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Abstract

The goal of this thesis is to develop novel methods for the analysis of financial
data by using hidden Markov models based approaches. The analysis focuses on
univariate and multivariate financial time series, modeling interrelationships between
financial returns throughout different statistical methods, such as graphical models,
quantile and expectile regressions. The dissertation is divided into three chapters,
each of them examining different classes of assets returns for a comprehensive risk
analysis. The methodologies we propose are illustrated using real-world data and
simulation studies.
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Introduction and Overview

Hidden Markov models (HMMs) are mathematical representations of systems embed-
ding a hidden finite-state first-order Markov chain, describing the transition behavior
between a set of states over time. An HMM’s primary premise is that the observation
process is distorted by some “noise”, concealing the latent state of the system and
other unobservable informations. The latent state flexibility of these models can
provide an efficient methodological framework to capture the complex dynamics of
the data-generating process that might not be reproduced by simpler models, such as
unobserved time-dependent heterogeneity, serial correlation, clustered behaviors and
transitions between clusters. The birth of hidden Markov models can be traced back
to the 1960s when Baum & Petrie (1966) introduced them as new statistical methods.
The use of HMMs in an economic framework was pioneered in Hamilton (1989)
and Hamilton (1990), where for the first time the structure of an autoregressive
model with parameters driven by a hidden two-state Markov chain was introduced.
In the last decade financial literature has seen rise the number of applications of
HMMs. The work of Mergner & Bulla (2008) is one of the first to employ a latent
Markov dynamic to investigate the time-varying behavior of financial systemic risk.
De Angelis & Paas (2013), Bae et al. (2014), Nystrup et al. (2015, 2017), Giudici
& Abu Hashish (2020) have contributed to the discussion on the capabilities of
hidden Markov-based models to infer abrupt changes of volatility dynamic among
diverse financial markets, as stock, bond, commodity and cryptocurrency markets.
Multivariate hidden Markov settings have also been studied in Bernardi et al. (2017)
and Maruotti et al. (2019), where, in the last one, a hidden semi-Markov setting to
explicitly model the sojourn distribution for a time series of stock market returns
was introduced.
In a multivariate financial data framework recently a particular interest has grown
respect to the risk propagation issue, since investors, fund managers and regulators
aim for an early identification of systemic risk to proactively engage measures to
control financial stability. For this reason, network science has emerged as a useful
tool for describing systemic risk propagation and spillovers, where interactions among
random variables in a system can be represented in the form of graphs, whose nodes
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represent the variables and whose edges show their interactions. In this context,
Gaussian Graphical Models (GGMs) have received an enormous attention because
they provide a simple method to model the pair-wise conditional correlations of
a collection of variables, see for instance Lauritzen (1996), Lauritzen & Wermuth
(1989), Whittaker (2009).
As it is well known, in the context of quantitative risk management, beside the
analysis on interconnectedness, one of the main goal is the study of the dynamic
of extreme occurrences, being of utmost importance for market participants and
regulators. Since the seminal work of Koenker & Bassett (1978), quantile regression
has represented a valid approach for modeling the entire distribution of returns
while accounting for the well-known stylized facts, i.e., high kurtosis, skewness and
serial correlation, that typically characterize financial assets. Quantile models have
been extensively applied in finance and economics for estimating Value at Risk
(VaR) and quantile-based risk measures (Engle & Manganelli 2004, White et al.
2015, Taylor 2019, Merlo et al. 2021). Quantile regression methods have also been
generalized to account for serial heterogeneity. For example, Liu (2016) consider
a quantile autoregression in which the parameters are subject to regime shifts de-
termined by the outcome of a latent, discrete-state Markov process, while Adam
et al. (2019) propose a model-based clustering approach where groups are inferred
from conditional quantiles. One of the most relevant extension related to quantile
regression is provided by the expectile regression (Newey & Powell 1987), which is a
“quantile-like” generalization of the mean regression using an asymmetric squared
loss function. Similarly to the former, the latter allows to represent the entire
conditional distribution of a response variable and it possesses several advantages
theoretically and computationally (Tzavidis et al. 2016, Alfò et al. 2017, Nigri et al.
2022). For this reason, expectile models have been implemented in several fields,
especially in the context of risk management (Taylor 2008, Kim & Lee 2016, Bellini
& Di Bernardino 2017). However, to the best of our knowledge, hidden Markov
expectile regression models and their multivariate generalizations for both quantiles
and expectiles have not yet been proposed in the literature.
With this thesis we aim to fill this gap, introducing and developing new insights
and applications of HMMs in a risk management context using different classes of
assets returns. The dissertation is divided into three chapters, organized as follows.
In Chapter 1 we investigate the interconnections among and within the energy,
agricultural, and metal commodities, operating in a risk management framework
with a twofold goal. First, we estimate the Value-at-Risk (VaR) employing GARCH
and latent Markov GARCH models with different error term distributions. The use
of such models allows us to take into account well-known stylized facts shown in the
time series of commodities as well as possible regime changes in their conditional
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variance dynamics. We rely on backtesting procedures to select the best model
for each commodity. Second, we estimate the sparse Gaussian Graphical model of
commodities exploiting the Graphical LASSO (GLASSO) methodology proposed by
Friedman et al. (2008a) to detect the most relevant conditional dependence structure
among and within the sectors. Unlike other studies on commodity connectedness,
which are based on the single assumption on the vector of observations (Diebold
et al. 2017, Balli et al. 2019, Zhang & Broadstock 2020), we simultaneously address
the assessment of the market risk combining hidden Markov dynamics, backtesting
procedures and network analysis, building up a novel perspective in the literature of
risk management. We apply our approach to the sample of twenty-four series of com-
modity futures prices over the years 2005-2022. The content of this chapter is based
upon a joint work with Prof. Petrella L. and Prof. Giacomo Morelli, which has been
recently published in Foroni et al. (2022). In Chapter 2 we develop a linear expectile
hidden Markov model for the analysis of cryptocurrency time series in a risk man-
agement framework. The methodology proposed allows to focus on extreme returns
and describe their temporal evolution by introducing in the model time-dependent
coefficients evolving according to a latent discrete homogeneous Markov chain. As
it is often used in the expectile literature, estimation of the model parameters is
based on the Asymmetric Normal distribution. Maximum likelihood estimates are
obtained via an Expectation-Maximization (EM) algorithm using efficient M-step
update formulas for all parameters. We evaluate the introduced method with both
artificial data under several experimental settings and real data investigating the
relationship between daily Bitcoin returns and major world market indices. The
methods and findings of this analysis are the results of a collaborative work with
Prof. Petrella and Dr. Luca Merlo and the relative paper has been submitted to
an international journal. Finally, Chapter 3 generalizes the approach considered in
Chapter 2 to a multivariate setting. Specifically, the proposed methodology intro-
duces multivariate hidden Markov regression models for estimating quantiles and
expectiles of cryptocurrency returns using regime-switching copulas. The proposed
approach allows us to focus on extreme returns and describe their temporal evolution
by introducing time-dependent coefficients evolving according to a latent Markov
chain. To model the time-varying dependence structure of returns, we consider
elliptical copula functions defined by state-specific parameters. Maximum likelihood
estimates are obtained via an EM algorithm using efficient M-step update formulas
for all parameters. The goodness of the method is evaluated by means of simulation
studies, and the empirical analysis investigates the relationship between daily returns
of five cryptocurrencies and major world market indices. This work is the result
of a collaborative work with Prof. Petrella and Dr. Luca Merlo, and it has been
submitted to an international journal for publication.
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Chapter 1

The Network of Commodity
Risk

1.1 Introduction

The financialization of commodities (Tang & Xiong 2012; Cheng & Xiong 2014;
Basak & Pavlova 2016) has drawn the attention of risk managers and financial insti-
tutions on the propagation of the commodity risk that arises from the fluctuations of
commodity future price values (Joëts 2015; Marvasti & Lamberte 2016). Commodi-
ties are actively traded in financial markets and have been largely used for hedging
purposes (Kat & Oomen 2006). However, market volatility makes commodity prices
vulnerable to highly correlated shocks (Diebold et al. 2017) creating significant busi-
ness challenges that affect financial performances, exacerbate well-known spillovers
effects among commodities, and tight credit availability.
Hidden severe consequences affect the economic system as well, especially in those
countries where commodities are heavily employed as raw materials (Crude Oil,
Gasoline, Natural Gas, Copper, Aluminium, and agricultural commodities) in the
industrial sector. Indeed, UNCTAD (2019) reports that over the last two decades
67% of developing countries has been relying on commodities, a percentage that rises
to 80% when considering only the least developed countries. Therefore, a big concern
for risk managers and policy-makers becomes the monitoring of the propagation
of the commodity risk in commodity markets which requires the development of
new operational approaches (Aven 2016; Battiston et al. 2017; Giampietro et al.
2018). The understanding of the propagation of the commodity risk through the
financialization of commodities requires to be detected designing a framework that
accounts for the specific contribution of the single commodities to the market risk.
This is the aim of our work. The relevance of the issue is particularly highlighted
by the role of the commodity risk within the regulatory framework. The Basel
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Accords establish a minimum capital standard to cover the risk of holding or taking
positions in commodities and impose each bank subject to capital charges for market
risk to monitor and report the level of commodity risk against which a capital
requirement is to be applied (Basel Committee on Banking Supervision 2016). Over
the past decades, rich literature has flourished to propose valuable instruments for
measuring and quantifying such risk. The most employed market risk measure is the
Value-at-Risk (VaR), defined as the worst expected loss of an asset or a portfolio
given a certain confidence level and over a specific time period (Jorion 2006). It is a
crucial component of risk management when designing and monitoring an appropri-
ate modeling framework able to quantify commodity price risk exposure, avoiding
unexpected large losses (Aven 2016). In this paper, we propose a framework with
a twofold risk management goal: i) forecasting commodity risks and spillovers to
identify and understand the factors that drive commodity markets and ii) capturing
the impact of contagion of such risk on the stability of the financial system. We
combine an econometric and statistical set-up where several models are compared
and backtested to find the one that better estimates the VaR for each commodity
futures returns. The network is built on the residuals of the models chosen according
to a risk management approach. The network approach guides decision-makers in the
field through the investigation of the extent to which uncertainty in commodity prices
affects the practical transmissions of the commodity risks (Nguyen et al. 2020). More
specifically, we carry out the first task estimating the VaR of the commodities through
GARCH and Markov-switching GARCH (MS-GARCH) models with different distri-
bution of the innovations. The choice of GARCH-type models accommodates the
typical stylized facts of commodity time series such as volatility clustering, skewness,
kurtosis (Das & Sundaram 1997; De Luca et al. 2006; Wilhelmsson 2006; Adcock
et al. 2015), and regime changes in the conditional variance dynamics. We perform
model selection relying on targeted tests procedures and evaluate the model that
outperforms the others from a risk management point of view, i.e. from a VaR
forecasting perspective (Laporta et al. 2018). To do this, we use three backtesting
procedures: the Unconditional Coverage (UC) test of Kupiec (1995), the Conditional
Coverage (CC) test of Christoffersen (1998), and the Dynamic Quantile (DQ) test
of Engle & Manganelli (2004). We refer to Masala (2021) for a recent survey about
the role of backtesting procedures in commodity portfolios. To contemplate the
stylized facts of commodity returns, we consider various specifications in the model
selection procedure such as Normal GARCH, Skewed Normal GARCH, Student’s-t
GARCH, Skewed Student’s-t GARCH, Generalized Error GARCH, Skewed General-
ized Error GARCH, Normal MS-GARCH, Skewed Normal MS-GARCH, Student’s-t
MS-GARCH, Skewed Student’s-t MS-GARCH, Generalized Error MS-GARCH,
Skewed Generalized Error MS-GARCH, thus empowering our framework with the
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flexibility that the policy-maker needs. The second task deals with the estimation of
the interconnections among and within the commodity sectors considered. To explore
this issue we use a graphical model approach which is an intuitive way of representing
and visualizing the relationships among many variables. In particular, to manage the
interconnection structure of commodity markets, we exploit the Graphical LASSO
(GLASSO) methodology proposed by Friedman et al. (2008b) to estimate a sparse
Gaussian Graphical model and detect the strongest conditional dependencies among
the commodities. Since GLASSO relies on the assumption of gaussianity, we build
a Gaussian copula with marginals obtained from the residuals of the best model
evaluated under the backtesting criteria. Moreover, to synthesize the information
contained in the graphical model, we compute the eigenvector centrality measure
that shows the most relevant commodities within the network structure in terms
of the influence of each node in the graph. This allows us to guide decision makers
(Nguyen et al. 2020) ranking the commodities in the network according to their
importance in the propagation of the commodity risk. We collect the future prices
of twenty-four commodities belonging to the commodity sectors Agriculture, Energy,
and Metals over the sample period that spans from October 3, 2005 to March 25,
2022. Our findings show that the MS-GARCH outperforms GARCH models in 75%
and 58% of the cases before and after the Covid-19 pandemic, respectively. From a
graphical point of view, the network analysis reveals that commodities are overall
densely connected and the Covid-19 shock hits such connectedness reducing the
density of the graph by 18%. The degree of connectedness between the commodity
sectors is also affected. Inter-sectorial linkages are severely weakened as opposed to
those among commodities within the same sectors. In fact, before Covid-19 Coffee
and Soybean Oil present the maximum rate of connections with the Energy sector
coherently with Myint & El-Halwagi (2009), ?, and Al-Maadid et al. (2017) where
the spillover effect between Coffee and the energy sector results even increased after
the global financial crisis in 2008. With the outbreak of Covid-19, these patterns
have been disentangled. Concerning the specific roles of the commodities in the
network, Soybean Oil occupies the most central node in the graph only after the
pandemic while Natural Gas was the most connected until 2018 (in line with Ergen
& Rizvanoghlu 2016). Remarkable changes are also encountered in the safe-haven
commodities. Before Covid-19, they were Heating Oil, Soybean Meal, and Gold and
after the pandemic, they become Natural Gas UK, Gold, and Heating Oil. In a
similar spirit to our paper, other studies have investigated commodity connectedness
(Diebold et al. 2017; Zhang & Broadstock 2018; Balli et al. 2019). However, their
modeling frameworks are characterized by a common distributional assumption
for the commodities included in the analysis and do not simultaneously address
the assessment of the market risk. Indeed, the novelty of our approach lies in the
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combination of backtesting procedures, Gaussian Copula, and GLASSO estimation
approach for the network. Unlike traditional network estimation based on the single
assumption on the vector of observations, we build the network of commodity risk
basing on the residuals of GARCH-type models with underlying distribution selected
for each commodity through the backtesting procedures thus accommodating for
well-known stylized facts. The dependence structure of the residuals is captured
by the Gaussian Copula. Centrality measures retrieved from the sparse estimated
network are exploited to guide decision makers choices through commodity risk
management. To the best of our knowledge, this is the first paper that addresses
this issue. The rest of the paper is organized as follows. Section 1.2 discusses the
major strands of the literature to which this paper contributes. Section 1.3 provides
a brief outline of the employment of the GARCH-type models and the backtesting
procedures for model selection. Section 1.4 presents the GLASSO model. Empirical
results are reported in Section 1.5 and the conclusions are in Section 3.6.

1.2 Literature Review

The effects of commodity price fluctuations on the macro-economy have been pio-
neered in Hamilton (1983), and the connection with economic growth has been a
fruitful thematic in the financial literature (Deaton 1999; Browne & Cronin 2010; Kil-
ian & Vigfusson 2011; Umar & Spierdijk 2011; Cevik & Sedik 2014; Chen et al. 2014;
Baumeister & Kilian 2016; Charfeddine et al. 2020, Zaremba et al. 2019; Zaremba,
Umar, Mikutowski et al. 2021). Despite the key informational role of commodity
futures in addressing the monetary policy (Awokuse & Yang 2003; Hess et al. 2008)
the exposure of commodity price fluctuations to macro risk has been hard to price
(Roache 2008) due to the strong inter-sectorial dependencies, first documented in
Pindyck & Rotemberg (1990) and Ciner (2001). A rich literature has then focused on
the spillover effects between oil price and financial markets (Kang et al. 2017), and
oil price and other commodities (Baffes 2007; de Nicola et al. 2016) such as precious
metals (Ewing & Malik 2013; Rehman et al. 2018), agricultural (Du et al. 2011;
Nazlioglu 2011; Nazlioglu et al. 2013), energy (Reboredo 2015; Ferrer et al. 2018;
Tiwari et al. 2019), and, more recently, the impact of climate related variables on the
co-movements of commodity prices that affect the stability of the financial system
(Flori et al. 2021). Besides, commodity price behavior shows small trends and big
variability that affects market preferences also in the long-run (Cashin & McDermott
2002; Tiwari et al. 2021; Christodoulakis 2020). Spillovers effects have particularly
intensified since 2004, the onset of the financialization of commodity markets (Tang
& Xiong 2012; Cheng & Xiong 2014; Henderson et al. 2015; Basak & Pavlova 2016).
From that moment onward, commodities have been considered among the likely
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sources of financial distress due to the centrality of the role acquired. Gradually, they
have revealed to be responsive to macro-economic shocks and to investors sentiment
(Smales 2014; Gelos & Ustyugova 2017; Ramiah et al. 2019; Umar, Gubareva &
Teplova 2021 ) and to be strongly connected to widely spread financial instruments
(Malik & Umar 2019; Naeem et al. 2020; Zaremba, Umar & Mikutowski 2021). Major
operational and management implications caused by the financialization of commodi-
ties spring up in the uncertainty of the decision-making processes for the related
industries. Examples concern the role of supporting the management of refinery
operations and productions of oil and gas, or the management generator operations
and the supply chain due to the non-storable nature of the production of energy, as
discussed in Andriosopoulos & Nomikos (2014), Gabrel et al. (2014), Joëts (2015),
Aven (2016), and Nguyen et al. (2020). Such relevance of commodities from various
perspectives of the financial system has encouraged the assessment of the market
risk for commodity markets (see, among others, Pilipovic 2007). Giot & Laurent
(2003) introduce the use of VaR to compute the contribution of the commodities to
the market risk and find that for market participants trading short positions the
risk arises from an increase in commodity prices, while for long positions it is given
by a price drop. Marimoutou et al. (2009) apply VaR to the oil market and Aloui &
Mabrouk (2010) study VaR estimations of energy commodities documenting financial
stylized facts such as long-memory, asymmetry, and fat tails. Laporta et al. (2018)
investigate the selection of VaR for energy commodities, whereas Algieri & Leccadito
(2017) and Ji, Bouri, Roubaud & Shahzad (2018) propose a (Co)VaR based model
to study risk spillovers between energy and non-energy commodity markets. Shen
et al. (2018) integrate VaR estimation in a Vector Autoregression (VAR) to evaluate
the risk transmission channel in energy markets. An alternative approach to address
systemic risk in a VaR set-up is through copula (Mensi et al. 2017). VaR forecasting
may help risk managers and regulators to evaluate the exposure to unexpected
loss and consequently calibrate the overall riskiness of financial markets. Besides
VaR computation, many studies have delved into the analysis of the connectedness
among commodity markets (Diebold et al. 2017; Balli et al. 2019; Umar, Jareño &
Escribano 2021; Umar et al. 2022) and between commodity and financial markets.
Ji & Fan (2016) propose a graph analysis of the evolution of the world crude oil
market whereas the works of Diebold et al. (2017), Zhang & Broadstock (2018),
and Balli et al. (2019) derive the connectedness of commodities from the Diebold &
Yılmaz (2014) forecast-error variance decomposition matrix of a vector autoregressive
(VAR) model. In Diebold et al. (2017), the VAR is constructed from the range-
based realized volatility of Garman & Klass (1980), whereas in Balli et al. (2019)
it comes from the commodity uncertainty index proposed in Chuliá et al. (2017)
that builds on the residuals of a generalized dynamic factor model. These studies
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have tackled several relevant issues in the analysis of the mechanisms of commodity
markets1. However, the major research questions concerning the financialization
of commodities, commodity connectedness, and the assessment of the market risk
remain separately addressed. In particular, in the field of the study of commodity
connectedness, the modeling framework of the previous literature exploits common
distributional assumptions for the commodities while commodity risk management
requires models that account for the structural differences between the commodities
to gauge the different risk exposures. Hence, for a robust detection of the major
risk transmitters in commodity markets, methodologies must be integrated with
new approaches that consider the stylized facts of the single commodities. For this
reason, we propose a framework that merges commodity connectedness and modeling
selection according to market risk criteria.

1.3 Model Specifications

It is well-known that the time series of commodities show most of the stylized facts
detected in financial markets such as skewness, kurtosis, and volatility clustering.
Moreover, recent studies have shown that the variance process often exhibits regime
changes (Haas et al. 2004) and that ignoring this feature affects the precision of
the volatility forecast (Danielsson 2011). Throughout the paper, we consider the
GARCH(1,1) and MS-GARCH(1,1) models with different conditional distribution
DΘ(·) to account for stylized facts. Overall, our framework includes 12 model
specifications, recovered as a combination of:

• the conditional variance specification: GARCH(1, 1) and MS-GARCH(1,1);

• the choice of the conditional distribution DΘ ∈ {norm, snorm, std, sstd, ged,
sged}.

We detail the description of the model specification in the Appendix. The choice
of the conditional variance specifications are supported by the works of Bollerslev
et al. (1992), Sadorsky (2006), Huang et al. (2009) and, especially, Hansen & Lunde
(2003). Moreover, GARCH(1,1) models have proved good fitting performance on
commodities (Laporta et al. 2018). We remark that the specifications considered are
only intended to provide an example of design of policy for commodity markets that
simultaneously addresses the commodity interdependencies and the exposure to the
market risk. Among the conditional distributions, we include the standardized skewed
version of each model implemented via the Fernández & Steel (1998) transformation.

1We refer to Tables 1.4, 1.5, 1.6, 1.7, 1.8 in the Appendix for a global summary of the works on
commodity markets.
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We denote the standardized Skewed Normal, the Skewed Student’s-t, and the Skewed
Generalized Error Distribution by "snorm", "sstd", and "sged", respectively. For the
MS-GARCH specification, we focus on double-regime MS-GARCH models accounting
for low and high volatility levels, thus the scale and asymmetry parameters vary
with the regimes. In line with the first goal of the paper, we consider a wide range of
models and use a risk management approach that selects the best models to accurately
predict future risks, especially in the case of volatility models (Christoffersen &
Diebold 2000). We select the model that provides the most reliable forecast of the
VaR performing backtests (Christoffersen 2010).

1.4 Sparse Gaussian Graphical Model

The second goal of the paper is to study the interdependence among and within
the commodity sectors. To achieve this purpose, we rely on the Gaussian Graphical
Lasso (GLASSO) methodology proposed in Friedman et al. (2008b). GLASSO
allows us to build an undirected Gaussian graphical model and perform a network
representation of the connections of the commodity risks where only the most
relevant intra- and inter- sectorial linkages are highlighted. This is conveniently
accomplished estimating a sparse conditional dependence structure among the
commodities. That is, we estimate the inverse Gaussian covariance matrix, Ω = Σ−1,
where the zero off-diagonal elements correspond to a pair of commodities returns
that are conditionally independent (Hastie et al. 2015). More specifically, GLASSO
builds on Tibshirani (1996) where a penalized maximum likelihood problem shrinks
to zero some coefficients through a L1-norm penalty term as follows:

Ω∗ = arg maxΩ log(det Ω − tr(ΣΩ) − ρ ∥Ω∥1), (1.1)

where tr(·) denotes the trace operator and ∥Ω∥1 the L1-norm that can be calculated
as the sum of the absolute values of the elements of Ω. The parameter ρ controls
for the size of the penalty and it determines the number of zeros in the sparse
precision matrix Ω: a higher (lower) value is responsible for a more (less) sparse
matrix. Like most of the shrinking methodologies, the right choice of the penalization
parameter ρ is fundamental to obtain a reliable selection. To estimate the optimal
value of ρ, we minimize the Extended Bayesian Information Criterion (EBIC, Chen
& Chen 2008) which has been shown to work particularly well in retrieving the
true network structure (Foygel & Drton 2010, Barber et al. 2015) and it is a
computationally efficient alternative to cross-validation (Yuan & Lin 2007). The
criterion is indexed by the hyperparameter γ ∈ [0, 1]. Typical values of γ are 0, 0.5
or 1 with values closer to 1 leading a stronger penalization. For this reason, in the
empirical application of this paper we choose γ = 1. As stated above, GLASSO
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relies on the assumption of Gaussianity introduced through the Gaussian copula.
In particular, the copula approach provides the framework to model multivariate
associations from the univariate distributions of the observed variables. In the
case of the d–random vector, X = (X1, . . . , Xi, . . . , Xd), with marginal cumulative
distributions Fi(xi) = P (Xi < xi), we can define the joint cumulative distribution
function (cdf) as F (x) = P (∩d

i=1Xi < xi). In many cases, the margins of the cdf
are relatively easy to describe, but an explicit expression of the joint distribution
may be difficult to obtain. When X ∼ Nd(µ, Σ) is a Gaussian random vector then
its copula is called Gaussian copula. Denoting ui ≡ Fi(xi), the Gaussian copula is
defined by the cdf CGa(u1, . . . , ui, . . . , ud) = P (∩d

i=1Φ(Xi) ≤ ui) = Φ(∩d
i=1Φ−1(ui))

where Φ−1(·) is the univariate standard Gaussian quantile function and Φ(·) is the
d-variate Gaussian cdf with mean 0 and covariance matrix Σ.

Network Metrics

Network metrics are used to synthesize the information contained in a graphical
model. In this section, we briefly introduce the definitions and the metrics that
we use to detect the position of a commodity within the network. We define an
undirected graph as an ordered pair of two disjoint sets (V, E), where V is the set of
vertices and E is the set of edges, consisting of pair of elements taken from V . We
denote the number of vertices with n = |V | and the number of edges with m = |E|.
The density, D, of the graph is given by the ratio between the number of edges and
the number of possible edges:

D = 2m

n(n − 1) . (1.2)

Vertices i and j are adjacent if the undirected edge between i and j is in the set E,
and a line connects them in the diagram of the graph. The matrix representation of
such a graph is obtained via the adjacency matrix, AG, of the inverse covariance
matrix, Ω. The single element in AG = (aij) is aij = 1 if the corresponding element of
the inverse covariance matrix is positive, aij = 0 if the corresponding element is zero.
Hence, the graph contains an edge that links two vertices i and j if and only if aij = 1.
A simple yet fundamental metric is the degree of a node defined by ki =

∑
j aij ,

which measures the number of neighbors of the node. Centrality measures are crucial
metrics used in the network topology to highlight nodes that occupy critical positions
in the graph. For instance, the eigenvector centrality, or Gould’s index of accessibility
(Gould 1967), indicates which are the most geographically central and important
nodes, and it has been exploited in financial applications to capture the capacity
of an agent to cause systemic risk (Billio et al. 2012). It builds on the eigenvector
assigned to the leading eigenvalue of the adjacency matrix to assign a relative score to
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the nodes, depending on how connected they are to the rest of the network. A metric
that is strictly related to the eigenvector measure is the eigenvector community
structure (Newman 2006), which allows us to create a subgraph starting from a
group of vertices densely connected, linked with other groups of vertices through
sparse connections. The eigenvector community structure depends on the spectrum
of the modularity matrix B, with elements defined as:

bij = aij − kikj

2m
. (1.3)

aij are the elements of the adjacency matrix and kikj

2m is the number of edges between
vertices i and j if edges are placed at random, where ki and kj are the degrees of the
vertices, and m = 1

2
∑

i ki is the total number of edges in the network. The algorithm
to compute the eigenvector community structure calculates the leading eigenvector
of the modularity matrix and divides the vertices into two groups according to the
signs of the elements in this vector. The values of the leading eigenvector assess the
importance of each vertex in its community: a larger (smaller) value corresponds to
a more (less) central member.

1.5 Empirical Results

1.5.1 Data Description

We collect data of twenty-four time series of commodity futures prices from Bloomberg
over the period that spans from October 3, 2005 to March 25, 2022 for a total of
4300 observations. The commodities in the sample belong to the commodity sectors
Agriculture, Energy, and Metals and are divided as follows:

• Agriculture: Coffee (KC1), Oats (O1), Soybeans (S1), Wheat (W1), Cocoa
(CC1), Corn (C1), Rough Rice (RR1), Cotton (CT1), Sugar (SB1), Soybean
Oil (BO1), Soybean Meal (SM1), and Orange Juice (JO1).

• Energy: Gasoline (XB1), Heating Oil (HO1), Low Sulfur Gasolio (QS1),
Natural Gas (NG1), Ethanol (DL1), WTI Crude Oil (CL1), and Natural Gas
UK (FN1).

• Metals: Gold (GC1), Silver (SI1), Palladium (PA1), Copper (HG1), and Zinc
(LX1)

Daily returns with continuous compounding are calculated taking the logarithm of
the difference between closing prices in consecutive trading days and then multiplied
by 1002. In Table 1.3 we report the summary statistics of the log-returns of the

2Since daily returns are generally small in monetary units, they have been multiplied by 100 to
avoid numerical errors in computer programs.
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commodities as in Laporta et al. (2018) before and after the outbreak of Covid-19.
The distribution of the returns for each commodity displays fat tails and serial
correlation. The Jarque-Bera test significantly rejects the normality behavior of
daily returns, the ARCH Lagrange Multiplier and the Augmented Dickey-Fuller tests
suggest the presence of autoregressive conditional heteroskedasticity and the absence
of unit roots, respectively. Ethanol and Natural Gas are the only commodities with
negative average returns and show high standard deviation. The maximum, however,
is reached by WTI Crude Oil with 20.7. The distributions of the commodity returns
generally exhibit negative skewness with Natural Gas, Natural Gas UK, Wheat,
and Coffee as the only exceptions. The returns of these four commodities are then
featured by extreme positive values. The impact of Covid-19 is captured in the higher
kurtosis and standard deviation which are amplified in response to the growing
level of uncertainty in the market. Besides, the distribution of the returns of the
commodities tends to be more negatively skewed indicating the stronger propensity
to undergo high losses.

1.5.2 Backtesting Results

We perform backtests over 2699 observations using 1600 days as estimation window.
The width of the rolling window allows us to obtain significant estimates of the
parameters while providing a trustworthy picture of the fluctuations in the market.
Also, an amplitude of six years is sufficient to capture the evolution and major regime
changes in the returns. In particular, we include the entire period of the recession in
the United States that began in December 2007 and ended in June 2009 according to
the National Bureau of Economic Research3. For each time series of commodities, we
fit GARCH and MS-GARCH with conditional distribution DΘ ∈ {norm, snorm, std,
sstd, ged, sged}. The computational analysis is conducted using the software R and
the package "MSGARCH". We point out that the introduction of GARCH models is
only intended to accommodate the different behaviors of commodity returns within
a risk management perspective based on the VaR predictability of the model. We
choose the best model out of the 12 models considered according to the backtesting
procedures described in the Appendix. We backtest each GARCH-type estimated
VaR using the Unconditional Coverage (UC) test of Kupiec (1995), the Conditional
Coverage (CC) test of Christoffersen (1998), and the Dynamic Quantile (DQ) test
of Engle & Manganelli (2004). We are concerned with the downside risk at two
confidence levels: 95% and 99%. The best models are selected choosing among
those that show a p-value higher than the 5% significance level in at least two
out of three tests. To determine the final model, we pick the one with the highest

3The official arbiter of U.S. recessions.
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p-value relative to the DQ test on the 95-th quantile level. This choice is motivated
by a trade-off between the risk management perspective and the need to have an
adequate number of observed violations of the estimated quantiles. Backtesting
results are represented in Tables 1.9, 1.10, 1.11, 1.12 1.13, 1.14, 1.15 and 1.16.
Overall, many of the model specifications succeed in forecasting the returns volatility
of the commodities. On the one hand, we find no prevalence for the asymmetric
distributions over the symmetric ones. On the other hand, we detect a considerable
prevalence of the Markov-switching specification which feature 14 commodities out of
24 (Table 1.1). This result contributes, among others, to the findings in Bulla & Bulla
(2006) and Ardia et al. (2018), that show that the Markov-switching specification
better captures the breaks in the dynamics of the volatility of financial returns. The
effect of Covid-19 is found in the reduced number of optimal MS-GARCH models.
Thus, the shock of the pandemic has affected the propensity of regime changes of
the volatility of the commodities to describe the evolution of VaR exceedances.

Commodity Distribution Regime

Gold GED MS-GARCH
Silver Student’s-t MS-GARCH
Copper Skewed GED MS-GARCH
Palladium Student’s-t MS-GARCH
Zinc Gaussian GARCH

WTI Crude Oil Student’s-t MS-GARCH
Heating Oil Skewed Gaussian GARCH
Low Sulfur Gasolio Skewed GED MS-GARCH
Natural Gas Skewed Student-t GARCH
Gasoline Gaussian GARCH
Natural Gas UK GED GARCH
Ethanol Skewed Gaussian MS-GARCH

Corn Student’s-t MS-GARCH
Oats Student’s-t MS-GARCH
Rough Rice Student’s-t MS-GARCH
Soybeans Student’s-t GARCH
Wheat Skewed Gaussian MS-GARCH
Cocoa Student’s-t GARCH
Cotton GED GARCH
Coffee GED GARCH
Sugar Gaussian MS-GARCH
Soybean Oil Gaussian MS-GARCH
Soybean Meal Skewed Student’s-t MS-GARCH
Orange Juice Student’s-t GARCH

Table 1.1. Best models for the commodities selected according to the backtesting criteria.
Sample period: October 3, 2010 - March 25, 2022.
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1.5.3 The Network of Commodity Risks

We turn the analysis to the estimation and discussion of the network structure among
the commodities in the sample. To achieve the estimation of the graph, we fit the
Gaussian Copula on the residuals obtained from the GARCH-type model selected
according to the the backtesting results. Therefore, the marginals of the Gaussian
Copula are given by the distribution of each series of residuals. Then, we estimate the
tuning parameter for the GLASSO minimizing the EBIC. To quantify the degree of
connectedness within the graph and among specific underlying clusters, we compute
the network metrics described in Section 1.4. Figure 1.1 shows the network of
commodity risks. The computational analysis is conducted using the software R and
the package "GLASSO". The graph is estimated using the optimal tuning parameter
ρ = 0.0158 and the size of the nodes in Figure 1.1 is proportional to the eigenvector
centrality score. The density D = 0.61 highlights the strong interconnections in the
network. This result is explained in part because of the well-known spillover effects
(Du et al. 2011, Nazlioglu et al. 2013) originated from the dependence that links
commodities to cycles of production and consumption, and in part because of the
effects of the financialization of commodities. The graphical representation of the
results has brought relevant information to the analysis of the network of commodity
risk, making easy the interpretation of results, and strengthening previous literature
in this field. For instance, the safe-haven role of Gold is immediately captured. In
fact, it represents one of the least central nodes in the network. This implies that
it has a poor dependence relation with the other commodities and therefore it can
be a good investment in anticipation of high volatility periods. Copper is the first
central metal commodity in the graph. It is a cheap and plentiful metal, among
the most traded in the world markets, and in the years has seen its consumption
rise, especially because of building construction and electronic products. Palladium
has seen its consumption rise too. Their centrality, together with that of Coffee,
provides useful information to investors in the financial markets and serves as a
barometer for the stability of the financial markets of large parts of Asia and South
America. In Table 1.17 we report the relative connections for each commodity
defined as the ratio between the number of active connections that the commodity
has with a certain sector and the maximum number of possible connections with
that sector. For example, Gold has 3 connections with the Metal sector, dividing
by the maximum number of possible connections of the metal sector, i.e. 4, we get
the value of 0.75. Most of the commodities exhibit the highest connection with the
corresponding sector. In particular, this is the case of Copper and Palladium and
Silver for the Metal sector, WTI Crude Oil, Low Sulfur Gasoil, and Natural Gas for
the Energy sector. It is interesting to notice that some commodity shows particular
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rates of connection with other sectors. It is worth noting that some commodity
show particular rates of connection with other sectors. For example, in the Metals
sector, Palladium reports that connection rate of 0.75 with the Agriculture sector.
Regarding the Energy sector, Low Sulphur Gasolio shows the maximum rate of
connection with the Metals sector (0.80). Concerning the Agricultural sector, Oats,
Cocoa, Coffee, and Soybean Oil have high connection rates with other sectors. The
high rate of connections among Coffee and the Energy sector is coherent with Al-
Maadid et al. (2017) where the authors find the spillover effect between Coffee and
the Energy sector to be even increased during the post-crisis period. Soybean Oil
presents the maximum connection rate with the Energy sector. This confirms a
result found in Myint & El-Halwagi (2009) and Dunis et al. (2009). Still, Biodiesel
production in the U.S is based predominantly on the use of Soybean Oil, precisely
for the 82% (Ajanovic 2011).

In Table 1.18 the connection rate between the three considered sectors is shown.
We divide the total number of connections that an entire sector has with another
sector by the maximum number of possible connections between the two sectors
considered. For example, there are 14 connections between metals and energy sectors,
dividing by the maximum number of possible connections, i.e. 35, we get a ratio
of 0.40. The highest connection rates lie on the main diagonal. Interestingly, the
pandemic has strengthened the relationships between the commodities belonging
to the same sector and weakened the inter-sectorial linkages. Before Covid-19,
agriculture and energy commodities exhibited strong dependence also supported
by other studies (Barbaglia et al. 2016; Tyner 2010; Rezitis 2015). Such a link can
be explained as a cause of the introduction of biofuels, that have intensified the
ties between the sectors, as well as the need for efficient transport for perishable
commodities like the agricultural ones. The degree of connectedness between the
energy and agricultural commodity market, and between agricultural and metals,
highlights the great effect produced by the financialization of commodity markets.
The outbreak of Covid-19 has remarkably diminished the strength of inter-sectorial
relationships. One hypothesis for this lies on the fact that during normal times
trades are more liberalized while during periods of market turmoils the level of trust
of investors is impaired. Moreover, in the specific event of the Covid-19 pandemic,
the demand and supply economic chain has majorly hit with the abrupt interruptions
of most economic activity therefore concerning the classes of commodities that are
employed in the related industrial processes. Furthermore, we sort the considered
commodities in terms of eigenvector centrality identifying the group of the “most
connected” commodities. Table 1.2 shows the eigenvector centrality scores. Soybean
Oil is the most important in terms of centrality. This is explained by the fact that
Soybean forms a large proportion (over 1/5-th) of the agricultural output of US
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farmers (Dunis et al. 2009; Ajanovic 2011), mainly because it is the most used
agricultural commodity for biodiesel production in the US (Myint & El-Halwagi
2009). Cotton, Soybean Oil, and Copper are used as raw material or inputs for
industries (Balli et al. 2019) and their prices are subject to demand-side shocks that
are highly correlated, which can explain their prominent position in the eigenvector
centrality. On the contrary, it is worth noting that Gold and Natural Gas UK
lies in the lowest positions in terms of centrality. Less central nodes suggest a
more stable and isolated behavior, highlighting safe-haven assets. As Balli et al.
(2019) point out in their study of commodity connectedness, Gold is known for his
hedging abilities in crisis time and is therefore an alternative investment vehicle.
We strengthen their findings ranking the position of commodities in the network
with the use of eigenvector centrality and find that indeed that this commodity
occupies one of the lowest positions in the Table 1.2. Finally, to investigate the
existence of clusters in the network of commodity risk we split the estimated graph
into different clusters. We estimate three sub-graphs as presented in Figure 1.2 and
Table 1.19, which highlight the cluster for each commodity. The first cluster contains
6 nodes: it includes the entire Metal sector and one agricultural commodity (Cocoa).
The second cluster contains 11 nodes: the entire agriculture sector, apart from
Cocoa and Orange Juice, and Ethanol. The results confirm the strong interactions
among Ethanol and agricultural commodities, which are generally higher than the
interactions between oil and gas and agricultural markets (Chiou-Wei et al. 2019).
The third cluster includes all the Energy commodities, apart from Ethanol, and
Orange Juice. The results confirm the tendency of each node to attach preferably to
a node of the same sector, with few exceptions.
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Metals
GC1: Gold
SI1: Silver
PA1: Palladium
HG1: Copper
LX1: Zinc
Energy
HO1: Heating Oil
QS1: Low Sulfur Gasolio
XB1: Gasoline
NG1: Natural Gas
DL1: Ethanol
CL1: WTI Crude Oil
FN1: Natural Gas UK
Agriculture
O 1: Oats
W 1: Wheat
CC1: Cocoa
C 1: Corn
CT1: Cotton
SB1: Sugar
BO1: Soybean Oil
SM1: Soybean Meal
JO1: Orange Juice
KC1: Coffee
S 1: Soybeans
RR1: Rough Rice

Figure 1.1. Sparse Gaussian graphical model built on the residuals following the distribution
selected according to the backtesting criteria and then aggregated into a Gaussian copula.
The optimal tuning parameter for the implementation of the GLASSO is 0.0158. The
size of each vertex is proportional to the corresponding Eigenvector Centrality coefficient.
Sample period: October 3, 2005 - March 25, 2022.
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Figure 1.2. Community structure obtained via optimizing the modularity score. Size of the
vertices change accordingly to the corresponding eigenvector centrality score. Sample
period: October 3, 2005 - March 25, 2022.
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Eigenvector centrality

Soybean Oil 1.00
Cotton 0.94
Coffee 0.86

Copper 0.82
Silver 0.82

Palladium 0.82
Low Sulfur Gasolio 0.81

Rough Rice 0.80
WTI Crude Oil 0.79

Oats 0.77
Sugar 0.74

Ethanol 0.72
Corn 0.71

Orange Juice 0.70
Gasoline 0.68

Soybeans 0.68
Zinc 0.65

Cocoa 0.65
Soybean Meal 0.63

Natural Gas 0.62
Wheat 0.59

Heating Oil 0.42
Gold 0.38

Natural Gas UK 0.32

Table 1.2. Eigenvector centrality scores of the commodities in the sample in decreasing
order. Sample period: October 3, 2005 - March 25, 2022.

1.6 Conclusions

In this paper, we investigate the connectedness within commodity markets relying on
a risk management perspective. Building upon the Sparse Graphical Lasso (GLASSO)
methodology, we build the network of commodity risk basing on the residuals of
GARCH-type models with underlying distribution selected for each commodity
through a risk management approach. The risk management approach enters the
model selection criteria designed to identify the best model for the assessment of the
contribution of the commodities to the market risk. Such criteria exploits traditional
backtesting procedures to evaluate the Value-at-Risk predictability of the set of
the models considered. We apply the methodology to the sample of twenty-four
commodity futures prices over the period that spans from October 3, 2005 to March
25, 2022. Overall, we find that commodities show a moderate degree of connectedness
within their network structure. The Covid-19 crisis has affected the interconnections
increasing the heterogeneity within commodity markets as captured by the creation
of three underlying clusters instead of the two that are estimated without including
the pandemic in the sample period. However, the clusters identified mostly coincide
with the three commodity sectors indicating that the additional heterogeneity is
reflected in emphasized connections between commodities that belong to the same
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commodity sector. From the quantitative viewpoint, this finding is also endorsed by
the lower eigenvector centrality scores, weakened degree of connections between the
commodities and the other sectors, and density of the graph which has decreased by
18.6%. The pandemic has also influenced the proportion of optimal MS-GARCH
models in the sample which has gone from 75% to 58%. The response of the network
of the commodity risks to the recent persistent market uncertainty proves that global
increasing connectedness does not represent a crisis stylized fact. Our work is
especially valuable to risk managers and policy-makers involved in the monitoring of
the propagation of the commodity risk. Unlike previous studies on the assessment of
the network of commodities, our methodology provides linkages that are determined
conditionally on the ability of the models to forecast the VaR. In this way, the
architecture of commodity markets depicts connections that incorporate information
on the contribution to the market risk besides the underlying relationships that
feature the commodities. This allows regulators and risk managers to infer more
appropriate contribution of the commodity risks to the market risks since the risk
exposure of each commodity has been conveniently modeled. Our findings reveal
useful in this context providing information on the most relevant threats to the
stability of commodity markets and, therefore, to design of tailored strategies for
the mitigation of the commodity risk. An immediate extension of our framework
would consider either the application of the Gaussian Graphical model set-up to
different network specifications or the implementation of non-Gaussian copulas.
Another departure from our model is the consideration of long memory among
the typical stylized facts of the volatility process. A third possible insight regards
the employment of a more flexible class of models for the MS-GARCH, as the
semi-Markov model where the sojourn-distribution is explicitly modeled rather than
implicitly assumed to be geometric. This is the object of ongoing research.
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1.7 Appendix

1.7.1 A. Models Specifications

GARCH Models

Consider the time series of the log-return yt whereby t = 1, . . . , T . According to the
GARCH(1,1) model, yt can be decomposed into:

yt = µ + ϵt, (1.4)

where the series of the residuals ϵt presents conditional heteroskedasticity. More
specifically, ϵt =

√
ht zt and the innovation term zt follows the continuous standard-

ized distribution DΘ (0, 1, ) with Θ as the set of parameters. The dynamics assumed
for the conditional volatility ht is:

ht = α0 + α1ϵ2
t−1 + α2ht−1, (1.5)

where α0, α1, and α2 are simultaneously estimated through maximization of the
log-likelihood. To ensure the positiveness of ht and the covariance-stationarity, the
parameters must satisfy respectively the conditions α0 > 0, α1 ≥ 0, and α2 ≥ 0 and
α1 + α2 < 1.

MS-GARCH Models

Unlike GARCH models, Markov-switching GARCH (MS-GARCH) models allow
the coefficients (α0, α1, α2, Θ) to change over the regimes considered. According to
the MS-GARCH(1,1) specification, the dynamics log-returns and the conditional
volatility are described as follows:

yt = µ + ϵt, ϵt =
√

hkt ηkt , ηkt |(st = k, Ft−1) ∼ DΘk
(0, 1), (1.6)

hkt = αk0 + αk1ϵ2
t−1 + αk2hkt−1 , (1.7)

where the latent variable st, defined on the discrete space {1, ..., K}, evolves
according to an unobserved first-order ergodic homogeneous Markov chain with
transition probability matrix:

P =


p1,1 · · · pK,1

... . . . ...
p1,K · · · pK,K

 with pi,j = P(st = j|st−1 = i). (1.8)

For each regime, the estimation of the parameters of the model is carried out
with Maximum Likelihood. As for the GARCH model, the positiveness of hkt is
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obtained requires αk0 > 0, αk1 > 0, and αk2 ≥ 0, while covariance-stationarity relies
on αk1 + αk2 < 1, (k = 1, . . . , K).

Description of Backtests

The Unconditional Coverage (UC) test of Kupiec (1995) assesses the statistical
significance of the frequency of exceedances of the log-returns over the VaR. The
test builds upon the following system of hypothesis:

{
H0 : π = τ

H1 : π ̸= τ
, (1.9)

with test statistics the likelihood ratio:

LRuc(τ) = −2 × log
[

L(τ)
L(π)

]
= −2 × log

[
τn1(1 − τ)T −n1

πn1(1 − π)T −n1

]
, (1.10)

where n1 is the number of exceedances encountered. The statistic LRuc is
asymptotically distributed as a chi-squared with one degree of freedom, χ2

1.
The Conditional Coverage (CC) test of Christoffersen (1998) gauges the time

dependence between VaR exceedances. A first-order Markov structure for the
dependence of the hits is given by the transition probability matrix Π:

Π =
[
1 − π01 π01

1 − π11 π11

]
, (1.11)

with π11 (π10) that indicates the probability of observing a VaR exception in t

given that in t − 1 no violation is registered:

π11 = P(It = 1|It−1 = 1)

π10 = P(It = 1|It−1 = 0)
(1.12)

and 1 − π01 and 1 − π11 are the respective probability of a non-violation in t.
The independence hypothesis that π01 = π11 is tested with the likelihood ratio:

LRcc = −2 log (1 − π)n0πn1

(1 − π01)n00πn01
01 πn11

11 (1 − π11)n10
∼ χ2

2, (1.13)

where n0 and n00 are the number of times a non-violation is encountered and
the number of times it is followed by another non-violation, respectively. On the
contrary, n11 is the number of times a violation is followed by another one, n10 (n01)
counts the times a violation is followed by a non-violation (viceversa). The Dynamic
Quantile (DQ) test of Engle & Manganelli (2004) can be interpreted as an overall
goodness-of-fit test for the estimated VaR. Engle & Manganelli (2004) consider that
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the conditional expectation of a quantile violation given any information known
at t − 1 should be exactly τ . Hence, a linear regression model is set up where
the sequence of violations represents the dependent variable while past violations
or any other variables in the information set determine the set of explanatory
variables. Denoting the set of parameters in the regression δ̂ = (δ̂0, ..., δ̂q−1)′, and
Z the corresponding data matrix with columns given by the observations for the
q explanatory variables, the DQ test statistic for the null hypothesis of correct
unconditional and conditional coverage is:

DQ1−τ = δ̂′Z′Zδ̂

(1 − τ)τ . (1.14)

Under the null hypothesis, the test statistic is distributed as a χ2 with q degrees of
freedom where q is the number of lagged violations introduced in the aforementioned
regression model.
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1.7.2 B. Figures
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Figure 1.3. Log-returns of the commodities by sector. Agriculture: Coffee (KC1), Oats
(O1), Soybeans (S1), Wheat (W1), Cocoa (CC1), Corn (C1), Rough Rice (RR1), Cotton
(CT1), Sugar (SB1), Soybean Oil (BO1), Soybean Meal (SM1), Orange Juice (JO1).
Energy: Gasoline (XB1), Heating Oil (HO1), Low Sulfur Gasolio (QS1), Natural Gas
(NG1), Ethanol (DL1), WTI Crude Oil (CL1), Natural Gas UK (FN1). Precious Metals:
Gold (GC1), Silver (SI1), Palladium (PA1). Industrial Metals: Copper (HG1), and Zinc
(LX1). Sample period: October 3, 2005 - March 25, 2022.
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Mean SD Skewness Kurtosis J.B L.B** ARCH.LM ADF

Gold 0.03 1.14 -0.35 5.75 0.00 0.00 0.00 0.01
Silver 0.03 2.08 -0.88 7.10 0.00 0.00 0.00 0.01

Palladium 0.06 2.12 -0.55 10.49 0.00 0.00 0.00 0.01
Copper 0.02 1.74 -0.14 4.07 0.00 0.00 0.00 0.01

Zinc 0.03 2.19 -0.94 21.27 0.00 0.00 0.00 0.01

WTI Crude Oil 0.01 20.70 -4.29 2084.02 0.00 0.00 0.00 0.01
Heating Oil 0.02 2.15 -0.80 11.35 0.00 0.00 0.00 0.01

Low Sulfur Gasolio 0.01 2.11 -1.64 38.33 0.00 0.00 0.00 0.01
Natural Gas -0.02 3.31 0.62 9.64 0.00 0.00 0.00 0.01

Gasoline 0.01 2.65 -1.18 23.14 0.00 0.00 0.00 0.01
Natural Gas UK 0.04 3.99 1.58 21.08 0.00 0.00 0.00 0.01

Ethanol -0.00 2.03 -2.44 29.37 0.00 0.00 0.00 0.01

Corn 0.03 1.87 -0.93 14.46 0.00 0.00 0.00 0.01
Oats 0.03 2.19 -0.59 7.93 0.00 0.00 0.00 0.01

Rough Rice 0.02 1.56 -1.78 35.34 0.00 0.00 0.00 0.01
Soybeans 0.03 1.50 -0.73 5.07 0.00 0.00 0.00 0.01
Wheat 0.03 2.07 0.24 3.88 0.00 0.00 0.00 0.01
Cocoa 0.01 1.79 -0.21 2.42 0.00 0.00 0.00 0.01
Cotton 0.02 1.75 -0.27 4.48 0.00 0.00 0.00 0.01
Coffee 0.02 1.96 0.14 1.96 0.00 0.00 0.00 0.01
Sugar 0.01 2.07 -0.04 3.15 0.00 0.00 0.00 0.01

Soybean Oil 0.03 1.47 -0.06 2.72 0.00 0.00 0.00 0.01
Soybean Meal 0.03 1.84 -1.45 13.99 0.00 0.00 0.00 0.01
Orange Juice 0.01 2.06 -0.01 2.98 0.00 0.00 0.00 0.01

Table 1.3. Summary statistics of the daily log-returns of the commodities in the sample. We
report the mean (Mean), standard deviation (SD), skewness, kurtosis, test statistic of the
Jarque-Bera Test (J.B), test statistic of the Ljung-Box Test on the squared log-returns
with 20 lags (L.B), test statistic of the ARCH Lagrange Multiplier Test (ARCH.LM),
and test statistic of the Augmented Dickey-Fuller unit root test (ADF). We denote with
c the significance at the 1% level. Sample period: October 3, 2005 - March 25, 2022.
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Study Reference Study Period Methods Commodity class Summary

Fong & See (2002) 1992-1997 GARCH, MS-
GARCH

Crude oil The regime switch-
ing model performs
noticeably better
than non-switching
models regardless of
evaluation criteria.

Cashin & McDermott (2002) 1862-1999 Null Hypothesis to
test

Industrial com-
modities

Commodities have
shifted from a boom
phase to a slump
phase if prices have
declined from their
previous peak

Giot & Laurent (2003) 1987-2002 RiskMetrics, Stu-
dent APARCH and
ARCH model

Metal, energy
and agriculture
commodities

Assess the perfor-
mance of the Risk-
Metrics, skewed
Student APARCH
and skewed student
ARCH models.

Fong & See (2003) 1992-1997 MSGARCH Crude oil Incorporating
regime shifts im-
proves the accuracy
of short-term
volatility forecasts

Baffes (2007) 1960-2005 OLS regression Primary Commodi-
ties

Effect of crude oil
prices on the prices
of 35 internation-
ally traded primary
commodities

Marimoutou et al. (2009) 1983-2007 EVT models,
GARCH, Histori-
cal Simulation and
Filtered Historical

Crude oil Extreme Value The-
ory and Filtered
Historical Simula-
tion procedures of-
fer a major improve-
ment over the tradi-
tional methods

Aloui & Mabrouk (2010) 1987-2007 GARCH-type mod-
els

Energy commodi-
ties

Considering for
long-range memory,
fat-tails and asym-
metry performs
better in predicting
a one- day-ahead
VaR for both short
and long trading
positions

Tyner (2010) 2006-2008 Price analysis Energy and agricul-
ture commodities

Exploration of the
drivers in these
markets as well as
other major issues
facing the corn
ethanol industry in
the United States
such as the blend
wall

Du et al. (2011) 1998-2009 Stochastic volatil-
ity models

Oil and agriculture
commodities

Linkage between
crude oil volatility
and agricultural
commodity markets

Nazlioglu & Soytas (2011) 1994-2010 Toda-Yamamoto;
Nonparametric
causality

Oil, agriculture and
exchange rates

Nonlinear feedback
relationship be-
tween the oil and
the agricultural
prices

Table 1.4. Summary of the works of reference on the literature on commodity markets.
We report study reference, the study period, core method employed in the analysis
(Methods), the commodity sectors on which the analysis is focused (Commodity class),
and a brief description of the major findings (Summary).
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Study Reference Study Period Methods Commodity class Summary

Ewing & Malik (2013) 1993-2010 GARCH Gold and oil Significant volatil-
ity transmission be-
tween gold and oil

Nazlioglu et al. (2013) 1986-2011 Variance causality
test

Oil and agriculture
commodities

A shock to oil price
volatility is trans-
mitted to agricul-
tural markets only
in the post-crisis pe-
riod.

Spierdijk & Umar (2013) 1970-2011 VAR Agriculture, energy,
industrial metals,
live cattle, and pre-
cious metals com-
modities

Significant hedging
ability for commod-
ity futures indices

Smales (2014) 2003-2012 Sentiment Analysis Gold Constraints im-
posed on traders
have a significant
impact on the
net positions of
both speculators
and hedgers; this
influences the way
in which prices in
the gold futures
market react to
news sentiment

Andriosopoulos & Nomikos (2014) 2007-2010 Genetic and Differ-
ential Evolution al-
gorithms

Energy and equity The proposed
methodology
suggests an ef-
fective, and at
the same time,
least-expensive way
to operate such a
fund, giving the full
flexibility of any
investment style,
long or short, that
equities can provide

Reboredo (2015) 2005-2013 Copulas Oil and energy com-
modities

Oil and renewable
energy displayed
time-varying aver-
age and symmetric
tail dependence

Rezitis (2015) 1983-2013 VAR; Granger
Causality

Agricultural com-
modity prices,
crude oil prices and
US dollar exchange
rates

Bidirectional panel
causality effects
between crude
oil prices and
international agri-
cultural prices as
well as between
US exchange rates
and international
agricultural prices

Joëts (2015) 2005-2010 HAM Energy commodi-
ties

The recent surge
in energy prices is
viewed as the conse-
quence of irrational
exuberance.

de Nicola et al. (2016) 1970-2013 VAR Energy, agricul-
tural and food
commodities

Price returns of en-
ergy and agricul-
tural commodities
are highly corre-
lated

Ji & Fan (2016) 2000-2011 Graph theory Crude oil The integration of
the world crude oil
market is verified.
Furthermore, the
world crude oil mar-
ket is characterised
as a geographical
and organisational
structure

Table 1.5. Summary of the works of reference on the literature on commodity markets
(continued).
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Study Reference Study Period Methods Commodity class Summary

Barbaglia et al. (2016) 2013-2015 Multi-class and
VAR model; net-
work analysis

Global, energy,
metal and agricul-
tural commodities

More common
commodity price
effects among port-
folios than among
markets

Kang et al. (2017) 2002-2016 DECO-GARCH Oil and agricultural
commodities and
precious metals

Strong spillover dur-
ing crisis; Gold and
silver are transmit-
ters to other com-
modities

Algieri & Leccadito (2017) 2005-2013 delta CoVaR Energy, food and
metals commodi-
ties

Commodity mar-
kets generate
contagion risks
which are mainly
triggered by fi-
nancial factors
for energy and
metal markets and
by financial and
economic funda-
mentals for food
markets

Mensi et al. (2017) 1998-2016 VMD method and
static and time-
varying symmetric
and asymmetric
copula functions

Commodities and
equity

The dependence
structure varies
across market con-
ditions and under
investment hori-
zons; risk spillovers
are higher in the
long than the short
run investment
horizon.

Diebold et al. (2017) 2011-2016 VAR; FEVD; Net-
work Analysis

Energy, livestock
and agricultural
commodities, pre-
cious and industrial
metals

Clustering of
commodities into
groups; high overall
connectedness and
energy sector sends
shocks to other
commodities

Rehman et al. (2018) 1989-2016 SVAR Crude oil, precious
and industrial met-
als

Structural oil
shocks impact pre-
cious metal returns
tails except gold

Ferrer et al. (2018) 2003-2017 VAR; FEVD Crude oil, US
renewable energy
stocks, high tech-
nology stocks,
conventional en-
ergy stocks, US
10-year Treasury
bond yields

Most of return and
volatility connected-
ness is found in the
short-term; Crude
oil prices are not the
key driver of renew-
able energy compa-
nies’ performance

Laporta et al. (2018) 2002-2017 GARCH, GAS and
CAViaR models;
Dynamic Quantile
Regression

Energy commodi-
ties

CAViaR and DQR
models provide
more accurate VaR
estimates at high
confidence levels

Ji, Bouri, Roubaud & Shahzad (2018) 2000-2017 CoVaR, delta Co-
VaR, dependence-
switching copula

Energy and agricul-
tural commodities

Lower tail depen-
dence is stronger in
bearish regime than
in bullish one; agri-
cultural commodi-
ties are more sensi-
tive to shock from
oil than from gas

Shen et al. (2018) 2000-2014 VAR Energy commodi-
ties

Asymmetric pat-
terns in response
of gains and losses
transmission be-
tween energy
markets; Extreme
market risk is more
easily transmitted
across markets than
moderate risk.

Table 1.6. Summary of the works of reference on the literature on commodity markets
(continued).
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Study Reference Study Period Methods Commodity class Summary

Zhang & Broadstock (2018) 1982-2017 VAR; FEVD;
Granger Causality;
Network Analysis

Beverage, Fertiliz-
ers, Food, Metal,
Precious metal,
Raw materials, Oil

Significant rising of
connectedness has
been found after the
global financial cri-
sis.

Tiwari et al. (2019) 2007-2013 Wavelet analysis Oil and energy com-
modities

During the shale
gas revolution pe-
riod of 2007-2013,
oil and natural gas
prices were procycli-
cal and oil prices
were leading natural
gas prices.

Balli et al. (2019) 2007-2016 GDFM; SV models Energy commodi-
ties, precious and
industrial metals,
and agricultural
commodities

Spillovers increase
during the GFC and
2014-16 oil price
collapse; Network
analysis shows more
spillover within a
specific commodity
class.

Ramiah et al. (2019) 1990-2017 Non-parametric
ranking test and
kernel regression

Metal, chemical,
precious, energy
and agriculture
commodities

There is a delayed
reaction of investor
in commodity mar-
kets compared to
the equity market

Malik & Umar (2019) 1996-2019 VAR Exchange rates of
major oil-exporting
and oil-importing
countries

Results show that
demand shocks
have a major im-
pact while supply
shocks have no
impact.

Zaremba et al. (2019) 1265-2017 Wavelet analysis Agriculture, energy,
industrial com-
modities

Robust inflation
hedging properties
of agricultural, en-
ergy, and industrial
commodities for
the 4- to 8-year
horizon through
almost the entire
seven centuries

Nguyen et al. (2020) 1992-2017 local Gaussian cor-
relation measure

Commodity and
U.S. financial mar-
kets

Financialization
hypothesis is con-
firmed; Special
role of Gold is
highlighted.

Christodoulakis (2020) 2001-2013 GMM Energy, agriculture,
livestock, industrial
metals and precious
metals

Joint preference
asymmetries for
longer maturities,
joint preference
symmetries for
short maturities.

Naeem et al. (2020) 2007-2018 EGARCH-Copula
approach

Energy and com-
modity ETFs, oil

Positive correla-
tions of energy and
commodity ETFs
with oil prices is
found

Flori et al. (2021) 1980-2017 Graph-theoretical
approach; Granger
causal connectivity
analysis

Commodities and
climate related vari-
ables

Climate conditions
affect financial sta-
bility by impacting
commodity comove-
ments

Table 1.7. Summary of the works of reference on the literature on commodity markets
(continued).
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Study Reference Study Period Methods Commodity class Summary

Umar, Gubareva & Teplova (2021) 2020-2020 Wavelet coher-
ence and phase-
difference methods

Energy commodi-
ties, precious and
agricultural com-
modities

Non-precious met-
als offer the best di-
versification during
the recovery from
crisis

Zaremba, Umar & Mikutowski (2021) 1850-2019 Pearson’s product-
moment pairwise
correlation coef-
ficients; Gerber
statistic; R2 analy-
sis.

Precious metals,
energy, industrials,
and agriculturals

Findings cast doubt
on the link between
commodity depen-
dence and financial-
isation

Balcilar et al. (2021) 1990-2019 TVP-VAR Crude Oil and agri-
cultural commodi-
ties

Crude Oil not only
affects commodity
assets but is also
equally responsive
to their innovations

Tiwari et al. (2021) 1986-2018 time-varying gener-
alised Hurst expo-
nent

Energy commodi-
ties

After the subprime
crisis, the persis-
tence of energy spot
market products
has increased

Umar, Jareño & Escribano (2021) 2000-2020 TVP-VAR Oil and agriculture
commodities

Higher directional
return and volatil-
ity connectedness to
oil risk and demand
than supply shocks

Umar et al. (2022) 2020-2021 TVP-VAR Agricultural and
livestock commod-
ity, Coronavirus
Media Coverage
Index

Dynamic total
return and volatil-
ity connectedness
fluctuate over time,
reaching a peak
during both the
first and the third
waves of the global
pandemic crisis

Table 1.8. Summary of the works of reference on the literature on commodity markets
(continued).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Gold
GARCHnorm 0.376169** 0.673278** 0.272021** 0.926612 1.8e-05 7.00E-06 0 1.927354
MSGARCHnorm 0.538857** 0.768622** 0.318919** 0.948851 0.848702** 0.078492** 0.025813 0.963677
GARCHstd 0.377801** 0.646796** 0.514667** 1.07487 0.996913** 0.09181** 0.075842** 1.000741
MSGARCHstd 0.992953** 0.952407** 0.353444** 1.000741 0.191705** 0.013278 0.000506 1.260193
GARCHged 0.481144** 0.780227** 0.547514** 0.941438 0.844493** 0.010177 4.4e-05 1.037806
MSGARCHged 0.866417** 0.959651** 0.775744** 0.985915 0.447366** 0.001146 0 1.148999
GARCHsnorm 0.247085** 0.500426** 0.212008** 0.904374 0.000457 7.3e-05 0 1.742031
MSGARCHsnorm 0.046827 0.116861** 0.051335** 0.837658 0.848702** 0.078492** 0.016064 0.963677
GARCHsstd 0.784965** 0.87801** 0.525519** 1.02298 0.69809** 0.064088** 0.035234 0.926612
MSGARCHsstd 0.729269** 0.792302** 0.250049** 0.97109 0.844493** 0.010177 4.7e-05 1.037806
GARCHsged 0.329276** 0.616101** 0.407365** 0.919199 0.69809** 0.064088** 0.046315 0.926612
MSGARCHsged 0.599692** 0.869062** 0.142255** 0.956264 0.844493** 0.010177 3.3e-05 1.037806

Silver
GARCHnorm 0.426842** 0.728406** 0.01555 0.934025 0 0 0 2,149,741
MSGARCHnorm 0.93306** 0.644346** 0.090229** 0.99296 0.066456** 0.049959 0 1.371386
GARCHstd 0.163877** 0.370471** 0.082125** 1.118933 0.191705** 0.013278 1e-04** 1.260193
MSGARCHstd 0.536826** 0.815249** 0.096226** 1.052242 0.004327 0.00181 0 1.593773
GARCHged 0.481144** 0.712248** 0.067553** 0.941438 0.191705** 0.013278 8.6e-05** 1.260193
MSGARCHged 0.797141** 0.944272** 0.042973 0.978503 0.011746 0.003498 0 1.519644
GARCHsnorm 0.180153** 0.390089** 0.017609 0.889548 4e-06** 0 0 2.001483
MSGARCHsnorm 0.284285** 0.46621** 0.037643 0.911449 0.699371** 0.11023** 0 1.074870
GARCHsstd 0.428915** 0.642174** 0.088059** 1.067062 0.699371** 0.0118 1.2e-05** 1.074870
MSGARCHsstd 0.793748** 0.574531** 0.038624 0.97814 0.565949** 0.113531** 9e-06** 1.111935
GARCHsged 0.376169** 0.593415** 0.02916 0.926612 0.447366** 0.013942 2.9e-05** 1.148999
MSGARCHsged 0.535971** 0.759965** 0.045742 0.948499 0.844493** 0.102753** 0.000173 1.037806

Copper
GARCHnorm 0.247085** 0.417994** 0.479086** 0.904374 0.000826 0.000109 0 1.704967
MSGARCHnorm 0.599692** 0.869062** 0.837004** 0.956264 0.018733 0.000678 0 1.482580
GARCHstd 0.866417** 0.836154** 0.547015** 0.985915 0.260377** 0.001327 0 1.223128
MSGARCHstd 0.481144** 0.780227** 0.855243** 0.941438 0.096832** 0.001232 0 1.334322
GARCHged 0.286243** 0.47466** 0.539922** 0.911787 0.447366** 0.001146 0 1.148999
MSGARCHged 0.329276** 0.616101** 0.058863** 0.919199 0.191705** 0.001345 0 1.260193
GARCHsnorm 0.211755** 0.364273** 0.417435** 0.896961 0.004327 0.00031 0 1.593773
MSGARCHsnorm 0.286243** 0.558099** 0.68568** 0.911787 0.066456** 0.001117 0 1.371386
GARCHsstd 0.6633** 0.711657** 0.523842** 0.963677 0.345368** 0.001259 0 1.186064
MSGARCHsstd 0.329276** 0.533458** 0.617516** 0.919199 0.260377** 0.001327 0 1.223128
GARCHsged 0.286243** 0.47466** 0.526265** 0.911787 0.565949** 0.000999 0 1.111935
MSGARCHsged 0.180153** 0.390089** 0.406984** 0.889548 0.260377** 0.001327 0 1.223128

Table 1.9. Backtesting results for the commodities Gold, Silver, Copper (Metal commodity
sector). We report the p-values of the Unconditional Coverage (uc.LRp), Conditional
Coverage (cc.LRp), Dynamic Quantile (DQp) tests and the Actual over Expected
Exceedances Ratio (AE) computed at the 95% and 99% confidence levels. The mod-
els included in the assessment are GARCH(1,1) with innovations following a Normal
(GARCHnorm), Skewed Normal (GARCHsnorm), Student’s-t (GARCHstd), Skewed
Student’s-t (GARCHsstd), Generalized Error Distribution (GARCHged), and Skewed
Generalized Error Distribution (GARCHsged) and MS-GARCH(1,1) following a Normal
(MSGARCHnorm), Skewed Normal (MSGARCHsnorm), Student’s-t (MSGARCHstd),
Skewed Student’s-t (MSGARCHsstd), Generalized Error Distribution (MSGARCHged),
and Skewed Generalized Error Distribution (MSGARCHsged).
* denotes the p-values higher than the 5% significance level
** denotes the p-values higher than the 1% significance level.
Sample period: October 3, 2005 - March 25, 2022.
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Palladium
GARCHnorm 0.922692** 0.038134 0.055372** 1.008154 0 0 0 2.149741
MSGARCHnorm 0.220265** 0.001177 0.000205 1.104522 0.004327 0.00181 1.8e-05** 1.593773
GARCHstd 0.220265** 0.036004 0.012632 1.104522 0.011746 0.003498 0.000101 1.519644
MSGARCHstd 0.53389** 0.012154 0.007221 1.052632 0.011746 0.003498 0.000163 1.519644
GARCHged 0.922692** 0.038134 0.053203** 1.008154 0.007206 0.002552 7.5e-05** 1.556709
MSGARCHged 0.718505** 0.022332 0.009323 1.030393 0.000457 0.000348 0 1.742031
GARCHsnorm 0.329276** 0.004679 0.013865 0.919199 9.00E-06 4.00E-06 0 1.964418
MSGARCHsnorm 0.599692** 0.033631 0.016613 0.956264 0.004327 0.00181 4.3e-05 1.593773
GARCHsstd 0.797141** 0.022501 0.028856 0.978503 0.137853** 0.012129 0.000299 1.297257
MSGARCHsstd 0.6633** 0.087649** 0.045702 0.963677 0.260377** 0.014018 0.000167 1.223128
GARCHsged 0.329276** 0.004679 0.01127 0.919199 0.029222 0.00601 0.00022 1.445515
MSGARCHsged 0.426842** 0.046269 0.062604** 0.934025 0.096832** 0.010698 0.000293 1.334322

Zinc
GARCHnorm 0.936567** 0.440549** 0.128704** 0.993328 0.260377** 0.384782** 0.35774** 1.223128
MSGARCHnorm 0.922692** 0.489923** 0.001407 1.008154 0.844493** 0.569028** 0.1717** 1.037806
GARCHstd 0.85319** 0.509112** 0.010503 1.015567 0.556782** 0.384266** 0.397618** 0.889548
MSGARCHstd 0.85319** 0.723387** 0.02322 1.015567 0.429471** 0.311619** 0.290963** 0.852483
GARCHged 0.797141** 0.380745** 0.020441 0.978503 0.429471** 0.311619** 0.343904** 0.852483
MSGARCHged 0.797141** 0.588467** 0.033023 0.978503 0.556782** 0.384266** 0.175018** 0.889548
GARCHsnorm 0.797141** 0.380745** 0.083603** 0.978503 0.447366** 0.501277** 0.5536** 1.148999
MSGARCHsnorm 0.718505** 0.889211** 0.037931 1.030393 0.699371** 0.566416** 0.240576** 1.074870
GARCHsstd 0.936567** 0.440549** 0.020503 0.993328 0.429471** 0.60052** 0.670183** 0.852483
MSGARCHsstd 0.784965** 0.523944** 0.068473** 1.022980 0.319515** 0.240722** 0.58721** 0.815419
GARCHsged 0.729269** 0.348669** 0.039292 0.97109 0.228641** 0.410883** 0.419957** 0.778354
MSGARCHsged 0.797141** 0.800231** 0.05046** 0.978503 0.556782** 0.384266** 0.294271** 0.889548

Table 1.10. Backtesting results for the commodities Palladium, Zinc (Metal commodity
sector).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
WTI
GARCHnorm 0.286243** 0.215639** 0.324009** 0.911787 0.000457 0.002108 0.998099** 1.742031
MSGARCHnorm 0 0 0.999998** 9.870322 0 0 1** 49.351612
GARCHstd 0.162516** 0.324307** 0.993754** 1.119348 0.018733 0.05598** 0.999999** 1.48258
MSGARCHstd 0.138392** 0.063562** 0.99884** 1.126761 0.011746 0.037856 1** 1.519644
GARCHged 0.6633** 0.505691** 0.998082** 0.963677 0.096832** 0.201986** 1** 1.334322
MSGARCHged 0.426311** 0.50965** 0.987309** 1.067457 0.007206 0.024923 1** 1.556709
GARCHsnorm 0.07161** 0.079492** 0.769626** 0.852483 0.007206 0.024923 0.999884** 1.556709
MSGARCHsnorm 0 0 0.999998** 9.870322 0 0 1** 49.351612
GARCHsstd 0.922692** 0.707753** 0.989617** 1.008154 0.096832** 0.201986** 0.999997** 1.334322
MSGARCHsstd 0.85319** 0.179494** 0.994373** 1.015567 0.096832** 0.201986** 0.999999** 1.334322
GARCHsged 0.426842** 0.499202** 0.981284** 0.934025 0.345368** 0.446807** 0.999988** 1.186064
MSGARCHsged 0 0 0.988484** 1.452928 0 0 0.999999** 3.854707

Heating Oil
GARCHnorm 0.53389** 0.693124** 0.120038** 1.052632 0.001464 0.006095 0.00027 1.667902
MSGARCHnorm 0.0467 0.137776** 0.007206 1.171238 0.029222 0.080541** 0.008966 1.445515
GARCHstd 0.068662** 0.178165** 0.020561 1.156412 0.191705** 0.3205** 0.010064 1.260193
MSGARCHstd 0.098622** 0.24531** 0.038368 1.141586 0.191705** 0.3205** 0.007833 1.260193
GARCHged 0.592603** 0.745351** 0.099405** 1.045219 0.447366** 0.501277** 0.029084 1.148999
MSGARCHged 0.098622** 0.233768** 0.022659 1.141586 0.007206 0.024923 0.001097 1.556709
GARCHsnorm 0.784965** 0.963175** 0.215632** 1.02298 0.007206 0.024923 0.00079 1.556709
MSGARCHsnorm 0.098622** 0.24531** 0.029798 1.141586 0.096832** 0.201986** 0.008677 1.334322
GARCHsstd 0.162516** 0.371858** 0.031443 1.119348 0.699371** 0.566416** 0.033559 1.07487
MSGARCHsstd 0.068662** 0.190635** 0.023278 1.156412 0.137853** 0.25846** 0.004244 1.297257
GARCHsged 0.654254** 0.794345** 0.091228** 1.037806 0.565949** 0.542742** 0.033717 1.111935
MSGARCHsged 0.332944** 0.624808** 0.056914** 1.082283 0.096832** 0.201986** 0.038381 1.334322

Low Sulfur Gasoline
GARCHnorm 0.016083 0.008514 0.013422 1.208302 0 3.00e-06 0 2.112676
MSGARCHnorm 0.003693 0.003696 0.012349 1.25278 1.8e-05 6.6e-05 9.00e-06 1.927354
GARCHstd 0.000201 0.000119 9.8e-05 1.326909 0.002544 0.009995 0.021922 1.630838
MSGARCHstd 0.000924 0.000303 0.000321 1.289844 0.011746 0.01534 0.007292 1.519644
GARCHged 0.020139 0.009492 0.014018 1.20089 0.137853** 0.25846** 0.611293** 1.297257
MSGARCHged 0.02507 0.005551 0.004621 1.193477 0.011746 0.037856 0.248321** 1.519644
GARCHsnorm 0.02507 0.010489 0.014526 1.193477 2.00e-06 1.2e-05 1.00e-06 2.038547
MSGARCHsnorm 0.08253** 0.030287 0.023212 1.148999 0.000131 0.000391 3.9e-05 1.81616
GARCHsstd 0.001637 0.001343 0.001067 1.275019 0.044571 0.112663** 0.084314** 1.408451
MSGARCHsstd 0.020139 0.002545 0.002498 1.20089 0.066456** 0.049959 0.011816 1.371386
GARCHsged 0.038177 0.012473 0.012606 1.178651 0.066456** 0.153107** 0.097539** 1.371386
MSGARCHsged 0.138392** 0.107628** 0.026985 1.126761 0.260377** 0.384782** 0.689165** 1.223128

Table 1.11. Backtesting results for the commodities WTI, Heating Oil, Low Sulfur Gasoline
(Energy commodity sector).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Natural Gas UK
GARCHnorm 0.481144** 0.009157 0.000199 0.941438 0.018733 0.021533 0 1.48258
MSGARCHnorm 0.038177 0.006409 2.00e-06 1.178651 0.565949** 0.113531** 0 1.111935
GARCHstd 0.031028 0.001312 1.8e-05 1.186064 0.447366** 0.501277** 0 1.148999
MSGARCHstd 0.162516** 0.007884 5.00e-06 1.119348 0.066456** 0.153107** 0 1.371386
GARCHged 0.538857** 0.011202 0.000345 0.948851 0.996913** 0.549507** 0 1.000741
MSGARCHged 0.162516** 0.007884 7.8e-05 1.119348 0.096832** 0.062199** 0 1.334322
GARCHsnorm 0.332944** 0.006588 0.000186 1.082283 0.000131 3.00e-05 0 1.816160
MSGARCHsnorm 0.003693 0.000623 0 1.252780 0.018733 0.004655 0 1.482580
GARCHsstd 0.000689 3.1e-05 0 1.297257 0.137853** 0.25846** 0 1.297257
MSGARCHsstd 0.01008 0.000949 0 1.223128 0.044571 0.038892 0 1.408451
GARCHsged 0.592603** 0.026594 0.00089 1.045219 0.191705** 0.3205** 0 1.260193
MSGARCHsged 0 0 0 10.455724 0 0 0 52.278622

Ethanol
GARCHnorm 0.001242 8.7e-05 0.003903 0.741015 0.018838 0.004379 7.4e-05 1.482030
MSGARCHnorm 0 0 0 1.170804 0 0 0 5.854020
GARCHstd 4.00e-06 0 0 1.407929 0 0 0 3.853279
MSGARCHstd 0 0 0 1.682104 0 0 0 3.001112
GARCHged 0.105096** 0 0 0.866988 0.007252 0 0 1.556132
MSGARCHged 0 0 0 1.170804 0 0 0 5.854020
GARCHsnorm 5.9e-05 4.4e-05 0.002908 0.681734 0.138392** 0.254925** 0.585762** 1.296777
MSGARCHsnorm 0.139598** 0 0.051353** 1.126343 4.00e-06 0 0.75966** 2.000741
GARCHsstd 7.7e-05 0 0 1.348648 0 0 0 3.705076
MSGARCHsstd 1.00e-06 0 0 1.444980 0 0 0.054491** 2.260096
GARCHsged 0.327124** 0 0 0.918859 0.000133 0 0 1.815487
MSGARCHsged 0.481164** 0 0.013414 1.059652 0 0 0.113669** 2.111893

Gasoline
GARCHnorm 0.797141** 0.949723** 0.999712** 0.978503 1.00e-06 5.00e-06 1.00e-06 2.075612
MSGARCHnorm 0.098622** 0.24531** 0.429401** 1.141586 0.096832** 0.201986** 0.067329** 1.334322
GARCHstd 0.332944** 0.589478** 0.655888** 1.082283 0.044571 0.112663** 0.040811 1.408451
MSGARCHstd 0.377801** 0.646796** 0.465694** 1.074870 0.011746 0.037856 0.035793 1.519644
GARCHged 0.797141** 0.944272** 0.835113** 0.978503 0.565949** 0.605186** 0.228264** 1.111935
MSGARCHged 0.291763** 0.532529** 0.730573** 1.089696 0.044571 0.112663** 0.052285** 1.408451
GARCHsnorm 0.426842** 0.67518** 0.977582** 0.934025 1.8e-05 6.6e-05 8.8e-05 1.927354
MSGARCHsnorm 0.25423** 0.495833** 0.614729** 1.097109 0.066456** 0.153107** 0.076079** 1.371386
GARCHsstd 0.53389** 0.809986** 0.677071** 1.052632 0.565949** 0.605186** 0.260247** 1.111935
MSGARCHsstd 0.377801** 0.646796** 0.121419** 1.074870 0.191705** 0.3205** 0.064282** 1.260193
GARCHsged 0.866417** 0.959651** 0.712483** 0.985915 0.260377** 0.352689** 0.18532** 1.223128
MSGARCHsged 0.729269** 0.758381** 0.914729** 0.97109 0.137853** 0.25846** 0.06866** 1.297257

Natural Gas
GARCHnorm 0.106023** 0.248188** 0.000613 0.867309 0.260377** 0.352689** 0 1.223128
MSGARCHnorm 0.481144** 0.373426** 0.000525 0.941438 0.137853** 0.209911** 0 1.297257
GARCHstd 0.286243** 0.47466** 0.000333 0.911787 0.556782** 0.678314** 0 0.889548
MSGARCHstd 0.6633** 0.711657** 0.00055 0.963677 0.345368** 0.436289** 0 1.186064
GARCHged 0.046827 0.116861** 0.000287 0.837658 0.228641** 0.410883** 0 0.778354
MSGARCHged 0.211755** 0.254273** 0.000536 0.896961 0.844493** 0.73126** 0 1.037806
GARCHsnorm 0.599692** 0.821237** 0.001347 0.956264 0.011746 0.022208 0 1.519644
MSGARCHsnorm 0.797141** 0.800231** 0.000541 0.978503 0.011746 0.022208 0 1.519644
GARCHsstd 0.936567** 0.86523** 0.001241 0.993328 0.996913** 0.761058** 0 1.000741
MSGARCHsstd 0.592603** 0.841768** 0.00054 1.045219 0.018733 0.03455 0 1.482580
GARCHsged 0.211755** 0.444122** 0.00056 0.896961 0.996913** 0.761058** 0 1.000741
MSGARCHsged 0.599692** 0.661202** 0.001528 0.956264 0.066456** 0.110924** 0 1.371386

Table 1.12. Backtesting results for the commodities Natural Gas UK, Ethanol, Gasoline,
Natural Gas (Energy commodity sector).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Corn
GARCHnorm 1e-06** 0 9.3e-05** 0.615271 0.011746 6.1e-05** 0 1.519644
MSGARCHnorm 0.087482** 0.011279 0.036897 0.859896 0.191705** 0.013278 8.7e-05** 1.260193
GARCHstd 0.023255 0.000595 0.010703 0.815419 0.447366** 0.112431** 0.089284** 1.148999
MSGARCHstd 0.087482** 0.02633 0.094703** 0.859896 0.137853** 0.001312 0 1.297257
GARCHged 0 0 1.8e-05** 0.570793 0.102975** 0.231256** 0.29938** 0.704225
MSGARCHged 0.002433 0.000638 0.019307 0.756116 0.447366** 0.013942 0.000126 1.148999
GARCHsnorm 1e-06** 0 0.000183 0.607858 0.066456** 0.001117 1e-06** 1.371386
MSGARCHsnorm 0.037398 0.003423 0.032947 0.830245 0.565949** 0.013098 0.000222 1.111935
GARCHsstd 0.01068 0.000187 0.004173 0.79318 0.699371** 0.11023** 0.059708** 1.07487
MSGARCHsstd 0.013966 0.002355 0.014881 0.800593 0.345368** 0.001259 0 1.186064
GARCHsged 2e-06** 0 6e-05** 0.630096 0.996913** 0.09181** 0.034724 1.000741
MSGARCHsged 0.003333 0.00035 0.001891 0.763529 0.066456** 0.001117 0 1.371386

Oats
GARCHnorm 0.010551 0.025755 0.028003 0.792886 0.191705** 0.3205** 0.45965** 1.260193
MSGARCHnorm 0.793748** 0.201993** 0.105016** 0.97814 0.319515** 0.240722** 0.702016** 0.815419
GARCHstd 0.856665** 0.483646** 0.083857** 1.015191 0.848702** 0.509321** 0.836011** 0.963677
MSGARCHstd 0.660119** 0.161073** 0.256858** 0.96332 0.844493** 0.569028** 0.633835** 1.037806
GARCHged 0.046355 0.078011** 0.031655 0.837347 0.228641** 0.176721** 0.594603** 0.778354
MSGARCHged 0.478429** 0.106085** 0.050126** 0.941089 0.996913** 0.549507** 0.877766** 1.000741
GARCHsnorm 0.007993 0.019337 0.026297 0.785476 0.191705** 0.3205** 0.459643** 1.260193
MSGARCHsnorm 0.793748** 0.201993** 0.097417** 0.97814 0.102975** 0.231256** 0.790905** 0.704225
GARCHsstd 0.856665** 0.483646** 0.110756** 1.015191 0.996913** 0.549507** 0.844961** 1.000741
MSGARCHsstd 0.862953** 0.115043** 0.012937 0.98555 0.565949** 0.113531** 9.8e-05** 1.111935
GARCHsged 0.070937** 0.121375** 0.046818 0.852167 0.429471** 0.311619** 0.763183** 0.852483
MSGARCHsged 0.327124** 0.129665** 0.037439 0.918859 0.848702** 0.509321** 0.662643** 0.963677

Rough Rice
GARCHnorm 0.037398 0.000112 0.001064 0.830245 0.260377** 0.098552** 0.127786** 1.223128
MSGARCHnorm 0.106023** 0.000653 0.004699 0.867309 0.556782** 0.384266** 0.700468** 0.889548
GARCHstd 0.729269** 0.000836 0.000241 0.97109 0.429471** 0.036898 0.015663 0.852483
MSGARCHstd 0.426842** 6.7e-05 2.3e-05 0.934025 0.69809** 0.452346** 0.83786** 0.926612
GARCHged 0.013966 1.00e-06 7.00e-06 0.800593 0.429471** 0.036898 0.010444 0.852483
MSGARCHged 0 0 0 10,778,354 0 0 0 5.3891772
GARCHsnorm 0.058145** 0.000235 0.002011 0.84507 0.191705** 0.087449** 0.134392** 1.260193
MSGARCHsnorm 0.936567** 0.001529 0.000183 0.993328 0.447366** 0.501277** 0.666702** 1.148999
GARCHsstd 0.592603** 0.00154 0.001052 1.045219 0.996913** 0.008388 3.5e-05 1,000,741
MSGARCHsstd 0.992953** 0.000591 3.7e-05 1.000741 0.137853** 0.012129 0.000517 1.297257
GARCHsged 0.247085** 0.000271 0.001173 0.904374 0.69809** 0.064088** 0.032217 0.926612
MSGARCHsged 0.481144** 0.001061 0.001119 0.941438 0.044571 0.000978 0 1.408451

Table 1.13. Backtesting results for the commodities Corn, Oats, Rough Rice (Agriculture
commodity sector).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Cocoa
GARCHnorm 0.481144** 0.373426** 0.404176** 0.941438 0.007206 0.000415 0 1.556709
MSGARCHnorm 0.729269** 0.197239** 0.133631** 0.97109 0.029222 0.02937 0.000264 1.445515
GARCHstd 0.922692** 0.489923** 0.531656** 1.008154 0.565949** 0.113531** 0.027145 1.111935
MSGARCHstd 0.936567** 0.262422** 0.16268** 0.993328 0.447366** 0.112431** 0.006144 1.148999
GARCHged 0.180153** 0.127769** 0.29398** 0.889548 0.848702** 0.509321** 0.455834** 0.963677
MSGARCHged 0.329276** 0.03151 0.009584 0.919199 0.699371** 0.566416** 0.040742 1.07487
GARCHsnorm 0.329276** 0.251301** 0.332859** 0.919199 0.018733 0.000678 0 1.48258
MSGARCHsnorm 0.538857** 0.251877** 0.083059** 0.948851 0.096832** 0.201986** 0.051822** 1.334322
GARCHsstd 0.729269** 0.348669** 0.355458** 0.97109 0.844493** 0.102753** 0.021506 1.037806
MSGARCHsstd 0.866417** 0.24103** 0.109761** 0.985915 0.699371** 0.566416** 0.423868** 1.07487
GARCHsged 0.247085** 0.183078** 0.396397** 0.904374 0.848702** 0.509321** 0.601433** 0.963677
MSGARCHsged 0.426842** 0.099668** 0.072971** 0.934025 0.69809** 0.452346** 0.554777** 0.926612

Cotton
GARCHnorm 0.426842** 0.099668** 0.111656** 0.934025 0.000247 0.000216 1.4e-05 1.779096
MSGARCHnorm 0.784965** 0.098907** 0.170881** 1.02298 0.191705** 0.3205** 0.475666** 1.260193
GARCHstd 0.654254** 0.112376** 0.199126** 1.037806 0.345368** 0.446807** 0.610373** 1.186064
MSGARCHstd 0.936567** 0.067909** 0.120201** 0.993328 0.345368** 0.446807** 0.67507** 1.186064
GARCHged 0.329276** 0.141126** 0.200114** 0.919199 0.996913** 0.09181** 0.062845** 1.000741
MSGARCHged 0.211755** 0.038545 0.080121** 0.896961 0.345368** 0.107205** 0.007552 1.186064
GARCHsnorm 0.180153** 0.030838 0.050062** 0.889548 0.000826 0.000547 7.2e-05 1,704,967
MSGARCHsnorm 0.866417** 0.126714** 0.055129** 0.985915 0.565949** 0.542742** 0.535499** 1.111935
GARCHsstd 0.718505** 0.105951** 0.137861** 1.030393 0.137853** 0.074986** 0.082556** 1.297257
MSGARCHsstd 0.797141** 0.05291** 0.049236 0.978503 0.191705** 0.087449** 0.06821** 1.260193
GARCHsged 0.329276** 0.141126** 0.187072** 0.919199 0.996913** 0.09181** 0.06281** 1.000741
MSGARCHsged 0.599692** 0.033631 0.058223** 0.956264 0.345368** 0.107205** 0.062089** 1.186064

Coffee
GARCHnorm 0.599692** 0.292951** 0.182489** 0.956264 0.096832** 0.201986** 0.517523** 1.334322
MSGARCHnorm 0.599692** 0.292951** 0.082859** 0.956264 0.69809** 0.734075** 0.989647** 0.926612
GARCHstd 0.332944** 0.318135** 0.327701** 1.082283 0.102975** 0.231256** 0.864046** 0.704225
MSGARCHstd 0.592603** 0.140428** 0.077869** 1.045219 0.69809** 0.734075** 0.950101** 0.926612
GARCHged 0.538857** 0.293491** 0.336994** 0.948851 0.038264 0.104931** 0.666176** 0.630096
MSGARCHged 0.797141** 0.535237** 0.134944** 0.978503 0.69809** 0.452346** 0.734606** 0.926612
GARCHsnorm 0.797141** 0.099346** 0.215052** 0.978503 0.066456** 0.153107** 0.399228** 1.371386
MSGARCHsnorm 0.866417** 0.264959** 0.091541** 0.985915 0.996913** 0.761058** 0.915913** 1.000741
GARCHsstd 0.189745** 0.178477** 0.209194** 1.111935 0.102975** 0.231256** 0.875625** 0.704225
MSGARCHsstd 0.426311** 0.224706** 0.06562** 1.067457 0.848702** 0.762395** 0.176027** 0.963677
GARCHsged 0.538857** 0.113066** 0.218791** 0.948851 0.064408** 0.160255** 0.758104** 0.667161
MSGARCHsged 0.85319** 0.4361** 0.172491** 1015567 0.319515** 0.508443** 0.853383** 0.815419

Table 1.14. Backtesting results for the commodities Cocoa, Cotton, Coffee (Agriculture
commodity sector).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Soybeans
GARCHnorm 0.070937** 0.074143** 0.339663** 0.852167 0.011746 0.022208 0.068071** 2
MSGARCHnorm 0.373825** 0.425806** 0.84635** 0.926269 0.996913** 0.761058** 0.644437** 1.000741
GARCHstd 0.793748** 0.777613** 0.962079** 0.97814 0.848702** 0.762395** 0.58281** 0.963677
MSGARCHstd 0.478429** 0.205038** 0.569573** 0.941089 0.556782** 0.678314** 0.636652** 0.889548
GARCHged 0.150896** 0.169852** 0.637644** 0.881808 0.429471** 0.60052** 0.876634** 0.852483
MSGARCHged 0.245318** 0.282074** 0.577385** 0.904039 0.848702** 0.762395** 0.859678** 0.963677
GARCHsnorm 0.010551 0.025755 0.251902** 0.792886 0.137853** 0.209911** 0.318147** 1.297257
MSGARCHsnorm 0.210175** 0.43667** 0.724079** 0.896628 0.228641** 0.410883** 0.898333** 0.778354
GARCHsstd 0.210175** 0.351503** 0.770771** 0.896628 0.429471** 0.60052** 0.463687** 0.852483
MSGARCHsstd 0.037009 0.061497** 0.309101** 0.829937 0.102975** 0.231256** 0.807443** 0.704225
GARCHsged 0.029299 0.072187** 0.42747** 0.822527 0.228641** 0.410883** 0.766017** 0.778354
MSGARCHsged 0.046355 0.045807 0.219669** 0.837347 0.319515** 0.508443** 0.808987** 0.815419

Wheat
GARCHnorm 0.018101 0.046651 0.272935** 0.808006 0.228641** 0.410883** 0.29739** 0.778354
MSGARCHnorm 0.127491** 0.17592** 0.731896** 0.874722 0.064408** 0.160255** 0.781315** 0.667161
GARCHstd 0.211755** 0.366135** 0.43829** 0.896961 0.102975** 0.231256** 6.3e-05 0.704225
MSGARCHstd 0.152128** 0.300643** 0.533684** 0.882135 0.005665 0.020242 0.069853** 0.518903
GARCHged 0.023255 0.056412** 0.205177** 0.815419 0.038264 0.104931** 0.05844** 0.630096
MSGARCHged 0.152128** 0.193574** 0.630419** 0.882135 0.011397 0.037439 0.117407** 0.555967
GARCHsnorm 0.058145** 0.153375** 0.474211** 0.84507 0.844493** 0.73126** 0.633005** 1.037806
MSGARCHsnorm 0.329276** 0.456365** 0.880336** 0.919199 0.102975** 0.231256** 0.414457** 0.704225
GARCHsstd 0.538857** 0.740983** 0.577715** 0.948851 0.228641** 0.410883** 0.000269 0.778354
MSGARCHsstd 0.797141** 0.535237** 0.677215** 0.978503 0.102975** 0.231256** 0.402083** 0.704225
GARCHsged 0.106023** 0.236974** 0.457106** 0.867309 0.102975** 0.231256** 0.133795** 0.704225
MSGARCHsged 0.286243** 0.428291** 0.69054** 0.911787 0.038264 0.104931** 0.24896** 0.630096

Orange Juice
GARCHnorm 0.784965** 0.046657 0.006078 1.02298 0.000131 0.000664 2.00e-06 1.81616
MSGARCHnorm 0.53389** 0.221842** 0.003341 1.052632 0.848702** 0.762395** 0.197053** 0.963677
GARCHstd 0.08253** 0.030287 0.001254 1.148999 0.429471** 0.60052** 0.29819** 0.852483
MSGARCHstd 0.25423** 0.208511** 0.001421 1.097109 0.699371** 0.677201** 0.129704** 1.07487
GARCHged 0.654254** 0.024493 0.003877 1.037806 0.102975** 0.231256** 0.238843** 0.704225
MSGARCHged 0.922692** 0.038134 0.008726 1008154 0.996913** 0.761058** 0.010889 1.000741
GARCHsnorm 0.784965** 0.046657 0.005183 1.02298 3.5e-05 0.000191 0 1.890289
MSGARCHsnorm 0.718505** 0.050828** 0.000302 1.030393 0.844493** 0.73126** 0.107508** 1.037806
GARCHsstd 0.068662** 0.028494 0.001259 1.156412 0.319515** 0.508443** 0.224408** 0.815419
MSGARCHsstd 0.53389** 0.061884** 0.000893 1.052632 0.844493** 0.73126** 0.015246 1.037806
GARCHsged 0.784965** 0.020155 0.001836 1.02298 0.156918** 0.316237** 0.273965** 0.74129
MSGARCHsged 0.654254** 0.024493 0.001054 1.037806 0.565949** 0.605186** 0.007519 1.111935

Table 1.15. Backtesting results for the commodities Soybeans, Wheat, Orange Juice
(Agriculture commodity sector).
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Confidence level 95% 99%

uc.LRp cc.LRp DQp AE uc.LRp cc.LRp DQp AE
Sugar
GARCHnorm 0.247085** 0.497879** 0.732411** 0.904374 0.096832** 0.201986** 0.033076 1.334322
MSGARCHnorm 0.127491** 0.268296** 0.767797** 0.874722 0.002628 0.010177 0.301284** 0.481838
GARCHstd 0.85319** 0.910519** 0.689048** 1.015567 0.319515** 0.240722** 0.096096** 0.815419
MSGARCHstd 0.729269** 0.542411** 0.456444** 0.97109 0.064408** 0.160255** 0.58733** 0.667161
GARCHged 0.211755** 0.449912** 0.560649** 0.896961 0.064408** 0.050112** 0.128026** 0.667161
MSGARCHged 0.127491** 0.268296** 0.090227** 0.874722 0.228641** 0.176721** 0.002815 0.778354
GARCHsnorm 0.376169** 0.635087** 0.664289** 0.926612 0.011746 0.037856 0.015267 1.519644
MSGARCHsnorm 0.936567** 0.960533** 0.02223 0.993328 0.102975** 0.080877** 0.028972 0.704225
GARCHsstd 0.592603** 0.745351** 0.606945** 1.045219 0.996913** 0.549507** 0.012688 1.000741
MSGARCHsstd 0.53389** 0.807748** 0.203627** 1.052632 0.848702** 0.509321** 0.23263** 0.963677
GARCHsged 0.376169** 0.673278** 0.767099** 0.926612 0.228641** 0.176721** 0.084522** 0.778354
MSGARCHsged 0.866417** 0.959651** 0.423016** 0.985915 0.429471** 0.311619** 0.137356** 0.852483

Soybean Oil
GARCHnorm 0.247085** 0.01933 0.068365** 0.904374 0.260377** 0.098552** 0 1.223128
MSGARCHnorm 0.538857** 0.061719** 0.129585** 0.948851 0.447366** 0.112431** 2.00e-06 1.148999
GARCHstd 0.376169** 0.036285 0.069837** 0.926612 0.848702** 0.078492** 0 0.963677
MSGARCHstd 0.6633** 0.037262 0.0381 0.963677 0.844493** 0.102753** 0 1.037806
GARCHged 0.211755** 0.015324 0.054546** 0.896961 0.69809** 0.064088** 0 0.926612
MSGARCHged 0.180153** 0.012011 0.046329 0.889548 0.996913** 0.09181** 0 1.000741
GARCHsnorm 0.481144** 0.022126 0.060051** 0.941438 0.066456** 0.049959 0 1.371386
MSGARCHsnorm 0.922692** 0.035904 0.08193** 1.008154 0.029222 0.02937 1.00e-06 1.445515
GARCHsstd 0.992953** 0.031922 0.043938 1.000741 0.699371** 0.11023** 0 1.07487
MSGARCHsstd 0.592603** 0.055455** 0.043967 1.045219 0.447366** 0.112431** 0 1.148999
GARCHsged 0.286243** 0.024111 0.087524** 0.911787 0.996913** 0.09181** 0 1.000741
MSGARCHsged 0.992953** 0.07185** 0.073024** 1.000741 0.137853** 0.012129 0 1.297257

Soybean Meal
GARCHnorm 6.00e-05 0.00032 0.011323 0.681987 0.260377** 0.352689** 0.001867 1.223128
MSGARCHnorm 0.0024 0.009907 0.066647** 0.755835 0.996913** 0.761058** 0.020671 1.000741
GARCHstd 0.003333 0.011939 0.094688** 0.763529 0.156918** 0.316237** 0.007041 0.74129
MSGARCHstd 0.004522 0.015539 0.123757** 0.770941 0.319515** 0.508443** 0.010816 0.815419
GARCHged 4.00e-06 2.3e-05 0.002788 0.637509 0.038264 0.104931** 0.00335 0.630096
MSGARCHged 0.000204 0.000995 0.0244 0.704225 0.556782** 0.678314** 0.031888 0.889548
GARCHsnorm 4.00e-06 2.3e-05 0.002749 0.637509 0.699371** 0.677201** 0.004273 1.07487
MSGARCHsnorm 0.003288 0.011234 0.0703** 0.763246 0.69809** 0.734075** 0.004694 0.926612
GARCHsstd 0.003333 0.011939 0.096203** 0.763529 0.319515** 0.508443** 0.005971 0.815419
MSGARCHsstd 0.023255 0.074293** 0.256971** 0.815419 0.69809** 0.734075** 0.007531 0.926612
GARCHsged 3.9e-05** 0.000214 0.011576 0.674574 0.156918** 0.316237** 0.002567 0.74129
MSGARCHsged 0.003333 0.013443 0.11186** 0.763529 0.556782** 0.678314** 0.007598 0.889548

Table 1.16. Backtesting results for the commodities Sugar, Soybean Oil, Soybean Meal
(Agriculture commodity sector).
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Metals Energy Agriculture

Gold 0.75 0.14 0.25
Silver 1.00 0.71 0.67
Palladium 1.00 0.43 0.75
Copper 1.00 0.57 0.67
Zinc 0.75 0.14 0.67

Heating Oil 0.20 0.67 0.25
Low Sulfur Gasolio 0.80 1.00 0.58
Gasoline 0.60 0.83 0.50
Natural Gas 0.00 1.00 0.58
Ethanol 0.40 0.67 0.67
WTI Crude Oil 0.60 1.00 0.58
Natural Gas UK 0.20 0.50 0.17

Oats 0.80 0.29 0.82
Wheat 0.00 0.29 0.82
Cocoa 0.80 0.57 0.36
Corn 0.40 0.43 0.82
Cotton 1.00 0.43 1.00
Sugar 0.80 0.43 0.73
Soybean Oil 0.80 1.00 0.91
Soybean Meal 0.00 0.43 0.82
Orange Juice 0.60 0.57 0.64
Coffee 0.80 0.43 0.91
Soybeans 0.60 0.14 0.91
Rough Rice 0.60 0.71 0.73

Table 1.17. Degree of connectedness between each commodity and the three commodity
sectors. Sample period: October 3, 2005 - March 25, 2022.

Metals Energy Agriculture

Metals 0.90 0.40 0.60
Energy 0.40 0.81 0.48
Agriculture 0.60 0.48 0.79

Table 1.18. Degree of connectedness between the commodity sectors. Sample period:
October 3, 2005 - March 25, 2022.
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1.7.3 C. Tables

Cluster analysis

Gold 1
Silver 1

Palladium 1
Copper 1

Zinc 1
Heating Oil 3

Low Sulfur Gasolio 3
Gasoline 3

Natural Gas 3
Ethanol 2

WTI Crude Oil 3
Natural Gas UK 3

Oats 2
Wheat 2
Cocoa 1
Corn 2

Cotton 2
Sugar 2

Soybean Oil 2
Soybean Meal 2
Orange Juice 3

Coffee 2
Soybeans 2

Rough Rice 2

Table 1.19. Cluster identification of the commodities in the sample in Figure 1.2. Number
1 denotes the red cluster, number 2 the green cluster, and number 3 the purple cluster.
Sample period: October 3, 2005 - March 25, 2022.
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Chapter 2

Expectile Hidden Markov
Regression Models for Analyzing
Cryptocurrency Returns

2.1 Introduction

In the last ten years, investors have been increasingly attracted by the exploit of the
cryptocurrency market, mostly because of its peculiar characteristics. Born merely
as a peer-to-peer electronic cash system (Nakamoto 2008), the 70 billion increase
in market capitalization (in particular Bitcoin during 2016-2017), enormous price
jumps and levels of high volatility that were never seen before have made cryptos a
new category of investment assets. Their unusual behavior makes them prone to
some speculative bubbles that may in turn threaten the stability of financial markets
(Cheah & Fry 2015, Yarovaya et al. 2016). Being crucial to address the level of
integration between cryptocurrencies and traditional financial assets, many contri-
butions have analyzed the relationship with equities mainly relying on well-known
econometric techniques such as GARCH models (Katsiampa et al. 2019, Guesmi
et al. 2019), variance decomposition (Ji, Bouri, Gupta & Roubaud 2018, Corbet
et al. 2018, Yi et al. 2018) and Granger causality test (Bouri et al. 2020b). Part of
the related literature has focused on extreme returns by using models capturing the
tail behavior, rather than inferring such occurrences from models based on condi-
tional central tendency. For instance, Kristjanpoller et al. (2020) and Naeem et al.
(2021) employ a multifractal asymmetric analysis, indicating the presence of hetero-
geneity in the cross-relationship between most cryptocurrencies and equity ETFs
and showing different behaviors between upward and downward trends. Shahzad
et al. (2022) investigate tail-based connectedness among major cryptocurrencies in
extreme downward and upward market conditions using LASSO penalized quantile
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regressions, while Zhang et al. (2021) apply a risk spillover approach based on gener-
alized quantiles, showing the existence of a downside risk spillover between Bitcoin
and traditional assets. In quantitative risk management, indeed, investigating the
dynamic of extreme occurrences is of utmost importance for market participants
and regulators. Among the different methods considered throughout the literature,
quantile regression, introduced by Koenker & Bassett (1978), has represented a
valid approach for modeling the entire distribution of returns while accounting for
the well-known stylized facts, i.e., high kurtosis, skewness and serial correlation,
that typically characterize financial assets. In the financial literature, the quantile
regression framework has been positively applied to estimate and forecast Value at
Risk (VaR) and quantile-based risk measures (Engle & Manganelli 2004, White et al.
2015, Taylor 2019, Merlo et al. 2021).
Several generalizations of the concept of quantiles have also been introduced over
the years. One important extension is provided by the expectile regression (Newey
& Powell 1987), which can be thought of as a generalization of the classical mean
regression based on an asymmetric squared loss function. Similar to quantile regres-
sion, expectile regression allows to characterize the entire conditional distribution
of a response variable, but possesses several advantages over the former. First,
expectiles are more informative than quantiles since they rely on tail expectations
whereas quantiles use only the information on whether an observation is below or
above the predictor. Second, the squared loss is continuously differentiable which
makes the estimators and their covariance matrix easier to compute using fast and
efficient algorithms. For these reasons, expectile models have been implemented
in several fields, such as longitudinal data (Tzavidis et al. 2016, Alfò et al. 2017,
Barry et al. 2021), spatial analysis (Sobotka & Kneib 2012, Spiegel et al. 2020), life
expectancy (Nigri et al. 2022), economics and finance (Taylor 2008, Kim & Lee 2016,
Bellini & Di Bernardino 2017, Bottone et al. 2021). Especially in the context of
risk management, expectiles have gained an important role as potential competitors
to the VaR and the Expected Shortfall measures. Indeed, they possess several
interesting properties in terms of risk measures (see for instance Bellini 2012, Bellini
et al. 2014 and Ziegel 2016), and are the only risk measure that is both coherent
(Artzner et al. 1999) and elicitable (Lambert et al. 2008). Moreover, when modeling
financial time series, returns often exhibit a clustering behavior over time which
cannot be captured by traditional homogeneous regression models. Risk managers
and regulators are increasingly interested in determining whether, and how, their
temporal evolution can be influenced by hidden variables, e.g., the state of the
market, during tranquil and crisis periods. In this context, Hidden Markov Models
(HMMs, see MacDonald & Zucchini 1997, Zucchini et al. 2016) have been successfully
employed in the analysis of time series data, with applications to asset allocation
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and stock returns as discussed in Mergner & Bulla (2008), De Angelis & Paas (2013),
Nystrup et al. (2017) and Maruotti et al. (2019). Quantile regression methods have
also been generalized to account for serial heterogeneity. For example, Liu (2016)
consider a quantile autoregression in which the parameters are subject to regime
shifts determined by the outcome of a latent, discrete-state Markov process, while
Adam et al. (2019) propose a model-based clustering approach where groups are
inferred from conditional quantiles; see also Ye et al. (2016), Maruotti et al. (2021)
and Merlo et al. (2022) for other applications of regime-switching models to financial
and environmental time series. In longitudinal data, Farcomeni (2012) and Marino
et al. (2018) introduce linear quantile regression models where time-dependent unob-
served heterogeneity is described through dynamic coefficients that evolve according
to a homogeneous hidden Markov chain. Within a Bayesian framework, a quantile
nonhomogeneous HMM for longitudinal data has been recently proposed by Liu et al.
(2021). To the best of our knowledge, however, a HMM for estimating conditional
expectiles has not yet been proposed in the literature.
Motivated by the advantages of expectiles and the versatility of HMMs, we develop a
linear expectile hidden Markov regression model to analyze the tail relation between
cryptocurrencies and traditional asset classes. The method introduced allows to
examine the entire conditional distribution of returns given the hidden state and
potential covariates, where the dynamics of returns over time is described by state-
specific regression coefficients which follow a latent discrete homogeneous Markov
chain. Inference about model parameters is carried out in a Maximum Likelihood
(ML) approach using an Expectation-Maximization (EM) algorithm based on the
asymmetric normal distribution of Waldmann et al. (2017) as working likelihood.
From a risk management standpoint, the proposed methodology contributes to
identify and control for potential inherent risks related to the participation in crypto
exchanges to develop appropriate policies and risk assessment procedures.
The study period considered starts from September 2014 until October 2022, com-
prising numerous events that heavily impacted financial stability, as the Chinese
stock market crash of 2015, the crypto currency bubble crisis in 2017-2018, the
COVID-19 outbreak in 2020 and the Russian invasion of Ukraine at the beginning
of 2022. Following Corbet et al. (2018), we model Bitcoin daily returns as a function
of major stock and global market indices, including Crude Oil, Standard & Poor’s
500 (S&P500), Gold COMEX daily closing prices and the Volatility Index (VIX).
Our results show that Bitcoin returns exhibit a clear temporal clustering behavior in
calm and turbulent periods, and they are strongly associated with traditional assets
at low and high expectile levels.
In concluding, we also evaluate the performance of our approach in a simulation
study, generating observations from a two-state HMM under two different sample
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sizes and two different distributions for the error terms.
The rest of the paper is organized as follows. Section 2.2 briefly reviews the expectile
regression. In Section 3.3 we specify the proposed model with the EM algorithm for
estimating the model parameters and the computational aspects. In Section 3.4, we
evaluate the performance of our proposal in a simulation study. Section 3.5 shows
the empirical analysis and discusses the results obtained while Section 2.6 concludes.

2.2 Expectile regression

Expectile regression has been proposed by Newey & Powell (1987) as a “quantile-
like” generalization of standard mean regression based on asymmetric least-squares
estimation. Similarly to quantile regression of Koenker & Bassett (1978), this is
an alternative approach for characterizing the entire conditional distribution of a
response variable where the quantile loss function is substituted with an asymmetric
squared loss function. Formally, the expectile of order τ ∈ (0, 1) of a continuous
response Y given the P -dimensional vector of covariates X = x, is defined as the
minimizer, µx(τ), of the following problem:

µx(τ) = arg min
µ∈R

E[ωτ (Y − µx(τ))], (2.1)

where ωτ (u) = u2|τ − I(u < 0)| is the asymmetric square loss and I(·) denotes the
indicator function.
In a regression framework, for a given τ , a linear expectile model is defined as
µx(τ) = x′β(τ), where β(τ) ∈ RP is the regression parameter vector. If τ = 1

2 ,
expectile regression reduces to the standard mean regression while for τ ̸= 1

2 it allows
to target the entire conditional distribution of the response given the covariates
similarly to quantile regression. When we turn from quantiles to expectiles, the
latter possess several advantages over the former. Particularly, we gain uniqueness
of the ML solutions which is, indeed, not granted in the quantile context. From a
computational standpoint, since the squared loss function ωτ (·) is differentiable, the
regression parameters β(τ) can be estimated by efficient Iterative Reweighted Least
Squares (IRLS), in contrast to algorithms used for fitting quantile regression models.
Proofs of consistency, asymptotic normality and a robust estimator of the variance-
covariance matrix of the regression coefficients for inference have been established in
Newey & Powell (1987). These properties make the expectile regression versatile
and computationally appealing from a statistical point of view.
In a likelihood approach, Gerlach & Chen (2015) and Waldmann et al. (2017)
originally introduced the idea of expectile regression by employing a likelihood
function that is based on the Asymmetric Normal (AN) distribution. The AN
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distribution can be thought of as a generalization of the normal distribution to allow
for non-zero skewness, having the following density:

fY (y) = 2
√

τ(1 − τ)√
πσ2(

√
τ +

√
1 − τ)

exp
[
−ωτ

(
y − µ

σ

)]
, (2.2)

where µ ∈ R is a location parameter corresponding to the τ -th expectile of Y , σ > 0
is a scale parameter and τ ∈ (0, 1) determines the asymmetry of the distribution.
Particularly, when τ = 1

2 the density in (2.2) reduces to the well-known normal
distribution, and µ and σ coincide with its mean and standard deviation, respectively.
As discussed by Waldmann et al. (2017), the minimization of the asymmetric
squared loss function in (2.1) is equivalent, in terms of parameter estimates, to the
maximization of the likelihood associated with the AN density.
In the following section, we extend the expectile regression to the HMM setting by
using the AN distribution as working likelihood.

2.3 Methodology

In this section we describe the expectile hidden Markov regression model in order to
take into account the temporal evolution of the time series under analysis. We then
show how inference about model parameters can be carried out in a ML approach
using the AN distribution introduced in the previous section. Formally, let {St}T

t=1
be a latent, homogeneous, first-order Markov chain defined on the discrete state space
{1, . . . , K}. Let πk = Pr(S1 = k) be the initial probability of state k, k = 1, . . . , K,
and πk|j = Pr(St+1 = k|St = j), with

∑K
k=1 πk|j = 1 and πk|j ≥ 0, denote the

transition probability between states j and k, that is, the probability to visit state k

at time t + 1 from state j at time t, j, k = 1, . . . , K and t = 1, . . . , T . More concisely,
we collect the initial and transition probabilities in the K-dimensional vector π and
in the K × K matrix Π, respectively.

To build the proposed model, let Yt denote a continuous observable response
variable and Xt = (1, Xt2, . . . , XtP )′ be a vector of P exogenous covariates, with the
first element being the intercept, at time t = 1, . . . , T . For a given expectile level
τ ∈ (0, 1), the proposed linear Expectile Hidden Markov Model (EHMM) is defined
as follows:

Yt = X ′
tβk(τ) + ϵtk(τ), (2.3)

with βk(τ) = (β1k(τ), . . . , βP k(τ))′ ∈ RP being a state-specific coefficient vector
that assumes one of the values {β1(τ), . . . , βK(τ)} depending on the outcome of the
unobservable Markov chain St and where ϵtk(τ) is the error term whose conditional
τ -th expectile is assumed to be zero.
Extending the approach of Waldmann et al. (2017) to the HMM setting, we use
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the AN distribution to describe the conditional distribution of the response given
covariates and the state occupied by the latent process at time t, whose probability
density function is now given by

fY (yt|Xt = xt, St = k) = 2
√

τ(1 − τ)√
πσ2

k(
√

τ +
√

1 − τ)
exp

[
−ωτ

(
yt − µtk

σk

)]
, (2.4)

where the location parameter µtk is defined by the linear model µtk = x′
tβk(τ).

In the following section we use the AN distribution as a working likelihood for
estimating the model parameters in a regression framework.

2.3.1 Likelihood inference

In this section we consider a ML approach to make inference on model parameters.
As is common for HMMs, and for latent variable models in general, we develop
an EM algorithm (Baum et al. 1970) to estimate the parameters of the method
proposed based on the observed data. To ease the notation, unless specified otherwise,
hereinafter we omit the expectile level τ , yet all model parameters are allowed to
depend on it.
For a given number of hidden states K, the EM algorithm runs on the complete
log-likelihood function of the model introduced, which is defined as

ℓc(θτ ) =
K∑

k=1
γ1(k) log πk +

T∑
t=1

K∑
k=1

K∑
j=1

ξt(j, k) log πk|j

+
T∑

t=1

K∑
k=1

γt(k) log fY (yt|xt, St = k),

(2.5)

where θτ = (β1, . . . , βK , σ1, . . . , σK , π, Π) represents the vector of all model param-
eters, γt(k) denotes a dummy variable equal to 1 if the latent process is in state k at
occasion t and 0 otherwise, and ξt(j, k) is a dummy variable equal to 1 if the process
is in state j in t − 1 and in state k at time t and 0 otherwise.

To estimate θτ , the algorithm iterates between two steps, the E- and M-steps,
until convergence, as outlined below.

E-step:

In the E-step, at the generic (h+1)-th iteration, the unobservable indicator variables
γt(k) and ξt(j, k) in (3.12) are replaced by their conditional expectations given the
observed data and the current parameter estimates θ(h)

τ . To compute such quantities
we require the calculation of the probability of being in state k at time t given the
observed sequence

γ
(h)
t (k) = P

θ
(h)
τ

(St = k|y1, . . . , yT ) (2.6)
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and the probability that at time t − 1 the process is in state j and then in state k at
time t, given the observed sequence

ξ
(h)
t (j, k) = P

θ
(h)
τ

(St−1 = j, St = k|y1, . . . , yT ). (2.7)

The quantities in (3.13) and (3.14) can be obtained using the Forward-Backward
algorithm of Welch (2003). Then, we use these to calculate the conditional expecta-
tion of the complete log-likelihood function in (3.12) given the observed data and
the current estimates:

Q(θτ |θ(h)
τ ) =

K∑
k=1

γ
(h)
1 (k) log πk +

T∑
t=1

K∑
k=1

K∑
j=1

ξ
(h)
t (j, k) log πk|j

+
T∑

t=1

K∑
k=1

γ
(h)
t (k) log fY (yt|xt, St = k).

(2.8)

M-step:

In the M-step we maximize Q(θτ |θ(h)
τ ) in (3.15) with respect to θτ to obtain

the update parameter estimates θ(h+1)
τ . The maximization of Q(θτ |θ(h)

τ ) can be
partitioned into orthogonal subproblems, where the updating formulas for the hidden
Markov chain and state-dependent regression parameters are obtained independently
maximizing each of these terms. Formally, the initial probabilities πk and transition
probabilities πk|j are updated using:

π
(h+1)
k = γ

(h)
1 (k), k = 1, . . . , K (2.9)

and

π
(h+1)
k|j =

∑T
t=1 ξ

(h)
t (j, k)∑T

t=1
∑K

k=1 ξ
(h)
t (j, k)

, j, k = 1, . . . , K. (2.10)

To update the regression coefficients, the first-order condition of (3.15) with respect
to βk, k = 1, . . . , K, yields

∂Q(θτ |θ(h)
τ )

∂βk

∝
T∑

t=1
γ

(h)
t (k)|τ − I(yt < x′

tβk)|xt(yt − x′
tβk) = 0P , (2.11)

so the M-step update expression for βk is

β
(h+1)
k =

( T∑
t=1

γ
(h)
t (k)|τ − I(yt < x′

tβk)|xtx
′
t

)−1( T∑
t=1

γ
(h)
t (k)|τ − I(yt < x′

tβk)|xtyt

)
,

(2.12)
which can be computed using IRLS for cross-sectional data with appropriate weights.
Similarly, from the first-order condition of (3.15) with respect to the scale parameters
we obtain the following M-step update formula for σ2

k:

σ2
k

(h+1) = 2∑T
t=1 γ

(h)
t (k)

T∑
t=1

γ
(h)
t (k)|τ − I(yt < x′

tβ
(h+1)
k )|(yt − x′

tβ
(h+1)
k )2. (2.13)
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The E- and M- steps are alternated until convergence, that is when the observed like-
lihood between two consecutive iterations is smaller than a predetermined threshold.
In this paper, we set this threshold criterion equal to 10−4.
Following Maruotti et al. (2021) and Merlo et al. (2022), for fixed τ and K we initial-
ize the EM algorithm by providing the initial states partition, {S

(0)
t }T

t=1, according
to a Multinomial distribution with probabilities 1/K. From the generated partition,
the elements of Π(0) are computed as proportions of transition, while we obtain β

(0)
k

and σ
(0)
k by fitting mean regressions on the observations within state k. To deal

with the possibility of multiple roots of the likelihood equation and better explore
the parameter space, we fit the proposed EHMM using a multiple random starts
strategy with different starting partitions and retain the solution corresponding to
the maximum likelihood value.
Once we computed the ML estimate of the model parameters, to estimate the
standard errors we employ the parametric bootstrap scheme of Visser et al. (2000).
In practice, we refit the model to R bootstrap samples and approximate the standard
error of each model parameter with the corresponding standard deviation of the
bootstrap estimates.

2.4 Simulation study

We conduct a simulation study to validate the performance of our method under
different scenarios in terms of recovering the true values of the parameters and the
clustering performance. Similar to the work of Maruotti et al. (2021), we analyze
two different sample sizes (T = 500, T = 1000) and two different distributions for
the error term. For each scenario we conduct 500 Monte Carlo simulations. We draw
observations from a two state HMM (K = 2) using the following data generating
process:

Yt =

−1 + 2Xt + ϵt1, St = 1

1 − 2Xt + ϵt2, St = 2,
(2.14)

with Xt ∼ N (0, 1). We consider two distributions for the error terms in (2.14). In
the first scenario, ϵtk is generated from a normal distribution with standard deviation
1, for k = 1, 2. In the second one, ϵtk is generated from a skew-t distribution with 5
degrees of freedom and asymmetry parameter 2, for k = 1, 2. Finally, the matrix of
transition probabilities is set equal to Π =

( 0.8 0.2
0.1 0.9

)
.

In order to assess the validity of the model we fit the proposed EHMM at five
expectile levels, i.e., τ = {0.10, 0.25, 0.50, 0.75, 0.90}, and compute the bias and
standard errors associated to the state-specific coefficients, averaged over the Monte
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Carlo replications, for each combination of sample size and error distribution. Tables
2.1 and 2.2 report the simulation outputs for the normal and skew-t distributions,
respectively. As can be observed, the precision of the estimates is higher at the
center of the distribution rather than on the tails, mainly due to the reduced
number of observations at extreme expectile levels, but the bias always remains
under control. Evidently, in Table 2.2 a higher standard deviation shows up for the
skew-t distribution due to the asymmetry and heavier tails than the normal density,
but both the bias and the standard deviation tend to decrease as the sample size
increases. Concerning the hidden process, given the true values of the transition
probabilities in Π, we see that the coefficients corresponding to the first state are
estimated with lower precision because fewer transitions occur from one state to the
other, as expected.
To evaluate the ability in recovering the true states partition we consider the Adjusted
Rand Index (ARI) of Hubert & Arabie (1985). The state partition provided by the
fitted models is obtained by taking the maximum, max

k
γt(k), posteriori probability

for every t = 1, . . . , T , and report the box-plots of ARI for the posterior probabilities
in Figure 3.1 for the four settings considered. Firstly, we observe that the distribution
error plays a fundamental role in estimating the true states partition as, for all
five expectile levels, we obtain a better clustering performance for the model with
Gaussian errors with respect to the skew-t case. Secondly, the goodness of the
clustering obtained partially depends on the specific expectile level, being the values
slightly higher at the mean (τ = 0.50) than at the tails. Finally, when increasing the
sample size to T = 1000, results slightly improve reporting a lower variability for
both error distributions. Overall, the proposed EHMM is able to recover the true
values of the parameters and the true state partition highly satisfactory in all the
cases examined.

2.5 Empirical application

In this section we apply the methodology proposed to analyze the Bitcoin daily
returns as a function of global leading financial indices. Over the last decade,
cryptocurrencies and in particular the Bitcoin market played a leading role, attracting
attentions of researchers and investors. Their peculiar characteristics, such their
extreme price volatility, driven by market speculation and technology applications,
often lead to price bubbles, euphoria and market instability. In order to address
these periods of upheaval, it is crucial to understand the association between Bitcoin
and globally relevant market indices in such circumstances of financial turmoil.
Consistently with Corbet et al. (2018), here we consider the Bitcoin, Crude Oil,
Standard & Poor’s 500 (S&P500), Gold COMEX daily closing prices and the
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τ 0.10 0.25 0.50 0.75 0.90

Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err
Panel A: T=500
State 1
β1,1 = -1 0.020 0.093 0.010 0.076 -0.002 0.073 -0.018 0.080 -0.048 0.100
β2,1 = 2 0.001∗ 0.109 0.001 0.093 0.004 0.087 0.010 0.089 0.023 0.101
State 2
β1,2 = 1 0.040 0.055 0.013 0.041 -0.002 0.037 -0.013 0.039 -0.027 0.047
β2,2 = -2 -0.008 0.067 0.001∗ 0.058 0.001 0.055 -0.003 0.058 -0.012 0.068

Panel B: T = 1000
State 1
β1,1 = -1 0.021 0.068 0.010 0.055 -0.001 0.051 -0.016 0.056 -0.042 0.070
β2,1 = 2 0.006 0.071 0.003 0.060 0.004 0.057 0.008 0.060 0.017 0.069
State 2
β1,2 = 1 0.039 0.038 0.014 0.029 0.001∗ 0.026 -0.010 0.028 -0.023 0.034
β2,2 = -2 -0.012 0.053 -0.004 0.045 -0.002 0.043 -0.005 0.044 -0.014 0.050

Table 2.1. Bias and standard error values of the state-regression parameter estimates with
Gaussian distributed errors for T = 500 (Panel A) and T = 1000 (Panel B). ∗ represents
values smaller (in absolute value) than 0.001.

Figure 2.1. From left to right, box-plots of ARI for the posterior probabilities for Gaussian
(red) and skew-t (blue) distributed errors with T = 500 and T = 1000.

Volatility Index (VIX) from September 2014 to October 2022. All series are expressed
in US dollars and have been downloaded from the Yahoo finance database. Daily
returns with continuous compounding are calculated taking the logarithm of the
difference between closing prices in consecutive trading days and then multiplied by
100, i.e., rt = 100 · log(Pt/Pt−1) where Pt is the closing price on day t, for a total of
T = 2025 observations.
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τ 0.10 0.25 0.50 0.75 0.90

Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err Bias Std.Err
Panel A: T=500
State 1
β1,1 = -1 -0.064 0.228 -0.009 0.119 -0.004 0.099 -0.018 0.166 0.083 0.489
β2,1 = 2 -0.153 0.319 -0.049 0.183 0.001 0.125 0.027 0.161 -0.045 0.471
State 2
β1,2 = 1 0.181 0.144 0.066 0.073 0.013 0.051 -0.018 0.060 -0.052 0.131
β2,2 = -2 -0.060 0.100 -0.029 0.080 -0.015 0.074 -0.015 0.079 -0.038 0.103

Panel B: T = 1000
State 1
β1,1 = -1 -0.053 0.162 0.001 0.077 -0.004 0.069 -0.022 0.123 0.025 0.369
β2,1 = 2 -0.133 0.236 -0.024 0.111 0.013 0.082 0.039 0.116 0.027 0.319
State 2
β1,2 = 1 0.168 0.101 0.057 0.048 0.010 0.035 -0.019 0.041 -0.059 0.083
β2,2 = -2 -0.067 0.067 -0.033 0.052 -0.016 0.048 -0.015 0.054 -0.031 0.072

Table 2.2. Bias and standard error values of the state-regression parameter estimates with
skew-t distributed errors for T = 500 (Panel A) and T = 1000 (Panel B).

The considered timespan is marked by numerous crises that may have impacted cross-
market integration patterns, including the Chinese stock market crash of 2015, the
cryptocurrency bubble crisis in 2017-2018, the COVID-19 pandemic and the Russian
invasion of Ukraine at the beginning of 2022, which have caused unprecedented levels
of uncertainty and risk. In Table 2.3 we report the list of examined variables and
the summary statistics for the whole sample. First thing to notice is that Bitcoin
is generally much more volatile than the other assets, having the highest standard
deviation. The Bitcoin returns also show very high negative skewness and very high
kurtosis, as well as S&P500. The highest level of kurtosis is reported by Crude Oil,
probably determined by the prices’ fluctuations after the COVID-19 outbreak. On
the other side, the large positive skewness of VIX indicates longer and fatter tails
on the right side of the distribution, highlighting the well-known inverse relationship
with the S&P500. In concluding, the Augmented Dickey-Fuller (ADF) test Dickey &
Fuller (1979) shows that all daily returns are stationary at the 1% level of significance.
Following these considerations, and motivated by the reforms considered by markets
authorities to protect investors and preserve stability in response to cryptocurrencies’
downturns, the proposed EHMM can provide insights into the temporal evolution
of Bitcoin returns and describe how this is affected by rapid changes in markets
volatility.

To this end, we consider the following linear EHMM:

µBitcoin
tk = β1k(τ)+β2k(τ)rCrude Oil

t +β3k(τ)rS&P 500
t +β4k(τ)rGold

t +β5k(τ)rV IX
t ,

(2.15)
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Minimum Mean Maximum Std.Err. Skewness Kurtosis Jarque-Bera test ADF test

Bitcoin -46.4730 0.1859 22.5119 4.6165 -0.6817 8.7172 6568.469 -11.117
Crude Oil -28.2206 0.0280 31.9634 3.1077 0.0942 21.1219 37645.730 -10.324
S&P500 -12.7652 0.0316 8.9683 1.1716 -0.9033 16.3473 22823.380 -12.390
Gold -5.1069 0.0152 5.7775 0.9358 -0.0698 4.1741 1471.712 -12.292
VIX -29.9831 0.0379 76.8245 8.3414 1.2683 6.6648 4290.737 -14.209

Table 2.3. Descriptive statistics for the whole sample. The Jarque-Bera test and the ADF
test statistics are displayed in boldface when the null hypothesis is rejected at the 1%
significance level.

with µBitcoin
tk corresponding to the τ -th conditional expectile of Bitcoin return at

time t in state k, while rCrude Oil
t denotes the return of the same date for Crude Oil,

and similarly for the other indices.
As a first step of the empirical analysis, in order to select the number of latent states
we fit the proposed EHMM for different values of K varying from 2 to 5 at three
expectile levels τ = {0.10, 0.50, 0.90}, which allow us to focus on both downside and
upside risks. To compare models with differing number of states, Table 2.4 reports
three widely employed penalized likelihood selection criteria for K, namely the AIC
(Akaike 1998), the BIC (Schwarz et al. 1978) and the ICL (Biernacki et al. 2000). As
one can see, the AIC selects 5, or more, states, while BIC chooses K = 4 for all three
expectile levels. This should not be surprising since the AIC tends to overestimate
the true number of hidden states. On the contrary, ICL favors a more parsimonious
choice as K = 2 is always considered to be the optimal number of states at τ = 0.10,
τ = 0.50 and τ = 0.90. For these reasons, and in order to clearly identify high and
low volatility market conditions we thus consider the proposed EHMM with K = 2
states for all three τ levels.
For the selected models, we report the clustering results in Figure 2.2 at the
investigated expectile levels. Each plot shows the time series of Bitcoin daily
returns colored according to the estimated posterior probability of class membership,
max

k
γt(k), with the vertical dashed lines representing globally relevant events such as

the Chinese stock market crash in 2015, the cryptocurrencies crash at the beginning
of 2018, the COVID-19 market crash in March 2020, Biden’s election at the USA
presidency in November 2020 and the Russian invasion of Ukraine at the beginning
of 2022. Here we clearly see that the latent components can be associated to specific
market regimes characterized by low and high volatility periods. Specifically, light-
blue points (State 1) tend to identify low returns, while dark-blue ones (State 2)
correspond to periods of extreme positive and negative returns.
Moving on to the state-specific model parameters, Table 2.5 shows the parameter
estimates along with the standard errors (in brackets) computed by using the
parametric bootstrap technique illustrated in Section 3.3.1 over R = 1000 resamples.
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First, consistently with the quantile regression literature, the intercepts are increasing
with τ , with State 1 having lower values than State 2 for all τs. Second, it is
interesting to observe that in the not-at-risk state (State 1) the S&P500, Gold and
the VIX index positively influence extreme left-tail (τ = 0.10) movements of Bitcoin
returns, while only S&P500 and Gold significantly influence the right-tail (τ = 0.90)
expectiles of the cryptocurrency, exposing a connection during high volatility periods
between traditional financial markets and Bitcoin both for negative and positive
returns. At τ = 0.50, instead, Bitcoin can be considered as a weak hedge during high
volatility periods since it is not statistically associated with all the assets considered
(Bouri, Jalkh, Molnár & Roubaud 2017, Bouri, Molnár, Azzi, Roubaud & Hagfors
2017). In the at-risk state (State 2) we observe a positive influence of the S&P500
and Gold across the conditional distribution of returns. Also, one can see that Crude
Oil is negatively associated with the crypto returns at the 10-th expectile. This
finding is in line with Bouri et al. (2020a) but it is contrary to the works of Dyhrberg
(2016) and Corbet et al. (2018), which may be due to the events and crises occurred
in the last years.
Finally, the estimated state-dependent scale parameter σ1 reflects more stable periods
for the first state, meanwhile σ2 contemplates rapid (positive and negative) peak
and burst returns for the second state, confirming the graphical analysis conducted
in Figure 2.2.

τ = 0.10 τ = 0.50 τ = 0.90

AIC
K = 2 11347.4122 11231.4286 11389.7954
K = 3 11210.6074 11126.1327 11204.4727
K = 4 11109.3930 11051.9556 11115.4655
K = 5 11055.7980 11014.8696 11079.7912

BIC
K = 2 11431.6121 11315.6285 11473.9953
K = 3 11356.5539 11272.0791 11350.4192
K = 4 11328.3127 11270.8753 11334.3852
K = 5 11358.9175 11317.9892 11382.9108

ICL
K = 2 12784.4362 12787.4471 12926.5182
K = 3 13490.5599 13406.8221 13616.8609
K = 4 13880.2346 13487.8461 13759.7332
K = 5 14111.8066 13511.4108 13908.7362

Table 2.4. AIC, BIC and ICL values with varying number of states for the investigated
expectile levels. Bold font highlights the best values for the considered criteria (lower-is-
better).
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Figure 2.2. From top to bottom, Bitcoin returns series classified according to the estimated
posterior probability of class membership at τ = 0.10, τ = 0.50 and τ = 0.90. Vertical
dashed lines indicate globally relevant events in the financial markets that occurred in
2015,06; 2017,12; 2020,03; 2020,11; and 2022,02.

2.6 Conclusions

The increasing popularity and importance of Bitcoin in the financial landscape have
made scholars and practitioners interrogated about its properties and its relation
to other assets. In this regard, we contribute to the existing literature in two ways.
From a theoretical standpoint, we develop a linear expectile hidden Markov model
for the analysis of time series where temporal behaviors of the data are captured
via time-dependent coefficients that follow an unobservable discrete homogeneous
Markov chain. The proposed method enables us to model the entire conditional
distribution of asset returns and, at the same time, to grasp unobserved serial
heterogeneity and rapid volatility jumps that would otherwise go undetected. From
a practical point of view, we analyze the association between Bitcoin and a collection
of global market indices, not only at the average, but also during times of market
stress.



2.6 Conclusions 52

Intercept Crude Oil S&P500 Gold VIX σk

State 1
τ = 0.10 -1.036 (0.280) 0.024 (0.021) 0.595 (0.096) 0.189 (0.072) 0.029 (0.012) 1.433 (0.040)
τ = 0.50 0.122 (0.158) 0.031 (0.072) 0.409 (0.383) 0.263 (0.249) 0.009 (0.036) 1.695 (0.062)
τ = 0.90 1.297 (0.061) -0.009 (0.020) 0.589 (0.088) 0.134 (0.065) 0.014 (0.011) 1.335 (0.041)

State 2
τ = 0.10 -6.52 (0.060) -0.256 (0.096) 2.072 (0.476) 1.032 (0.320) -0.055 (0.058) 4.964 (0.157)
τ = 0.50 0.242 (0.092) -0.056 (0.055) 1.087 (0.357) 0.613 (0.214) -0.025 (0.026) 6.164 (0.169)
τ = 0.90 6.244 (0.229) 0.017 (0.079) 0.948 (0.291) 0.835 (0.249) -0.002 (0.041) 4.692 (0.128)

Table 2.5. State-specific parameter estimates for three expectile levels, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level.

Empirically, we find evidence of strong and positive interrelations among Bitcoin
returns and S&P500 and Gold, and, at the same time, we observe the capacity of the
Bitcoin of working as a weak hedge during high volatility periods, contributing to
the existing strands of literature on the subject (Baur et al. 2018, Corbet et al. 2018,
2019). Its partial capacity of being a weak hedge but not a safe haven it is consistent
with the excess volatility of Bitcoin and indications that assets with no history as
a safe haven are unlikely to be considered “safe” in an economic or financial crisis
(Baur et al. 2018).
As a possible next step, our methodology could be extended to the hidden semi-
Markov model setting where the sojourn-distributions, that is, the distributions of
the number of consecutive time points that the chain spends in each state, can be
modeled by the researcher using either parametric or non-parametric approaches
instead of assuming geometric sojourn densities as in HMMs.
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Chapter 3

Expectile Copula-Based Hidden
Markov Regression Models for
the Analysis of the
Cryptocurrency Market

3.1 Introduction

Since the creation of Bitcoin more than a decade ago (Nakamoto 2008), exchange
volumes have expanded tremendously, facilitated by the speed of transaction and the
lack of any central authority or financial intermediary. This exploitation has piqued
the interest of policymakers, risk managers and academics in the peculiar charac-
teristics of cryptocurrencies, which can serve both as an efficient payment method
and an investment asset. The rapid development of many alternative crypto assets
attempting to replicate the path of the Bitcoin has resulted in massive speculative
manoeuvres, which have increased the willingness of investors and practitioners to
comprehend this challenging financial market (Borri 2019). Speculative periodic
crypto-bubbles have repeatedly jeopardized the stability of financial markets and
have been extensively studied, especially after the 2017 boom and the subsequent
catastrophic crash in 2018 (Cheah & Fry 2015, Cheung et al. 2015, Corbet et al.
2018, Agosto & Cafferata 2020, Xiong et al. 2020). At the beginning of 2020, the
global COVID-19 pandemic and the prospect of a global recession exacerbated the
volatility of cryptoassets, prompting practitioners to speculate about the impact
of the pandemic on digital currency returns and volatility, as well as their effect
on international stock markets. Different aspects of cryptocurrencies, such as long-
memory and efficiency (Duan et al. 2021, López-Martín et al. 2021, Assaf et al.
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2022), hedging properties (Demir et al. 2020, Das et al. 2020), and relationships
with other asset classes, have been investigated in the literature. In particular,
empirical studies focused on whether cryptocurrencies could be used as optimal
instruments to diversify investors’ portfolios. Conlon & McGee (2020) analyzed if
Bitcoin could be used as a safe-haven for the Standard & Poor’s 500 (S&P500).
Mariana et al. (2021) similarly tested Bitcoin and Ethereum safe-haven properties,
while Corbet et al. (2020) studied the potential increases in volatility or correlation
between Bitcoin and traditional markets and commodities, such as gold and oil
prices. In the last years, the financial literature on the empirical characteristics of
digital currencies have documented the existence of stylized facts, such as volatility
clustering, asymmetry and leptokurticity, and the presence of spillover effects within
the crypto market and toward other global financial markets. Consequently, it is
indeed of utmost importance to be able to develop adequate statistical tools to
take into account all these features. In the financial literature, Hidden Markov
Models (HMMs, see MacDonald & Zucchini 1997, Zucchini et al. 2016) have been
successfully employed in understanding whether, and how, time series temporal
evolution can be influenced by hidden variables during tranquil and crisis periods.
Numerous HMMs applications can be found in asset allocation and stock returns,
as discussed for example in Mergner & Bulla (2008), De Angelis & Paas (2013),
Nystrup et al. (2017), Maruotti et al. (2019). In the context of cryptocurrencies time
series, Giudici & Abu Hashish (2020), Caferra & Vidal-Tomás (2021), Pennoni et al.
(2022) and Cremaschini et al. (2022) consider latent Markov processes to analyze
volatility clustering and serial heterogeneity of crypto returns. Besides the clustering
behavior of returns, the analysis of the dynamics of extreme returns is of the utmost
importance for regulators and policymakers for modeling the entire distribution
of returns while accounting for the well-known stylized facts, i.e., high kurtosis,
skewness and serial correlation. In order to address these features, since the seminal
work of Koenker & Bassett (1978), quantile regression represented a valid approach
and a widely used technique in many empirical applications; see Koenker (2005) and
Koenker et al. (2017). It allows to model the conditional quantiles of a response
variable with respect to a set of covariates, providing a much more complete picture
of the conditional distribution compared with traditional mean regression. Quantile
models have been extensively applied in finance and economics for estimating Value
at Risk (VaR) and quantile-based risk measures (Engle & Manganelli 2004, White
et al. 2015, Taylor 2019, Merlo et al. 2021). One of the most relevant extension
related to quantile regression is provided by the expectile regression (Newey &
Powell 1987), which is a “quantile-like” generalization of the mean regression using
an asymmetric squared loss function. Even though many quantile regression methods
are now well consolidated in the literature, few studies have been conducted on tail
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events and their link to traditional assets within the context of digital currencies.
Borri (2019) employs the Conditional VaR to estimate the conditional tail risk in the
cryptocurrency markets, indicating that cryptocurrencies are highly exposed to tail
risk within the cryptocurrency markets but are disconnected from other global assets.
Ciner et al. (2022) analyze cryptocurrency returns during highly volatile period of
the COVID-19 pandemic using penalized quantile regressions, finding an impact of
Gold and S&P500 at the median of the crypto return distributions while, in the
case of expectiles, Foroni et al. (2023) propose an expectile HMM for the analysis of
Bitcoin daily returns. These proposals, however, are confined to the modeling of
univariate financial time series only. When multiple cryptocurrencies returns are
analyzed jointly, their dependence structure must be incorporated in the modeling
framework in order to provide adequate risk control measures and produce effective
asset allocation and diversification strategies. In these cases, taking into account the
degree of association among different digital currencies, that cannot be detected by
univariate methods, could be extremely important also for regulatory interventions.
To address all these features simultaneously, we develop multivariate hidden Markov
models for estimating conditional quantiles and expectiles of multiple cryptocur-
rencies returns using regime-switching copulas in a regression framework. On the
one side, to model the temporal evolution of returns we introduce in the regression
model time-dependent coefficients evolving according to a discrete, homogeneous
latent Markov chain. On the other side, to take into account for the time-varying de-
pendence structure of returns, we consider elliptical copulas defined by state-specific
parameters. With this work, we unify in a common approach quantile and expectile
HMMs with copulas, which allow us to pursue a two-fold goal. First, we incorporate
within state-dependencies among the cryptocurrencies, which is crucial for investors
whose investment portfolios contain a portion of crypto-assets as well as for poli-
cymakers whose role is to maintain the stability of financial markets. Second, we
investigate the relationship among crypto and traditional financial assets at different
volatility states, and in lower and upper tails of cryptocurrency return distributions.
The estimation is carried out in a Maximum Likelihood (ML) framework using,
respectively, the Asymmetric Laplace (Yu & Moyeed 2001) and Normal (Waldmann
et al. 2017) distributions for quantiles and expectiles as working likelihoods through
suitable Expectation-Maximization (EM) algorithms. The good performances of our
methods are illustrated through a simulation study generating observations from
a bivariate two-state HMM under different sample sizes, error distributions and
copula functions. The real data analysis considers daily returns from July 2017 until
December 2022, which comprise numerous events that heavily impacted financial
stability, as the crypto currency bubble crisis in 2017-2018, the COVID-19 outbreak
in 2020, Biden’s election at the USA presidency in November 2020 and the Russian
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invasion of Ukraine at the beginning of 2022. As for the choice of the dependent
variables, we select five cryptocurrencies, namely Bitcoin (BTC), Ethereum (ETH),
Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BCH), following the criteria
adopted in Pennoni et al. (2022). Digital currencies are modeled as functions of
major stock and global market indices, including S&P500, S&P US Treasury Bond,
US dollar index, WTI Crude Oil and Gold COMEX daily closing prices. Our results
show that cryptocurrency returns exhibit a clear temporal clustering behavior in
calm and turbulent periods, and the association with traditional financial assets is
strong at extreme tails of returns distribution, especially with S&P500, S&P US
Treasury Bond and Gold.

The rest of the paper is organized as follows. Section 3.2 briefly reviews univariate
quantile and expectile regressions. In Section 3.3 we describe the proposed models,
the EM algorithms for estimating the model parameters and the computational
aspects of the estimation procedure. In Section 3.4, we evaluate the performance of
our proposal in a simulation study. Section 3.5 is devoted to the empirical analysis
and discusses the results obtained while Section 3.6 concludes.

3.2 Preliminaries on quantile and expectile regressions

In order to better explain the proposed models, in this section we briefly revise the
univariate quantile and expectile regressions.

For a continuous response variable, quantile and expectile regressions provide a
much more flexible approach and complete picture of the conditional distribution
of the response than classical regression models targeting the mean. The former,
introduced by Koenker & Bassett (1978), can be considered as a generalisation of
median regression, while the latter, proposed by Newey & Powell (1987), can be
thought of as a generalization of mean regression based on asymmetric least-squares
estimation. More generally, both quantiles and expectiles can be embedded in a
common framework within the wider class of generalized quantiles defined as the
minimizers of an asymmetric l-power loss function.

Formally, let τ ∈ (0, 1) and consider the following asymmetric loss function

ωl,τ (u) = |u|l · |τ − I(u < 0)|, u ∈ R (3.1)

where I(·) denotes the indicator function.
Given a set of covariates X = x, it is easy to see that when l = 1, the conditional

quantile of order τ of a continuous response Y is defined as

qx(τ) = arg min
m∈R

E[ω1,τ (Y − mx(τ))] (3.2)
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meanwhile, for l = 2, the τ -th conditional expectile of Y is defined as

ex(τ) = arg min
m∈R

E[ω2,τ (Y − mx(τ))]. (3.3)

In particular, qx(τ) and ex(τ) with τ = 1
2 correspond respectively to the condi-

tional median and the mean of Y given covariates x. When τ ̸= 1
2 , both methods

allow to target the entire conditional distribution of the response. In practice, quan-
tiles have a more intuitive interpretation than expectiles even if they target essentially
the same part of the distribution of interest. However, despite the popularity and
the easy interpretability of the former, the latter offer some advantage: (a) we gain
uniqueness of the ML solutions which is not granted in the quantile context; (b) from
a computational standpoint, since the squared loss function ω2,τ (·) is differentiable,
ex(τ) can be estimated by efficient Iterative Reweighted Least Squares (IRLS), in
contrast to algorithms used for fitting quantile regression models.

From a likelihood perspective, both methods have been implemented in a ML
approach by exploiting the relationship between the minimization of the loss func-
tion in (3.1) and the maximization of a likelihood function formed by combining
independently distributed densities with kernel function ωl,τ (·). That is,

f(y; µ, σ, τ) = Bl,τ (σ) exp
[
−ωl,τ

(
y − µ

σ

)]
(3.4)

where µ ∈ R is a location parameter, σ > 0 is a scale parameter and Bl,τ (σ) is
a normalizing constant that ensures the density integrates to one. In the case of
quantiles for l = 1, the density in (3.4) reduces to the Asymmetric Laplace (AL)
distribution introduced by Yu & Moyeed (2001), fAL(y; µ, δ, τ), where µ coincides
with the τ -th quantile of Y with B1,τ (σ) = τ(1−τ)

σ . As regards to expectiles when
l = 2, (3.4) corresponds to the Asymmetric Normal (AN) distribution proposed
by Gerlach & Chen (2015) and Waldmann et al. (2017), fAN (y; µ, σ, τ), and µ is
the τ -th expectile of Y with B2,τ (σ) = 2

√
τ(1−τ)√

πσ2(
√

τ+
√

1−τ)
. It is easy to verify that

in both cases, as discussed in Yu & Moyeed (2001) and Waldmann et al. (2013)
respectively, the minimization of the respective expected loss functions ω1,τ (·) and
ω2,τ (·) is equivalent, in terms of parameter estimates, to the maximization of the
likelihood functions associated with the AL and AN densities.

In the following section, we extend quantile and expectile regressions to the
HMM setting for the analysis of multivariate time series by considering elliptical
copulas.

3.3 Methodology

In this section we formally introduce the quantile and expectile copula-based hidden
Markov regression models. We then build suitable EM algorithms for ML estimation
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using the AL and AN distributions as working likelihoods for the proposed models.
Formally, let {St}T

t=1 be a latent, homogeneous, first-order Markov chain defined
on the discrete state space {1, . . . , K}. Let πk = Pr(S1 = k) be the initial probability
of state k, k = 1, . . . , K, and πk|j = Pr(St+1 = k|St = j), with

∑K
k=1 πk|j = 1 and

πk|j ≥ 0, denote the transition probability between states j and k, that is, the
probability to visit state k at time t + 1 from state j at time t, j, k = 1, . . . , K and
t = 1, . . . , T . More concisely, we collect the initial and transition probabilities in the
K-dimensional vector π and in the K × K matrix Π, respectively.

Let Y t = (Yt,1, . . . , Yt,d) denote a continuous d-dimensional dependent variable
and Xt = (1, Xt,2, . . . , Xt,p) be a vector of p exogenous covariates, with the first
element being the intercept, at time t = 1, . . . , T . Finally, let τ = (τ1, . . . , τd) denote
a d-dimensional vector of fixed scalars with τj ∈ (0, 1), j = 1, . . . , d.

As mentioned in the Introduction, our goal is to jointly model the univariate
component-wise quantiles (expectiles) of the conditional distribution of the vector
Y t given Xt = xt and St = k, capturing the possible dependence structure between
cryptocurrencies returns’. To this end, we construct a multivariate state-dependent
distribution allowing for within-state correlation among the elements in Y t by
using a copula-based approach. As introduced by the seminal paper of Sklar
(1959), the idea of a copula is to split a multivariate distribution into its univariate
margins and the dependence structure, where the latter depends on the copula
considered. Formally, a d-dimensional copula C is a d-dimensional distribution
function on [0, 1]d with standard uniform marginal distributions. Denoting with
FYt,j (yt,j |Xt = xt, St = k), j = 1, . . . , d, the distribution functions of the marginals,
the state-dependent multivariate distribution of Y t given covariates and St = k, is
defined by

FY t(yt|xt, St = k) = C(FYt,1(yt,1|xt, St = k), . . . , FYt,d
(yt,d|xt, St = k); ηk), (3.5)

where C(·; ηk) is a d-variate copula with time-varying parameter vector ηk that
evolves over time according to the hidden process St and takes one of the values
in the set {η1, . . . , ηK}. As a consequence of Sklar’s theorem (Sklar 1959), when
the marginal distribution functions are continuous and strictly increasing, the joint
density fY t(yt|xt, St = k) can be written as

fY t(yt|xt, St = k) =
d∏

j=1
fYt,j (yt,j |xt, St = k) · c(u1, . . . , ud; ηk) (3.6)

where uj = FYt,j (yt,j |xt, St = k) and c(·; ηk) is the copula density

c(·; ηk) = ∂dC(·; ηk)
∂F1 · · · ∂Fd

. (3.7)
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Estimation of model parameters can be pursued using a ML approach. Specifically,
to describe the conditional distribution of each response Yt,j , j = 1, . . . , d, we use
the density in (3.4) whose probability density function is now given by

fYt,j (yt,j |xt, St = k) = Bl,τj
(σj,k) exp

[
−ωl,τj

(
yt,j − µt,j,k

σj,k

)]
, (3.8)

where the location parameter µt,j,k is defined by the following linear model:

µt,j,k(τj) = Xtβj,k(τj), j = 1, . . . , d, (3.9)

with βj,k(τj) being the p-dimensional state-specific regression parameters that as-
sumes one of the values {βj,1(τj), . . . , βj,K(τj)} depending on the outcome of the
Markov chain St. As described in Section 3.2, one of the advantages of using the
distribution in (3.8) is that µt,j,k coincides with the τj-th conditional quantile of
Yt,j when l = 1, which reduces to the AL distribution with Bl,τj

(σj,k) = τj(1−τj)
σj,k

.
Similarly, when l = 2, µt,j,k represents the τj-th conditional expectile of Yt,j and (3.8)

corresponds to the AN distribution with Bl,τj
(σj,k) = 2

√
τj(1−τj)√

πσ2
j,k

(√τj+
√

1−τj)
. These

results hold true for all k = 1, . . . , K and j = 1, . . . , d. In particular, (3.6)-(3.9)
define the proposed Copula Quantile Hidden Markov Model (CQHMM) when l = 1
and the Copula Expectile Hidden Markov Model (CEHMM) when l = 2. With
respect to the current literature, the proposed method reduces, respectively, to d

separate linear quantile and expectile HMMs by Farcomeni (2012) and Foroni et al.
(2023) for l = 1 and l = 2 when assuming conditional independence between the
responses, i.e., under the independence copula. To allow for dependence, copulas
have become a powerful tool in many applied settings and several families have been
introduced over the years. Within the class of HMMs, copulas have been used by
Lanchantin et al. (2011) for image analysis, by Härdle et al. (2015) in financial data
and by Ötting et al. (2021) for investigating the dynamics of football matches. In
the field of cryptocurrency market, copula dependence models have been analyzed in
Hyun et al. (2019), Kim et al. (2020) and Gong & Huser (2022), who, in particular,
manage to capture asymptotic dependence in lower and upper tails of cryptocurrency
return distributions. In this work, to model the within state-dependence between the
elements of Y t we focus on the family of elliptical copulas which are derived from
elliptically countered distributions, such as the Gaussian or the t distributions. El-
liptical copulas have been frequently applied since the pioneering work of Embrechts
et al. (2001), providing a convenient tool to characterize the dependence structure of
financial returns through a correlation matrix with analytically tractable marginals.
The Gaussian copula, due to its simplicity, is the most used copula in applied studies
(see for example Joe 1997) and its distribution function can be written as

CG(u; ΩΦ) = Φd(Φ−1(u1), . . . , Φ−1(ud); ΩΦ) (3.10)
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where u = (u1, . . . , ud) ∈ [0, 1]d is the generic vector of marginal distributions,
Φd denotes the joint distribution function for the d-variate normal distribution with
correlation matrix ΩΦ and Φ−1 is the inverse distribution function of the univariate
standard normal distribution. However, a number of papers have indicated the
inability of the Gaussian copula to capture the dependence of extreme values, the
so-called tail dependence, which is often observed in financial data (Cossin et al. 2010,
Embrechts et al. 2011). To overcome this shortcoming, the t copula is symmetric
like the Gaussian, but it incorporates the possibility of modeling tail dependence,
which describes the behavior of copulas when the value of the marginal distribution
function reaches its bounds of zero or one. The t copula is thus given by

Ct(u; ΩΨ, ν) = Ψd(Ψ−1(u1; ν), . . . , Ψ−1(ud, ν); ΩΨ, ν) (3.11)

where Ψd denotes the joint distribution function of a d-variate t distribution
with correlation matrix ΩΨ and degrees of freedom ν > 2. It is easy to see that as
ν → ∞, the Gaussian copula in (3.10) may be thought of as a limiting case of the t
copula.

3.3.1 Likelihood inference

In this section we consider a ML approach to make inference on model parameters.
As is common for HMMs, and for latent variable models in general, we develop EM
algorithms (Baum et al. 1970) to estimate the parameters of the methods proposed.
As we will show in the following, the EM algorithms for fitting the proposed CQHMM
and CEHMM have a similar structure and thus, so we present a general framework
to avoid redundancies. To ease the notation, unless specified otherwise, hereinafter
we also omit the vector τ representing the quantile (expectile) indices, yet all model
parameters are allowed to depend on it.
Let us denote with θτ = (β1, . . . , βK , σ1, . . . , σK , π, Π, η1, . . . , ηK) the vector of
all model parameters. For the Gaussian copula, ηk comprises the elements of
the state-specific correlation matrices ΩΦ

k , while for the t copula ηk = (ΩΨ
k , νk),

k = 1, . . . , K.
Thus, for a given number of hidden states K, the EM algorithm runs on the

complete log-likelihood function of the models introduced, which is defined as

ℓc(θτ ) =
K∑

k=1
γ1(k) log πk+

T∑
t=1

K∑
k=1

K∑
j=1

ξt(j, k) log πk|j+
T∑

t=1

K∑
k=1

γt(k) log fY t(yt|xt, St = k),

(3.12)
where the joint density fY t(yt|xt, St = k) is given in (3.6), γt(k) denotes a dummy
variable equal to 1 if the latent process is in state k at occasion t and 0 otherwise,
and ξt(j, k) is a dummy variable equal to 1 if the process is in state j in t − 1 and in
state k at time t and 0 otherwise.
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To estimate θτ , the algorithm iterates between two steps, the E- and M-steps,
until convergence, as outlined below.

E-step:

In the E-step, at the generic (h+1)-th iteration, the unobservable indicator variables
γt(k) and ξt(j, k) in (3.12) are replaced by their conditional expectations given the
observed data and the current parameter estimates θ

(h)
τ . To compute such quantities

we require the calculation of the probability of being in state k at time t given the
observed sequence

γ
(h)
t (k) = P

θ
(h)
τ

(St = k|y1, . . . , yT ) = at,kbt,k∑K
k′=1 at,k′bt,k′

(3.13)

and the probability that at time t − 1 the process is in state j and then in state k at
time t, given the observed sequence

ξ
(h)
t (j, k) = P

θ
(h)
τ

(St−1 = j, St = k|y1, . . . , yT ) =
at−1,kπk|jf(·)bt,k∑K

k′=1 aT,k′
, (3.14)

where f(·) is the AL density for the CQHMM or the AN distribution for the CEHMM
in (3.8), and at,k′ and bt,k′ represent the forward and backward probabilities of each
model. Such quantities can be efficiently obtained using the well-known Forward-
Backward algorithm; see Baum et al. (1970) and Welch (2003). Then, we use these
to calculate the conditional expectation of the complete log-likelihood function in
(3.12) given the observed data and the current estimates:

Q(θτ |θ(h)
τ ) =

K∑
k=1

γ
(h)
1 (k) log πk +

T∑
t=1

K∑
k=1

K∑
j=1

ξ
(h)
t (j, k) log πk|j+

T∑
t=1

K∑
k=1

γ
(h)
t (k) log fY t(yt|xt, St = k).

(3.15)

M-step:

In the M-step we maximize Q(θτ |θ(h)
τ ) in (3.15) with respect to θτ to obtain

the update parameter estimates θ
(h+1)
τ . Formally, the initial probabilities πk and

transition probabilities πk|j are updated using:

π
(h+1)
k = γ

(h)
1 (k), k = 1, . . . , K (3.16)

and

π
(h+1)
k|j =

∑T
t=1 ξ

(h)
t (j, k)∑T

t=1
∑K

k=1 ξ
(h)
t (j, k)

, j, k = 1, . . . , K. (3.17)

To reduce the computational difficulty of the algorithm, we then update the state-
dependent regression and copula parameters by adopting the Inference Functions
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for Margins (IFM) method proposed in Joe & Xu (1996). This entails a two-stage
estimation procedure that first estimates the regression parameters of each component
of Y t, (βj,k, σj,k), and it then obtains the parameters of the copula function, ηk. To
implement this step, we write the last term in (3.15) as follows:

T∑
t=1

K∑
k=1

γ
(h)
t (k) log fY t(yt|xt, St = k) =

T∑
t=1

K∑
k=1

γ
(h)
t (k)

(
log c(FYt,1(yt,1|xt, St = k), . . . , FYt,d

(yt,d|xt, St = k); ηk)
)
+

T∑
t=1

K∑
k=1

γ
(h)
t (k)

( d∑
j=1

log fYt,j (yt,j |xt, St = k)
)
,

(3.18)

where fYt,j (yt,j |xt, St = k) and FYt,j (yt,j |xt, St = k) are the univariate conditional
density and distribution function for each component j and each state k, respectively.
In the CQHMM, these correspond to the density and distribution functions of the AL
distribution, whereas, in the CEHMM, they represent the density and distribution
functions of the AN distribution.

In the first step, we update the regression and scale parameters of each univariate
conditional distribution by maximizing the second term in (3.18). Specifically, the
estimate of the regression parameters are updated as follows

β
(h+1)
j,k = arg min

β

T∑
t=1

γ
(h)
t (k)ωl,τj

(yt,j − x′
tβ). (3.19)

In the case of quantiles, a solution to (3.19) can be obtain by fitting a linear quantile
regression with weights γ

(h)
t (k) for l = 1. As for expectiles, due to the differentiability

of the loss function ω2,τj (·), β
(h+1)
j,k can be efficiently computed using IRLS for cross-

sectional data with appropriate weights. Similarly, the scale parameters of each
marginal distribution can be obtained using the following M-step update formulas
for the CQHMM

σ
(h+1)
j,k = 1∑T

t=1 γ
(h)
t (k)

T∑
t=1

K∑
k=1

γ
(h)
t (k)ω1,τj (yt,j − x′

tβ
(h+1)
k,j ) (3.20)

and for the CEHMM

σ
2(h+1)
j,k = 2∑T

t=1 γ
(h)
t (k)

T∑
t=1

γ
(h)
t (k)|τj − I(yt,j < x′

tβ
(h+1)
j,k )|(yt,j − x′

tβ
(h+1)
j,k )2. (3.21)

In the second step, given the estimates of β
(h+1)
j,k and σ

(h+1)
j,k for all components

j = 1, . . . , d and for all hidden states, we compute the copula parameters for
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k = 1, . . . , K as follows:

η
(h+1)
k = arg min

η

T∑
t=1

γ
(h)
t (k) log c(F (h+1)

Yt,1
(yt,1|xt, St = k), . . . , F

(h+1)
Yt,d

(yt,d|xt, St = k); η),

(3.22)
where F

(h+1)
Yt,j

(yt,j |xt, St = k) denotes the univariate conditional distribution of the
j-th response evaluated at (β(h+1)

j,k , σ
(h+1)
j,k ).

For the Gaussian copula, the update of the state-dependent correlation matrix
ΩΦ

k is obtained by maximizing (3.22), which has a closed form expression. This
coincides with the weighted sample covariance matrix of the pseudo-observations
uj = F

(h+1)
Yt,j

(yt,j |xt, St = k), j = 1, . . . , d, with weights γ
(h)
t (k). In the case of the t

copula, in order to reduce the dimensionality of the optimization problem in (3.22),
we update the correlation matrix ΩΨ

k for a fixed value of νk. This is equivalent to
estimating the scale matrix of a multivariate t distribution with zero mean vector,
which can be done in closed form exploiting the hierarchical representation of the t
distribution (Liu 1997). Once we updated ΩΨ

k , the objective function in (3.22) is
only a function of νk and, thus, the related computing is fast.

The E- and M- steps are alternated until convergence, that is when the observed
likelihood between two consecutive iterations is smaller than a predetermined thresh-
old. In this paper, we set this threshold criterion equal to 10−6.
Following Maruotti et al. (2021) and Merlo et al. (2022), for fixed τ and K we initial-
ize the EM algorithm by providing the initial states partition, {S

(0)
t }T

t=1, according to
a Multinomial distribution with probabilities 1/K. From the generated partition, the
elements of Π(0) are computed as proportions of transition, while we obtain β

(0)
j,k and

σ
(0)
j,k by fitting univariate mean and median regressions on the observations within

state k for the CQHMM and CEHMM, respectively. The state-dependent correlation
matrices of the copula are set equal to the empirical correlation matrices computed
on observations in the k-th state, while the initial value for the degrees of freedom
of the t copula is ν(0) = ν

(0)
k = 5 for all k = 1, . . . , K. To deal with the possibility of

multiple roots of the likelihood equation and better explore the parameter space, we
fit the proposed CQHMM and CEHMM using a multiple random starts strategy with
different starting partitions and retain the solution corresponding to the maximum
likelihood value.

Once we computed the ML estimates of the model parameters, to estimate the
standard errors we employ the parametric bootstrap scheme of Visser et al. (2000).
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3.4 Simulation Studies

In this section we evaluate the performance of the proposed CQHMM and CEHMM
via simulated data under different scenarios. In particular, we assess the ability
of recovering the true regression parameter values and the clustering accuracy.
We consider a two-dimensional response variable (d = 2), two sample sizes (T =
500, T = 1000) and one explanatory variable Xt ∼ N (0, 1). Observations are drawn
from a bivariate two-states HMM using the following data generating process for
t = 1, . . . , T ,

Y t = Xtβk + ϵt,k, St = k (3.23)

where Xt = (1, Xt)′ and the true values of the regression parameters are

β1 =
(

−2 3
1 −2

)
and β2 =

(
3 −2

−2 1

)
.

We consider three distributions for the error term in (3.23). In the first case, we
generate ϵt,k from a multivariate Gaussian distribution with zero mean vector and
variance-covariance matrix equal to Ωk. In the second one, ϵt,k is generated from a
multivariate t distribution with 5 degrees of freedom, zero mean vector and scale
matrix Ωk. In the third scenario, ϵt,k follows a multivariate skew-t distribution with
5 degrees of freedom, skewness parameters α = (−2, 2) and scale matrix Ωk. The
state-specific covariance matrices for the two states are equal to:

Ω1 =
(

1 0.2
0.2 1

)
and Ω2 =

(
1 0.7

0.7 1

)
.

Finally, the matrix of transition probabilities is Π =
(

0.9 0.1
0.1 0.9

)
.

We fit the proposed CQHMM and CEHMM at three τ levels, i.e., τ = {0.1, 0.5, 0.9}
with, τ = τj , j = 1, 2, by assuming the Gaussian and t copulas for each scenario
considered. In order to assess the validity of the models, we compute the absolute
bias and standard errors associated to the state-specific regression coefficients β1
and β2, averaged over 100 Monte Carlo replications, for each combination of sample
size, error distribution and copula function.

In Tables 3.1, 3.2 and 3.3 we report the estimation results for the CQHMM
regression parameters for each combination of copulas and error distributions. In
this case we observe that the precision of the estimates is higher at the center of
the distribution rather than on the tails, especially for the fat-tailed t and skew t
distributions, mainly due to the reduced number of observations at extreme quantile
levels. Some improvements can be observed when the parameters of the skew t
case are estimated with the copula t rather than the Gaussian. Moving onto the
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estimation results of the CEHMM (Tables 3.4, 3.5, 3.6), we observe that the recovery
performance of the data generation parameters is always very satisfactory, no matter
the sample size, the copula or the generating process considered. Even when we
generate from a skew-t distribution we obtain good results on extreme expectiles,
despite having a reduced amount of observations at the tails of the distribution.
When we increase the sample size (T = 1000) we observe that standard deviation
tends to decrease, as expected. Overall, the expectile model achieves lower bias
and standard errors with respect to the quantile model, especially at the tails of
non-Gaussian distributions.

In order to evaluate the ability in recovering the true states partition we consider
the Adjusted Rand Index (ARI) of Hubert & Arabie (1985). The state partition
provided by the fitted models is obtained by taking the maximum a posteriori
probability, max

k
γt(k), for every t = 1, . . . , T . In Figure 3.1 is reported the box-plot

of ARI for the posterior probabilities for all the settings considered for T = 500
and T = 1000 sample sizes. For the CQHMM, we obtain very high performances
in estimating the true state partition. For both copula settings, we obtain a better
clustering performance for the model with Gaussian and t errors with respect to the
skew-t case. We also highlight that the cluster recovering ability depends on the
specific quantile level, being the values slightly higher at the median (τ = 0.50) than
at the tails. Finally, when increasing the sample size to T = 1000, results slightly
improve, reporting a lower variability for both error distributions.

Moving onto the CEHMM, we observe that in every setting we obtain very high
performances in estimating the true state partition. For both copula settings, we
obtain a better clustering performance for the model with Gaussian and t errors
with respect to the skew-t case. Compare to the CQHMM, the goodness of the
clustering obtained does not depend on the specific expectile level, being the values
very alike along the centre and the tails of the distribution, probably due to the the
major efficiency of the algorithm in the expectile case. Finally, when increasing the
sample size to T = 1000, results slightly improve reporting a lower variability for all
error distributions. As in the quantile framework, the proposed CEHMM is able to
recover the true values of the parameters and the true state partition in a highly
satisfactory way in all the distributions and copula settings examined.

3.5 Empirical Application

In this section we apply the proposed CQHMM and CEHMM to analyze daily
returns of the five major cryptocurrencies as functions of global market indices. The
goal of the analysis is to investigate their relationship with leading market indices
and describe their dependence structure at different volatility states.



3.5 Empirical Application 66

Figure 3.1. Box-plots of ARI for the posterior probabilities for CQHMM (first row) and
CEHMM (second row) under the Gaussian (red), Student’s t (green) and skew-t (blue)
distributed errors with Gaussian and t copula, and sample sizes T = 500 (left column)
and T = 1000 (right column).
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CQHMM τ 0.10 0.50 0.90 τ 0.10 0.50 0.90

Gaussian Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err) t Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err)
Panel A: T=500 Panel A: T=500
State 1 State 1
j=1 β0,1 = -2 -0.002 (0.076) 0.004 (0.058) 0.013 (0.079) j=1 β0,1 = -2 -0.001 (0.083) 0.005 (0.057) 0.012 (0.082)

β1,1 = 1 -0.013 (0.130) -0.008 (0.078) 0.002 (0.123) β1,1 = 1 -0.014 (0.133) -0.009 (0.077) -0.001 (0.123)
j=2 β0,1 = 3 -0.013 (0.088) 0.000 (0.055) 0.009 (0.086) j=2 β0,1 = 3 -0.057 (0.455) 0.000 (0.055) 0.009 (0.087)

β1,1 = -2 0.025 (0.108) 0.008 (0.079) -0.009 (0.105) β1,1 = -2 0.054 (0.300) 0.008 (0.079) -0.006 (0.106)
State 2 State 2
j=1 β0,2 = 3 -0.008 (0.076) 0.001 (0.056) 0.000 (0.077) j=1 β0,2 = 3 -0.020 (0.123) 0.000 (0.056) -0.001 (0.078)

β1,2 = -2 -0.002 (0.127) 0.003 (0.087) 0.017 (0.107) β1,2 = -2 0.006 (0.176) 0.004 (0.088) 0.017 (0.106)
j=2 β0,2 = -2 0.003 (0.073) -0.005 (0.050) -0.007 (0.093) j=2 β0,2 = -2 -0.005 (0.096) -0.005 (0.051) -0.005 (0.094)

β1,2 = 1 -0.011 (0.110) 0.013 (0.082) 0.008 (0.123) β1,2 = 1 0.015 (0.300) 0.014 (0.083) 0.010 (0.122)

Panel B: T=1000 Panel B: T=1000
State 1 State 1
j=1 β0,1 = -2 -0.005 (0.064) -0.005 (0.042) -0.017 (0.054) j=1 β0,1 = -2 -0.005 (0.064) -0.004 (0.042) -0.014 (0.054)

β1,1 = 1 -0.013 (0.080) -0.015 (0.045) -0.002 (0.071) β1,1 = 1 -0.013 (0.081) -0.015 (0.045) -0.002 (0.070)
j=2 β0,1 = 3 -0.008 (0.053) -0.002 (0.038) 0.007 (0.066) j=2 β0,1 = 3 -0.009 (0.052) -0.001 (0.038) 0.007 (0.066)

β1,1 = -2 0.001 (0.075) 0.006 (0.056) 0.013 (0.076) β1,1 = -2 0.002 (0.073) 0.007 (0.056) 0.015 (0.076)
State 2 State 2
j=1 β0,2 = 3 0.007 (0.072) 0.003 (0.042) 0.018 (0.063) j=1 β0,2 = 3 0.002 (0.071) 0.003 (0.042) 0.017 (0.064)

β1,2 = -2 -0.001 (0.081) 0.007 (0.056) 0.005 (0.080) β1,2 = -2 -0.005 (0.081) 0.006 (0.057) 0.004 (0.080)
j=2 β0,2 = -2 -0.006 (0.050) 0.000 (0.039) -0.002 (0.062) j=2 β0,2 = -2 -0.006 (0.050) 0.001 (0.040) 0.000 (0.062)

β1,2 = 1 -0.003 (0.075) 0.000 (0.053) -0.003 (0.077) β1,2 = 1 -0.004 (0.074) 0.001 (0.053) 0.000 (0.077)

Table 3.1. Bias and standard error values of the state-regression parameter estimates for
CQHMM with Gaussian distributed errors for T = 500 (Panel A) and T = 1000 (Panel
B).

CQHMM τ 0.10 0.50 0.90 τ 0.10 0.50 0.90

Gaussian Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err) t Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err)
Panel A: T=500 Panel A: T=500
State 1 State 1
j=1 β0,1 = -2 -0.066 (0.405) -0.003 (0.069) 0.283 (1.004) j=1 β0,1 = -2 -0.116 (0.715) -0.003 (0.069) 0.360 (1.186)

β1,1 = 1 -0.026 (0.239) 0.011 (0.094) -0.202 (1.152) β1,1 = 1 -0.097 (0.799) 0.011 (0.094) -0.248 (0.869)
j=2 β0,1 = 3 -0.297 (1.155) -0.001 (0.067) -0.145 (0.884) j=2 β0,1 = 3 -0.455 (1.438) 0.000 (0.068) -0.094 (0.585)

β1,1 = -2 0.176 (1.021) -0.019 (0.079) -0.108 (1.279) β1,1 = -2 0.420 (1.331) -0.018 (0.080) 0.012 (0.343)
State 2 State 2
j=1 β0,2 = 3 -0.343 (1.153) 0.010 (0.070) 0.013 (0.215) j=1 β0,2 = 3 -0.497 (1.331) 0.011 (0.071) 0.071 (0.343)

β1,2 = -2 0.185 (1.001) 0.002 (0.079) 0.005 (0.270) β1,2 = -2 0.405 (1.268) 0.004 (0.079) 0.018 (0.191)
j=2 β0,2 = -2 0.042 (0.701) -0.003 (0.066) 0.537 (1.553) j=2 β0,2 = -2 0.110 (0.822) -0.002 (0.065) 0.446 (1.464)

β1,2 = 1 -0.001 (0.549) 0.004 (0.082) -0.334 (1.034) β1,2 = 1 -0.101 (0.584) 0.004 (0.082) -0.199 (0.781)

Panel B: T=1000 Panel B: T=1000
State 1 State 1
j=1 β0,1 = -2 -0.171 (0.727) -0.002 (0.047) 0.270 (1.083) j=1 β0,1 = -2 -0.133 (0.482) -0.001 (0.047) 0.541 (1.396)

β1,1 = 1 0.068 (1.074) -0.002 (0.065) -0.330 (1.309) β1,1 = 1 -0.065 (0.268) -0.002 (0.066) -0.479 (1.225)
j=2 β0,1 = 3 -0.563 (1.560) 0.006 (0.043) -0.006 (0.718) j=2 β0,1 = 3 -1.006 (1.850) 0.006 (0.044) 0.022 (0.274)

β1,1 = -2 0.576 (1.705) -0.007 (0.065) 0.046 (0.963) β1,1 = -2 0.716 (1.314) -0.008 (0.066) -0.015 (0.332)
State 2 State 2
j=1 β0,2 = 3 -0.412 (1.377) 0.002 (0.044) 0.044 (0.270) j=1 β0,2 = 3 -0.936 (1.711) 0.001 (0.044) 0.083 (0.292)

β1,2 = -2 0.554 (1.943) 0.002 (0.061) 0.004 (0.312) β1,2 = -2 0.662 (1.228) 0.002 (0.061) 0.042 (0.170)
j=2 β0,2 = -2 0.184 (1.299) -0.009 (0.041) 0.421 (1.327) j=2 β0,2 = -2 0.002 (0.243) -0.006 (0.041) 0.616 (1.500)

β1,2 = 1 0.059 (2.221) -0.004 (0.061) -0.269 (1.005) β1,2 = 1 -0.049 (0.151) -0.002 (0.062) -0.370 (1.003)

Table 3.2. Bias and standard error values of the state-regression parameter estimates for
CQHMM with Student’s t distributed errors for T = 500 (Panel A) and T = 1000 (Panel
B).
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CQHMM τ 0.10 0.50 0.90 τ 0.10 0.50 0.90

Gaussian Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err) Student’s t Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err)
Panel A: T=500 Panel A: T=500
State 1 State 1
j=1 β0,1 = -2 -0.117 (0.220) -0.100 (0.057) -1.047 (10.412) j=1 β0,1 = -2 -0.117 (0.277) -0.099 (0.059) -0.038 (0.786)

β1,1 = 1 -0.041 (0.185) 0.010 (0.073) 1.189 (13.284) β1,1 = 1 -0.027 (0.239) 0.011 (0.074) -0.087 (0.564)
j=2 β0,1 = 3 -0.253 (1.524) 0.099 (0.060) 0.472 (4.430) j=2 β0,1 = 3 -0.314 (1.557) 0.099 (0.060) 0.035 (0.253)

β1,1 = -2 0.206 (0.777) 0.007 (0.084) -0.606 (6.110) β1,1 = -2 0.258 (0.872) 0.008 (0.083) -0.023 (0.347)
State 2 State 2
j=1 β0,2 = 3 -0.266 (1.189) 0.122 (0.070) 0.215 (0.281) j=1 β0,2 = 3 -0.305 (1.230) 0.119 (0.068) 0.186 (0.148)

β1,2 = -2 0.237 (0.853) 0.000 (0.067) 0.009 (0.152) β1,2 = -2 0.291 (1.072) -0.002 (0.066) 0.016 (0.159)
j=2 β0,2 = -2 0.056 (1.139) -0.111 (0.065) 0.291 (1.418) j=2 β0,2 = -2 -0.01 (0.919) -0.110 (0.065) 0.349 (1.424)

β1,2 = 1 -0.119 (0.616) -0.001 (0.08) -0.189 (0.683) β1,2 = 1 -0.111 (0.566) 0.000 (0.081) -0.212 (0.733)

Panel B: T=1000 Panel B: T=1000
State 1 State 1
j=1 β0,1 = -2 -0.152 (0.487) -0.101 (0.044) -0.018 (1.094) j=1 β0,1 = -2 -0.141 (0.301) -0.101 (0.045) 0.168 (1.240)

β1,1 = 1 0.070 (0.686) -0.003 (0.056) -0.266 (1.217) β1,1 = 1 -0.009 (0.143) -0.002 (0.056) -0.244 (0.795)
j=2 β0,1 = 3 -0.274 (1.476) 0.103 (0.044) 0.167 (0.737) j=2 β0,1 = 3 -0.318 (1.568) 0.103 (0.044) 0.051 (0.184)

β1,1 = -2 0.285 (0.988) -0.011 (0.048) 0.099 (0.909) β1,1 = -2 0.298 (0.904) -0.011 (0.048) 0.001 (0.126)
State 2 State 2
j=1 β0,2 = 3 -0.308 (1.239) 0.112 (0.046) 0.238 (0.410) j=1 β0,2 = 3 -0.344 (1.281) 0.111 (0.045) 0.212 (0.221)

β1,2 = -2 0.348 (1.138) 0.006 (0.060) 0.012 (0.275) β1,2 = -2 0.284 (0.875) 0.004 (0.059) 0.092 (0.691)
j=2 β0,2 = -2 -0.099 (0.293) -0.119 (0.047) 0.205 (1.117) j=2 β0,2 = -2 -0.112 (0.589) -0.118 (0.046) 0.385 (1.476)

β1,2 = 1 -0.056 (0.671) 0.000 (0.065) -0.244 (1.071) β1,2 = 1 -0.056 (0.308) 0.001 (0.064) -0.268 (0.932)

Table 3.3. Bias and standard error values of the state-regression parameter estimates for
CQHMM with skew t distributed errors for T = 500 (Panel A) and T = 1000 (Panel B).

CEHMM τ 0.10 0.50 0.90 τ 0.10 0.50 0.90

Gaussian Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err) Student’s t Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err)
Panel A: T=500 Panel A: T=500
State 1 State 1
j=1 β0,1 = -2 0.000 (0.075) 0.000 (0.060) -0.009 (0.081) j=1 β0,1 = -2 0.003 (0.075) 0.001 (0.060) -0.008 (0.081)

β1,1 = 1 -0.009 (0.093) -0.009 (0.070) -0.007 (0.087) β1,1 = 1 -0.009 (0.092) -0.009 (0.070) -0.007 (0.087)
j=2 β0,1 = 3 0.001 (0.072) 0.000 (0.057) -0.002 (0.072) j=2 β0,1 = 3 0.004 (0.072) 0.001 (0.057) -0.001 (0.071)

β1,1 = -2 0.012 (0.074) 0.005 (0.058) -0.005 (0.073) β1,1 = -2 0.012 (0.074) 0.005 (0.058) -0.004 (0.073)
State 2 State 2
j=1 β0,2 = 3 -0.004 (0.067) -0.005 (0.052) -0.013 (0.072) j=1 β0,2 = 3 -0.005 (0.067) -0.005 (0.052) -0.011 (0.071)

β1,2 = -2 -0.004 (0.084) 0.003 (0.071) 0.008 (0.084) β1,2 = -2 -0.005 (0.084) 0.003 (0.071) 0.008 (0.084)
j=2 β0,2 = -2 0.008 (0.063) -0.003 (0.053) -0.012 (0.079) j=2 β0,2 = -2 0.007 (0.063) -0.003 (0.053) -0.012 (0.079)

β1,2 = 1 0.001 (0.083) 0.008 (0.067) 0.012 (0.085) β1,2 = 1 0.001 (0.083) 0.008 (0.067) 0.012 (0.085)

Panel B: T=1000 Panel B: T=1000
State 1 State 1
j=1 β0,1 = -2 -0.004 (0.057) -0.008 (0.040) -0.018 (0.055) j=1 β0,1 = -2 -0.001 (0.057) -0.005 (0.040) -0.014 (0.055)

β1,1 = 1 -0.007 (0.059) -0.010 (0.042) -0.009 (0.050) β1,1 = 1 -0.007 (0.059) -0.010 (0.042) -0.009 (0.050)
j=2 β0,1 = 3 0.010 (0.049) 0.006 (0.040) 0.002 (0.054) j=2 β0,1 = 3 0.010 (0.049) 0.006 (0.040) 0.004 (0.054)

β1,1 = -2 0.006 (0.049) 0.006 (0.043) 0.007 (0.053) β1,1 = -2 0.006 (0.049) 0.006 (0.043) 0.007 (0.053)
State 2 State 2
j=1 β0,2 = 3 0.004 (0.059) 0.005 (0.048) 0.001 (0.061) j=1 β0,2 = 3 -0.002 (0.059) 0.001 (0.048) -0.002 (0.061)

β1,2 = -2 -0.002 (0.060) 0.004 (0.048) 0.007 (0.056) β1,2 = -2 -0.003 (0.060) 0.003 (0.048) 0.007 (0.056)
j=2 β0,2 = -2 0.008 (0.046) 0.004 (0.041) -0.007 (0.059) j=2 β0,2 = -2 0.008 (0.047) 0.003 (0.041) -0.008 (0.059)

β1,2 = 1 -0.007 (0.052) -0.004 (0.041) -0.003 (0.051) β1,2 = 1 -0.007 (0.052) -0.004 (0.041) -0.003 (0.051)

Table 3.4. Bias and standard error values of the state-regression parameter estimates for
CEHMM with Gaussian distributed errors for T = 500 (Panel A) and T = 1000 (Panel
B).
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CEHMM τ 0.10 0.50 0.90 τ 0.10 0.50 0.90

Gaussian Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err) Student’s t Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err)
Panel A: T=500 Panel A: T=500
State 1 State 1
j=1 β0,1 = -2 0.002 (0.138) -0.002 (0.091) -0.014 (0.152) j=1 β0,1 = -2 0.003 (0.137) 0.001 (0.091) -0.004 (0.156)

β1,1 = 1 0.000 (0.116) 0.010 (0.082) 0.013 (0.141) β1,1 = 1 -0.005 (0.119) 0.009 (0.084) 0.018 (0.144)
j=2 β0,1 = 3 0.023 (0.154) 0.006 (0.094) -0.009 (0.143) j=2 β0,1 = 3 0.023 (0.155) 0.007 (0.094) -0.002 (0.146)

β1,1 = -2 -0.007 (0.122) -0.009 (0.079) -0.001 (0.125) β1,1 = -2 -0.018 (0.130) -0.010 (0.080) 0.002 (0.125)
State 2 State 2
j=1 β0,2 = 3 0.014 (0.124) 0.007 (0.075) 0.000 (0.122) j=1 β0,2 = 3 0.012 (0.129) 0.007 (0.075) -0.001 (0.121)

β1,2 = -2 -0.003 (0.128) -0.002 (0.076) 0.003 (0.141) β1,2 = -2 0.001 (0.131) -0.002 (0.077) -0.001 (0.141)
j=2 β0,2 = -2 -0.007 (0.146) -0.002 (0.084) 0.001 (0.155) j=2 β0,2 = -2 -0.002 (0.139) -0.001 (0.084) 0.003 (0.146)

β1,2 = 1 0.007 (0.127) 0.005 (0.072) 0.007 (0.118) β1,2 = 1 0.015 (0.123) 0.007 (0.072) 0.007 (0.112)

Panel B: T=1000 Panel B: T=1000
State 1 State 1
j=1 β0,1 = -2 0.006 (0.091) -0.006 (0.060) -0.033 (0.102) j=1 β0,1 = -2 0.000 (0.094) -0.008 (0.060) -0.024 (0.117)

β1,1 = 1 0.004 (0.093) -0.004 (0.058) -0.019 (0.098) β1,1 = 1 0.000 (0.093) -0.003 (0.058) -0.012 (0.102)
j=2 β0,1 = 3 0.035 (0.093) 0.021 (0.058) 0.020 (0.095) j=2 β0,1 = 3 0.029 (0.099) 0.016 (0.058) 0.013 (0.097)

β1,1 = -2 -0.001 (0.089) -0.009 (0.060) -0.012 (0.100) β1,1 = -2 -0.005 (0.094) -0.011 (0.060) -0.014 (0.095)
State 2 State 2
j=1 β0,2 = 3 0.009 (0.099) 0.005 (0.057) 0.016 (0.095) j=1 β0,2 = 3 0.003 (0.100) 0.001 (0.057) 0.007 (0.098)

β1,2 = -2 -0.001 (0.090) 0.002 (0.059) 0.010 (0.102) β1,2 = -2 0.000 (0.086) 0.001 (0.060) 0.007 (0.098)
j=2 β0,2 = -2 0.010 (0.102) 0.003 (0.056) 0.012 (0.093) j=2 β0,2 = -2 0.012 (0.103) 0.003 (0.057) 0.015 (0.100)

β1,2 = 1 -0.002 (0.098) 0.005 (0.059) 0.013 (0.090) β1,2 = 1 0.000 (0.099) 0.007 (0.059) 0.017 (0.091)

Table 3.5. Bias and standard error values of the state-regression parameter estimates for
CEHMM with Student’s t distributed errors for T = 500 (Panel A) and T = 1000 (Panel
B).

CEHMM τ 0.10 0.50 0.90 τ 0.10 0.50 0.90

Gaussian Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err) Student’s t Copula Bias (Std.Err) Bias (Std.Err) Bias (Std.Err)
Panel A: T=500 Panel A: T=500
State 1 State 1
j=1 β0,1 = -2 0.012 (0.152) 0.008 (0.080) 0.008 (0.112) j=1 β0,1 = -2 0.016 (0.151) 0.009 (0.081) 0.011 (0.109)

β1,1 = 1 -0.006 (0.130) 0.006 (0.069) 0.015 (0.102) β1,1 = 1 -0.003 (0.128) 0.007 (0.071) 0.017 (0.101)
j=2 β0,1 = 3 -0.001 (0.106) -0.007 (0.083) -0.013 (0.153) j=2 β0,1 = 3 -0.003 (0.108) -0.005 (0.082) -0.015 (0.149)

β1,1 = -2 -0.003 (0.099) 0.002 (0.082) 0.005 (0.155) β1,1 = -2 -0.006 (0.104) 0.002 (0.083) 0.003 (0.148)
State 2 State 2
j=1 β0,2 = 3 0.012 (0.132) 0.010 (0.070) -0.002 (0.102) j=1 β0,2 = 3 0.010 (0.141) 0.011 (0.071) 0.001 (0.102)

β1,2 = -2 -0.001 (0.143) -0.001 (0.073) 0.001 (0.120) β1,2 = -2 -0.010 (0.144) -0.003 (0.072) 0.000 (0.119)
j=2 β0,2 = -2 0.000 (0.117) -0.002 (0.077) 0.002 (0.151) j=2 β0,2 = -2 0.007 (0.118) 0.001 (0.079) 0.006 (0.151)

β1,2 = 1 0.001 (0.113) 0.002 (0.070) 0.007 (0.135) β1,2 = 1 0.003 (0.113) 0.002 (0.070) 0.014 (0.132)

Panel B: T=1000 Panel B: T=1000
State 1 State 1
j=1 β0,1 = -2 0.003 (0.100) 0.003 (0.055) 0.006 (0.075) j=1 β0,1 = -2 0.004 (0.101) 0.004 (0.056) 0.009 (0.082)

β1,1 = 1 0.009 (0.100) 0.003 (0.055) 0.000 (0.078) β1,1 = 1 0.012 (0.099) 0.003 (0.056) 0.002 (0.079)
j=2 β0,1 = 3 -0.001 (0.070) -0.001 (0.054) -0.005 (0.105) j=2 β0,1 = 3 0.002 (0.069) 0.001 (0.054) -0.001 (0.108)

β1,1 = -2 -0.006 (0.065) -0.010 (0.049) -0.010 (0.109) β1,1 = -2 -0.004 (0.065) -0.011 (0.050) -0.013 (0.107)
State 2 State 2
j=1 β0,2 = 3 0.022 (0.102) 0.011 (0.055) 0.013 (0.086) j=1 β0,2 = 3 0.009 (0.102) 0.007 (0.055) 0.007 (0.084)

β1,2 = -2 0.006 (0.093) 0.007 (0.058) 0.014 (0.087) β1,2 = -2 -0.004 (0.093) 0.005 (0.057) 0.011 (0.087)
j=2 β0,2 = -2 0.006 (0.085) 0.000 (0.054) 0.003 (0.098) j=2 β0,2 = -2 0.005 (0.085) 0.001 (0.055) 0.010 (0.104)

β1,2 = 1 -0.009 (0.087) 0.000 (0.059) 0.000 (0.099) β1,2 = 1 -0.009 (0.086) 0.002 (0.058) 0.010 (0.105)

Table 3.6. Bias and standard error values of the state-regression parameter estimates for
CEHMM with skew t distributed errors for T = 500 (Panel A) and T = 1000 (Panel B).
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3.5.1 Descriptive Statistics

Following Pennoni et al. (2022), we choose crypto-assets that met some requirements
of scarcity and tradability on reliable exchanges. In light of these decisions, we
consider Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Ripple (XRP), Bitcoin
cash (BCH) as dependent variables. To investigate for the interlinkages between
the crypto markets and non-crypto global markets, we select the S&P500 (GSPC),
S&P US Treasury Bond (SPUSBT), US dollar index (USDX), WTI crude oil and
Gold as independent variables. The considered timespan extends from July, 25 2017
to December, 19 2022, including numerous crises that have impacted cross-market
integration patterns, such as the crypto price bubbles of early 2018, the COVID-19
pandemic, Biden’s election at the USA presidency in November 2020 and the Russian
invasion of Ukraine at the beginning of 2022, which have caused unprecedented
levels of uncertainty and risk. Returns are calculated daily for a total of T = 1348
observations. The crypto-assets have been downloaded from Coinbase, while the
traditional ones from the SPGlobal.com (for S&P500 and S&P US Treasury Bond),
Investing.com (for the US dollar index) and Yahoo finance database for the remaining
assets. Figure 3.2 shows the daily prices (top) and log-returns (bottom) of the five
cryptocurrencies over the entire period, where the vertical dotted lines indicate
globally relevant events occurred during the study period. We immediately recognise
the typical characteristics of this market, i.e. high volatility and sudden waves of
exponential price increases. Daily log-returns of the five cryptocurrencies confirm
their high volatility, a strong degree of comovement, and show the typical volatility
clustering in common with other traditional financial assets. We observe volatility
jumps not only during the first crypto bubble, but also during the financial market
crash caused by COVID-19 pandemic and right after Biden’s election at the end
of 2020, confirming that crypto investors reactions do not differ from the behavior
of the investors in the traditional financial markets. In Table 3.7 we report the
list of examined variables and the summary statistics for the whole sample. The
high levels of volatility of cryptocurrencies are noticeable, where Ethereum and
Bitcoin Cash in particular stand out, having the highest standard deviation. Crypto
assets returns also show very high negative skewness and very high kurtosis, as
well as S&P500. The highest level of kurtosis is reported by Crude Oil, which was
likely determined by prices fluctuations after the COVID-19 outbreak. On the other
hand, the positive skewness of S&P Treasury Bond indicates longer and fatter tails
on the right side of the distribution, highlighting an inverse relationship with the
S&P500. In concluding, the Augmented Dickey-Fuller (ADF) test Dickey & Fuller
(1979) shows that all daily returns are stationary at the 1% level of significance.
The bottom part of Table 3.7 also reports the empirical correlations among the
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dependent variables. As expected, the five cryptocurrencies are all highly correlated,
justifying the multivariate approach of the paper. Following these considerations,
the proposed copula-based QHMM and EHMM are able to provide useful insights
on the evolution of the relationships within crypto assets and between non-crypto
markets under different market conditions.

Min Mean Max Stdev Skewness Kurtosis Jarque-Bera test ADF test

BTC -46.47 0.13 22.51 4.89 -0.77 8.79 4471.41 -9.44
ETH -55.07 0.12 34.35 6.28 -0.66 7.42 3186.99 -9.57
LTC -44.91 0.03 53.98 6.62 -0.03 9.05 4602.24 -9.89
XRP -55.05 0.04 62.67 7.60 0.74 15.10 12927.1 -9.49
BCH -56.13 -0.11 43.16 8.06 0.00 8.08 3670.89 -9.89
GSPC -12.77 0.04 8.97 1.33 -0.83 14.11 11340.81 -9.87
SPUSBT -1.69 0.00 1.79 0.28 0.15 5.10 1467.35 -10.14
USDX -2.17 0.01 2.10 0.43 0.02 2.01 226.45 -11.38
WTI -28.22 0.08 31.96 3.29 0.04 24.70 34272.07 -8.09
GOLD -5.11 0.03 5.78 0.94 -0.20 4.95 1387.37 -10.76

Correlation matrix
ETH LTC XRP BCH

BTC 0.76 0.74 0.52 0.63
ETH 0.80 0.62 0.68
LTC 0.59 0.66
XRP 0.53

Table 3.7. Descriptive statistics for the whole sample. The Jarque-Bera test and the ADF
test statistics are displayed in boldface when the null hypothesis is rejected at the 1%
significance level.

3.5.2 Main Results

In order to apply the aforementioned methods to cryptocurrency returns we consider
the model in (3.9) as:

µCrypto
t,k = Xt−1βk(τ ), (3.24)

where µCrypto
tk = (µBT C

tk , µET H
tk , µLT C

tk , µXRP
tk , µBCH

tk ) denotes the vector of all component-
wise quantile (expectile) regression functions of the cryptos considered (BTC, ETH,
LTC, XRP, BCH) at time t for a given state k = 1, . . . , K, Xt−1 is the vector of
returns at the previous date for the S&P500, SPUSBT, USDX, WTI and Gold, with
the first element being the intercept, and βk(τ ) is the p×d matrix of state-dependent
regression coefficients defined as βk(τ ) = (β1,k(τ1), . . . , βd,k(τd)). The first step of
the empirical analysis requires the choice of the appropriate copula and number of
states. In order to do so, we fit the proposed CQHMM and CEHMM using the
Gaussian and t copulas described in Section 3.3 for a grid of different values of K,
spanning from 1 to 4. For ease of comparison between the two models, we select the
copula function and K for τ = τj = 0.50, j = 1, . . . , d, and we keep them fixed at
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Figure 3.2. Cryptocurrencies daily prices (top) and log return (bottom) series. Vertical
dashed lines indicate globally relevant events in the financial markets that occurred in
2017,12; 2020,03; 2020,11; and 2022,02. Prices are multiplied by a constant to have a
similar scale.

the other values of τj ̸= 0.50, j = 1, . . . , d. We consider three widely used penalized
likelihood selection criteria, namely the AIC (Akaike 1998), the BIC (Schwarz et al.
1978) and the ICL (Biernacki et al. 2000), and report the results in Table 3.8. In
order to clearly identify high and low volatility market conditions, we use K = 2
which is supported by the parsimonious ICL criteria for both CQHMM and CEHMM,
together with a t copula. From a graphical perspective, in Figure 3.3 we report the
scatterplots and the marginal densities colored according to the estimated posterior
probability of class membership, max

k
γt(k). We thus fit the CQHMM and CEHMM

under the t copula for K = 2 hidden states at three levels τ = {0.05, 0.5, 0.95},
with τ = τj for all j = 1, . . . , d. The estimates of the state-specific parameters are
gathered in Tables 3.9, 3.10 and 3.11 for the CQHMM and in Tables 3.12, 3.13 and
3.14 for the CEHMM, along with the standard errors (in brackets), computed by
using the parametric bootstrap technique illustrated in Section 3.3 over R = 1000
resamples. We start the discussion by looking at the estimated state-dependent scale
parameters, σ1 and σ2, and the degrees of freedom of the t copula, ν1 and ν2 for all
the models considered. As regards the scale parameters, the first reflects more stable
periods and represents the so-called low-volatility state, meanwhile σ2 contemplates
rapid (positive and negative) peak and burst returns, defining the second state as
the high-volatility state, confirming the graphical analysis conducted in Figure 3.3.
By looking at the state-dependent degrees of freedom, the results show the necessity
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to forgo the Gaussian copula in favor of the more robust, fat-tailed t copula for
dependence modeling in financial data.

Taking the impact of covariates into account, we first comment on the parameter
estimates of the CQHMM (see Tables 3.9, 3.10 and 3.11). As could be expected, the
state-specific intercepts are increasing somewhat with τ , with State 1 having lower
absolute values than State 2 for all τ ’s. For τ = 0.5 (see Table 3.10), we observe that
at low volatility periods S&P500 is the only statistically significant asset, negatively
influencing almost all the cryptocurrencies for both quantile and expectile models,
which implies that during tranquil periods crypto assets can be considered as weak
hedges (Bouri, Jalkh, Molnár & Roubaud 2017, Bouri, Molnár, Azzi, Roubaud &
Hagfors 2017). During high volatility periods we observe that S&P500, Gold and
Crude Oil influence some cryptos, especially Bitcoin and Litecoin, while in the
CEHMM (Table 3.13) there is no statistical association among cryptocurrencies
and the assets considered. The number of significantly parameters increases by
moving to the extreme tails of cryptocurrencies returns distribution, exposing a
connection during bearish and bullish market periods between traditional financial
markets and the crypto market. In particular, for the CQHMM at τ = 0.05 (Table
3.9) we observe that at low volatility periods Gold negatively influences all the
cryptos considered. It can also be seen that the negative impact of S&P Treasury
Bond is statistically significant with respect to all crypto-assets considered, with the
exception of Ethereum. In the second state, most of the regression parameters are
significantly different from zero, with few exceptions. We highlight in particular the
strong positive influence of S&P Treasury Bond and the negative one of US dollar
index. The CEHMM shows similar results at τ = 0.05 for the second state (Table
3.12), where we highlight the strong positive influences of S&P500 and S&P Treasury
Bond, with the exception of Ripple and Bitcoin Cash. Finally, at τ = 0.95 for the
CQHMM (Table 3.11) for both states considered we note strong influences of S&P
Treasury Bond, US dollar index and Gold. Similar results can be highlighted for the
CEHMM (Table 3.14) in the high volatility state, especially regarding the strong
negative influences of US dollar index and Gold. Overall, these results are consistent
with the recent works of Bouri et al. (2020a), Conlon & McGee (2020), Corbet et al.
(2020), Caferra & Vidal-Tomás (2021) and Yousaf & Ali (2021) and highlight that:
(i) the relationship among these two different markets is rather complex, and it is
more pronounced in the tails of the returns distributions; (ii) the dependence within
the crypto market varies over time according to the market conditions.

Finally, Figure 3.4 reports the estimated pair-wise correlations of the t copula
for both states under the CQHMM and CEHMM models at τ = {0.05, 0.50, 0.95}.
Overall we observe higher correlation estimates during low volatility states, especially
at τ = 0.50. Looking at specific values, we highlight the high correlation levels
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between BTC, ETH and LTC and, on the other hand it is visible the divergent
behavior of XRP with respect to the other cryptocurrencies (Pennoni et al. 2022).

Gaussian copula t copula

AIC BIC ICL AIC BIC ICL

CQHMM
K = 1 37322.29 37556.55 37556.55 35970.66 36210.11 36210.11
K = 2 35326.37 35810.50 36137.40 35160.71 35655.25 35821.08
K = 3 35078.00 35822.41 36609.45 34988.46 35748.48 36655.90
K = 4 34871.65 35886.75 36908.26 34802.28 35838.20 36657.36

CEHMM
K = 1 35157.65 35362.76 35362.76 34455.43 34665.67 34665.67
K = 2 32354.36 32779.96 33075.53 32308.68 32744.53 33067.44
K = 3 31869.51 32525.86 33140.76 31871.03 32542.76 33203.10
K = 4 31635.38 32532.72 33390.67 31642.18 32560.04 33387.36

Table 3.8. AIC, BIC and ICL values with varying number of states for the CQHMM and
CEHMM under the Gaussian and t copulas. Bold font highlights the best values for the
considered criteria (lower-is-better).
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Figure 3.3. Cryptocurrencies marginal distributions and scatterplots classified according
to the estimated posterior probability for CQHMM (left) and CEHMM (right) of class
membership for τ = 0.5. Dark-blue points (State 1) identify low volatility periods, while
light-blue ones (State 2) identify high volatility periods.

CQHMM BTC ETH LTC XRP BCH

State 1
Intercept -2.65 (0.038) -3.575 (0.051) -3.957 (0.055) -3.926 (0.051) -4.205 (0.056)
GSPC -0.166 (0.035) -0.075 (0.047) -0.149 (0.051) -0.095 (0.051) -0.148 (0.053)
SPUSBT -0.716 (0.166) -0.061 (0.218) -1.897 (0.234) -1.078 (0.24) -1.117 (0.244)
USDX 0.109 (0.108) -0.261 (0.15) -0.609 (0.159) -0.732 (0.154) -0.714 (0.167)
WTI -0.008 (0.015) -0.079 (0.02) -0.084 (0.021) -0.148 (0.02) -0.089 (0.023)
GOLD -0.138 (0.051) -0.428 (0.066) -0.175 (0.072) -0.377 (0.071) -0.44 (0.077)
σ1 0.237 (0.008) 0.313 (0.011) 0.34 (0.011) 0.328 (0.011) 0.353 (0.012)
ν1 5.022 (0.505)

State 2
Intercept -14.552 (0.224) -19.013 (0.297) -18.956 (0.294) -19.268 (0.361) -22.306 (0.401)
GSPC 0.809 (0.23) 0.567 (0.292) 1.765 (0.296) 1.172 (0.364) 2.639 (0.43)
SPUSBT 7.348 (1.031) 7.462 (1.429) 3.938 (1.356) 1.588 (1.704) -1.034 (1.934)
USDX 1.402 (0.685) -3.617 (0.866) -1.315 (0.895) -4.287 (1.108) -2.4 (1.202)
WTI 0.472 (0.097) 0.908 (0.129) 0.403 (0.129) 0.757 (0.155) -0.132 (0.181)
GOLD 0.088 (0.326) -0.872 (0.425) 1.223 (0.433) -0.546 (0.552) 0.414 (0.589)
σ2 0.692 (0.04) 0.909 (0.056) 0.898 (0.054) 1.102 (0.064) 1.24 (0.073)
ν2 7.867 (2.485)

Table 3.9. CQHMM state-specific parameter estimates for τ = 0.05, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level. σk and νk represent the
state-specific scale parameter and degrees of freedom, respectively.
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CQHMM BTC ETH LTC XRP BCH

State 1
Intercept 0.029 (0.096) -0.125 (0.125) -0.187 (0.125) -0.249 (0.117) -0.383 (0.132)
GSPC -0.197 (0.083) -0.307 (0.108) -0.143 (0.114) -0.227 (0.098) -0.374 (0.11)
SPUSBT -0.011 (0.405) -0.54 (0.546) -0.341 (0.524) -0.123 (0.511) -0.275 (0.538)
USDX 0.093 (0.264) 0.038 (0.342) 0.036 (0.344) 0.151 (0.332) -0.103 (0.349)
WTI -0.005 (0.034) -0.029 (0.044) -0.07 (0.047) 0.006 (0.041) 0.003 (0.044)
GOLD -0.057 (0.121) -0.09 (0.158) -0.175 (0.158) -0.072 (0.152) -0.072 (0.162)
σ1 1.485 (0.046) 1.975 (0.061) 2 (0.061) 1.842 (0.056) 2.014 (0.06)
ν1 5.73 (0.625)

State 2
Intercept 1.438 (0.314) 1.198 (0.399) 1.556 (0.457) 1.209 (0.651) 2.263 (0.723)
GSPC 0.58 (0.292) 0.922 (0.376) 1.077 (0.413) 0.099 (0.605) -0.122 (0.658)
SPUSBT 0.192 (1.447) 1.311 (1.731) -0.286 (1.88) -1.741 (2.822) 0.738 (3.045)
USDX 0.163 (0.945) 1.04 (1.13) 1.823 (1.271) -3.139 (1.876) 0.566 (2.027)
WTI 0.262 (0.133) 0.148 (0.152) 0.497 (0.178) 0.232 (0.256) 0.649 (0.283)
GOLD -0.364 (0.429) -0.06 (0.542) 1.196 (0.601) -1.509 (0.812) -0.901 (0.934)
σ2 2.231 (0.145) 2.739 (0.174) 3.06 (0.19) 4.456 (0.284) 4.911 (0.312)
ν2 8.276 (2.823)

Table 3.10. CQHMM state-specific parameter estimates for τ = 0.50, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level. σk and νk represent the
state-specific scale parameter and degrees of freedom, respectively.

CQHMM BTC ETH LTC XRP BCH

State 1
Intercept 3.062 (0.051) 4.19 (0.064) 3.008 (0.057) 2.703 (0.054) 2.805 (0.058)
GSPC 0.103 (0.047) 0.139 (0.063) -0.313 (0.053) -0.321 (0.05) -0.342 (0.055)
SPUSBT 1.607 (0.219) 2.133 (0.287) -0.152 (0.255) -0.107 (0.243) 0.387 (0.273)
USDX 0.396 (0.145) 0.584 (0.18) -0.747 (0.163) -0.409 (0.146) -0.115 (0.17)
WTI 0.056 (0.02) -0.033 (0.025) 0.004 (0.022) -0.001 (0.021) -0.013 (0.023)
GOLD -0.378 (0.065) -0.557 (0.082) 0.047 (0.076) -0.112 (0.07) -0.125 (0.081)
σ1 0.268 (0.009) 0.354 (0.013) 0.31 (0.011) 0.294 (0.01) 0.324 (0.011)
ν1 3.382 (0.311)

State 2
Intercept 10.69 (0.142) 13.979 (0.182) 14.249 (0.203) 17.824 (0.305) 21.306 (0.3)
GSPC -0.034 (0.138) 0.182 (0.176) 0.034 (0.203) -2.569 (0.313) -0.236 (0.289)
SPUSBT -0.064 (0.672) 1.051 (0.807) 1.908 (0.895) -11.908 (1.414) -9.343 (1.356)
USDX -0.79 (0.405) 3.829 (0.538) -1.667 (0.615) -4.206 (0.906) -4.33 (0.896)
WTI -0.181 (0.058) 0.116 (0.071) 0.017 (0.078) -0.028 (0.131) 0.184 (0.124)
GOLD -0.697 (0.196) -0.458 (0.242) -2.435 (0.287) 1.839 (0.43) -2.912 (0.422)
σ2 0.565 (0.026) 0.707 (0.033) 0.808 (0.038) 1.228 (0.055) 1.195 (0.053)
ν2 6.265 (0.956)

Table 3.11. CQHMM state-specific parameter estimates for τ = 0.95, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level. σk and νk represent the
state-specific scale parameter and degrees of freedom, respectively.
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CEHMM BTC ETH LTC XRP BCH

State 1
Intercept -2.666 (0.085) -3.448 (0.106) -3.755 (0.108) -3.674 (0.106) -3.894 (0.109)
GSPC -0.164 (0.072) -0.134 (0.093) -0.051 (0.094) -0.097 (0.092) -0.14 (0.092)
SPUSBT -0.675 (0.34) -0.79 (0.425) -0.567 (0.412) -0.6 (0.416) -0.132 (0.434)
USDX 0.344 (0.229) -0.254 (0.28) 0.124 (0.291) -0.384 (0.278) -0.336 (0.299)
WTI -0.019 (0.029) -0.041 (0.036) -0.05 (0.037) -0.076 (0.035) -0.059 (0.037)
GOLD 0.223 (0.104) 0.181 (0.13) 0.173 (0.131) 0.065 (0.127) 0.157 (0.137)
σ1 1.812 (0.041) 2.247 (0.051) 2.33 (0.053) 2.225 (0.052) 2.322 (0.052)
ν1 6.985 (0.833)

State 2
Intercept -12.027 (0.495) -15.603 (0.626) -15.652 (0.67) -16.562 (0.848) -19.073 (0.844)
GSPC 1.743 (0.416) 1.719 (0.546) 2.097 (0.594) 1.47 (0.775) 3.203 (0.769)
SPUSBT 8.728 (1.938) 10.294 (2.685) 6.881 (2.717) 2.749 (3.616) 2.861 (3.713)
USDX -0.612 (1.325) -1.18 (1.696) 0.402 (1.864) 0.016 (2.361) 3.631 (2.448)
WTI 0.684 (0.177) 0.879 (0.227) 0.621 (0.251) 0.818 (0.317) 0.116 (0.319)
GOLD 0.641 (0.595) 0.755 (0.798) 1.652 (0.847) 1.057 (1.095) 1.775 (1.132)
σ2 4.66 (0.217) 6.13 (0.294) 6.461 (0.302) 8.436 (0.388) 8.442 (0.395)
ν2 14.816 (93.272)

Table 3.12. CEHMM state-specific parameter estimates for τ = 0.05, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level. σk and νk represent the
state-specific scale parameter and degrees of freedom, respectively.

CEHMM BTC ETH LTC XRP BCH

State 1
Intercept 0.054 (0.109) -0.019 (0.137) -0.358 (0.132) -0.402 (0.127) -0.547 (0.136)
GSPC -0.228 (0.091) -0.243 (0.117) -0.232 (0.111) -0.199 (0.106) -0.261 (0.117)
SPUSBT -0.134 (0.454) -0.173 (0.576) -0.677 (0.545) -0.339 (0.525) 0.093 (0.563)
USDX -0.007 (0.284) -0.123 (0.369) -0.113 (0.351) -0.061 (0.338) -0.16 (0.355)
WTI 0.029 (0.036) 0.008 (0.047) 0.001 (0.044) -0.023 (0.043) 0.008 (0.045)
GOLD -0.051 (0.131) -0.101 (0.166) -0.052 (0.161) 0.005 (0.154) -0.162 (0.162)
σ1 3.388 (0.081) 4.351 (0.101) 4.136 (0.097) 3.981 (0.095) 4.227 (0.098)
ν1 11.101 (2.09)

State 2
Intercept 0.467 (0.439) 0.678 (0.57) 1.339 (0.613) 1.46 (0.731) 1.4 (0.79)
GSPC 0.294 (0.381) 0.31 (0.497) 0.326 (0.547) -0.137 (0.656) 0.61 (0.689)
SPUSBT 1.355 (1.816) 3.534 (2.264) 1.874 (2.603) -1.448 (3.076) -2.041 (3.31)
USDX 0.767 (1.182) 1.861 (1.55) 1.493 (1.748) -1.25 (2.062) 0.698 (2.12)
WTI -0.016 (0.153) 0.043 (0.195) 0.156 (0.219) 0.129 (0.262) 0.106 (0.282)
GOLD -0.233 (0.56) -0.121 (0.714) -0.37 (0.775) -0.305 (0.911) -0.81 (0.995)
σ2 7.822 (0.318) 10.026 (0.41) 11.074 (0.459) 13.522 (0.527) 14.285 (0.576)
ν2 12.806 (9.207)

Table 3.13. CEHMM state-specific parameter estimates for τ = 0.50, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level. σk and νk represent the
state-specific scale parameter and degrees of freedom, respectively.
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CEHMM BTC ETH LTC XRP BCH

State 1
Intercept 2.466 (0.09) 3.443 (0.121) 2.499 (0.108) 2.132 (0.102) 2.388 (0.114)
GSPC -0.153 (0.073) -0.177 (0.099) -0.296 (0.091) -0.327 (0.084) -0.247 (0.096)
SPUSBT 0.924 (0.359) 1.275 (0.483) -0.087 (0.434) 0.008 (0.394) 0.298 (0.447)
USDX -0.056 (0.229) -0.572 (0.318) -0.378 (0.282) -0.432 (0.259) -0.532 (0.291)
WTI 0.035 (0.029) -0.029 (0.039) 0.016 (0.035) -0.001 (0.033) -0.014 (0.036)
GOLD -0.124 (0.109) -0.205 (0.145) -0.037 (0.132) -0.093 (0.122) -0.248 (0.137)
σ1 1.731 (0.041) 2.383 (0.055) 2.152 (0.049) 1.981 (0.045) 2.234 (0.052)
ν1 5.753 (0.673)

State 2
Intercept 9.344 (0.291) 11.905 (0.345) 13.356 (0.448) 17.59 (0.621) 17.766 (0.593)
GSPC 0.023 (0.253) 0.236 (0.329) 0.401 (0.385) -1.03 (0.608) -0.991 (0.49)
SPUSBT -0.692 (1.199) 4.962 (1.553) 3.312 (1.865) -3.591 (2.733) -2.229 (2.527)
USDX -0.206 (0.807) 3.267 (0.999) -0.244 (1.264) -6.721 (1.789) -2.002 (1.674)
WTI -0.137 (0.109) 0.034 (0.127) 0.105 (0.16) 0.074 (0.228) 0.322 (0.197)
GOLD -0.343 (0.363) -0.707 (0.47) -2.874 (0.573) 0.831 (0.845) -1.957 (0.751)
σ2 3.636 (0.137) 4.6 (0.173) 5.645 (0.206) 8.079 (0.293) 7.335 (0.269)
ν2 6.102 (1.1)

Table 3.14. CEHMM state-specific parameter estimates for τ = 0.95, with bootstrapped
standard errors (in brackets) obtained over 1000 replications. Point estimates are
displayed in boldface when significant at the standard 5% level. σk and νk represent the
state-specific scale parameter and degrees of freedom, respectively.

Figure 3.4. CQHMM (left) and CEHMM (right) state-specific correlation estimates for
the two states at τ = {0.05, 0.50, 0.95}.
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3.6 Conclusions

Since cryptocurrencies were first introduced in 2008 as a form of payment and
later turned into high yield assets, scholars and professionals have questioned their
extreme volatility and fluctuations over time. The early 2018 crypto-bubble and
the COVID-19 market crash in 2020 have contributed to strengthening the focus on
the relationship between digital currencies and traditional financial assets. In this
context, our contribution to the existing literature is twofold. From a theoretical
standpoint, we develop hidden Markov regression models for joint estimation of
conditional quantiles or expectiles of multivariate time series. To grasp unobserved
serial heterogeneity and rapid volatility jumps, the regression parameters vary
according to an unobservable homogeneous Marov chain. At the same time, the
method proposed allows us to model the time-varying dependence structure of
cryptocurrency returns using state-dependent elliptical copula functions. From a
practical point of view, we jointly investigate the impact of global market indices
on daily returns of the five most important cryptocurrencies from 2017 to 2022,
while taking into account for their association under different market conditions. We
found that interrelations between crypto and stocks increase while moving to the
extreme tails of returns distributions. In particular, a weak relationship between
cryptocurrencies and stock markets and commodities occurr at the centre of the
returns’ distributions, concurring with the consensus that cryptocurrencies are good
diversifiers from stocks and commodities during periods of tranquillity of financial
markets (Bouri, Molnár, Azzi, Roubaud & Hagfors 2017, Bouri, Jalkh, Molnár &
Roubaud 2017, Cremaschini et al. 2022). Conversely, we highlight an important
influence of S&P500, S&P Treasury Bond and Gold during both bearish and bullish
periods. Overall, these results are consistent the existing strands of literature on
the subject (Bouri et al. 2020a, Caferra & Vidal-Tomás 2021, Yousaf & Ali 2021).
Finally, as regards the dependence analysis among the crypto, our results seem to
adhere to the ones in Pennoni et al. (2022).
Future topics of research could extend the proposed methods to the hidden semi-
Markov model setting where the sojourn-distributions, that is, the distributions of the
number of consecutive time points that the chain spends in each state, are modeled
by the researcher using either parametric or non-parametric approaches instead
of assuming geometric sojourn densities as in HMMs. Moreover, even tough the
application focused on five cryptocurrencies and five predictors, in high-dimensional
settings with a greater number of response variables and/or hidden states, the
described models can be easily over-parameterized. This is frequently the case
due to the large number of regression parameters and unique parameters in the
correlation matrices of the copulas to be estimated, meaning a loss in interpretability
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as well as numerically ill-conditioned estimators. In these situations, one could
specify a parsimonious parametrization of correlation matrices of copula functions
or, following Maruotti et al. (2017), consider mixtures of factor analysis models,
whose parameters evolve according to the latent Markov chain.



81

Bibliography

Adam, T., Langrock, R. & Kneib, T. (2019), Model-based clustering of time series
data: a flexible approach using nonparametric state-switching quantile regression
models, in ‘Proceedings of the 12th Scientific Meeting on Classification and Data
Analysis’, pp. 8–11.

Adcock, C., Eling, M. & Loperfido, N. (2015), ‘Skewed distributions in finance and
actuarial science: A review’, The European Journal of Finance 21(13-14), 1253–
1281.

Agosto, A. & Cafferata, A. (2020), ‘Financial bubbles: a study of co-explosivity in
the cryptocurrency market’, Risks 8(2), 34.

Ajanovic, A. (2011), ‘Biofuels versus food production: Does biofuels production
increase food prices?’, Energy 36(4), 2070–2076.

Akaike, H. (1998), Information theory and an extension of the maximum likelihood
principle, in ‘Selected papers of Hirotugu Akaike’, Springer, pp. 199–213.

Al-Maadid, A., Caporale, G. M., Spagnolo, F. & Spagnolo, N. (2017), ‘Spillovers
between food and energy prices and structural breaks’, International Economics
150, 1–18.

Alfò, M., Salvati, N. & Ranallli, M. G. (2017), ‘Finite mixtures of quantile and
M-quantile regression models’, Statistics and Computing 27(2), 547–570.

Algieri, B. & Leccadito, A. (2017), ‘Assessing contagion risk from energy and
non-energy commodity markets’, Energy Economics 62, 312–322.

Aloui, C. & Mabrouk, S. (2010), ‘Value-at-Risk estimations of energy commodities
via long-memory, asymmetry and fat-tailed GARCH models’, Energy Policy
38(5), 2326–2339.

Andriosopoulos, K. & Nomikos, N. (2014), ‘Performance replication of the Spot
Energy Index with optimal equity portfolio selection: Evidence from the UK, US



Bibliography 82

and Brazilian markets’, European Journal of Operational Research 234(2), 571–
582.

Ardia, D., Bluteau, K., Boudt, K. & Catania, L. (2018), ‘Forecasting risk with
Markov-switching GARCH models: A large-scale performance study’, Interna-
tional Journal of Forecasting 34(4), 733–747.

Artzner, P., Delbaen, F., Eber, J.-M. & Heath, D. (1999), ‘Coherent measures of
risk’, Math. Finance 9(3), 203–228.

Assaf, A., Bhandari, A., Charif, H. & Demir, E. (2022), ‘Multivariate long memory
structure in the cryptocurrency market: The impact of covid-19’, International
Review of Financial Analysis 82, 102132.

Aven, T. (2016), ‘Risk assessment and risk management: Review of recent advances
on their foundation’, European Journal of Operational Research 253(1), 1–13.

Awokuse, T. O. & Yang, J. (2003), ‘The informational role of commodity prices in
formulating monetary policy: A reexamination’, Economics Letters 79(2), 219–224.

Bae, G. I., Kim, W. C. & Mulvey, J. M. (2014), ‘Dynamic asset allocation for
varied financial markets under regime switching framework’, European Journal of
Operational Research 234(2), 450–458.

Baffes, J. (2007), Oil spills on other commodities, The World Bank.

Balcilar, M., Gabauer, D. & Umar, Z. (2021), ‘Crude Oil futures contracts and
commodity markets: New evidence from a TVP-VAR extended joint connectedness
approach’, Resources Policy 73, 102219.

Balli, F., Naeem, M. A., Shahzad, S. J. H. & de Bruin, A. (2019), ‘Spillover network
of commodity uncertainties’, Energy Economics 81, 914–927.

Barbaglia, L., Wilms, I. & Croux, C. (2016), ‘Commodity dynamics: A sparse
multi-class approach’, Energy Economics 60, 62–72.

Barber, R. F., Drton, M. et al. (2015), ‘High-dimensional Ising model selection with
Bayesian information criteria’, Electronic Journal of Statistics 9(1), 567–607.

Barry, A., Oualkacha, K. & Charpentier, A. (2021), ‘A new GEE method to
account for heteroscedasticity using asymmetric least-square regressions’, Journal
of Applied Statistics pp. 1–27.

Basak, S. & Pavlova, A. (2016), ‘A model of financialization of commodities’, The
Journal of Finance 71(4), 1511–1556.



Bibliography 83

Battiston, S., Mandel, A., Monasterolo, I., Schütze, F. & Visentin, G. (2017), ‘A
climate stress-test of the financial system’, Nature Climate Change 7(4), 283–288.

Baum, L. E. & Petrie, T. (1966), ‘Statistical inference for probabilistic functions of
finite state markov chains’, The annals of mathematical statistics 37(6), 1554–1563.

Baum, L. E., Petrie, T., Soules, G. & Weiss, N. (1970), ‘A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains’,
The Annals of Mathematical Statistics 41(1), 164–171.

Baumeister, C. & Kilian, L. (2016), ‘Forty years of oil price fluctuations: Why the
price of oil may still surprise us’, Journal of Economic Perspectives 30(1), 139–60.

Baur, D. G., Hong, K. & Lee, A. D. (2018), ‘Bitcoin: Medium of exchange or
speculative assets?’, Journal of International Financial Markets, Institutions and
Money 54, 177–189.

Bellini, F. (2012), ‘Isotonicity properties of generalized quantiles’, Statistics &
Probability Letters 82(11), 2017–2024.

Bellini, F. & Di Bernardino, E. (2017), ‘Risk management with expectiles’, The
European Journal of Finance 23(6), 487–506.

Bellini, F., Klar, B., Müller, A. & Rosazza Gianin, E. (2014), ‘Generalized quantiles
as risk measures’, Insurance Math. Econom. 54, 41–48.

Bernardi, M., Maruotti, A. & Petrella, L. (2017), ‘Multiple risk measures for
multivariate dynamic heavy–tailed models’, Journal of Empirical Finance 43, 1–
32.

Biernacki, C., Celeux, G. & Govaert, G. (2000), ‘Assessing a mixture model for
clustering with the integrated completed likelihood’, IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(7), 719–725.

Billio, M., Getmansky, M., Lo, A. W. & Pelizzon, L. (2012), ‘Econometric measures
of connectedness and systemic risk in the finance and insurance sectors’, Journal
of Financial Economics 104(3), 535–559.

Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992), ‘ARCH modeling in finance: A
review of the theory and empirical evidence’, Journal of Econometrics 52(1-2), 5–
59.

Borri, N. (2019), ‘Conditional tail-risk in cryptocurrency markets’, Journal of
Empirical Finance 50, 1–19.



Bibliography 84

Bottone, M., Petrella, L. & Bernardi, M. (2021), ‘Unified Bayesian conditional
autoregressive risk measures using the skew exponential power distribution’,
Statistical Methods & Applications 30(3), 1079–1107.

Bouri, E., Jalkh, N., Molnár, P. & Roubaud, D. (2017), ‘Bitcoin for energy commodi-
ties before and after the december 2013 crash: diversifier, hedge or safe haven?’,
Applied Economics 49(50), 5063–5073.

Bouri, E., Lucey, B. & Roubaud, D. (2020a), ‘Cryptocurrencies and the downside
risk in equity investments’, Finance Research Letters 33, 101211.

Bouri, E., Lucey, B. & Roubaud, D. (2020b), ‘The volatility surprise of leading
cryptocurrencies: Transitory and permanent linkages’, Finance Research Letters
33, 101188.

Bouri, E., Molnár, P., Azzi, G., Roubaud, D. & Hagfors, L. I. (2017), ‘On the hedge
and safe haven properties of Bitcoin: Is it really more than a diversifier?’, Finance
Research Letters 20, 192–198.

Browne, F. & Cronin, D. (2010), ‘Commodity prices, money and inflation’, Journal
of Economics and Business 62(4), 331–345.

Bulla, J. & Bulla, I. (2006), ‘Stylized facts of financial time series and hidden semi-
Markov models’, Computational Statistics & Data Analysis 51(4), 2192–2209.

Caferra, R. & Vidal-Tomás, D. (2021), ‘Who raised from the abyss? a comparison
between cryptocurrency and stock market dynamics during the covid-19 pandemic’,
Finance Research Letters 43, 101954.

Cashin, P. & McDermott, C. J. (2002), ‘The long-run behavior of commodity prices:
Small trends and big variability’, IMF staff Papers 49(2), 175–199.

Cevik, S. & Sedik, T. S. (2014), ‘A barrel of oil or a bottle of wine: How do
global growth dynamics affect commodity prices?’, Journal of Wine Economics
9(1), 34–50.

Charfeddine, L., Klein, T. & Walther, T. (2020), ‘Reviewing the oil price–GDP
growth relationship: A replication study’, Energy Economics p. 104786.

Cheah, E.-T. & Fry, J. (2015), ‘Speculative bubbles in Bitcoin markets? An empirical
investigation into the fundamental value of Bitcoin’, Economics Letters 130, 32–36.

Chen, J. & Chen, Z. (2008), ‘Extended Bayesian information criteria for model
selection with large model spaces’, Biometrika 95(3), 759–771.



Bibliography 85

Chen, Y.-c., Turnovsky, S. J. & Zivot, E. (2014), ‘Forecasting inflation using com-
modity price aggregates’, Journal of Econometrics 183(1), 117–134.

Cheng, I.-H. & Xiong, W. (2014), ‘Financialization of commodity markets’, Annual
Review of Financial Economics 6(1), 419–441.

Cheung, A., Roca, E. & Su, J.-J. (2015), ‘Crypto-currency bubbles: an application
of the phillips–shi–yu (2013) methodology on mt. gox bitcoin prices’, Applied
Economics 47(23), 2348–2358.

Chiou-Wei, S.-Z., Chen, S.-H. & Zhu, Z. (2019), ‘Energy and agricultural commodity
markets interaction: An analysis of crude oil, natural gas, corn, soybean, and
ethanol prices’, The Energy Journal 40(2).

Christodoulakis, G. (2020), ‘Estimating the term structure of commodity market
preferences’, European Journal of Operational Research 282(3), 1146–1163.

Christoffersen, P. (2010), ‘Backtesting’, Encyclopedia of Quantitative Finance .

Christoffersen, P. F. (1998), ‘Evaluating interval forecasts’, International Economic
Review 39(4), 841–862.

Christoffersen, P. F. & Diebold, F. X. (2000), ‘How relevant is volatility forecasting
for financial risk management?’, Review of Economics and Statistics 82(1), 12–22.

Chuliá, H., Guillén, M. & Uribe, J. M. (2017), ‘Measuring uncertainty in the stock
market’, International Review of Economics & Finance 48, 18–33.

Ciner, C. (2001), ‘On the long run relationship between gold and silver prices. A
note’, Global Finance Journal 12(2), 299–303.

Ciner, C., Lucey, B. & Yarovaya, L. (2022), ‘Determinants of cryptocurrency returns:
A lasso quantile regression approach’, Finance Research Letters 49, 102990.

Conlon, T. & McGee, R. (2020), ‘Safe haven or risky hazard? bitcoin during the
covid-19 bear market’, Finance Research Letters 35, 101607.

Corbet, S., Larkin, C. & Lucey, B. (2020), ‘The contagion effects of the covid-19
pandemic: Evidence from gold and cryptocurrencies’, Finance Research Letters
35, 101554.

Corbet, S., Lucey, B., Urquhart, A. & Yarovaya, L. (2019), ‘Cryptocurrencies as a
financial asset: A systematic analysis’, International Review of Financial Analysis
62, 182–199.



Bibliography 86

Corbet, S., Meegan, A., Larkin, C., Lucey, B. & Yarovaya, L. (2018), ‘Exploring
the dynamic relationships between cryptocurrencies and other financial assets’,
Economics Letters 165, 28–34.

Cossin, D., Schellhorn, H., Song, N. & Tungsong, S. (2010), ‘A theoretical argument
why the t-copula explains credit risk contagion better than the gaussian copula’,
Advances in Decision Sciences 2010.

Cremaschini, A., Punzo, A., Martellucci, E. & Maruotti, A. (2022), ‘On stylized
facts of cryptocurrencies returns and their relationship with other assets, with a
focus on the impact of covid-19’, Applied Economics pp. 1–14.

Danielsson, J. (2011), Risk and crises: How models failed and are failing. <<voxeu.
org>>, Technical report.

Das, D., Le Roux, C. L., Jana, R. K. & Dutta, A. (2020), ‘Does bitcoin hedge crude
oil implied volatility and structural shocks? a comparison with gold, commodity
and the us dollar’, Finance Research Letters 36, 101335.

Das, S. R. & Sundaram, R. K. (1997), ‘Taming the skew: Higher-order moments in
modeling asset price processes in finance’, National Bureau of Economic Research
.

De Angelis, L. & Paas, L. J. (2013), ‘A dynamic analysis of stock markets using a
hidden Markov model’, Journal of Applied Statistics 40(8), 1682–1700.

De Luca, G., Genton, M. G. & Loperfido, N. (2006), ‘A multivariate skew-GARCH
model’, Advances in Econometrics: Econometric Analysis of Economic and Fi-
nancial Time Series, Part A (Special volume in honor of Robert Engle and Clive
Granger, the 2003 winners of the Nobel Prize in Economics) pp. 33–57.

de Nicola, F., De Pace, P. & Hernandez, M. A. (2016), ‘Co-movement of major
energy, agricultural, and food commodity price returns: A time-series assessment’,
Energy Economics 57, 28–41.

Deaton, A. (1999), ‘Commodity prices and growth in Africa’, Journal of Economic
Perspectives 13(3), 23–40.

Demir, E., Bilgin, M. H., Karabulut, G. & Doker, A. C. (2020), ‘The relationship
between cryptocurrencies and covid-19 pandemic’, Eurasian Economic Review
10(3), 349–360.

Dickey, D. A. & Fuller, W. A. (1979), ‘Distribution of the estimators for autoregressive
time series with a unit root’, Journal of the American Statistical Association
74(366a), 427–431.

<<voxeu.org>>
<<voxeu.org>>


Bibliography 87

Diebold, F. X., Liu, L. & Yilmaz, K. (2017), Commodity connectedness, Technical
report, National Bureau of Economic Research.

Diebold, F. X. & Yılmaz, K. (2014), ‘On the network topology of variance decompo-
sitions: Measuring the connectedness of financial firms’, Journal of Econometrics
182(1), 119–134.

Du, X., Cindy, L. Y. & Hayes, D. J. (2011), ‘Speculation and volatility spillover in
the crude oil and agricultural commodity markets: A Bayesian analysis’, Energy
Economics 33(3), 497–503.

Duan, K., Li, Z., Urquhart, A. & Ye, J. (2021), ‘Dynamic efficiency and arbitrage
potential in bitcoin: A long-memory approach’, International Review of Financial
Analysis 75, 101725.

Dunis, C. L., Laws, J. & Evans, B. (2009), Modelling and trading the soybean-oil
crush spread with recurrent and higher order networks: A comparative analysis,
in ‘Artificial Higher Order Neural Networks for Economics and Business’, IGI
Global, pp. 348–366.

Dyhrberg, A. H. (2016), ‘Hedging capabilities of Bitcoin. Is it the virtual gold?’,
Finance Research Letters 16, 139–144.

Embrechts, P., Frey, R. & McNeil, A. (2011), ‘Quantitative risk management.’.

Embrechts, P., Lindskog, F. & McNeil, A. (2001), ‘Modelling dependence with
copulas’, Rapport technique, Département de mathématiques, Institut Fédéral de
Technologie de Zurich, Zurich 14, 1–50.

Engle, R. F. & Manganelli, S. (2004), ‘CAViaR: Conditional Autoregressive Value
at Risk by Regression quantiles’, Journal of Business & Economic Statistics
22(4), 367–381.

Ergen, I. & Rizvanoghlu, I. (2016), ‘Asymmetric impacts of fundamentals on the nat-
ural gas futures volatility: An augmented GARCH approach’, Energy Economics
56, 64–74.

Ewing, B. T. & Malik, F. (2013), ‘Volatility transmission between gold and oil
futures under structural breaks’, International Review of Economics & Finance
25, 113–121.

Farcomeni, A. (2012), ‘Quantile regression for longitudinal data based on latent
markov subject-specific parameters’, Statistics and Computing 22(1), 141–152.



Bibliography 88

Fernández, C. & Steel, M. F. (1998), ‘On Bayesian modeling of fat tails and skewness’,
Journal of the American Statistical Association 93(441), 359–371.

Ferrer, R., Shahzad, S. J. H., López, R. & Jareño, F. (2018), ‘Time and frequency
dynamics of connectedness between renewable energy stocks and crude oil prices’,
Energy Economics 76, 1–20.

Flori, A., Pammolli, F. & Spelta, A. (2021), ‘Commodity prices co-movements and
financial stability: A multidimensional visibility nexus with climate conditions’,
Journal of Financial Stability p. 100876.

Fong, W. M. & See, K. H. (2002), ‘A Markov switching model of the conditional
volatility of crude oil futures prices’, Energy Economics 24(1), 71–95.

Fong, W. M. & See, K. H. (2003), ‘Basis variations and regime shifts in the oil
futures market’, The European Journal of Finance 9(5), 499–513.

Foroni, B., Merlo, L. & Petrella, L. (2023), ‘Expectile hidden markov regression
models for analyzing cryptocurrency returns’, arXiv preprint arXiv:2301.09722 .

Foroni, B., Morelli, G. & Petrella, L. (2022), ‘The network of commodity risk’,
Energy Systems pp. 1–47.

Foygel, R. & Drton, M. (2010), Extended Bayesian information criteria for Gaussian
graphical models, in ‘Proceedings of the 23rd International Conference on Neural
Information Processing Systems-Volume 1’, pp. 604–612.

Friedman, J., Hastie, T. & Tibshirani, R. (2008a), ‘Sparse inverse covariance estima-
tion with the graphical lasso’, Biostatistics 9(3), 432–441.

Friedman, J., Hastie, T. & Tibshirani, R. (2008b), ‘Sparse inverse covariance estima-
tion with the graphical LASSO’, Biostatistics (Oxford, England) 9, 432–41.

Gabrel, V., Murat, C. & Thiele, A. (2014), ‘Recent advances in robust optimization:
An overview’, European Journal of Operational Research 235(3), 471–483.

Garman, M. B. & Klass, M. J. (1980), ‘On the estimation of security price volatilities
from historical data’, Journal of Business pp. 67–78.

Gelos, G. & Ustyugova, Y. (2017), ‘Inflation responses to commodity price shocks–
how and why do countries differ?’, Journal of International Money and Finance
72, 28–47.

Gerlach, R. & Chen, C. W. (2015), ‘Bayesian expected shortfall forecasting incorpo-
rating the intraday range’, Journal of Financial Econometrics 14(1), 128–158.



Bibliography 89

Giampietro, M., Guidolin, M. & Pedio, M. (2018), ‘Estimating stochastic discount
factor models with hidden regimes: Applications to commodity pricing’, European
Journal of Operational Research 265(2), 685–702.

Giot, P. & Laurent, S. (2003), ‘Market risk in commodity markets: a VaR approach’,
Energy Economics 25(5), 435–457.

Giudici, P. & Abu Hashish, I. (2020), ‘A hidden markov model to detect regime
changes in cryptoasset markets’, Quality and Reliability Engineering International
36(6), 2057–2065.

Gong, Y. & Huser, R. (2022), ‘Asymmetric tail dependence modeling, with applica-
tion to cryptocurrency market data’, The Annals of Applied Statistics 16(3), 1822–
1847.

Gould, P. R. (1967), ‘On the geographical interpretation of eigenvalues’, Transactions
of the Institute of British Geographers pp. 53–86.

Guesmi, K., Saadi, S., Abid, I. & Ftiti, Z. (2019), ‘Portfolio diversification with
virtual currency: Evidence from Bitcoin’, International Review of Financial
Analysis 63, 431–437.

Haas, M., Mittnik, S. & Paolella, M. S. (2004), ‘A new approach to Markov-switching
GARCH models’, Journal of Financial Econometrics 2(4), 493–530.

Hamilton, J. D. (1983), ‘Oil and the macroeconomy since World War II’, Journal
of Political Economy 91(2), 228–248.

Hamilton, J. D. (1989), ‘A new approach to the economic analysis of nonstationary
time series and the business cycle’, Econometrica pp. 357–384.

Hamilton, J. D. (1990), ‘Analysis of time series subject to changes in regime’, Journal
of econometrics 45(1-2), 39–70.

Hansen, P. R. & Lunde, A. (2003), Does anything beat a GARCH (1,1)? A com-
parison based on test for superior predictive ability, in ‘2003 IEEE International
Conference on Computational Intelligence for Financial Engineering, 2003. Pro-
ceedings.’, IEEE, pp. 301–307.

Härdle, W. K., Okhrin, O. & Wang, W. (2015), ‘Hidden markov structures for
dynamic copulae’, Econometric Theory 31(5), 981–1015.

Hastie, T., Tibshirani, R. & Wainwright, M. (2015), Statistical learning with sparsity:
the LASSO and generalizations, Chapman and Hall/CRC.



Bibliography 90

Henderson, B. J., Pearson, N. D. & Wang, L. (2015), ‘New evidence on the financial-
ization of commodity markets’, The Review of Financial Studies 28(5), 1285–1311.

Hess, D., Huang, H. & Niessen, A. (2008), ‘How do commodity futures respond to
macroeconomic news?’, Financial Markets and Portfolio Management 22(2), 127–
146.

Huang, J.-J., Lee, K.-J., Liang, H. & Lin, W.-F. (2009), ‘Estimating value at risk
of portfolio by conditional copula-garch method’, Insurance: Mathematics and
economics 45(3), 315–324.

Hubert, L. & Arabie, P. (1985), ‘Comparing partitions’, Journal of Classification
2(1), 193–218.

Hyun, S., Lee, J., Kim, J.-M. & Jun, C. (2019), ‘What coins lead in the cryptocurrency
market: using copula and neural networks models’, Journal of Risk and Financial
Management 12(3), 132.

Ji, Q., Bouri, E., Gupta, R. & Roubaud, D. (2018), ‘Network causality structures
among bitcoin and other financial assets: A directed acyclic graph approach’, The
Quarterly Review of Economics and Finance 70, 203–213.

Ji, Q., Bouri, E., Roubaud, D. & Shahzad, S. J. H. (2018), ‘Risk spillover between
energy and agricultural commodity markets: A dependence-switching CoVaR-
copula model’, Energy Economics 75, 14–27.

Ji, Q. & Fan, Y. (2016), ‘Evolution of the world crude oil market integration: A
graph theory analysis’, Energy Economics 53, 90–100.

Joe, H. (1997), Multivariate models and multivariate dependence concepts, CRC
press.

Joe, H. & Xu, J. J. (1996), ‘The estimation method of inference functions for margins
for multivariate models’.

Joëts, M. (2015), ‘Heterogeneous beliefs, regret, and uncertainty: The role of
speculation in energy price dynamics’, European Journal of Operational Research
247(1), 204–215.

Jorion, P. (2006), Value at Risk, 3rd Ed.: The New Benchmark for Managing
Financial Risk, McGraw-Hill Education.

Kang, S. H., McIver, R. & Yoon, S.-M. (2017), ‘Dynamic spillover effects among
crude oil, precious metal, and agricultural commodity futures markets’, Energy
Economics 62, 19–32.



Bibliography 91

Kat, H. M. & Oomen, R. C. (2006), ‘What every investor should know about com-
modities, Part II: Multivariate return analysis’, Alternative Investment Research
Centre Working Paper (33).

Katsiampa, P., Corbet, S. & Lucey, B. (2019), ‘Volatility spillover effects in leading
cryptocurrencies: A BEKK-MGARCH analysis’, Finance Research Letters 29, 68–
74.

Kilian, L. & Vigfusson, R. J. (2011), ‘Are the responses of the US economy asymmet-
ric in energy price increases and decreases?’, Quantitative Economics 2(3), 419–453.

Kim, J.-M., Kim, S.-T. & Kim, S. (2020), ‘On the relationship of cryptocurrency
price with us stock and gold price using copula models’, Mathematics 8(11), 1859.

Kim, M. & Lee, S. (2016), ‘Nonlinear expectile regression with application to Value-
at-Risk and Expected Shortfall estimation’, Computational Statistics & Data
Analysis 94, 1–19.

Koenker, R. (2005), Quantile Regression, Cambridge University Press.

Koenker, R. & Bassett, G. (1978), ‘Regression quantiles’, Econometrica: Journal of
the Econometric Society 46(1), 33–50.

Koenker, R., Chernozhukov, V., He, X. & Peng, L. (2017), ‘Handbook of quantile
regression’.

Kristjanpoller, W., Bouri, E. & Takaishi, T. (2020), ‘Cryptocurrencies and equity
funds: Evidence from an asymmetric multifractal analysis’, Physica A: Statistical
Mechanics and Its Applications 545, 123711.

Kupiec, P. H. (1995), ‘Techniques for verifying the accuracy of risk measurement
models’, The Journal of Derivatives 3(2), 73–84.

Lambert, N. S., Pennock, D. M. & Shoham, Y. (2008), Eliciting properties of
probability distributions, in ‘Proceedings of the 9th ACM Conference on Electronic
Commerce’, ACM, pp. 129–138.

Lanchantin, P., Lapuyade-Lahorgue, J. & Pieczynski, W. (2011), ‘Unsupervised
segmentation of randomly switching data hidden with non-gaussian correlated
noise’, Signal Processing 91(2), 163–175.

Laporta, A. G., Merlo, L. & Petrella, L. (2018), ‘Selection of Value at Risk models
for energy commodities’, Energy Economics 74, 628–643.

Lauritzen, S. L. (1996), Graphical models, Vol. 17, Clarendon Press.



Bibliography 92

Lauritzen, S. L. & Wermuth, N. (1989), ‘Graphical models for associations between
variables, some of which are qualitative and some quantitative’, The annals of
Statistics pp. 31–57.

Liu, C. (1997), ‘ML estimation of the multivariate t distribution and the EM
algorithm’, Journal of Multivariate Analysis 63(2), 296–312.

Liu, H., Song, X., Tang, Y. & Zhang, B. (2021), ‘Bayesian quantile nonhomogeneous
hidden Markov models’, Statistical Methods in Medical Research 30(1), 112–128.

Liu, X. (2016), ‘Markov switching quantile autoregression’, Statistica Neerlandica
70(4), 356–395.

López-Martín, C., Benito Muela, S. & Arguedas, R. (2021), ‘Efficiency in cryptocur-
rency markets: New evidence’, Eurasian Economic Review 11(3), 403–431.

MacDonald, I. L. & Zucchini, W. (1997), Hidden Markov and other models for
discrete-valued time series, Vol. 110, CRC Press.

Malik, F. & Umar, Z. (2019), ‘Dynamic connectedness of oil price shocks and
exchange rates’, Energy Economics 84, 104501.

Mariana, C. D., Ekaputra, I. A. & Husodo, Z. A. (2021), ‘Are bitcoin and ethereum
safe-havens for stocks during the covid-19 pandemic?’, Finance research letters
38, 101798.

Marimoutou, V., Raggad, B. & Trabelsi, A. (2009), ‘Extreme value theory and Value
at Risk: Application to oil market’, Energy Economics 31(4), 519–530.

Marino, M. F., Tzavidis, N. & Alfò, M. (2018), ‘Mixed hidden Markov quantile regres-
sion models for longitudinal data with possibly incomplete sequences’, Statistical
Methods in Medical Research 27(7), 2231–2246.

Maruotti, A., Bulla, J., Lagona, F., Picone, M. & Martella, F. (2017), ‘Dynamic
mixtures of factor analyzers to characterize multivariate air pollutant exposures’,
The Annals of Applied Statistics 11(3), 1617–1648.

Maruotti, A., Petrella, L. & Sposito, L. (2021), ‘Hidden semi-Markov-switching
quantile regression for time series’, Computational Statistics & Data Analysis
159, 107208.

Maruotti, A., Punzo, A. & Bagnato, L. (2019), ‘Hidden Markov and semi-Markov
models with multivariate leptokurtic-normal components for robust modeling of
daily returns series’, Journal of Financial Econometrics 17(1), 91–117.



Bibliography 93

Marvasti, A. & Lamberte, A. (2016), ‘Commodity price volatility under regulatory
changes and disaster’, Journal of Empirical Finance 38, 355–361.

Masala, G. (2021), ‘Backtesting energy portfolio with copula dependence structure’,
Energy Systems 12(2), 393–410.

Mensi, W., Hammoudeh, S., Shahzad, S. J. H. & Shahbaz, M. (2017), ‘Modeling
systemic risk and dependence structure between oil and stock markets using a
variational mode decomposition-based copula method’, Journal of Banking &
Finance 75, 258–279.

Mergner, S. & Bulla, J. (2008), ‘Time-varying beta risk of Pan-European industry
portfolios: A comparison of alternative modeling techniques’, The European
Journal of Finance 14(8), 771–802.

Merlo, L., Maruotti, A., Petrella, L. & Punzo, A. (2022), ‘Quantile hidden semi-
Markov models for multivariate time series’, Statistics and Computing 32(4), 1–22.

Merlo, L., Petrella, L. & Raponi, V. (2021), ‘Forecasting VaR and ES using a joint
quantile regression and its implications in portfolio allocation’, Journal of Banking
& Finance p. 106248.

Myint, L. L. & El-Halwagi, M. M. (2009), ‘Process analysis and optimization of
biodiesel production from soybean oil’, Clean Technologies and Environmental
Policy 11(3), 263–276.

Naeem, M. A., Bouri, E., Peng, Z., Shahzad, S. J. H. & Vo, X. V. (2021), ‘Asymmetric
efficiency of cryptocurrencies during COVID19’, Physica A: Statistical Mechanics
and its Applications 565, 125562.

Naeem, M., Umar, Z., Ahmed, S. & Ferrouhi, E. M. (2020), ‘Dynamic dependence
between ETFs and crude oil prices by using EGARCH-Copula approach’, Physica
A: Statistical Mechanics and its Applications 557, 124885.

Nakamoto, S. (2008), ‘Bitcoin: A peer-to-peer electronic cash system’, Decentralized
Business Review p. 21260.

Nazlioglu, S. (2011), ‘World oil and agricultural commodity prices: Evidence from
nonlinear causality’, Energy Policy 39(5), 2935–2943.

Nazlioglu, S., Erdem, C. & Soytas, U. (2013), ‘Volatility spillover between oil and
agricultural commodity markets’, Energy Economics 36, 658–665.

Nazlioglu, S. & Soytas, U. (2011), ‘World oil prices and agricultural commodity
prices: evidence from an emerging market’, Energy Economics 33(3), 488–496.



Bibliography 94

Newey, W. K. & Powell, J. L. (1987), ‘Asymmetric least squares estimation and
testing’, Econometrica: Journal of the Econometric Society pp. 819–847.

Newman, M. E. (2006), ‘Modularity and community structure in networks’, Proceed-
ings of the National Academy of Sciences 103(23), 8577–8582.

Nguyen, Q. N., Aboura, S., Chevallier, J., Zhang, L. & Zhu, B. (2020), ‘Local
Gaussian correlations in financial and commodity markets’, European Journal of
Operational Research 285(1), 306–323.

Nigri, A., Barbi, E. & Levantesi, S. (2022), ‘The relationship between longevity and
lifespan variation’, Statistical Methods & Applications 31(3), 481–493.

Nystrup, P., Hansen, B. W., Madsen, H. & Lindström, E. (2015), ‘Regime-based
versus static asset allocation: Letting the data speak’, The Journal of Portfolio
Management 42(1), 103–109.

Nystrup, P., Madsen, H. & Lindström, E. (2017), ‘Long memory of financial time
series and hidden Markov models with time-varying parameters’, Journal of
Forecasting 36(8), 989–1002.

Ötting, M., Langrock, R. & Maruotti, A. (2021), ‘A copula-based multivariate hidden
markov model for modelling momentum in football’, AStA Advances in Statistical
Analysis pp. 1–19.

Pennoni, F., Bartolucci, F., Forte, G. & Ametrano, F. (2022), ‘Exploring the
dependencies among main cryptocurrency log-returns: A hidden markov model’,
Economic Notes 51(1), e12193.

Pilipovic, D. (2007), Energy risk: Valuing and managing energy derivatives, McGraw
Hill Professional.

Pindyck, R. S. & Rotemberg, J. J. (1990), ‘The excess co-movement of commodity
prices’, The Economic Journal 100(403), 1173–1189.

Ramiah, V., Wallace, D., Veron, J. F., Reddy, K. & Elliott, R. (2019), ‘The effects
of recent terrorist attacks on risk and return in commodity markets’, Energy
Economics 77, 13–22.

Reboredo, J. C. (2015), ‘Is there dependence and systemic risk between oil and
renewable energy stock prices?’, Energy Economics 48, 32–45.

Rehman, M. U., Shahzad, S. J. H., Uddin, G. S. & Hedström, A. (2018), ‘Precious
metal returns and oil shocks: A time varying connectedness approach’, Resources
Policy 58, 77–89.



Bibliography 95

Rezitis, A. N. (2015), ‘The relationship between agricultural commodity prices, crude
oil prices and US dollar exchange rates: A panel VAR approach and causality
analysis’, International Review of Applied Economics 29(3), 403–434.

Roache, S. K. (2008), ‘Commodities and the market price of risk’, IMF Working
Paper No. 08/221 .

Sadorsky, P. (2006), ‘Modeling and forecasting petroleum futures volatility’, Energy
Economics 28(4), 467–488.

Schwarz, G. et al. (1978), ‘Estimating the dimension of a model’, The Annals of
Statistics 6(2), 461–464.

Shahzad, S. J. H., Bouri, E., Ahmad, T. & Naeem, M. A. (2022), ‘Extreme tail
network analysis of cryptocurrencies and trading strategies’, Finance Research
Letters 44, 102106.

Shen, Y., Shi, X. & Variam, H. M. P. (2018), ‘Risk transmission mechanism between
energy markets: A VAR for VaR approach’, Energy Economics 75, 377–388.

Sklar, M. (1959), ‘Fonctions de repartition an dimensions et leurs marges’, Publ.
inst. statist. univ. Paris 8, 229–231.

Smales, L. A. (2014), ‘News sentiment in the gold futures market’, Journal of
Banking & Finance 49, 275–286.

Sobotka, F. & Kneib, T. (2012), ‘Geoadditive expectile regression’, Computational
Statistics & Data Analysis 56(4), 755–767.

Spiegel, E., Kneib, T. & Otto-Sobotka, F. (2020), ‘Spatio-temporal expectile regres-
sion models’, Statistical Modelling 20(4), 386–409.

Spierdijk, L. & Umar, Z. (2013), ‘Are commodity futures a good hedge against
inflation?’.

Tang, K. & Xiong, W. (2012), ‘Index investment and the financialization of com-
modities’, Financial Analysts Journal 68(6), 54–74.

Taylor, J. W. (2008), ‘Estimating Value at Risk and Expected Shortfall using
expectiles’, Journal of Financial Econometrics 6(2), 231–252.

Taylor, J. W. (2019), ‘Forecasting Value at Risk and Expected Shortfall using a
semiparametric approach based on the asymmetric Laplace distribution’, Journal
of Business & Economic Statistics 37(1), 121–133.



Bibliography 96

Basel Committee on Banking Supervision (2016), Minimum capital requirements
for market risk, Technical report.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the LASSO’, Journal
of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288.

Tiwari, A. K., Mukherjee, Z., Gupta, R. & Balcilar, M. (2019), ‘A wavelet analysis of
the relationship between oil and natural gas prices’, Resources Policy 60, 118–124.

Tiwari, A. K., Umar, Z. & Alqahtani, F. (2021), ‘Existence of long memory in crude
oil and petroleum products: Generalised Hurst exponent approach’, Research in
International Business and Finance 57, 101403.

Tyner, W. E. (2010), ‘The integration of energy and agricultural markets’, Agricul-
tural Economics 41, 193–201.

Tzavidis, N., Salvati, N., Schmid, T., Flouri, E. & Midouhas, E. (2016), ‘Longitudinal
analysis of the strengths and difficulties questionnaire scores of the Millennium
Cohort Study children in England using M-quantile random-effects regression’,
Journal of the Royal Statistical Society: Series A (Statistics in Society) 179(2), 427–
452.

Umar, Z., Gubareva, M. & Teplova, T. (2021), ‘The impact of Covid-19 on commodity
markets volatility: Analyzing time-frequency relations between commodity prices
and Coronavirus panic levels’, Resources Policy 73, 102164.

Umar, Z., Jareño, F. & Escribano, A. (2021), ‘Agricultural commodity markets
and oil prices: An analysis of the dynamic return and volatility connectedness’,
Resources Policy 73, 102147.

Umar, Z., Jareño, F. & Escribano, A. (2022), ‘Dynamic return and volatility con-
nectedness for dominant agricultural commodity markets during the COVID-19
pandemic era’, Applied Economics 54(9), 1030–1054.

Umar, Z. & Spierdijk, L. (2011), Are commodities a good hedge against inflation? A
comparative approach, Technical report, Netspar discussion paper, <<rug.nl>>.

UNCTAD (2019), UN conference on Trade and Development (UNCTAD), Technical
report.

Visser, I., Raijmakers, M. E. & Molenaar, P. C. (2000), ‘Confidence intervals for
hidden Markov model parameters’, British Journal of Mathematical and Statistical
Psychology 53(2), 317–327.

<<rug. nl>>


Bibliography 97

Waldmann, E., Sobotka, F. & Kneib, T. (2013), ‘Bayesian geoadditive expectile
regression’, arXiv preprint arXiv:1312.5054 .

Waldmann, E., Sobotka, F. & Kneib, T. (2017), ‘Bayesian regularisation in geoaddi-
tive expectile regression’, Statistics and Computing 27(6), 1539–1553.

Welch, L. R. (2003), ‘Hidden Markov models and the Baum-Welch algorithm’, IEEE
Information Theory Society Newsletter 53(4), 10–13.

White, H., Kim, T.-H. & Manganelli, S. (2015), ‘VAR for VaR: Measuring tail
dependence using multivariate regression quantiles’, Journal of Econometrics
187(1), 169–188.

Whittaker, J. (2009), Graphical models in applied multivariate statistics, Wiley
Publishing.

Wilhelmsson, A. (2006), ‘GARCH forecasting performance under different distribu-
tion assumptions’, Journal of Forecasting 25(8), 561–578.

Xiong, J., Liu, Q. & Zhao, L. (2020), ‘A new method to verify bitcoin bubbles:
Based on the production cost’, The North American Journal of Economics and
Finance 51, 101095.

Yarovaya, L., Brzeszczyński, J. & Lau, C. K. M. (2016), ‘Intra-and inter-regional
return and volatility spillovers across emerging and developed markets: Evidence
from stock indices and stock index futures’, International Review of Financial
Analysis 43, 96–114.

Ye, W., Zhu, Y., Wu, Y. & Miao, B. (2016), ‘Markov regime-switching quantile
regression models and financial contagion detection’, Insurance: Mathematics and
Economics 67, 21–26.

Yi, S., Xu, Z. & Wang, G.-J. (2018), ‘Volatility connectedness in the cryptocurrency
market: Is Bitcoin a dominant cryptocurrency?’, International Review of Financial
Analysis 60, 98–114.

Yousaf, I. & Ali, S. (2021), ‘Linkages between stock and cryptocurrency markets
during the covid-19 outbreak: An intraday analysis’, The Singapore Economic
Review pp. 1–20.

Yu, K. & Moyeed, R. A. (2001), ‘Bayesian quantile regression’, Statistics & Probability
Letters 54(4), 437–447.

Yuan, M. & Lin, Y. (2007), ‘Model selection and estimation in the Gaussian graphical
model’, Biometrika 94(1), 19–35.



Bibliography 98

Zaremba, A., Umar, Z. & Mikutowski, M. (2019), ‘Inflation hedging with commodi-
ties: A wavelet analysis of seven centuries worth of data’, Economics Letters
181, 90–94.

Zaremba, A., Umar, Z. & Mikutowski, M. (2021), ‘Commodity financialisation and
price co-movement: Lessons from two centuries of evidence’, Finance Research
Letters 38, 101492.

Zaremba, A., Umar, Z., Mikutowski, M. et al. (2021), ‘Practical Applications
of Inflation Hedging in the Long Run: Perspectives from Seven Centuries of
Commodity Prices’, The Journal of Alternative Investments 24(Supplement1), 1–
5.

Zhang, D. & Broadstock, D. C. (2018), ‘Global financial crisis and rising connected-
ness in the international commodity markets’, International Review of Financial
Analysis p. 101239.

Zhang, D. & Broadstock, D. C. (2020), ‘Global financial crisis and rising connected-
ness in the international commodity markets’, International Review of Financial
Analysis 68, 101239.

Zhang, Y.-J., Bouri, E., Gupta, R. & Ma, S.-J. (2021), ‘Risk spillover between
bitcoin and conventional financial markets: An expectile-based approach’, The
North American Journal of Economics and Finance 55, 101296.

Ziegel, J. F. (2016), ‘Coherence and elicitability’, Mathematical Finance 26(4), 901–
918.

Zucchini, W., MacDonald, I. L. & Langrock, R. (2016), Hidden Markov models for
time series: an introduction using R, Chapman and Hall/CRC.


	Introduction and Overview
	The Network of Commodity Risk
	Introduction
	Literature Review
	Model Specifications
	Sparse Gaussian Graphical Model 
	Empirical Results
	Data Description
	Backtesting Results
	The Network of Commodity Risks

	Conclusions
	Appendix
	A. Models Specifications
	B. Figures
	C. Tables


	Expectile Hidden Markov Regression Models for Analyzing Cryptocurrency Returns
	Introduction
	Expectile regression
	Methodology
	Likelihood inference

	Simulation study
	Empirical application
	Conclusions

	Expectile Copula-Based Hidden Markov Regression Models for the Analysis of the Cryptocurrency Market
	Introduction
	Preliminaries on quantile and expectile regressions
	Methodology
	Likelihood inference

	Simulation Studies
	Empirical Application
	Descriptive Statistics
	Main Results

	Conclusions


