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Abstract: Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, affecting
millions of people worldwide, especially among the elderly population. It has been demonstrated
that handwriting impairment can be an important early marker for the detection of this disease. The
aim of this study was to propose a simple and quick way to discriminate PD patients from controls
through handwriting tasks using machine-learning techniques. We developed a telemonitoring
system based on a user-friendly application for drawing tablets that enabled us to collect real-time
information about position, pressure, and inclination of the digital pen during the experiment and,
simultaneously, to supply visual feedback on the screen to the subject. We developed a protocol that
includes drawing and writing tasks, including tasks in the Italian language, and we collected data
from 22 healthy subjects and 9 PD patients. Using the collected signals and data from a preexisting
database, we developed a machine-learning model to automatically discriminate PD patients from
healthy control subjects with an accuracy of 77.5%.

Keywords: graph signal; handwriting signal; Parkinson’s disease; machine learning; telemonitoring

1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders in
the world, second only to Alzheimer’s disease [1]. The differential diagnosis of PD is still
an ongoing challenge for the scientific community: to this day, confirmation of the disease
is available only postmortem and the rate of misdiagnosis is high; it has been estimated
that 25% of diagnoses are incorrect [2]. The main cause of PD is the lack of dopamine
production, and its main motor symptoms are bradykinesia, tremor, and rigidity [3];
neurologists rely on imaging techniques such as MRI (Magnetic Resonance Imaging), CT
(Computed Tomography), or PET (Positron Emission Tomography), and patient clinical
evaluations [3]. Machine-learning techniques have been studied to help the diagnosis of
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PD and have shown promising results. Pereira et al. presented a review on recent studies
concerning computer-assisted methods to aid PD recognition [4], which included speech,
gait, and handwriting analysis. This work is part of a home-monitoring project that aims
to aid in PD detection through a combined analysis of graphological and vocal signals [5].
An accuracy of 98.5% was reached through the analysis of vocal data from 55 subjects:
18 healthy control subjects and 33 drug-free and newly diagnosed PD patients.

In this study, we focused on handwriting of PD subjects; handwriting requires a com-
plex coordination of consecutive movements, and the motor symptoms of PD can provoke
handwriting impairments in the size of letters, which is referred to as micrographia, and in
the pressure and kinematics of the pen [6,7], together with a general difficulty in writing,
which involves different graphological patterns. Since “graphology is a discipline that deals
with the dynamic study of the graphic gesture” [8], we based our analysis on computational
graphology. Several studies have investigated the most relevant writing features and tasks
for the diagnosis of PD. Reference [9] presents the state of the art of these studies. It is
possible to collect relevant information from drawings (Archimedean spiral [10–15], cir-
cles [16], meanders [13,14], etc.) and from handwritten words and graphemes. The drawing
of an Archimedean spiral (spirography) is a common task for tremor and other movement
disorder analysis [10]. Thanks to the development of digitizing tablet technologies, it is
possible to analyze not only the offline images, but also the kinematic characteristics of
the graphic signal and the pressure applied to the tablet [17,18]. “Online” data are those
collected while the user writes, while “offline” data are those available after the writing is
completed [19].

In the past decade, important databases have been constructed in order to study
handwriting impairments in PD: the PaHaW database [11], which includes real-time
data (pen position, pen pressure, and pen inclination) collected from 38 PD patients and
37 control subjects, and the HandPD [13] and NewHandPD [14] databases, which include
offline images collected by Pereira et al.

Dròtar et al., analyzing the PaHaW database, obtained an accuracy of 85.61% [20];
they demonstrated the relevance not only of the on-tablet movements, but also of the in-air
movements, i.e., the variation of the pen position while the pen is not touching the table.
Considering only the spiral task, they obtained an accuracy of 62.8% [12].

The aim of this work was to analyze handwriting signals from both PD patients and
control subjects and to propose a way to automatically distinguish these two classes. In
order to collect the necessary data, we developed a telemonitoring system based on a user-
friendly application for drawing tablets that enabled us to collect real-time information
about the digital pen during the experiment and, simultaneously, to supply visual feedback
on the screen to the subject. Through this system, data can be collected remotely in order
to allow patients to execute tasks in the comfort and safety of their home, reducing the
demand on hospital services. We decided to propose a protocol to explore writing and
drawing impairments, including specific tasks for subjects who declared Italian as their
first language, since, to our knowledge, the literature is lacking in automatic handwriting
classification studies with Parkinson’s subjects whose first language is Italian.

2. Methods and Materials

In this study, we collected data from 22 healthy subjects and from 9 PD patients. The
data from the PD subjects were collected thanks to a collaboration with the Casa di Cura
Le Terrazze institute. All participants were right-handed except for one PD patient, with
an age in the range of 60 ± 25 years. Information about subjects’ age, gender, dimensions
of the hand, and level of education are collected in Table 1. The educational level was
classified according to UNESCO’s ISCED 2011 (International Standard Classification of
Education) [21]. This classification distinguishes nine levels of education, from early child
education (level 0) to doctoral or equivalent level (level 8). These levels can be aggregated
into three categories: low (0–2), medium (3–4), and high (5–8) [22]. The hand dimension
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was quantified by measuring the distance between the wrist and the top of the distal
phalanx of the dominant hand’s middle finger.

Table 1. Subject data. For each group (healthy control (C) or subject with Parkinson’s disease (PD)),
the age and the number of males and females are specified. Information about the anatomical
measurements of the hand and the level of education is indicated only for the control group.

Group Age (Mean ± SD) Number Male/Female
Middle Finger–Wrist

Distance (cm)
(Mean ± SD)

Level of Education
(ISCED 2011)
(Mean ± SD)

C 55.8 ± 6.5 8/14 19.6 ± 1.8 5.1 ± 2.1
PD 69.3 ± 10 5/4 - -

Information about the PD patients is collected in Table 2. For every patient, the Hoehn
and Yahr Scale level is indicated. The Hoehn and Yahr Scale is a clinical scale used to
describe the progressive motor impairment of subjects with PD [23]. This scale goes from 1
to 5 in order of severity of the motor symptoms; the first level corresponds to only unilateral
involvement with minimal motor dysfunction, while the fifth and last stage corresponds
to a more serious level of motor dysfunction wherein the subject is confined to bed or
wheelchair unless aided. Table 2 also indicates the side of the body affected by the motor
dysfunction (left, right or bilateral if both sides are involved), years since the diagnosis of
PD, and the levodopa-equivalent daily dose (LEDD) corresponding to each PD patient.

Table 2. This table shows, for every PD patient, the Hoehn and Yahr Scale level (H&Y), the side of
the body affected, the years since the PD diagnosis, and the levodopa-equivalent daily dose (LEDD)
assumed by the subject.

Patient ID H&Y Side Years since Diagnosis LEDD

#1 2 Left 3 450
#2 3 Left 2 750
#3 2 Bilateral 1 200
#4 3 Right 6 625
#5 3 Left 11 400
#6 3 Left 4 250
#7 4 Bilateral 4 400
#8 1 Right 1 50
#9 3 Left 13 900

A commercial Wacom One drawing tablet with a screen was used for this test in order
to be able to extract both “online” and “offline” features. Wacom tablets are widely used in
handwriting movement analysis, as they offer high spatial and temporal resolution [9].

An application was developed by our team using the development platform Unity,
which allowed us to collect information about pen position (x, y), pressure, and inclination
with a frequency of 133 Hz and, simultaneously, to supply visual feedback on the tablet’s
screen to the subjects. For the protocol, the Wacom tablet was connected to a Lenovo
Thinkpad T495 computer with Windows 10 as the operating system. The “Duplicate”
modality was selected in order to have the same screen shown on the computer and the
Wacom One tablet, as shown in Figure 1; Figure 1a shows the point of view of the operator,
while Figure 1b shows the point of view of the participant.
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Figure 1. Experimental setup: (a) shows the operator’s point of view, while (b) shows the partici-
pant’s point of view. The subject uses the Wacom tablet to complete the protocol tasks, while the 
operator follows the experiment in real time from the monitor of his computer. 

In order to analyze the data, we used the software MATLAB. 
The protocol was divided into four parts: drawing an Archimedean spiral, writing 

the bigram “le” six times and two Italian sentences, drawing ten concentric circles, and 
writing seven lines of free text. For each part of the protocol, a different screen was shown 
to the subject: firstly, an image of an Archimedean spiral was shown and the subject was 
asked to trace it at a comfortable speed; secondly, a blank screen was shown and the sub-
ject was asked to write six times in cursive the bigram “le” and the two Italian phrases: “I 
fiori sono sul prato” and “Nel cielo ci sono le stelle”. On the third screen, a circle was 
shown and the subject was asked to draw ten concentric circles inside it. Lastly, a blank 
screen was shown and the subject was asked to write seven lines of free text in cursive. 
The overall duration of the test varied between 10 and 15 min from subject to subject. The 
subjects were given the opportunity to try the tablet before the test. During the execution 
of the tasks, the subjects were seated in a comfortable position on a chair without armrests, 
and the tablet was positioned on a table in front of them. 

Features were extracted separately from each task. 
Data were separated into components, i.e., lines that are traced without lifting the 

pen from the tablet. In order to do that automatically, indices of the samples where pres-
sure went from positive to zero and vice versa were saved in a vector of markers. Both in-
air and on-tablet features were extracted. 

Figure 2 shows an example of the “le” bigram task, where the different components, 
automatically detected, are represented in different colors and the “in-air” points of the 
pen position are represented as blue points. For each component, the velocity was calcu-
lated as follows: 𝑣 𝑣 𝑣 , (1)

Figure 1. Experimental setup: (a) shows the operator’s point of view, while (b) shows the participant’s
point of view. The subject uses the Wacom tablet to complete the protocol tasks, while the operator
follows the experiment in real time from the monitor of his computer.

The application has a start page where the participant’s ID can be entered and which
includes a menu from which the user can choose which task to take. The data are saved
locally in different.tsv files for every acquisition.

In order to analyze the data, we used the software MATLAB.
The protocol was divided into four parts: drawing an Archimedean spiral, writing the

bigram “le” six times and two Italian sentences, drawing ten concentric circles, and writing
seven lines of free text. For each part of the protocol, a different screen was shown to the
subject: firstly, an image of an Archimedean spiral was shown and the subject was asked to
trace it at a comfortable speed; secondly, a blank screen was shown and the subject was
asked to write six times in cursive the bigram “le” and the two Italian phrases: “I fiori sono
sul prato” and “Nel cielo ci sono le stelle”. On the third screen, a circle was shown and
the subject was asked to draw ten concentric circles inside it. Lastly, a blank screen was
shown and the subject was asked to write seven lines of free text in cursive. The overall
duration of the test varied between 10 and 15 min from subject to subject. The subjects
were given the opportunity to try the tablet before the test. During the execution of the
tasks, the subjects were seated in a comfortable position on a chair without armrests, and
the tablet was positioned on a table in front of them.

Features were extracted separately from each task.
Data were separated into components, i.e., lines that are traced without lifting the pen

from the tablet. In order to do that automatically, indices of the samples where pressure
went from positive to zero and vice versa were saved in a vector of markers. Both in-air
and on-tablet features were extracted.

Figure 2 shows an example of the “le” bigram task, where the different components,
automatically detected, are represented in different colors and the “in-air” points of the pen
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position are represented as blue points. For each component, the velocity was calculated as
follows:

v =
√

vx2 + vy2, (1)

where vx =
xi+1−xi
ti+1−ti

and vy =
yi+1−yi
ti+1−ti

,
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PD subjects and 35 healthy control subjects from the PaHaW dataset and data from the 22 
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Features Task 
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Radial velocity 1 
Angular velocity 1 

Variation of velocity, acceleration, and stroke between components 2 
Number of changes of direction in velocity 1,2 

Number of changes of direction in acceleration 1,2 

Figure 2. Image of the “le” bigram task written by a healthy control subject from our dataset. The
“in-air” points of the pen position are represented in blue. Different components of the “on-tablet”
pen position are represented in different colors.

Where xi, yi, and ti correspond to the pen position along x, pen position along y and
time at a specific index i of the recorded data, respectively.

Acceleration and jerk of the components were also calculated. To analyze the spiral,
the angular and radial velocity were calculated. Furthermore, the distance of the drawn
spiral from the spiral guide was calculated using the following algorithm:

1. For each point of the drawn spiral (xi, yi), we found the spiral guide’s closest point to
it, (sxi, syi).

2. We calculated the distance of each couple of points (xi, yi), (sxi, syi), as

di =
√
(xi

2 − sxi
2) + (yi

2 − syi
2) (2)

3. We found the parameter
p = ∑

i
di

2, (3)

that describes how much the drawn spiral is distant from the spiral guide. A smaller
value of p meant a higher precision.

Furthermore, the power spectral density between 4 Hz and 9 Hz of the absolute
velocity of the pen during the spiral task was calculated as a feature.

In order to develop a model for automatic classification of PD, we used data from
36 PD subjects and 35 healthy control subjects from the PaHaW dataset and data from the
22 healthy control subjects and 9 PD patients that we collected in our database. Two tasks
that the two databases have in common were analyzed: the guided spiral and the bigram
“le”. The features that were considered are reported in Table 3.

After the feature extraction, we proceeded with the selection of the most significant
features and the generation of the classification model. In Figure 3, a scheme of the
workflow is presented.
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Table 3. Features extracted: 1 if the feature was extracted from the spiral task analysis, 2 if the feature
was extracted from the “le” bigram task analysis.

Features Task

Velocity: absolute, vertical, and horizontal 1,2
Acceleration: absolute, vertical, and horizontal 1,2

Jerk: absolute, vertical, and horizontal 1,2
Radial velocity 1

Angular velocity 1
Variation of velocity, acceleration, and stroke between components 2

Number of changes of direction in velocity 1,2
Number of changes of direction in acceleration 1,2

Number of changes of direction in jerk 1,2
Normalized in-air time (time in air over total time) 1,2

In-air velocity: absolute, vertical, and horizontal 2
In-air acceleration: absolute, vertical, and horizontal 2

In-air jerk: absolute, vertical, and horizontal 2
Power spectral density of the absolute velocity 1
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Figure 3. Workflow diagram of the process.

3. Results and Discussion

In order to discriminate between PD patients and healthy control subjects, three
models were constructed: one using only data from the spiral task, one using only data
from the “le” bigram task, and one using data from both of them.

We selected the most discriminant features using a Mann–Whitney test (p < 0.05).
Table 4 presents the features with the lowest p-scores, divided per task.

Table 4. Feature ranking. The left column presents the most discriminant features for the spiral task,
and the right column presents the most discriminant features for the “le” task.

Spiral le

skewness of the pen acceleration on the x axis mean of the maximum pen velocity on the y
axis of the single le component in the air

kurtosis of the pen velocity on the x axis mean of the range of the pen velocity on the y
axis of the single le component in the air

25th percentile of the power spectral density of
the absolute pen velocity

maximum of the acceleration on the x axis in
the air

A 10-fold cross-validation was conducted. Results are reported in Table 5. Accuracy,
specificity, sensitivity, F1 score, and precision were calculated in terms of TP (true positive),
FP (false positive), TN (true negative), and FN (false negative), as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (4)
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Speci f icity =
TN

FP + TN
∗ 100 (5)

Sensitivity =
TP

FN + TP
∗ 100 (6)

F1 score =
TP

TP + 1
2 (FP + FN)

∗ 100 (7)

Precision =
TP

TP + FP
∗ 100 (8)

Table 5. Model used and classification accuracy, specificity, sensitivity, F1 score, and precision of the
two tasks analyzed separately and of the two tasks combined.

Spiral le Spiral and le

Model Linear SVM Linear SVM Medium KNN
Accuracy 71.6% 75.5% 77.5%

Specificity 79% 73.7% 77.1%
Sensitivity 62.2% 77.8% 77.8%

F1 Score 65.9% 73.7% 75.3%
Precision 70% 70% 72.9%

Considering the two tasks separately, we obtained a higher accuracy for the “le”
bigram tasks than for the spiral tasks.

Moreover, considering the spiral and the “le” bigram task separately, the accuracy that
we obtained for the spiral (71.6%) was higher than the accuracy obtained for the spiral by
Dròtar et al. (62.8%) and, similarly, considering only the “le” bigram task, the accuracy that
we obtained (75.5%) was higher than the accuracy obtained by Dròtar et al. for this task
(71%).

The confusion matrix for each one of the three models (spiral, “le” bigram and com-
bined tasks) are reported on the Figure 4.
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Figure 4. Confusion matrix of the three models generated. In (a), (b), and (c), PD’ and C’ indicate,
respectively, subjects that were predicted to be subjects with PD and control subjects, while PD and
C indicate the true categories of the subjects. PD corresponds to PD patients and C corresponds to
healthy control subjects.

The highest accuracy (77.5%) and sensitivity (77.8%) were obtained by combining the
two tasks, while the highest specificity was obtained when using only the data from the
spiral task. The machine-learning algorithms that were employed were the support vector
machine (SVM) for the spiral task and the “le” bigram task, and the medium k-nearest
neighbors (Medium KNN) for the combined tasks.
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4. Conclusions

In this study, an application is presented that allowed us to register data from tablets
with a frequency of 133 Hz, in order to aid the recognition of PD through handwriting
impairments. The tool that is proposed is simple and easy to use, allowing subjects to
complete the test in the comfort of their home.

Data from 22 healthy subjects and 9 PD patients were collected and added to the
PaHaW database [11,20], a pre-existing dataset that includes data from PD patients and
healthy control subjects. Using only two of the eight tasks that the PaHaW database
includes, an accuracy of 77.5%, was obtained, close to the 85.61% accuracy that Dròtar et al.
obtained when considering all the eight tasks together [20]. We could not compare the
other tasks because the first language declared by our subjects (Italian) was different from
the first language of the PaHaW database’s subjects (Czech).

The major limitations of this study are linked to the limited number of subjects in-
volved and to the fact that we compared data from different databases, collected under
different experimental conditions, such as the position of the subject during the tasks, and
acquired with different devices, which could lead to a bias in the measurements. Moreover,
subjects’ characteristics such as age could lead to misclassification; for example, a control
subject could present some tremor or bradykinesia not linked to Parkinson’s disease, and
for this reason could be misclassified as a PD subject.

However, the protocol that we developed can be used in future studies to collect more
data from Italian PD subjects, in order to be able to create a model using only data from our
protocol, using the combination of six tasks proposed here (drawing of an Archimedean
spiral, writing the bigram “le”, writing two Italian phrases, drawing ten concentric circles,
and writing seven lines of free texts.

Moreover, this work is part of a home-monitoring project that aims to aid in PD
detection through a combined analysis of graphological and vocal signals [5].. The sets
of subjects tested for the vocal tasks and the graphological tasks were different from each
other, so we could not create a classification model using combined vocal and graphological
data, but the aim of this project is to continue to collect both vocal and graphological data
in order to create a single, more complete, classification model.
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