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Abstract

Nowadays, the development of advanced information technologies has determined
an increase in the production of textual data. This inevitable growth accentu-
ates the need to advance in the identification of new methods and tools able to
efficiently analyse such kind of data. Against this background, unsupervised clas-
sification techniques can play a key role in this process since most of this data is
not classified. Document clustering, which is used for identifying a partition of
clusters in a corpus of documents, has proven to perform efficiently in the anal-
yses of textual documents and it has been extensively applied in different fields,
from topic modelling to information retrieval tasks. Recently, spectral clustering
methods have gained success in the field of text classification. These methods
have gained popularity due to their solid theoretical foundations which do not
require any specific assumption on the global structure of the data. However,
even though they prove to perform well in text classification problems, little has
been done in the field of clustering. Moreover, depending on the type of docu-
ments analysed, it might be often the case that textual documents do not contain
only information related to a single topic: indeed, there might be an overlap of
contents characterizing different knowledge domains. Consequently, documents
may contain information that is relevant to different areas of interest to some
degree.
The first part of this work critically analyses the main clustering algorithms used
for text data, involving also the mathematical representation of documents and
the pre-processing phase. Then, three novel fuzzy versions of spectral clustering
algorithms for text data are introduced. The first one exploits the use of fuzzy K-
medoids instead of K-means. The second one derives directly from the first one
but is used in combination with Kernel and Set Similarity (KS2M), which takes
into account the Jaccard index. Finally, in the third one, in order to enhance
the clustering performance, a new similarity measure S∗ is proposed. This last
one exploits the inherent sequential nature of text data by means of a weighted
combination between the Spectrum string kernel function and a measure of set
similarity.
The second part of the thesis focuses on spectral bi-clustering algorithms for text
mining tasks, which represent an interesting and partially unexplored field of re-
search. In particular, two novel versions of fuzzy spectral bi-clustering algorithms
are introduced. The two algorithms differ from each other for the approach fol-
lowed in the identification of the document and the word partitions. Indeed,
the first one follows a simultaneous approach while the second one a sequen-
tial approach. This difference leads also to a diversification in the choice of the
number of clusters. The adequacy of all the proposed fuzzy (bi-)clustering meth-
ods is evaluated by experiments performed on both real and benchmark data sets.
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Chapter 1

General introduction

The main pillar of this thesis relies on unsupervised classification algorithms for
document data sets based on fuzzy spectral clustering methods.

The first part of the thesis revolves around a novel fuzzy spectral clustering
algorithm, which exploits the employment of fuzzy K-medoids.
Though spectral clustering has many advantages, yet one of the drawbacks is that
the clustering results are based on a crisp assignment of the data points to the
corresponding clusters. In the field of document classification, this can lead to
unrealistic results since the documents with intermediate characteristics between
two or more clusters are forced to belong to exactly one cluster. We have solved
this problem by introducing a modified fuzzy spectral clustering algorithm, which
is based on two main steps. The first step is to build the Laplacian matrix of the
graph-based representation of the collection of documents. The second step is to
obtain clustering results by employing fuzzy K-medoids instead of the standard
K-means algorithm.

Initially, the new fuzzy spectral clustering algorithm is used in combination
with Kernel and Set Similarity (KS2M), which represents a known similarity
measure for text documents. This leads to the development of a second version
of fuzzy spectral clustering algorithm.
However, in order to improve the accuracy of the clustering results, a novel sim-
ilarity measure for text data, S∗, is also introduced.
The new proposed similarity measure relies on both overlapping coefficient, used
as a measure of set similarity, and string kernel function, used as a measure of
sequence similarity. Indeed, text data are characterized by an inherent sequential
nature that should be properly captured, since each document in the collection
can be seen as an ordered sequence of items.
The proposed metric is then used to build the matrix of input of the novel fuzzy
spectral clustering algorithm, giving rise to a third fuzzy spectral clustering al-
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gorithm.

The second part of the thesis focuses on spectral bi-clustering methods ap-
plied to text data, representing a great exploratory tool for highly complex data.
Bi-clustering algorithms are a branch of clustering techniques whose aim is to
identify clusters of data points that are related to subset of features and, on the
other hand, identifying clusters of features that share similar characteristics on
subsets of data points.
Against this background, two novel fuzzy spectral bi-clustering algorithms for text
data, resulting from an extension of Dhillon’s and Kluger’s state-of-art methods,
are introduced. The contribution of the new proposed methods consists in allow-
ing for an overlapping between word clusters and document clusters. Moreover,
the novel bi-clustering algorithms prove to improve the accuracy of the clustering
results compared to the corresponding crisp counterparts.
The main difference between the two proposed methods is in their implementa-
tion. The first method is based on a simultaneous approach to bi-clusters while
the second one follows a sequential approach.

The main contribution of this thesis consists in pursuing the goal to improve
the understanding and the interpretability of clustering results in the field of
unsupervised classification of document data sets. Our work can be seen as an
attempt to improve the classification of text documents through the employment
of a fuzzy approach to clustering/bi-clustering, resulting in a more realistic as-
signment of data points to clusters. Moreover, we also attempted to improve the
accuracy of the clustering results.

The remaining part of the thesis is organized as follows: in Chapter 2 the main
document clustering approaches available in literature, for each class of cluster-
ing algorithms (prototype-based, graph-based, hierarchical and model-based), are
analysed. In Chapter 3 the novel one-mode fuzzy spectral clustering algorithms
for document data sets, used in combination with, respectively, Kernel and Set
Similarity (KS2M) and S∗, are introduced and described. Chapter 4 analy-
ses the spectral bi-clustering setting and introduces the two novel fuzzy spectral
bi-clustering algorithms. Finally, conclusions and open problems come out in
Chapter 5.

Irene Cozzolino 2



Chapter 2

Literature overview on document
clustering techniques

In this chapter the main document clustering approaches for each class of clus-
tering algorithms (prototype-based, graph-based, hierarchical and model-based)
are analysed.
In Section 2.2, a critical review on the main steps of the document clustering
process is carried out: special attention is given to the mathematical represen-
tation of documents, taking into consideration the pre-processing phase and the
different term-weighting schemes used in the construction of the Vector Space
Model.
Then, in Section 2.3, the main characteristics of the most used clustering al-
gorithms for text data for every of the aforementioned categories are critically
analysed: spherical K-means for prototype-based methods, spectral clustering
for graph-based methods, divisive and agglomerative algorithms with different
criterion functions for hierarchical methods and GMM for model-based metho-
dos.
Furthermore, starting from the above proposals, more advanced methods are
considered. For further details refer to Cozzolino and Ferraro (2022).

2.1 Introduction

Text clustering consists in the application of cluster analysis to text data. Given
the high level of granularity in text data, clustering techniques prove to be very
useful in this field. In particular, document clustering refers to the application
of cluster analysis at document level and is used to partition a collection of text
documents into homogeneous groups according to their similarity.
It was at first used in information retrieval (IR) systems for enhancing the pre-
cision and recall (Van Rijsbergen, Harper, & Porter, 1981). Nowadays, due to
the increasing number of text data, document clustering is used for different ap-
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plications: document structuring (such as the organization of large electronic
archives or the classification of documents in taxonomies), topic extraction, web
mining and search optimization (in this setting, clustering methods are useful for
improving the performance of web browsers since the user sentences are initially
compared with the content of the clusters instead of the documents).

In document clustering each document in the collection (corpus) is converted
into a vector in a multidimensional space and clustering aims at identifying a par-
tition of documents based on the inherent structure of the newly-formed space.
More specifically, traditional document clustering algorithms rely on the bag-of-
word (BOW) representation, where the order of words within each document and
the order of files in the collection is not statistically significant. The main draw-
back of the BOW approach is that the semantic between words is not taken into
consideration: those terms that are semantically connected, such as hyper/hy-
ponyms or synonyms, are not taken into account. For instance, words such as
company, firm, and enterprise are considered different terms even though they
share approximately the same meaning and can be used indiscriminately within
a text.

In this setting, the identification of a measure to establish the similarity be-
tween two feature vectors plays a key role in document clustering techniques.
Several similarity and distance measures have been proposed in literature, exam-
ples include the Jaccard correlation coefficient, the Kullback-Leibler divergence
and the cosine similarity. The first one is a measure of similarity between two
sets and it is defined as the size of their intersection over the size of their union.
It is useful when the replication of the same word in two distinct documents does
not influence their similarity. The second one is used to compare two probabil-
ity distributions, P and Q, where the former one is considered to be the target
probability distribution. Kullback-Leibler divergence measures the expected loss
of information when using Q instead of P ; it refers to a probabilistic approach
to text mining. For P and Q being two discrete probability distributions defined
over the space X , the Kullback-Leibler divergence is defined as:

DKL(P ||Q) =
∑
x∈X

P (x) · ln
(
P (x)

Q(x)

)
. (2.1)

Finally, the last one is defined as the cosine of the angle formed by two vec-
tors and it is useful when the documents exhibit words written in the same way
but having different meanings (in this context the repetition of such a word can
halter the similarity between two documents). An overview of the most widely
used similarity measures is provided in Huang (2008).
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It worth emphasising that starting from a corpus and arriving to a partition
of documents does not consist in a single step. It involves numerous operations
that in general include pre-processing, document representation by means of nu-
merical vectors and clustering.
The very last step consists in applying cluster analysis to the mathematical repre-
sentation of documents. Algorithms for document clustering, where the semantic
is not considered, can be divided into partitional, graph-based, hierarchical and
model-based. A detailed description of these methods is provided.

Some detailed document clustering reviews are addressed in Shah and Ma-
hajan (2012) and Premalatha and Natarajan (2010) which consist of describing
the general document clustering process and its challenges, focusing mainly on
extensions of K-means applied in the context of document clustering and the
conventional hierarchical clustering algorithms. Furthermore, in addition to the
aforementioned works, Bisht and Paul (2013) analyse also the frequent itemset
based clustering approach which consists in a set of techniques that do not require
the Vector Space Model representation of the corpus.
In this work, we go beyond K-means and conventional hierarchical clustering, re-
viewing the most common document clustering methodologies while considering,
within a certain extent, the main classes of algorithms.
For semantic document clustering techniques refer to Fahad and Yafooz (2017)
for a detailed review.

It is worth noticing that, in this work, we decided to focus on unsupervised
classification techniques. However, there are also many supervised text catego-
rization proposals in literature (for a detailed survey on the main text classifica-
tion algorithms see, for instance, Aggarwal and Zhai (2012)).
In a supervised framework, Support Vector Machines (SVM) (Cortes and Vap-
nik (1995), Vapnik (1999)) have gained considerable attention due to their good
performance in text categorization tasks: for instance, in Joachims (1998) the
authors highlight both how SVM are able to capture the intrinsic structure of a
text (high dimensionality, sparsity, few irrelevant features) and also their robust-
ness, outperforming in this regard other existing methods.
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2.2 Document representation

Since most clustering methods require numerical features, it is necessary to trans-
form the corpus of documents into a mathematical object that can be passed as
input to clustering algorithms. The representation of a set of documents into
numerical attributes is called Vector Space Model (VSM) and will be analysed in
Section 2.2.2. Nevertheless, the construction of a VSM requires a pre-processing
step that takes place directly on the documents written in natural language. The
pre-processing phase aims at removing the noise from text data (e.g. the non-
meaningful terms) and hence reducing the dimensions of the feature-space.

2.2.1 Pre-processing

Pre-processing plays a key part in document clustering techniques since it is the
very first phase of the entire process. The main steps of pre-processing are: tok-
enization, filtering, pruning, stemming & lemmatization.

• Tokenization: This step separates each stream of text data into smaller
elements called tokens. Tokens can be of different dimensions: unigram,
bigram, . . . , n-gram. Word (n-gram) tokenization is the most commonly
used one, assuming the white-space as a delimiter. In Webster and Kit
(1992) a detailed description of tokenization as the very first step in text
mining applications is provided. The work focuses on the description of
the main approaches to tokenization which are, respectively, the lexicog-
raphy approach (with the consequent definition of what is considered to
be a token) and the mechanical approach employing, among the others,
dictionary-based techniques. Furthermore, insights on how to identify com-
pounds tokens in English and how to handle the ambiguity of terms are
also provided. Finally, it also discusses on the complexity of tokenization
in languages such as Chinese characterized by the absence of words.

• Filtering: In this step special characters, punctuation marks and stop-
words are removed. Stopwords are those words which do not convey any
semantic meaning to the comprehension of the documents, such as pro-
nouns, conjunctions, articles or adverbs. Each language has its specific list
of stopwords. Removing stopwords has the effect to reduce the dimension
of the term-space. The standard method for stopword removal consists in
comparing each single term appearing in the corpus with a sequence of al-
ready recognized stopwords (Jivani et al., 2011). In addition to the classic
stop list, it is possible also to use supervised-learning approaches to perform
automatic feature selection, such as the Mutual Information (MI) (Shannon

Irene Cozzolino 6



2.2. Document representation

(2001), Cover (1999)) method. Indeed, this method is based on calculating
the mutual information between a specific word and a document category
(e.g., positive, negative). Mutual information between two random vari-
ables calculates the amount of information the first variable shares with
the other one; it is interpreted as the reduction of uncertainty of one ran-
dom variable given the other. The intuition behind this approach consists
in comparing the joint probability of observing the term and the category
with the probabilities to observe the category and the term independently.
In other words, MI quantifies the amount of information the term provides
about a given class. If the MI value is low, then the term is characterized
by a low discriminating strength and consequently it can be deleted from
the collection (Jivani et al., 2011; Sharma & Cse, 2012). Another more re-
cent approach is the so-called Term Based Random Sampling (TBRS) (Lo,
He, & Ounis, 2005), based on the Kullback-Leibler divergence to assess the
importance of each word. The collection is randomly divided into different
subsets of documents. Each term is randomly selected from each chunk
and its informative power is evaluated through the Kullback-Leibler diver-
gence. The idea behind this approach consists in measuring the divergence
of the distribution of a given term in the collection from the distribution of
the same term within the sampled set of documents. Indeed, the objective
is to find the terms that better complement the initially chosen subset of
documents according to their overall distribution in the collection. As for
the previous method, it is possible to automatically derive a suitable list of
stopwords containing the least informative terms.

• Pruning: It is the process of removing those words having a very low
or very high number of occurrences in the corpus. In this regard, it is
common to employ a specific threshold that should be appropriately iden-
tified. In other words, it consists in deleting those stopwords specific of
the considered corpus according to their frequencies: indeed, those terms
characterized by very high frequencies are considered to be too common,
while those with very low frequencies are too rare. For this purpose, it is
necessary to properly identify an upper and a lower threshold. An applica-
tion of this technique has been performed by Lenz and Winker (2020), by
removing from the collection all the words that appeared in more than 65%
and less than 0.05% of documents. In many cases, the thresholds should
be determined empirically, namely until all corpus-specific stopwords are
removed.

• Stemming & Lemmatization: Stemming (see, e.g., Krovetz, 2000) refers
to the approach used to identify the root of each word by removing suffixes
and prefixes. Porter stemming algorithm (Porter, 1980, 2001), is one of
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the most famous stemming technique used for text mining applications.
Lemmatization (see, e.g., Korenius, Laurikkala, Järvelin, & Juhola, 2004
and Balakrishnan & Lloyd-Yemoh, 2014) is a more complex approach: it
consists in finding the base/dictionary form (lemma) of each word in the
document. In order to identify the lemma is first necessary to establish the
corresponding part of speech of the term. For this purpose, lemmatization
algorithms usually rely on external dictionaries.

For a detailed review on pre-processing techniques for text mining applications
see Vijayarani, Ilamathi, Nithya, et al. (2015).

2.2.2 Vector Space Model

Vector Space Model (VSM) is the statistical model used to determine the rele-
vance between the documents in the collection and the words within each docu-
ment. In the VSM, initially proposed by Salton (Salton, 1971), the documents
are encoded by a set of multidimensional features spanned by the term vectors
representing the vocabulary (obtained as the remaining list of unique words after
performing the pre-processing). Thus, under the VSM a corpus of N documents
with T unique terms is converted into an N × T matrix, where each single file
in the collection is represented as a T -dimensional features vector. The N × T

matrix is also known as Document Term Matrix, expressed in symbols as DTM.
Sometimes, even if more rarely, the transposed of the DTM, the Term Document
Matrix, is also considered as the mathematical representation of the collection.
In the remaining part of the work we consider as VSM the DTM.

Each entry of the DTM represents an individual term weight associated to
the corresponding document. Many term weighting schemes have been proposed
in literature. One well known method is the binary weighting scheme, where each
entry of the DTM can assume only the values 1 or 0 representing, respectively, the
presence and the absence of a word in the current document. Another commonly
used weighting scheme relies on word frequencies (TF weighting scheme), counting
the terms occurrences within each document. Among the competitors, the most
popularly used one is the Term Frequency - Inverse Document Frequency (TF-
IDF) weighting scheme (Salton & McGill, 1983): if a word of the vocabulary
appears with a high frequency in the current document, but rarely in the whole
corpus, then the TF-IDF scheme assigns a high weight to the term. The words
characterized by a high TF-IDF score are highly informative and can be useful
in discriminating between the documents in the overall collection.
Considering a set of N documents with a T -sized vocabulary, the TF-IDF statistic
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for the i-th document and the j-th term is calculated as follows:

wij = tfij × log

(
N

dfj

)
i = 1, . . . , N j = 1, . . . , T, (2.2)

where tfij represents the relative frequency of term j in document i; dfj is the
number of documents containing the j-th word and N is the size of the corpus.

As reported in Salton and Buckley (1988), many variants of the TF-IDF
measure have been proposed: depending on the type of data set used, they can
return better results respect to TF-IDF.
A common extension of the TF-IDF measure consists in scaling sub-linearly the
term frequency factor as log(tfij +1), in order to reduce the importance given to
frequent terms by flattening the weight. As highlighted in Nguyen (2013), this
proves to be beneficial when the term frequencies follow a power law with respect
to the rank.
Okapi BM25 (Robertson & Zaragoza, 2009), more commonly known as BM25,
is also a standard term weighting methodology used to establish the importance
of a given term within the current document. The BM25 formula for a term
weight is itself based on the TF-IDF measure but with variations in the way the
components are calculated. The weight in the BM25 scheme for the j-th term
and the i-th document is calculated as follows:

wij = IDFj ×
tfij × (k1 + 1)

tfij + k1 × (1− b+ b× |di|
avgLen

)
, (2.3)

IDFj = ln

(
N − dfj + 0.5

dfj + 0.5
+ 1

)
, (2.4)

where IDFj is the inverse document frequency of the j-th term in the vocabu-
lary; |di| is the length of document i; avgLen is the average document length in
the collection. Then, k1 and b are two free parameters that should be properly
chosen. Following Manning, Raghavan, and Schutze (2008), k1 is a non-negative
parameter that controls the scaling of the TF component. If k1 = 0, it returns
the IDFj; on the contrary, for high values of k1, it returns the standard term fre-
quencies (occurrences of the term in each document). The parameter b controls
the scaling of the length of the documents and it varies in the interval [0, 1]; when
it assumes a value equals to 0, then no normalization is performed.

In classification problems, where a train-test split of the data is carried out,
k1 and b should ideally be selected so to optimize the performance of the scheme
on the test set. For this reason it is recommended to use optimization techniques.
However, as reported in Manning et al. (2008), reasonable results have been ob-
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tained by setting k1 ∈ [1.2, 2] and b = 0.75 in practical applications.

A detailed review of different term weighting schemes is provided in Lan, Tan,
Su, and Lu (2008), where the authors have investigated the effectiveness of differ-
ent supervised and unsupervised weighting schemes on two popular benchmark
data corpus.

Other approaches consist in using as feature selection measures the following
metrics: χ2 (multiply tfij by a χ2 function), information gain (multiply tfij by
an information function), gain ratio (multiply tfij by a gain ratio), odds ratio
(multiply tfij by an odds ratio) (Jones, 1972; Robertson, 2004).

2.3 Document clustering methods

The document clustering problem consists in partitioning the corpus of N docu-
ments, C = {d1,d2, . . . ,dN} into K clusters; each di ∈ RT is an attribute vector
in a T -dimensional space. The final objective of document clustering is to iden-
tify a small number K of homogeneous groups (clusters) by means of a certain
dissimilarity measure calculated on the T observed features.
Clustering techniques are classified into two main approaches: hard and soft clus-
tering.

Hard (crisp) clustering methods are characterized by computing the allocation
of a document to a cluster: in other words, each document is forced to belong
to only one cluster. This approach returns as output a partition of disjoint groups.

From a practical perspective, there exist documents that cannot be uniquely
assigned to only one cluster since they show in-between characteristics among
groups. The soft approach tries to solve this issue by calculating, for each docu-
ment, a membership degree ranging in the interval [0, 1], representing a measure
of belonging to each cluster of the partition. Hence, each observation can be
assigned to more clusters at the same time. Soft clustering methods divide into
fuzzy, possibilistic and probabilistic.
For a more detailed review on soft clustering methods see Ferraro and Giordani
(2020).

There are different types of clustering algorithms: prototype-based, graph-
based, hierarchical and model-based.
Prototype-based algorithms identify a prototype for each group, and the obser-
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vations are grouped around the prototypes. Within the most famous and exten-
sively used prototype-based methods (crisp and soft, respectively) fall K-means
(MacQueen, 1967) and Fuzzy K-Means (FKM) (Bezdek, 1981).
Despite K-means is considered one of the first 10 data mining algorithms (Wu et
al., 2008), it is not excused from drawbacks. One of its main limitation consists
in setting properly the initial prototypes since the method is sensible to the ini-
tialization phase (usually the centres are chosen uniformly at random from the
data; consequently it is recommended to run the algorithm multiple times with
different random seeds) and it may converge to non-optimum solution. Among
the competitors, this problem has been addressed by Arthur and Vassilvitskii
(2006), proposing a simple and fast alternative algorithm known as K-means
++. The method consists in randomly choosing the seeds but in such a way that
the data are progressively weighted according to their squared distance from the
closest center already chosen. Other attempts in this direction have been made by
Nazeer and Sebastian (2009). Their algorithm consists in initially calculate the
distance between each pair of data, then the first cluster is formed by considering
the closest two data points. Successively, the other closest data points are added
to the newly formed cluster until a certain threshold is reached. All the data
points belonging to the first cluster are deleted from the initial set; the process
continues until forming K initial clusters. The seeds are generated by averaging
over all the vectors in each cluster. Babu and Murty (1993) propose a hybrid
approach that consists in combining the genetic algorithms, for the initial seeds
selection, and K-means. For a detailed review see Jain, Murty, and Flynn (1999).

Graph-based algorithms treat observations as nodes of a graph, and the dis-
tance between the two data points is used to weight the edge linking the two
nodes. Hence, observations can be visualized as a graph and a connected sub-
graph identifies a cluster. Spectral clustering methods (A. Y. Ng, Jordan, &
Weiss, 2002) are representative of graph-based class. These methods rely on the
use of an affinity matrix, determining a connection between kernel methods and
spectral clustering (see Dhillon, Guan, and Kulis (2004) for a discussion on the
relationship between kernel methods and spectral clustering). Some of the most
common kernel functions are: Gaussian and Fisher kernels, radial basis function
kernel and polynomial kernel. In Section 2.3.2 specific kernel functions, used to
define affinities between documents, are briefly analysed.

Hierarchical algorithms aim at identifying a hierarchical set of partitions. The
graphical representation of hierarchies can be visualized taking advantage of spe-
cific tree-like structures by means of the so-called dendograms. A representative
algorithm for this category is the Agglomerative hierarchical clustering (AHC)
(Tan, Steinbach, & Kumar, 2006). For an exhaustive review of hierarchical meth-
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ods see Rencher (2005).

Finally, model-based clustering algorithms are based on the assumption that
the data follow a mixture of parametric probability models (mixture components).
These methods calculate the posterior probability that each object belongs to
one of the mixture components. In this framework, the most common one is
the Gaussian mixture model (Fraley & Raftery, 1998). Successively, several ex-
tensions employing other probability distributions have been developed. For a
more detailed review on the model-based approach refer to McLachlan, Lee, and
Rathnayake (2019).

In the following sections the main clustering approaches for text data, for each
of the aforementioned categories, are described.

2.3.1 Prototype-based methods

Compared to other competitors, such as hierarchical methods, prototype-based
techniques are usually more suitable for large document data sets since the fi-
nal results are more easily interpretable. However, these methods present the
drawback to properly select the input parameters; among the others, the most
important is the one representing the number of clusters in the partition, K. A
non-suitable choice of this parameter might determine a poor accuracy.

The Euclidean distance is commonly adopted for many prototype-based clus-
tering algorithms, including K-means. However, it is not suitable for text data
since long documents, characterized by high term weights, are over-represented
(Hornik, Feinerer, Kober, & Buchta, 2012). To weaken the consequences arising
from different document lengths, Dhillon and Modha (2001) suggest to employ
the cosine distance rather than the Euclidean one, coming up with the spherical
K-means clustering algorithm.

The cosine distance between two generic vectors, x and y, is expressed as
follows:

d(x,y) = 1− cos(x,y) = 1− ⟨x,y⟩
||x||||y||

,

where cos(x,y) is the corresponding cosine similarity, quantified as the cosine of
the angle formed by the two vectors.

Within this framework it is worth noticing that the cosine similarity is widely
applied in document clustering and it returns better results compared to the ex-
isting competitors (e.g. Euclidean distance). For instance in Zhao and Karypis
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(2004), the authors study several objective functions for prototype-based docu-
ment clustering over 15 different data sets, finding as optimal criterion functions
the ones based on the cosine distance.

Spherical K-means is directly applied on the VSM representation of the col-
lection. It consists in partitioning the N documents into K distinctive groups by
minimizing the loss function Φ(U,H):

Φ(U,H) =
N∑
i=1

K∑
g=1

uig(1− cos(di,hg)), (2.5)

over all binary allocation matrix U and prototype matrix H.
The generic entry of U, uig, denotes the assignment of object i to cluster g such
that

∑K
g=1 uig = 1 for all i:

uig =

1 if i is allocated to cluster g,

0 otherwise.
(2.6)

Φ(U,H) is minimized if and only if

hg =
N∑
i=1

uig
di

||di||
. (2.7)

A fuzzy extension of the objective function for spherical K-means can be easily
set up by employing the membership degree matrix instead of the allocation one.
Against this framework, each membership degree, uig, takes value in the interval
[0, 1] allowing the observations to be assigned to multiple clusters simultaneously.
In Equation (2.5) uig is replaced by um

ig , for m > 1, which is the fuzziness param-
eter, usually chosen in the interval [1.5, 2] (Pal & Bezdek, 1995).

In document clustering the feature vectors are usually highly sparse. Spher-
ical K-means, through the employment of the cosine distance, can adequately
capture the sparsity of the input data but the computational time of the algo-
rithm increases as the parameter K assumes higher values. Recently, Knittel,
Koch, and Ertl (2021) develop an extension of spherical K-means improving the
scalability of the algorithm with respect to the parameter K by introducing a new
indexing structure. The method proves to be faster than the standard version
when considering sparse input vectors.

There are other common prototype-based document clustering techniques de-
rived directly from K-means. For instance, Krishna and Murty (1999) presented
Genetic K-means Algorithm (GKA) for clustering textual documents by identi-
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fying a globally optimal partition. It consists in the hybridization of K-means
with genetic algorithms, which are stochastic optimization algorithms.
Other commonly used methods rely on the Particle Swarm Optimization (PSO)
algorithm (Eberhart & Kennedy, 1995) based, as the name suggests, on a stochas-
tic optimization technique used to improve the problem of the initialization. In
Cui, Potok, and Palathingal (2005) a new document clustering algorithm relying
on PSO is discussed. It aims at discovering valuable centroids in order to minimize
within-cluster distance and maximize between-cluster distance. Differently from
the K-means algorithm (which is able to identify a localized optimal solution),
the PSO clustering algorithm carries out the search in the whole global space,
avoiding the possibility of finding sub-optimal solutions. The authors tested the
validity of their approach by applying K-means, PSO and hybrid PSO on several
textual data sets. The experiments highlight that more compact clustering results
are generated by means of the hybrid PSO algorithm rather than the K-means.

2.3.2 Graph-based methods

Graph partitioning methods convert the data clustering problem into a graph
partitioning problem (Ding, He, Zha, Gu, & Simon, 2001). In this regard, spec-
tral methods (i.e., the methods relying on the eigenvalues decomposition of the
graph matrix) are commonly used to identify the partition of the graph (Guattery
& Miller, 1994).
Concerning clustering techniques, spectral clustering algorithm has been exten-
sively used when analysing text data: for instance, an extension of this method-
ology is addressed in Janani and Vijayarani (2019) where the authors propose a
novel spectral clustering algorithm with PSO (called Spectral Clustering PSO), in
order to deal with the problem of high dimensionality and with the sub-optimal
solutions that might be induced by K-means since its dependence on the ini-
tialization phase; in Kumar and Daumé (2011) spectral clustering is proposed in
combination with co-training algorithm in order to manage the multi-views of the
corpus coming from different sources; also, the work by Bao, Tang, Li, Zhang, and
Ye (2008) describes a novel negative matrix factorization to the affinity matrix
for document clustering.
This class of methods arises its popularity also because of its flexibility, which
allows to identify clusters independently of their shape.

Starting from the initial data set, the basic idea behind spectral clustering
methods consists in building a weighted graph: the nodes of the graph represent
the documents in the collection, while each edge is weighted with the similarity
between the linked nodes.
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In particular, the clustering procedure consists in splitting the graph in a given
number of clusters so that nodes highly connected belong to the same group.

Spectral clustering relies on the eigen-decomposition of the Laplacian matrix,
L:

L = D − S, (2.8)

where S identifies the adjacency matrix and D the degree matrix, which is a diag-
onal matrix of dimensions N×N with the degrees of the nodes along the diagonal.
It is common to consider the normalized version of the Laplacian matrix:

Lnorm = D− 1
1LD− 1

2 = IN − D− 1
1SD− 1

2 . (2.9)

Given the number of clusters, K, spectral clustering consists in applying the
K-means clustering algorithm on the first K eigenvectors of the normalized Lapla-
cian matrix (the eigenvectors are commonly normalized before running the K-
means).
Hence, the main idea consists in finding a low-dimensional embedding by eigen-
decomposition where data are separated and can be easily clustered.

The key point in spectral clustering algorithms is the identification of an ap-
propriate similarity measure in order to properly describe the structure of the
data. In the document clustering domain, string kernel functions (Lodhi, Saun-
ders, Shawe-Taylor, Cristianini, & Watkins, 2002) are usually adopted as similar-
ity measures.

In this regard, string kernel functions quantify the entity of the similarity be-
tween documents by counting the number of matching substrings the documents
have in common.
Formally, a substring is defined to be a sequence of l characters appearing one
after the other in the text, even though not necessarily contiguously. Consider,
for instance, the following 3 words: “car”, “air” and “arctic”. The only matching
substring of length 2 shared by the three words is the sequence “a-r”. As it is
possible to notice, in the second word the two letters are not contiguous.

Generically, a string kernel function between two documents, di and dq, is
given by:

k(di,dq) =
∑
γ∈A∗

numγ(di)numγ(dq)λγ, (2.10)

where A∗ is the set of all strings of length l, num counts how many times the
substrings in A∗ appear in the documents di and dq, and λγ is a decay factor
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associated to γ representing the weight of each matching substring in the text.
The decay factor can assume different values or it can be held constant for all the
matching substrings.
Different string kernels can be found in literature: Spectrum kernel, Exponential
kernel and Boundrange kernel are some of the most commonly used functions.
The first one considers only those matching substrings composed by exactly l

characters. In this case, a constant value of the decay factor, λ, is used for each
matching substring. The Exponential kernel, also known as Exponential Decay
kernel, is characterized by the reduction of the decay-factor when the matching
substrings get shorter. Finally, Boundrange kernel takes into consideration only
matching substrings whose length is lower or equal to l and, depending on their
sizes, it attributes to each substring a different weight.
A detailed presentation of string kernel functions can be found in Lodhi et al.
(2002) and Karatzoglou and Feinerer (2007).

Some of the drawbacks of spectral clustering consist in the selection of an ad-
equate similarity measure and the computational time which increases with the
complexity of the graph.

2.3.3 Hierarchical methods

Divisive and agglomerative clustering algorithms can also be applied for text doc-
uments classification.
The former one performs successive bisections on the clusters following an itera-
tive approach (Steinbach, Karypis, & Kumar, 2000): all the documents initially
belong to a single cluster, then the approach proceeds by performing further
subsequent bisections according to a certain objective function. The process con-
tinues until having N single clusters, each containing a single document.
In the agglomerative case, each observation initially represents a cluster (single-
ton). Then, the distance matrix (according to the employed metric) between all
the singletons is build: those observations having the lowest value of the consid-
ered distance measure are merged together into a cluster. After, a new distance
matrix is constructed considering all the pairwise distances between the single-
tons together with the newly formed cluster. This process continues until only
one cluster containing all the observations is obtained (Sneath & Sokal, 1973).
A detailed review on hierarchical methods for text data is present in Zhao,
Karypis, and Fayyad (2005).

With respect to divisive methods, in the study proposed by Zhao and Karypis
(2004) some of the most commonly used objective functions for divisive document
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clustering are analysed.
For instance, the I1 criterion function maximizes the sum of the average of the
pairwise cosine similarities calculated between the documents belonging to the
same group, each one weighted with its corresponding size (Puzicha, Hofmann,
& Buhmann, 2000). It is expressed as follows:

I1 =
K∑
g=1

ng

 1

n2
g

∑
di,dq∈Cg

cos (di,dq)

 , (2.11)

where Cg represents the g-th cluster of dimension ng.

On the contrary, the E1 criterion function executes the clustering by minimiz-
ing the cosine similarity between the centroid of each group and the centroid of
the overall collection (Hart, Stork, & Duda, 2000):

E1 =
K∑
g=1

ng cos (hg,h) . (2.12)

The vector h represents the centroid of the corpus and it is expressed as h =∑N
i=1 di

N
.

Another criterion function, H1, is obtained as ratio of I1 and E1.

With reference to agglomerative algorithms, several approaches for computing
the similarity between two groups have been developed. The most common ones
for text data refer to the well-known single-linkage, complete-linkage and average-
linkage schemes where the Euclidean distance is replaced by the cosine one.
The first quantifies the level of similarity of two generic clusters by calculating
the maximum of the cosine distance, cosdist, between the documents for each of
the two clusters

Φsingle.link(Cg, Cf ) = max
di∈Cg ,dq∈Cf

cosdist (di,dq) . (2.13)

On the contrary, the complete-linkage scheme selects the minimum between
all the pairwise cosine distances calculated between all the documents in the two
considered clusters

Φcomplete.link(Cg, Cf ) = min
di∈Cg ,dq∈Cf

cosdist (di,dq) . (2.14)

Finally, the average-linkage scheme calculates the average of the pairwise co-
sine distances between all the observations in the two clusters.

Φaverage.link(Cg, Cf ) =
1

ng · nf

∑
di∈Cg ,dq∈Cf

cosdist (di,dq) . (2.15)
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It worth noticing that the construction of the dendogram would be prohibitive
for large document data sets, making these methods not suitable for analysing
large collection of documents, despite their relatively ease of implementation, that
do not require the knowledge of further input parameters.

2.3.4 Model-based methods

Model-based clustering methods rely on the assumption that the population is
composed by a mixture of different sub-populations, each one following a cer-
tain probability distribution. Hence, a crucial point consists in identifying a
mixture model that can well describe the structure of text data (sparsity, high-
dimensionality). Once identified, the parameters of the model are usually esti-
mated through the Expectation–Maximization (EM) algorithm (Dempster, Laird,
& Rubin, 1977), whose convergence is influenced by the initialization phase and
there is no guarantee that a global optimum solution is reached. Moreover, as for
prototype-based methods, it is necessary to select a priori an appropriate value
for the number of mixture components K so to increase the clustering accuracy.
However, model-based methods can be more representative of real case studies
compared to other competitors: indeed, every document is associated with the
posterior probabilities to belong to each of the K clusters, identifying automati-
cally a soft partition.

The conditional marginal distribution of the mixture model is given by:

f(di,Ψ) =
K∑
g=1

πgfg(di|θg), (2.16)

where Ψ = (π1, . . . , πK , θ1, . . . , θK) denotes the global vector of unknown param-
eters and fg(di|θg) are the component densities.
The parameter π = {π1, . . . , πg, . . . , πK} represents the vector of prior prob-
abilities for each mixture component (such that πg > 0 ∀g = 1, . . . , K and∑K

g=1 πg = 1).
In clustering problems, the separation between clusters and the homogeneity
within clusters are commonly guaranteed by taking the component densities to
belong to the same parametric family fg(·|θg) = f(·|θg). The estimate of param-
eters is performed using the maximum likelihood approach. Since a closed-form
solution is not available, the EM is adopted.

Once reached the convergence of the EM algorithm, it is possible to iden-
tify a soft partition of the documents by inspecting the posterior probabilities.
The corresponding hard partition can be obtained by assigning each observation
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to the corresponding cluster characterized by the highest posterior probability
(maximum a posteriori rule, McLachlan et al., 2019):

π(g|di) =
πgf(di|θg)∑K
l=1 πlf(di|θl)

∀g = 1, . . . , K ∀i = 1, . . . , N. (2.17)

Also for text data, the most used model-based clustering method is the Gaus-
sian Mixture Model (GMM) (Fraley & Raftery, 2002), where each density com-
ponent follows a multivariate Gaussian distribution.

Roweis and Saul (2000) and Belkin and Niyogi (2001) have shown that image
and text data are generated from a probability distribution lying on a submani-
fold, having lower dimensions, of the sorrounding space. Against this background,
He, Cai, Shao, Bao, and Han (2010) and J. Liu, Cai, and He (2010) proposed
to add, when analyzing the likelihood function of GMM, a Laplacian regularizer
(Belkin, Niyogi, & Sindhwani, 2006) in order to model the underlying submanifold
structure. The manifold is modelled by including in the likelihood function the
structure of the graph through the nearest neighbor graph representation. Based
on this idea, Laplacian regularized Gaussian mixture model (LapGMM) (He et
al., 2010) and Locally consistent Gaussian mixture model (LCGMM) (J. Liu et
al., 2010) have been introduced, improving the performance of GMM on text
data.
In Nigam, McCallum, Thrun, and Mitchell (2000) a new algorithm based on the
interaction between the EM and the naive Bayes classifier is proposed, considering
both labelled and unlabelled documents. Another example of application of GMM
for document clustering can be found in Lenz and Winker (2020), where the au-
thors measure the spread of innovations, as reported in newspapers and journals,
by introducing a new topic modelling algorithm: Paragraph Vector Topic Model
(PVTM). PVTM employs DOC2VEC (Le & Mikolov, 2014), a text embedding
technique that projects the collection of documents into a new semantic space
where useful relationships between documents may be uncovered. Clustering via
GMM is then applied in the new latent semantic space; successively clusters are
interpreted and transformed into meaningful topics.

2.4 Concluding remarks

Most of the document clustering algorithms have been analyzed in this first chap-
ter. We have examined the main approaches for each class of clustering algo-
rithms: prototype-based, graph-based, hierarchical and model-based. First, a
critical review on the main steps of the document clustering process has been
carried out: special attention is given to the mathematical representation of doc-
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uments, taking into consideration the pre-processing phase, and the different
term-weighting schemes used in the construction of the VSM.
We have discussed the main characteristics of the most used clustering algorithms
for text data for every of the aforementioned categories: spherical K-means for
prototype-based methods, spectral clustering in combination with string kernel
functions for graph-based methods, divisive and agglomerative algorithms with
different criterion functions for hierarchical methods and GMM for model-based
methods. Furthermore, starting from the above proposals, we have also consid-
ered more advanced methods such as, for instance, the ones based on GA and
PSO.
Given the increasing amount of text data, document clustering methodologies
became an essential tool in statistical analysis: exploring the latest works would
provide a valuable direction for research in text clustering.
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Chapter 3

A novel fuzzy spectral clustering
approach for text data

The aim of the work described in this chapter consists in introducing new methods
for unsupervised classification of document data sets based on spectral cluster-
ing.
More specifically, a novel fuzzy spectral clustering algorithm is presented (see,
also, Cozzolino, Ferraro, and Winker (2021)). The new method is used in com-
bination with Spectrum string kernel function and Kernel and Set Similarity
(KS2M), resulting in two novel fuzzy spectral clustering algorithms for text data.
However, in order to overcome their drawbacks, a (third) novel fuzzy spectral clus-
tering algorithm is also introduced.
Indeed, given the inherent sequential nature of text data, the proposed algorithm
is characterized by the employment of a novel similarity measure, which is also
described in this chapter.
The new metric exploits the ordered position of the characters within the text
(represented as an ordered sequence of items), as well as the overall similarities
between the documents in the whole corpus. The proposed similarity measure
is used for the construction of the Laplacian matrix, which corresponds to the
object of input for the new document clustering algorithm.
The validity of the proposed approaches has been tested on both benchmark and
real data sets.

3.1 Introduction

Following the direction already outlined in Chapter 2, clustering techniques are
usually directly applied to the VSM representation of the corpus.
As previously introduced, among the different clustering methods applied to the
VSM, K-means (MacQueen, 1967) is probably the most popular one. Another
widely used clustering algorithm for document data sets is the Hyper-Spherical
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K-means (Rodrigues & Sacks, 2004), where the cosine distance, rather than the
Euclidean one, is employed to better represent the structure of the data.

Despite the VSM is commonly used to represent the corpus in the field of
document clustering, it has some drawbacks; the most important ones follow.

• The curse of dimensionality problem.
Each document is composed by many words and in the document vec-
tor representation each word is considered as a dimension. Against this
background, for large data collection, clustering algorithms can not always
manage the dimensional space efficiently (differently from what happens in
small data sets).
Another related issue is represented by the scalability: indeed, many clus-
tering techniques perform well on small data sets but are inefficient when
dealing with large collection of data.

• The selection of an adequate term-weighting scheme is another drawback in
document clustering techniques, as it has already been discussed in Chapter
2.

• The selection of adequate coefficients.
In this context, three main classes of coefficients might be taken in con-
sideration: distance coefficients, association coefficients and probabilistic
coefficients.

1. Distance coefficients: Euclidean distance, for instance, has been used
very extensively in cluster analysis. However, one of its main limits
when analysing text data concerns the fact that it can lead to consider
two documents to be highly similar even if they do not have common
words.

2. Association coefficients: these coefficients take into consideration the
number of terms shared by each different pair of documents. Conse-
quently, normalization becomes an essential element to handle docu-
ments of different sizes.

3. Probabilistic coefficients: the idea behind the use of these coefficients
for the identification of clusters is that the documents in each cluster
are characterized by a high probability of being jointly relevant to a
query.
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The employment of string kernel functions (Lodhi et al., 2002) can be seen as
an alternative form of "quantification" of the texts.
String kernels have been initially employed in text classification together with
Support Vector Machines.

In this regard, among the different competitors, graph-based methods com-
bined with string kernel functions have attracted special consideration in text
classification, proving to perform well on text data. However, as far as we are
concerned, very little has been done in the field of unsupervised classification of
document data sets.
The study of Karatzoglou and Feinerer (2007) represents one of the main works
in this field, where the authors compare the standard K-means and spectral
clustering on benchmark text data sets, showing how spectral clustering method
outperforms the former one in terms of recall rate.

However, it is worth noticing that despite the effectiveness of spectral clus-
tering together with string kernels on the categorization of documents, the works
available in literature consider mainly the crisp (hard) approach to clustering,
with the risk to be unrealistic when analysing true data sets characterized by
documents sharing similar characteristics.
Moreover, when employing spectral clustering algorithms, it is fundamental to
select an adequate similarity measure that can properly describe the structure
of the data points. Given the particular sequential nature of text documents, it
becomes necessary to further investigate on this point in order to improve the
clustering results.

These considerations motivate us to introduce a novel fuzzy spectral clustering
algorithm for text data: contrary to the crisp approach, where each observation
(document) can be assigned to only one cluster, the fuzzy approach proves to
easily identify important relationships between documents since each observation
can be assigned to more than one cluster simultaneously. The proposed fuzzy
extension is used in different settings: with the Spectrum string kernel function
and with Kernel and Set Similarity (KS2M), already available in literature.
Furthermore, the proposed algorithm is used in combination with a novel simi-
larity measure, S∗, which is able to better uncover both the sequential and non-
sequential essence of text data, returning encouraging results.

Irene Cozzolino 23



3.2. Spectral clustering and kernels for text sequences

3.2 Spectral clustering and kernels for text se-
quences

An introduction of the most important concepts behind spectral clustering and
string kernel functions is discussed in this section.

3.2.1 Spectral clustering

According to the work of Von Luxburg (2007), spectral clustering methods have
their foundation in spectral graphs theory. Within this framework, the main idea
consists in building a graph from the sample of observations so that every data
point is represented by a node and the edges connecting the nodes quantify the
level of similarity between the considered observations. In other words, if the
only form of information available is provided by the level of similarity between
data points, the starting point for representing the data consists in building a
similarity graph G = (V,E), such that V is a finite non empty set and E is a
binary correspondence on V . The symbol V represents the so-called vertex set of
the graph and its members are the vertices. The symbol E identifies the edge set
of the graph and its components are the edges.

Let consider N observations identified by the vectors (x1, . . . ,xN) in RT . Each
vertex vi in the graph represents a data point xi.
Then, the pairwise similarities between data points, siq = s(xi,xq) for i ̸= q =

1, . . . , N are calculated by some function, s, which is non-negative and symmet-
ric. The associated similarity matrix is denoted by S = [siq]i,q=1,...,N .
If the similarity siq, with i ̸= q for i = 1, . . . , N , is positive or larger than a cer-
tain threshold, the corresponding vertices vi and vq are connected and the edge
is weighted by siq.

Against this background, the clustering process consists in identifying a par-
tition of the aforementioned graph by recognizing the existence of sub-graphs
containing sets of observations characterized by a high level of similarity. In
other words, the aim consists in finding a partition of the graph characterized by
the fact that the edges connecting different groups are associated to low weights
(meaning that the data points assigned to different clusters are dissimilar from
each other). On the contrary, the edges connecting endpoints in the same group
should be associated to high weights (meaning that the data points in the same
cluster are similar to each other). In order to formalize these concepts, some basic
graph notation is introduced.
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Notation used for the graphs

The notation G = (V,E) identifies an undirected graph characterized by the
vertex set V = {v1, ..., vN}. Let assume that G is a weighted undirected graph,
meaning that associated to each edge connecting two vertices vi and vq there is a
non-negative weight denoted as ωiq = siq. The corresponding weighted adjacency
matrix is given by Ω = S = [siq]i,q=1,...,N . If ωiq = 0, then vi and vq do not have an
edge in common. From the definition of undirected graph follows that ωiq = ωqi.

The degree δi of a vertex vi is defined as the sum of all the similarity values
to all nodes in the graph, i.e:

δi =
N∑
q=1

ωiq. (3.1)

D is known as degree matrix : it is a diagonal matrix whose elements on the
diagonal, δ1, . . . , δN , are the degrees of each node.

The complement of a given set of vertices, A ⊂ V , is denoted as A. The
symbol 1A = (f1, . . . , fN)

′ identifies whether or not a vertex belongs to A: fi = 1

if vi ∈ A and fi = 0 otherwise.
Given two subsets of vertices, A and B, the corresponding "part" of the weighted
adjacency matrix is given by:

Ω(A,B) =
∑

i∈A;q∈B

ωiq. (3.2)

To conclude, the sets A1, . . . , AK identify a partition of the graph if the two
following conditions are satisfied: A1∪· · ·∪AK = V and Ag1∩Ag2 = ∅ for g1 ̸= g2

and g1, g2 = 1, . . . , K.

Weighted graphs: the different versions available in literature

Starting from a given a set of data points x1, . . . ,xN with pairwise similarities
siq, i ̸= q for i = 1, . . . , N , there are three main ways to build a weighted graph.
Indeed, the key point consists in choosing how to measure the relationships be-
tween data points. A description of the main weighted graphs follows.

1. The ε-neighborhood graph: for this kind of graph, instead of the pair-
wise similarities between data points, the pairwise distances are taken into
consideration. In particular, the data points whose pairwise distances are
smaller than a certain threshold, denoted as ε, are connected. For this spe-
cific graph, weighting the edges do not add any additional information to
the graph since all the connected data points are approximately of the same
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scale. Consequently, this kind of graph is not a "standard" weighted graph
but it can be mainly considered as an unweighted graph (Von Luxburg,
2007).

2. The k-nearest neighbor graph: the objective behind the construction of this
graph is to connect two vertices, vi with vq, if within the k-nearest neigh-
bors of vi there is the vertex vq. The drawback of this definition is that
the outcome results in a direct graph, since the neighborhood relationship
lacks the property of symmetry. However, two methods are available to
transform a direct graph to an undirect one.
The first method simply ignores the directions of the edges. In other words,
two vertices vi and vq are connected if vi is one of the k-nearest neighbors
of vq or, alternatively, if vq is one of the k-nearest neighbors of vi. This pro-
cedure leads to an undirect graph which is commonly called the k-nearest
neighbor graph.
The second method considers the mutual k-nearest neighbors of both ver-
tices. Indeed, two vertices vi and vq are connected if vi is one of the k-nearest
neighbors of vq and, at the same time, vq should be one of the k-nearest
neighbors of vi. We refer to this graph as the mutual k-nearest neighbor
graph.
In both methods, the edges connecting the corresponding vertices are weighted
by the corresponding pairwise similarities between endpoints.

3. The fully connected graph: this graph is characterized by a relatively easy
construction compared to the ones analysed above. Indeed, all the points
having positive similarities between each other are connected. All the edges
connecting the endpoints are weighted by ωiq = siq.

All the typologies of graphs described above are employed in spectral clustering
algorithms.

Laplacian matrix

The key element for applying spectral clustering is the identification of the Lapla-
cian matrix. Spectral graph theory is the research field dedicated to the analysis
and the investigation of this kind of matrices. In the work of Chung (1997) is
possible to find a complete review of the most important methods together with
their most important properties.
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Let G be an undirected, weighted graph with weight matrix Ω = S, where
ωiq = siq ≥ 0.
As already seen in Chapter 2, the unnormalized Laplacian matrix, L, correspond-
ing to the matrix representation of a weighted graph, is defined as:

L = D −Ω. (3.3)

The works of Oellermann and Schwenk (1991) and Mohar (1997) contain com-
plete and detailed reviews of its main properties.

The following propositions, taken from the work of Von Luxburg (2007), sum-
marize some important results of Laplacian matrices. For a complete review and
for the proofs, refer to Von Luxburg (2007).

Preposition 1 The matrix L satisfies the following properties:

1. L is symmetric and positive semi-definite.

2. The smallest eigenvalue of L is 0, the corresponding eigenvector is the con-
stant one vector.

3. L has N non-negative, real-valued eigenvalues 0 = σ1 ≤ σ2 ≤ · · · ≤ σN .

Preposition 2 Let G be an undirected graph with non-negative weights. Then
the multiplicity K of the eigenvalue 0 of L equals the number of connected com-
ponents A1, . . . , AK in the graph.

A connected component of an undirect graph, G, is defined as a connected
subgraph having no connections between its vertices and the vertices of the rest of
the graph. Thus, the matrix L has as many eigenvalues 0 as there are connected
components (Von Luxburg, 2007); in easier words, the graph G has K connected
components if its Laplacian matrix, L, has K blocks.

Usually, the normalized version of the Laplacian matrix is taken into consid-
eration. There are two different versions of normalized Laplacian matrix:

Lnorm.sym = D− 1
2LD− 1

2 = I − D− 1
2ΩD− 1

2 , (3.4)

Lnorm.rw = D−1L = I − D−1Ω. (3.5)

The first matrix, Lnorm.sym, is a matrix characterized by the property of sym-
metry; instead the second one, Lnorm.rw, is associated to a random walk. In the
following sections we will refer to Lnorm.sym. The work of Chung (1997) repre-
sents one of the main references for deepening the study of normalized Laplacian
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matrices.

Similarly to Preposition 1 and Preposition 2, we have:

Preposition 3 Normalized Laplacian matrix satisfies the following properties:

1. σ is an eigenvalue of Lnorm.rw with eigenvector u if and only if σ is an
eigenvalue of Lnorm.sym with eigenvector ω = D

1
2u.

2. 0 is an eigenvalue of Lnorm.rw with constant one vector as eigenvector if and
only if 0 is an eigenvalue of Lnorm.sym with eigenvector D

1
21 .

3. Lnorm.sym is semi-definite positive and has N non-negative, real-valued eigen-
values 0 = σ1 ≤ σ2 ≤ · · · ≤ σN .

As previously seen for unnormalized Laplacian matrices, also for normalized
Laplacians the multiplicity of the eigenvalue 0 is associated to the number of
connected components, as it is stated in Preposition 4 that follows.

Preposition 4 Let G be an undirected graph with non-negative weights. Then
the multiplicity K of the eigenvalue 0 of Lnorm.sym equals the number of connected
components A1, . . . , AK in the graph.

Spectral clustering

Spectral clustering has two main versions: one from Shi and Malik (2000) and
the other one from Ng, Jordan, and Weiss (2001). The former one employs the
eigenvectors of the normalized Laplacian Lnorm.rw while, on the contrary, the lat-
ter one uses the matrix Lnorm.sym.
In this work we are going to focus our attention on the second version.

According to Ng et al. (2001), the spectral clustering algorithm with the normal-
ized Laplacian Lnorm.sym proceeds as follows.

1. Build the weighted similarity graph, G, according to one of the methods
previously described. Consider Ω to be the corresponding weighted adja-
cency matrix.

2. Calculate Lnorm.sym, as the normalized Laplacian matrix.

3. Compute the first K eigenvectors of Lnorm.sym.
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4. Build a new matrix containing the eigenvectors of Step 3 as column vectors.

5. Normalize the rows of the matrix at Step 4 in order to have norm equals to 1.

6. In the end, identify K clusters of data points through the K-means clus-
tering algorithm.

In the spectral clustering algorithm the main "stratagem" consists in changing
the original representation of data points x1, . . . ,xN ∈ RT into new points, say
yi with i = 1, . . . , N , ∈ RK . This trick allows for a better identification of the
clusters, since the new "coordinates" representing the original data points should
better capture the cluster-properties in the data.

The identification of the appropriate number K of clusters is a common prob-
lem for every clustering algorithm. Against this background and in order to
overcome this issue, a large variety of methods have been illustrated in literature:
within-cluster and between-cluster similarity measures, ad-hoc internal and ex-
ternal cluster validity indexes, information-theoretic criteria and so on (Still &
Bialek, 2004). The cluster validity indexes used in our work are fully described
in the following sections.

Spectral clustering as a graph partitioning problem

The objective behind the clustering procedure consists in partitioning the data
points into several clusters according to their similarities. Against this back-
ground, the problem of spectral clustering can also be seen as an approximation
of a graph partitioning problem.

The easiest way to identify a partition in the graph consists in solving the
mincut problem. Let G be a similarity graph with adjacency matrix Ω and let
K be the given number of clusters. The mincut method identifies the partition
A1, . . . , AK determining the smallest "cut", i.e. the smallest "boundary" (or sum
of edge weights, more generally):

cut(A1, . . . , AK) =
1

2

K∑
g=1

Ω(Ag, Ag). (3.6)

As reported in the work of Stoer and Wagner (1997), the mincut problem
solution is relatively easy and efficient for K = 2. However, in practical exam-
ples, it is not exempt from drawbacks. Indeed, very often it leads to unbalanced
partitions since it simply divides one single vertex from the remaining graph. In
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many practical applications, this form of classification is unrealistic. A possible
solution consists in choosing other objective functions having the "constraint"
that the sets A1, . . . , AK contain a reasonable number of data points. In particu-
lar, the ratio cut (Hagen & Kahng, 1992) and the normalized cut (Shi & Malik,
2000), denoted as RatioCut and Ncut respectively, provide a step forward in the
right direction.

The size of the subsets A1, . . . , AK is measured differently according to which
objective function is used: RatioCut takes into consideration the number of ver-
tices, |A|; on the other hand, the Ncut function considers the weights of the edges,
vol(A), corresponding to the sum of the degrees δi of all vertexes vi in the sets
A1, . . . , AK .
Both objective functions identify the partition A1, . . . , AK minimizing:

RatioCut(A1, . . . , AK) =
1

2

K∑
g=1

Ω(Ag, Ag)

|Ag|
, (3.7)

Ncut(A1, . . . , AK) =
1

2

K∑
g=1

Ω(Ag, Ag)

vol(Ag)
. (3.8)

In particular, the two functions assume small values if the clusters Ag are
"big enough". If all |Ag| are coincident, then the minimum of

∑K
g=1(1/|Ag|)

is obtained; on the other hand, if all vol(Ag) coincide, then the minimum of∑K
g=1(1/vol(Ag)) is achieved.

RatioCut and Ncut functions lead to balanced partitions (expressed in terms of
number of vertices or edge weights). However, the introduction of the balancing
conditions determines an increase of the computational complexity of the mincut
problem, becoming NP hard. Refer to Wagner and Wagner (1993) for further
details.

With spectral clustering is possible to solve the relaxed versions of these prob-
lems: relaxing Ncut produces the normalized spectral clustering; on the other
hand, the relaxation of RatioCut leads to the unnormalized spectral clustering.

3.2.2 String kernel functions

It appears clear from the previous section that for spectral clustering methods it
is very important to select adequately a similarity metric, s, in order to properly
build the Laplacian matrix.
Since we are dealing with text data, it is required some kind of similarity mea-
sures between strings. In natural language processing, strings are sequences of
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alphabet characters and represent text in natural language.
Recently, given the arise of kernel-based methods for pattern analyses (Smola &
Schölkopf, 1998; Shawe-Taylor, Cristianini, et al., 2004) and classification tech-
niques like SVM, string kernel functions are usually adopted. Many string kernels
with different specificities have been proposed in literature. Indeed, kernel func-
tions naturally induce a measure of similarity. In text mining applications they
evaluate the level of similarity between two documents by means of matching
sequences of l characters they contain (where l is a free parameter that should
be appropriately chosen). In other words, string kernel functions calculate the
amount of matching substrings of length l shared by the documents: more similar
two documents are, then more matching substrings of length l they share.

The works of Smola and Schölkopf (1998) and Shawe-Taylor et al. (2004)
provide a complete overview of the theory beyond kernel methods.
Let X be an input space, a (positive semi-definite) kernel is defined as a function
K : X × X −→ R, with K(x, y) = K(y, x), such that for any {ci}Ni=1 and {xi}Ni=1:

N∑
i=1

N∑
q=1

{ci} {eq}K(xi, xq) ≥ 0. (3.9)

Given a set of data points {xi}Ni=1, the N ×N matrix K = [kiq] = [K(xi, xq)]

is denoted as gram matrix.

Mercer’s theorem states that K = X ×X −→ R is a (positive-definite) kernel
if an only if there is a feature space F , provided with an inner product ⟨· , ·⟩,
and a map Φmap : X −→ F , satisfying for all x, y ∈ X :

K(x, y) = ⟨Φmap(x) , Φmap(y)⟩. (3.10)

Even the VSM, which is commonly used in information retrieval, can be sub-
ject to a form of "kernelization", by simply considering the input space C =

{d1,d2, . . . ,dN}, the feature space RT and the feature map Φmap = d/||d||. The
ad-hoc combination of these elements give rise to the Joachims’ BOW kernel
representation (Joachims, 1998):

K(d1,d2) = ⟨Φmap(d1) , Φmap(d2)⟩ =
⟨d1 , d2⟩

||d1|| · ||d2||
, (3.11)

which corresponds to the cosine measure:

cos(d1,d2) =
⟨d1 , d2⟩

||d1|| · ||d2||
. (3.12)

There are many kernel functions for strings with various applications. One of
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the most natural ways to measure the similarity between two strings is to count
how many substrings of fixed length l the two strings have in common. This
corresponds to the Spectrum string kernel.
Getting back to the definition introduced in Chapter 2, given two strings x′ and
y′, the Spectrum kernel is defined as:

Kl(x
′, y′) =

∑
γ∈A∗

|x′|γ · |y′|γ · λ, (3.13)

where λ is the constant factor used to weight the matching substrings of length
l, whose default value is 1.1 (Karatzoglou, Smola, Hornik, & Karatzoglou, 2019).

3.3 A new proposal of fuzzy spectral clustering
algorithm with string kernels

In the crisp version of spectral clustering, K-means algorithm is used to classify
the documents according to the normalized eigenvectors of the normalized Lapla-
cian matrix.
The novel fuzzy extension of spectral clustering proposed in this work can be
developed in a straightforward way from the hard one by employing the fuzzy K-
medoids, instead of the K-means, when analysing the eigenvectors of Lnorm.sym.

The fuzzy K-medoids consists in the following minimization problem:

min
U, H

J =
N∑
i=1

K∑
g=1

um
igd

2(yi,hg),

s.t. uig ∈ [0, 1] ∀i = 1, . . . , N, ∀g = 1, . . . , K,

K∑
g=1

uig = 1 i = 1, . . . , N,

(3.14)

with respect to the membership degree matrix, denoted as U, and the medoids
matrix, denoted as H. The symbol d identifies the Euclidean distance.
Differently from the fuzzy K-means (Bezdek, 1981), in the fuzzy K-medoids the
prototypes (medoids) of the clusters are directly observable within the sample
of observations, {hg, g = 1, . . . , K} ⊆ {yi, i = 1, . . . , N}. On the contrary, in the
former algorithm the prototypes (centroids) are calculated as weighted means and
hence they do not qualify as observed objects.

The generic element uig is representative of the membership degree of the
object i to the cluster g and ranges from 0 to 1, identifying different levels of
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membership.

The parameter that controls the fuzziness of the partition is m: for m assum-
ing high values all the memberships are set equal, while for m assuming values
close to 1 the hard Partitioning Around Medoids (PAM) algorithm (Kaufman &
Rousseeuw, 2009) is obtained. The default value for fuzzy algorithms is usually
selected in the interval (1, 2]. However, for the fuzzy K-medoids algorithm, it is
recommended to select m in the interval (1, 1.5] since the prototypes (medoids)
have always a membership of one to their corresponding clusters, thus they do not
have sensitivity when raising them up to the m-power. Consequently, when m

assumes high values, the flexibility of medoids may become slower from iteration
to iteration.

The solution of the minimization problem of the fuzzy K-medoids can be
obtained by means of an iterative algorithm where at each iteration r the mem-
bership degree matrix U(r) is updated, keeping fixed H(r−1), by means of

uig =
1∑K

g′=1

(
d2(yi,hg)

d2(yi,h′
g)

) 1
m−1

. (3.15)

At the same iteration, the medoids matrix H(r) is updated, keeping fixed U(r),
by using:

q = argminN
i′=1

N∑
i=1

um
igd

2(yi,yi′) g = 1, . . . , K;hg = yq. (3.16)

The algorithm ends when is reached the convergence condition.

The standard fuzzy K-means is usually less robust than the fuzzy K-medoids.
Indeed, the fuzzy K-means algorithm can be easily influenced by noisy data and
outliers, because these elements have a direct impact on the calculation of the
prototypes. On the contrary, by using the medoids instead of prototypes, it could
be possible to partially eliminate such drawbacks.

In the following section, an illustrative example on the performance of the
fuzzy version of spectral clustering with Spectrum string kernel is presented.
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3.3.1 An application of the fuzzy version of spectral clus-
tering algorithm with Spectrum string kernel func-
tion

This section introduces some preliminary results on the fuzzy spectral cluster-
ing algorithm combined with Spectrum string kernel on Reuters-21578 data set
(Lewis, 1997), that will be also used for other analyses that follow.

Reuters-21578 contains stories for the Reuters news agency and it is publicly
available; it is currently one of the most extensively used data sets for the classi-
fication of text files. It includes 12902 documents for 90 classes.
Given the high number of documents and since this data set is characterized by
a very skewed class distribution, we follow the Sebastiani convention (Sebastiani,
2002) considering only a specific subset of documents which is called R8. This
particular set considers the first 8 categories in terms of their sizes, i.e. acq, crude,
earn, grain, interest, money-fx, ship, trade, for a total of 7674 documents.

To illustrate the advantages of the fuzzy approach, the classes crude vs.
money-fx and trade vs. ship are taken into consideration. These four classes
are characterized by relatively small sample sizes (crude and money-fx are com-
posed by 374 and 293 documents; trade and ship have, respectively, 326 and 144

documents) allowing for a clear graphical representation.
In this context, the decision to perform two separated double classifications is
exclusively related to a better graphical representation of the clustering results,
that would otherwise be poorly distinguishable in a multi classification setting.
To conclude, the composition of the classes in each clustering problem follows the
alphabetic order.

As we have illustrated, the very first step in document clustering problems is
the pre-processing phase.
In the pre-processing phase, the punctuation signs, the numbers and the words
with no semantic meaning (e.g. articles, pronouns, adverbs,...) are removed; the
terms have been lower-cased and is carried out the stemming of the remaining
words through the Porter’s Stemmer algorithm (Porter, 1980).

With reference to the Spectrum string kernel function, and in order to learn
more about the influence of the length parameter l on the clustering results, the
algorithm is run over a range of values: from l = 3 to l = 8. For each value of
l we let the membership parameter, m, vary from 1.1 to 2. Moreover, multiple
random starts are used in order to limit the risk of hitting local optima.
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Fuzzy K-medoids algorithm is then used to cluster the normalized eigenvec-
tors of the normalized Laplacian matrix.

The performance of the clustering algorithm is evaluated by means of the av-
erage fuzzy Silhouette index (F.SIL) (Campello & Hruschka, 2006) and the fuzzy
adjusted Rand index (F.ARI) (Campello, 2007).
The former one is an internal validation measure relying only on information in
the data; it evaluates the goodness of the clustering structure without considering
external information. If it tends to 1, then the observations are well assigned to
the corresponding clusters.
The fuzzy Silhouette index for the partition characterized by K clusters is calcu-
lated as follows:

F.SIL(K) =

∑N
i=1 (uig − uig′)

α SILi(K)∑N
i=1 (uig − uig′)

α
, (3.17)

where uig and uig′ are, respectively, the first and the second largest membership
degrees of the i-th observation of the fuzzy partition matrix; α is the weight
that usually assumes value equals to 1. The last element, SILi(K), is the crisp
Silhouette index for the i-th observation and it is defined as:

SILi(K) =
βi − τi

max(βi, τi)
, (3.18)

where τi is the average distance of observation i to all the other observations
belonging to the same cluster and βi is the minimum average distance of observa-
tion i to all observations belonging to another cluster. The crisp Silhouette index
ranges in the interval [−1, 1].
As it is possible to observe, the fuzzy extension of the Silhouette index integrates
the membership degrees with the Silhouette values by calculating a weighted
mean such that each individual Silhouette value is associated to a weight cor-
responding to the difference between the two highest fuzzy membership values
of the associated point. The optimal value for K is obtained by maximizing
F.SIL(K).

The other cluster validity measure adopted in this experiment, the fuzzy ad-
justed Rand index, is an external validation measure which is used when the
“true” cluster labels are known in advance. It ranges in the interval [0, 1].
The crisp version of the adjusted Rand index (ARI) is defined as the proportion
of the correctly classified observations over the entire sample:

ARI(K) =
P +Q

(P +Q+R + E)
, (3.19)
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where the terms P and Q are the classification agreements, whereas the terms R
and E are the classification disagreements.
The corresponding fuzzy extension is obtained by rewriting the original crisp for-
mulation in a fully equivalent set-theoretic form. In the fuzzy case, the above
sets are then converted into fuzzy sets. Since the construction of the fuzzy set-
theoretic form does not resolve in a single step, refer to Campello (2007) for the
details.

The cluster validity indexes return, for trade vs ship, l = 6 and m = 1.4 as the
optimal hyper-parameters; while for crude vs money-fx the optimal corresponding
values for the hyper-parameters are, respectively, l = 5 and m = 1.5. The values
for both the indexes are reported in Table 3.1.
Table 3.2 and Table 3.3 are agreement tables between the known partition and
the corresponding hard partitions determined by the fuzzy clustering algorithm.
In this context, in order to evaluate the clustering results using the external
information available, the fuzzy partitions are converted into hard partitions by
assigning each object to the cluster characterized by the highest membership
degree.

Table 3.1: Cluster validity indexes for both the experiments: fuzzy Silhouette and
fuzzy adjusted Rand index.

Categories F.SIL F.ARI
trade vs ship 0.86 0.93

crude vs money-fx 0.89 0.92

Table 3.2: Agreement table of trade vs ship by fuzzy spectral clustering with Spectrum
string kernel.

Category Cluster 1 Cluster 2 Cases
ship 138 6 144
trade 5 321 326
Total 143 327 470

Table 3.3: Agreement table of crude vs money-fx by fuzzy spectral clustering with
Spectrum string kernel.

Category Cluster 1 Cluster 2 Cases
crude 363 11 374

money-fx 1 292 293
Total 364 303 667
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The performance of the fuzzy spectral clustering algorithm is consistent with
the corresponding hard version but, whilst in the hard case the obtained mem-
bership degrees were either 1 or 0, highlighting a clear assignment of the objects
to the clusters, in the fuzzy approach the objects belong to both clusters with
different degrees.
Analysing the corresponding hard partitions returned by the fuzzy spectral clus-
tering algorithm, it is possible to notice that the objects that are characterized,
in the fuzzy setting, by membership degrees taking values in the interval [0.5, 0.7]
are assigned to the other cluster compared to the original partition.
On the other hand, the objects assigned to the same cluster of the original parti-
tion are characterized, in the fuzzy setting, by higher membership degrees ranging
in the interval [0.7, 1].
This result can be seen, somehow, as an element of coherence between the role of
the membership degrees in the fuzzy spectral clustering algorithm and the origi-
nal crisp classification of the data.

In this context, adjacency matrix and Laplacian matrix are commonly used
representations for weighed graph (Janani & Vijayarani, 2019). In Figure 3.1 are
reported the Laplacian graphs for both examples, highlighting the assignment of
objects to clusters.
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Figure 3.1: The fuzzy spectral clustering representation with Spectrum string kernel
for both the experiments; red and blue points denote objects assignments to Cluster 1
and Cluster 2, respectively, with membership degrees higher than 0.70. In particular,
for each cluster, light colours (orange and jade green) denote membership degrees in
the intervals [0.50, 0.70).
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3.4 The novel fuzzy spectral clustering with Ker-
nel and Set similarity (KS2M)

Text data can be understood as sequences of characters appearing in documents.
Indeed, the position of a set of characters, as well as their length, can identify a
word and in text mining applications these last ones represent the main units on
which performing further analyses.
Hence, it is clear that the position of characters within the text is of relevance to
understand the inherent sequential structure of the data. Thus, a characteristic of
sequential data, such as text data, consists in the disposition of the items within
a sequence.
In other words, text data can be recognized as a sequence of elements occurring
one after the other one, where the order of the characters matters.

Against this background, Tripathy et al. (2019) introduce a novel similar-
ity measure for sequential data called Kernel and Set Similarity (abbreviated as
KS2M), consisting of two different parts: the first part assesses the composition
of the set (set similarity) whilst the second part quantifies the sequential aspect
(sequence similarity), which corresponds to the amount of similarity considering
the order of the items within two different sets.

Given two different sets, a and b, KS2M has the following form:

KS2M(a, b) = p · J(a, b) + (1− p) · SK(a, b), (3.20)

where p ∈ [0, 1] and 1− p represent the relative importance attributed to the two
components; J(a, b) is the measure of set similarity represented by the Jaccard
similarity index (Jaccard, 1901), defined as the ratio between the number of
common substrings of characters in set a and set b and the number of unique
substrings in the two sets:

J(a, b) =
|a ∩ b|
|a ∪ b|

. (3.21)

SK(a, b) is a sequential similarity measure represented by a generic string ker-
nel function. As proven in Tripathy et al. (2019), KS2M satisfies the properties
of non negativity, symmetry and normalization and hence qualifies as a proper
similarity metric.

However, KS2M has a main disadvantage when comparing two sets contain-
ing a different number of items. Indeed, the Jaccard similarity produces poor
results as it is illustrated in the following example.
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In each line are disposed two sets of words, characterized by different lengths,
that resemble two different documents:

1. A: {′′cat′′,′′ dog′′,′′ bird′′,′′mouse′′} vs B: {′′cat′′,′′ dog′′,′′ tree′′,′′ flower′′}

2. A: {′′cat′′,′′ dog′′,′′ bird′′} vs B: {′′cat′′,′′ dog′′,′′ tree′′,′′ flower′′,′′ person′′}

3. A: {′′cat′′,′′ dog′′} vs B: {′′cat′′,′′ dog′′,′′ tree′′,′′ flower′′,′′ person′′,′′ house′′}

It is worth noticing that in all the above sentences the sets have always two
words in common.
In this context, the values of the Jaccard similarity for all the three situations is
always equal to 0.33.

The just outlined similarity measure, KS2M , is used in combination with the
previously introduced fuzzy spectral clustering algorithm in combination with
fuzzy K-medoids, resulting in a new extension of fuzzy spectral clustering. Ex-
amples of applications are provided in Section 3.7.

3.5 The novel fuzzy spectral clustering with a new
similarity measure

The following pages introduce an additional version of fuzzy spectral clustering
algorithm combined with a new proposed similarity measure for text data.
Indeed, the Jaccard index lacks the ability to capture the different degrees of
similarities between documents.

The novel fuzzy spectral clustering method is mainly based on the proper
combination of two different elements:

1. the adoption of a new similarity measure, denoted as S∗, which is able to
capture both the sequential and non sequential nature of text data;

2. the use of the fuzzy version of spectral clustering algorithm when it comes
to identify overlapping groups of observations.

The proposed method returns encouraging results. Moreover, it also proves
to increase the accuracy of the clustering results.
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3.5.1 A novel similarity measure for sequential data: S∗

It is clear that substrings matching through string kernel functions might be not
enough in quantifying the level of similarity between documents, since they do
not consider the non-sequential parts that may be similar too.
Hence, it is appropriate to consider also other measures which consider the simi-
larity of the whole sequences.
However, the results highlight that the Jaccard index does not capture accurately
the similarity between sets containing a different number of items but having the
same intersection size.

This has motivated us to introduce a novel similarity measure, S∗.
The proposed similarity measure employs the use of the overlap coefficient (OC)
(Vijaymeena & Kavitha, 2016), also known as the Szymkiewicz–Simpson coeffi-
cient, which ranges in the interval [0, 1]. Given two sets a and b, it is defined as
the ratio between the number of common substrings in a and b over the number
of substrings in the smallest set:

OC(a, b) =
|a ∩ b|

min(|a|, |b|)
. (3.22)

To better understand the differences between the two measures, consider again
the following example:

1. A: {′′cat′′,′′ dog′′,′′ bird′′,′′mouse′′} vs B: {′′cat′′,′′ dog′′,′′ tree′′,′′ flower′′}

2. A: {′′cat′′,′′ dog′′,′′ bird′′} vs B: {′′cat′′,′′ dog′′,′′ tree′′,′′ flower′′,′′ person′′}

3. A: {′′cat′′,′′ dog′′} vs B: {′′cat′′,′′ dog′′,′′ tree′′,′′ flower′′,′′ person′′,′′ house′′}

In this case, the values of the overlap coefficients are equal, respectively, to
0.5, 0.66 and 1. In the last example, the similarity between set A and set B is
the highest and a score equals to 1 indicates that the set A is a complete subset
of the set B (indeed, the "content" of the first document is perfectly included in
the second one).
It is evident that different sized sets, with the same number of common members,
will result in the same Jaccard index.
Moreover, another disadvantage of the Jaccard index is that it is highly influenced
by the size of the data. Indeed, large data significantly increase the union whilst
keeping the intersection similar.
Clearly, the same reasoning can be applied when the sets represent two generic
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text documents and their items are all the possible substrings of generic length l.

The generic expression of the new similarity measure S∗ is formulated as
follows:

S∗(a, b) = p ·OC(a, b) + (1− p) · SK(a, b). (3.23)

It is worth noting that setting p = 0 returns the standard string kernel method,
while for 1− p = 0 we obtain the overlap coefficient.
The new measure S∗ qualifies as a proper similarity measure since it presents the
properties of symmetry:

S∗(a, b) = S∗(b, a). (3.24)

The new measure holds also the non-negativity condition, since by definition both
the components can be at worst equal to 0:

S∗(a, b) ≥ 0. (3.25)

In the end, it is normalized in order to range in the interval [0, 1], thus:

S∗(a, b) ∈ [0, 1]. (3.26)

The next step consists in incorporating the proposed similarity measure S∗

in the novel spectral clustering algorithm. The novel method, which is discussed
in the following section, has the advantage to allow for an overlapping between
clusters. In this way it is possible to discover relationships between documents
that would otherwise be neglected by hard clustering methods.

3.5.2 Fuzzy spectral clustering algorithm with S∗ similarity

The novel algorithm for document clustering can be summarized as follows.

1. Given as input a corpus of N text documents, C = {d1, . . . ,dN}, perform
the pre-processing steps for removing the noise in the data by lower casing
the terms, by eliminating the punctuation signs and the stopwords and, if
necessary, by eliminating the numbers and other meaningless words. Con-
clude by performing the stemming or the lemmatization.

2. Apply the Spectrum string kernel to the collection of documents and nor-
malize the string kernel values. It is worth remarking that in this step is
necessary to identify the optimal value of the parameter l that controls the
length of the matching substrings.
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The output is an N × N matrix containing the normalized values of the
Spectrum string kernel (according to the parameter l) for each couple of
documents in the corpus.

3. Compute the overlap coefficient as a measure of set similarity for all the
documents in the collection.
Again, the output is another N × N matrix containing the values of the
overlap coefficient for each couple of documents.

4. Calculate the similarity matrix S∗ obtained as a weighted combination be-
tween the Spectrum string kernel matrix, calculated at Step 2, and the
matrix whose entries are the overlap coefficient values calculated at Step 3.
In this phase, it is necessary to select the weight p which controls the relative
importance attributed to the sequence and set similarities in the construc-
tion of S∗.

5. Compute the Laplacian matrix using S∗ as adjacency matrix instead of Ω:

L = D − S∗. (3.27)

Then, calculate the normalized symmetric version of L, Lnorm.sym.

6. Given the parameter K that controls the number of clusters in the parti-
tion, calculate the first K normalized eigenvectors of Lnorm.sym.

7. Compute the matrix V ∈ R(N×K) whose columns correspond to the K

eigenvectors calculated at the previous point.

8. As the very last step, cluster the rows of the matrix V (representing the
N documents in the collection) in K groups using the fuzzy K-medoids
algorithm and choose an appropriate value for the fuzziness parameter m.

Note that Step 1 and Step 2 are executed also for the fuzzy spectral clustering
algorithm in combination with both Spectrum string kernel and KS2M similarity.

To run the novel aforementioned clustering algorithm is required the selection
of an adequate value for the number of clusters, K. However, in most clustering
applications the optimum K is not known in advance. In this regard, a frequently
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used approach consists in running the algorithm using different values for K at
every iteration and then applying specific validity measures, such as the fuzzy
Silhouette index (Campello & Hruschka, 2006), to identify which K returns to
the optimum partition.

3.6 Latent Dirichlet Allocation (LDA)

Before analysing the experimental results of the fuzzy spectral clustering algo-
rithm with S∗ and KS2M similarities on benchmark and real data sets, the
famous and extensively used topic modelling algorithm Latent Dirichlet Alloca-
tion (LDA) (Blei, Ng, & Jordan, 2003) is discussed.
Indeed, the real data set used in this work has never been applied in literature.
In this context, we tried to apply LDA on the identified partitions returned by
the proposed fuzzy spectral clustering method in combination with S∗, since it
could provide a more complete overview on their interpretation.

LDA is part of the family of probabilistic topic models, which are a category
of algorithms used for the analysis of discrete data (such as the management of
document archives).
The intuition behind LDA is that the documents in the collection convey several
unrevealed "concepts", also known as topics. In other words, documents are char-
acterized by an uncovered (latent) thematic structure. The aim of topic models,
including LDA algorithm, consists in discovering the main "concepts" pervading
the collection of documents.

The intuition behind the LDA algorithm can be accurately described by its
generative process.
Given a set of documents and having identified the number of topics G to discover,
the generative process for each document in the collection is represented as:

1. randomly choose a distribution over topics, known as the per-document
distribution over topics ;

2. for each word in the document:

• choose, in a random way, one topic from the distribution over topics
of Step 1;

• choose, always randomly, a word from the corresponding distribution
over the vocabulary.

The intuition behind the underlying statistical model can be summarized as:
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• each topic can be present in each document but in different proportions;

• each word is associated to a specific topic chosen from a probability distri-
bution, known as the per-document distribution over topics (topic assign-
ment);

• each word is selected from the topic distribution over the vocabulary, ac-
cording to the topic assignment of the previous point.

As introduced, the main objective of topic modelling consists in automatically
identifying the topics inherent in a collection of documents. As it is clear, the
only observed variables are the words within the documents while the underlying
topic structure is unrevealed. Consequently, the objective of LDA consists in
uncovering the hidden topic structure using only the observed variables.

Before proceeding with the description of the model, it is necessary to consider
the main probabilistic assumption behind LDA.
The method is based on the BOW assumption. Moreover, it also assumes that
the specific order of documents in a corpus is irrelevant.
This corresponds to the assumption of exchangeability for the words in a doc-
ument and for the documents in a corpus. The definition of exchangeability is
reported in Preposition 5.

Preposition 5 A sequence of random variables is exchangeable if for any r-
upla (Xn1 , . . . , Xnr) and any permutation (ρ1, . . . , ρr) it holds: (Xn1 , . . . , Xnr)

d
=

(Xnρ1
, . . . , Xnρr

).

Assuming that a sequence of random variables is exchangeable is equivalent
to the assume that the random variables are conditionally independent, where
the conditioning is with reference to the unknown parameter of the probability
distribution.

De Finetti’s notion of exchangeability (de Finetti, 1969; De Finetti, 1972)
establishes that any collection of random variables that are exchangeable can be
represented in terms of a mixture distribution. Consequently, mixture models are
used in LDA since they capture the exchangeability of both words and documents.

The LDA model is represented as a probabilistic graphical model and its
generative process can be graphically represented, as reported in Figure 3.2. The
structure reported in Figure 3.2 is commonly referred to as a hierarchical model.
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Figure 3.2: Graphical model representation of LDA. The boxes are plates representing
replicates. The words, η, are the only observable variables, while θ and z are latent
variables. α and µ are model parameters.

In particular, it is possible to distinguish three different hierarchical levels for the
LDA representation.

• Third level: the corpus, where the parameters of relevance are α and µ.

• Second level: the document, where the variables θ are document-level vari-
ables and they are sampled once per document.

• First level: the words in the document, where the word-level variables are
z and η. These last ones are randomly selected once for each word in each
document.

The basic idea behind LDA is that each latent topic is identified by a proba-
bility distribution over the words characterizing the vocabulary and, at the same
time, the documents in the collection are represented in terms of random mix-
tures over topics.
Given N documents in the corpus C, the complete generative process from which
each document arises under the LDA model can be summarized as follows:

1. n ∼ Pois(ϵ) −→ n is the number of words in each document; it is indepen-
dent to of all the other variables.

2. θ ∼ Dir(α) −→ θ is a G dimensional vector of probabilities which rep-
resents the distribution of topics occurring in each document. It repre-
sents the topic proportion and is drawn from a G-dimensional Dirichlet

Irene Cozzolino 46



3.6. Latent Dirichlet Allocation (LDA)

random variable which can take values in the (G− 1) simplex. The vector
α = {α1, . . . , αG} is the hyper-parameter for the Dirichlet distribution. In
the Dirichlet distribution α ≥ 0 controls the expected value of the distri-
bution which determines the place in the simplex where the distribution is
centered. There are some differences in the shape of the distribution if α is
bigger or lower than 1.

• α > 1 then the Dirichlet is more concentrated in the point correspond-
ing to its expectation and thus all the elements of the vectors have a
positive probability. It is characterized by a bump in the middle of
the simplex. The peakness of the bump is determined by the specific
values assumed by α.

• α < 1 then the distribution is characterized by sparsity. The Dirichlet
distribution will be highly concentrated in a few components and all
the rest will have almost no mass.

• α = 1 the Dirichlet distribution is equivalent to a uniform distribution
over a G− 1 simplex.

3. z ∼ Multinomial(θ) −→ z is a n dimensional vector of integers between
{1, . . . , G} representing the identity of topics for all the words in each doc-
ument. It is drawn from a multinomial distribution. It is also referred to
as the topic assignment.

4. In the end, each word is randomly selected from a the probability distri-
bution of a multinomial, which is conditioned on the topic assignment z.
Indeed, p(η|z,µ) ≡ Multinomial(µz). In the "classical" approach to LDA,
µ is treated as a fixed quantity that should be estimated and it represents
the topics distribution over words.

In this work, we are going to considered the fuller Bayesian approach to LDA,
which is characterized by the addition of a Dirichlet prior with parameter µ on φ.
In the Bayesian approach, the Dirichlet prior represents the per-word topic dis-
tribution (Steyvers, Smyth, Rosen-Zvi, & Griffiths, 2004). The main difference is
that while in the "classical" model µ is treated as a fixed quantity that has to be
estimated, here both α and µ are hyper-parameters specifying the nature of the
priors on θ and φ. According to Steyvers et al. (2004), the hyper-parameter µ

can be treated as a measure of prior knowledge, before observing the words in the
corpus, regarding how many times the terms are sampled from the distributions
of the topics. Against this background, the hyper-parameters α and µ should be
treated as constant and fixed a priori on values lower than 1 in order to guarantee
the concentration of the probability mass on few topics per documents and few
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terms per topic (according to the Dirichlet parametrization seen previously).

The new graphical model is represent in Figure 3.3, where φ ∼ Dirichlet(µ).

Figure 3.3: Graphical model representation of a fuller Bayesian approach to LDA.
The boxes are plates representing replicates.

According to the generative process previously described, the resulting joint
distribution of latent (θ, z and φ) and observable variables (η), for the corpus,
is given by:

p(η, z,θ,φ|α,µ) = p(φ|µ)︸ ︷︷ ︸
Dir.

p(θ|α)︸ ︷︷ ︸
Dir.

p(z|θ)︸ ︷︷ ︸
Mult.

p(η|φ, z)︸ ︷︷ ︸
Mult.

. (3.28)

In particular, we are interested in the topic proportion, θ, and in the topic
distribution over words, φ.

According to the Bayes formula, the conditional distribution of the latent vari-
ables, given the observed ones, is proportional to the joint distribution of latent
and observed variables divided by the marginal distribution of the documents:

p(φ,θ, z|η,α,µ) =
p(φ,θ, z,η|α,µ)

p(η|α,µ)
. (3.29)

The drawback is that this quantity can not be computed. The trick used in
the fuller Bayesian approach in order to infer the posterior distribution consists
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in applying the Gibbs Sampling algorithm. For a more detailed description of
Gibbs Sampler refer to Gelfand and Smith (1990); Casella and George (1992).
Gibbs Sampling is part of the set of algorithms known as Markov Chain Monte
Carlo (MCMC) methods. It does not directly sample from the posterior distri-
bution (which is intractable) but from the full conditional distributions of the
variables of the posterior. The MCMC algorithms aim to construct a (ergodic)
Markov chain that has the target posterior distribution as its limit distribution.
In particular, the limit distribution of the samples generated from the full condi-
tional distributions is the target posterior distribution. For this reason MCMC
algorithms require to be run for a big number of iterations, in order to guarantee
that the limit distribution of the samples is the target posterior distribution.

Considering LDA, the authors Steyvers et al. (2004) note that instead of di-
rectly estimating the posterior distribution (that do not provide a direct estimate
of φ and θ), it is possible to estimate the posterior distribution over z (the topic
assignment), given the words that are observed, η, and marginalizing with respect
to φ and θ:

p(z|η,α,µ) =
p(η, z)∑
z p(η, z)

. (3.30)

Then, the conditional distributions of θ and φ can be estimated just using
samples from the posterior distribution of the topic assignment. For a complete
overview on how this mechanism works, please refer to Blei et al. (2003).

3.7 Empirical analysis

The following section reports the results of the applications of the fuzzy spec-
tral clustering algorithm in combination with S∗ and KS2M similarities on both
benchmark and real data sets.

From a computational perspective and among the different competitors avail-
able in literature, the functions of the package fclust (Ferraro, Giordani, &
Serafini, 2019) are considered when applying the fuzzy spectral clustering algo-
rithm.
Concerning the new proposed similarity measure S∗ and KS2M , in order to calcu-
late the sequence similarity components, the command stringdot of the package
kernlab (Karatzoglou, Smola, Hornik, & Zeileis, 2004) is used.

In the following experiments the value of the substring length parameter, l, is
fixed equal to 5 since, as reported in Lodhi et al. (2002), it is sufficiently high to
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represent the average size of a stemmed word in English and at the same time it is
short enough to guarantee matches with those terms sharing the same root (stem).

As for the previous introductory experiment, before classifying the data into
groups, the documents have been pre-processed.

3.7.1 Benchmark data sets: Reuters-21578 and 20 news-
groups

In the analysis with benchmark data sets, an evaluation of the performance of
the proposed methods with S∗ and KS2M similarities is carried out.
Indeed, the novel fuzzy spectral clustering algorithm is combined with both the
similarity measures in order to evaluate their impact on the clustering results.

The experiments are carried out by means of the benchmark data sets Reuters-
21578 and 20 newsgroups (Lang, 1995).

For both data sets the true class labels are known a priori, hence the param-
eter K, representing the number of clusters, assumes a fixed value.
The goodness of the partitions returned by the two methods is evaluated in terms
of the fuzzy Silhouette index (Campello & Hruschka, 2006).

As highlighted in the previous sections, the proposed algorithms present a
number of free parameters that should be accurately chosen.
In this context, the performance of both methods is assessed for p ranging in
[0, 1] by 0.1, in order to evaluate the sensitivity of the results to this parameter.
For p = 1 the similarity matrix corresponds entirely to the set similarity; on the
contrary, for p = 0 the string kernel matrix is obtained.

Concerning the fuzzy spectral clustering algorithm, we let the membership
degree parameter m vary from 1.1 to 1.5 by 0.1. Moreover, multiple random starts
are used in order to avoid finding local optima. In this regard, the inspection of
the loss function values shows very similar results, pointing out the robustness of
the algorithm.

Reuters-21578 data set

For Reuters-21578, all the 8 categories of R8 data set are used (acq, crude, earn,
grain, interest, money-fx, ship, trade), for a total of more than 7000 documents.

By analysing the results of the fuzzy spectral clustering algorithm combined
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with S∗ and KS2M considered separately, what emerges is that the highest value
of the fuzzy Silhouette index, 0.76, is returned using S∗ similarity matrix as input
of the fuzzy spectral clustering with m = 1.3 and p = 0.4, corresponding to a
weighted combination between set and sequence similarities.
On the other hand, the algorithm with KS2M similarity returns 0.63 as the high-
est value of the Silhouette index, obtained for m = 1.5 and p = 0. In this case
KS2M identifies entirely with the string kernel matrix.
A comparison between the known partitions and the ones returned by the pro-
posed methods with both S∗ and KS2M is also carried out. In this context the
goodness of the clustering algorithms is evaluated in terms of the fuzzy adjusted
Rand index.
With S∗ similarity matrix, the comparison between the partition obtained for
m = 1.3 and p = 0.4 and the true-class labels returns a value of the fuzzy ad-
justed Rand index equals to 0.4. On the other hand, the partition obtained with
KS2M , m = 1.5 and p = 0 returns a value of the index equals to 0.18.

Some insights into the structure of clusters are provided in Table 3.4 and Table
3.5 which report the main statistics of the membership degrees for both partitions.

In this context, the average values of the membership degrees with KS2M are
lower than the ones obtained with S∗. A similar trend can be identified for the
objects with unclear assignment (i.e., those observations whose maximum mem-
bership degree is ≤ 0.5): indeed, the percentage of unclear assignments for each
cluster is much higher in the partition returned by KS2M .
Moreover, except for the second cluster, the values of the variation coefficient for
S∗ are less scattered than the corresponding ones from KS2M .

Finally, in order to study the impact of the number of clusters, the parameter
K is moved in the interval [2, 15]. For both S∗ and KS2M , the fuzzy Silhouette
index returns the highest values for K = 6 and K = 7, respectively. However, the
reduction of the index values when using K = 8 are considerably low: −0.058 for
S∗ and −0.092 for KS2M . This last aspect indicates that the value of K chosen
based on the Silhouette index reflects well the actual structure of the data.
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Table 3.4: Main statistics of the membership degrees for the partition obtained by
using S∗ similarity matrix, m = 1.3 and p = 0.4.

Cluster N.observations Min.memb.deg. Max.memb.deg. Av.memb.deg.
Cluster 1 1310 0.19 1 0.92
Cluster 2 1242 0.16 1 0.64
Cluster 3 866 0.37 1 0.97
Cluster 4 1154 0.28 1 0.88
Cluster 5 866 0.16 1 0.66
Cluster 6 556 0.19 1 0.84
Cluster 7 1225 0.16 1 0.86
Cluster 8 455 0.27 1 0.67

Cluster Var.coeff. × 100 %Unclear.assign.
Cluster 1 17.7 4.7%
Cluster 2 52.2 40.4%
Cluster 3 11.3 2.4%
Cluster 4 18.6 4.3%
Cluster 5 35.5 27.8%
Cluster 6 25.6 11.3%
Cluster 7 23.7 2.7%
Cluster 8 27.9 21.1%

Table 3.5: Main statistics of the membership degrees for the partition obtained by
using KS2M similarity matrix, m = 1.5 and p = 0.

Cluster N.observations Min.memb.deg. Max.memb.deg. Av.memb.deg.
Cluster 1 946 0.14 1 0.88
Cluster 2 336 0.17 1 0.35
Cluster 3 644 0.13 1 0.23
Cluster 4 1452 0.14 1 0.60
Cluster 5 1429 0.14 1 0.80
Cluster 6 1309 0.14 1 0.65
Cluster 7 827 0.18 1 0.46
Cluster 8 731 0.17 1 0.46

Cluster Var.coeff. × 100 %Unclear.assign.
Cluster 1 24.2 10.4%
Cluster 2 37.3 87.8%
Cluster 3 43.1 96.9%
Cluster 4 50.7 38.9%
Cluster 5 32.5 17.8%
Cluster 6 41.2 35.1%
Cluster 7 41.3 63.3%
Cluster 8 48.3 62.2%
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20 newsgroups data set

The 20 newsgroup data set is a collection, publicly available, containing approx-
imately 20000 newsgroup documents. The documents are partitioned (nearly)
evenly across 20 different newsgroups.

For this experiment, following the works of Miao, Duan, Zhang, and Jiao
(2009) and L. Shi, Weng, Ma, and Xi (2010), the two categories, talk and science,
characterized by the highest number of news, are used. They have, respectively,
3245 and 3945 documents after pre-processing. Each of the two categories, is char-
acterized by several sub-groups. The sub-groups of talk are: talk.politics.guns,
talk.politics.mideast, talk.politics.misc, talk.religion.misc. The sub-groups of sci-
ence are: sci.crypt, sci.electronics, sci.med, sci.space. Clustering is applied sepa-
rately on the sub-groups of talk and science.

By investigating the solutions for both the algorithms applied to both cate-
gories, we observe better results (with reference to the fuzzy Silhouette index)
when using S∗ similarity matrix. In particular, the highest value for talk, 0.71,
is returned for p = 0.5 and m = 1.5; while the highest value for science, 0.79, is
obtained with p = 0.9 and m = 1.1.
Both categories are characterized by the use of a weighted combination between
sequence and set similarities.
Concerning KS2M , the highest record of the fuzzy Silhouette index for talk, 0.64,
is returned for p = 1 (corresponding entirely to the Jaccard index) and m = 1.5;
the optimal value for science, 0.72, is returned for p = 0 (corresponding entirely
to the string kernel matrix) and m = 1.5.

As before, we inspect the clusters structure of the optimal partitions for both
the categories. The main statistics for the category talk are reported in Table 3.6
and Table 3.7 considering, respectively, S∗ and KS2M similarities. From these
tables it is possible to notice how S∗ outperforms the competitor: the clusters are
characterized by higher average membership degrees, a lower variation coefficient
and a lower number of unclear assignments.
In Table 3.8 and Table 3.9 are reported the same statistics for the category sci-
ence where hold similar considerations as before.

In the end, we inspect the solutions for K ranging in the interval [2, 10].
The fuzzy Silhouette index for talk returns K = 3 with S∗ and K = 6 with KS2M .
Also in this experiment, the reduction in the values of the index compared to the
partitions with K = 4 are not substantial: −0.041 for S∗ and −0.018 for KS2M .
A different result is found for science: with S∗ the optimal value for K coincides
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with the true number of classes. On the contrary, KS2M returns K = 6 with a
non-substantial increase of 0.028 compared to the value returned by K = 4.

Table 3.6: Main statistics of the membership degrees for the partition obtained by
using S∗ similarity matrix on talk category, m = 1.5 and p = 0.5.

Cluster N.observations Min.memb.deg. Max.memb.deg. Av.memb.deg.
Cluster 1 862 0.50 1 0.95
Cluster 2 863 0.25 1 0.90
Cluster 3 724 0.50 1 0.95
Cluster 4 796 0.36 1 0.90

Cluster Var.coeff. × 100 %Unclear.assign.
Cluster 1 10.28 0%
Cluster 2 16.22 1.04%
Cluster 3 10.99 0.27%
Cluster 4 15.15 0.63%

Table 3.7: Main statistics of the membership degrees for the partition obtained by
using KS2M similarity matrix on talk category, m = 1.5 and p = 1.

Cluster N.observations Min.memb.deg. Max.memb.deg. Av.memb.deg.
Cluster 1 730 0.26 1 0.79
Cluster 2 853 0.27 1 0.85
Cluster 3 696 0.27 1 0.76
Cluster 4 966 0.28 1 0.85

Cluster Var.coeff. × 100 %Unclear.assign.
Cluster 1 24.12 9.7%
Cluster 2 22.98 9.4%
Cluster 3 33.95 22.4%
Cluster 4 28.39 6%
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Table 3.8: Main statistics of the membership degrees for the partition obtained by
using S∗ similarity matrix on science category, m = 1.1 and p = 0.9.

Cluster N.observations Min.memb.deg. Max.memb.deg. Av.memb.deg.
Cluster 1 1137 0.38 1 0.98
Cluster 2 861 0.51 1 0.98
Cluster 3 809 0.51 1 0.97
Cluster 4 1138 0.47 1 0.98

Cluster Var.coeff. × 100 %Unclear.assign.
Cluster 1 7.61 0.09%
Cluster 2 6.42 0%
Cluster 3 8.26 0%
Cluster 4 8.26 0.2%

Table 3.9: Main statistics of the membership degrees for the partition obtained by
using KS2M similarity matrix on science category, m = 1.5 and p = 0.

Cluster N.observations Min.memb.deg. Max.memb.deg. Av.memb.deg.
Cluster 1 681 0.34 1 0.89
Cluster 2 776 0.35 1 0.91
Cluster 3 977 0.36 1 0.87
Cluster 4 1511 0.34 1 0.90

Cluster Var.coeff. × 100 %Unclear.assign.
Cluster 1 17.87 4.4%
Cluster 2 16.83 3.4%
Cluster 3 18.91 4.7%
Cluster 4 15.75 2.5%

3.7.2 The novel fuzzy spectral clustering algorithm in com-
bination with S∗ on real data: a corpus of abstracts
from statistical articles collected from ArXiv database

In this section a new data set composed by abstracts of articles collected from
ArXiv database is presented. ArXiv is an open-access archive containing more
than 1868555 articles distributed in eight different macro-areas: statistics, eco-
nomics, quantitative finance, quantitative biology, electrical engineering and sys-
tems science, mathematics, physics and computer science.

We restrict our interest to the category of statistics considering those articles
published from January 1991 (year of foundation of ArXiv) to January 2021, for
a total of more than 23000 documents. The data are extracted by using the
technique of Python web scraping. Our goal is to evaluate the goodness of the
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partition, returned by the fuzzy spectral clustering algorithm in combination with
S∗, applied to real data.

Given the initial extracted documents, the experiments are conducted on dif-
ferent years evenly spaced in time: 2010, 2015 and 2020. For each year, two
subsets of, respectively, 500 and 1000 randomly selected abstracts are considered.
It worth noticing that before 2007 the number of published articles in the cat-
egory of statistics available in ArXiv database is lower than 1000, leading us to
consider only the most recent years.
In this case, nor the class labels nor the number of clusters are known in advance.

In this experimental setup the performance of the algorithm for each different
sample size in each year is analysed. In particular, we let p and m vary, respec-
tively, in the intervals [0, 1] and [1.1, 1.5] with step 0.1.
Moreover, since the optimal value of K is not known, for each combination of the
two parameters we let K assume values in the set {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}.
For a better selection of the optimal combination of parameters (K, p and m) is
used the average fuzzy Silhouette width, as a cluster validation factor, together
with the Xie and Beni index (Xie & Beni, 1991). This last one is a popular fuzzy
cluster validity measure defined as the ratio between the total within-cluster dis-
tance, that is the compactness of the fuzzy partition, and a measure of separation
between one cluster and another cluster:

XB(K) =

∑N
i=1

∑K
g=1 u

2
igd

2(xi,hg)

N · ming,g′d2(hg,hg′)
. (3.31)

The parameters which return the maximum average fuzzy Silhouette index
and the lowest value for the Xie and Beni index are selected. In case there is not
a perfect correspondence between the value of K returning the highest average
fuzzy Silhouette index and the value of K returning the lowest Xie and Beni
index, the candidate partitions are manually inspected.

In Table 3.10 and Table 3.11 are reported the combinations of parameters which
return the optimal values of the average fuzzy Silhouette index and the Xie and
Beni index for each sample size of each year.
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Table 3.10: Optimal combination of parameters for each year (2010, 2015 and 2020)
considering the sample size of 1000 randomly selected documents.

Parameter 2010 2015 2020
m 1.5 1.5 1.5
K 2 2 2
p 0.6 0.8 0.9

Average Fuzzy Silhouette 0.95 0.84 0.87
Xie & Beni 0.02 0.07 0.05

Table 3.11: Optimal combination of parameters for each year (2010, 2015 and 2020)
considering the sample size of 500 randomly selected documents.

Parameter 2010 2015 2020
m 1.4 1.5 1.4
K 2 2 2
p 0.4 0.7 0.8

Average Fuzzy Silhouette 0.93 0.84 0.86
Xie & Beni 0.03 0.07 0.06

As clearly visible, the number of clusters remain unchanged for both the sam-
ple sizes. Also the value of the fuzzifier parameter remains approximately constant
around 1.4 and 1.5 for all the years and for each sample size. The similar values
taken by p highlight the use of a weighted combination of both the string kernel
and the overlap coefficient.
The corresponding values of the average fuzzy Silhouette index and the Xie &
Beni index establish that the articles are well associated to the corresponding
clusters.

By inspecting the underlying clusters structures it appears clear that the aver-
ages membership degrees for all the partitions (for each year and for each sample
size) are higher than 0.9.
Nonetheless, as we have introduced a fuzzy clustering algorithm, the clusters are
characterized by an overlapping structure: indeed each single abstract can be
associated to both clusters simultaneously with membership values in [0, 1].

In Table 3.12, Table 3.13 and Table 3.14 are reported the main statistics on
the distribution of the membership degrees for the considered years.
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Table 3.12: Membership degrees statistics for the year 2010 on both sample sizes.

Sample size: 1000
Cluster Min.memb.deg. Max.memb.deg Av.memb.deg

Cluster 1 0.55 1 0.99
Cluster 2 0.63 1 0.94

Sample size: 500
Cluster Min.memb.deg. Max.memb.deg Av.memb.deg

Cluster 1 0.54 1 0.92
Cluster 2 0.62 1 0.99

Table 3.13: Membership degrees statistics for the year 2015 on both sample sizes.

Sample size: 1000
Cluster Min.memb.deg. Max.memb.deg Av.memb.deg

Cluster 1 0.55 1 0.97
Cluster 2 0.51 1 0.96

Sample size: 500
Cluster Min.memb.deg. Max.memb.deg Av.memb.deg

Cluster 1 0.5 1 0.95
Cluster 2 0.5 1 0.96

Table 3.14: Membership degrees statistics for the year 2020 on both sample sizes.

Sample size: 1000
Cluster Min.memb.deg. Max.memb.deg Av.memb.deg

Cluster 1 0.52 1 0.97
Cluster 2 0.5 1 0.96

Sample size: 500
Cluster Min.memb.deg. Max.memb.deg Av.memb.deg

Cluster 1 0.51 1 0.97
Cluster 2 0.52 1 0.98

Moreover, for each sample size and for each year, it is possible to identify
some documents which are fuzzier than the others, i.e. they are assigned to their
corresponding clusters with low membership degrees.
Table 3.15 reports, for each sample size, the number of abstracts characterized
by maximum membership degrees lower than 0.6.
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Table 3.15: Number of abstracts for each sample size whose membership degrees are
lower than 0.6.

2010 2015 2020
500 1000 500 1000 500 1000
7 14 9 16 5 17

It is also provided an overview on the interpretation of the partitions charac-
terized by 1000 documents, by inspecting the topics in each cluster and for each
year. In this regard, the LDA algorithm, which has been carefully explained in
Section 3.6, is applied in an attempt to provide a more accurate analysis on the
"concepts" conveyed by the identified partitions.

The fuller Bayesian approach to LDA is applied to the results of the clustering
process with the aim to identify the topics in each group.
However, there is an important parameter that has to be specified before every-
thing else: G, the number of topics for the documents of each cluster. Addition-
ally, to perform the estimation through Gibbs Sampling, is necessary to specify
the values of the parameters for the prior distributions, that is α and µ. Follow-
ing the work of Blei et al. (2003), both parameters are set equal to 0.1, in order
to select few topics per document and few terms per topic.
Since often the information about the "true" number of topics is not available,
the model is run considering different values of the parameter G in order to de-
termine which is the best one. As reported in Blei et al. (2003), a possible way
to evaluate the models is to compute the perplexity index.

Perplexity index is a measurement of how well a probability model (in this
case LDA) predicts a new set of data. A good text model is the one which assigns
a higher probability to the word that actually occurs. Minimizing perplexity is
the same as maximizing this probability: a low perplexity indicates that the new
set of data is accurately predicted by the probability distribution (the lower, the
better).

For each year, the documents assigned to each one of the two clusters are
divided, in turn, into training and testing and is applied a 5-fold cross validation
to identify the most suitable choice for G. In other words, for each possible
candidate of the number of topics, G, the following steps are executed.

1. 4 subsets out of 5 get four turns as part of the training set, which is the
sample of data used to fit the LDA model.

2. The remaining subset gets one turn as part of the test set, which is the
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sample of data (totally unused for training set) used to provide an evaluation
of the model fitted on the training set; the test set is used for the selection
of the model by calculating the perplexity index on it.

From an implementation perspective, we have let vary the parameter G in the
interval [2, 10] with step equal to 1. Moreover, since LDA is quite computing-
intensive, the code is parallelized.

Table 3.16, Table 3.17 and Table 3.18 report the topic distribution over words
for the topics characterizing the documents in each cluster. For each topic, the
most ten important words according to their probabilities, are listed.
In particular, for 2010 and 2015, the optimal number of topics, G, according to
perplexity index, is equal to 3 for both the clusters. For the abstracts of 2020,
the optimal value of G is 2.

Table 3.16: Topic distribution over words for the 2010-clusters. The optimal number
of topics, G, is equal to 3 for both the clusters.

Cluster 1 Cluster 2
Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3
Estim Measure Model Covari Discuss Multivari

Distribut Data Problem Distance Regress Model
Function Statist Propos Estim Quantile Statist
Result Study Algorithm Cluster Brownian Correl
Process Use Variabl Random Motion Process
General Test Base Sampl Distribut Analysi
Paramet Time Number Infer Normal Consider
Random Analysi Comput Label Limit Likelihood
Paper Differ Approxim Distribut Multipl Matrix
Condit Network Demonstr Independent Basi Approxim
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Table 3.17: Topic distribution over words for the 2015-clusters. The optimal number
of topics, G, is equal to 3 for both the clusters.

Cluster 1 Cluster 2
Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

Use Algorithm Model Sample Problem Function
Analysi Learn Data Test Algorithm Paramet
Studi Problem Estim Data Optim Mean
Data Method Posterior Process Base Simul

Statist Function Approach Statist Rate Probabl
Time Show Base Method Consid Comput

Predict Network Propos Point Matrix Conside
Effect Result Paramet Asymptot Perform Set
Base Perform Comput Size Deriv Design
Differ Structur Bayesian Base Show Random

Table 3.18: Topic distribution over words for the 2020-clusters. The optimal number
of topics, G, is equal to 2 for both the clusters.

Cluster 1 Cluster 2
Topic 1 Topic 2 Topic 1 Topic 2
Learn Predict Model Propos

Network Graph Data Studi
Train Machin Distribut Result
Neural Featur Sample Problem
Dataset System Bound Paper

Architecture Infer Algorithm Challeng
Classif Accuraci Test Show
Imag Recent Statist Task
Deep Stochast Variabl Effect

Gradient Converg Rate Analysi

From the assessment of the contents conveyed by each topic of the identified
partitions, we can deduce as follows:

• 2010-partition: neither of the 3 topics characterizing Cluster 1 convey a
clearly identifiable concept. Indeed, the 10 most important words of each
topic refer mainly to generic terminology used in the statistical domain.
On the other hand, based on the observation of the most important words,
the topics of Cluster 2 can be associated, respectively, to: cluster analysis,
(stochastic) regression techniques and inference & multivariate analysis.

• 2015-partition: the first cluster of 2015-partition is characterized by 3 top-
ics that can be associated, somehow, to econometric problems (treatment
and controlling groups), data analysis and Bayesian modelling. The second
cluster is characterized by the presence of more inference-related terms such
as "sample", "test", "size", "optim", "base", "matrix", "mean", "simul",
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"design", "random". Consequently, as seen for the first cluster of 2010-
partition, it can be associated to more generic and standard statistical con-
cepts.

• 2020-partition: the two topics characterizing Cluster 1 can be both asso-
ciated to machine learning techniques. In particular, the first one refers
specifically to neural networks. It worth noticing that this specific topic
appears only in 2020-partitions, denoting an increasing interest in this the-
matic in the last years. To conclude, also for the abstracts of 2020, the
second cluster is characterized by two topics conveying more general statis-
tical concepts.

What emerges from the content assessment of the analysed partitions, is that
there is always one cluster conveying the main research theme of the reference
year. On the other hand, the other cluster of the partition can be considered as
a sort of "repository" of standard statistical terms/concepts.

3.8 Concluding remarks

To conclude, in this chapter a novel version of fuzzy spectral clustering algo-
rithm to use in combination with string kernel functions is introduced. Moreover,
KS2M similarity is used together with the proposed fuzzy algorithm, identifying
a new fuzzy clustering method for text data. However, given the drawbacks of
the aforementioned method, a novel similarity measure, S∗, is presented. The
new metric is applied together with the novel fuzzy spectral clustering algorithm,
producing better results in terms of clustering accuracy.

The empirical results show that the proposed fuzzy spectral clustering algo-
rithm combined with S∗ similarity matrix is able to achieve good performance in
both benchmark and real data sets.
In this regard, it is worth noticing that the behavior of graph-based algorithms
strongly depend on the structure of the data passed as input; in the case of spec-
tral clustering the performance can be improved by developing more appropriate
similarity metrics.
Against this background, the results coming from the introduced experiments on
benchmark data sets show that S∗ is able to identify better clusters than KS2M

as evaluated by external and internal validity measures.
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Chapter 4

Fuzzy spectral bi-clustering

In line with the spectral approach to clustering, the bi-clustering problem can
be seen as a multi-partitioning problem of the original graph that can be solved
through the application of spectral methods.
The work illustrated in this chapter presents two novel fuzzy spectral bi-clustering
algorithms, allowing both documents and words to belong to all clusters with dif-
ferent degrees of membership. Both algorithms use a graph representation of the
data.
The first algorithm operates following a simultaneous approach for the identifi-
cation of the document and the word partitions. On the other hand, the second
method follows a sequential approach.
Applications on both benchmark and real data sets demonstrate that both al-
gorithms are able to identify overlapping clusters and therefore they can be of
support for different tasks with text data. Moreover, the novel fuzzy spectral
bi-clustering algorithms prove to improve the accuracy of the clustering results.

4.1 Introduction

Bi-clustering, also known as co-clustering or two mode clustering, is a data mining
technique used to simultaneously partition the rows and the columns of a data
matrix. Bi-clustering methods have been extensively used in different domains:
for instance, in the field of genetic and biology, bi-clustering algorithms are em-
ployed to simultaneously analyse the different patterns of genes and conditions
in microarray data sets (Kluger, Basri, Chang, & Gerstein, 2003). Text min-
ing represents another well known field of application for bi-clustering techniques
given the (almost) necessary construction of the VSM in the pre-processing phase.
Indeed, in text mining tasks, bi-clustering algorithms allow for a more comprehen-
sive analysis of the corpus of documents, exploiting also the information coming
from the feature vectors.
In this context, differently from one-mode clustering, the objective of bi-clustering
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consists in identifying clusters of data points that are homogeneous on subsets of
features and, on the other hand, identifying clusters of features which are homo-
geneous on subsets of data points.

Before analysing the two most commonly used spectral bi-clustering algo-
rithms, it worth focusing the attention on the bi-clustering method known as
double K-means, introduced by Vichi (2001). The method is an extension to the
bi-clustering setting of the K-means algorithm (MacQueen, 1967).

Given a data matrix X containing N observations and T features, the dou-
ble K-means problem consists in solving the following constrained minimization
problem:

min
U, O, H

J =
N∑
i=1

T∑
j=1

K∑
g=1

C∑
c=1

(xij − hgc)
2uigojc,

s.t. uig ∈ {0, 1} ∀i = 1, . . . , N, ∀g = 1, . . . , K,

ojc ∈ {0, 1} ∀j = 1, . . . , T, ∀c = 1, . . . , C,

K∑
g=1

uig = 1 i = 1, . . . , N,

C∑
c=1

ojc = 1 j = 1, . . . , T,

(4.1)

where U is the membership degree matrix for the data points of dimension
N × T ; O is the T ×C membership degree matrix for the feature vectors and H
is the K × C matrix containing the prototypes.

Ferraro, Giordani, and Vichi (2021) have also proposed a fuzzy extension of the
previously introduced method in which both the membership degree matrices, U
and O, assume values in the interval [0, 1]. The constrained minimization problem
becomes:
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min
U, O, H

Jfuzzy =
N∑
i=1

T∑
j=1

K∑
g=1

C∑
c=1

(xij − hgc)
2um

igo
m′

jc ,

s.t. uig ∈ [0, 1] ∀i = 1, . . . , N, ∀g = 1, . . . , K,

ojc ∈ [0, 1] ∀j = 1, . . . , T, ∀c = 1, . . . , C,

K∑
g=1

uig = 1 i = 1, . . . , N,

C∑
c=1

ojc = 1 j = 1, . . . , T,

(4.2)

where m and m′ are the fuzziness parameters and their objective consists in
controlling the fuzziness of the two partitions. They should be larger than 1. A
common choice is to set m = m′ = 2.

4.2 Spectral bi-clustering

The majority of the applications on spectral bi-clustering methods available in
literature rely on partitioning a bipartite graph.
For instance, in Wieling and Nerbonne (2009) a bipartite spectral graph partition-
ing method is employed in the field of language detection. Indeed, the authors’
objective consists in simultaneously cluster the citizens’ geographical area with
reference to their sound pronunciation of Dutch dialect.
In Guan, Qiu, and Xue (2005) a novel bi-clustering algorithm, employing the
spectral decomposition of a bipartite graph, is presented. It is used to simulta-
neously cluster images and feature vectors.
Xu, Zong, Dolog, and Zhang (2010) propose a bipartite spectral clustering method
to bi-cluster web users and web pages in order to identify eventual relationship
between the users navigation pages and their preferences.
Finally, in Green, Rege, Liu, and Bailey (2011), a novel spectral bi-clustering
algorithm applied to data evolving over time by including historical clustering
results, is proposed.

The following section analyses the construction of bipartite graphs, often used
as input of spectral bi-clustering algorithms.

4.2.1 Bipartite graph

As the name suggests, the bipartite graph model is based on a double partition
of the nodes in the graph. This approach differs from the former one-mode clus-
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tering set-up, where the graphs are characterized by a single partition.

The graph bipartitioning model was initially introduced by Zha, He, Ding,
Simon, and Gu (2001).
With specific reference to text mining applications, the goal consists in building
a bipartite graph in order to model the mutual relationship between words and
documents.

The graph G = (V,E), with vertex set V = {v1, ..., vN}, is said to be bipartite
if there exist two subsets of V , denoted as V1 and V2, with V1 ∩ V2 = ∅, such that
each edge in E has an extremity in V1 and the other one in V2. In document clus-
tering applications, V1 and V2 represent, respectively, the set of documents and
the set of words. If V1 and V2 have equal sizes, G is called balanced bipartite graph.

Against this background, it is possible to define a weighted bipartite graph
as G = (V1, V2,Ω), where each entry of Ω quantifies the (non-negative) weight of
the edge connecting the two corresponding endpoints.
If the weight is equal to zero, then there is no edge connecting the two vertices.

In text mining application, the construction of the weighted adjacency matrix
Ω for bipartite graphs is based on the DTM:

Ω =

[
0 DTM

DTM
′

0

]
. (4.3)

The two non-diagonal blocks have all the entries equal to zero because there
are no edges between documents and words.

4.2.2 Dhillon’s spectral bi-clustering algorithm

Concerning text mining applications, one of the most famous bi-clustering algo-
rithm is the one proposed by Dhillon (2001).

The author’s solution to the graph clustering problem consists in employing
an heuristic spectral graph partitioning method, initially introduced by Pothen,
Simon, and Liou (1990), in order to find an approximate solution to minimizing
the objective function of the normalized-cut problem. For more details, refer to
Dhillon (2001).

As demonstrated in Dhillon’s paper, the eigenvalues and the eigenvectors of
the Laplacian matrix, L, contain relevant information on how partitioning the
graph.
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However, Dhillon’s method works directly with the original DTM, characterized
by lower dimensions compared to the Laplacian matrix of the bipartite graph.
For instance, if the DTM has dimensions N × T , the shape of the Laplacian
matrix for the corresponding bipartite graph is (N + T )× (N + T ).

In Dhillon’s paper is proved that as a way to find a K-partition of the bipar-
tite graph G, is sufficient to calculate the first r = ⌈log2K⌉ left and right singular
vectors of the normalized version of the DTM, since they contain K-modal in-
formation about the data set.
The first r = ⌈log2K⌉ left and right singular vectors correspond to the first r

largest singular values of the normalized DTM.

Moreover, it is also proved that computing the first r = ⌈log2K⌉ left and
right singular vectors of the normalized DTM, is equivalent to calculate the
eigenvectors associated to the r (smallest) eigenvalues of the following generalized
eigenvalue problem involving the Laplacian matrix:

LΨdouble = DΨdoubleΣ, (4.4)

where Ψdouble and Σ are, respectively, the matrices of eigenvectors and eigen-
values.

The first r = ⌈log2K⌉ eigenvectors of the above generalized eigenvalue problem
provide an approximate solution to the issue of finding the minimum normalized
cut.
However, it is possible to obtain the same results using the normalized version of
the original DTM.

More specifically, Dhillon’s spectral bi-clustering algorithm is summarized be-
low.

1. Given the DTM = [wi,j]i=1,...N ;,j=1,...,T , its normalized version is calculated
as:

DTMnorm = R− 1
2 · DTM · C− 1

2 , (4.5)

where R is the diagonal matrix with entry i equal to
∑T

j=1wij and C is the
diagonal matrix with entry j equal to

∑N
i=1 wij.

2. Apply the Singular Value Decomposition to DTMnorm:

DTMnorm = Γ1ΣΓ
′

2. (4.6)
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The row partition is obtained from a subset of the left singular vectors
while, on the other hand, the column partition is obtained from a subset of
the right singular vectors.

3. Compute the r = ⌈log2K⌉ singular vectors of DTMnorm, which provide
the most relevant information for both the documents and the words; then
build the (N + T )× r dimensional matrix Z:

Z =

[
R− 1

2Γ1

C− 1
2Γ2

]
. (4.7)

4. Apply K-means clustering algorithm on the (N+T )×r dimensional matrix
Z. The first N cluster-assignments represent the document partition while
the remaining T cluster-assignments provide the term partition.

4.2.3 A novel fuzzy version of spectral bi-clustering based
on a simultaneous approach

The papers available in literature on fuzzy spectral bi-clustering algorithms are
very few, highlighting how these methods represent a novel and promising field
of research for text mining applications.
The most relevant works include the one from N. Liu, Chen, and Lu (2013), em-
ploying the use of fuzzy K-harmonic means, and Cano, Adarve, López, and Blanco
(2007) that use a modified Improved Possibilistic Clustering algorithm (IPC), by
mixing possibilistic and probabilistic approaches (Zhang & Leung, 2004) in order
to find bi-clusters under a spectral setting.
Against this background, a further step in the direction of developing a fuzzy
spectral bi-clustering method consists in extending Dhillon’s spectral bi-clustering
algorithm under a fuzzy set-up in order to allow for an overlapping of both doc-
ument and word clusters.
Indeed, the standard K-means on which relies Dhillon’s method, belongs to the
category of hard clustering methods. Consequently, it does not allow for an over-
lapping between clusters.

Against this background, different fuzzy clustering algorithms can be applied
to cluster the (N + T ) × r dimensional observations. Among the competitors,
fuzzy K-means, fuzzy spherical K-means and fuzzy K-medoids are considered in
our proposal.
The proposed fuzzy extension of Dhillon’s spectral bi-clustering algorithm can be
briefly formulated as follows.
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Algorithm 1 Fuzzy extension of Dhillon’s spectral bi-clustering algorithm
Input DTM, number of clusters Kdocs = Kwords = K, fuzziness parameter m.
Output Simultaneous K-partitions for the documents and the words.

1: procedure :

2: Given the DTM, calculate its normalized version as

DTMnorm = R− 1
2 · DTM · C− 1

2 .

3: Apply the SVD to the normalized version of the DTM:

DTMnorm = Γ1ΣΓ2

and compute the first r = ⌈log2K⌉ singular vectors. They are associated to the first
r singular values providing the most relevant information for both the documents
and the words.

4: Build the matrix Z as

Z =

[
R− 1

2Γ1

C− 1
2Γ2

]
.

5: Cluster the N + T points, corresponding to the rows of the (N + T )× r dimen-
sional matrix Z, in K groups with one of the following fuzzy clustering algorithms:
fuzzy K-means, fuzzy spherical K-means and fuzzy K-medoids. In this step, it is
necessary to choose an appropriate value for the fuzziness parameter m.

6: end procedure

Following the procedure described in the above algorithm, the first N rows
of the matrix Z provide the fuzzy partition of the documents (the rows of the
DTM), while the remaining T data points provide the partition of the words
(corresponding to the columns of the DTM).

One of the main advantages of this approach, apart from allowing for an
overlapping between clusters, is the possibility to obtain simultaneously both the
document and the word partitions. Even though it may seem obvious following
the standard definition of bi-clustering, it is not when dealing with spectral bi-
clustering algorithms. Indeed, spectral bi-clustering methods rely on the spectral
decomposition of a transformation of the DTM or the Laplacian matrix. In this
setting, some methods identify some latent lower dimensional spaces where pro-
jecting the rows and columns of the input matrix. Then, the clustering algorithm
is applied separately on the two spaces in order to find the desired partitions.
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In Section 4.3 experiments are conducted to show the accuracy of the proposed
method.

4.2.4 A novel fuzzy version of spectral bi-clustering based
on a sequential approach

As analysed above, the method introduced in Section 4.2.3 is characterized by
the following advantages:

1. the word partition and the document partition are identified simultaneously;

2. the overlapping between document clusters and word clusters is allowed.

However, this approach suffers from a major drawback that consists in select-
ing the same number of clusters for the partition of the rows and the partition of
the columns (in the algorithm: Kdocs = Kwords = K).
Indeed, the clustering algorithms are directly applied to the N + T rows of the
matrix Z, with the consequence to avoid selecting two partitions characterized
by a distinct number of groups.
To overcome the above (restrictive) problem, we focus our attention to the work
of Kluger et al. (2003) who introduce a spectral-based approach found on the
identification of two separate spaces where projecting the rows and the columns
of the data matrix. The authors have applied their algorithm to cluster genes
and experimental conditions in order to automatically classify cancer data sets.

However, in the method described in Kluger et al. (2003), the data points and
the features are uniquely assigned to the corresponding clusters, determining a
classification that can lead to unrealistic results. Our proposed approach, which
is carefully explained in the following pages, has the advantage to extend Kluger’s
method under a fuzzy perspective.

In particular, Kluger’s method is based on the assumption that the input
data matrix is characterized by an uncovered checkerboard structure which can
be reformulated in terms of an eigenvalue problem.
To understand the connection between the identification of the checkerboard
structure in the data matrix and the eigenvalue problem, consider the follow-
ing example.

Suppose that the matrix B has a perfect checkerboard structure and x and
y represent two piecewise constant vectors identifying, respectively, the row and
the column partitions.
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The application of the two classification vectors to the input matrix B returns,
as output, two new classification vectors: one for the rows, x’, and the other one
for the columns, y’:

By = x’, (4.8)

BTx = y’. (4.9)

It worth noticing that x’ and y’ maintain the same partitioning structure of,
respectively, x and y.
A graphical representation of this scheme is reported in Figure 4.1.

From the previous equations is obtained:

BTBx = x’, (4.10)

BBTy = y. (4.11)

This result evidences that if B is characterized by the presence of a checker-
board structure, it can be revealed through solving an eigenvalue problem:

BTBu* = σ2u*, (4.12)

BBTv* = σ2v*, (4.13)

where u* and v* are the eigenvectors and σ2 is the common eigenvalue.
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Figure 4.1: Graphical representation of Kluger bi-clustering method.
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Against this background, to identify weather the input data matrix has a
(hidden) checkerboard arrangement, the documents and words eigenvectors (in
the example, u* and v*) are investigated in order to verify if a pair of them has
an approximate piecewise constant structure.
In other words, to check if the data matrix B has a checkerboard arrangement,
is required to solve an eigenvalue problem involving BTB and BBT , which is
equivalent to find the SVD of B.
Consequently, identify the existence of a pair of piecewise constant eigenvectors is
of relevance to establish the presence of a checkerboard pattern in the data matrix.

Against this background, our second proposed fuzzy spectral bi-clustering
algorithm is described below.

1. Given a corpus of N documents with T unique terms, the first step consists
in the normalization of the input DTM, through the log-normalization
technique (Kluger et al., 2003). This step has the effect to eliminate eventual
noise in the data.
It is initially computed the logarithmic version of the DTM, DTMlog:

DTMlog = Log(DTM). (4.14)

Then, a rescaling and a normalization of both the dimensions (rows and
columns) is carried out. In particular, each entry of the final normalized
matrix, A, is computed according to the following formula:

Aij = DTMlog;ij − DTMlog;i. − DTMlog;.j + DTMlog;.., (4.15)

where DTMlog;i. is the column mean for the i-th row, DTMlog;.j is the row
mean for the j-th column and DTMlog;.. is the overall mean.
This transformation removes the systematic variability among rows and
columns. The remaining values Aij capture the interaction between the
i-th row and the j-th column that cannot be explained by systematic vari-
ability among rows, among columns, or within the entire matrix.

2. Similarly to Dhillon’s method, the SVD is applied to the transformed matrix
A

A = Γ1,seqΣseqΓ2,seq. (4.16)

Then, the three "best" eigenvectors are selected. The decision to select
three eigenvectors derives directly from the work of Kluger et al. (2003)
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where the authors, for their experiments, apply the clustering step on the
data projected to the "best" three eigenvectors.
It worth noticing that the term "best" refers to the eigenvectors containing
the optimal partitioning information. In this regard, the best eigenvectors
are usually considered as the ones associated to the largest eigenvalues.
However, Kluger et al. (2003) show that in some rare cases an eigenvector
corresponding to a small eigenvalue can also contain relevant partitioning
information.
In order to identify the three "best" eigenvectors, all the candidate vec-
tors of the eigensystem are examined by fitting them to piecewise constant
vectors. To carry out this step, the entries of each examined eigenvector
are initially monotonically sorted. Then, all the possible thresholds are
analysed in order to find a possible piecewise constant vector that can ap-
proximate the eigenvectors. Finally, the "best" eigenvectors are selected.
From a practical perspective, this procedure is equivalent to apply the K-
means clustering algorithm to each one-dimensional eigenvector. The best
eigenvectors are identified by means of the minimum Euclidean distance
between each vector and its piecewise constant approximation.

3. Let Γbest
1,seq be the matrix whose columns correspond to the three best left

singular vectors and Γbest
2,seq be the matrix whose columns are the three best

right singular vectors. In order to find a partition of the documents, the rows
of A are projected to the three-dimensional space AΓbest

2,seq. On the other
hand, to partition the words, the columns of A are projected to ATΓbest

1,seq.

4. The conclusive step is the application of a fuzzy clustering algorithm (fuzzy
K-means, fuzzy spherical K-means and fuzzy K-medoids) to AΓbest

2,seq and
ATΓbest

1,seq.
In this way, the partition of the documents and the partition of the words
are obtained.
Notice that, differently from Dhillon’s method, in this setting is possible
to specify two distinct numbers of clusters for both the documents and the
words.

Contrary to what is claimed in the fuzzy extension of Dhillon’s bi-clustering
algorithm, the method just described follows a sequential approach. Indeed, the
two new projecting spaces AΓbest

2,seq and ATΓbest
1,seq, for the documents and the words,

are clustered independently from each other.
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4.3 Applications

In this section, a comparison of the two proposed fuzzy spectral bi-clustering
algorithms on both benchmark and real data sets is carried out.
We will refer to the first algorithm as Joint Fuzzy Spectral Bi-clustering algorithm
(JFSB) and to the second one as Sequential Fuzzy Spectral Bi-clustering algorithm
(SFSB).

4.3.1 Benchmark data set: WebKB

The publicy available benchmark data set used for this experiment is WebKB.
Each item of the data set is a document representing a web page collected by
the World Wide Knowledge Base project of the CMU text learning group. The
web pages are collected from the departments of the computer science faculty
of various universities in 1997 (Cornell University, The University of Texas, The
University of Washington and The University of Wisconsin), manually classified
into seven different classes: student, faculty, staff, department, course, project,
and other. In particular, the classes staff and department are discarded since
there are only a few documents for both the categories. The class other has not
been considered since it is a miscellaneous of the other classes.
From the remaining 4199 documents and following the work of Joachims, Cris-
tianini, and Shawe-Taylor (2001), the analysis is carried out on a random sample
of 800 web pages.
Before applying the two fuzzy spectral bi-clustering algorithms, the documents
have been pre-processed by removing the punctuation signs and the stopwords,
by lower casing the remaining text and by applying the Porter Stemmer algo-
rithm. Moreover, four empty documents have been removed from the collection,
for a total of 796 documents.

In this experiment, the true-class labels for the document partitions are known
a priori. Consequently, the parameter Kdocs is fixed equal to 4 for both the algo-
rithms.
The Joint Fuzzy Spectral Bi-clustering algorithm requires that the column par-
tition and the row partition are characterized by the same number of clusters.
Hence, Kdocs = Kwords = 4.
On the contrary, the Sequential Fuzzy Spectral Bi-clustering has the advantage
to choose a distinct number of groups for the two partitions. In this setting, the
optimal result for Kwords has been selected within a certain range of values.

To inspect the goodness of the document partitions the Purity index is used
(Schütze, Manning, & Raghavan, 2008).
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In the context of cluster analysis, Purity is an external validation index and is
defined as the proportion of the correctly classified data points over the total
number of observations. It ranges in the interval [0, 1].
With reference to the partition of the documents, it is mathematically expressed
by the following equation:

Purity(K) =
1

N

Kdocs∑
g=1

maxg|Cg ∩ TCg∗|, (4.17)

Where Cg is the g-th cluster of the partition and TCg∗ is the cluster g∗ of the true
classification having the maximum count for cluster Cg. A value of the Purity
index equals to 1 indicates a perfect clustering, with a perfect matching between
the identified clusters and the true document classification.
It worth emphasizing that the Purity index is used only to evaluate the docu-
ment partitions. In this context, the fuzzy document partitions returned by the
two methods are converted into crisp partitions by assigning each object to the
cluster characterized by the highest membership degree. Indeed, this external
validity measure is used to compare the corresponding crisp document partitions
returned by the two fuzzy bi-clustering algorithms with the known partition of
the documents (which is the only external information available), that acts like
a sort of benchmark.
Since we do not have any information about the original classification of the
words, the possible comparison between the true word classification and the word
partitions could not have been taken into consideration for this purpose (indeed,
the word partitions are evaluated only in terms of internal validity measure which
considers also the membership degrees of the words).
However, since the Purity index does not take into account any information about
the membership degrees characterizing the fuzzy partitions, the fuzzy Silhouette
index has also been considered. In particular, this last one is used to evaluate
both the document and the word partitions.
With reference to the Sequential Fuzzy Spectral Bi-clustering algorithm, the fuzzy
Silhouette index is used to identify the optimal number of clusters for the word
partition.
All the cluster validity indexes used (both internal and external) are calculated
for the parameter m varying in the interval [1.1, 2] with step 0.1.
The criteria for evaluating the two fuzzy spectral clustering algorithms are sum-
marized as follows.

1. Joint Fuzzy Spectral Bi-clustering : given Kdocs = Kwords = 4 for each value
of the parameter m in [1.1, 2], the Purity index for the document partitions
is calculated; furthermore, the fuzzy Silhouette index is calculated for both
the document and the word partitions.
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When applying the K-means algorithm the Silhouette index is used.

2. Sequential Fuzzy Spectral Bi-clustering : for each value of m in the interval
[1.1, 2], Kdocs is fixed equal to 4 while the parameter Kwords assumes values
from 2 to 10. As before, the document partitions are evaluated by means of
the Purity index and the fuzzy Silhouette index, which is also used in the
evaluation of the word partitions.
When applying the K-means algorithm the Silhouette index is used.

For both algorithms, the optimal combination of parameters, (Kdocs, Kwords,m),
is selected as the one maximizing the following cluster validity measures: Purity
index for the document partitions, fuzzy Silhouette index for the document par-
titions and fuzzy Silhouette index for the word partitions. However, in case the
cluster validity indexes assume not clearly distinguishable values, all the parti-
tions candidate to be the optimal ones are manually inspected.

An analysis of the structure of the membership degrees is also carried out.
Moreover, in order to investigate the nature of the word partitions, the most fre-
quent terms, for both spectral bi-clustering algorithms, are examined.

A comparison between the results of the standard Dhillon’s and Kluger’s spec-
tral bi-clustering algorithms and the results of our proposed methods in combina-
tion with fuzzy K-means, fuzzy K-medoids and fuzzy spherical K-means follow.
Before analysing in details the clustering results, Table 4.1 reports the param-
eters identifying the optimal partitions for each version of the fuzzy spectral
bi-clustering methods.

Table 4.1: Parameters returning the optimal partitions for all the versions of the Joint
Fuzzy Spectral Bi-clustering algorithm and the Sequential Fuzzy Spectral Bi-clustering
algorithm. It worth emphasizing that the parameters Kdocs = Kwords = 4 for the Joint
Fuzzy Spectral Bi-clustering, as well as the parameter Kdocs = 4 for the Sequential Fuzzy
Spectral Bi-clustering, are chosen to be fixed for this specific experiment.

Parameters Fuzzy K-means Fuzzy Spherical K-means Fuzzy K-medoids
Joint Sequential Joint Sequential Joint Sequential

Kdocs 4 4 4 4 4 4
Kwords 4 3 4 2 4 4
m 1.7 1.2 1.9 1.6 2 1.2

As it is possible to notice, the number of clusters for the partition of the
words assumes values from 2 to 4. On the other hand, the values assumed by the
fuzziness parameter m are characterized by more heterogeneity, ranging from a
minimum of 1.2 to a maximum of 2.
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For the two standard methods, Dhillon’s and Kluger’s spectral bi-clustering
algorithms, the optimal numbers of clusters for the word partitions are, respec-
tively, 4 and 3.

What emerges from the results of the comparative analyses, reported in Table
4.2, Table 4.3, Table 4.4 and Table 4.5, is that the proposed versions of fuzzy
spectral bi-clustering algorithms, Joint Fuzzy Spectral Bi-clustering and Sequen-
tial Fuzzy Spectral Bi-clustering, outperform the corresponding crisp competitors
(respectively, Dhillon’s and Kluger’s methods) in terms of Purity index calcu-
lated on the document partitions. Indeed, Dhillon’s method returns a value of
the Purity equals to 0.51, against 0.6, 0.56 and 0.6 of the Joint Fuzzy Spectral Bi-
clustering combined, respectively, with fuzzy K-means, fuzzy spherical K-means
and fuzzy K-medoids. With respect to Kluger’s method, the difference is even
more pronounced: the crisp approach returns a Purity value equals to 0.49, while
the Sequential Fuzzy Spectral Bi-clustering algorithm, in combination with fuzzy
K-means, fuzzy spherical K-means and fuzzy K-medoids, returns values of the
index equal to, respectively, 0.55, 0.63 and 0.54.
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Fuzzy K-means

Table 4.2: Comparison, in terms of validity indexes, of the fuzzy spectral bi-clustering
algorithms using fuzzy K-means.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
Purity (docs) 0.59 0.55

fuzzy Silhouette (docs) 0.64 0.73
fuzzy Silhouette (word) 0.60 0.92

Fuzzy K-medoids

Table 4.3: Comparison, in terms of validity indexes, of the fuzzy spectral bi-clustering
algorithms using fuzzy K-medoids.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
Purity (docs) 0.59 0.54

fuzzy Silhouette (docs) 0.59 0.54
fuzzy Silhouette (word) 0.58 0.84

Fuzzy spherical K-means

Table 4.4: Comparison, in terms of validity indexes, of the fuzzy spectral bi-clustering
algorithms using fuzzy spherical K-means.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
Purity (docs) 0.56 0.63

fuzzy Silhouette (docs) 0.19 0.43
fuzzy Silhouette (word) 0.21 0.72

Dhillon’s and Kluger’s spectral bi-clustering algorithms

Table 4.5: Comparison, in terms of validity indexes, of Dhillon’s and Kluger’s spectral
bi-clustering algorithms.

indexes Dhillon Kluger
Purity (docs) 0.51 0.49

Silhouette (docs) 0.56 0.39
Silhouette (word) 0.57 0.70

The comparison of the different versions of both the Joint Fuzzy Spectral Bi-
clustering and the Sequential Fuzzy Spectral Bi-clustering algorithms evidences
that the latter returns more accurate clustering results for both the document
and the word partitions. Indeed, the values of the fuzzy Silhouette indexes for
the two partitions are almost always higher than the corresponding ones obtained
from the joint approach1.

1Only the fuzzy Silhouette index of the document partition returned by the employment
of the fuzzy K-medoids clustering algorithm is higher in correspondence of the Joint Fuzzy
Spectral Bi-clustering (0.59 vs. 0.54).
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Both versions with fuzzy spherical K-means return lower results compared to
the competitors: indeed, the Joint Fuzzy Spectral Bi-clustering algorithm returns
0.19 and 0.21 as values of the fuzzy Silhouette index for the document and the
word partitions, respectively. On the other hand, the values of the fuzzy Silhou-
ette index for the Sequential Fuzzy Spectral Bi-clustering are slightly higher and
are equal to 0.43 for the document partition and 0.72 for the word partition.
Analysing the word partitions, the Sequential Fuzzy Spectral Bi-clustering algo-
rithm assumes 0.92 as the highest value (in combination with fuzzy K-means) and
0.72 as the minimum value (in combination with fuzzy spherical K-means). On
the contrary, when employing the Joint Fuzzy Spectral Bi-clustering algorithm,
the highest value of the fuzzy Silhouette index calculated on the word partition
is equal to 0.6 (in combination with fuzzy K-means), while the minimum value
is equal to 0.21 (in combination with fuzzy spherical K-means).

Differently from Dhillon’s and Kluger’s methods, the Joint Fuzzy Spectral Bi-
clustering and the Sequential Fuzzy Spectral Bi-clustering algorithms have the
advantage to identify overlapping structures in the document and word parti-
tions. Analysing the membership degrees structures of both the document and
the word partitions, for all the different combinations of fuzzy clustering algo-
rithms, what emerges from Table 4.6, Table 4.7, Table 4.8, Table 4.9, Table 4.10
and Table 4.11, is that the two methods produce word and document partitions
characterized by average values of the membership degrees almost always higher
than 0.8. With specific reference to the Sequential Fuzzy Spectral Bi-clustering
algorithm the average membership degrees very often far exceed the value of 0.9.
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Fuzzy K-means

Table 4.6: Main statistics of the membership degrees for the document partitions
obtained by using fuzzy K-means in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 0.99 0.87
Cluster 2 0.45 0.99 0.88
Cluster 3 0.25 0.99 0.81
Cluster 4 0.48 0.99 0.86

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.53 1 0.92
Cluster 2 0.44 1 0.94
Cluster 3 0.57 1 0.94
Cluster 4 0.51 1 0.97

Table 4.7: Main statistics of the membership degrees for the word partitions obtained
by using fuzzy K-means in, respectively, Joint Fuzzy Spectral Bi-clustering and Sequen-
tial Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.26 1 0.91
Cluster 2 0.47 0.99 0.87
Cluster 3 0.25 0.99 0.88
Cluster 4 0.47 0.99 0.87

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.47 1 0.90
Cluster 2 0.45 1 0.93
Cluster 3 0.44 1 0.91
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Fuzzy K-medoids

Table 4.8: Main statistics of the membership degrees for the document partitions
obtained by using fuzzy K-medoids in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.41 0.99 0.83
Cluster 2 0.46 0.99 0.81
Cluster 3 0.49 0.99 0.82
Cluster 4 0.25 0.99 0.78

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.40 1 0.92
Cluster 2 0.51 1 0.95
Cluster 3 0.49 1 0.95
Cluster 4 0.45 1 0.93

Table 4.9: Main statistics of the membership degrees for the word partitions obtained
by using fuzzy K-medoids in, respectively, Joint Fuzzy Spectral Bi-clustering and Se-
quential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.40 1 0.82
Cluster 2 0.44 1 0.79
Cluster 3 0.25 1 0.85
Cluster 4 0.25 1 0.82

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.36 1 0.99
Cluster 2 0.39 1 0.92
Cluster 3 0.39 1 0.90
Cluster 4 0.39 1 0.89
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Fuzzy spherical K-means

Table 4.10: Main statistics of the membership degrees for the document partitions
obtained by using fuzzy spherical K-means in, respectively, Joint Fuzzy Spectral Bi-
clustering and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.35 0.99 0.81
Cluster 2 0.50 1 0.95
Cluster 3 0.49 0.99 0.98
Cluster 4 0.43 0.99 0.84

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.58 0.99 0.93
Cluster 2 0.60 0.99 0.90
Cluster 3 0.71 0.99 0.96
Cluster 4 0.43 0.99 0.81

Table 4.11: Main statistics of the membership degrees for the word partitions obtained
by using fuzzy spherical K-means in, respectively, Joint Fuzzy Spectral Bi-clustering and
Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.33 1 0.98
Cluster 2 0.31 1 0.97
Cluster 3 0.36 1 0.81
Cluster 4 0.38 0.99 0.81

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.83
Cluster 2 0.51 1 0.92
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In the end, a comparison of the content conveyed by the word partitions is
also carried out. In this context, despite the two algorithms are characterized
by a different number of clusters for the partition of the words, no significant
differences emerge from the two fuzzy spectral bi-clustering methods. The ma-
jority of the clusters can be associated to one of the following topics: "courses
and classes"; "student commitments" (characterized by words such as: home-
work, assignments, exams, . . . ); "research issues" (characterized by words such
as: visiting, PhD, research, libraries, . . . ); "graduation" and"academic/scholastic
furniture".

Table 4.12 summarizes the content of each cluster for all the versions of the
proposed fuzzy spectral bi-clustering algorithms. Note that not all the clusters
are characterized by an easily identifiable content. As it is possible to notice from
Table 4.12, the Sequential Fuzzy Spectral Bi-clustering algorithm in combination
with fuzzy K-medoids is the method returning clusters which are more easily
identifiable, according to the first ten most frequent words. The detailed list of
the ten most frequent words for each cluster are reported in Table 4.13, Table
4.14, Table 4.15 and Table 4.16.

Table 4.12: Main concepts conveyed by the most ten frequent terms for each cluster
in the identified partitions of the fuzzy spectral bi-clustering algorithms.

Fuzzy K-means
Cluster Joint Sequential

Cluster 1 "research issues" Not clearly distinguishable
Cluster 2 Not clearly distinguishable "academic/scholastic furniture"
Cluster 3 "student commitments" "student commitments"
Cluster 4 "courses and classes" -

Fuzzy K-medoids
Cluster Joint Sequential

Cluster 1 "courses and classes" "research issues"
Cluster 2 Not clearly distinguishable "student commitments"
Cluster 3 "research issues" "graduation"
Cluster 4 "student commitments" "courses and classes"

Fuzzy spherical K-means
Cluster Joint Sequential

Cluster 1 "research issues" "courses and classes"
Cluster 2 "courses and classes" Not clearly distinguishable
Cluster 3 "student commitments" -
Cluster 4 Not clearly distinguishable -
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Fuzzy K-means

Table 4.13: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with fuzzy K-
means algorithm.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3
system comput assign program comput phone page
research science homework class science graduat home
depart page lectur problem system fax student
interest project note lab research mathemat assign
professor home solut read univers graphic class

architectur work exam file program school mail
graduat student final code work multimedia homework

technolog softwar instructor schedul engin internt lectur
confer parallel chapter topic softwar visual grade

Fuzzy K-medoids

Table 4.14: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with fuzzy K-
medoids algorithm.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4
comput program research assign site page graduat comput
scienc office engin class homepage program year science
system languag perform homework info home artificial system
page problem technolog lectur columbia offic implement research

inform mail proceed note dept student colleg parallel
project lab confer grade visit assign faculti algorithm
depart read member final physic time librari network
home file intern solut archiv class knowledg databas

interest code laboratori due phd problem submit machin
work schedul colleg exam tech homework interact intellig
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Fuzzy spherical K-means

Table 4.15: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with the fuzzy
spherical K-means algorithm.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2
research comput page method comput resum
professor science program tool science visitor

associ system project techniqu system phd
bill univers office numer page pittsburgh

photo inform assign background research physic
uncertainti depart algorithm job program nyu
bibliographi home class yahoo project biologi

linguist interest link challeng depart browser
bookmark work homework formula offic geometri

Dhillon’s and Kluger’s spectral bi-clustering algorithms

Table 4.16: Most frequent terms of each word cluster returned by Dhillon’s spectral
bi-clustering algorithm and Kluger’s spectral bi-clustering algorithm.

Dhillon Kluger
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3
abstract assign comput page page comput graduat
seminar class science program home scienc laboratori

understand homework system inform offic system mathemat
midterm lectur univers project student research cours
semest read research home email program colleg

prerequisit hour depart offic assign inform educ
textbook exam interest student time project protocol
scheme note work languag class depart faculti
matlab solut engin time link parallel submit
quiz due softwar algorithm homework distribut berkelei
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4.3.2 Benchmark data set: the category science of 20 news-
group data set

This experiment is carried out on 20 newsgroup data set, which has already used
in Section 3.7.1.
The analysis is carried out using the category science (corresponding to the first
one following the alphabetic order). As previously stated, the category science
is characterized by 4 distinct sub-groups: sci.crypt, sci.electronics, sci.med and
sci.space.
Likewise to the previous application on WebKB data set, the documents have
been pre-processed.
Since the true class labels for the document partitions are known in advance, the
parameter Kdocs is fixed equal to 4 for both Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms. However, for the latter
one, the parameter Kwords varies in the interval {2, 3, 4, 5, 6, 7, 8, 9, 10}.
The two algorithms are evaluated for m assuming values in [1.1, 2], with step 0.1.
In particular, the Purity index and the fuzzy Silhouette index are used to eval-
uate the goodness of the partitions. As in the previous experiment, the former
one is used to evaluate only the document partitions since the true class labels
are known a priori. The latter one is used for both document and word partitions .

For both algorithms, the optimal combination of parameters (Kdocs, Kwords,m)

is selected following the same criteria of the previous experiment on WebKB data
set.

The results of the comparison between the standard Dhillon’s and Kluger’s
spectral bi-clustering and our proposed algorithms in combination with fuzzy K-
means, fuzzy K-medoids and fuzzy spherical K-means are discussed below.
Before inspecting the details, the parameters identifying the optimal partitions
for each version of the fuzzy spectral bi-clustering algorithms are reported in Ta-
ble 4.17.

Table 4.17: Parameters returning the optimal partitions for all the versions of the Joint
Fuzzy Spectral Bi-clustering algorithm and the Sequential Fuzzy Spectral Bi-clustering
algorithm for the category science.

Parameters Fuzzy K-means Fuzzy Spherical K-means Fuzzy K-medoids
Joint Sequential Joint Sequential Joint Sequential

Kdocs 4 4 4 4 4 4
Kwords 4 2 4 3 4 2
m 2 1.4 1.9 2 1.7 1.5
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Concerning the two standard methods, Dhillon’s and Kluger’s spectral bi-
clustering algorithms, the optimal number of clusters for the word partition iden-
tified by the Sequential Fuzzy Spectral Bi-Clustering is always equal to 4.

What emerges from Table 4.17 is that both the versions of the Sequential
Fuzzy Spectral Bi-Clustering with fuzzy K-means and fuzzy K-medoids return
the value 2 as the optimal one for the parameter Kwords. Moreover, the major-
ity of the versions of the Joint Fuzzy Spectral Bi-Clustering are characterized by
higher values for m then the Sequential Fuzzy Spectral Bi-Clustering.

An overview of the values of the external and internal validity measures for
all the identified partitions is reported in Table 4.18, Table 4.19, Table 4.20 and
Table 4.21.

Fuzzy K-means

Table 4.18: Comparison, in terms of validity indexes, of the fuzzy spectral bi-clustering
algorithms using fuzzy K-means for the category of science.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
Purity (docs) 0.75 0.56

fuzzy Silhouette (docs) 0.73 0.77
fuzzy Silhouette (word) 0.66 0.93

Fuzzy K-medoids

Table 4.19: Comparison, in terms of validity indexes, of the fuzzy spectral bi-clustering
algorithms using fuzzy K-medoids for the category of science.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
Purity (docs) 0.74 0.64

fuzzy Silhouette (docs) 0.71 0.65
fuzzy Silhouette (word) 0.65 0.92

Fuzzy spherical K-means

Table 4.20: Comparison, in terms of validity indexes, of the fuzzy spectral bi-clustering
algorithms using fuzzy spherical K-means for the category of science.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
Purity (docs) 0.82 0.46

fuzzy Silhouette (docs) 0.68 0.53
fuzzy Silhouette (word) 0.63 0.70

Irene Cozzolino 88



4.3. Applications

Dhillon’s and Kluger’s spectral bi-clustering algorithms

Table 4.21: Comparison, in terms of validity indexes, of Dhillon’s and Kluger’s spectral
bi-clustering algorithms for the category of science.

Indexes Dhillon Kluger
Purity (docs) 0.62 0.31

Silhouette (docs) 0.45 0.42
Silhouette (word) 0.42 0.65

What emerges from the aforementioned tables is that the Purity index as-
sumes always higher values for the Joint Fuzzy Spectral Clustering compared to
the Sequential Fuzzy Spectral Clustering : 0.75 vs. 0.56 with fuzzy K-means, 0.74
vs. 0.64 with fuzzy K-medoids and 0.82 vs. 0.46 with fuzzy spherical K-means.
Dhillon and Kluger versions are also characterized by a similar situation: 0.62

vs. 0.31. The main difference compared with the fuzzy counterparts is that the
values of the Purity index are sensibly lower.
Moreover, the Joint Fuzzy Spectral Clustering returns document partitions char-
acterized by slightly higher values of the fuzzy Silhouette index compared to the
ones obtained from the application of the Sequential Fuzzy Spectral Clustering
algorithm (apart from the version with fuzzy K-means).
On the contrary, all the versions of the Sequential Fuzzy Spectral Clustering algo-
rithm return noticeably better word partitions, in terms of the fuzzy Silhouette
index, compared to the Joint Fuzzy Spectral Clustering. Indeed, the values of the
index for the Sequential Fuzzy Spectral Clustering algorithm combined with fuzzy
K-means and fuzzy K-medoids are higher than 0.9.
The same considerations hold also for Dhillon and Kluger versions: the former
one returns better document partitions in terms of the Silhouette index (0.45 vs.
0.42); the latter one returns better column partitions in terms of the Silhouette
index (0.65 vs. 0.42).

The analysis of the structures of the membership degrees for each identified
partition is also carried out. The results are visible in Table 4.22 and in Table
4.23 for fuzzy K-means; in Table 4.24 and in Table 4.25 for fuzzy K-medoids; in
Table 4.26 and in Table 4.27 for fuzzy spherical K-means.
With reference to the document partitions, the results for fuzzy K-medoids and
fuzzy spherical K-means show that the Joint Fuzzy Spectral Clustering algorithm
return average values of the membership degrees slightly higher compared to the
corresponding ones of the Sequential Fuzzy Spectral Clustering. In general, the
membership degrees structures for all the versions of the two proposed methods
present an overall good behaviour.
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Fuzzy K-means

Table 4.22: Main statistics of the membership degrees for the document partitions
obtained by using fuzzy K-means in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms for the category science.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.42 0.99 0.81
Cluster 2 0.36 0.99 0.74
Cluster 3 0.33 0.99 0.77
Cluster 4 0.45 0.99 0.92

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.46 1 0.83
Cluster 2 0.49 1 0.97
Cluster 3 0.40 1 0.86
Cluster 4 0.40 1 0.81

Table 4.23: Main statistics of the membership degrees for the word partitions ob-
tained by using fuzzy K-means in, respectively, Joint Fuzzy Spectral Bi-clustering and
Sequential Fuzzy Spectral Bi-clustering algorithms for the category science.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.33 0.99 0.77
Cluster 2 0.32 0.99 0.70
Cluster 3 0.31 0.99 0.78
Cluster 4 0.34 0.99 0.79

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.99
Cluster 2 0.50 1 0.88
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Fuzzy K-medoids

Table 4.24: Main statistics of the membership degrees for the document partitions
obtained by using fuzzy K-medoids in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms for the category science.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.38 0.99 0.83
Cluster 2 0.49 0.99 0.92
Cluster 3 0.42 0.99 0.82
Cluster 4 0.48 0.99 0.87

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.47 1 0.94
Cluster 2 0.32 1 0.78
Cluster 3 0.33 1 0.72
Cluster 4 0.33 1 0.70

Table 4.25: Main statistics of the membership degrees for the word partitions ob-
tained by using fuzzy K-medoids in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms for the category science.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.35 1 0.86
Cluster 2 0.39 0.99 0.87
Cluster 3 0.35 1 0.80
Cluster 4 0.35 1 0.85

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.83
Cluster 2 0.50 1 0.81
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Fuzzy spherical K-means

Table 4.26: Main statistics of the membership degrees for the document partitions
obtained by using fuzzy spherical K-means in, respectively, Joint Fuzzy Spectral Bi-
clustering and Sequential Fuzzy Spectral Bi-clustering algorithms for the category sci-
ence.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.41 1 0.90
Cluster 2 0.41 1 0.94
Cluster 3 0.45 0.99 0.80
Cluster 4 0.44 1 0.93

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.31 0.99 0.80
Cluster 2 0.31 0.99 0.70
Cluster 3 0.30 0.99 0.71
Cluster 4 0.30 0.99 0.70

Table 4.27: Main statistics of the membership degrees for the word partitions obtained
by using fuzzy spherical K-means in, respectively, Joint Fuzzy Spectral Bi-clustering and
Sequential Fuzzy Spectral Bi-clustering algorithms for the category science.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.41 1 0.88
Cluster 2 0.41 1 0.89
Cluster 3 0.44 0.99 0.80
Cluster 4 0.41 1 0.90

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.34 0.99 0.76
Cluster 2 0.35 0.99 0.92
Cluster 3 0.34 0.99 0.71
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To conclude, an inspection of the most frequent terms in each word cluster
identified by the proposed fuzzy spectral bi-clustering algorithms is carried out.
Considering the 4 sub-categories for the articles falling under the category of sci-
ence (sci.crypt, sci.electronics, sci.med and sci.space), the concepts that we have
identified, according to the first ten most frequent words of each word cluster, can
be easily assimilated to the original classification. Indeed, the main concepts are
related to: "computer & technology", "health", "medicine", "space", "research"
and "airline/aircraft management".
In particular, the Joint Fuzzy Spectral Bi-Clustering in combination with fuzzy
K-medoids is the method returning more understandable word clusters. On the
contrary, among the proposed fuzzy spectral bi-clustering methods, Joint Fuzzy
Spectral Bi-Clustering in combination with fuzzy K-means is the version whose
word clusters are characterized by a lower level of clearness.
Concerning the Sequential Fuzzy Spectral Bi-Clustering, maybe due to the smaller
number of word clusters identified by the parameter Kwords, no particular diffi-
culties have occurred in the identification of the main "concepts".
Following the same format of the previous sections, an overview of the main
"concepts" emerging in each word cluster is presented in Table 4.28.

Table 4.28: Main concepts conveyed by the most ten frequent terms for each cluster
in the identified partitions of the fuzzy spectral bi-clustering algorithms.

Fuzzy K-means
Cluster Joint Sequential

Cluster 1 Not clearly distinguishable "computer & technology"
Cluster 2 "computer & technology" "health"
Cluster 3 Not clearly distinguishable -
Cluster 4 "airline/aircraft management" -

Fuzzy K-medoids
Cluster Joint Sequential

Cluster 1 "medicine" "computer & technology"
Cluster 2 "computer & technology" "research"
Cluster 3 "research" -
Cluster 4 "space" -

Fuzzy spherical K-means
Cluster Joint Sequential

Cluster 1 "computer & technology" "computer & technology"
Cluster 2 "health" "medicine"
Cluster 3 "research" "space"
Cluster 4 Not clearly distinguishable -
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Fuzzy K-means

Table 4.29: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with fuzzy K-
means algorithm.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

agenc encrypt article data encrypt drug
american byte algorithm design effect cholesterol
center comput devic control comput alcohol
chang develop experi connect develop disclaim
box chip correct batteri algorithm danger

cancer diseas ask california file difficult
flight electron galileo fuel anonym die
disk code delta air circuit egg

cryptographi file determin earth attack action
energi crypto estim amateur disk advis

Fuzzy K-medoids

Table 4.30: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with fuzzy K-
medoids algorithm.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

effect encrypt write space comput edu
medic chip article nasa compani email
studi number system orbit devic articl

patient secur peopl launch engin book
diseas phne work earth digit document
drug mail year mission attack analysi
food comput inform satellit disk class

doctor technolog univers shuttle byte access
health internet research spacecraft decrypt discov
cancer algorithm question air experi answer
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Fuzzy spherical K-means

Table 4.31: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with the fuzzy
spherical K-means algorithm.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3
encrypt diet book control code diseas control

base check address engin build drug compani
electron diseas answer earth email diet earth

file form author batteri circuit aid devic
email attempt chemestri california digit fever engin

decrypt chronic columbia air cryptographi error area
futur fit develop complet cryptosystem fraction flight
export brain audit express band deal board
agenc finger depart danger american challeng explor

commerci cell colleg action avoid dose astronomi

Dhillon’s and Kluger’s spectral bi-clustering algorithms

Table 4.32: Most frequent terms of each word cluster returned by Dhillon’s spectral
bi-clustering algorithm and Kluger’s spectral bi-clustering algorithm.

Dhillon Kluger
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4

find article engin design encrypt difficult familiar edu
compani algorithm electron control chip action aggreg articl
commun devic direct access cryptographi danger fusion find
exampl experi charg earth digit acetaminophen convei develop
center enforc establish activ degree cholesterol explanatori center
chang correct energi cnnect archiv elbow debugg answer
acid determin cost batteri error biostatist disregard board

cancer databas bank air backup fingernail employ correct
area cellular billion damag challeng deficit economi applic

distribut excel cut expect ascii frequent consortium author
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4.3.3 Real data set: Trump and Clinton speeches

An evaluation of the Joint Fuzzy Spectral Bi-clustering and the Sequential Fuzzy
Spectral Bi-clustering algorithms on real data is also carried out. For this pur-
pose, a publicly available data set containing 118 individual speeches by Donald
Trump and Hillary Clinton, during their electoral campaign of 2016, is analysed.
In this setting, neither the number of clusters for the partition of the documents,
nor the number of clusters for the partition of the words are known in advance.
Consequently, for all the clustering algorithms analysed, both the parameters
Kdocs and Kwords are let vary in the set {2, 3, 4, 5, 6, 7, 8, 9, 10}, for a total of 81
different combinations of parameters. For each one of these combinations, the
parameter m assumes values in the interval [1.1, 2] with step 0.1. The optimal
combination of values (Kdocs, Kwords, m) is the one maximizing the fuzzy Silhou-
ette index.

As in the previous section, a comparison between the standard methods from
Dhillon and Kluger and the Joint and the Sequential Fuzzy Spectral Bi-clustering
algorithms, combined with fuzzy K-means, fuzzy K-medoids and fuzzy spherical
K-means, is carried out.
In this analysis, the structure of the partitions in terms of the membership degrees
and the main "concepts" conveyed by the most frequent terms in each word cluster
are also evaluated.
Before inspecting the clustering results, an overview of the optimal parameters
selected for each method is presented in Table 4.33.

Table 4.33: Parameters returning the optimal partitions for all the versions of the Joint
Fuzzy Spectral Bi-clustering algorithm and the Sequential Fuzzy Spectral Bi-clustering
algorithm on the corpus of Trump and Clinton speeches.

Parameters Fuzzy K-means Spherical Fuzzy K-means Fuzzy K-medoids
Joint Sequential Joint Sequential Joint Sequential

Kdocs 2 2 2 3 2 2
Kwords 2 2 2 2 2 2
m 1.7 1.8 1.8 1.9 2 1.5

Using Dhillon’s method, the optimal number of clusters for the partitions of
the documents and the words is equal to 4. On the other hand, using Kluger’s
method, the optimal number of clusters for the document partition is 2 while the
optimal one for the word partition is 5.

What emerges from Table 4.33 is that all the versions of two fuzzy spectral
bi-clustering algorithms are pretty robust in the identification of the optimal par-
titions. Indeed, except from the Sequential Fuzzy Spectral Bi-clustering algorithm
in combination with the fuzzy spherical K-means, the optimal number of clusters
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for both the document and the word partitions is always equal to 2. On the
contrary, the two standard methods return very different results. A certain ho-
mogeneity is identifiable also in the choice of the fuzziness parameter m. Indeed,
apart from the Sequential Fuzzy Spectral Bi-clustering algorithm in combination
with the fuzzy K-medoids, all the other methods return a value of m ranging
between 1.7 and 2.

The first results of the comparative analysis are reported in Table 4.34, Table
4.35, Table 4.36 and Table 4.37.

Fuzzy K-means

Table 4.34: Comparison of the fuzzy spectral bi-clustering algorithms on real data
using fuzzy K-means.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
fuzzy Silhouette (docs) 0.94 0.73
fuzzy Silhouette (word) 0.89 0.94

Fuzzy K-medoids

Table 4.35: Comparison of the fuzzy spectral bi-clustering algorithms on real data
using fuzzy K-medoids.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
fuzzy Silhouette (docs) 0.94 0.72
fuzzy Silhouette (word) 0.89 0.93

Fuzzy spherical K-means

Table 4.36: Comparison of the fuzzy spectral bi-clustering algorithms on real data
using fuzzy spherical K-means.

Indexes Joint Fuzzy Spectral Sequential Fuzzy Spectral
fuzzy Silhouette (docs) 0.94 0.72
fuzzy Silhouette (word) 0.75 0.69

Dhillon’s and Kluger’s spectral bi-clustering algorithms

Table 4.37: Comparison Dhillon’s and Kluger’s spectral bi-clustering algorithms on
real data.

Indexes Dhillon Kluger
Silhouette (docs) 0.61 0.50
Silhouette (word) 0.58 0.65

What emerges is that, the Joint Fuzzy Spectral Bi-clustering algorithm in
combination with fuzzy K-means and fuzzy K-medoids return the same values of
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the fuzzy Silhouette index for both the document and the word partitions. More
generally, it is possible to observe that for each version of the two fuzzy spectral
bi-clustering methods, the fuzzy Silhouette indexes calculated on the document
partitions are always higher than 0.7.
The Joint Fuzzy Spectral Bi-clustering algorithm returns always an average Sil-
houette index value of 0.94 for all the document partitions, identifying a better
behaviour than the Sequential Fuzzy Spectral Bi-clustering.
A reverse situation can be noticed for the word partitions where the Sequential
Fuzzy Spectral Bi-clustering algorithm in combination with fuzzy K-means and
fuzzy K-medoids returns values of the average fuzzy Silhouette index higher than
the corresponding ones from the Joint Fuzzy Spectral Bi-clustering method (0.94
vs. 0.89 with fuzzy K-means and 0.93 vs. 0.89 with fuzzy K-medoids).
More generically, all the versions of the two methods present a very similar be-
haviour (especially when combined with fuzzy K-means and fuzzy K-medoids).
The crisp Dhillon’s and Kluger’s methods can not be evaluated in terms of the
average fuzzy Silhouette index; however, the corresponding average Silhouette
indexes for the document and the word partitions assume lower values compared
to their fuzzy counterparts.

Each version of the Joint Fuzzy Spectral Bi-clustering algorithm and the Se-
quential Fuzzy Spectral Bi-clustering algorithm identifies overlapping structures
for both the document and the word partitions, whose results are reported in
Table 4.38, Table 4.39, Table 4.40, Table 4.41, Table 4.42 and Table 4.43.
In this context, the analysis highlights that all the versions of both methods re-
turn document partitions characterized by average membership degrees almost
always higher than 0.75. In some cases, the average membership degrees for
the identified partitions are even higher than 0.9. Concerning the word parti-
tions, the Joint Fuzzy Spectral Bi-clustering algorithm is mainly characterized
by higher average membership degrees compared to the ones from the Sequential
Fuzzy Spectral Bi-clustering.
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Fuzzy K-means

Table 4.38: Main statistics of the membership degrees for the document partitions
obtained on real data by using fuzzy K-means in, respectively, Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.53 0.99 0.98
Cluster 2 0.52 0.99 0.82

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.54 1 0.86
Cluster 2 0.53 1 0.90

Table 4.39: Main statistics of the membership degrees for the word partitions obtained
on real data by using fuzzy K-means in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.95
Cluster 2 0.50 1 0.93

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.75
Cluster 2 0.50 1 0.97

Fuzzy K-medoids

Table 4.40: Main statistics of the membership degrees for the document partitions
obtained on real data by using fuzzy K-medoids in, respectively, Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.52 0.99 0.97
Cluster 2 0.53 0.99 0.78

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.94
Cluster 2 0.51 1 0.91
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Table 4.41: Main statistics of the membership degrees for the word partitions obtained
on real data by using fuzzy K-medoids in, respectively, Joint Fuzzy Spectral Bi-clustering
and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.93
Cluster 2 0.50 1 0.91

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.76
Cluster 2 0.50 1 0.77

Fuzzy spherical K-means

Table 4.42: Main statistics of the membership degrees for the document partitions
obtained on real data by using fuzzy spherical K-means in, respectively, Joint Fuzzy
Spectral Bi-clustering and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.54 0.99 0.97
Cluster 2 0.51 0.99 0.95

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.48 0.99 0.87
Cluster 2 0.47 0.99 0.88
Cluster 3 0.39 0.99 0.76

Table 4.43: Main statistics of the membership degrees for the word partitions obtained
on real data by using fuzzy spherical K-means in, respectively, Joint Fuzzy Spectral Bi-
clustering and Sequential Fuzzy Spectral Bi-clustering algorithms.

Joint Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 1 0.94
Cluster 2 0.50 1 0.95

Sequential Fuzzy Spectral
Cluster Min.memb.deg. Max.memb.deg. Av.memb.deg.

Cluster 1 0.50 0.99 0.87
Cluster 2 0.51 0.99 0.78
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Then, an inspection of the content conveyed by the identified partitions is
carried out. Against this background, the first ten most frequent words in each
cluster are analysed. What emerges from the results of the fuzzy spectral bi-
clustering algorithms is that at least one cluster in each partition is character-
ized by the topic of "propaganda", mainly identifiable by the words "country",
"great", "vote", "campaign", "election", "together", "president", "future", "sup-
port", "America", "change".
The other contents emerging from the first ten most frequent words can be asso-
ciated to "trade and international relationships", "education system", "internal
affairs" and "military and economic affairs".
In order to better visualize the content of each cluster emerging from our analy-
sis, for all the versions of the proposed fuzzy spectral bi-clustering algorithms, a
summary of them is provided in Table 4.44.

Table 4.44: Main concepts conveyed by the most ten frequent terms for each cluster
in the identified partitions of the fuzzy spectral bi-clustering algorithms.

Fuzzy K-means
Cluster Joint Sequential

Cluster 1 "propaganda" "Trade and international relationships"
Cluster 2 "education system" "propaganda"

Fuzzy K-medoids
Cluster Joint Sequential

Cluster 1 "propaganda" "Trade and international relationships"
Cluster 2 "internal affairs" "military and economic affairs"

Fuzzy spherical K-means
Cluster Joint Sequential

Cluster 1 "education system" "propaganda "
Cluster 2 "propaganda" "Trade and international relationships"

The detailed lists of the first ten most frequent words for each word cluster
are reported in Table 4.45, Table 4.46, Table 4.47, Table 4.48 and Table 4.49.
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Fuzzy K-means

Table 4.45: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with K-means
algorithm on real data.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 1 Cluster 2
countri economi peopl presid
great young job work
job hope year campaign
back kid world togeth
vote colleg win election
unit nuclear big famili
year debt trade hard

america student monei future
support value militari support
histori gun wall life

Fuzzy K-medoids

Table 4.46: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with fuzzy K-
medoids algorithm on real data.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 1 Cluster 2

peopl election countri peopl
countri famili great work
great economi job care
job right obama business
back senat change veteran

america service govern war
time student stop chance
vote coorporation mexico economi

change convention disaster republican
important deserve tax nation
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Fuzzy spherical K-means

Table 4.47: Most frequent terms of each word cluster returned by Joint Fuzzy Spectral
Bi-clustering and Sequential Fuzzy Spectral Bi-clustering in combination with the fuzzy
spherical K-means algorithm on real data.

Joint Fuzzy Spectral Sequential Fuzzy Spectral
Cluster 1 Cluster 2 Cluster 1 Cluster 2
america peopl america peopl

campaign vote work great
pay world campaign job
futur win togeth world

business audience election monei
support care famili audience
school trade futur change

education remember support isi
children tax women militari
chance disaster health bill

Dhillon’s and Kluger’s spectral bi-clustering algorithms

Table 4.48: Most frequent terms of each word cluster returned by Dhillon’s spectral
bi-clustering algorithm on real data.

Dhillon
Cluster 1 Cluster 2 Cluster 3 Cluster 4
audience presid colleg win

care work right monei
thing campaign equal trade
love togeth black wall

remember america challenge deal
day election grateful countri
job futur church mexico

obama famili universiti disaster
militari women muslim china
change economi biden border
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Table 4.49: Most frequent terms of each word cluster returned by Kluger’s spectral
bi-clustering algorithm on real data.

Kluger
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
america vote good peopl presid

life audience pay countri togeth
secretari change job great election
candidat plan important job famili
house govern tax back hard
honor nation business time futur

leadership fight veteran world economi
men energi manufactur big nuclear

presid administration war monei opportuniti
attack education power care weapon

In conclusion, since the document and the word partitions are characterized by
the same number of clusters, we have tried to understand if there is a link between
the document and the word clusters. In other words, we tried to understand if,
for instance, the documents within the first cluster are somehow connected with
the "concepts" conveyed by the first word cluster.
However, from the inspection of the documents and the corresponding word clus-
ters we cannot reach any general conclusion, especially when there is not a one
to one correspondence between the word and the document clusters.
Nevertheless, for the documents for which is possible to identify a connection
with the corresponding word clusters, it is interesting to observe the behaviour
of the membership degrees.
Two illustrative examples, one for the Joint Fuzzy Spectral Bi-clustering algorithm
and the other one for the Sequential Fuzzy Spectral Bi-clustering, are reported be-
low.

In particular, the first example is about the assignment of three documents
under the Joint Fuzzy Spectral Bi-clustering algorithm in combination with fuzzy
K-means: the first document is assigned to the second cluster with a member-
ship degree of 0.97, the second document is assigned to the first cluster with a
membership degree of 0.99 and the third document is assigned to the first cluster
with a lower membership degree equal to 0.50.
Figure 4.2, Figure 4.3 and Figure 4.4 report the wordclouds of the three afore-
mentioned documents.
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Figure 4.2: Wordcloud of the document assigned to the second cluster with a mem-
bership degree of 0.97 under the Joint Fuzzy Spectral Bi-clustering algorithm in com-
bination with fuzzy K-means. The corresponding word cluster conveys the concept of
"education system".

Figure 4.3: Wordcloud of the document assigned to the first cluster with a membership
degree of 0.99 under the Joint Fuzzy Spectral Bi-clustering algorithm in combination
with fuzzy K-means. The corresponding word cluster conveys the concept of "propa-
ganda".

Irene Cozzolino 105



4.3. Applications

Figure 4.4: Wordcloud of the document assigned to the first cluster with a membership
degree of 0.50 under the Joint Fuzzy Spectral Bi-clustering algorithm in combination
with fuzzy K-means. The corresponding word cluster conveys the concept of "propa-
ganda".

How it is possible to notice, the first document clearly conveys the concept of
"education system", as well as the second document clearly conveys the concept
of "propaganda". On the other hand the third document is less easily identifiable
within one of the two categories. In this example the "strength" of the conveyed
concepts is well represented by the corresponding membership degrees of the doc-
ument partitions. Indeed, the third document is assigned to the first cluster (that
could be associated to the first word cluster "propaganda") with a membership
degree equals to 0.5. On the contrary the first two documents, which are more
easily understandable from the wordclouds, have less fuzzier membership degrees
(respectively, 0.97 and 0.99).

The second example considers three documents classified under the Sequen-
tial Fuzzy Spectral Bi-clustering algorithm in combination always with fuzzy K-
means. Also in this example the membership degrees behaviour of the document
partition reflect the "strenght" of the concepts conveyed by the corresponding
word clusters. Indeed, the first document is assigned to the second cluster with
a membership degree of 0.85. As it is possible to notice from its wordcloud in
Figure 4.5, it well reflects the concept of "propaganda".
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Figure 4.5: Wordcloud of the document assigned to the second cluster with a mem-
bership degree of 0.85 under the Sequential Fuzzy Spectral Bi-clustering algorithm in
combination with fuzzy K-means. The corresponding word cluster conveys the concept
of "propaganda".

The second document is assigned to the first cluster with a membership de-
gree of 0.97. The corresponding word cluster is about "trade and international
relationships". Its wordcloud is reported in Figure 4.6.

To conclude, the third and last document is the one characterized by a fuzzier
membership degree: indeed, it is assigned to the first cluster with a membership
degree of 0.68. Its wordcloud is displayed in Figure 4.7.
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Figure 4.6: Wordcloud of the document assigned to the first cluster with a mem-
bership degree of 0.97 under the Sequential Fuzzy Spectral Bi-clustering algorithm in
combination with fuzzy K-means. The corresponding word cluster conveys the concept
of "trade and international relationships".

Figure 4.7: Wordcloud of the document assigned to the first cluster with a mem-
bership degree of 0.68 under the Sequential Fuzzy Spectral Bi-clustering algorithm in
combination with fuzzy K-means. The corresponding word cluster conveys the concept
of "trade and international relationships".
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4.4 Concluding remarks

In this chapter, starting from the state-of-art bi-clustering methods introduced
by Dhillon and Kluger, two novel fuzzy spectral bi-clustering algorithms are pre-
sented and discussed. From the experiments carried out on both benchmark and
real data sets, the new methods lead to the identification of fuzzy partitions for
both the documents and the words. Moreover, the two proposed methods are
characterized by an higher accuracy, in terms of the Purity index, compared to
their crisp counterparts.
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Chapter 5

Conclusions and open problems

The development of unsupervised classification algorithms for analysing text doc-
uments represents an interesting field of research for several text mining tasks.
This thesis wanted to give a contribution in this direction, focusing mainly on
the construction of fuzzy spectral clustering methods for the classification of text
data.

Indeed, nowadays societies are developing a huge amount of text data (e.g.
social networks, web pages, electronic document archives...) that if are not elab-
orated and analysed correctly, there may be the risk of loosing important and
precious information which can be used for further analyses.
The aim of this work consisted in providing a further and little step in the field
of research of text classification, presenting different novel fuzzy (bi-)clustering
methods which could be of support in decision making processes.

Starting off from this base, the thesis begins with an introduction (Chapter 1)
and continues with a review of the main approaches already available in literature
in the document clustering framework, providing an overview of the state-of-art
methods (Chapter 2).
The following chapter (Chapter 3) contains both methodological proposals and
empirical evaluations on benchmark and real data sets.
More specifically, a novel fuzzy spectral clustering algorithm for unsupervised
classification of text data is presented. The new method exploits the use of fuzzy
K-medoids and allows for an overlapping between clusters. The novel method
has been initially used in combination with the Spectrum string kernel and then
with KS2M similarity, giving rise to a (second) novel fuzzy spectral clustering al-
gorithm. Nevertheless, in order to improve the accuracy of the clustering results,
a new similarity measure for text documents, S∗, to use in combination with the
novel aforementioned fuzzy spectral clustering algorithm is presented in Section
3.5.
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The second part of the thesis (Chapter 4), focuses on Dhillon’s and Kluger’s
state-of-arts bi-clustering algorithms. In particular, starting from them, two novel
bi-clustering methods developed under a fuzzy set-up, the Joint Fuzzy Spectral
Bi-clustering and the Sequential Fuzzy Spectral Bi-clustering, are proposed and
discussed. Chapter 4 ends with applications involving benchmark and real data
sets.
Finally, the last chapter (Chapter 5) holds the main conclusions.

Therefore, our main contributions in this thesis are: 1) the identification of
three novel fuzzy spectral clustering algorithms for text data, 2) the development
of a novel similarity measure for textual documents and 3) the proposal of two
novel fuzzy bi-clustering algorithms using spectral methods.

As previously mentioned, this thesis seeks to produce a little contribution in
the desired direction, but there is still plenty of room for improvement. Consid-
ering all the possible open problems, one that certainly will interest our attention
in future is related to the inclusion, during the clustering approach of the novel
fuzzy spectral bi-clustering algorithm with S∗ similarity, of the semantic content
conveyed by the words.
For this purpose an English thesaurus, such as the publicly available WordNet
(Miller, 1995), can be employed. Indeed, this lexical database provides valu-
able information on the semantic of verbs, adjectives, nouns and adverbs. These
items are clustered into groups, called synsets (cognitive synonyms), conveying
clear and distinct concepts. This information can be used as metadata in the
clustering process, providing further insights for an accurate classification of the
documents.

On the other hand, concerning the fuzzy spectral bi-clustering methods, the
potential for improvements is even wider than in the one-mode clustering setup.
Indeed, even if the already available methods provide a way to identify efficiently
the co-clustering structures of both words and documents, in our future works
we plan to investigate the development of a new version of Joint Fuzzy Spectral
Bi-clustering. The new algorithm should be characterized by a simultaneous
identification of the document and the word partitions but, at the same time,
should provide the selection of a distinct number of clusters for the two partitions.
Furthermore, even in the bi-clustering setup, another issue that will be subject
of future exploration is the inclusion of the semantic content of the terms for the
identification of the word clusters in order to improve the clustering performance.

Irene Cozzolino 111



References

References

Aggarwal, C. C., & Zhai, C. (2012). A survey of text classification algorithms.
In Mining text data (pp. 163–222).

Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful
seeding (Tech. Rep.). Stanford.

Babu, G. P., & Murty, M. N. (1993). A near-optimal initial seed value selection
in k-means means algorithm using a genetic algorithm. Pattern recognition
letters , 14 (10), 763–769.

Balakrishnan, V., & Lloyd-Yemoh, E. (2014). Stemming and lemmatization: a
comparison of retrieval performances. In Proceedings of scei seoul confer-
ences (pp. 174–179).

Bao, L., Tang, S., Li, J., Zhang, Y., & Ye, W.-p. (2008). Document clustering
based on spectral clustering and non-negative matrix factorization. In In-
ternational conference on industrial, engineering and other applications of
applied intelligent systems (pp. 149–158).

Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Advances in neural information processing
systems 14 (nips 2001) (Vol. 14, pp. 585–591).

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research, 7 (85), 2399–2434.

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms.
Springer.

Bisht, S., & Paul, A. (2013). Document clustering: a review. International
Journal of Computer Applications , 73 (11).

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.
Journal of machine Learning research, 3 (Jan), 993–1022.

Campello, R. J. (2007). A fuzzy extension of the rand index and other related
indexes for clustering and classification assessment. Pattern Recognition
Letters , 28 (7), 833–841.

Campello, R. J., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette
width criterion for cluster analysis. Fuzzy Sets and Systems , 157 (21), 2858–
2875.

Cano, C., Adarve, L., López, J., & Blanco, A. (2007). Possibilistic approach for
biclustering microarray data. Computers in biology and medicine, 37 (10),
1426–1436.

Casella, G., & George, E. I. (1992). Explaining the gibbs sampler. The American
Statistician, 46 (3), 167–174.

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical
Soc.

Irene Cozzolino 112



References

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning ,
20 (3), 273–297.

Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.
Cozzolino, I., & Ferraro, M. B. (2022). Document clustering. Wiley Interdisci-

plinary Reviews: Computational Statistics , e1588.
Cozzolino, I., Ferraro, M. B., & Winker, P. (2021). A fuzzy clustering approach

for textual data. In Book of short papers sis 2021 (pp. 770–776).
Cui, X., Potok, T. E., & Palathingal, P. (2005). Document clustering using

particle swarm optimization. In Proceedings 2005 ieee swarm intelligence
symposium, 2005. sis 2005. (pp. 185–191).

de Finetti, B. (1969). Sulla proseguibilità di processi aleatori scambiabili.
De Finetti, B. (1972). Probability, induction and statistics: The art of guessing.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39 (1), 1–22.

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the seventh acm sigkdd international
conference on knowledge discovery and data mining (pp. 269–274).

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel k-means: spectral clustering
and normalized cuts. In Proceedings of the tenth acm sigkdd international
conference on knowledge discovery and data mining (pp. 551–556).

Dhillon, I. S., & Modha, D. S. (2001). Concept decompositions for large sparse
text data using clustering. Machine learning , 42 (1), 143–175.

Ding, C. H., He, X., Zha, H., Gu, M., & Simon, H. D. (2001). A min-max cut
algorithm for graph partitioning and data clustering. In Proceedings 2001
ieee international conference on data mining (pp. 107–114).

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm
theory. In Mhs’95. proceedings of the sixth international symposium on
micro machine and human science (pp. 39–43).

Fahad, S. A., & Yafooz, W. M. (2017). Review on semantic document clustering.
International Journal of Contemporary Computer Research, 1 (1), 14–30.

Ferraro, M. B., & Giordani, P. (2020). Soft clustering. Wiley Interdisciplinary
Reviews: Computational Statistics , 12 (1), e1480.

Ferraro, M. B., Giordani, P., & Serafini, A. (2019). fclust: An r package for fuzzy
clustering. R J., 11 (1), 198.

Ferraro, M. B., Giordani, P., & Vichi, M. (2021). A class of two-mode clustering
algorithms in a fuzzy setting. Econometrics and Statistics , 18 , 63–78.

Fraley, C., & Raftery, A. E. (1998). How many clusters? which clustering
method? answers via model-based cluster analysis. The computer journal ,
41 (8), 578–588.

Irene Cozzolino 113



References

Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis,
and density estimation. Journal of the American statistical Association,
97 (458), 611–631.

Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American statistical association, 85 (410),
398–409.

Green, N., Rege, M., Liu, X., & Bailey, R. (2011). Evolutionary spectral co-
clustering. In The 2011 international joint conference on neural networks
(pp. 1074–1081).

Guan, J., Qiu, G., & Xue, X.-Y. (2005). Spectral images and features co-
clustering with application to content-based image retrieval. In 2005 ieee
7th workshop on multimedia signal processing (pp. 1–4).

Guattery, S., & Miller, G. L. (1994). On the performance of spectral graph
partitioning methods. (Tech. Rep.). CARNEGIE-MELLON UNIV PITTS-
BURGH PA DEPT OF COMPUTER SCIENCE.

Hagen, L., & Kahng, A. B. (1992). New spectral methods for ratio cut partitioning
and clustering. IEEE transactions on computer-aided design of integrated
circuits and systems , 11 (9), 1074–1085.

Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Wiley
Hoboken.

He, X., Cai, D., Shao, Y., Bao, H., & Han, J. (2010). Laplacian regularized gaus-
sian mixture model for data clustering. IEEE Transactions on Knowledge
and Data Engineering , 23 (9), 1406–1418.

Hornik, K., Feinerer, I., Kober, M., & Buchta, C. (2012). Spherical k-means
clustering. Journal of statistical software, 50 (10), 1–22.

Huang, A. (2008). Similarity measures for text document clustering. In Proceed-
ings of the sixth new zealand computer science research student conference
(nzcsrsc2008), christchurch, new zealand (Vol. 4, pp. 9–56).

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bull Soc Vaudoise Sci Nat , 37 , 547–579.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review.
ACM computing surveys (CSUR), 31 (3), 264–323.

Janani, R., & Vijayarani, S. (2019). Text document clustering using spectral
clustering algorithm with particle swarm optimization. Expert Systems with
Applications , 134 , 192–200.

Jivani, A. G., et al. (2011). A comparative study of stemming algorithms. Inter-
national journal of computer technology and applications , 2 (6), 1930–1938.

Joachims, T. (1998). Text categorization with support vector machines: Learning
with many relevant features. In European conference on machine learning
(pp. 137–142).

Irene Cozzolino 114



References

Joachims, T., Cristianini, N., & Shawe-Taylor, J. (2001). Composite kernels for
hypertext categorisation. In Icml (Vol. 1, pp. 250–257).

Jones, K. S. (1972). A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation, 28 (1), 11–21.

Karatzoglou, A., & Feinerer, I. (2007). Text clustering with string kernels in r.
In Advances in data analysis, proceedings of the 30th annual conference of
the gesellschaft fur klassifikation e.v., freie universitat berlin (pp. 91–98).

Karatzoglou, A., Smola, A., Hornik, K., & Karatzoglou, M. A. (2019). Package
‘kernlab’. CRAN R Project .

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an s4
package for kernel methods in r. Journal of statistical software, 11 (9),
1–20.

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction
to cluster analysis. John Wiley & Sons.

Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering
of microarray data: coclustering genes and conditions. Genome research,
13 (4), 703–716.

Knittel, J., Koch, S., & Ertl, T. (2021). Efficient sparse spherical k-means
for document clustering. In Proceedings of the 21st acm symposium on
document engineering (pp. 1–4).

Korenius, T., Laurikkala, J., Järvelin, K., & Juhola, M. (2004). Stemming and
lemmatization in the clustering of finnish text documents. In Proceedings of
the thirteenth acm international conference on information and knowledge
management (pp. 625–633).

Krishna, K., & Murty, M. N. (1999). Genetic k-means algorithm. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29 (3),
433–439.

Krovetz, R. (2000). Viewing morphology as an inference process. Artificial
intelligence, 118 (1-2), 277–294.

Kumar, A., & Daumé, H. (2011). A co-training approach for multi-view spectral
clustering. In Proceedings of the 28th international conference on machine
learning (icml-11) (pp. 393–400).

Lan, M., Tan, C. L., Su, J., & Lu, Y. (2008). Supervised and traditional term
weighting methods for automatic text categorization. IEEE transactions on
pattern analysis and machine intelligence, 31 (4), 721–735.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Machine learning
proceedings 1995 (pp. 331–339). Elsevier.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and
documents. In International conference on machine learning (pp. 1188–
1196).

Irene Cozzolino 115



References

Lenz, D., & Winker, P. (2020). Measuring the diffusion of innovations with
paragraph vector topic models. PLoS ONE , 15 (1), e0226685.

Lewis, D. (1997). Reuters-21578 text categorization test collection, distribution
1.0. http://www. research/. att. com.

Liu, J., Cai, D., & He, X. (2010). Gaussian mixture model with local consistency.
In Proceedings of the aaai conference on artificial intelligence (Vol. 24, pp.
512–517).

Liu, N., Chen, F., & Lu, M. (2013). Spectral co-clustering documents and words
using fuzzy k-harmonic means. International Journal of Machine Learning
and Cybernetics , 4 (1), 75–83.

Lo, R. T.-W., He, B., & Ounis, I. (2005). Automatically building a stopword
list for an information retrieval system. Journal on Digital Information
Management , 3 , 3–8.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002).
Text classification using string kernels. Journal of Machine Learning Re-
search, 2 (Feb), 419–444.

MacQueen, J. (1967). Classification and analysis of multivariate observations. In
5th berkeley symp. math. statist. probability (pp. 281–297).

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to information
retrieval. Cambridge University Press.

McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite mixture models.
Annual review of statistics and its application, 6 (1), 355–378.

Miao, D., Duan, Q., Zhang, H., & Jiao, N. (2009). Rough set based hybrid
algorithm for text classification. Expert Systems with Applications , 36 (5),
9168–9174.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications
of the ACM , 38 (11), 39–41.

Mohar, B. (1997). Some applications of laplace eigenvalues of graphs. In Graph
symmetry (pp. 225–275). Springer.

Nazeer, K. A., & Sebastian, M. (2009). Improving the accuracy and efficiency of
the k-means clustering algorithm. In Proceedings of the world congress on
engineering (Vol. 1, pp. 1–3).

Ng, Jordan, & Weiss. (2001). On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems , 14 .

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis
and an algorithm. In Advances in neural information processing systems 14
(nips 2001) (pp. 849–856).

Nguyen, E. (2013). Text mining and network analysis of digital libraries in r. In
Y. Zhao & Y. Cen (Eds.), Data mining applications with r. (p. 201-213).
Academic Press.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification

Irene Cozzolino 116



References

from labeled and unlabeled documents using em. Machine learning , 39 (2),
103–134.

Oellermann, O. R., & Schwenk, A. J. (1991). The laplacian spectrum of graphs.
Graph Theory, c, Appl , 2 , 871–898.

Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means
model. IEEE Transactions on Fuzzy systems , 3 (3), 370–379.

Porter, M. F. (1980). An algorithm for suffix stripping. Program: electronic
library and information systems , 14 (3), 130–137.

Porter, M. F. (2001). Snowball: A language for stemming algorithms. Retrieved
from http://snowball.tartarus.org/texts/introduction.html

Pothen, A., Simon, H. D., & Liou, K.-P. (1990). Partitioning sparse matrices with
eigenvectors of graphs. SIAM journal on matrix analysis and applications ,
11 (3), 430–452.

Premalatha, K., & Natarajan, A. (2010). A literature review on document
clustering. Information Technology Journal , 9 (5), 993–1002.

Puzicha, J., Hofmann, T., & Buhmann, J. M. (2000). A theory of proximity
based clustering: Structure detection by optimization. Pattern Recognition,
33 (4), 617–634.

Rencher, A. C. (2005). A review of “methods of multivariate analysis, second
edition”. IIE Transactions , 37 (11), 1083-1085.

Robertson, S. (2004). Understanding inverse document frequency: on theoretical
arguments for idf. Journal of documentation, 60 , 503–520.

Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework:
Bm25 and beyond. Foundations and Trends in Information Retrieval , 3 (4).

Rodrigues, M. M., & Sacks, L. (2004). A scalable hierarchical fuzzy clustering
algorithm for text mining. In Proceedings of the 5th international conference
on recent advances in soft computing (pp. 269–274).

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science, 290 (5500), 2323–2326.

Salton, G. (1971). The smart retrieval system—experiments in automatic docu-
ment processing. Prentice-Hall, Inc.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text
retrieval. Information processing & management , 24 (5), 513–523.

Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval.
McGraw-Hill.

Schütze, H., Manning, C. D., & Raghavan, P. (2008). Introduction to information
retrieval (Vol. 39). Cambridge University Press Cambridge.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34 (1), 1–47.

Shah, N., & Mahajan, S. (2012). Document clustering: a detailed review. Inter-
national Journal of Applied Information Systems , 4 (5), 30–38.

Irene Cozzolino 117

http://snowball.tartarus.org/texts/introduction.html


References

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIG-
MOBILE mobile computing and communications review , 5 (1), 3–55.

Sharma, D., & Cse, M. (2012). Stemming algorithms: a comparative study and
their analysis. International Journal of Applied Information Systems , 4 (3),
7–12.

Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern
analysis. Cambridge university press.

Shi, & Malik. (2000). Normalized cuts and image segmentation. IEEE Transac-
tions on pattern analysis and machine intelligence, 22 (8), 888–905.

Shi, L., Weng, M., Ma, X., & Xi, L. (2010). Rough set based decision tree ensem-
ble algorithm for text classification. Journal of Computational Information
Systems , 6 (1), 89–95.

Smola, A. J., & Schölkopf, B. (1998). Learning with kernels (Vol. 4). Citeseer.
Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. the principles and

practice of numerical classification. W H Freeman & Co.
Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document

clustering techniques (Tech. Rep.). University of Minnesota.
Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004). Probabilistic

author-topic models for information discovery. In Proceedings of the tenth
acm sigkdd international conference on knowledge discovery and data min-
ing (pp. 306–315).

Still, S., & Bialek, W. (2004). How many clusters? an information-theoretic
perspective. Neural computation, 16 (12), 2483–2506.

Stoer, M., & Wagner, F. (1997). A simple min-cut algorithm. Journal of the
ACM (JACM), 44 (4), 585–591.

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining.
Pearson education.

Tripathy, B., et al. (2019). Fuzzy clustering of sequential data. International
Journal of Intelligent Systems and Applications , 11 (1), 43.

Van Rijsbergen, C., Harper, D. J., & Porter, M. F. (1981). The selection of good
search terms. Information Processing & Management , 17 (2), 77–91.

Vapnik, V. (1999). The nature of statistical learning theory. Springer science &
business media.

Vichi, M. (2001). Double k-means clustering for simultaneous classification of
objects and variables. In Advances in classification and data analysis (pp.
43–52). Springer.

Vijayarani, S., Ilamathi, M. J., Nithya, M., et al. (2015). Preprocessing techniques
for text mining-an overview. International Journal of Computer Science &
Communication Networks , 5 (1), 7–16.

Vijaymeena, M., & Kavitha, K. (2016). A survey on similarity measures in text
mining. Machine Learning and Applications: An International Journal ,

Irene Cozzolino 118



References

3 (2), 19–28.
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and com-

puting , 17 (4), 395–416.
Wagner, D., & Wagner, F. (1993). Between min cut and graph bisection. In

International symposium on mathematical foundations of computer science
(pp. 744–750).

Webster, J. J., & Kit, C. (1992). Tokenization as the initial phase in nlp. In
Coling 1992 volume 4: The 14th international conference on computational
linguistics (pp. 1106–1110).

Wieling, M., & Nerbonne, J. (2009). Bipartite spectral graph partitioning to co-
cluster varieties and sound correspondences in dialectology. In Proceedings
of the 2009 workshop on graph-based methods for natural language process-
ing (textgraphs-4) (pp. 14–22).

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., . . . others
(2008). Top 10 algorithms in data mining. Knowledge and information
systems , 14 (1), 1–37.

Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE
Transactions on pattern analysis and machine intelligence, 13 (8), 841–847.

Xu, G., Zong, Y., Dolog, P., & Zhang, Y. (2010). Co-clustering analysis of weblogs
using bipartite spectral projection approach. In International conference on
knowledge-based and intelligent information and engineering systems (pp.
398–407).

Zha, H., He, X., Ding, C., Simon, H., & Gu, M. (2001). Bipartite graph partition-
ing and data clustering. In Proceedings of the tenth international conference
on information and knowledge management (pp. 25–32).

Zhang, J.-S., & Leung, Y.-W. (2004). Improved possibilistic c-means clustering
algorithms. IEEE transactions on fuzzy systems , 12 (2), 209–217.

Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected
criterion functions for document clustering. Machine learning , 55 (3), 311–
331.

Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical clustering algorithms for
document datasets. Data mining and knowledge discovery , 10 (2), 141–168.

Irene Cozzolino 119


	List of Figures
	List of Tables
	General introduction
	Literature overview on document clustering techniques
	Introduction
	Document representation
	Pre-processing
	Vector Space Model

	Document clustering methods
	Prototype-based methods
	Graph-based methods
	 Hierarchical methods
	Model-based methods

	Concluding remarks

	A novel fuzzy spectral clustering approach for text data
	Introduction
	Spectral clustering and kernels for text sequences
	Spectral clustering
	String kernel functions

	A new proposal of fuzzy spectral clustering algorithm with string kernels
	An application of the fuzzy version of spectral clustering algorithm with Spectrum string kernel function

	The novel fuzzy spectral clustering with Kernel and Set similarity (KS2M)
	The novel fuzzy spectral clustering with a new similarity measure
	A novel similarity measure for sequential data: S*
	Fuzzy spectral clustering algorithm with S* similarity

	Latent Dirichlet Allocation (LDA)
	Empirical analysis
	Benchmark data sets: Reuters-21578 and 20 newsgroups
	The novel fuzzy spectral clustering algorithm in combination with S* on real data: a corpus of abstracts from statistical articles collected from ArXiv database

	Concluding remarks

	Fuzzy spectral bi-clustering
	Introduction
	Spectral bi-clustering
	Bipartite graph
	Dhillon's spectral bi-clustering algorithm
	A novel fuzzy version of spectral bi-clustering based on a simultaneous approach
	A novel fuzzy version of spectral bi-clustering based on a sequential approach

	Applications
	Benchmark data set: WebKB
	Benchmark data set: the category science of 20 newsgroup data set
	Real data set: Trump and Clinton speeches

	Concluding remarks

	Conclusions and open problems
	Bibliography
	References



