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This work proposes a multiscale analysis of nanocomposites made of hexagonal assemblies. The present nanomaterial

is made of irregular concave hexagonal shaped assemblies interacting with elastic interfaces. The homogenization of

such irregular units results to have anisotropic constitutive properties by applying a homogenization method. The

validity of the present homogenization and modeling is verified by comparing the continuum Cosserat model with a

discrete model made of physical particles and elastic interfaces. Parametric investigation is also proposed by varying

the geometric properties of the nanoparticles by showing the dynamic character of these materials by considering both

Cosserat and Cauchy contiuum models.
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1. INTRODUCTION1

It is well known that multiscale methods have been introduced when continuum mechanics was developed. Since2

mechanical properties introduced in the latter should have been determined for the solution of the formulated mathe-3

matical problem. The most compelling multiscale approaches are the ones that provide macroscale relations by taking4

into consideration the underlying microscale. This connection is often provided by equivalence criteria (Trovalusci,5

2014). Since originally elastic continua were modeled as interaction of particles/molecules depending on their mutual6

distance, an approach based on mechanics was able to predict the macroscopic constitutive behavior using micro-7

scopic laws for systems of particles/molecules (also known as central-force scheme). The latter provided the basis of8

the well-known Cauchy model of the elastic body where all particles/molecules are in contact in pairs.9

The original definition provided by Cauchy has been extended by Voigt by introducing a continuum made of ori-10

ented rigid particles that interact among forces and couples. He was able to demonstrate that Navier-Cauchy molecular11

theory was not correct due to the assumption of a central-force scheme, since orientation of the particles was not taken12

into consideration (Trovalusci, 2014). The one that was able to overcome the limitations of molecular approaches in13

elasticity was Poincaré (Trovalusci, 2014). Poincaré proposed a lattice model described by potential energy function14

of point-like molecules which were able not only to interact in pairs, but also to give a multibody potential description15

(Mariano and Trovalusci, 1999). It should be underlined that molecular mechanical theories were based on the discrete16

nature of matter. The same was applied also in thermodynamics (Cimmelli et al., 2013; Li and Ostoja-Starzewski,17

2011; Makowski and Stumpf, 2001)), electromagnetics and quantum mechanics too (Blanc et al., 2002; Curtin and18

Miller, 2003).19

As aforementioned, the mechanical properties of materials need a microstructure description in order to be ac-20

curately predicted and carried out by homogenization procedures (Budiansky, 1965; Nemat-Nasser et al., 1996). In21

particular, several length scales are often required, thus, discrete-continuous approaches are encountering a renewal. It22

is worth to mention that coarse–graining homogenizations exploit an explicit link between the fine and coarse scales,23

moreover, they keep memory of the microstructural origin of deformation mechanisms which is especially needed in24

novel custom-made materials (Sadowski et al., 2014).25

Homogeneous deformations are considered in both Voigt’s and Poincaré’s models (in other words local actions26

are considered) and local angular potential are added to the local actions. At this stage, if no other constraint is applied27

the homogenized continua would exhibit its dependency on material length scales (Maugin, 2016). These models can28

be termed as ‘implicit’ non–local continua as described by Mindlin (1964) and Trovalusci (2014). On the contrary29

if not homogeneous deformations are taken into account the equivalent continua would be classified as ‘explicit’30
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non–local media such as by Eringen (1972) and Tuna et al. (2019). The aforementioned approach of Voigt related to1

coarse-graining approach can be used in several composite material configurations such as fiber-reinforced materials,2

microcracked solids (Greco et al., 2016a; Jain and Ghosh, 2009; Nguyen et al., 2012), voids and gaps (Pingaro et al.,3

2019a) and dilatant materials (Shi et al., 2021). De Borst (1991) and Sluys et al. (1993) showed the advantages of4

materials with microstructure when localization and discontinuities are introduced in the continuum.5

As it has been demonstrated also by Kunin (2012), the description of materials with an internal microstructure6

(e.g. materials made of constituents of significant size) must consider nonlocal modelling. The latter (also known as7

microcontinua or complex continua as shown by Sadowski and Trovalusci (2014)) defines any continuum that keeps8

memory of the internal microstructure by means of internal material lengths which often represent the distance be-9

tween particles in a lattice, grain or cell size, etc. as also discussed by Shaat et al. (2020). Nonlocal continua are known10

to have dispersion properties which represent a dependency between wave–velocities and wave–length/frequency11

(Cermelli and Pastrone, 2001; Kumar et al., 2008; Mondal et al., 2021; Oliveri and Speciale, 2008). Classical contin-12

uum modelling (also known as Grade 1 (Trovalusci, 2014) do not have the aforementioned properties.13

It is noted that ’implicit’ (weak) and ’explicit’ (strong) nonlocal models both include internal length parameters14

in their mathematical formulation and their equations show dispersion properties (Eringen, 1983; Kröner, 1963)) and15

more recently by (Tuna et al., 2020; Tuna and Trovalusci, 2020). All these models are described by an extended virtual16

power framework, with classical and non-classical primary variables coupled with dual standard and/or non–standard17

fields (Trovalusci, 2014).18

Explicit nonlocal models are higher grade theories where the equations of motions contain derivatives in space19

or time of the standard primal field (macrovelocity) of order different than the second as in the works by Bassani20

et al. (2001); De Borst and Mühlhaus (1992); Mühlhaus and Aifantis (1991); Needleman (1988) among others. In this21

regard, it is worth to cite also the contributions by Bažant et al. (1984); Pijaudier-Cabot and Bazant (1987). Regarding22

the other set of equations of motion that contain non–standard primal fields can be divided into two further classes.23

Firstly, the ones that can be derived from the standard frame invariance axioms, as in the classical case (Green and24

Rivlin, 1997; Podio-Guidugli and Vianello, 2010). Secondly, additional degrees of freedom are considered which25

contain non standard primal fields and – eventually – their derivatives. The latter set of equations are derived using a26

different axiomatic framework as discussed by Gurtin and Podio-Guidugli (1992); Yavari and Marsden (2009)27

The modern concept of material theories with additional degrees of freedom has been provided in the 50s by28

Ericksen and Truesdell (1957); Mindlin (2021), however, the seminal work by Mindlin (1964) shed the light on29

continua with additional degrees of freedom which were able to keep memory of the material microstructure. In order30
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to provide such information microstructure is identified by a unit cell (also known as reference volume element)1

as a portion of polycrystal or granular material as in Gerolymatou (2014); Luding (2005); Settimi et al. (2019).2

Cosserat theory became very popular since the 70s due to the introduction of composite materials in most engineering3

practices since most application have geometric and/or load discontinuities, both conditions wherein Cosserat models4

work better than classical continuum (Cowin, 1970; Luciano and Barbero, 1995). In the same context the multiscale5

homogenization of random composites is worth to be mentioned for its applicability (Luciano and Willis, 2000, 2003,6

2005, 2006; Pingaro et al., 2019b).7

The present work lays in the field of molecular-multifield models for composite materials. The procedure here8

considered takes the advantage of an enriched macroscopic multifield model which is able to consider the description9

of the material at the microscopic level (Trovalusci and Masiani, 1999). The material is considered here as a set of10

rigid particles with a deformable matrix and their interaction depends only on their assemblage where also particle11

orientation is taken into consideration. Material porosity can be also considered since it has an important role. It has12

been demonstrated in the recent literature that the present model is able to analyze fibre-reinforced ceramics, porous13

ceramic composites or metal-ceramic composites but also geomaterials or jointed rocks (Adhikary and Dyskin, 1997;14

Adhikary et al., 1999; Li et al., 2009; Lu et al., 2020)) and masonry (Greco et al., 2016b, 2017; Pepe et al., 2019,15

2020).16

In the present work the focus is on anisotropic media and related simulations (Eremeyev and Pietraszkiewicz,17

2016; Hasanyan and Waas, 2018). The interest on anisttropic media has been incresing in the recent years due18

to technology advancedments on industrial production and subsequent investigation (Eremeyev and Konopińska-19

Zmysłowska, 2020; Fahmy, 2021; Fahmy et al., 2021). Material characterization has been recently focused also on20

beams (structures where one dimension is larger than the other two) using nonlocal models (Apuzzo et al., 2019;21

Barretta et al., 2020; Taliercio and Veber, 2016). Nonlocal models demonstrated to be very effective in the analysis22

of nanostructures and nano composites (Acierno et al., 2017).23

The present work considers previous knowledge of the authors on hexagonal assemblies with anisotropic na-24

ture as in Fantuzzi et al. (2019, 2020b) where novel material symmetries (Fantuzzi et al., 2020a) are analyzed. The25

aim of the work is to investigate the dynamic behavior of composite assemblies made of hexagonal particles as in26

Colatosti et al. (2021a) but by considering non-convex hexagonal shapes. This choice prove a fully anisotropic con-27

situtive behavior of the equivalent material for a special selection of the geometric parameters. The validity of the28

homogenization procedure taken from the work by Trovalusci and Masiani (1999) is proven by considering a discrete29

finite element model and subsequently a parametric investigation is shown in order to demonstrated the peculiarity of30
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Cosserat modeling with respect to Cauchy when dynamics of these materials is under investigation.1

The main structure of this work is listed below. After the introductory section, Cosserat theory is shortly detailed2

and main equations are reported together with the present finite element implementation considered in the following3

simulations. Numerical applications are detailed with reference to the present multiscale strategy and microscopic4

unit cell of the considered anisotropic class of materials. Discussions and conclusions are drawn at the end of the5

work.6

2. COSSERAT CONTINUUM7

As throughly discussed in the introductory section, many researchers showed that Cosserat theory can accurately8

model materials with microstructure (or materials with internal length) Forest et al. (1999); Leonetti et al. (2019);9

Trovalusci and Masiani (2003). In this work the analysis is restricted to the 2D framework, therefore the Cosserat10

model considers two displacements and one rotation (microrotation) as free parameters, whereas the classical Cauchy11

continuum has only two displacements. The linearized kinematic compatibility equations of the Cosserat model can12

be written as:13

ε11 = u1,1, ε22 = u2,2, ε12 = u1,2 +ω, ε21 = u2,1 −ω, χ1 = ω,1, χ2 = ω,2 (1)

where u1 and u2 are macro displacements components and ω is the microrotation. ω 6= ϑ = 0.5(u2,1 − u1,2), thus14

relative rotation ϑ − ω represents an interesting strain measure for checking the micropolar effect. εij (i, j = 1, 2)15

are the strain components and χi (i = 1, 2) are curvatures in the Cosserat model and ε12 6= ε21. Subscripts ,1 and ,216

stand for the partial derivatives with respect to x1 and x2.17

σij and µi (i, j = 1, 2) are the work conjugated stress and microcouple measurements for εij and χi, respectively,18

and σ12 6= σ21. Current notation for stress and strain measures are depicted in Fig. 1 (Tejchman and Górski (2006)).19

σij and µi should satisfy the equilibrium at external boundary as ti = σijnj and mi = µjnj , where ti and mi are20

the surface traction and moment traction, nj collects the components of the outward normal to the boundary. Balance21

equations can be obtained from the virtual work principle (Trovalusci and Masiani (1999)):22

σij,j + bi = 0, µj,j − eij3σij = 0 (2)

where bi are the body force components, eij3 is the permutation tensor (in the present case specified for the 2D23

framework).24
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FIG. 1: Plane differential elements of the Cosserat continuum.

Linear stress-strain relations for the Cosserat model can be written as:1







σ11

σ22

σ12

σ21

µ1

µ2







=



















A1111 A1122 A1112 A1121 B111 B112

A2211 A2222 A2212 A2221 B221 B222

A1211 A1222 A1212 A1221 B121 B122

A2111 A2122 A2112 A2121 B211 B212

B111 B122 B112 B121 D11 D12

B211 B222 B212 B221 D21 D22

























ε11

ε22

ε12

ε21

χ1

χ2







(3)

where the constitutive matrix shows major symmetries if considering hyperelastic materials, i.e. Aijhk = Ahkij ,2

Bijh = Bhij , Dij = Dji (i, j, h, k = 1, 2). The same matrices can be represented in matrix form by using the3

symbols A, B, and D.4

3. FINITE ELEMENT METHOD5

A 2D displacement-based finite element method is considered. For Cosserat continua, the vector of model parameters6

is indicated as d which includes the displacement vector u and the microrotation vector ω (that in the 2D case is a7

scalar, but it will be presented as in Leonetti et al. (2019)):8

u⊤ =

{

u1 u2

}

, ω =

{

ω

}

, d⊤ =

{

u⊤
ω

}

(4)

Considering a domain A and boundary Γ, the weak form of the current problem (Leonetti et al. (2019); Shi et al.9
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(2021)) can be written as:1

∫

A

δε⊤σ+ δχ⊤
µ dA =

∫

A

δu⊤
b dA+

∫

Γ

δu⊤t+ δω⊤m dΓ ∀δu, δω (5)

where δ is the variational operator, b is the body force vector. t and m are the traction and couple-traction vectors2

applied on the boundary Γ. Different interpolating polynomials are used for the displacements and the microrotation.3

In particular, bi-quadratic (Nu) and bi-linear (Nω) shape functions are considered to approximate the classical4

displacements and microrotation respectively (Ferreira and Fantuzzi (2020); Leonetti et al. (2019)) as:5

u = Nuũ, ω = Nωω̃ (6)

where ũ and ω̃ are nodal displacement and microrotation values of each element.6

ε = Lu+Mω, χ = ∇ω (7)

where, ∇ is the gradient operator, L and M can be expressed as:7

L =






∂
∂x1

0 ∂
∂x2

0

0 ∂
∂x2

0 ∂
∂x1






⊤

, M =

[

0 0 1 −1

]⊤

(8)

Substituting Eq. (6) into (7), the strain vectors become:8

ε = Bεd̃, χ = Bχd̃ (9)

where Bε and Bχ are the derivatives of the shape functions. d̃ is the unknown vector of nodal displacements that9

follows the same order of d as indicated in eq. (4). Substituting Eq. (9) into Eq. (3), the constitutive relations become:10

σ = ABεd̃+ BBχd̃, µ = B
⊤Bεd̃+ DBχd̃ (10)

By excluding body forces (only boundary loads will be considered in the following), the weak form Eq. (5) can be11
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expressed as:1

∫

Ae

(
B⊤

ε
ABε +B⊤

ε
BBχ +B⊤

χB
⊤Bε +B⊤

χDBχ

)
dAe

︸ ︷︷ ︸

Ke

d̃ =

∫

Γe

[

N⊤
u t N⊤

ω
m

]⊤

dΓe

︸ ︷︷ ︸

F e

(11)

where Ke and F e are the stiffness matrix and the nodal force vector of the element. The integral terms in Eq. (11)2

are computed numerically by a classical Gauss-Legendre integration with 3 × 3 grid.3

4. NUMERICAL SIMULATIONS4

In the following, a rectangular domain (fixed at the bottom edge and free on the other sides is considered) with width5

Lx = 8.5 µm and height Ly = 12.9375 µm is used to take numerical dynamic simulations. This rectangular domain6

is considered to be made of microstructured material with a density of ρ = 10−6 µg/µm3.7

a)
A

b
B

c

C
dD

e

E
f

F

a

α

α

b)

FIG. 2: a) General anisotropic assembly with RVE. b) Representative geometry of the anisotropic tile.

An assembly made of the irregular tiles organized according to the Representative Volume Element (RVE) given8

in Fig. 2a is considered in the following. A single tile, as shown in Fig. 2b, is defined by a parallelogram with a corner9

cutout. The geometry of the tile is determined by four parameters lr, α, X , and Y , where lr is the relative length10

defined as lr
100

= b
a+b , X and Y define the size of unfilled parallelogram corner, i.e. X

100
= d

b and Y
100

= e
a . And11

f = b− d, c = a− e. The size/scale of the tile is identified by the parameter b, thus, Cartesian coordinates of the tile12
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by considering the origin in the point A ≡ O they are given by:1

A = (0; 0)

B = (b; 0)

C = b

(

1 +

(
100

lr
− 1

)(

1 −
Y

100

)

cosα;

(
100

lr
− 1

)(

1 −
Y

100

)

sinα

)

D = b

(

1 −
X

100
+

(
100

lr
− 1

)(

1 −
Y

100

)

cosα;

(
100

lr
− 1

)(

1 −
Y

100

)

sinα

)

E = b

((
100

lr
− 1

)

cosα+

(

1 −
X

100

)

;

(
100

lr
− 1

)

sinα

)

F = b

((
100

lr
− 1

)

cosα;

(
100

lr
− 1

)

sinα

)

(12)

It is clear from Eq. (12) that b represents the tile size/scale since it multiplies all geometric components. For the sake2

of clarity the following, b values for different scales s are defined as:3

• s = 1 corresponds to b
Lx

≈ 0.0588 (large tiles b = 1
2
);4

• s = 3
4

corresponds to b
Lx

≈ 0.04412 (medium tiles b = 3
8
);5

• s = 1
4

corresponds to b
Lx

= 0.01471 (small tiles b = 1
8
);6

The tiles interact among elastic interfaces with normal component K11 = 0.785 mN/µm and shear component7

K22 = 0.3925 mN/µm. The homogenization approach by Trovalusci and Masiani (1999) can be applied by consider-8

ing the RVE depicted in Figure 2.9

4.1 Verification10

In order to verify the present material modelling a simplified case is considered and then compared with a discrete11

model as in the previous works (Colatosti et al. (2021b)). The geometric parameters used in the present section are12

lr = X = Y = 50 and α = 90◦. Thus, the Constitutive matrix (Eq. (3)) for the microstructure with s = 1 corresponds13
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Vibration modes: microstructure scale s = 1.

to:1

Cs=1 =



















1.5700 0 −0.3925 0 −0.0491 0.0327

0 1.5700 0 −0.3925 −0.0327 0.0491

−0.3925 0 1.1775 0 0.0327 −0.0327

0 −0.3925 0 1.1775 0.0327 −0.0327

−0.0491 −0.0327 0.0327 0.0327 0.1043 −0.0429

0.0327 0.0491 −0.0327 −0.0327 −0.0429 0.0981



















(13)

It can be noted from Eq. (13) that the present microstructure does not present Poisson effect (e.g. transverse con-2

traction) but exhibits coupling between normal and shear components of stress/strains in A as well as full coupling3

because B 6= 0 in all its components. The negligible Poisson effect is due to the chosen angle α = 90◦ which reports4

horizontal and vertical geometric shape of each tile.5

Results are depicted for the first 6 mode shapes in Figure 3 and frequency values are listed in Table 3 where6

relative error with respect to the discrete model are presented.7
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Vibration modes: microstructure scale s =
3
4
.

For the case considered, both Cosserat and Cauchy models represent accurately the dynamic behavior of the1

discrete model. Cauchy model is analyzed using the constitutive law as detailed in the appendix. This is due to the2

selected regular geometry which appear to have a major symmetry and the coupling effect due to matrix B 6= 0 not3

relevant as well as scale matrix D 6= 0. Therefore, it is expected to have similar behavior for the other smaller scales4

which generally tends to behave like a Cauchy continuum (Colatosti et al. (2021b)).5

TABLE 1: Natural frequencies scale s = 1

Mode Discrete Cosserat Error Cauchy Error

(MHz) (MHz) (%) (MHz) (%)

1 8.0158 7.8223 2.4140 7.8542 2.0160

2 23.371 22.9166 1.9443 23.1925 0.7638

3 27.158 26.5713 2.1603 26.7215 1.6073

4 50.941 50.6451 0.9935 50.2650 1.3270

5 59.241 58.6451 1.0059 58.8080 -0.7309

6 64.253 63.2484 1.5635 64.7447 -0.7653
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The Constitutive matrix (Eq. (3)) for the microstructure with s = 3
4

corresponds to:1

Cs=3/4 =



















1.5700 0 −0.3925 0 −0.0368 0.0327

0 1.5700 0 −0.3925 −0.0245 0.0368

−0.3925 0 1.1775 0 0.0245 −0.0245

0 −0.3925 0 1.1775 0.0245 −0.0245

−0.0368 −0.0245 0.0245 0.0245 0.0586 −0.0241

0.0245 0.0368 −0.0245 −0.0245 −0.0241 0.0552



















(14)

As mentioned in the previous works by Trovalusci and Masiani (1999); Trovalusci and Pau (2014). A change in the2

scale results in a change of matrices B and D, whereas matrix A is unchanged.3

Comparison in terms of natural frequencies in depicted in Figure 4 for the first 6 mode shapes. The same in terms4

of frequency is listed with the correspondent relative error in Table 2.5

As aforementioned, the results show good agreement between Cosserat and Cauchy models with respect to the6

reference discrete one.7

Finally, the constitutive matrix for the microstructure s = 1
4

is given:8

Cs=1/4 =



















1.5700 0 −0.3925 0 −0.0123 0.0082

0 1.5700 0 −0.3925 −0.0082 0.0123

−0.3925 0 1.1775 0 0.0082 −0.0082

0 −0.3925 0 1.1775 0.0082 −0.0082

−0.0123 −0.0082 0.0082 0.0082 0.0065 −0.0027

0.0082 0.0123 −0.0082 −0.0082 −0.0027 0.0061



















(15)

The results in terms of mode shapes are depicted in Figure 5 and compared among discrete, Cosserat and Cauchy9

TABLE 2: Natural frequencies scale s = 3
4

Mode Discrete Cosserat Error Cauchy Error

(MHz) (MHz) (%) (MHz) (%)

1 8.0709 7.7939 3.4321 7.8542 2.6850

2 23.39 22.8794 2.1997 23.1925 0.8613

3 27.243 26.5317 2.6109 26.7215 1.9143

4 51.023 50.3142 1.3892 50.2650 1.4856

5 60.415 58.6227 2.9666 58.8080 2.6599

6 66.454 63.4760 4.4813 64.7447 2.5722
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Vibration modes: microstructure scale s =
1
4
.

models. The same in terms of vibration frequency is listed in Table 3. Once again the results all agree well with1

respect to the discrete model.2

4.2 Parametric investigation3

In this section, a parametric investigation in order to analyze the effects of three parameters α, X and Y are reported4

according to the following three selections:5

1. Effect of α: lr = 50, X = 50, Y = 50,α = 30◦ ∼ 150◦ with an interval of 10◦.6

TABLE 3: Natural frequencies scale s = 1
4

Mode Discrete Cosserat Error Cauchy Error

(MHz) (MHz) (%) (MHz) (%)

1 7.7780 7.7500 0.3600 7.8542 -0.9797

2 22.646 22.7984 -0.6730 23.1925 -2.4132

3 26.208 26.4477 -0.9146 26.7215 -1.9593

4 48.934 50.0730 -2.3276 50.2650 -2.7200

5 57.428 58.4539 -1.7864 58.8080 -2.4030

6 62.581 63.6443 -1.6991 64.7447 -3.4574
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FIG. 6: First 3 frequencies as a function of parameter α.

2. Effect of X: lr = 50,α = 90◦, Y = 50, X = 20 ∼ 80 with an interval of 10.1

3. Effect of Y : lr = 50,α = 90◦, X = 50, Y = 20 ∼ 80 with an interval of 10.2

Free vibration tests are performed on the rectangular domain mentioned above using both Cosserat and Cauchy3

continua. The first 3 frequencies are used to evaluate the effects of the parameters.4

Fig. 6 shows the first 3 frequencies as a function of the angle α. Frequencies f1 and f2 have little difference5

between Cosserat and Cauchy continuum. These two frequencies firstly increase and then decrease with the α for6

both models. The highest f1 and f2 can be found when α = 80◦. Similar behavior can be also observed for f37

from the Cosserat continuum, whereas f3 from the Cauchy continuum has no obvious trend with α, resulting in big8

difference in this frequencies between the two models. All 3 frequencies from the two continuum coincide well when9

α is close to 80◦ (also also shown in the verification section more in detail) but show more or fewer differences as α10

departs from 80◦.11

Fig. 7 shows the effect of parameter X on the first 3 frequencies. All 3 frequencies from the two continuum12

coincide well when X ≤ 50 (as shown also in the verification section), whereas when X > 50 the difference13

between two continuum become larger as X increases. Such differences are greater in f2 and f3 than that in f1.14

Similar behavior can be also found when Y ≤ 50 and Y > 50 (Fig. 8). However, these three frequencies behave15

differently as X and Y increase. Actually, f1 changes slightly with both X and Y . f2 from Cosserat and Cauchy16

continuum both increase slightly and then decrease with X , whereas they decrease monotonously with increasing Y .17
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FIG. 7: First 3 frequencies as a function of parameter X .

f3 shows the highest difference between two continuum if X and Y have high values. As X increases, f3 of Cosserat1

continuum increases firstly and then decreases, whereas that of Cauchy continuum keep increasing. As Y increases,2

f3 of Cosserat continuum changes slightly, whereas that of Cauchy continuum has a obvious increase trend when3

Y > 50.4

For better investigate the change in frequency as parameter varies, Tables 4-6 calculate the relative error of above5

frequencies with respect to a reference parameter configuration. The reference configurations has 90◦, 50 and 50 for6

parameters α, X and Y , respectively. It can be seen that α has a greater effect on the relative change in the frequency7

than X and Y . By varying α results in the highest relative error that near to −50%. Such a value is only −14.55% and8

−11.03% when changing X and Y , respectively. In general, for all the three parameters, as the configuration departs9

from its corresponding reference configuration, the relative error of frequency increases. Table. 4 indicates that the10

change in frequency as α is more relevant in the Cosserat continuum than in the Cauchy one for all three frequencies.11

TABLE 4: Effect of parameter α on first 3 frequencies: relative error with respect to α = 90◦ (%).

α

Freq. models 30◦ 50◦ 70◦ 90◦ 110◦ 130◦ 150◦

f1
Cosserat -30.74 -10.47 0.87 0 -11.40 -27.74 -45.84

Cauchy -23.04 -6.16 0.17 0 -5.89 -18.89 -38.95

f2
Cosserat -33.61 -13.08 2.50 0 -16.35 -33.49 -49.99

Cauchy -32.28 -10.66 2.07 0 -12.37 -29.91 -49.10

f3
Cosserat -27.87 -8.10 -0.90 0 -6.52 -22.53 -43.25

Cauchy -6.31 -0.51 -1.95 0 2.00 -2.13 -19.73
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FIG. 8: First 3 frequencies as a function of parameter Y .

f2 changes the most, followed by f1 and then f3.1

As for varying X (Table. 5), the highest relative error (−14.35%) is also observed for f2 when X = 80 using2

Cosserat continuum. Only for f3, it is shown that the relative error is greater in the Cauchy continuum than in the3

Cosserat one for all configurations. Effect of continuum used on the relative error in f1 and f2 seems uncertain4

for different configurations. On the contrary, Table 6 shows that for f1 and f2 the relative change in frequency is5

significant in the Cosserat continuum than in the Cauchy one. And the effect of continuum is uncertain for f3 as Y6

changes. In general, by varying Y can result in the most significant relative change in f2, followed by f1 and then7

f3. Exception is made in the Cauchy continuum when Y > 50, where the relative change in f2 is the greatest but8

followed by f3 and then f1.9

In conclusion, as the investigated parameters vary, there is small difference in low frequency (f1) between the10

Cosserat and Cauchy continuum, whereas such a difference become larger for high frequencies (f2 and f3) especially11

TABLE 5: Effect of parameter X on first 3 frequencies: relative error with respect to X = 50 (%).

X

Freq. models 20 30 40 50 60 70 80

f1
Cosserat -4.51 -2.10 -0.51 0 -0.78 -2.95 -6.49

Cauchy -5.05 -3.04 -1.33 0 0.84 1.02 0.35

f2
Cosserat -4.27 -0.86 0.81 0 -3.16 -8.18 -14.55

Cauchy -5.17 -1.94 -0.11 0 -1.30 -3.76 -7.38

f3
Cosserat -4.62 -3.29 -1.80 0 1.61 2.38 1.84

Cauchy -5.25 -4.52 -2.82 0 3.44 6.98 10.14
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when α departs from 80◦, X > 50, and Y > 50. The parameter α has the highest effect on the relative change1

in frequencies comparing with effects of X and Y , which means that α also largely influence the tile’s degree of2

anisotropy. All three investigated parameters result in the highest effect on the relative change in f2. Although f1 is3

the smallest in value, the relative changes in f1 as parameters are comparable with other frequencies. Since the low4

frequency plays an important role in dynamic analysis, such an effect of parameter on the change in f1 should be5

noted.6

5. CONCLUSIONS7

This work presented a multiscale homogenization of anisotropic nanocomposites made of non-convex hexagonal8

assemblies. Homogenized material properties are included in a continuum Cosserat model and compared with a clas-9

sical Cauchy model and a reference discrete configuration in free vibration. A parametric investigation is conducted10

in order to provide details on how the material symmetries are influenced by the non-convex geometries considered.11

Interlocking and tile distortion result to play a fundamental role in Cosserat media as previously discussed in previous12

work, however, in this paper for the first time such aspects are demonstrated via numerical applications.13
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TABLE 6: Effect of parameter Y on first 3 frequencies: relative error with respect to Y = 50 (%).

Y

Freq. models 20 30 40 50 60 70 80

f1
Cosserat 5.98 4.00 1.99 0 -1.97 -3.91 -5.82

Cauchy 4.79 2.80 1.19 0 -0.72 -0.92 -0.57

f2
Cosserat 10.71 7.36 3.73 0 -3.73 -7.41 -11.03

Cauchy 9.50 6.32 3.07 0 -2.76 -5.11 -7.00

f3
Cosserat 2.02 0.96 0.33 0 -0.05 0.16 0.59

Cauchy 0.42 -0.62 -0.73 0 1.55 3.96 7.19
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APPENDIX A. CAUCHY CONSTITUTIVE MATRIX1

In this section the Cauchy constitutive matrix is derived from the Cosserat homogenized constitutive relation (Eq. (3))2

according to the notation provided in the work by Trovalusci et al. (2015). Starting from the strain definitions in 2D:3

εij = ui,j + e3ijω, χ3j = ω,j (A.1)

where i, j = 1, 2 and e3ij is the Levi-Civita symbol. If the classical and micropolar components are identified as4

symmetric and antisymmetric parts of the strain and stress tensors as:5

εij = εSij + εAij , σij = σS
ij + σA

ij (A.2)

where subscripts S and A indicate symmetric and skew-symmetric parts of the tensors and6

εSij =
1

2
(ui,j + uj,i) , εAij =

1

2
(ui,j − uj,i) + e3ijω

σS
ij =

1

2
(σij + σji) , σA

ij =
1

2
(σij − σji)

(A.3)

from equation (A.3) with i = 1 and j = 2 the following can be carried out7

u1,2 = 2εS12 − u2,1, ω = −
1

2
(u1, 2 − u2,1) + εA12 (A.4)

by substituting definitions (A.4) in Eq. (3) it results:8

σ11 = A1111ε11 +A1122ε22 −A1121(ε
A
12 − εS12) +A1112(ε

A
12 + εS12)

σ22 = A1122ε11 +A2222ε22 −A2221(ε
A
12 − εS12) +A2212(ε

A
12 + εS12)

σ12 = A1112ε11 +A2212ε22 −A1221(ε
A
12 − εS12) +A1212(ε

A
12 + εS12)

σ21 = A1121ε11 +A2221ε22 −A2121(ε
A
12 − εS12) +A1221(ε

A
12 + εS12)

(A.5)
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it is noted that εii = εSii = ui,i. Such relationships can be rewritten as:1

σ11 = A1111ε11 +A1122ε22 + (A1112 +A1121)ε
S
12 + (A1112 −A1121)ε

A
12

σ22 = A1122ε11 +A2222ε22 + (A2221 +A2212)ε
S
12 + (A2212 −A2221)ε

A
12

σS
12 =

A1112 +A1121

2
ε11 +

A2212 +A2221

2
ε22 +

A1212 + 2A1221 +A2121

2
εS12 +

A1212 −A2121

2
εA12

σA
12 =

A1112 −A1121

2
ε11 +

A2212 −A2221

2
ε22 +

A1212 −A2121

2
εS12 +

A1212 − 2A1221 +A2121

2
εA12

(A.6)

Since in the Cauchy continuum 2εS12 = γ12 and εA12 = 0 constitutive matrix for the Cauchy continuum can be derived:2







σ11

σ22

σS
12







=









A1111 A1122
1
2
(A1112 +A1121)

A1122 A2222
1
2
(A2221 +A2212)

1
2
(A1112 +A1121)

1
2
(A2212 +A2221)

1
4
(A1212 + 2A1221 +A2121)















ε11

ε22

γ12







(A.7)

It is noted that the constitutive matrix is symmetric as it is expected from the theory. Constitutive matrix (A.7) is the3

one used in the computations as Cauchy continuum.4
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