1. Let 𝑞1, 𝑞2 be two partial jobs of classes 𝑖1, 𝑖2 respectively, such that 𝑖1 < 𝑖2. Then there
exists a full job in the range [𝑖1, 𝑖2 + 𝜎].

Proof. Assume that there is no other partial job in the range (𝑖1, 𝑖2) (otherwise, replace 𝑞2 with this job and
continue with the proof). It must be that 𝑞1 became partial after 𝑞2. When 𝑞1 became partial, 𝑞2 was the
minimum-class partial job. Since 𝑞2 was not processed (and 𝑞1 was processed instead) there must be another
full job 𝑞3 (other than 𝑞2) at that time of class at most 𝑖2 + 𝜎̂ for the value of 𝜎̂ at that time, which is at
most 𝑖2 + 𝜎. In addition, since 𝑞1 was the minimum-class job at the time, the class of 𝑞3 was at least 𝑖1. This
completes the proof.

We use the notation defined in Definition 3.3 to refer to the number of full/partial jobs. Note that Observation 3.1
for ZigZag applies to DL as well; thus, the following corollary holds.

Corollary A.1. It holds that 𝛿𝑝 (𝑡) ≤ (𝜎 + 2)𝛿 𝑓 (𝑡).

Note that Lemma 3.3 for the ZigZag algorithm is true independently of the algorithm, and thus applies also for
DL.

Lemma A.3. (restatement of Lemma 3.3) It holds that

𝛿 𝑓 (𝑡) ≤ 𝑂 (𝜇) · 𝛿∗ (𝑡) +𝑂 (𝜇) · |𝑆 |

We can now prove Lemma A.2.

Proof of Lemma A.2. Results immediately from observing that 𝜎 = 𝑂 (log 𝜇), and applying Corollary A.1
and Lemma A.3.

A.2.2 Bounding Far-Behind Classes We would now like to bound the number of far-behind classes |𝑆 |.

Lemma A.4. |𝑆 | ≤ 𝑂 (log 𝜇) · 𝛿∗ (𝑡).

We perform the same sparsification process as in the ZigZag analysis to obtain 𝑆′, and note that Observation 3.5
applies to 𝑆′. We also define 𝑡𝑖 for every 𝑖, as in Definition 3.5.

Note that the proof of Proposition 3.2 remains true for DL as well.

Proposition A.2. (restatement of Proposition 3.2) If class 𝑖 is far behind at 𝑡, then there exists a
pending job at 𝑡 of some class in (𝑖 − 𝜎, 𝑖].

We would now like to prove Proposition 3.4 for DL.

Proposition A.3. (restatement of Proposition 3.4) Let 𝑖, 𝑖′ be two classes such that 𝑖′ ≤ 𝑖 − 𝜎, 𝑖′ is
far-behind, and there exists a full job of class 𝑖 in the algorithm at 𝑡. Then the optimal solution has a job alive
in the class range (𝑖′, 𝑖].

Proof. First, we require the following claim.
Claim: if there exists a class 𝑗 ∈ (𝑖′, 𝑖] such that Δ𝑉≤ 𝑗 (𝑡) ≤ 0, then we are done. To prove the claim, note that
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Δ𝑉≤𝑖′ (𝑡) ≥ 2𝑖
′
> 0 since 𝑖′ is far behind, which implies that

Δ𝑉≤ 𝑗 ,>𝑖′ (𝑡) < 0

and thus the optimal solution must have a job in class range (𝑖′, 𝑗] ⊆ (𝑖′, 𝑖] as required. This completes the
proof of the claim.
Returning to the proof of the proposition, if the optimal solution has a job of class 𝑖, then we are done.
Henceforth assume that it has no such job.
Let 𝑞 be the full job of class 𝑖 in the algorithm. Denote by 𝑡 𝑗 the last point in time prior to 𝑡 in which a job
of class strictly more than 𝑗 was processed in the algorithm. We now split into cases according to the release
time of 𝑞.
Case 1: 𝑟𝑞 < 𝑡𝑖−1. In this case, at 𝑡𝑖−1 we have that 𝑞 has already been released, yet a job 𝑟 of class ≥ 𝑖 is being
processed. Thus, either the special rule is not being applied, or the special rule is being applied in skipping
over 𝑞. In either case, there is no job of class ≤ 𝑖 − 1 at 𝑡. Since from 𝑡𝑖−1 onwards the algorithm only works
on jobs of class ≤ 𝑖 − 1, it must be that Δ𝑉≤𝑖−1 (𝑡) ≤ 0. Since 𝑖 − 1 ∈ (𝑖′, 𝑖], the claim above implies that the
proposition holds.
Case 2: 𝑟𝑞 ≥ 𝑡𝑖−𝜎. In this case, at time 𝑡𝑖−𝜎 there exists at most a single job of class at most 𝑖−𝜎, the volume
of which is at most 2𝑖−𝜎 · 𝜇 ≤ 2𝑖. Thus, 𝑉≤𝑖−𝜎 (𝑡𝑖−𝜎) ≤ 2𝑖. During the interval (𝑡𝑖−𝜎 , 𝑡], the algorithm only
worked on jobs of class at most 𝑖 − 𝜎, while the optimal solution spent at least 2𝑖 time on 𝑞.
Thus, Δ𝑉≤𝑖−𝜎 (𝑡) ≤ 0. If 𝑖′ = 𝑖 − 𝜎, this is a contradiction to 𝑖′ being far behind. Otherwise, 𝑖 − 𝜎 ∈ (𝑖′, 𝑖], and
thus the above claim implies that the proposition holds.
Case 3: 𝑟𝑞 ∈

[
𝑡 𝑗 , 𝑡 𝑗−1

)
for some 𝑗 ∈ (𝑖 − 𝜎, 𝑖 − 1]. In this case, consider time 𝑡 𝑗 , in which a job 𝑟 of class

> 𝑗 was being processed. If this job was processed without the special rule, then there is no living job in
the algorithm of class ≤ 𝑗 at 𝑡 𝑗 , which implies that Δ𝑉≤ 𝑗 (𝑡) ≤ 0. The claim above would thus imply that the
proposition holds.
Otherwise, the special rule was applied, skipping over a full job 𝑟 ′. If the job 𝑟 ′ is of class more than 𝑗 , we are
again done for the same reason. Assume therefore that 𝑟 ′ is of some class 𝑗 ′ which is at most 𝑗 .
If 𝑝𝑟 ′ ≤ 2𝑖, then observe that 𝑉≤ 𝑗

(
𝑡 𝑗
)
≤ 2𝑖 ≤ 𝑝𝑞. Since the algorithm only works on jobs of class at most 𝑗 from

𝑡 𝑗 onwards, while the optimal solution spends 𝑝𝑞 time on completing job 𝑞, we have that Δ𝑉≤ 𝑗 (𝑡) ≤ 0. The

above claim would thus imply that the proposition holds; henceforth assume that 𝑝𝑟 ′ > 2𝑖.
If during the interval

(
𝑡 𝑗 , 𝑡

]
the algorithm spends at most 2𝑖 time on job 𝑟 ′, then observe that at 𝑡 𝑗 the job 𝑟 ′

is the only job alive of class ≤ 𝑗 . Thus, the entire interval
(
𝑡 𝑗 , 𝑡

]
was spent on jobs of class ≤ 𝑗 born after 𝑡 𝑗 ,

except for at most 2𝑖 time units. During the same interval, the optimal solution manages to complete the entire

job 𝑞. Thus, it holds that Δ𝑉
(𝑡 𝑗 ,𝑡]
≤ 𝑗 (𝑡) ≤ 0, where the time interval in the superscript restricts the considered

volume to jobs released in that interval. Now, note that the fact that 𝑝𝑟 ′ ≥ 2𝑖 implies that 𝑗 ′ > 𝑖 − 𝜎 ≥ 𝑖′.
Thus, at time 𝑡 𝑗 there are no jobs of class ≤ 𝑖′. This implies that all pending jobs of class ≤ 𝑖′ at 𝑡 were released

after 𝑡 𝑗 , and thus Δ𝑉
(𝑡 𝑗 ,𝑡]
≤𝑖′ (𝑡) ≥ Δ𝑉≤𝑖′ (𝑡) ≥ 2𝑖

′
, since 𝑖′ is far behind. Thus, Δ𝑉

(𝑡 𝑗 ,𝑡]
≤ 𝑗 ,>𝑖′ (𝑡) < 0 which implies that

the optimal solution has a living job in some class in (𝑖′, 𝑗] ⊆ (𝑖′, 𝑖]. This would complete the proof of the
proposition; assume henceforth that the algorithm worked on 𝑟 ′ for strictly more than 2𝑖 time.
At time 𝑡 𝑗′−1, the algorithm works on a job 𝑟 ′′ of class ≥ 𝑗 ′. But at that point, 𝑟 ′ has already been processed
for more than 2𝑖 time units, and job 𝑞 of class 𝑖 has been released; thus, 𝑟 ′′ is not being processed due to the
special rule. This implies that there is no job of class ≤ 𝑗 ′ − 1 at 𝑡 𝑗′−1, and thus Δ𝑉≤ 𝑗′−1 (𝑡) ≤ 0. Now, note

that the fact that 𝑝𝑟 ′ ≥ 2𝑖 implies that 𝑗 > 𝑖 − 𝜎 ≥ 𝑖′; the claim thus applies and completes the proof of the
proposition.

We can now prove an analogue of Lemma 3.5 for the DL algorithm.

Proposition A.4. (analogue of Lemma 3.5) Let 𝑖1, 𝑖2, 𝑖3, 𝑖4 be four consecutive classes in 𝑆′. Then there
exists a job in the optimal solution of class in the range (𝑖1, 𝑖4).

Proof. First, we claim that there exists a full job 𝑞 alive in the algorithm such that ℓ𝑞 ∈ [𝑖2 − 𝜎, 𝑖3 + 𝜎]
we apply Proposition A.2 to 𝑖2, 𝑖3 to imply that there exist two pending jobs 𝑞1, 𝑞2 in the algorithm at 𝑡, such
that ℓ𝑞1

∈ (𝑖2 − 𝜎, 𝑖2] and ℓ𝑞2
∈ (𝑖3 − 𝜎, 𝑖3] (since these class intervals are disjoint, we have that 𝑞1, 𝑞2 are
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distinct).
If either one of 𝑞1, 𝑞2 is full at 𝑡, we choose 𝑞 to be that job. Otherwise, both 𝑞1, 𝑞2 are partial, and we thus
apply Proposition A.1 which implies that the full job 𝑞 exists such that ℓ𝑞 ∈ [ℓ𝑞1

, ℓ𝑞2
+ 𝜎] ⊆ [𝑖2 − 𝜎, 𝑖3 + 𝜎].

Observe that ℓ𝑞 ≥ 𝑖2 − 𝜎 ≥ 𝑖1 + 𝜎; we thus apply Proposition A.3 to the far-behind class 𝑖1 and the full job 𝑞,
and conclude that the optimal solution has a pending job in the class range (𝑖1, ℓ𝑞) ⊆ (𝑖1, 𝑖3 + 𝜎) ⊆ (𝑖1, 𝑖4).
This completes the proof.

Corollary A.2. |𝑆′ | ≤ 4𝛿∗ (𝑡)

Proof of Lemma A.4. Results immediately from Observation 3.5 and Corollary A.2

Proof of Lemma A.1. Results immediately from Lemmas A.2 and A.4.

B Lower Bound - Proof of Theorem 4.1

In this section, we prove Theorem 4.1; the proof takes some ideas from [20]. For ease of presentation, we first
introduce a warm-up deterministic lower bound of Ω(𝜇). We then show the complete proof of Theorem 4.1 for
randomized algorithms.

B.1 Warm-up: Deterministic Lower Bound We now loosely describe a simple, deterministic lower bound
of Ω(𝜇)-competitiveness, before turning to the (somewhat more complex) randomized lower bound.

The adversary releases 𝑛 jobs (for some large 𝑛) at time 0, with estimated processing times of 1. The adversary
then waits until time 𝑡 := 𝑛𝜇

2 .

Denoting by 𝑥𝑞 the amount of time spent by the algorithm on job 𝑞 until 𝑡, the processing time of 𝑞 is min(𝑥𝑞+1, 𝜇).
That is, the algorithm never completes a job by time 𝑡 unless it spends 𝜇 time on that job. Since the processing
times of all jobs (which have estimate 1) is in [1, 𝜇], the distortion is indeed at most 𝜇.

For a job to have less than 1 unit of time remaining, the algorithm must spend more than 𝜇 − 1 units of time on
that job. Thus, from the definition of 𝑡 it holds that 𝛿 (𝑡, 1) ≥ 𝑛 − 𝑡

𝜇−1 ≥
𝑛
4 (recall the definition of 𝛿 (𝑡, 1) from

Definition C.1).

Meanwhile, note that there exist at least 𝑛
4 jobs 𝑞 such that 𝑥𝑞 ≥ 𝜇

4 (assuming that the algorithm is non-idling).
Denote the set of such jobs by 𝑅. The optimal solution could pick a subset 𝑅′ ⊆ 𝑅 such that |𝑅′ | = 4𝑛

𝜇
(using

𝜇 ≥ 16), and spend the time interval [0, 𝑡] as follows:

� When the algorithm works on a job not in 𝑅′, work on that job as well.

� When the algorithm works on a job in 𝑅′, spend this time working on all jobs simultaneously (round robin).

Note that the total time devoted by the algorithm to jobs in 𝑅′ is at least |𝑅′ | · 𝜇4 = 𝑛; thus, the optimal solution
is able to process every job not in 𝑅′ for at least one unit of time more than the algorithm (due to the round
robin). But this is enough to finish all jobs except for the jobs of 𝑅′; thus, 𝛿∗ (𝑡) ≤ 4𝑛

𝜇
.

We thus have that
𝛿 (𝑡 ,1)
𝛿∗ (𝑡) = Ω(𝜇), and thus applying the bombardment technique (as stated in Lemma C.1)

completes the deterministic lower bound.

B.2 Randomized Lower Bound: Proof of Theorem 4.1 We continue to show the randomized lower
bound. We henceforth fix any distortion parameter 𝜇 and prove Theorem 4.1 for this distortion parameter.

We prove Theorem 4.1 using Yao’s principle: we describe a distribution on 𝜇-distorted inputs such that any
deterministic algorithm is Ω(𝜇)-competitive against this distribution. The following proposition reduces the
design of such a distribution to designing a distribution in which any deterministic algorithm is bad at some
specific time 𝑡.

Proposition B.1. If there exists a distribution D on 𝜇-distorted inputs and a time 𝑡 such that for every

algorithm ALG it holds that
ED (𝛿 (𝑡 ,1))
ED (𝛿∗ (𝑡)) ≥ 𝑐 for some 𝑐, then there exists a distribution D̂ over 𝜇-distorted

inputs such that
ED̂ (ALG)
ED̂OPT ≥ Ω(𝑐).
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Proof. The inputs of D̂ would behave exactly like the inputs of D until time 𝑡 (and would have the same
probability). From time 𝑡, all inputs would start a “bombardment” sequence, i.e. would release a job 𝑞 with
𝑝𝑞 = 𝑝𝑞 = 1 every time unit for an arbitrarily large number of time units. An argument identical to that of
Lemma C.1 completes the proof.

It remains to find such a distribution D.

First, we describe the distribution D ′, which has unbounded distortion.

The distribution D ′. The distribution is defined with respect to the number of jobs 𝑘. The inputs all consist of
releasing 𝑘 jobs at time 0, each with predicted processing time 1. The real processing times of the jobs are i.i.d.
random variables which are picked from the geometric distribution with mean 2 (i.e. with 𝑝 = 1

2 ). The adversary

then waits for 2(𝑘 − 𝑘3/4) time units – we henceforth define 𝑡 := 2(𝑘 − 𝑘3/4).

Proposition B.2. For the distribution D ′, it holds that
ED′ (𝛿 (𝑡 ,1))
ED′ (𝛿∗ (𝑡)) = Ω(log 𝑘).

Proof. First, let’s bound the ED′ (𝛿 (𝑡, 1)). As the jobs have integer processing times, we can assume without
loss of generality that the algorithm does not devote fractional time units to jobs. Consider any time unit from
0 to 𝑡. Regardless of the job chosen for processing at that time, the probability that that job will be completed
in this time unit is at most 1

2 (it could be that no job is processed, in which case the probability is 0). Thus,

the expected number of jobs completed in 2(𝑘 − 𝑘3/4) time units is at most 𝑘 − 𝑘3/4. Since jobs have integer
processing times, jobs that are not completed have at least one time unit of processing remaining, and thus
ED′ (𝛿 (𝑡, 1)) ≥ 𝑘3/4.
We now continue to bound the cost of the optimal solution. We make the following observations:

1. Denote the total processing time of the 𝑘 jobs by 𝑌 . Note that 𝑌 is the sum of 𝑘 independent geometric
variables with mean 2, and thus has mean 2𝑘 and variance 2𝑘. Applying Chebyshev’s inequality,
Pr(𝑌 > 2𝑘 + 𝑘3/4) ≤ 𝑂 (1/

√
𝑘).

2. Defining 𝑏 := log 𝑘

4 , the probability that a specific job of the 𝑘 jobs has processing time more than 𝑏

is 2−𝑏 = 𝑘−1/4. Denoting by 𝐵 the number of jobs with processing time more than 𝑏, it holds that
E(𝐵) = 𝑘3/4. Moreover, the variance of 𝐵 is 𝑂 (𝑘); thus, applying Chebyshev’s inequality implies that

Pr(𝐵 < 𝑘3/4

2 ) ≤ 𝑂 (1/
√
𝑘).

Thus, with probability 1 − 𝑂 (1/
√
𝑘), it holds that 𝑌 ≤ 𝑘 + 𝑘3/4 and 𝐵 ≥ 𝑘3/4

2 . Thus, by time 𝑡 the optimal

solution can finish all jobs except for at most 𝑂 ( 𝑘3/4

𝑏
) jobs with volume at least 𝑏 each. Thus, we can bound

the expected number of jobs in the optimal solution at 𝑡 by:

ED′
(
𝛿∗ (𝑡)

)
≤ 𝑂

(
𝑘3/4

log 𝑘

)
+𝑂

(
1
√
𝑘

)
· 𝑘 ≤ 𝑂

(
𝑘3/4

log 𝑘

)
which completes the proof of the proposition.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. We construct the distribution D from the distribution D ′ by choosing 𝑘 =

⌊
2

𝜇

2

⌋
and

conditioning on the event 𝐿 that the processing times of jobs never exceed 𝜇. This new distribution D thus
has a distortion that is bounded by 𝜇. Now, observe that:

ED (𝛿 (𝑡, 1))
ED (𝛿∗ (𝑡))

=
Pr(𝐿)ED′ (𝛿 (𝑡, 1) |𝐿)
Pr(𝐿)ED′ (𝛿∗ (𝑡) |𝐿)

≥ ED
′ (𝛿 (𝑡, 1)) − Pr( 𝐿̄)ED′ (𝛿 (𝑡, 1) | 𝐿̄)

ED′ (𝛿∗ (𝑡))
(B.1)

≥ Ω(log 𝑘) − Pr( 𝐿̄)ED′ (𝛿 (𝑡, 1) | 𝐿̄)
ED′ (𝛿∗ (𝑡))

Now note that using the union bound on the processing times of jobs, Pr( 𝐿̄) ≤ 𝑘 · 2−𝜇 ≤ 1/𝑘. In addition,
denoting by 𝑌 the sum of processing times of the 𝑘 jobs (as before), and noting that ED′ (𝑌 ) = 2𝑘 and
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VarD′ (𝑌 ) = 2𝑘, we use Chebyshev’s inequality to claim that Pr(𝑌 ≤ 𝑡) ≤ 𝑂 ( 1
𝑘
) ≤ 1

2 , and thus ED′ (𝛿∗ (𝑡)) ≥ 1
2 .

Plugging these observations into Equation (B.1) yields that

ED (𝛿 (𝑡, 1))
ED (𝛿∗ (𝑡))

≥ Ω(log 𝑘) −
1
𝑘
· 𝑘
1
2

= Ω(log 𝑘) − 2

= Ω(log 𝑘) = Ω(𝜇)

Applying Proposition B.1 to the distribution D yields a distribution D̂ with maximum distortion 𝜇 such that
ED̂ (ALG)
ED̂ (OPT) = Ω(𝜇), which completes the proof of the theorem.

C Poor Performance of Existing Algorithms

In this section, we show that some existing scheduling algorithms are not competitive in our setting.

Definition C.1. When considering the running of an algorithm on some input, we denote the number of
pending jobs in the algorithm at time 𝑡 by 𝛿 (𝑡). Similarly, we denote the number of pending jobs in the optimal
solution at time 𝑡 by 𝛿∗ (𝑡). We also use the notation 𝛿 (𝑡, 𝑥) to denote the number of pending jobs in the
algorithm with remaining volume at least 𝑥.

The following lemma is a restatement of the standard “bombardment” technique in flow-time scheduling.

Lemma C.1. Consider a specific deterministic algorithm. If there exists an input for which 𝛿 (𝑡, 1) ≥ 𝑐 · 𝛿∗ (𝑡)
at some point in time 𝑡, then the algorithm is Ω(𝑐)-competitive.

Proof. Suppose such an input 𝐼 exists. Consider the modified input 𝐼 ′ which behaves like 𝐼 until time 𝑡, but
from time 𝑡 releases a job with processing time 1 every time unit for 𝑀 time units.
The offline solution for this problem would behave like the optimal solution for 𝐼 until time 𝑡, but would start
working on the stream of jobs of processing time 1 from 𝑡 onwards. At every time 𝑡 ′ during the time interval
[𝑡, 𝑡 + 𝑀], the number of pending jobs in the offline solution is at most 𝛿∗ (𝑡) + 1.
Meanwhile, the algorithm has no better option than working on the stream of jobs with processing time 1,
which implies that 𝛿 (𝑡 ′) ≥ 𝛿 (𝑡) + 1 for every 𝑡 ′ ∈ [𝑡, 𝑡 + 𝑀]. Thus, as 𝑀 tends to ∞, the ratio between the

algorithm’s cost and the offline solution’s cost tends to
𝛿 (𝑡)+1
𝛿∗ (𝑡)+1 ≥

𝑐
2 . This completes the proof.

C.1 Bad Case for SEPT The SEPT algorithm (shortest estimated processing time) would always choose to
process a job from the minimum class of estimated processing time (preferring a partial job if possible).

Even without distortion, this algorithm has an unbounded competitive ratio. To see this, consider the following
input for an arbitrarily large, even 𝑖:

1. For 𝑗 from 𝑖 down to 𝑖
2 :

(a) Release a job of processing time 2 𝑗 + 1.
(b) Wait 2 𝑗 time units.

Denote by 𝑡 the time in which this input ends. At 𝑡, the algorithm SEPT would have 𝑖
2+1 pending jobs of remaining

processing time 1, as it switches to each newly-released job upon its release. Thus, 𝛿 (𝑡, 1) ≥ 𝑖
2 . However, the

optimal solution could have 𝛿∗ (𝑡) = 1 in the following way: follow SEPT until the job 𝑞 of class 𝑖
2 is released, then

use the remaining 2
𝑖
2 time units to finish all jobs except 𝑞 (these jobs require only 𝑖

2 time to complete). Using
Lemma C.1, and since 𝑖 is arbitrarily large, the competitive ratio of SEPT is unbounded.

C.2 Bad Case for SR We now consider the special rule algorithm presented in [8], denoted by SR. In this
algorithm, we again consider the classes of jobs. The algorithm always works on the lowest-class partial job 𝑞,
until there exist two jobs such that one job is of class at most ℓ𝑞 and the other is of class strictly less than ℓ𝑞. If
such jobs exist, the algorithm chooses the one with minimal class and marks it as partial.
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Figure 5: Constant Distortion in the SR Algorithm of [8]

We show that this algorithm has an unbounded competitive ratio even for a distortion parameter 𝜇 which is a
moderate constant, specifically 𝜇 = 4. In fact, we only require underestimations, and so we choose 𝜇2 = 1 and
𝜇1 = 4.

Let 𝑖 be arbitrarily large. The input for which the algorithm fails is as follows:

1. Release a job 𝑞𝑖 with estimated processing time 2𝑖 and real processing time 2𝑖+2 (class 𝑖, distortion of 4)

2. For 𝑗 from 𝑖 − 1 down to 0:

(a) Release a job 𝑞 𝑗 with estimated processing time 2 𝑗 and real processing time 2 𝑗+2 (class 𝑗 , distortion of
4).

(b) Release a job 𝑟 𝑗 with estimated processing time 2 𝑗+2 and real processing time 2 𝑗+2 (class 𝑗 + 2, no
distortion).

(c) Wait 2 𝑗+3 time units.

Figure 5 visualizes the bad input for SR. Initially, 𝑞𝑖 arrives and becomes partial in the algorithm (a partial job
appears as a red circle). Immediately afterwards, 𝑞𝑖−1 and 𝑟𝑖−1 are released, and are full in the algorithm. This
state is shown in the first image of Figure 5.

Now, the input waits 8 · 2𝑖−1 = 2𝑖+2 time units, during which the algorithm finishes 𝑞𝑖, and marks 𝑞𝑖−1 as partial.
Then, 𝑞𝑖−2 and 𝑟𝑖−2 are released. This state is shown in the second image of Figure 5 (the complete job 𝑞𝑖 is
shown as a gray circle).

As time progresses, the algorithm reaches the state in the third image of Figure 5, in which all jobs
{
𝑟 𝑗
}
and the

job 𝑞0 are full and pending. Thus, 𝛿 (𝑡, 1) ≥ 𝑖.

Meanwhile, the optimal solution could, for every 𝑗 , use the time spent by the algorithm on 𝑞 𝑗 to finish both 𝑞 𝑗−1
and 𝑟𝑖−1. Thus, the only living job in the optimal solution at 𝑡 would be 𝑞𝑖, implying 𝛿∗ (𝑡) = 1. Using Lemma C.1
implies that the algorithm has a competitive ratio of Ω(𝑖), and since 𝑖 can be arbitrarily large, this competitive
ratio is unbounded.

C.3 Bad Cases for the Robust Algorithm of [1] For every 𝜇 > 1, a 𝜇-robust, 𝑂 (𝜇2) competitive algorithm
ALG𝜇 was presented in [1]. We show two bad cases for the algorithm ALG𝜇. First, we consider the case in which
the distortion 𝜇 is much smaller than the distortion cap 𝜇, and show that the algorithm is still Ω(𝜇)-competitive;
In fact, we show this for the case that there is no distortion at all, i.e. 𝜇 = 1. Second, we consider the case in
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Figure 6: No Distortion in the Algorithm of [1]

which the distortion 𝜇 is slightly larger than 𝜇 (specifically, 𝜇 = 4𝜇), and show that the algorithm has unbounded
competitiveness.

Bad case 1: 𝜇 = 1 (no distortion). Assume 𝜇 is an even integer for the sake of presentation. The input

consists of releasing 𝜇 jobs of size 1 and 2 jobs of size 𝜇

2 at time 0, then waiting for 𝜇 time units.

The state of the algorithm immediately after the release of the jobs is visualized in Figure 6. This visualization
follows the description in [1] (i.e. each job is a rectangle whose width is the job’s remaining volume). During the

waiting time of 𝜇 time units, the algorithm would work and finish the two jobs of volume 𝜇

2 , while the optimal

solution could finish all jobs of volume 1. Thus, at 𝑡 = 𝜇 it holds that
𝛿 (𝑡 ,1)
𝛿∗ (𝑡) = Ω(𝜇), and thus Lemma C.1 implies

that the algorithm is Ω(𝜇)-competitive even when there is no distortion.

Bad case 2: 𝜇 = 4𝜇. Assume 𝜇 = 2𝑚 for some integer 𝑚. We construct a somewhat similar adversary to that
previously described for SR with distortion 4𝜇 = 2𝑚+2 and show that the algorithm has unbounded competitive
ratio on this input

We choose an arbitrarily large integer 𝑖. The adversary performs the following actions:

1. Release a job 𝑑 of arbitrary volume.

2. Release a job 𝑞𝑖 such that 𝑝𝑞𝑖 = 2𝑖, 𝑝𝑞𝑖 = 2𝑖+𝑚+2.

3. For 𝑗 from 𝑖 − 1 down to 1:

(a) Release a job 𝑟 𝑗 such that 𝑝𝑟 𝑗 = 𝑝𝑟 𝑗 = 2 𝑗+𝑚 (no distortion).

(b) Release a job 𝑞 𝑗 such that 𝑝𝑞 𝑗
= 2 𝑗 , 𝑝𝑞 𝑗

= 2 𝑗+𝑚+2 (distortion 4𝜇)

(c) Wait 3 · 2 𝑗+𝑚 time units.

Denote the time in which the adversary ends by 𝑡. We consider a visual representation of the algorithm’s operation
given in Figure 7 (which again follows the description in [1]). Initially, 𝑑 is released and immediately moved by
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Figure 7: Excessive Distortion in the Algorithm of [1]
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the algorithm to the partial bin 𝑃. 𝑞𝑖 is released immediately afterwards, and is put in the full bin 𝐹. The first
image of Figure 7 shows the state at this point.

Now, 𝑟𝑖−1 is released into 𝐹, and swaps with 𝑞𝑖 (as its estimate is larger by a factor of 𝜇). The job 𝑞𝑖 immediately
moves to 𝑃. The current state is shown in the second image of Figure 7. Now, the job 𝑞𝑖−1 is released to the top
of 𝐹, as shown in the third image of Figure 7.

Now, the adversary waits 3 · 2𝑖−1+𝑚 time, during which the algorithm works on 𝑞𝑖 (and doesn’t complete it).
Meanwhile, the optimal solution would finish both 𝑞𝑖−1 and 𝑟𝑖−1. Afterwards, the adversary releases 𝑟𝑖−2 (which
swaps with 𝑞𝑖−1, causing it to move to 𝑃) and then 𝑞𝑖−2. This state is shown in the fourth image of Figure 7.
Now, the adversary waits for 3 · 2𝑖−2+𝑚 time, during which the algorithm works on 𝑞𝑖−1 and doesn’t finish, and
the adversary finishes 𝑞𝑖−2 and 𝑟𝑖−2.

As this process continues, the algorithm will have all 2𝑖 jobs alive at 𝑡 (with at least one using of volume remaining)
and thus 𝛿 (𝑡, 1) ≥ 2𝑖. Meanwhile, the optimal solution would only have two jobs pending at 𝑡 (𝑑 and 𝑞𝑖), and
thus 𝛿∗ (𝑡) ≤ 2. Lemma C.1 implies that the algorithm is Ω(𝑖)-competitive. Since 𝑖 is arbitrarily large, this implies
that the algorithm ALG𝜇 has unbounded competitive ratio on inputs with distortion 4𝜇.
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