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Abstract: In a variety of industries, Additive Manufacturing has revolutionized the whole design–
fabrication cycle. Traditional 3D printing is typically employed to produce static components, which
are not able to fulfill dynamic structural requirements and are inappropriate for applications such as
soft grippers, self-assembly systems, and smart actuators. To address this limitation, an innovative
technology has emerged, known as “4D printing”. It processes smart materials by using 3D printing
for fabricating smart structures that can be reconfigured by applying different inputs, such as heat,
humidity, magnetism, electricity, light, etc. At present, 4D printing is still a growing technology, and it
presents numerous challenges regarding materials, design, simulation, fabrication processes, applied
strategies, and reversibility. In this work a critical review of 4D printing technologies, materials, and
applications is provided.
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1. Introduction

Additive Manufacturing (AM) or 3D Printing (3DP) is a digital manufacturing technol-
ogy that provides nearly limitless potential to construct structures by precisely adjusting
material properties, process parameters, and shapes [1]. The invention of AM techniques
has pushed the limitations set by traditional manufacturing processes, leading the world
into the “third industrial revolution”, in which computers and automation work together
to produce items quickly [2]. AM methods enable the construction of complex structures
with little material waste. This digital manufacturing technique involves adding materials
layer by layer to construct components directly from 3D model data. 3DP has grown in
popularity over the last two decades due to a variety of compelling benefits, including the
capacity to make inexpensive, multipurpose items characterized by intricate structures [1].
3DP is a rapid and affordable manufacturing technique that finds a wide range of appli-
cations in biomedicine [3], aerospace [4], the automotive industry [5], robotics [6], smart
textiles [7], soft electronics [8], and wearables [2].

Recent breakthroughs in AM have offered revolutionary printing technologies for
producing smart objects that can be switched between numerous configurations via envi-
ronmental inputs [9]. This innovative approach, originally referred to as 4D printing (4DP)
by a research group at the Massachusetts Institute of Technology in 2013 [10], produces
3D-printed structures that can actively modify their configuration in reaction to an external
stimulus or interaction mechanism; consequently, the mechanical condition of the 4DP
item may be observed to transition from static to dynamic [11]. Advanced research on
3DP dynamic shape-shifting has recently received attention as the next significant advance
in AM methods [12]. In contrast to typical 3D-printed components, which are frequently
stiff and static [13], 4DP is the next generation technology because of the merged dynamic
behaviors inside the Smart Material (SM) [2]. 4DP dynamic structures with changeable
shape modifications have attracted industrial interest, since they can provide advanced
features such as self-assembly, self-repair, and self-adaptability [14].
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4DP can be defined as a combination of different factors, including 3DP technology,
SM, shape-shifting behavior, design for 4DP, stimuli, applications, mathematical modeling,
and finally the programming process [12,14,15]. Important elements to be considered in
4DP are summarized in Figure 1. Each element is intimately connected to the others, and
particular attention must be paid to the integrated framework design.
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The literature survey methodology employed in this review was structured by follow-
ing the search, inclusion, and exclusion criteria listed in Table 1. The initial research returned
31,016 papers, but not all were concerned with 4DP. The exclusion/inclusion criteria al-
lowed us to filter the studies and increase their relevancy. As a result, 1204 articles were
analyzed, and an in-depth analysis was undertaken, allowing a reduction to 197 papers.
The analysis was focused on the applications, materials, stimuli, technologies, and pro-
gramming strategies. The publication period was 2013–2023, and the number of papers is
distributed as shown in Figure 2.
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Figure 2. Distribution of reviewed articles related to 4D printing.

Advantages and Challenges

As a significant development in 3DP technology, 4DP is recognized as the next manu-
facturing evolution. 4DP can provide flexible structures capable of geometrical transforma-
tion in response to an environmental stimulus regarding the characteristic behavior of the
material. 4DP offers the option to change the geometry of 3D-printed components over
time. The new technique combines advanced material science, physics, and applications
with 3DP.

4DP using Shape Memory Materials (SMMs) has a wide range of industrial applica-
tions, including aerospace [16] and biomedical [17] ones in addition to packaging, electron-
ics [18], and textiles [7]. The self-operation characteristics of the 4DP structures, including
self-assembly, self-adaptability, and self-repair, have increased their viability in various ap-
plications [19,20]. Self-assembled 4D structures can be designed as independent geometries;
while exposed to stimuli they self-organize into an overall structure depending upon the in-
teractions of the geometrical elements and the energy distribution given to the system. Such
properties of 4DP materials might be quite useful, with 4DP being far more effective in large-
scale businesses. It has potential aerospace applications, since in-space manufacturing is
fundamental for future missions. 3DP fabrication in space currently has cost, performance,
and energy consumption issues. As a result, instead of employing 3D-printed materials,
4DP could be employed to take advantage of the transformable nature of such products.
4DP can provide solutions the manufacture of bridges, shelters, and installations, since it
can provide self-reconfiguration in the case of weather interruption [21,22]. Furthermore,
for long-duration space travel to be viable, a paradigm shift in the design and production
of space architectures is required. The In-Space Manufacturing (ISM) initiative aims to
create technology for these exploratory missions [23]. Additionally, as components can be
self-assembled in space, the aerospace industry can use 4DP to manufacture self-deploying
devices and elements related to air control, engine cooling, and other applications [24].
This capability can be used for the building of satellites and antennae [25]. It allows for
reducing launch costs by providing flexible tools and avoiding resupply from Earth [26].
NASA is changing its manufacturing approach for space applications from Earth-based to
exploration-based, with the potential goal to reach Mars by 2040. In addition, the ESA is
planning the development of lunar-based regular missions.

The crucial feature of 4DP is its ability to achieve different shape-morphing behaviors.
Other manufacturing techniques cannot, or scarcely can, encode the structures of materials.
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For instance, the interior structure of an organ, where numerous cells are held in a multiscale
structure, is what drives bioengineers to build tissues and organs through bioprinting.
In [27], the authors used a biomimetic hydrogel composite for 4DP that allowed for local
properties. However, the effectiveness of this biomimetic 4DP technique depends on its
capacity to local regulate the orientation of cellulose fibrils inside the hydrogel composite
to determine the elastic and swelling anisotropies.

4DP offers various industrial opportunities. It has the potential to alter the way things
are created by developing objects with programmable capabilities. Nevertheless, 4DP
remains in the testing and experimentation phase, and corporations still have a long way
to go to make the technology commercially viable. However, as research proceeds, 4DP’s
potential uses in a wide range of industries will become clear [28]. 4DP has enormous
potential for today’s smart-goods production. The capacity to develop SMs that respond
to external factors will lead to significant improvements for the aerospace industry. The
defense sector may greatly benefit from 4DP. Currently, 4DP is available for a variety
of applications. Military outfits that can change appearance or protect individuals from
harmful gases might be one of the most intriguing applications for 4DP [29–31].

4DP offers much potential for making intelligent fluid valves. When exposed to
high temperature fluids, a valve closes and reopens when heated conditions change due
to the use of heat-sensitive hydrogel ink. 4D-imprinted biocompatible devices capable
of expanding or contracting an entity are also expected. These items can be utilized as
coronary stents, expanding the shape and keeping blood vessels undamaged to reduce
complications caused by traditional stent implants [24].

Manufacturing must become smarter in order to avoid wasting enormous quantities of
resources. These problems may be handled by employing informatics tools and integrating
relevant data into materials, which improves the accuracy of manufacturing processes [32].
Therefore, 4DP technology can help reduce waste, errors, and process inefficiencies in
industrial operations [21]. In comparison to previous production methods, many studies
have defined 4DP as energy-efficient [22], green [23], and quick [24].

Despite its many benefits and wide range of applications across several sectors, 4DP
still faces several difficulties that prevent its widespread use on an industrial scale. Because
most SMMs only allow for one-way shapeshifting, this presents a hurdle to the design
of active structures. However, there are certain intelligent materials that can address this
issue. The use of these materials in reconfigurable structures is, however, extremely difficult
because of the laborious production process and the limited load-carrying capacity.

Homogeneous or heterogeneous 4DP is a complicated procedure requiring numerous
actions [33] to build smart entities, to program [34,35], to stimulate, to actuate, and to
recover [36]. Certainly, the programming of operations is one of the most challenging steps;
this can be performed after printing or it can be implanted in the printed part during
fabrication. The actuation and recovery steps have a direct impact on the efficiency of the
final printed items, and some limits may be seen in terms of procedures, methods, and the
stages of stimulation that integrate material and physics concerns.

To achieve the preferred performance, printing via non-composite SMs has revealed
restrictions regarding mechanical performance as well as shape change. For these reasons,
research studies extensively considered multi-material active functional parts. Neverthe-
less, through using more advanced methods of 4DP with heterogeneous principles, the
understanding of multi-material and multi-voxel systems through one or more 3D printers
becomes feasible, and in the future, it will lead to high performance in industrial applica-
tions. As opposed to the use of SMMs to change the shapes of 3D-printed parts, 4DP has
also been employed for fabricating multi-materials with different swelling or deformation
properties [35,37]. Unfortunately, the need for specific 3D printers limits the use of 4DP [38].
In other circumstances, researchers mentioned the connecting multi-material drawbacks,
such as poor bi-material bonding and residual stress at the interface. In addition, managing
the AM process is difficult because of the miscibility and wetting restrictions of diverse
materials, as well as the differences in their characteristics (e.g., thermal conductivities and
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expansions, melting points). Coefficient mismatches are caused by using comparable or
different materials in multi-material systems, such as metal-polymers and metal-ceramics.
Polymers and ceramics may cause massive mismatches, resulting in defects such as cracks,
pores, and residual stresses that impair component integrity, dimensional stability, fatigue
resistance, and mechanical characteristics in industrial applications [39]. As a result, the
issue created by AM of multi-materials should be considered during material selection,
part geometry, and manufacturing parameters. The composition and optimal geometrical
arrangement of materials, as well as methods of reaction kinetics, bonding, stress formation,
and cracking mechanics, are critical aspects for multi-material design [40].

Many of the commercial machines are not suitable for new or customized materials,
since printer manufacturers cannot guarantee the results. As regards the multi-material
3DP aspect, certain AM technologies, such as Vat Photopolymerization and Laser-Powder
Bed Fusion techniques, present new challenges, since only one resin or powder can be
processed in the vat or chamber. This is an unlucky limitation considering the high quality
provided by these technologies; thus, creative solutions should be investigated. Moreover,
the slow printing speed also hinders the capability of employing AM in a large-scale part,
since conventional processes such as injection molding can quickly produce high-quality
simple components [2].

Even though many scientific papers have focused on various SMs, further investiga-
tion is required for creating smart 4D objects. Composite materials and their availability
limit the capability of 4DP. For example, according to the operating concept of the 3DP
equipment, there are currently two printing processes for continuous fiber-reinforced
composites: pre-impregnation and real-time in situ impregnation. Pre-impregnation is
the process of covering continuous fiber filaments with an exterior layer of resin before
pre-impregnating them with thermoplastic polymers [41]. A complicated structure with re-
markable mechanical qualities might be difficult to construct due to an inadequate amount
of research on 4DP technology and materials [42].

This work is a review paper considering different AM technologies applied in the field
of 4DP, with a focus on the technologies, materials, applications, and case studies.

2. Modeling and Simulation

4DP technology combines material science and mathematics. Mathematical models
are necessary for carefully predicting shape-morphing behaviors, which are one of the most
challenging stages of this new technology. However, no general formula for modeling and
predicting smart evolution over time is known [43].

In many studies, authors have employed beam and plate theories, including the
Euler–Bernoulli [27,44,45] and Timoshenko bimetal [46] models, to investigate 4D material
dynamic properties [47–50].

The Timoshenko bimetal model, while useful for analyzing time-independent behav-
iors like the impact of thickness on bending, is limited in achieving the true time-dependent
behaviors of 4D materials, except for specific cases or linear regions. As a result, the time-
dependent behaviors, crucial attributes of 4D materials that are responsive to stimuli, have
not been extensively modeled in research studies. Consequently, there is a pressing need for
qualitative and quantitative analyses to understand the fourth dimension. In addition, vari-
ous formulas used or developed to model the shape-morphing behaviors of 4DP structures
are organized and analyzed.

To better understand how 4DP operates, three criteria that serve as general model-
ing principles for future 4DP architectures are presented in [51]. The primary principle
states that proportional expansion is a common multi-material self-morphing behavior. The
second rule asserts that the four physical characteristics of mass diffusion, thermal ex-
pansion, molecular change, and organic development are differentiating elements. The
third rule is that most structures created with 4DP have one active layer and one dor-
mant layer.
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However, careful prediction and modeling of shape-memory behavior must continue
to be investigated. For instance, deep learning algorithms can be developed before fabrica-
tion for optimizing the geometry design and, at the same time, minimizing the necessary
material. Modeling the behavior of these materials is challenging; nevertheless, several
works have been undertaken to better understand the mechanisms that affect them [51].
This is a key role for future AM-based manufacturing [2]. Several studies have considered
beam and plate theories [14], where the deformation behavior of printed parts was studied
via numerical simulation of bilayers using the classical Timoshenko bimetal model [46],
which does not model the time-dependent behavior since it is linear over time. Furthermore,
it cannot be considered for general modeling of the various stimuli and materials [52].

The software side of 4DP is tied to mathematical modeling as well as understanding
and forecasting the behavior of SMs. These are also significant design difficulties that
software attempts to address. Understanding a material’s properties and how it responds
to input is critical when building 4D structures. To do this, sophisticated modeling and
topological transformations are used to address manufacturing and material restrictions.
It is incredibly challenging to design 4D actuating structures using novel and somewhat
unknown materials to create responses that cannot be observed until the structure is tested.
This necessitates a high degree of material and manufacturing process understanding,
which is unreasonable to anticipate from the 4DP userbase. That is why the design process
must be dedicated to software that can forecast how the material will behave and then
iterate from the simulations to obtain the desired output for the construction. When it
comes to bioprinting and tissue printing, one challenge is duplicating existing biological
systems so that they operate similarly to the existing ones. However, biological processes
are challenging to emulate even with computer systems, let alone imitate and replicate
using SM structures and their natural stimulus reactions. Yet, developing 4D structures
that properly mimic current systems using biocompatible SMs is a key step in bringing the
technology to biomedicine. Mechanical straining is required to prepare printed structures
for the stimulus response, which causes them to release the accumulated strain. It would
be more beneficial if the 4D constructions could be printed pre-strained. There is currently
no technology that allows for the direct printing of pre-strained objects. It makes them far
less practical, since every structure must be mechanically stretched to work properly. For
such technology to gain widespread adoption as well as attention, it must be made more
accessible by simplifying the design process. Steps like these would decrease the barrier of
entry for firms and certain other researchers, therefore speeding up progress [7,11,44].

3. Design for 4DP

Currently, most of the research in 4DP is concentrated on the shape-changing capa-
bilities of SMs, such as the elongation, bending, corrugation, expansion, and curling of
4DP materials. [15]. These basic transformations are all goals of shape-changing mech-
anisms [53]. They conceptually reflect the spectrum of changes through time and space
to truly describe a change in shape, property, condition, or functioning. This is especially
true for functions like helixing, buckling, curling, waving, etc. Such transformations pro-
vide an initial conceptual step for the definition and specification of smart devices, upon
which further needs might be specified. The ideas and theories of transformation and
reconfigurable systems emphasize these functions and fundamental transformations [54].
To incorporate 4DP information into mechanical design, traditional product models must
be updated. Given that this technology primarily enables shape, function, and property
transformations, as well as multi-material fabrication, it is critical to reexamine traditional
design and models in order to support multi-purpose knowledge and rules spanning space
and time [53].

One issue with 4DP is that research studies continue to rely on the “trial-and-error”
method. A wide range of research initiatives have been sparked by the incorporation of AM
in design and engineering, including topologically optimized solid or lattice, multi-material
geometries, organic structures inspired by biotechnology, and multiscale systems [55–58].
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Except in deliberate instances, relatively little focus has been placed on designing and
manufacturing more complicated 3D structures or folded or creased structures. Therefore,
4DP requires math to design the material distribution and structure to produce the desired
change in form, property, or effectiveness. To establish the links between the four basic
elements—material structure, desired final form, material characteristics, and stimulus
attributes—theoretical and numerical models must be constructed [25]. Researchers have
presented models and simulations [7,59] to better understand and anticipate the shape-
shifting behavior of 4DP objects [20].

Indeed, recent attempts have stressed the need to approach 4DP from a design stand-
point, introducing the concept of design for 4DP. To achieve a desirable shape-changing
and active structure, understanding the appropriate material distribution (passive and
active) at the appropriate location plays an important role. In addition, the proper stimulus
at the right time and location to alter the part’s shape needs to be considered [60]. Con-
versely, the design of an active composite geometry to accomplish a goal shape change
is difficult because it demands solving an inverse problem with spatially heterogeneous,
markedly nonlinear material behavior within a complicated boundary problem. As a result,
computational assistance and adequate geometric representation are required. The primary
determinant of the precise form changes caused in an active material or composite is the
spatial arrangement of both materials, commonly referred to as the material distribution.
Conceptually, this offers a significant design advance in the form of a parameter that un-
locks a virtually limitless range of options that were not previously possible for special
standard materials. Inversely, this complicates finding the appropriate method or plan of
action to achieve the optimum material distribution for a particular demand [61].

This inevitably results in two distinct design approaches: knowledge-based design,
which is intuitive, and computational design, which may be contrary to intuition [62]. The
former offers simple answers for fundamental demands that may then be compounded
to address more complicated requirements by utilizing experience, knowledge, human
intuition, and understanding of basic difficulties. Examples include simple patterns and
multi-layer designs. The second type of design was prompted by the limitations of human
capabilities and the iterative nature of testing. On the other hand, using modeling and
simulation techniques along with developments in computer programming and machine
learning, it is possible to produce a solution that is specifically designed to achieve a very
complicated shape change encompassing the concept of “optimization” [53].

To attain an industrial maturity level, the domains of chemistry, physics, and materials
science must be (1) correctly matched with end-user needs and (2) organized to work at the
system, product, or object level, which requires a problem-solving approach. Moreover,
there has been minimal attempts to incorporate 4DP into the design and development pro-
cesses of smart gadgets. As a result, it is critical to bring these developments to the attention
of designers and product engineers in order to address “design for 4DP” challenges [62].

In this case, knowledge-based design can help overcome the limitations of trial-and-
error design. In Ref. [63], a computational framework based on a finite element analysis-
based evolutionary algorithm is described, with the main objective of achieving the “op-
timal” distribution of material attributes in a voxelized structure. Material distributions
provide a chance to broaden the range of design concepts available using computational
methodologies. It combines the benefits of improving material arrangement inside a design
space through topology optimization to address the inverse design challenge of finding an
optimal geometry to accomplish a goal shape change by using empty voxels. The results
show that the suggested technique is effective and provides a highly skilled tool for the
development of a 4DP smart composite.

Voxelated matter that is created and designed voxel by voxel is becoming more popular.
Today, the only commonly used technique for producing 3D voxelated materials with great
precision is inkjet-based 3DP [64]. In Ref. [60], a voxel-based modeling framework is pro-
posed. This study focuses on a computational method for multi-material 4DP design. The
technique seeks to construct interconnecting modules that may be fabricated individually
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and then joined to build the multi-material 4D construction by considering a given digital
material distribution that fulfills a specified shape-changing characteristic. This method
enables the exploration of new sorts of complicated assemblies that would be hard to print
in one step using a single AM technology. However, the suggested voxel-based modeling
and simulation system is not intended to be a replacement for existing approaches such as
the Finite Element Method; rather, it is a complementary design tool used prior to design
efforts employing this method.

In Ref. [65], a computational approach is used to model the deformations caused by
the residual stress in mesh-like thermoplastic composite structures using hex-dominant
meshes, hybrid finite element isogeometric analysis, and a polycube-based random forest
regressor. Many intricate concept instances are used to illustrate the efficiency of the
suggested model.

To trigger the transformation functions and the form modifications of a 4DP geometry
over time, an environmental stimulus is required. As mentioned, the state and properties
change based on the geometrical design during the 4DP of an SMM. The stimuli that
researchers have used in 4DP thus far include heat, light [19], water [14], pH [66], etc.
The combination of SM, design, and stimuli is required for the development of intelligent
devices and systems [67]. Within different 4DP studies, the SMMs are the most common
stimulus-responsive materials. Programming is one of the most challenging steps in 4DP
addressed in the literature [68]. In general, to have a better understanding and functional
structure in this area, a strong knowledge base of the stimulation, and actuation process
geometry, manufacturing models are required. In order to build complex SMP-based struc-
tures, design standards that link basic forms to temporary shapes remain necessary [69].
The development of this technology is further hampered by a lack of knowledge about the
design formulation of 4DP [28]. A mathematical model that can forecast the behavior of
4D-printed components is thus required, since one of the challenges facing 4DP is a lack of
knowledge of the behavior of 4D-printed parts [15,70,71]. This will hasten the development
of the area through the introduction of various characteristics and their impact on the
4DP design.

4. Shape Memory Materials
4.1. Material Specification

A specific type of material that responds dynamically to environmental stimuli has
been called intelligent or smart material (SM) [72]. These materials play an important role
in 4DP as they can change their properties over time [73]. Among the different types of SMs
with different activation mechanisms, the materials characterized by the Shape Memory
Effect (SME) are the most well-known for their suitability for AM technologies [74,75].
This effect allows recovering a large mechanical strain by heating the material above a
critical temperature. This feature provides large contractions in the SMMs and enables their
use as thermomechanical actuators [1]. Those SMs that show SME are known by many
names: SMMs, Shape Memory Polymers (SMPs), Shape Memory Alloys (SMAs), Shape
Memory Ceramics, Shape Memory Hybrids, Shape Memory Gels, and Shape Memory
Hydrogels [44]. SMMs can also be classified as one-, two-, or three-way materials based on
how many shape alterations they undergo. In one-way SMMs, the initial shape cannot be
recovered, whereas in multiple-way SMMs, the initial shape is regained as a temporary
shape. Depending on the environmental conditions, the SMMs can also exhibit the Shape
Change Effect (SCE) along with SME [15].

4.2. External Transition Stimuli for 4DP

4DP consists of a shaping phase realized by 3DP technology and the subsequent
application of external stimuli to bait a dynamic response of the material to change its
properties or shape [76]. In the literature, researchers have primarily addressed their
attention to study the various stimuli employed. The most explored was temperature,
followed by light, water, magnetic field, pH level, electric field, and humidity [77,78].
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4.2.1. Thermal Stimuli

SMPs and hydrogels are the most recent smart materials to be utilized in 4DP, and
they are mostly sensitive to temperature [79]. Composites of these materials are sensitive
to various stimuli, such as light, electric, and magnetic fields, making them ideal for
remote-controlled actuation [80]. Temperature is a versatile trigger for shape changes in
shape memory materials, and it can induce these modifications through the glass transition
temperature (Tg) of the polymer. In some cases, the temperature variations can lead to
structural transformations in one of the monomers, such as the effect observed in sol-gel
processes. For instance, agarose nanofibers can undergo a transition from a linear fibrous
form to coiled structures when the temperature increases, and they can return to the
original structure upon cooling. This phenomenon highlights the temperature-dependent
shape memory behavior of some materials, offering additional opportunities for shape
manipulation in various applications [81].

The temperature affects how SMAs convert. It is a change from the low-temperature
phase to the high-temperature phase, or from martensite to austenite. When the tempera-
ture decreases, the opposite phenomenon takes place. It changes from twinned martensite
to detwinned martensite under the influence of loading, and under the influence of heat,
detwinned martensite turns into austenite. As a result of cooling, the reversible transition
from the high-temperature phase of austenite to the twinned low-temperature phase of
martensite takes place. Pseudoelasticity does not provide a significant contribution to the
shape memory effect [82].

4.2.2. Liquid/Moisture

In liquid-responsive materials, the transformation is designed to induce different
swelling in distinct compartments, which is dependent upon spatial and temporal factors.

The behavior of polymeric materials is influenced by moisture. Hydrophilic polymers
contain functional groups that form secondary bonds with water molecules, leading to
absorption and swelling of the polymer and an increased volume. Functional groups such
as carboxyl, hydroxyl, and amines facilitate water absorption, while methyl groups increase
hydrophobicity, preventing water absorption. Moisture acts as a trigger in 4DP, particularly
in hydrophilic polymers. The combination of active single layers, which respond to mois-
ture, and flexible passive layers allows for volume variations and shape changes. The active
layer reacts to moisture, while the passive layer adapts to the shape changes induced by
the active layer. However, restoring the original dimensions after cycles of water sorption
and desorption may not be guaranteed. Acrylamide-based hydrogels and PEG derivatives
are examples of polymeric materials that exhibit shape-changing responses to moisture
stimuli [83–85].

Liquid-responsive materials supply different functionalities, such as cell encapsulation,
controlled drug delivery, and reversible actuation for smart valves. However, it is important
to consider some factors when the suitability for specific applications is evaluated, such as
the response time, the mechanical properties after expansion, and the possible degradation
or hydrolysis after various swelling and de-swelling cycles. It is important to address
these challenges to ensure the long-term performance and durability of liquid-responsive
materials [86].

4.2.3. Light Stimuli

Light activation (e.g., UV, visible light) offers significant advantages over thermal
activation in shape-memory polymers [7]. Unlike thermal stimuli, light stimuli in SMPs
do not create the risk of damage that could result from heat treatments. This makes light
activation highly attractive for various biomedical applications [87].

4.2.4. pH Stimuli

The alteration of polymer properties occurs when ionizable functional groups within
the material become ionized and acquire a charge at specific pH levels. The repulsion
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force between the SMP chains with similarly charged groups causes an expansion in their
dimensions. Consequently, when the pH changes back, the repulsion subsides, and the
material returns to its original shape. However, the reversibility and changes associated
with pH-responsive materials can be considered a drawback due to the requirement for
solvent replacement, which is environmentally unfavorable. Despite these limitations, pH-
responsive polymers have demonstrated potential in various fields, including drug delivery
and microprocessing [87]. The use of printing techniques has facilitated the creation of
drug delivery systems with unique designs and precise dimensions that are not achievable
through traditional production methods. By leveraging these innovative techniques, drug
delivery systems can be tailored to specific requirements, enabling more efficient and
effective drug release [88].

4.2.5. Magnetic

A magnetic field can be applied to SMMs to produce induced heat [79].
Using magnetic fields as actuators offers several advantages. Firstly, they respond

quickly [89,90], allowing for efficient and timely actuation. Secondly, they possess a
low safety risk [86], ensuring the well-being of users and minimizing potential hazards.
Moreover, magnetic fields enable remote guidance [91], allowing for control and manip-
ulation from a distance. They can accelerate the speed of movement, enhancing their
dynamic capabilities.

Some limitations are also present. The first one is the highly reactive nature and ag-
gregation affinity of magnetic-response materials in biomedical applications [86], which
can prevent their usage. Moreover, complications may arise when dealing with magnetic
nanoparticles in living systems [89,92–98]. Magnetic fields have low operating tempera-
tures and traditional magnetic absorbents exhibit high density. Moreover, under certain
circumstances, magnetic fields may cause a rise in temperature during experiments [11].

Nevertheless, materials that are sensitive to magnetic fields find applications in drug-
delivery systems and fastening purposes. These applications leverage the unique properties
of magnetic fields to enable controlled release and secure attachments [11].

Some SMAs are magnetic field sensitive; they are known as magnetic shape memory
alloys or ferromagnetic SMAs. These SMAs are also known as magneto-responsive shape
memory alloys. A magnetic field is responsible for the structure’s change in orientation, i.e.,
the movement of the twin boundary in the martensitic structure. Magnetization is responsi-
ble for the shape alteration, which is a result of the magnetically induced reorientation [82].

4.3. Shape Memory Alloys (SMAs)

SMAs are programmable alloys able to recover their initial shape through exter-
nal stimulus [98]. Typically, SMAs go through a programming procedure in between
two metal alloy transformation steps via a temperature or magnetic field. The transfor-
mation phenomenon is known as SME. There are various publications [94–96] providing
an in-depth study of SMAs characteristics; which is not the aim of this section, we will
just refer to two important characteristics of these materials for better understanding. The
shape shifting capability of SMAs is due to the thermoelastic phase transformation be-
tween austenite and martensite. Through heating at a certain temperature, martensite
shifts to austenite and shape recovery takes place, returning to the original shape. This
reversible transformation can also be provided by using special training processes based
on magnetic fields, but they show limitations by means of process repeatability. These
alloys are characterized by excellent super-elastic properties [97] and can be used in a wide
range of applications: aerospace, biomedical, civil, automotive, and aeronautics [63]. SMAs
are typically of two types: “copper-based”, such as Cu-Al (Zn, Ni, Be, etc.), and nickel-
titanium, with a small number of elements such as NiTi (Fe, Cu, Co, etc.). NiTi is the most
popular among SMAs, since it allows exceptional applications in orthopedics, cardiology,
and neurology [67]. A critical drawback in the NiTi SMA fabrication of complex shapes
is the high sensitivity to composition change. Fe-Mn-Si–based SMAs are less sensitive
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to compositional change and have attracted interest as a cost-effective alternative to NiTi
alloys [98].

One of the issues limiting the application of SMAs is the functional fatigue life due to
repeated actuations through mechanical or thermal loading. The increasing accumulation
of irreversible strain dictates the SMAs’ performance, toughness, and service life. In order
to reduce or eliminate this problem, a pathway is added to the typical martensitic phase
transformation: it is known as the symmetry-dictated non-phase-transformation pathway.
This additional pathway may play a crucial role in functional fatigue.

SMAs for printing or manufacturing are frequently related to Selective Laser Melt-
ing (SLM) technology. Due to their slow rate of degradation, the use of these kinds of
SMs is constrained. For example, it is crucial that manufactured implants (like bone scaf-
folds) that play a significant role in tissue regeneration are absorbed by native tissues
at the proper time, atomically, over the course of time. However, because alloys have
a low biodegradability rate, the implant may stay in the body for years, leading to the need
for additional surgery. So, it appears that further research is needed before SMA can be
used in 4DP to meet current limits and concerns [99].

4.4. Shape Memory Polymers

SMPs are the most employed materials in 4DP [3]. They can respond to a variety
of stimuli, such as light, heat, electricity, moisture, and pH [100,101]. As a result of the
stimulus application, a movement in the shaped body takes place until a memorized shape
can be recovered [100,102]. Growing research in the 4DP sector also shows that some
polymeric materials alter other properties, such as color, rather than their structure [33].
Compared with SMAs and ceramics, SMPs exhibit the capabilities of high strain recovery,
easy recovery temperature control and programming, low cost, and low weight [103]. More-
over, they can be chemically tuned to obtain biocompatible and biodegradable materials,
thus attracting research interests in many applications, including bio-medical devices [69],
deployable space structures, and micro-electro-mechanical systems. For these materials,
the programming step is based on heating the part above the Tg; a deformation is applied
to obtain the desired shape, and the part is then cooled by maintaining the deformation
strain. The recovery is provided by heating at Tg temperature. SMPs are classified based
on the number of programmed temporary configurations [2].

SMPs can be used for interior surfaces in airplanes and automobiles since they are
lighter than SMAs and provide lightweight construction. SMPs’ manufacturing costs for
raw materials and processing are significantly lower than those of SMAs. Complex forms
using SMPs may be readily created with excellent quality and dimensional precision using
traditional or modern manufacturing techniques. SMPs were developed for 4DP with
a wider range of Tg than SMAs, which ranged from 100 to 700 ◦C. Furthermore, strain
recovery outperforms SMAs by 400% [104]. Fillers with various compositions can be used
to simply customize thermo-mechanical characteristics. The SMPs may be activated by
more than one stimulus in various task-oriented tasks. In the transition range, SMPs have a
noticeably greater damping ratio.

4.5. Hydrogels and Hydrophilic Polymers

Hydrogels are water-swollen visco-elastic materials characterized by a 3D microstruc-
ture transformation ability based on wettability and solubility [3]. They can respond to
water or moisture [22] by expanding their original volume up to 200% [15]. These hy-
drophilic crosslinked polymers are widely employed to fabricate 4DP components for soft
robotics, microgrippers, micro-actuators, and biomedical applications [105] with a biocom-
patibility obtainable by employing Direct Ink Writing (DIW). Unfortunately, they exhibit
a very slow reverse response, which requires hours for drying and shrinking. A solution is
a particular programming method able to provide anisotropy to the swelling. Moreover,
3D components can be composed of a series of hydrogel-based inks sensitive to hydration
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and temperature. By adding UV-curable monomers, interpenetrating polymer networks
are obtained after the polymerization.

Typical stimuli for 4DP Shape Memory Hydrogels are pH, temperature, and ions.
These materials possess the ability to swell by absorbing water, allowing the fabrication
of water-sensitive micro-actuators [92,106] and reversible origami architectures [107]. Un-
fortunately, the absorption of water is provided until saturation is reached, making it
difficult to control it at intermediate steps. A way to overcome this problem is to control
the temperature of the aqueous medium [15]. The slow response speed mainly depends on
the diffusivity of water (10−10 to 10−9 m2 s−1) and its small modulus (in the range of a few
hundred kPa), thus requiring a large swelling for shape change.

Conversely to the Shape Memory Hydrogels, the SMPs show a very fast response,
but they are one-way. A good solution is the combination of both materials: hydrogels are
combined with a non-swelling polymer or filament in the hydrogel-based 4DP environ-
ment [108]. The hydrogel expands when the printed structure is submerged in a solvent,
causing mismatch stresses between two materials that result in a general form shift. With
this method, activation programming requirements can be completely disregarded. Unfor-
tunately, hydrogels’ rigidity and strength both fall short of expectations. Effective reduction
of this flaw is possible using a composite method that combines rigid SMPs and soft gel [27].

Lastly, a new material category able to provide a fast and reversible shape change
is Liquid Crystal Elastomers. The principle is based on the transition between the liquid
crystal (nematic) state and the isotropic state. Stimuli can be light, heat, and electrical or
magnetic fields [109].

5. AM Technologies Used in 4DP

Different AM techniques have been explored 4DP, including Fused Filament Fabrica-
tion (FFF) or Fused Deposition Modeling [25,110], Electro Hydro Dynamic printing [111],
DIW, Material Jetting, Selective Laser Sintering, Stereolithography (SLA), Digital Light
Processing (DLP), Multiphoton Lithography, and SLM [112,113]. The most common types
of 4DP are polyjet printing and syringe printing; however, these printing technologies
require multiple materials and nozzles, which restricts the 3DP techniques [32]. However,
the most suitable method will vary depending on the desired structural response and the
appropriate selection of SMs. Current SMs include SMPs, hydrogel composites, SMAs, and
Shape Memory Composites. SMP-based structures are 4D-printed through DIW, FFF, SLA,
DLP, and Multiphoton Lithography. Although a higher percentage of published articles
are on FFF-based 4DP processes [54], an analysis of all available techniques is necessary to
select more versatile processes to successfully print the 4D structures. By experimenting
with various printing techniques, different SMs that are stronger, lighter, induce diverse
property changes, and react to various stimuli could be 3D printed.

5.1. Extrusion-Based Technologies

DIW and FFF are extrusion-based technologies in which inks or solid filaments are
extruded through nozzles for fabricating 3D objects [114].

DIW involves the extrusion of gel-like materials characterized by specific rheological
properties, known as shear-thinning [115]. The ink consists of two materials: one allowing
it to undergo plastic deformation, the other showing viscoelastic recovery after deformation.
Several configurations can be provided: bending, helical spiral ribbons, and planar letter
formations [2]. The DIW technique shows the great capability to fabricate high-resolution,
complexly shaped parts in multi-materials by using SMPs, Shape Memory Hydrogels,
and SMP composites. Materials suitable for clinical settings can be developed, including
self-healing [116,117] and highly stretchable polymeric objects [33].

In FFF, a thermoplastic filament is extruded via a nozzle and deposited along with
a toolpath on a layer, resulting in an anisotropic property of the manufactured object. The
obtained pre-strain and residual strain have been employed in 4DP to provide 3D deforma-
tions by heat shrinkage of 2D patterned lattice structures [3]. The filament path, controlled
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in a unidirectional manner, was recently used to enable shape transformation [14]. Fast
fabrication speed and scalability promoted diffusion in industrial and research labora-
tories [92,118]. However, the low printing resolution and the degradation caused by the
fabrication above the melting temperature cause invalidation of temperature-sensitive
components, thus reducing possible applications requiring long periods of stability [102].
Moreover, the FFF process is relatively slow and has limited options for its minimum
nozzle size.

5.2. Vat-Polymerization Techniques

DLP, Multiphoton Lithography, and SLA are Vat Photopolymerization technologies
that process photopolymers using UV light. The SLA source is a laser-emitting diode and
employs acrylate photocurable resins. The obtainable surface quality, both in terms of
accuracy and roughness, is very high. DLP uses light projection to cure full layers. The
incorporation of ureido-pyrimidinone hydrogels into polycaprolactone promotes excellent
shape memory abilities. Multiphoton Lithography is a technology able to fabricate objects
at high resolution with microscale precision. It is based on a polymerization that occurs
near the focal point of a beam [33].

At present, SLA, including Multiphoton Lithography, has the highest resolution, and
it can be utilized with a wide variety of materials [119]. However, only photocurable resins
can be employed, and the use of non-transparent fillers is limited by the optical requirement
for photocuring. Accordingly, the stimulus usually used for actuating 4DPed components
made by SLA and DLP is heating [120].

5.3. Powder Bed Fusion Techniques

Powder Bed Fusion 4DP has mostly been used for Selective Laser Melting (SLM) of
metallic powders and Selective Laser Sintering of polymeric powders. More knowledge
on metal AM processes has been disclosed through SLM. It is a quick, extremely flexible
method that uses a laser beam to selectively scan and melt a powder bed [54,118]. To print
shape-memory structures, researchers have generally employed SLM with materials such
as NiTi-based alloys, Cu-based alloys [121], and Fe-based alloys [98]. Different studies have
investigated the printability and characteristics of these SMAs [122]. The reproducibility
of material created by SLM is likely higher than that of a traditional SMA. However, the
use of SLM is associated with several issues. For example, Ni has a lower evaporation
temperature than Ti, leading to a lower concentration of Ni after SLM processing. The phase-
transformation temperature has been observed to rise as Ni concentration decreases [118].

6. Printing and Programming Strategies

The essential difference between 4DP and 3DP is the smart design of responsive
materials for a time-dependent shape self-transformation of an object when subjected to
an external stimulus. The programming of the structures in form or function brings major
challenges to the part and process design [3].

Most current 4DP demonstrations are one-way (Figure 3a), which means that the
devices must be reprogrammed after each recovery [123]. The manual establishment of
a temporary form is referred to as programming or reprogramming in this context. Re-
versible two-way SMMs provide two different shapes when exposed to specific stimuli.
Thus, these types of materials memorize shapes at both low and high temperatures. The
reversibility in 4DP allows repetitive actuation and eliminates the need for reprogramming,
which is time- and labor-consuming. Two-way SMEs (Figure 3b) are specifically used in
the creation of microrobots and actuators [124]. Polycaprolactone and polyurethane are
two-way SMMs commonly actuated in response to environmental temperature. Three-way
SMMs, also known as multiway SMEs (Figure 3c), allow an intermediate shape between
temporary and original shapes [33].
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The shape changing mechanisms can be classified into three types: stimuli-responsive
materials, multi-material layouts, internally induced artificial stresses [54]. In this section,
different strategies used in the literature for fabricating 4D structures are detailed.

6.1. Stimuli-Responsive Materials

These materials are the most widely employed in 4DP. Programming is typically used
to shape the part into a temporary geometry. As it is subjected to a stimulus, the structure
recovers its original printed shape [126].

During the fabrication process, the heating and cooling cycles accumulate internal
stress and strain because of the constraints of the platform or the previous layers. Such
stored strain and stress can be utilized to trigger the pattern transformation and make
active shape changes [102].

The programming is usually manual. Different studies have used this characteristic of
SMMs to print active structures. Among all SMPs, polylactic acid (PLA) is the most used
and studied [127]. PLA structures with a self-tightening mechanism are reported in [128], as
illustrated in Figure 4a. This type of 4DP is highly applicable in minimally invasive surgery.
Following this approach, in [129], the authors provided different part designs to test the
shape memory capabilities of PLA. The parts were immersed and compressed in water at
70 ◦C for 60 s and cooled to room temperature. The parts maintained their temporary shape
under Tg. When placed back in the 70 ◦C water pool, the compressed shape soon regained
its former shape. The authors in [130] used PLA-based filament to print Miura-origami.
For shape shifting and shape recovery, the specimen was initially deformed in an oven
at the deformation temperature (higher than Tg) to an intermediate shape while being
subjected to an unfolding load. When the specimen was cooled to the fixity temperature
and unloaded, the intermediate shape remained. The specimen, without an external force,
returned to almost its former shape after heating to the recovery temperature (higher
than Tg).
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Active lattice and metamaterial structures are becoming increasingly popular in 4DP
technology [68] as they can increase the flexibility and durability of origami and kirigami
structures. They have generated great interest in a wide range of industries, such as
bioelectronics [26], robotics [126], and microelectromechanical fields. Numerous investiga-
tions have examined the design and characteristics of lattice and metamaterial construc-
tions [74,131]. They show high deformation and energy absorption [132]. Recent advances
in the mechanical properties of auxetic materials and structures are studied in [133]. Par-
ticular attention is paid to the experimental research focusing on large deformation and
energy-absorption capability under quasi-static and dynamic loading. In Ref. [110], ar-
chitected metamaterials were designed as a repeated arrangement of re-entrant auxetic,
hexagonal, and AuxHex unit-cells and fabricated in PLA filament via FFF (Figure 4b). Ac-
cording to the results, metamaterials with re-entrant auxetic unit-cells exhibit good energy
absorption capabilities. In fact, metamaterials with elastoplastic behaviors show mechanical
hysteresis under a loading–unloading cycle. It has been experimentally demonstrated that
simple heating may totally undo the remaining plastic strain and dissipation processes
brought on by cold programming.

Using a similar strategy in designing re-entrant honeycombs, active auxetic meta-
materials were 3D printed by [134], and the behavior regarding shape shifting and recovery
was studied. It revealed that printed structures can achieve up to a 200% variation in area.
Active meta-materials were parametrically modeled and fabricated via an inkjet 3D printer.
However, the programming was manual, as discussed earlier, with the printed structure
being warmed, deformed, and recovered at a temperature higher than Tg.

In Ref. [134], the authors printed a complex structure in the permanent shape of
a bucky-ball via SLA. The ball was submerged in hot water at 65 ◦C (above its Tg) and
manually flattened and cooled down to 27 ◦C (below its Tg). The flattened ball recovered its
original shape in hot water in 11 s, demonstrating its speed and ability to resist high strain.

Shape-memory polymer-based systems with auxetic structure and hierarchical motion
that can be 4D printed were created in [135], made from a commercial photopolymer resin
using SLA. Uniaxial tensile tests were used to describe the mechanical behavior of the
systems by measuring the strains parallel and perpendicular to the load direction. The
photopolymer exhibited the so-called Temperature-Memory Effect, which is characterized
by the region of thermal recovery moving to higher temperatures as the deformation
temperature increases. This property makes it possible to use the deformation temperature
to adjust the thermal region that causes the shape memory response. In order to create
thermally induced hierarchical movements and self-deployment capabilities, structures
were coded. Through a suitable specification of the thermo-mechanical history, it was
demonstrated that even complicated responses, such as successive in-plane and out-of-
plane motions, were simply regulated and could be readily managed.

The SME is not an intrinsic property of SMPs and can be attained by using the
combination of a mechanical force and heat, usually provided by human intervention in
single-material SMP [54].

The recovery temperature and the loading type significantly affect the shape memory
behavior. Additionally, the specimens that were treated to an unfolding load showed higher
recovery forces than those that were submitted to a folding load. The significant volume
variation throughout the form recovery process suggested that 4D-printed origami struc-
tures can be used for self-assembly structures, which take up less room. This functionality
makes them attractive for space-missions, where reducing weight and volume is important.

6.2. Stress-Induced and Printing Strategies

The properties of 3D-printed parts are markedly affected by processing parameters
such as printing temperature, printing speed, layer thickness, etc. Therefore, by altering
process parameters and print strategies, desired behavior can be programmed during
fabrication. Consequently, stored energy regarding internal stress and strain can be released,
allowing the shape recovery step [102,136,137]. The shape change is influenced by the
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residual stresses introduced into the thermoplastic materials throughout the 3DP process.
The thermoplastic materials are viscoelastic throughout the extrusion process, and the
high temperature allows the polymer chains to stretch and align in the direction of the
material flow via the extrusion nozzle [138]. Researchers have found that parameters such
as heating and cooling temperatures, extrusion rate, printing speed, deposition path, and
extrusion head diameter affect material microstructures such as crystallinity and anisotropy
and mechanical properties [139].

Adjusting the design and process parameters can provide complex changes in the part
structure when the memory shape physical principle is based on the releasing of mechanical
stresses [2]. In AM, stresses are created by tailoring parameters such as strategy direction,
infill type, road width, nozzle diameter, and platform temperature [140]. In Ref. [25], the
influence of process factors such as printing speed, layer thickness, nozzle temperature, and
printing pattern on shape-shifting behavior using FFF was investigated. By modifying such
factors, the internal stress can be tailored, and many complex designs can be created [141].
The major advantage is that the programming phase is not necessary, since the ability is
incorporated into the fabrication process. Nevertheless, considerable design and modeling
are required to predict and control the deformation [92]. Works are now focusing on
increasing the stress that can arise during the manufacturing process by printing on pre-
strained substrates. A typical method is to employ a bilayer configuration characterized by
layers having opposite, internal, directional stresses. This way, the generation of specific
shape-changing response can be designed, e.g., bending or curling [2]. Stress-induced
methods can be used to create 4DP structures from single materials and those materials
with no SME.

A 4DP method using FFF technology and, as the material, a single thermoplastic fila-
ment of Acrylonitrile Butadiene Styrene without an SME, is studied in [14]. A self-assembly
function was obtained by alternating anisotropic regions and isotropic regions. Some layers
were printed transversely and longitudinally, as shown in Figure 5a–c. However, as the
authors reported, no reversibility could be achieved.
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To produce bilayer composites with a single material (PLA), the authors of [142] de-
signed the tool path geometry by adjusting printing patterns per layer to create a differential
expansion between layers. In this study, to create constraint layers and active layers via
a single material, the authors used the printing angle as the main variable parameter; active
layers were those printed at 90 degrees, and constraint layers at 0 degrees. The distribution
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of the constraint layers and the active layers in the bilayer configuration considerably
affected the shape change. When immersed in hot water, the constraint layer triggered the
shape change. On the other hand, the active layers defined the main direction of curvature
as they shrank along the direction of the print pattern longitudinally when heated. The re-
sult of this study shows that the proportions (length-to-width ratio) of the printed samples,
as mentioned in [72], affect the bending angle. The bending angle increases as the length of
the rectangles increases, while the width is kept constant. In addition, varying the printing
angles with reference to the main geometry leads to complex geometries when activated.

Software was developed in [57] for designing, simulating, and generating the toolpath
of bilayer structures for combining passive and active layers. This strategy was used for
designing a compliant structure with self-deployable, self-locking features (Figure 6a,b).
The passive segments could be either a straight line or a planar curve. On the other hand,
the arrangement of active and passive layers through the structure could lead to different
shape-shifting behaviors and create complex features like twisting ties and springs. Samples
were printed in PLA, via a commercial desktop FFF system, demonstrating that the bending
direction and angle were controlled by changing the printing path.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 38 
 

 
Figure 6. A-line design: three varieties of segment composition (a); eight different bending orienta-
tions (b); after heating, a straight line may be transformed into a helix by combining distinct bending 
directions for separate segments [57]. 

The lengthy polymer chains found inside their networks determine the mechanical 
characteristics of the hydrogels made from the inks, which have strong mechanical per-
formance.  

Biomimetic composite hydrogel architectures inspired by the anisotropy of the cell 
walls of botanical systems are used in [27]. The print strategy provides anisotropic swell-
ing capability obtained by a specific filament path giving the alignment of cellulose fibrils. 
Through designing the patterns for prescribed target shapes, they could program plant-
inspired structures that modify the shape in water. However, the efficacy of the repre-
sented method relies on the ability to predict the elastic and swelling anisotropies by tai-
loring the local orientation of cellulose fibrils within the hydrogel composite. In addition, 
processing parameters such as the nozzle size and the deposition speed affect the aniso-
tropic swelling since they affect the shear-induced alignment. In particular, the bigger the 
nozzle diameter, the smaller the shear forces that align the cellulose fibrils, and hence the 
longitudinal and transverse swelling strains.  

According to the work represented in [143], 3DP can be used to explore the shape-
morphing behavior of hydrogels. The hydrogel precursors� composition had a significant 
impact on the composite�s physical characteristics and thermal actuation. The hydrophilic 
polyethylene glycol diacrylate crosslinker used to join the poly(N-isopropylacrylamide) 
network, an adaptive metamaterial manufactured by functionally graded 4DP, caused the 
lower critical solution temperature to increase to 37 °C. The temperature-dependent asym-
metric swelling/shrinking behavior controlled by the anisotropic characteristics of the 
composites led to actuators with extremely strong actuating performance in response to 
temperature. Single-crosslinked sheets rolled up into a tubular structure when submerged 
in 12 °C water. The tubes quickly unfurled when placed in water at 42 °C before bending 
up slightly in the other direction. It is feasible to reverse temperature-dependent shape 
morphing and induce self-folding and unrolling at higher and lower temperatures, re-
spectively, by the dual photo crosslinking of Poly(N-isopropylacrylamide). 
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directions for separate segments [57].

The lengthy polymer chains found inside their networks determine the mechanical char-
acteristics of the hydrogels made from the inks, which have strong mechanical performance.

Biomimetic composite hydrogel architectures inspired by the anisotropy of the cell
walls of botanical systems are used in [27]. The print strategy provides anisotropic swelling
capability obtained by a specific filament path giving the alignment of cellulose fibrils.
Through designing the patterns for prescribed target shapes, they could program plant-
inspired structures that modify the shape in water. However, the efficacy of the represented
method relies on the ability to predict the elastic and swelling anisotropies by tailoring the
local orientation of cellulose fibrils within the hydrogel composite. In addition, processing
parameters such as the nozzle size and the deposition speed affect the anisotropic swelling
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since they affect the shear-induced alignment. In particular, the bigger the nozzle diameter,
the smaller the shear forces that align the cellulose fibrils, and hence the longitudinal and
transverse swelling strains.

According to the work represented in [143], 3DP can be used to explore the shape-
morphing behavior of hydrogels. The hydrogel precursors’ composition had a significant
impact on the composite’s physical characteristics and thermal actuation. The hydrophilic
polyethylene glycol diacrylate crosslinker used to join the poly(N-isopropylacrylamide)
network, an adaptive metamaterial manufactured by functionally graded 4DP, caused
the lower critical solution temperature to increase to 37 ◦C. The temperature-dependent
asymmetric swelling/shrinking behavior controlled by the anisotropic characteristics of
the composites led to actuators with extremely strong actuating performance in response to
temperature. Single-crosslinked sheets rolled up into a tubular structure when submerged
in 12 ◦C water. The tubes quickly unfurled when placed in water at 42 ◦C before bending
up slightly in the other direction. It is feasible to reverse temperature-dependent shape mor-
phing and induce self-folding and unrolling at higher and lower temperatures, respectively,
by the dual photo crosslinking of Poly(N-isopropylacrylamide).

The 4DP programming approach used in [144] enables local shape-morphing in a
single material by modifying process parameters such as the deposition speed and path.
The local nematic arrangements and the shape-morphing behaviors of the Liquid Crystal
Elastomers were successfully programmed. By changing the deposition speed in specific
areas, locally programmed popping-up, self-assembling, and oscillating capabilities were
designed and obtained.

DLP is used in [85] to create programmable hydrogel structures made of composite
material that can conduct a variety of intricate 3D shape deformations; notably, 2% 3-
Sulfopropyl Methacrylate Potassium salt of total weight was introduced to the mixed
material to generate large stresses and enlarge the swelling. The fundamental idea is that
secondary microstructures are inserted into the hydrogel strip’s side, causing bending or
twisting deformations because of asymmetrical swelling. Different hydrogel structures,
including strips, sheets, and 3D objects, are constructed using SLA thanks to the advantages
of free-form design and production.

6.3. Multi-Material Approaches

Due to the limits of a single SM’s physical qualities, imperfect structures are frequently
produced while printing with them. To promote the regulated shape-memory behavior of
the printed structure, desirable thermomechanical behaviors may be achieved by mixing
printing materials and using multi-material printing processes. Hinges, joints, bends [118],
or twists [25] can be produced at the structure’s interfaces by printing a mix of rigid and
inactive materials with various thermomechanical characteristics. These features respond
to the stimulus by producing differential stresses. Multi-material structures utilize the
differences in material properties (i.e., thermal expansion coefficient, elasticity, swelling
ratio, etc.) to produce a structural change.

The combined printing of SMs with each other or with static ones adds different design
properties when creating actuating parts. SM printed regions may serve as a component’s
hinge or actuation zone, while static material serves as the stiff framework that ensures
the component retains its shape. Conversely to an overall transformation, only specific
zones characterized by SMs react and actuate as exposed to stimuli [129]. Heterogeneous
lattices were made in [52], combining several materials. It was found that the 2D and 3D
open cell lattices may be swiftly and frequently actuated in a steady, well-controlled, and
dependable manner by employing temperature as a stimulus. A diverse medium for the
integrated design and production of challenging shape-morphing structures is also made
available by this multi-material 4DP lattice.

The printing of multiple materials in a single component is an effective method to
fabricate dynamic 4DP structures. There are different approaches in the literature: some
uses of blend materials are reported [145] where, to simulate sequential petal opening and
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sequential drug-releasing effects, samples with different PLA and polycaprolactone ratio
composites were printed by using ink based on the DWI technique. The findings proved
that these 4DP composites can be employed in the manufacture of bio-inspired robots and
biomedical equipment. In another approach, the SME in biodegradable blends based on
PLA and polycaprolactone in different concentrations was studied in [146]. Regarding their
results, the thermal degradation of PLA was improved by the polycaprolactone addition
and the Tg decreasing from 67.2 to 55.2 ◦C.

In bilayer multi-material printing, the shape-morphing ability of multi-materials
typically depends upon the different reaction to the applied stimuli. Complex shape trans-
formations can be designed based on this difference, e.g., by employing a combination of
active and passive materials.

Figure 7a–c shows the schematic of multi-material transformation before and after
stimuli application. Numbers 1 and 2 indicate the passive and active layers, respectively.
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and (c) cross-sectional image of a bilayer element after a stimulus is applied [51].

In Ref. [147], PLA was printed via Fused Deposition Modeling on a paper substrate
with a thermo-responsive composite bilayer. The actuation capabilities were described and
compared by tailoring the printing raster angle. As a result, the anisotropic stiffness of
the method and the polymer layer’s other characteristics were determined. The softening
of the polymer layer above the Tg and the bilayer effect during the heating and cooling
processes made the material a reversible soft actuator.

A multi-layer membrane structure composed of alternating different materials can
spontaneously provide a 3D geometry under heating and recover its original shape after
cooling, due to the difference in the thermal expansion coefficient. In Ref. [117], the 4DP
self-morphing composite was characterized by two distinct parts: the bottom layer con-
sisted of homogeneous resin, and the top layer was made of fiber-reinforced composites.
The deformation was caused by the difference in thermal expansion coefficients between
continuous fibers and the deformable matrix. These materials can provide the desired
transformation in a controllable way.

Additionally, multiple stimulus-responsive materials can be employed to promote se-
quential deformations. This method has been extensively investigated in the literature [99,148]
since it allows designing self-assembly 4D objects (Figure 8a) [22]. In Ref. [149], the authors
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developed a bi-layer reversible structure employing a rigid material (VeroWhitePlus) and a
soft and rubbery material (TangoBlackPlus) characterized by a Tg of 58 ◦C and 10 ◦C at room
temperature, respectively. Heat was employed in the programming stage, and elastomer
swelling and heat were used in the recovery step. In a dual-layer arrangement, scientists were
able to adjust the curvature by linking the swelling of the elastomer to the bilayer structure of
a shape-setting polymer and changing the temperature and elastomer layer thickness.
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In Ref. [107], the authors developed used a multi-material design, combining an active
Tlayer composed of highly hygroscopic bio-composite materials with hydrophobic re-
strictive and blocking layers made of PLA and Thermoplastic Polyester copolymers
(Figure 8b). They adopted the functional bilayer scheme to develop hygromorphic motion
mechanisms. It consisted of two or more layers with low and high hygroscopic expansion
ratios. As a result, a hygro-responsive sequential bending motion was provided. Following
this approach, the bioinspired 4DP method was used in [150] for printing structures with
tailored movement responses. The method was based on introducing local hygroscopic
anisotropies and local non-hygroscopic anatomic features in the same process. Samples
with several different raster patterns were produced using Acrylonitrile Butadiene Styrene
and Wood Polymer Composite to demonstrate the bilayer structure suitability. Regarding
the anisotropies introduced by the material and printing strategy, different movements
were observed.

An investigation aiming to deliver the advantages offered by the combination of
material and geometry design in direct 4DP was attempted by [151]. Flat samples were
printed with two different materials, including SMP (in its glassy state) and an elastomer
(in its rubbery state). With increasing of the temperature, a difference in the SMP thermal
expansion coefficient occurred, leading to a bending. As the temperature reached the
SMP Tg, the material softened and released the compressive strains in the elastomer. This
led to deformation of the component when mechanical equilibrium was reached when
coupled with the mismatch in the coefficient of thermal expansion between the SMP and
the elastomer (Figure 9a).

Swelling-induced shape transformation using gels and hydrogels has been widely
investigated and applied to the design and fabrication of smart polymer devices, such
as soft robotics, biomedical devices, and origami patterns [152,153]. Because swelling
is typically isotropic, hydrogels must be combined with other elements to provide non-
isotropic deformations. An elastomer–hydrogel laminate was used in [154] for printing self-
evolving structures. The printed structure’s superior load-bearing capability was preserved
by the dehydrated 3D structure up to a high temperature (100 ◦C). Inspired by a bio-
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prototype, a programmable and responsive bioinspired structure was created in [155].
A monolithic SU-8 (a commonly used epoxy-based negative photoresist) gel film was used,
characterized by tailorable concentrations of the swellable cyclopentanone, within a non-
swellable host matrix of SU-8. Upon organic solvent stimuli, the origami and kirigami dual-
gradient films showed complex 3D shape transformations from their 2D counterparts. To
generate a cyclopentanone vertical gradient in the SU-8 gel film, skin surface polymerization
induced by heating was used.

Using photopolymers, a hydrophilic/hydrophobic composite structure was developed
in [156]. The rubbery nature allowed for a desirable actuation speed and force printable
via DLP. The composite comprised a poly-ethylene glycol diacrylate hydrophilic layer that
expands upon swelling in water and a poly-propylene glycol dimethacrylate hydrophobic
layer acting as a soft support. The former was printed in two separate structures with
different light patterns. The latter was injected and cured at the end of the fabrication of the
total structure. Regarding the pattern of printing the material, different shape shifts, such
as bending, swelling, opening, closing, and even sequential movement, were achieved.
However, none of the abovementioned approaches are reversible, and for repetition, manual
programming is necessary.

For many technical and biological purposes, designing structures with significant re-
versible form changes is particularly desirable. However, the materials that can change their
structure significantly and irreversibly are few. Hydrogels are typically soft, with a shear
modulus ranging between 20 and 300 kPa. Combining SMPs with hydrogels is a solution
to achieve the reversible shape change of structures with relatively complicated geometries.

In Ref. [109], a hybrid DIW system was employed to fabricate in the same layer
a soft elastomer, a glassy polymer, and Liquid Crystal Elastomers. The resulting 2D shape
was able to achieve transformations into 2D configurations by heating and cooling. Using
this approach, different structures were printed according to the monitoring behavior of
auxetic structures; this showed that by fabricating the Liquid Crystal Elastomer pattern
and modifying the elastomer and glassy polymer architecture, it is possible to obtain
controllable geometry deformations in x- and y-directions. The multi-material was used to
create active hinges to achieve reversible bending in a variety of applications: a box that
can open and close, a pick-and-place soft robotic gripper, and a hand with five reversible
actuating fingers to produce American sign language. In Ref. [157], the authors used bilayer
printing and combined stimuli to achieve reversible 4DP. The forward programming was
obtained through asymmetric swelling with heated ethanol, and the recovery was achieved
by dry heating.

A different approach to pattern printing using hydrogel was introduced in [158]. In
this work, a polystyrene pane was remotely stimulated via light emission, and a chitosan
hydrogel ink was employed to manufacture actuating hinges. The actuation principle was
the thermal stress gradient caused by the heating of the hinges, which converted infrared
light into energy.

Another method for manufacturing multi-materials is the combination of structures
able to react to the same stimulus in different ways.

A substantial part of the reason for the increased interest in biopolymeric gels is due
to their great biocompatibility and rapid water absorption. Biocompatible gels, including
protein-based gels, are studied comprehensively in the literature [159–161]. However,
there are few studies regarding 4DP with protein-based hydrogels. 3DP protein-based
hydrogels, as presented in [162], transform their shape with programmed motions when
subjected to temperature, pH, and enzymatic degradation. Temp-Ink, pH-Ink, and Enz-
Ink were used in methacrylated bovine serum albumin as building blocks. These shear-
thinning gels are perfect for 3DP of multi-layered stimulus-responsive hydrogels using DIW.
An exclusive aspect of this approach is an enzyme-triggered shape change based on the
breakdown of the bovine serum albumin network. By creating protein-based hydrogels that
may reversibly change form in response to ambient temperature and pH and irreversibly
change due to enzyme degradation, this technology highlights the complexity that can
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be added to 4DP systems. In another study [137], bovine serum albumin-based resin
was used for SLA to present bioplastic objects with shape-memory behavior. Furthermore,
components characterized by several geometries, such as a cylindrical puck, a hollow lattice,
a sphere, a “W”-shaped tube, and a stent, were manufactured and dehydrated at ambient
temperature. While the plastically deformed objects retained their shape for an indefinite
time, heat or submersion in water provided the recovery of the originally printed shape.
However, the programming in this job was performed manually.

In Ref. [163], a technique for programming protein hydrogels and inducing shape
changes in aqueous solutions at room temperature was introduced. The method was
illustrated by utilizing hydrogels generated in a cylindrical or floral form from serum
albumin, the most prevalent protein in blood plasma. These gels were then designed to take
the form of a spring or a ring. The adsorption of Zn2+ or Cu2+ cations caused a significant
change in stiffness (up to 17-fold), which was how the programming was carried out. As
the cations dispersed outside the hydrogel substance, it could be demonstrated that these
programmable biomaterials could transform back into their original structure (Figure 9b).

The actuation of stimuli-responsive hydrogels and composites is usually driven in
water by slow volume changes upon anisotropic swelling and deswelling. Magnetoactive
particles may be an effective filler for hydro-polymers to introduce remote and contact-
less actuation in water and air. They are composed of ferrites, superparamagnetic iron
nanoparticles, or neodymium particles. A simple method of assembling nonmagnetic and
magnetic hydrogels into single constructs via AM was demonstrated in [164]. 4DP magnetic
actuators proved their response to the magnetic field, allowing for steerable motion in the
air (Figure 9c).

4DP of various structures made of PLA and PLA/Fe3O4 composite filaments was stud-
ied in [165]. The recovery was obtained using a magnetic field [144]. Outcomes promoted
applications in biology and medicine.

Different parameters can control shape shifting, as discussed in the investigation
in [166], where a bilayer structure printed from PLA as the active layer and Thermoplastic
Urethane as the restrictive layer was reported. By printing structures on a cooler surface
and deciding on faster printing rates, the deformation angle may be adjusted. When em-
ployed for constructions with more active layers, these two printing settings can result
in larger residual stresses being stored in the material, allowing the structures to bend
even farther after the recovery stage while still maintaining their higher overall stiffness
(Figure 8d). According to different review studies [115], an increase in the activation tem-
perature, layer height, and nozzle temperature can markedly improve the shape recovery
ratio. The opposite result is obtained by increasing the total thickness. The results of the
study [130] showed the effect of recovery temperature on the shape recovery behavior of
the deformed sample. The plot of shape recovery vs. time of the Miura-origami sheet shows
that the deformed specimen can recover its original shape faster at a higher temperature.
Furthermore, increased cantilever thickness provided a lower bending position angle and
slower bending rates for increased thickness. As discussed in [107], a delay in the motion
is observed at higher layer thicknesses. The infill strategy can cause anisotropy in the
component, leading to a change in mechanical properties such as elasticity, viscoelasticity,
and SME.

The shape transformation can be improved by controlling the conditions and by
improving the 3DP repeatability.

By altering the angle or radius of the active portion of the 3D-printed structure, the
extent of transformation is determined. The shape of the active segment, the kind of ther-
mal stimulus, activation temperature, and activation duration are all factors that impact
the creation of residual stresses during 3DP. It also depends on the type of thermoplastic
material and its qualities. Depending on the filament deposition direction, the 3D-printed
structure must change in the expected plane in order to accurately adapt its shape. The
accuracy of numerous active segments that were printed and converted under identical
circumstances serves as a benchmark for the repeatability of shape transformation. The
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characteristics of 3DP filaments, process variables that impact the deposited filament preci-
sion, and transformation circumstances all affect the repeatability and accuracy of the shape
transformation. There is limited information on the precision and repeatability of shape
transformation in studies on 3DP filaments and printing process parameters [112,167].
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Figure 9. 4DP multi-material: direct 4DP of structural parts with architecture-driven deformation
modes (a) [151]; protein hydrogel cation programming and morphing through mechanochemical
alterations (b) [163]; magnetic cantilevers sensitive to the magnetic field (c) [164]; shape-shifting cycle
of a PLA rectangular multi-ply structure and TPU (d) [166].

6.4. Print Strategies for Shape Memory Alloys

SMPs have been widely utilized for 4DP in the literature because of their outstand-
ing manufacturability [9]. However, the low stiffness (less than 1 GPa), tensile strength
(1–30 MPa), and Tg (≈95 ◦C) limit the possible applications. Conversely, metallic SMAs
exhibit much higher stiffness (200 GPa) and strength (1000 MPa) than SMPs. Additionally,
metallic SMAs have a much larger transformation hysteresis, leading to a wider applica-
tion temperature. Although there are many studies regarding SMA printability [168,169],
few studies are available regarding SME realization of 4DP SMAs, and typically they
involve TiNi (Ti-rich) and NiTi (Ni-rich) powders.

One of the most popular alloys with the SME is nitinol (nickel-titanium, or NiTi),
which has various uses in the aerospace, automotive, biomedical, and other industries.
In [170], the authors used Ni-based SMA for fabricating and pre-programming a prototype
of a crawling robot inspired by inchworms. The robot body is built as a monolithically
flexible sheet that unites the “torso” and “feet” through the extraction and synthesis of the
functional elements of the bionic device. Under the torso, an SMA spring is put together to
mimic the abdominal longitudinal muscles. A foot layout was designed with “one edge and
two facets”, using silicone rubber as the high-friction surface and polytetrafluoroethylene as
the low-friction material. This provides continuous movement of the body without jumping.
A strip-type scanning strategy was employed to print samples and shorten the backfill
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time. A scanning angle of 67 was chosen for layer-to-layer stacking; investigations have
suggested that this angle may lead to more random crystal orientations and refined grains.
Although the authors introduce the sample as a two-way 4DP structure, the two-way shape
shifting is not achieved by 4DP but by adding an SMA spring to the structure 1.

A new approach using SMAs is presented in [171]. NiTi SMAs show excellent SME
super elasticity and good biocompatibility, making them suitable for sensing, actuating,
and biomedical applications. Bulk NiTi SMAs were fabricated via SLM with large elas-
tocaloric effects, tailorable by varying the processing parameters of AM technology and
heat treatment.

In particular, the microstructure depends upon the laser power, the scanning speed
and strategy, the layer thickness, and the hatch spacing [168]. As mentioned in Section 4.3,
magnetic SMAs are another type of material used for 4DP. The advantage of these materials
over conventional SMAs lies in their ability to actuate by using a magnetic field. In [172],
adapted 3DP Ni-Mn-Ga powders were employed for creating net-shaped porous structures
with good mechanical strength via binder jetting and sintering at 463 K for 4 h. Upon
heating and cooling, printed components experience reversible martensitic change. The
samples revealed a reversible magnetic-field-induced strain of about 0.01%, proving that
magnetic shape-memory alloys are capable of being printed in 4D. Furthermore, controlling
powder morphology can improve the final porosity of other metallic 3DP technologies.

Different studies have attempted to fabricate shape-shifting structures using Fe-SMAs.
In Refs. [98,173], a similar approach was applied for printing various complex 3D flower
shapes and spring-like samples, lattices, and metamaterial structures via Laser Powder Bed
Fusion. The strategy was characterized by 90◦ hatch bidirectional scanning and removing
the primary bcc-δ phase via heat treatment at 800 ◦C for 30 min. To test the shape morphing
and shape recovery of printed samples, after heat treatment, the samples were deformed
manually, and by applying heat, they recovered the as-fabricated shape. According to
the findings of the experimental tests, the lack of the bcc-phase caused the heat-treated
samples to exhibit substantially greater SME than they did in the as-fabricated condition.
The recovery of strip samples resulted in a yield strength greater than 230 MPa and
a maximum elongation greater than 50%. This study shows the ability of SMA applications
in self-folding robotics and energy impact absorption, allowing interesting applications in
biomedical bone or joints and in aerospace for high-strength structures.

In Ref. [174], multi-material inkjet 3DP was used to manufacture variable stiffness
composite devices able to retain and recover their shape. Through a modulable heating
source, it was possible to change the stiffness by modifying the SMP temperature. The
energy necessary to maintain the actuated shape was reduced by shape retention. Moreover,
SMP recovery required no external mechanical load.

Resonant vibrations jeopardize space missions and the functioning of mounted equip-
ment in topology-optimized and additively built aeronautical components (e.g., cameras).
The incorporation of piezoelectric arrays serves as the foundation for active and passive
vibration dampening of such devices. A revolutionary 4DP integration strategy was illus-
trated in [175] for utilizing the SME of NiTi as pre-stress actuation, with little installation
and post-processing activity and a strong probability of shock absorption. The effect of pre-
stressing, which is the most important prerequisite for piezoelectric stacks, was examined.
When surpassing the lower pre-stress limit, piezoelectric stack manufacture was achieved.

7. Application and Case Studies

The use of 4DP is growing in a variety of fields, including the aerospace, automotive,
defense, textile, and soft robotics industries [33]. The need to create clever, practical designs
for several challenging applications makes the use of AM technologies and 4DP inviting.

Sustainable and environmentally friendly, 3DP and 4DP technologies are now bringing
an industrial revolution to several fields, including pharmaceuticals, chemicals, medicine,
aviation, the military, the automobile industry, space exploration, etc. [176].
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7.1. Aerospace and Automotive

The intricacy of the components and the challenges in assembling them are one issue
in the aircraft sector. The high cost of replacing parts for airplanes and the interruption of
the global supply chain are further issues. These issues are lessened by 4DP technology,
since it produces smaller assembly pieces and saves time.

In space-limited aerospace applications, self-assembling is of great interest from a time
and cost point of view [54]. In the aerospace area, the design phase has been challenging
for engineers, based on aircraft specs and performance criteria. It is necessary to optimize
aircraft design, and by reshaping SMs, it is possible to optimize structures, especially
wings, for all flying conditions [177]. Engineers are significantly freer to ignore design
constraints and expand the boundaries of “trade-offs” when employing proper Computer-
Aided Design tools for modeling, simulation, and multi-objective design optimization
based on SM requirements. 4DP could aid in the formation of a self-deploying structure,
which is useful in the aerospace sector. The authors of [174] created and tested a deployable
morphing wing made of SMP composite. To achieve a higher degree of compression, the
developed morphing wing underwent two deformations during deployment: wing shape
recovery from the bending state and SMP filler shape recovery from the compressed state.
This type of design can reduce the volume of the wing for storage in a small space.

By 2025, 4DP technology in aircraft is expected to have a market share of more than
25%, trailing only the military and defense sectors [178]. 4DP might reduce the value of
replacement parts by reducing their use and service requirements. 4DP might aid in the
formation of a self-deploying structure, which is useful in the aerospace sector. Airbus is col-
laborating with researchers to revolutionize the aerospace industry with a new generation
of intelligent materials. In order to demonstrate the first programmable carbon fiber jet
engine air inlet, they cooperated with MIT’s Self-Assembly Lab [111]. In addition, using pro-
grammable materials, a research group at MIT demonstrated a non-mechanical morphing
car airfoil [179]. Depending on the type of applications in the automobile sector, SMA and
SMP components can be employed as thermal actuators in various temperature ranges.
Many pre-commercialized technologies, including smart vehicle lighting systems, fuel man-
agement, climate control, mirror adjustments, locking systems, suspension adjustments,
and others, utilize SMMs actuators.

Aircraft design and current morphing structures are linked in a unique way; for exam-
ple, there will be an appropriate wing configuration for every mission based on power and
velocity. It is feasible to create Morphing Aircraft Structures such as wings that alter geom-
etry during flight using modern actuators and gadgets [180]. In 2016, Airbus introduced
a bilayer structure containing multi-material for manufacturing a shell-like structural com-
ponent [181]. The technique, in concept, appears to be 4DP that can revolutionize large-scale
manufacturing by promoting the ability to 3DP entire airplanes.

SMPs and SMAs can be merged in 4DP to create active compliant hinges in small
satellites, significantly increasing energy harvesting without adding mechanical complex-
ity. An active compliant hinge with selectively changeable bending stiffness was created
by [182] using fusing SMPs and SMAs. The hinge can be activated repeatedly in a slow and
controlled way, it can retain any angular position between −90◦ and +90◦ and satisfies the
stowing requirements of a 6U CubeSat with orientable solar panels.

Shape-morphing methods have been employed in aircraft manufacturing to improve
the aerodynamic performance, cost, drag, and noise [183]. For morphing actuators, NiTi
SMAs have traditionally been widely employed. SMAs have been used for solar protec-
tion, including self-actuating or biomimetic structures [98] Moreover, according to the
results in [110], 4D structures with lattice and metamaterial can be used as absorption
and dissipation systems in the aerospace field. Applications such as self-deploying sun
sails or antennas for satellites require no extra energy source, leading to weight savings.
Solar-arrays made of carbon-fiber fabrics can be impregnated with shape-memory resins.
In aviation, SMPs are used for morphing wings that can change their shape according to
the operation, including takeoff, landing, and flight, thus achieving energy savings.
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7.2. Biomedical

Many biological applications, including drug delivery systems, self-expanding stents,
implanted devices, catheters, guidewires, atrial occlusion, and thrombectomy devices,
benefit from the features of SMMs [184]. 4DP can boost the possibility of reimagining a
customized medical treatment. Recent research has shown that 3D-printed components
allow developing therapeutic and rehabilitative devices, since they can be customized for
patients [105]. With the 4DP integration, this customization can be enhanced by adding
functionalities from the SMs for novel specialized therapies, e.g., compression treatment of
edemas [118]. The future development of smart medical devices is strictly related to the
enhanced functionalities given by the SMM, such as self-healing ability [162].

Significant 4DP biomedical examples are self-expanding stents [105] and scaffolds for
tissue engineering [159,161]. In Ref. [185], an extrusion-based deposition system was used
to fabricate reinforced hydrogels, which can be used as a technique for printing artificial
tendons. Auxetic materials with negative Poisson’s ratios have important applications
across a broad range of engineering areas, especially biomedical and tissue engineering.
They can act as deployable systems that can be moved to inaccessible zones in the human
body. For example, cardiovascular diseases can be treated using self-expandable vascular
stents, particularly through the creation of vascular grafts, stents, and devices for left atrial
appendage closure [92].

Polymeric stents find good use in drug delivery systems. Curved shape-changing
specimens with different lattice structures were designed and printed as drug delivery
reconfigurable structures in [119]. In another example, magnetic Fe3O4 nanoparticles were
employed to functionalize PLA-based Shape Memory Composite spiral intravascular stents
as magnetic-response devices able to complete the unfolding in 10 s.

4DP can be used to create self-healing products. For example, the authors of [21]
developed inks with a photocurable resin and a semicrystalline thermoplastic polymer to
simplify DIW-based printing of semi-Interpenetrating Polymer Network elastomer com-
posites. The ink can be utilized to 3DP extremely stretchy, shape-memory and self-healing
elastomers via UV light-assisted DIW. Urethane diacrylate and a linear semicrystalline
polymer are combined to create an ink that can be used to 3D print an elastomer that can
be stretched up to 600%.

In an access-limited surgical space, SMA devices allow release of external loads; thus,
they are used in the neurosurgical field as coils, stents, and micro-guidewires, mainly to
treat cerebral aneurysms [4]. The TiNi alloys have been successfully applied as biomaterials
in orthodontic and orthopedic implants. Such devices are predicted to enhance pathological
responses and enable the use of less invasive surgical methods and the insertion of implants
into areas that would otherwise be inaccessible [92].

7.3. Soft Robotics

This field is based on the use of low-compliance and deformable materials with 4DP, al-
lowing the possibility to design and fabricate internal structures such as channels and shafts
that enable robots to achieve complex movements. Furthermore, the 4DP multi-material
allows soft robots to simultaneously manufacture integrated sensing and actuation [186].

The advantages of mechanotherapy for the treatment of various injuries or sick tissues
are discussed in [187]. Further research should be done on these systems, which through
stretching and compressive stress, could aid in cell regeneration. The use of SMP fila-
ment fibers for therapeutic compression and massage therapies was investigated in [177].
Through cyclic heat activation, massage was obtained by taking advantage of the em-
bedded stress memory fiber. Additionally, the ability of the origami structure to absorb
impacts is an intriguing topic for wearable technology for the elderly or others who are
prone to falling. Impact absorption might significantly lessen the force placed on joints and
knees for athletes and other active people, potentially reducing the risk of injury. Further-
more, the potential of multi-material devices can introduce new functionalities through
a variety of means, such as multi-position actuation and multi-activation stimuli.
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Controlled microstructural architectures have demonstrated superior performance
over conventional materials as rationally planned structures on the micro- or nanoscale
because of their new optical, mechanical, or electrical capabilities [53]. A potential method
that enables the production of many sophisticated 2D and 3D devices from particles, pillar
plates, walls, or films is capillary-force-driven self-assembly. This can be employed for
the development of microrobots and actuators [67]. A few mechanical metamaterials with
intricate microstructures, including lattice structures and hierarchically architected metama-
terials, have been successfully created via 3DP. The configuration and spatial arrangement
of the microstructures determine the mechanical characteristics of metamaterials, which
implies that the qualities are fixed and irreversible after production. These characteristics
are reversible thanks to 4DP [26].

Smart devices able to form 3D origami and kirigami structures are applied in bioelec-
tronics, metamaterials, micro robotics, and microelectromechanical systems [107]. Dual-
photon lithography-based 4D microprinting, which was employed by [53], allows for the
reversible and bidirectional self-assembly of systems. Using a variety of hatching distances,
each liquid responsive micro-sheet was printed as two separate pieces with asymmetric
crosslinking densities. The 4DP curved microstructures spontaneously had regulated thick-
ness, curvature, and smooth morphology when generated in n-pentane, which is difficult
to create using the conventional 3DP method. To produce a strain differential between
the layers, the actuators in [152] were printed in two pieces: the bottom passive layer and
the top active layer. The actuator was forced to bend upward because the top layer was
designed to have a larger strain stored in the printing lines. To guarantee that no SME was
added to the gripper or the passive components of the design, the same set of parameters
was employed at the bottom layers of the actuators as for the gripper’s body.

Furthermore, 4DP is the major driver for smart autonomous system creation. Reactive
actuators fabricated through 4DP can intrinsically respond to the environment. SMA’s
ability to reversibly change mechanical properties in response to heat stimulus has found
applications in robotics. SMAs may be utilized as integrated sensors and actuators in
thermomechanical systems, allowing them to track certain intended functionalities while
sensing changes in external stimuli. The unique characteristics of SME and super elas-
ticity/pseudoelasticity have made SMAs the material chosen for applications such as
sensing and control, vibration damping, robotics, and automotive and aerospace areas.
A bioinspired microstructure was designed and fabricated in [178] as a high-performance
integrated sensor–actuator able to simultaneously actuate and self-sense the contact by
measuring the resistance modification.

To create extremely adaptable soft robots, energy sources and electrical controls may be
incorporated into 4DP stretchable and flexible devices. The authors created 4DP electronic
sensors for a variety of technical applications. For example, [188] used liquid substrate
electric-field-driven microscale printing to create a 4DP resistive transparent strain sensor-
based Flexible Transparent Electrode device. The proposed sensor’s real-world use was
successfully proven by sensing strain variables at several places in the human body.

In addition, 4DP technologies have shown excellent results in many optical sensor
applications. For instance, Fresnel lenses with critical characteristics were created in [179]
using a UV-curing based DLP 3DP technology and commercially available resin and ther-
mochromic powder (pigment). These sensors can detect temperature changes on surfaces
of interest remotely, as well as monitor strains, stresses, and pressures on specific surfaces.
In Ref. [54], the authors used the DIW approach with cholesteric liquid crystal oligomer
ink to create a humidity-responsive photonic actuator with a colorful look. Alternatively, if
subjected to humidity and dry air, reversible actuation is provided by using a structurally
colored scallop-inspired actuator selectively treated with acid. The ink enables additive
manufacturing of 4D structurally colored gadgets.

Notwithstanding the abovementioned studies, further investigations are required in
the field of soft robotics.
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7.4. Electronics

Electrical devices are usually designed with a rigid form, offering user-friendly and
easy solid interfaces that simplify the tabletop or portable arrangement. This strategy
proved to be the best way to preserve general device efficiency as well as dependability.
The employment of SMMs in smart electronics can enable more adaptable and accommo-
dating systems for a wider range of applications. For example, wearable and implantable
electronics are better suited to soft, flexible, and stretchy electronics [189]. Soft electronics
and wearable devices’ capacity to accept the natural deformation of biological tissue can
significantly increase the comfort, portability, and convenience of continuous physiological
monitoring. They can be set inside stretchable/flexible products to develop extremely flexi-
ble soft robots. They can serve as modern sensors due to the 4DP structures’ responsiveness
to stimuli such as pH, humidity, temperature, stress, and strain. SMAs may be used to
assess temperature and strain as well as detect wear and damage inside a structure in
addition to acting as actuators [15].

In Ref. [178], a sensor–actuator was created with 4DP using nanocarbon black/PLA
composites. The device achieved independent heat stimulation and strain sensing capabili-
ties. Consequently, it could effectively interact with thermally stimulated objects, while
simultaneously detecting changes in resistance to self-assess their contact status.

As discussed in [190], SMMs can be used to harvest energy and can be self-powered
sensors. SMP-based sensors can harvest energy and act as self-powered, wearable, bio-
mechanical sensors. These multi-functional electronic controllers can be employed to
improve the flexibility of soft robots [15].

In Ref. [191], conductive nanocomposites with electro-responsive shape-changing
capabilities were used. These shape-changing liquid sensors were manufactured using
modified composite ink via DIW. The sensor showed adaptability to various situations and
high detection precision.

The authors of [192] proposed the use of strained-tailored, multi-stable, shape-morphing
3D structures for integrating 3D electronics and adaptable wearable sensors. A composite film
was created using a silicone elastomer-based material with phase-changing wax microparti-
cles. It exhibited various buckling modes when subjected to strains in different directions
and formed a 3D architecture. Silver nanowires were sprayed on a silicone composite sheet
to demonstrate functionality through an electrical circuit connection while switching on
some LEDs.

8. Future Position in Industry

In the age of Industry 4.0, 4DP has the potential to give the manufacturing industry a
significant competitive advantage by reducing the required assembly parts and resources.
Because of their biocompatibility and qualities comparable to natural materials, SMMs offer
considerable promise in biomedical applications, biosensors, drug delivery systems, and
tissue regeneration. The development of novel materials such as non-invasive biomedical
devices is extensive, and procedures depend critically on the analysis and simulation of
natural phenomena. New composite SMs are an intriguing solution in tissue engineering
applications. In addition, printable materials for tissue repair and regeneration must have
sufficient printability, mechanical strength, interfacial strength, and biocompatibility. How-
ever, obtaining suitable printable biomaterials remains difficult. As a result, it is critical to
create novel printable biomaterials for 4DP constructions in tissue repair and regeneration.

In addition, this technique offers enormous promise for overcoming the numerous
inherent flaws of functional components. Although 4DP as a technology is relatively new
and requires time and effort for its adoption, it has the potential to provide possibilities for
many sectors. Innovative 4DP processes can reduce the number of components and conse-
quently the assembly time. Following the polymer revolution, SM and AM technologies
are predicted to drastically cut fuel consumption and emissions in the aircraft sector.

The use of advanced composite materials for 4D structures has received more attention,
as researchers have developed structures that respond to stimuli by producing differential
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strains. Printing SMs or smart voxels leads relevant study areas and scientific communities
to new multidisciplinary and convergent research paradigms. Various research initiatives
on increased SMAs and SMPs are documented in the literature; however, certain issues
require further research. 4DP as a multi-material structure allows for more flexibility in
shape shifting by printing passive and active bilayers. Furthermore, SMs are tailored on a
laboratory scale in various research projects by merging two or three SMMs using particular
form changes.

Scientists and engineers are focusing on the improvement of multi-material design for
specific applications; however, understanding of the technology should consider various
factors. The 4DP process factors and parameters impacting SMs should be thoroughly
examined, as should their interrelationships, particularly as a function of time.

Digital materials might be used for smaller interconnecting parts, which may help
in the transport and assembly of large components. Materials may be turned into simple,
repetitive, useful pieces rather than large, monolithic, single-use components. The expand-
ing materials could be carefully positioned on the main structure to make joints that stretch
and fold when triggered by water, generating a wide diversity of forms. The process is
designed to yield larger structures that can handle more complicated transformations in the
future, as well as smaller, miniaturized ones that can be employed in an aircraft’s fuselage.
Electroactive polymers, pressurized fluids or gases, chemical stimuli, and even light have
all been successful in changing form.

4DP can be used in the logistics sector to reduce production and transportation costs,
improving the global supply chain system. In addition to self-assembly and self-expansion
abilities, self-repair is a key element. On the other hand, 4DP might be the next generation of
lean manufacturing [193]. Further advancements can be provided by 5D printing [194,195]
and 6D printing [196,197]. In particular, the combination of both the print head and the com-
ponent allows for reducing the fabrication time of curved surfaces without supports [197].

9. Conclusions

4DP has drawn the attention of academics in fields such as chemistry, applied sciences,
physics, material science, and mechanics. The proof-of-concept–focused contributions in
this developing research field are promising and comprehensive, merging AM techniques,
stimuli, and material functionality. 4DP part reusability can boost the material circular
economy. It is still a developing industry in its initial stages, with a corresponding opportu-
nity to create objects via AM technologies. 4DP can be a key element in Industry 4.0, with
particular regard to soft robotics and the Internet of Things. Notably, 4DP of SMAs and
SMPs is gaining increasing interest by providing solutions that may be integrated in the
industry 4.0 project.

While 4DP is conceptually appealing, studies only give partial answers that are difficult
to apply in real-world application circumstances. This is because most research efforts are
incremental and result in incomplete data and consideration by scientific fields that support
technological breakthroughs. So far, little effort has been made to integrate 4DP into smart
component design. As a result, it is critical to bring such advancements to the attention
of product designers and engineers in order to improve the design of 4DP, as previously
successfully accomplished in integrating assembly, subtractive, and AM challenges in
product design. To achieve industrial maturity, the domains of chemistry, processes, and
materials sciences must consider end-user demands as well as the part functionality design,
which necessitates the employment of a problem-solving methodology (i.e., teleology,
inverse problem-solving, and user-centered and system-centered design).

The field of 4DP is still developing; some limitations are still present, such as man-
ufacturing scaling up and predictive modeling, thus limiting its potential. The process
parameter design is lacking in-depth knowledge and requires more research, even though a
number of scientific and technical works on innovative manufacturing techniques, stimuli,
materials, behaviors, and programmable forms have been provided.



Appl. Sci. 2023, 13, 7744 30 of 37

Author Contributions: Conceptualization, S.V. and L.B.; data curation, S.V.; writing—original draft
preparation, S.V. and L.B.; writing—review and editing, S.V., L.B. and A.B.; supervision, P.G. and A.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

3DP 3D Printing
4DP 4D Printing
AM Additive Manufacturing
DIW Direct Ink Writing
DLP Digital Light Processing
FFF Fused Filament Fabrication
PLA Polylactic Acid
SLA Stereolithography
SLM Selective Laser Melting
SM Smart Material
SMA Shape Memory Alloy
SME Shape Memory Effect
SMM Shape Memory Material
SMP Shape Memory Polymer
Tg Glass transition temperature
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