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A Visual Analytics Conceptual Framework for
Explorable and Steerable
Partial Dependence Analysis

Marco Angelini, Graziano Blasilli, Simone Lenti, and Giuseppe Santucci

Abstract—Machine learning techniques are a driving force for research in various fields, from credit card fraud detection to stock
analysis. Recently, a growing interest in increasing human involvement has emerged, with the primary goal of improving the
interpretability of machine learning models. Among different techniques, Partial Dependence Plots (PDP) represent one of the main
model-agnostic approaches for interpreting how the features influence the prediction of a machine learning model. However, its limitations
(i.e., visual interpretation, aggregation of heterogeneous effects, inaccuracy, and computability) could complicate or misdirect the analysis.
Moreover, the resulting combinatorial space can be challenging to explore both computationally and cognitively when analyzing the
effects of more features at the same time. This paper proposes a conceptual framework that enables effective analysis workflows,
mitigating state-of-the-art limitations. The proposed framework allows for exploring and refining computed partial dependences, observing
incrementally accurate results, and steering the computation of new partial dependences on user-selected subspaces of the
combinatorial and intractable space. With this approach, the user can save both computational and cognitive costs, in contrast with the
standard monolithic approach that computes all the possible combinations of features on all their domains in batch. The framework is the
result of a careful design process involving experts’ knowledge during its validation and informed the development of a prototype, W4SP
(available at https://aware-diag-sapienza.github.io/W4SP/), that demonstrates its applicability traversing its different paths.

A case study shows the advantages of the proposed approach.

Index Terms—Machine Learning, Partial Dependence Plot, Visual Analytics.

1 INTRODUCTION

REDICTIVE models are gaining increasing popularity,
Psatisfying the growing request for machine learning
(ML) algorithms that quickly and accurately predict or group
data items. A growing research effort focused on the inter-
pretability of such models, positioning human beings within
the loop (see, e.g., Floricel et al. [1]). Among the different
techniques supporting this research, the Partial Dependence
(PD) analysis and its most used visual counterpart, Partial
Dependence Plots (PDP) [2], have the goal of explaining how
the features affect the output of a machine learning model.

This paper aims to mitigate the four state-of-the-art main
drawbacks associated with such an analysis (see Section 2.2
for more details). Indeed, the PD analysis is strongly tied
with ad hoc visualizations, and the first issue comes from the
inherent difficulty of visualizing the partial dependence of
three or more features: while simple visualizations exist for
presenting the relationship between one or two features
and the output of machine learning model, visualizing
such a relationship for three or more features is still a
challenging task. A second issue is associated with the
aggregated nature of PD: it basically represents means that
might hide opposite trends. A third issue arises from the
potential inaccuracies caused by the wrong assumptions of
independence among the features and inadequate feature
sampling. Finally, exploring all the PDs corresponds to
exploring the powerset of the features, making an exhaustive
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analysis impossible in most cases. An additional issue comes
from the users’ cognitive limits, as reported by Zhao et al. [3]:
human beings’ visual short-term memory is limited by the
amount of information retained, making feasible the visual
PD analysis in the range of about three to seven objects [4].

This paper proposes a Visual Analytics (VA) conceptual
framework for PD analysis, highlighting the main manual
and automatic activities. Such a framework enables effective
analysis workflows and provides a concrete guide for ex-
ploring partial dependencies, supporting the incremental
estimation of influences among features, exploring PDs
at different levels of accuracy, and allowing for steering
the computation of new PDs to user-defined subsets of
the combinatorial analysis space. To illustrate the most
significant framework steps, we propose demonstrative
solutions covering both analytics and visual aspects. Finally,
to foster the framework adoption, we have developed a
demonstrative prototype, W4SP, challenging the advantages
of its usage in a case study based on a real dataset.

In summary, this paper, considering the four state-of-
the-art main PD issues and human beings’ cognitive limits,
proposes a conceptual framework to foster the analysis of
PDs. It helps the user in the exploration of a combinatorial
space, providing insights into sub-areas, and supporting hy-
potheses validation tasks on potential dependencies among
features or sub-intervals of them. Overall, it mitigates the
state-of-the-art identified issues associated with PD analysis.

The framework is validated through (i) a user study
involving 11 researchers in machine learning and eXplain-
able Al, assessing its capability of mitigating the state-of-
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the-art identified problems, and (ii) a case study using a
demonstrative visual analytics prototype, W4SP, that shows
the advantages the framework provides in analyzing PDs.

2 BACKGROUND

A black-box supervised machine learning model is a model
which has already been trained and is ready to generate
predictions. Common supervised machine learning models
are regression models and classifier models. Formally, such
kind of model is a function M(-) that takes in input a matrix
X = [x1, 9, - -+, z,] of n instances (observations and data
entries are synonyms) and generates a vector of predictions
Y = M(X) where Y = [y1, y2, ---, yn). Each data entry
x; is composed of m features. Different solutions exist in the
field of model-agnostic methods [5] for interpretable machine
learning, which are commonly appreciated for their flexibility
and reusability [6]. Model-agnostic methods can be further
distinguished into global and local methods: while the former
describes how features affect the prediction on average, the
latter aims to explain the influence on the prediction of
individual instances. Partial Dependence Plot (PDP) [2] is likely
the most adopted global method. Among local methods,
Individual Conditional Expectation (ICE) [7], Local interpretable
model-agnostic explanations (LIME) [8], and Shapley Additive
Explanations (SHAP) [9] aim to describe how the instance’s
prediction changes when features change. Local models, like
LIME, are very promising. However, according to Molnar [6],
these methods are still in development and could present
issues that should be carefully considered during their usage.

2.1 Partial Dependence

Introduced by Friedman [2], the Partial Dependence (PD)
measures the marginal effect that one or more features have
on the predicted outcome of a machine learning model.
It is one of the most used model-agnostic methods [6],
[10], presenting a variety of implementations [11], [12],
extensions [7], [13], and applications [14], [15], [16], [17], [18],
[19], [20]. The PD function is computed using a trained model,
a dataset X (in general, the training set [6]), and a subset
T = {f1, fa,--} of target features, that is, the features we
are interested in. Subset R contains the remaining features.
The cardinality of T' represents the order of the PD: first-order
when T contains one feature, and so on.

The partial dependence of feature f at a particular value
vy is computed by forcing all the data entries in X to
assume the value vy for the feature f, and then averaging
the predictions, see Fig. 1. In general, the PD is represented
as a curve, a Partial Dependence Plot (PDP), computed for a
set of grid points spread over the domain of the features,
see Fig. 2. Several approaches can be used to set up the
grid: take all the unique values in the training dataset, take
k equispaced values on each feature domain, or take k
values based on the percentiles. Formally, the first-order
partial dependence of feature f is PDs(v) = + 3\ M(x)
where Vx; r : x; y = v. The curve of a single data entry
is called Individual Conditional Expectation [7]; the PDP
is the average of all the individual curves, see Fig. 2. It is
intuitive to interpret a partial dependence; it shows how the
average prediction changes when features’ values change. It
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Fig. 1: Computing PD for an ML model that predicts the number of
bikes rented daily in a city based on three features: humidity, temperature,
and wind speed. Each tuple (left) represents a city. In the center, we set
temperature to 20 for all the tuples, and the prediction on the transformed
dataset shows PD = 31 (i.e., the average prediction of the tuples). Then
we set temperature to 35, and the average prediction remains almost
similar PD = 29, while the tuples predictions show high variability.
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Fig. 2: Individual Conditional Expectation (ICE) and Partial Dependence
Plot (PDP) for the feature temperature in the scenario of Fig. 1. Due to
its almost flat PDP (red line), temperature does not appear to affect the
model output. The PDP is hiding heterogeneous effects: when temperature
exceeds 20 degrees, the ICE curves (gray) show two different behaviors.

expresses causality between the features and the prediction,
showing the model outcome as a function of the features [21].

2.2 Partial Dependence Issues

As discussed in the Introduction, a PD analysis is hindered by
drawbacks that make its usage less effective. In this Section,
we discuss them more formally and provide some examples.

Issue IS1: visual interpretation. This problem, see, e.g., [2],
[6], [15], [16], relates to existing limitations in visualizing
the partial dependence of more than two features. While
first-order PDs are usually represented using a line chart,
and second-order PDs are typically rendered using heatmaps,
for higher-order PDs no visualization technique scales well
enough. Moreover, the cognitive effort required for interpret-
ing the effects of the feature(s) rises fast, e.g., Molnar [6] states
that the realistic maximum number of features in a partial
dependence function is two. This is not a fault of PDs, but of
the bi-dimensional representations (paper or screen) and the
humans’ inability to deal with more than three dimensions.

Issue IS2: aggregation of heterogeneous effects. This
issue, see, e.g., [6], [7], [22], [23], [24], arises from the PD
computation. Due to its averaging steps, the final trend of a
PD can mask the effects of subsets of the dataset that show
opposite behaviors. Indeed, a flat PDP curve can indicate that
(i) either the feature does not influence the prediction or (ii)
subsets of the dataset show opposite trends and cancel each
other when computing the average. For example, in Figure 2,
the plotting of single tuples shows two subsets of cities: one
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Fig. 3: The PDP on the right shows an unrealistic number of predicted
rented bikes for very high feeling temperatures. The source of the
error is that feeling temperature is strongly correlated with other
features ( e.g., temperature and humidity). Taking into account these
correlations produces the more realistic Accumulated Local Effects (ALE)
plot on the left: the plot has a maximum at 26°C and decreases for very
higher temperatures. The picture is from [25] that introduces the ALE
technique.

in which high temperatures lead to a prediction of a high
number of rented bikes and another one with an opposite
trend. The two subsets balance each other, and the final PDP
is a flat line, suggesting no influence of temperature and
hiding the behavior of the two contrasting subsets.

Issue IS3: inaccuracy. A PD computation could be less
or more accurate, see, e.g., [6], [14], [16], [17], [25], [26],
being the sources of inaccuracy (i) the wrong assumption
of independence among considered features, or (ii) the
sampling step used to compute the partial dependence, or
(iii) the choice of the sampling points as stated by Krause et
al. [17]. Additionally, a higher-order PD could not confirm
the lower-order behavior due to the effects that the new
considered features bring in. As an example of issue (i) is
visible in Figure 3 that shows, on the right, a quite unrealistic
prediction of rented bikes for very high feeling temperatures.

Issue IS4: computability. Exploring all the possible PDs
orders implies browsing the powerset of the features, making
it infeasible in most cases. In general, also considering PDs
with orders higher than two can become very costly pretty
quickly. This is a strong limitation that usually, paired with
issue IS1, limits the analysis to just two features at a time.

3 RELATED WORK

Understanding the behavior of a machine learning model and
allowing the interpretation of its results are research topics
on which the eXplainable Artificial Intelligence (XAI) [27],
[28] area has focused in recent years. Two main directions can
be followed in conducting those analyses: model-agnostic
[29], [30] and model-specific approaches [31], [32]. PDP is
one of the most used model-agnostic techniques in XAl
Interestingly, their degree of application varies among the
XAI contributions, where they usually are simply plotted
to provide static evidence concerning model behavior. For
example, Chipman et al. [33] propose a new machine learning
model called BART and relies on first-order PD to explain
such a model when used on a simulated dataset. Green and
Kern [34] use PDP to understand the relationship between
predictors and the conditional average treatment effect for
a voter mobilization experiment, while Berk and Bleich [35]
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exploit it to model predictor-response relationships in the
criminal justice field.

3.1

As discussed in Section 2.2, the usage of PDP is hindered
by a set of drawbacks that make its usage less effective.
Starting from these issues, we describe several works that
tried to mitigate one or more of them, classifying them by
the predominant issue on which they focus.

Existing mitigations for PD issues

Visual interpretation. Only a few works coped with the
visual interpretation problem because, at low PD orders
(specifically at first order), its effects are limited even if still
present. The works [3], [19], [20] limit the analysis to first-
order PD and use the classic line chart based representation.

Differently, Krause et al. [17] propose a visual analytics
approach that shows a partial dependence as a 1D heatmap,
in which the color encodes the predicted outcome of the
model. Finally, Collaris and van Wijk [36] propose local and
global versions of a novel plot called contribution-value
plots. While engaging in mitigating the visual interpretation
issue, this contribution addresses somehow unrelated issues,
as stated by the authors (“We argue PDP and LCV plots
serve a different, and complementary, purpose”). Additionally,
differently from our approach, the proposed plots require
an extensive pre-computation that does not allow them to
be used in real-time, suffering from additional computation
requirements due to plot rendering.

Aggregation of heterogeneous effects. To mitigate the aggre-
gation of heterogeneous effects of observations, Moosbauer
et al. [14] model an uncertainty estimate for it and drive
sub-grouping by this estimate. We encompass this approach
as one of the steps of our conceptual framework hinting at
the development of a new research direction on finding
more reliable PDP estimates by analyzing subgroups of
observations. We contribute to this approach by introducing
a novel grouping criterium based on PD trends instead of
data tuples characteristics. Gromping [22] presents a different
approach for grouping based on correlated features, propos-
ing a stratified version of PDs useful for the visualization of
interactions among correlated features.

Inaccuracy. Apley et al. [37] report the potential inaccu-
racy of PD plots. The authors state that PD plots can
produce erroneous results if, for example, some predictors are
strongly correlated. To mitigate this problem, they propose
Accumulated Local Effects (ALE) plots, a variation of PD
plots that mitigates their inaccuracy and aggregation of
heterogeneous effects, allowing the identification of accurate
local areas. The conceptual framework follows a similar
approach, helping the analyst to identify accurate/inaccurate
areas, complementing it with the possibility of computing
higher-order PDs to confirm or deny their accuracy.

Computability. Wexler et al. [19] propose “What-if Tool”,
a visual analytics environment that allows for probing and
assessing machine learning models, supporting local and
global partial dependence analyses. However, they only
consider first-order PD (computability issue). We overcome
the first limitation by allowing to compute higher-order PD.
Due to this, we cope with the visual interpretation issue
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by providing an encoding that clearly communicates the
discrete nature of the analysis. Kwon et al. [20] follow a
similar approach (partial dependence curves). It suffers from
the same problems, but it exploits PD as an explanation
means for diagnostic risk prediction targeted at medical
personnel instead of machine learning architects. It has as an
additional constraint a lower cognitive threshold that leads
to focus only on single features.

Finally, focusing on combinations of mitigations, some
Visual Analytics solutions coped with computability and
visual interpretation problems. Krause et al. [17], propose
Prospector, a visual analytics system that provides an inter-
active partial dependence analysis of features for machine
learning predictive models. In addition, the system supports
localized inspection of data points to understand how and
why specific data points are predicted as they are. The
user can change the feature values and understand how
the actual prediction changes. The system also suggests what
feature value should be changed to obtain a certain desired
outcome. However, Prospector can only model changes
along one feature at a time, identifying computability issues
for higher-order PDs that hinder interactivity. Differently
from this work, we propose a conceptual framework to
allow the computation of higher-order PD by steering the
analysis in sub-areas of interest, exploiting lower-order PD
information that we help assess the accuracy. We follow
a similar visual solution (color heatmaps) for the partial
dependence visualization, adapting its behavior to higher-
order PDs. Similar considerations are valid for iForest by
Zhao et al. [3]. iForest is a visual analytics solution for
interpreting random forests in which the authors strongly use
PDPs represented as line charts joined by a second aligned
chart plotting data distribution. However, this work too is
focused on single-feature importance and first-order PDs.

3.2 Existing conceptual frameworks for PD analysis

The previously discussed issues, particularly IS3 (Inaccuracy)
and IS4 (Computability), are strongly related to how a PD
analysis is conducted in the state-of-the-art. Not many works
coped with the problem of designing frameworks to mitigate
them, focusing more on the latter.

Molnar framework. The classic approach to conducting
partial dependence analysis, introduced by Molnar [6],
reports a framework with a monolithic workflow, in which
the analyst (i) fits an ML model and (i) computes first-
order PDs sequentially. Then as a batch, (iii) evaluates the
results (identifying interesting combinations of features), and
(iv) proceeds to compute second-order PDs (the higher the
order, the more the needed time due to the combinatorial
number of dependencies). The suggested workflow ends at
the second-order PDs due to computational and cognitive
effort limitations. Eventually, all the obtained results are
presented in the same order (e.g., all the interesting features
are presented at first-order first and at second-order later,
while a mix of them is not available).

Tamagnini framework. Tamagnini et al. [38] propose a
conceptual framework, a workflow, and a visual analytics
interface to enable analysts to understand the causes behind
predictions of binary classifiers by interactively exploring a
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set of instance-level explanations. Rivelo is based on a tech-
nique that creates artificial instances derived from observed
values to examine the features’ influence on the output.
The user is able to select features, select the explanation,
inspect the descriptor vectors, and explore related raw data
as composing steps of the workflow. By switching back
and forth among these steps, the user can understand the
influence of a feature on the output (partial dependence).
Even if this workflow allows analyses more interactive than
the ones proposed by Molnar, it still considers only first-order
PDs and their disaggregated instances. It does not consider
the inaccuracy of the hypothesized dependence or compute
higher-order PDs.

Both Molnar and Tamagnini proposals use classic analyti-
cal steps in their framework while proposing novel ways to
navigate these steps through their proposed workflow. For
this reason, we will refer to their proposals as workflows
in the rest of the paper, identifying their novelty upfront
using the most representative term. On the contrary, our
proposed conceptual framework also introduces novelty in
the composing steps. It exploits a progressive analysis at
different PDs order for (i) confirming a PD accuracy at the
smallest order possible (helping visual interpretation due to
less complex visual representation needed), (ii) identifying
areas of inaccuracy (iii) limiting the computation of higher-
order PDs only for those inaccurate areas, where the higher-
order can be higher than the state-of-the-art two features. Our
framework is based on (i) prioritizing the feature analysis,
(ii) increasing the PD computed order, and (iii) supporting
an incremental computation of PDs, managing the trade-
off between the analyzed data subspace(s), the number of
considered features, and the quality gain from computing a
higher-order PD.

4 EXPLORING, INTERPRETING, AND STEERING
PARTIAL DEPENDENCE

This section presents the proposed conceptual framework for
explorable and steerable partial dependence analysis. We first
identify the main tasks of a PD analysis and then describe
the design of the eight steps composing the framework and
their relations to existing PD workflows and PD issues.

To design the proposed conceptual framework, we col-
lected the analyst tasks, extracting them from the two state-
of-the-art existing workflows (Section 3.2) and considering
the goals of the PD analysis itself. We extracted three main
tasks reported below showinh how they mitigate one or more
of the four PD analysis issues (IS1, IS2, 1S3, 154).

Task T1: identify interesting features that potentially can
impact the model output. This task is extracted as an inter-
mediate goal of every PD analysis (the final result is to find a
minimum set of features) and is also present in the Tamagnini
workflow. The Molnar workflow supports this task statically
by simply hinting at the effects of correlation. In contrast, the
Tamagnini workflow puts the user in charge of selecting a
subset of interesting features. If supported correctly, it allows
mitigating IS4 (computability) by reducing the number of
features to investigate. The dual task is to give less priority
to features for which there are strong hints that they do not
affect the model output. For both cases, human feedback
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is deemed necessary because it allows forming the feature
subset considering multiple criteria or strategies instead of
a single one and reducing its cardinality, also projecting
domain expertise that purely automatic approaches cannot
capture.

Task T2: identify the strength of a partial dependence (how
much a set of features affects the model output). Again,
this task is one of the goals of the existing workflows, and it
concerns the interpretation of the visual representation of the
n-th-order PD. The higher the order, the more cognitive effort
is required to interpret the result, and for this reason, the
state-of-the-art solutions do not go above the second order.
Due to computability limitations, the inclusion of human-in-
the-loop can help focus the available computation resources
on interesting sub-intervals and accept a PD analysis result
at different levels of accuracy for different combinations of
features, effectively allowing to raise the order of PD analyses
above the second order. Given this capability, this task must
rely on visual encodings capable of conveying the relations
among more than two features, allowing the engaged analyst
to make sense of the visualized partial dependence. If
correctly supported, this task allows mitigating issue IS1.

Task T3: evaluate the accuracy of the partial dependence, in
terms of how confident the analyst is of the result of an n-th
order partial dependence. Molnar and Tamagnini workflows
that incorporate human feedback at the conclusion of the
analysis already support this task. However, they allow
looking only at the same order PD analysis, where the higher-
order ones require a complete recomputation for the first
and are only analyzed at the first-order for the second. In
the Molnar workflow, the knowledge of a second-order PD
can inform the analyst of the goodness of the previously
computed first-order PD, but at the cost of a long batch
computation (the human is not inserted in the analysis loop).
The Tamagnini workflow supports this task by allowing the
analyst to reason on the first-order PD, eventually looking
at additional information on raw data or single instances.
Including human feedback during the analysis can better
implement this task. If correctly supported, this task allows
mitigating issues IS2 and IS3.

4.1 Conceptual Framework

The extracted tasks are also related to the Multi-Level
Typology of Abstract Visualization Tasks from Brehmer and
Munzner [39]: T1 and T2 to the query/identify category and
T3 to the consume/discover/generate/verify. Differently
from the existing workflows, we propose a conceptual frame-
work to explore PD analyses and incrementally construct
the results, allowing the final results to be composed of
different orders PDs for different features (e.g., the model
output o is mainly affected by three features, fi, fo, f3, and
the effect of f7 is well described at the first order PD, while
f2, f3 are well described by their joint-effect trough a second-
order PD). To obtain this result, the conceptual framework
must allow discerning the level of accuracy of the computed
PDs. The analyst chooses the accuracy level by narrowing
the exploration space (combinatorial in its full extent) by
exploiting three main actions:

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

o excluding features for which their PD is already accurate
(pruning the portion of the exploration space resulting
from considering their higher-order PDs);

o prioritizing features (e.g., considering together corre-
lated ones and focusing the analysis first on the most
promising ones);

e narrowing observations cardinality by focusing on
homogeneous sub-groups (e.g., considering only sub-
intervals of the domain of a feature, where the accuracy
is low, for computation of a higher-order PD).

The resulting conceptual framework is more general and
versatile than the existing workflows, which still allows
replicating their phases but adds the possibility to scale
to higher-order PDs through user intervention during the
process. The full conceptual framework is composed of eight
steps, visible in Fig. 4. None of these steps are mandatory,
leaving the possibility to work on reduced versions of the
conceptual framework, supporting different workflows every
time, even during the same execution that iterates more time
on different steps. In the following, we describe every single
step and link it with the effects it has on supporting Tasks
T1-T3 and mitigating issues IS1-I54.

Step S1: feature(s) prioritization. When the analysis is
not pre-oriented on specific features, identifying the most
significant ones can be challenging due to their potentially
high number. This issue calls for proper prioritization
strategies to sort the features. This step is mandatory for
supporting task T1. The proposed conceptual framework
proposes implementing it by ranking first interesting features
that could affect the model output. It also supports the
possibility of filtering out from the analysis features that
occupy low positions in the resulting ranked order. This step
provides benefits for issue IS4 (computability) due to the
reduced number of features to consider in the PD analysis.
At the end, a set of candidate features are selected to continue
the analysis. The nature of this step is mainly automatic,
allowing the user to select different prioritization strategies.

Step S2: feature(s) behavior interpretation. After identifying
interesting features, the analyst focuses on interpreting their
PDs, looking for confirmation of their influence on the
model output. At the beginning of the analysis, a visual
representation of all the first-order PDs for the selected
features is available due to the low computational cost. The
distribution of the dataset used for computing the PD can
be projected on the PDP to inform the analysis, avoiding
overestimating regions with sparse data and underestimating
dense ones. Alternatively, distribution information can be
used to define the representative feature values to compute
the PD; the sampling rate of the values along the domain
thus suggests the distribution of the data. In any case, the
data distribution should be considered to correctly interpret
the PDP and identify possible issues in the dataset (e.g., the
dataset distribution is not representative of the real one).
This step is mainly human-based, creating the first VA cycle
joint with Step S1. It supports task T2 and mitigates the issue
IS1 (visual interpretation) if supported by an effective visual
encoding. After this step, the analyst can form hypotheses,
that still need to be validated, on the effects of single features
(at first-order) or multiple features (at higher orders) on the
model output.
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Fig. 4: The conceptual framework for explorable and steerable partial dependence analysis. The steps covered by existing workflows are reported in
blue, while the novel steps are represented in green (automatic) or red (human-based), following the color scheme of the VA model.

Step S3: sub-grouping feature(s) observations. This step
allows the analyst to subgroup instance-based contributions
to the PD to understand better how much a PD represents
the general behavior of the feature(s) in influencing the
model output. Different strategies can be applied for the sub-
grouping, e.g., based on data characteristics or PD trends. In
Section 5 we propose a novel way of sub-grouping based
on the instances” PD trend observed at S2, allowing to
group instances that show a similar trend in the model
output. This step supports task T2 and partially task T3.
Concerting T3, this step allows to understand if the instance-
based contributions reflect the averaged behavior of the PD.
For example, a low presence of sub-groups means that a
dominant group covering most of the data distribution exists.
Conversely, in the case of many (highly populated) different
groups, their contributions could be lost due to the elision of
contrasting trends.

This step is mainly automatic and allows for mitigating
the issue IS2 (aggregation of heterogeneous effects). In the
end, the analyst can identify features whose PD is a good
representer of the influence and features for which a finer
analysis of sub-groups is needed.

Step S4: evaluate the accuracy of a partial dependence.
This step is fundamental to steer the analysis narrowing the
exploration space (reducing the features to consider). If a
PD is considered accurate, the current order of the PD can
be considered a good approximation of the higher orders
for that feature. This is a new step with respect to existing
workflows and supports the iterative and steerable nature of
the conceptual framework. At the first-order PD analysis, it
would be unusual for an analyst to be able to 100% confirm
(by validating it) a feature influence. To confirm it, the PD
of a feature should present a high predominant sub-group
of instances (or a unique group), and none of the remaining
features should be correlated with the analyzed feature.
This does not mean that the first-order PD computed is
inaccurate but that the analyst may still need to catch all the
information needed to confirm its accuracy. To do that, our
conceptual framework suggests computing higher-order PDs
and using them as a means of validation. Thus, the analyst
must proceed to steps S5, 56, and S7. Suppose a higher-order
PD (e.g., a second-order PD) confirms the behavior of the
lower-order PD (e.g., first-order). In that case, the lower-order
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is promoted as part of the final result, contributing to S8 (see
feature f; in Fig. 5) due to it being a good descriptor of the
feature influence and a less demanding one to interpret for
the analyst.

This step is mainly human-based, forming the second VA
cycle joint with step S3. It supports Task T3 and mitigates
issue IS3 (inaccuracy).

Monohlitic PD Analysis Result
Fy F, Fy

Incremental PD Analysis Result
Fy F, Fy

pofistorder I Bad [ ok | Bad
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o secondorder [T (N Whole domain [T
F, AND F
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Sub-group of the domain

Time Long computation time Interactive to quasi-real time

Inaccurate

Sub-group of the domain
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I:l Whole domain I:l

Mid-accurate

Coverage

Fig. 5: Comparison between monolithic non-interactive PD analysis (left)
and our proposed steerable PD analysis (right) on quality of results,
computation, and response times.

Step S8: update overview of PDs. This step envisions the
construction of a PD analysis result from one to several
iterations over the conceptual framework, depending on the
accuracy level evaluated in S4. An example of the incremental
construction of the result is visible in the right part of Fig. 5.
In the example, it is visible that for feature f;, the first-
order PD is sufficient to describe its influence on the model
output (full green rectangle). For feature f5, instead, it is
not enough (full yellow rectangle). Thus a second-order
PDy, ¢, is computed, following S6 and S7. Its accuracy is re-
evaluated with a second execution of S4 (eventually priorly
executing again also steps S1, S2, and S3 at analyst discretion),
and this second-order PD is promoted as part of the result.
This step is necessary due to the incremental analysis that
our proposed conceptual framework allows, and no other
workflow presents this behavior. This step supports tasks T2
and T3 and generally contains the incrementally generated
analysis result. It mitigates issue IS1 (visual interpretation)
because it minimizes the complexity of visual representation
for the analysis results (promoting low-order PD where
they are good representatives of the feature influence on
the model output), and indirectly IS3 (inaccuracy) and
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IS4 (computability), showing the level of accuracy of the
different-orders PD composing the result and the subset of
higher-than-one order PDs computed (with respect to classic
workflows that compute all of them).

Step S5: compute local accuracy. The conceptual framework
suggests proceeding to this step if the outcome of S4 is
negative for a certain subset of features. For local accuracy,
we mean the capability to assess accuracy level for different
domain intervals and not just at single feature grain. The
conceptual framework mandates computing higher-order
PD for the non-conclusive analyzed features and using them
to compute a fine-grained local accuracy based on intervals
of the feature domain. It relies on sub-grouping results at
iteration one, computing its local breakdown on the feature
domain. It can exploit higher-order PDs for iterations higher
than one and present the result of their comparison. If a
higher-order PD including the analyzed feature(s) is present
(e.g., wehave PDy, and PDy, t,,as reported in the example
of Fig. 4) it is possible to exploit them in comparative analysis.
First, we project the second-order PDy, , on f; obtaining
14, £, (f1). Then, we compare this projected PD with PDy,,
computing where they are similar and where they diverge.
This step is mainly automatic and supports task T3.

Step S6: identify areas of inaccuracy. This step aims to
allow a finer analysis that distinguishes sub-intervals of
the feature(s) domain(s) where the PD analysis is accurate
from sub-intervals where it is not. It allows focusing the
following computation of higher-order PDs only on the
combination of identified inaccurate sub-intervals, reducing
the computational cost and allowing scaling better than
existing approaches. In doing so, it exploits the results
computed in S5, providing them with interpretable visual-
izations. In the case of iteration one, the analyst can consider
inaccurate domain sub-intervals with high divergence in
groups behavior (effectively applying a local analysis of
what is done globally in S3). Based on the comparison of
lower-order and higher-order PDs, the analyst promotes the
first-order PD of f; as a good descriptor for subsequent
iterations if they behave similarly; otherwise, she extracts
the subintervals where they diverge for further analysis. Our
conceptual framework introduces this step, and no other
existing workflow presents it due to their monolithic way
of analyzing PDs. Even the Tamagnini workflow, based on
visual analytics, considers only the features number reduc-
tion (that our conceptual framework implements in S1 and
S3) and does not consider a reduction of the feature domains
extent. This is a human-based step, forming the third VA
cycle joint with S5. It supports task T3, mitigates issue 1S3
(inaccuracy), and through its sub-intervals identification, it
mitigates also issue 1S4 (computability).

Step S7: compute and evaluate higher-order PD. This step
computes the higher-order PDs. It represents the computa-
tional step that allows to cycle in the conceptual framework
(by providing carefully selected higher-order PDs, allowing
the analyst to study them at whatever step and using them
for evaluating accuracy in S4 and S6) and incrementally
constructing the final analysis result.

Due to the described incremental construction of the analysis
result and to mitigate issue IS4 as much as possible, the
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default behavior of this step is to rise by one the order of
the new computed PDs every time this step is executed. It is
not forbidden to directly move to even higher orders (e.g.,
moving from first-order PDs to third-order PDs). The method
may, however, result in inefficiency both in terms of resource
waste (e.g., maybe second-order PDs did not require rising to
third-order) and in terms of latency (i.e., while the conceptual
framework reduces the exploration space for higher-order
PDs, it computes it precisely for a single PD without any
approximations, and it requires time for higher-order PDs).

As illustrated in Fig. 5 for feature f,, its first-order PD was
entirely inaccurate (full red rectangle), and even its second-
order PDs were not resolutive (yellow rectangle), despite
accurate areas in half of its domain. For this reason, the
third-order PDy, ¢, . is computed just for half of the f,
domain, resulting accurate. This means that for half of its
domain, the second-order PD is an accurate descriptor of f,
influence, while for the other half, the analyst must rely on
the third-order PD (green half-rectangle). This step is mainly
automatic, indirectly supporting all the tasks, and it helps
mitigate issue IS4 (computability).

The conceptual framework can be iteratively traversed
until the analyst is confident of the incrementally constructed
analysis result during S8. Interestingly, it remains backward
compatible with the originating Molnar and Tamagnini
workflows. The former can be modeled by considering just
S1, S3, and a monolithic version of S8 that always computes
all the combinations of a higher-than-one order PD. The latter
can be modeled by considering just S1, S2, 53, and S8, given
that it does not consider working with higher-order PDs.

4.2 Steering Partial Dependence Analysis

The proposed conceptual framework allows an analyst to
steer the PD analysis interactively through the different
decisions she can take in steps S2, S4, and S6. They all affect
the feature set and features” domain intervals considered in
the PD analysis. Overall, they constitute the outer VA cycle in-
tending to steer the PD analysis toward the appropriate trade-
off between accuracy and computability. Different choices
for alternative parameterizations for those two coordinates
can alter the final results and support different insights
generation. Additionally, all these analyses can contribute
to the incremental generation of the final result of the PD
analysis represented in Fig. 5. This overall steerability is then
referred to the whole PD analysis and not to a single step
of the conceptual framework. All the human-based steps
(52, 54, S6) contribute several parameterizations that then
affect the computational steps (S1, S3, S5, S7) according to
the definition of computational steering provided by Mulder
et al. [40] and Van Liere et al. [41]. Ultimately, the steering
effect will be visible in step S8, where the current partial
dependence analysis update will be visible. Managing an
updatable overview at different levels of accuracy is a new
feature not available in any of the existing workflows.

5 |INSTANTIATING THE CONCEPTUAL FRAMEWORK

To make the proposed conceptual framework operative,
design decisions are needed for some of its composing
steps. In this section, we briefly describe some of them,
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remarking that the conceptual framework is general, so
other choices are possible. For S1, we leverage existing
strategies from the literature, like the correlation index or
the Partial Dependence Feature Importance metric (PFI) [13].
Following that, we present the design decisions for the
subgrouping strategy (supporting S3), the comparison of
PDs (supporting S4), the quantification of similarity between
PDs that can be used to identify inaccurate areas (supporting
S6), and the visual encoding for the human-based steps
of the conceptual framework (supporting S2 primarily but
also S6), which is kept at the end because it encompasses
the results from several stages. Eventually, the section
presents W4SP (Versatile Visual analysis for Steerable Partial
Dependence), a demonstrative prototype supporting the
conceptual framework, demonstrating its actionability in
a real environment.

5.1 Sub-Trends Analysis of PD — STRAP

To instantiate the sub-grouping strategy of S3, we introduce
Sub-TRend Analysis of Partial dependence (STRAP) leverag-
ing the idea of decomposing a partial dependence curve
by grouping single instances curves that present similar
behaviors. Each curve, called a subPD, represents a sub-
behavior of the model that could not be captured by PD.
The creation of subPD curves follows a bottom-up approach.
First, single instances curves are computed for the whole
dataset; then, they are grouped into several disjoint sub-
groups by considering their curve trends similarity. Finally, a
subPD curve is created by averaging the predictions of the
sub-group observations. Therefore, the PD can be expressed
as a weighted sum of its subPDs, where weights are equal to
the cardinality of each relative sub-group.

The computation of subPD curves depends on the defini-
tion of the relative sub-groups of observations. Several factors
can be considered while defining such sub-groups; among
them, the type of prediction (e.g., numerical, binary) and the
trends shapes play the most important roles. In the following,
we present an algorithm for defining sub-groups in the case
of a binary classifier and numerical features. We assume that
the model generates a prediction that is either 0 (negative)
or 1 (positive), and the domain of the feature is numerical.
Each feature domain is divided into £ uniform bins (k can
be different among features), and observation curves are
computed over the grid values {v1, va, - -+, vy }. The choice
of k is up to the user, while common approaches are the
rule of thumbs k& = [/n], Sturge’s formula [42], Scott’s
formula [43], or a kernel-density estimation approach [44].

We have identified five sub-trends representing the
subPDs of a partial dependence decomposition. Observations
belong to a sub-group according to the following criteria:

B B Negative — Constant curve equal to zero.

B B Positive — Constant curve equal to one.

M B Increasing - The curve assumes zero for [vy, - --
[Vit1, --o 5 VR

M B Decreasing — The curve assumes one for [vy, - --

[Vig1, =5 VK-
B W Alternating — The curve does not fit into any previous criteria.

, v;] and one for

, v3] and zero for

The cardinality of each sub-group represents the mag-
nitude of the sub-trend: the higher cardinality, the more
representative the subPD.
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f; mean

Fig. 6: Projection of a third-order PDy, ¢, f, in a second-order ITy¢,  y,
and first-order ITy, . The projection is the mean of the projected values.
Each projection has an associated error quantifiable by using the
standard deviations of the projected values: the lower the standard
deviation, the more precise the projection.

5.2 Partial Dependence Projection

To allow the comparison between higher-order and lower-
order PDs needed for step S4 of the conceptual framework,
we propose to project a n'"-PD into several low-order
projected PD (II). The properties of this projection technique
are to be scalable for increasing order of computed PDs
while limiting the cognitive effort required for interpret-
ing the effects of the feature(s) on the model output and
managing the comparison between PDs. Fig. 6 provides
the intuition of how to compute the first-order Iy, and
the second-order Il ¢, projections from the third-order
PDy, 1,.15- The projection Iy, y, at (u,v) is the mean of
the partial dependence values having f; = wand fa = v, ie,

k .
Hfl»fz(uvv) = %Zl PDfomfs(“?'U:Z)'

Projection Accuracy. The projection of a partial dependence
considerably reduces the exploration space, see Fig. 6, from
k™ to k™ elements to analyze when projecting a n-PD to a
m-IL. The relative reduction is (k" — k™) /k". The accuracy
of the projection, i.e., how much the mean is representative
of the projected values, can be evaluated using the standard
deviation (o). A low standard deviation indicates that the
projection is representative. As shown in figure Fig. 6, the
five yellow values of the 3D-PD are projected into a single
value by computing their mean, while the standard deviation
indicates the accuracy. For a whole projection, the mean of
all the standard deviations (o7y) indicates its accuracy.

Quantitative experiment. We conducted a quantitative exper-
iment to quantify, while projecting, the exploration space
reduction and the standard deviations in the case study
scenario of Section 6, a binary classifier predicting diabetes
risk given eight features and k = 20. We computed all the
3D-PD and 2D-PD and their possible projections, reporting
the results in Table 1. For example, each of the 28 2D-PDs can
be projected to two 1D-II. The exploration space reduction
is 95%, while the average oy of all the projections is 0.128
with a confidence interval of £0.034. When projecting a
3D-PD into 1D-1I, the exploration space is highly reduced
(99.75%), while o1y increased. The influence of o1 on the
projection accuracy depends on the specific model output.
For example, in the current scenario, if a projection assumes
values < 0.2 or > 0.8, a standard deviation of 0.197 does not
affect its accuracy because both the PD and II show a high
classification probability to the negative or positive class.
Anyway, the presented conceptual framework relies on the
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PDAE PDf1

Similarity I(f2 ® f1,v)

Fig. 7: Similarity between PDy, ¢, and PDy, . The mean absolute error
(MAE) is used to compare the five second-order PD values, and the
first-order one fixed a grid value v. The similarity also allows computing
the influence that fo has on f1. The PDy, r, shows an increase of
prediction (PD encoding ranges in W =M ) when f> increases. At the
same time, PDy, shows a medium value (yellow). The two PDs are
dissimilar, allowing us to assume that f2 influences fi.

human in the loop. Thus, the user, provided with all the
necessary information, can understand if the projection is
accurate or not and move through the appropriate next steps.

Projection | Count Exploration Space o
from to  reduction % I CI
2D — 1D 56 | 400 20 95.00 128 +£.034
3D — 1D 168 | 8000 20 99.75 197 +£.020
3D — 2D 168 | 8000 400 95.00 131 +£.018

TABLE 1: Exploration space reduction and average standard deviation
and its confidence interval, of all the projections of 2D and 3D partial
dependence of the scenario presented in Section 6: a binary classifier
based on eight features with k& = 20 grid points each.

5.3 Different-order PD similarity

To allow the identification of areas of inaccuracy for S6,
we introduce a way to quantify the similarity between
two different-order PDs. In this way, it is possible to
compare an n'"-PD with any higher-order one, identifying
if the lower-order PD is a good descriptor of the higher-
order one, i.e., behaves similarly. The dissimilarity between
PDy, and PDy, s, at grid value v is the mean absolute
error (MAE) [45] among the two PDs fixing f; = v:
LS |PDy, 4,(v,i) — PDy, (v)|. To empathize small values
of dissimilarity, it is possible to use a logarithmic-based
variation: 72 log(1 + |PDy, ¢, (v,i) — PDy, (v)]).

As shown in Fig. 7, the (dis)similarity among the PDs
also allows for estimating the interaction between two
features. The more the two features interact, the stronger the
prediction is affected by both. We say that f influences (@)
feature f, if PDy, and PDy, , are dissimilar. To quantify
this influence, we use the MAE normalized in [0, 1], when
the model output ranges in [Pmin, Pmaz]-

1_72 iPDfl fz('U Z) PDfl(U)l
¢ max[PDg, (vV)=Pmin, Pmaz—PDs; (v)]

I(f2® f1,v)

If both (fo @ f1) and (f; @ f2) are high, the mutual inter-
action between the two features is high, and the prediction
is strongly affected by both of them. On the contrary, if
(f2 @ f1) is high and (f1 @ f2) is low, there is a scarce
interaction between the two features, and what we see in
the second-order partial dependence depends only on fo,
effectively confirming the first-order PD behavior of f5.
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5.4 Designing Visual Encoding

Different factors influence the interpretation of a PD, both
when analyzing it individually and as part of a workflow.
Usually, the interpretation focuses more on its behavior than
its exact values across the domain [46]. For this reason, it
is essential that its representation privileges expressiveness
in conveying its trend, eventually overlooking precision.
The reliability of the partial dependence is strongly affected
by the distribution of the observations; areas with few
or no observations are generally less reliable because the
tuples generated by the dependence calculation are more
likely to be significantly unrelated to the real observations.
The significance of these tuples is moreover affected by
the relation between the feature under analysis and the
others. If the feature is correlated with one or more of the
others, the probability of including very unlikely or even
impossible tuples considerably increases. Considering these
elements and cases where the analysis is not pre-oriented
to a single feature, it is usually needed to manage multiple
features, identify the interesting ones for further analysis,
or consider different subsets of them together for mutual
influence. In this scenario, it is therefore required to represent
multiple dependencies simultaneously, even more, when
examining more than one for each feature (e.g., results from
sub-grouping) to identify heterogeneous effects. When it
is needed to compute higher-order PDs considering two or
more dimensions simultaneously, computational factors must
also be taken into account; having very dense binning on
feature domains, for example, increases the cost considerably.
For those reasons, we propose a small-multiples [47]
approach to provide an overview of the PDs and their sub-
groups. A first-order PD is usually visualized in literature
as a line chart by interpolating its values over the domain.
While this encoding effectively conveys the behavior of the
dependence, its readability is strongly affected by the choice
of the aspect ratio [48], which would be strongly conditioned
by the need to show it as a small-multiple. Furthermore, the
interpolation hides the binning step leading to a possible
overestimation of the accuracy of a dependence computed
on few values. Moreover, second-order PDs are usually
encoded as two-dimensional heatmaps with an optional
overlaid representation of the data distribution, leading
to a sharp change in the visual encoding. We propose an
alternative visual encoding for first-order PDs based on a one-
dimensional heatmap. The color encodes the value of the PD;
in the case of a binary classifier, we suggest using a diverging
and color-blind safe color scale (e.g., blue-yellow-red, m =m)
that implicitly expresses the segmentation into two categories
(above and below the threshold). This encoding explicitly
represents the binning step and is coupled with a bar chart
representing the data distribution. The bar chart is designed
to check the height of each bar; if it is below a configurable
perceptual threshold, the bar is substituted by a half-circle
allowing to distinguish values with no observations from
those with few ones. Fig. 8a shows the resulting encoding.
The encoding can be adapted to sub-groups, regardless
of the sub-grouping criteria, allowing for easier comparison
between the full PD and sub-groups. Furthermore, it enables
a preattentive identification of the sub-trends, e.g., clearly dis-
tinguishing positive and negative trends. The PD encoding is
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(b) Example of a sub-partial dependence extracted from the
decomposition of F,.
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(c) Influence of the variation of the features F}, and F. on the
dependence of the classification from F,.

Fig. 8: Visual encoding of the PD of feature F;,. The global PD (a) is
aligned with the PD of one of its sub-trend (b) and the influences of
features Fj, and F. on the global PD (c). The heatmap represents the PD
using a diverging color scale (m =M ). The gray bar chart represents
the data distribution, using a half-circle when the value is below a
configurable perceptual threshold, allowing to distinguish between zero
and small values. In the case of sub-partial dependence (b), the bar chart
shows both the distribution of the subset (dark gray) and the whole
dataset (light gray). In (c), a sequential color scale ( Bl ) represents
Fy and F. influence.

enriched with a gray bar chart representing the distribution
of the data in the current group (m) and in the whole set
("), enabling the visual comparison of their difference. To
provide a measure of the significance of each subgroup, the
percentage of data is presented on the top-left, while a small
glyph on the top-right quickly recalls the trend (see Fig. 8b).

We exploit the one-dimensional heatmap of the proposed
small multiple to encode the different-order PD similarity
(used to evaluate accuracy both globally and locally on
specific bins). It encodes the influence that the second feature
has for each value of the original one using a sequential
color scale (  =mm ). Given the visually encoded binning in
the heatmap, this means allows for confirming first-order
PD accuracy for the whole feature domain or identifying
intervals of the domain where the second-order PD shows
high variability, requiring further investigation.

This design proposal allows computing PD with more
than two features. However, for cognitive effort consid-
erations, we will always visualize the results with max-
imum two-dimensional visualizations [4] exploiting the
projection technique introduced previously. To do that, we
enhance the proposed small-multiple, allowing to visualize
a bidimensional-heatmap on demand, clicking on the one-
dimensional one that visualizes the PD accuracy. Third-order
PDs can be computed to evaluate how the contribution of the
third feature alters the result, similarly to what is done for
the previous step but then re-projected on the bi-dimensional
or one-dimensional heatmaps.

5.5 The WA4SP prototype

WA4SP (Versatile Visual analysis for Steerable Partial De-
pendence) is a demonstrative visual analytics prototype
that supports the proposed conceptual framework and
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Fig. 9: The W4SP prototype. The controls tab (A) allows for sorting
features. Each column (B) is relative to a feature and shows its first-order
PD (C) and its decomposition in sub-PDs (D). Feature influences are
reported at the bottom of each column (E). Second-order PDs (F) can be
plotted on-demand, along with projections of higher-order PDs.

demonstrates its actionability in a real environment. W4SP,
see Fig. 9, is composed of the main view, paired with the
Controls Tab that allows to manage the analysis (Fig. 9.A).

The main view is divided into columns, one for each
feature under analysis. Many features call for narrowing
down the analysis to the most interesting ones. For this
reason, the system allows for sorting them using several
criteria, e.g., correlation or PFI, so restricting the analysis to
the top ones (S1).

Each column (Fig. 9.B) is related to a feature; columns
are sorted according to the selected strategy. On top of each
column, the first-order PD (Fig. 9.C) is encoded according to
the small-multiple design discussed in Section 5.4 (S2). The
different sub-groups of a PD are extracted by using STRAP,
and its subPDs (Fig. 9.D) are shown below the global (same
encoding), allowing the analyst to focus on the sub-groups
(S3). The Controls Tab allows sorting the subPDs according to
cardinality or trend. The user can deselect groups from the
Controls Tab to focus the analysis only on specific ones.

The bottom part of a column (Fig. 9.E) allows for eval-
uating the impact of other features on the predictions. The
influence of the other features with respect to the current
one, see Section 5.2, is shown as an overall numerical
value (right) and a one-dimensional heatmap, as defined
in Section 5.4. Those features are sortable according to the
two directions of influence. The two features’ correlation is
shown on the left (54 and S6). Clicking on a feature triggers
the visualization of the second-order partial dependence
using a bi-dimensional heatmap (Fig. 9.F). The user can
project the data distribution on each heatmap, selecting
one of two different encodings, opacity-based or size-based
(S2 for higher-order PDs computed during S7). To limit
cognitive effort, the user can inspect them on demand:
clicking on a heatmap visualizes the PD Projection of the
other features sorted by influence. W4SP is available at
https://aware-diag-sapienza.github.io/W4spP/, while the
paper’s appendix presents additional examples of its usage.
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6 CASE STUuDY

The case study in Fig. 10 demonstrates a workflow of analysis
built on the proposed conceptual framework using W4SP. It
relies on the PIMA Indians Diabetes dataset [49] and a binary
classifier predicting the diabetes risk given eight features:
Age, BMI, BloodPressure, Glucose, Insulin, PedigreeFunction,
Pregnancies, and SkinTickness. The user, aiming at understand-
ing how the features affect the prediction, analyzes the PDs
along ten phases.

Phase 1. Since the analysis is not biased towards specific
features, the user sorts them using the PFI metric (S1)
that identifies Pregnancies and BloodPressure as the most
influencing and Age as the least influencing, see Fig. 10.1.

Phase 2. Inspecting Pregnancies (S2) highlights an ascend-
ing trend while the skewness of the distribution suggests
descending confidence of the estimation. BloodPressure, con-
versely, shows a descending trend, and the tuples are more
evenly distributed on the domain with a prevalence in the
central portion (Fig. 10.2). The almost flat PDPs of Age and
PedigreeFunction suggest their influence is negligible.

Phase 3. A deeper analysis of the sub-groups of Age (S3)
shows that the flatness of the dependence hides three distinct
sub-trends that comprise 37.2% of the observations, as
visible in Fig. 10.3. This step suggests that both individually
and in relation to the other features, Age should not be
considered aggregating all the tuples (suffering from IS2) but
distinguishing them through the single sub-groups.

Phase 4. The user evaluates the accuracy of the two most
influencing features using the available information (54).
Pregnancies has only one non-constant sub-group confirming
its first-order PDP as a good descriptor beyond the consid-
erations about the confidence in the domain. BloodPressure
exhibits a similar behavior. At the same time, it has two sub-
trends deviating from the global trend (see Fig. 10.4), their
incidence (less than 7% of the tuples), and their difference,
especially in the portion of the domain with fewer tuples (at
the beginning of the domain), makes them almost irrelevant.

Phase 5. The analysis can proceed by calculating all the
second-order PDPs containing Pregnancies and BloodPressure
(S7) to confirm the hypothesized single influences.

Phase 6. W4SP, by sorting the second-order PDPs by
influence score, allows the user to confirm Pregnancies and
BloodPressure as the top-most influencing features, since they
appear at the top of their relative 2D-PDPs lists, mutually
influencing each other more than other features. In addition,
the system suggests Glucose and Insulin as the second-most
influencing features for both of them (S2bis). The user can
now evaluate the accuracy of the first-order PDs, considering
the information collected at the higher order (S4bis). She
identifies a small area in both Pregnancies and BloodPressure
domains influenced by Insulin (S6), see Fig. 10.6. On the
contrary, the area influenced by Glucose in both Pregnancies
and BloodPressure is wider.

Phase 7. The areas of influence suggest the user to consider
the higher-order interactions between the identified features,
computing the third-order PDs Pregnancies-BloodPressure-
Glucose and Pregnancies-BloodPressure-Insulin (S7bis).
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Phase 8. The influence of Glucose, computed using the third-
order PD, is projected on the second-order PD Pregnancies-
BloodPressure (S2tris). The user identifies a small area on the
2D-domain (following the main diagonal) in which Glucose
greatly influences the classification (see Fig. 10.8), becoming
determinant for the tuples that have combinations of values
of Pregnancies and BloodPressure in that area (S4tris, S6bis).

Phase 9. A similar approach is used to evaluate the influence
of Insulin (S2quater). The area of influence projected on
the second-order PD Pregnancies-BloodPressure is wider (see
Fig. 10.9), highlighting the influence of Insulin in the whole
area below the secondary diagonal (S4quater, Sé6tris).

Phase 10. After three repetitions of S8, the user identified
the 2D-PD of Pregnancies-BloodPressure as a good descriptor
of the model behavior, which can be approximated by
the 1D-PD of Pregnancies. Although the previous phases
highlighted considerable influence posed by Glucose and
Insulin over the 2D domain Pregnancies-BloodPressure, a
review of the data distribution suggests the majority of the
area beneath the main diagonal is sparse or empty, suggesting
a low confidence interval and allowing the influence area
to be reduced. This could push the user to continue the
analysis by computing the 4D-PD Pregnancies-BloodPressure-
Glucose-Insulin but only in the limited area (black square
in Fig. 10.10, left), which is less than 10% of the domain.
The user concludes that the Pregnancies PD, the Pregnancies-
BloodPressure 2D-PD, and 3D-PD considering Insulin in the
limited area are a good descriptor of the model behavior.

Advantages for ML users. Using this workflow, the user
computed and analyzed 8 (out of 8) 1D-PDs, 13 (out of 28)
2D-PDs, and 2 (out of 56) 3D-PDs (93% of computation time
reduction, 2 minutes instead of 32 minutes in our tests). The
workflow significantly reduced the cognitive load and the
computation time with respect to the monolithic state-of-the-
art workflows.

The case study is user-agnostic and directed towards
any ML user category [50], [51], such as practitioners
(e.g., Architects, Trainers) or end users. Users can benefit
from the insights gained in Phase 10 in a variety of ways,
depending on their role and goals: both practitioners (e.g.,
machine learning experts, data scientists) and end users
(e.g., clinicians, domain experts) will benefit from under-
standing how features affect predictions. Practitioners may
want to validate and improve the classifier; for example,
understanding which features affect classification more and
in what way can provide useful information for tuning
hyperparameters. Clinicians and domain experts can use
insights to evaluate model accuracy or learn new things. By
analyzing the insights produced by the PD analysis, these
users can determine whether the model is accurate and
responds correctly to variations in a feature. Furthermore,
those users could even gain some additional knowledge,
such as discovering that under certain conditions, the risk of
diabetes decreases.

In the paper’s appendix, we also present two usage
scenarios addressed to specific user roles. The first usage sce-
nario presents an example of how a practitioner can validate
a binary classifier. The second scenario supports clinicians
dealing with localized inspections to better understand a
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Fig. 10: Illustration of the case study demonstrating a workflow of analysis built on the proposed conceptual framework using W4SP.

patient’s clinical condition.

7 CONCEPTUAL FRAMEWORK VALIDATION

We conducted a user study with researchers in machine learn-
ing and eXplainable Al to validate the proposed conceptual
framework. We used the workflow presented in Section 6
as a representative instance of the conceptual framework in
mitigating the four issues of PD analysis and the efficacy of
each composing step in providing benefits for the analyst.
Section 7.1 presents the method used to conduct the user
study, while Section 7.2 discusses the collected results.

7.1 Method

We contacted 11 researchers (6 males and 5 females, mean
age 26) actively working in the fields of machine learning
and eXplaninable Al as users for validating the conceptual
framework. We organized two sessions lasting approximately
2:45 hours (first session: five participants; second session:
six participants). A think-aloud method [52] was followed
to make all the participants aware of doubts or additional
details asked by others. Participants were first asked to
provide their expertise in data visualization and Machine
Learning using a five levels Likert scale (Expert, Fully
knowledgeable, Knowledgeable, Passing knowledgeable, No
knowledge). All the participants were fully knowledgeable
(5 participants) or knowledgeable (5 participants) about
Machine Learning, except one with passing knowledge.
Their experience with Data Visualization was various: five
participants had passing knowledge, three participants were
knowledgeable, two participants had no knowledge, and
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only one was fully knowledgeable. The users were then
exposed to the following activities:

Introduction to Partial Dependence Analysis. In this phase,
lasting 15 minutes, the participants were exposed to the
general theory of PD analysis, the practices used to conduct
this analysis in the state-of-the-art, and the issues that affect
the PD analysis. The presented material covered examples
and exposed how to use state-of-the-art solutions, both from
the interpretation of visual encoding and analysis flow.

Partial Dependence Analysis with classic workflow. In
this phase, lasting approximately 1 hour, the participants
were tasked to solve a PD analysis using the Molnar
workflow and state-of-the-art tools, visual representations
provided by literature (e.g., Python Scikit-learn [53]) on the
Diabetes dataset [49]. This phase aims to extract quantitative
information about the difficulties of conducting PD analysis
with classic workflows, relating them to PD analysis issues.
For this reason, results were evaluated with Correctness and
Easiness metrics.

Tasks provided to them were organized in order of
increasing complexity, splitting the classic workflow into
three phases (analysis of first-order PDPs, analysis of second-
order PDPs, and analysis of a specific third-order PDP). At
the end of each phase, we explained the correct expected
result for each phase and the final result of the analysis
and started a discussion with participants on what have
they done and their rationale. At the end of this phase, we
verified that each participant understood the correct result of
the analysis and what could have potentially impacted her
different choices, relating them to issues 1S1-4.

Partial Dependence Analysis with the proposed workflow.
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We simulated the different phases of the analysis conducted
with the proposed workflow (the material was prepared in
advance). Having collected quantitative data about the PD
analysis difficulty, this phase aims to evaluate how much
the proposed conceptual framework steps are perceived
as useful and effective in mitigating those problems. We
exposed the analysis one step of the conceptual framework
at a time, evidencing the outcome of the execution, asking
participants what the results communicated to them, and
providing differences with respect to the classic Molnar
workflow. Due to the participants already knowing the
outcome of the analysis at this stage, we no longer used
the Correctness metric. We instead used the Utility metric to
evaluate user impressions on how much each step of the new
conceptual framework would prove helpful in conducting
the analysis (global evaluation). We complemented it with
the Effectiveness metric to evaluate how much each step is
perceived as effective individually (local evaluation). At the
end of each step (the complete sequence is: S1, S2, S3, 54, S5,
S6, S7, S4bis, S8, S5bis, S6bis, S7bis, S4tris, S8bis, for a total
of 14 steps) we asked participants to answer two questions:
(i) how much they think the presented step would have
helped them in solving the analysis, and (ii)) how did they
consider effective the presented analysis step. This phase
lasted 1:15 hours, dedicating, on average, 5-10 minutes per
step (depending on the step complexity and repetition).

At the end of each activity, we asked participants to
complete a questionnaire to collect their feedback. The results
of this activity are discussed in the following section.

Final discussion. We dedicated the last 15 minutes to live
Q&A on the presented approaches, collecting participants’
impressions and comments.

7.2 Results

Classic workflow. The first task was the identification
of the two features that most influence the classification
according to the classic workflow and using their state-
of-the-art first-order PDPs; 7 out of 11 participants were
able to correctly identify the two features while the others
were able to identify only one of the two (see Fig. 11, 1D-
PDP). Three participants summarized their approach to
the task by dividing it into two phases: first, they looked
at the shape of the plots and then observed the interval
between the maximum and minimum values to make the
final choice. More than half of the participants consider
the independent influence of the two features insufficient
to describe the primary influence on the classification for
previous knowledge of the domain or for the observed trends
of other features that could influence the two selected ones.
Afterward, the participants had to evaluate if they confirmed
their analysis after including the second-order PDPs. For this
task, the results were more varied, with only 4 participants
confirming that they came to the same conclusions, 5 to
some of them, and 2 to significantly different conclusions
(see Fig. 11, 2D-PDP). Some participants conducted their
analysis alternating between the first and the second-order
plots, while others focused only on the latter. All the second
group participants stated that if they had to perform the task
again, they would consider first-order plots more carefully,
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even for the second-order analysis. One participant found it
particularly difficult to consider both the mutual influence
of the features and the distribution of the observations over
their domains. More than half of the participants generally
expressed an excessive cognitive load leading to a loss of
confidence in the choices. The feedback also confirms this
on the perceived ease of performing the tasks. At the same
time, 7 participants found the first task easy, and only one
participant found the second task easy, with 6 of them finding
it difficult or very difficult (see Fig. 11).

Correctness Easiness
I Correct I Easy
[ Partially Correct [ Slightly Difficult
Il Incorrect [ Difficult
I \Very Difficult

Participants

1D-PDP

2D-PDP

Fig. 11: Correctness and perceived easiness of the 1D and 2D Partial
Dependence Analysis performed according to the classic workflow.

Conceptual framework steps utility. The participants evalu-
ated how the proposed steps supported them in performing
the previously carried-out analysis. The level of agreement is
generally high for all the steps; for each, at least 9 participants
responded that it would help them partially or significantly
(see Fig. 12). It is worth noting that the step with the lowest
agreement was S3 (sub-grouping feature(s) observations);
this might be influenced by the fact that the feature on
which the contribution of heterogeneous effects was most
evident was not one of the most influential; the effect on
the conducted analysis was less evident. One participant
observed that to evaluate the influence of other features,
sorting them using a metric computed on the higher order
was not sufficient (S8), but that projection of influence onto
the domain of the dimension of interest was needed (S7b).

Conceptual framework steps effectiveness. All the steps
are considered effective, at least as how much they were
considered helpful in the conducted analysis (suggesting
that the participants did not consider them useful just for the
presented use case). All the steps were considered effective
or partially effective by at least 10 out of 11 participants
(see Fig. 12). While all the participants considered S1 at least
partially effective, only five of them considered it completely
effective. This is supported by the participants’ feedback,
with many of them pointing out that it can be helpful
but that the order of influence could vary depending on
considerations arising from the next steps. Conversely, 54
(evaluate the accuracy of the partial dependence) is the step
with the highest consensus, with 10 participants considering
it as entirely effective for conducting an informed PD analysis.
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This assessment is supported by the accuracy at higher orders
(second-order from S8 and S7b, third-order from S8b) that has
been considered fully effective by 8 out of 11 participants.

Effectiveness

Effective

Partially Effective

Neither Effective nor Ineffective
Moderately Ineffective
Ineffective

Utility

Agree

Partially Agree

Neither Agree nor Disagree
Moderately Disagree
Disagree

i
100e

1

Participants

o= NwWAGON
—_

S1 S2 S3 S4 S6 s7 S6b S7b

1D-PD 2D-PD 3D-PD

Fig. 12: Utility and effectiveness of the conceptual framework steps.

Mitigating PD Issues. Finally, participants rated the pro-
posed workflow’s effectiveness in mitigating the presented
issues (Fig. 13). All participants stated that the workflow
effectively mitigated all four issues except for some doubts
that emerged about IS1. In comparison to other issues,
issue IS1 (visual interpretation) received a lower consensus.
Meanwhile, one participant commented, “I find this approach
very useful, especially in relation to IS1 and 154", while another
said, despite being convinced of the approach direction, he
did not have enough evidence to determine whether it was
effective in supporting the visual interpretation (IS1) since he
had “[...] limited experience with partial dependence analyses and
data visualization”. According to three participants, projecting
information from a higher order to a lower order reduces
cognitive load, leading to a simpler analysis. The consensus
among participants was greater for IS2 (aggregation of hetero-
geneous effects) and IS3 (inaccuracy). Regarding these issues,
one participant found the sub-partial dependencies effective
in highlighting different sub-behaviors while another one
commented that the projection of the influence from a higher
to a lower order dependency to evaluate the accuracy is
compelling but that additional means could be explored
for it beyond those presented. The issue IS4 (computability)
achieved the highest results. Three participants found the
ability to reduce the exploration space iteratively as the
most convincing result: “Especially as far as the computational
aspects are concerned, the presented workflow is very effective”,
“I find this approach very useful, especially for what concerns the
computability issue”, “I think overall this workflow can greatly
improve PD Analysis, especially regarding the computability
issue”. In the end, participants were asked whether the
workflow provided overall better support for analysis than
the state-of-the-art solutions they used. Fig. 13 shows that
nine participants agreed and only two partially agreed.

Overall, the validation confirmed the utility and effective-
ness of the proposed conceptual framework in mitigating PD
issues qualitatively. At the same time, we notice that more
quantitative comparative analysis between implemented
instances of the proposed conceptual framework and the
classic approaches is needed to quantify this approach’s
benefits further.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

14
[ Agree [ Moderately Disagree
[ Partially Agree I Disagree
[ Neither Agree nor Disagree
n
10
94—
84—
o 74—
k=
g1
S
£ 54
S
a4
34
24
14
04
181 1S2 1S3 1S4 Overall

Fig. 13: Conceptual framework effectiveness in mitigating the PD issues.

8 DISCUSSION AND CHALLENGES

In this section, we report considerations about potential
elements that can be further investigated in future research.

Model and task dependence. We built our conceptual
framework to be independent of the model and task (e.g.,
classification, regression) at hand: it never relies on the in-
trinsic characteristics of the model (treating it as a black box)
or the task. At the same time, the generality of the modeled
steps allows for exploiting model-dependent information.
While it represents a future research direction to understand
how and where the conceptual framework could fit different
models, we provide an example for decision trees. In this case,
considering a classification task, knowing the split points of
the tree for all the features involved could inform feature
prioritization strategies at step S1.

Data type dependence. Similar considerations to the previ-
ous point apply to data dependence. We tested an instance
of our conceptual framework using tabular data, but in
principle, this does not constitute a limitation. Using image,
video, or multi-modal data is a characteristic of the system at
hand (a combination of model, downstream task, and data).
The techniques used in steps S1, S3, and S5 can be adapted to
other data types while keeping their nature and goal intact.

PD Projection accuracy. In steps S5 and S6, the PD projection
plays an essential role in allowing to steer the PD analysis
towards inaccurate areas, to compute higher order PDs just
for them. This analysis aims to reach an acceptable accuracy
level for this estimation. While we outlined in Section 5.2
how to get an acceptable accuracy level, this analysis is at
this moment valid just for the binary classification tasks (that
was at the base of the proposed case study and evaluation
activities). A challenge for further research is how to adapt it
to additional tasks (e.g., multi-class classification, regression).
Promising approaches that we started investigating could
leverage the correlation among features or the dataset density
in the feature domain intervals.

Scalability. The proposed conceptual framework, through (i)
the insertion of human decision points during the analysis
and not just at the end, (ii) reduction of features to consider,
(iii) reduction of features domain to consider when comput-
ing higher-order PDs and (iv) management of a final result
composed of different order PDs (instead of the SOTA that
produce a result at the same order of PD for all the features
considered) allows raising the number of features considered
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above two, and nearer the cognitive limit of seven. Consider-
ing the recent scalability model in visualization proposed by
Richer et al. [54], the proposed framework achieves this goal
by reducing the problem size S (through the actions (i) - (iv))
and the effort E (through higher interactivity and easier-to-
interpret visual encodings). While scalability consideration
remains valid for a higher number of features, the conceptual
framework provides a better granularity on where to focus
the optimization, expanding the optimization possibilities
instead of the monolithic computation of an n-order PD.
Optimization methods to further reduce the computation
cost for each step while keeping the analysis interactive
are part of future research directions, potentially looking at
progressive visual analytics solutions [55], [56], [57].

9 CONCLUSIONS

This paper presented a VA conceptual framework for explor-
ing and steering a PD analysis. It mitigates state-of-the-art
issues, allowing the evaluation of higher-order PDs incremen-
tally. We instantiated the conceptual framework proposing a
set of tailored analytical and visual designs. We evaluated the
conceptual framework through a user study confirming its
effectiveness both with respect to the existing approaches and
in mitigating the collected PD issues. We made actionable
the conceptual framework contributing a demonstrative
prototype, W4SP; finally, a case study demonstrates its
applicability to a real dataset. We identified two possible
areas of improvement. The approach accommodates up to
40 features (using a 4k monitor and disregarding cognitive
limitations), exploiting the small-multiples visual encoding.
It is however possible to reduce the space needed for each of
them by using techniques for lower resolution visualization,
such as interactive expansion, similar to Table-lens [58].
Designing more sophisticated guidance solutions [59] to
further reduce the user cognitive burden is another research
direction. E.g., visually aggregating same-order PDs sharing
a common set of features to approximate a higher-order PD,
will lower the cognitive burden and computational cost.
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