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Abstract

This work is devoted to quantify the predictive uncertainty in RANS simulation of a non-premixed lifted flame
due to uncertainty in the scalar dissipation rate transport equation model parameters. The uncertainty propagation
and the global sensitivity analysis of the effect of such parameters on the quantities of interest (QoIs) is performed
employing Polynomial Chaos Expansions as surrogate models of the uncertain response. This approach is applied
on a lifted methane-air jet flame in vitiated coflow, already experimentally investigated by Cabra et al [1]. The
results show the effectiveness of the approach to provide predictions with estimates of uncertainty. It is shown
that the the uncertainty in the mixture fraction and temperature is negligible as long as only pure mixing happens,
then it becomes significant in the regions where ignition begins, starting from z/D = 30. Of the four parameters
consideredCD1,CD2,CP1 andCP2, main and total effect sensitivity indices shows that the largest contribution to
the uncertainty in QoIs is given by the two dissipation parameters CD1 and CD2, while the production parameter
CP2 has almost negligible impact on the predictions. Lastly, the surrogate models are used to determine an
optimum set of parameters that minimizes the distance with the experimental measures, leading to improved
predictions of the QoIs.

Keywords: Uncertainty Quantification; Global sensitivity analysis; Partially Stirred Reactor; Polynomial Chaos Expansion;
RANS;
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1. Introduction

The world’s ever growing demand for energy, com-
bined with the commitment to reduce pollutants emis-
sions, has led to the study and development of novel
combustion technologies which can guarantee lower
emissions and fuel flexibility, while the transition to-
wards renewable energy sources unfolds. The com-
bustion regimes that characterize such technologies
often involve a diluted or vitiated coflow that strongly
affects the behaviour of the reacting mixture. The
ability of a combustion model to properly capture
the turbulence/chemistry interactions is therefore es-
sential to deliver predictive numerical simulations
of novel combustion systems that are reliable on a
quantitative level. Models that account for finite-
rate chemistry proved to yield reasonable results [2–
4] with respect to both temperature and species pre-
dictions. Among these, the Partially-Stirred Reac-
tor (PaSR) closure model [5] was demonstrated to be
suitable for combustion in vitiated conditions. Un-
like other reactor-based models, in PaSR both mixing
and chemical timescales are explicitly taken into ac-
count in the model formulation, allowing for a more
detailed description of the interaction between turbu-
lence and chemistry. It follows that the estimation of
mixing and chemical timescales strongly affects the
performance of the model.

For the estimation of chemical timescales differ-
ent formulations already exist [5], usually based on
formation or reaction rates of key species, which can
be computed through the eigenvalues of the Jacobian
of the chemical source terms. [6]. Among the exist-
ing approaches to the mixing timescale estimation [6],
different studies demonstrated the capabilities of the
so-called dynamic approach, based on the ratio of the
scalar variance to the scalar dissipation rate. In this
model, the scalar dissipation rate transport equation
depends on a set of four constants, for which several
different values are found in literature [6–8].

Despite the significant progresses in CFD calcu-
lations, their usage in real-life industrial scenarios is
still very much limited to RANS simulations. Practi-
cal applications of LES, not to mention DNS, are still
unfeasible in most situations because of their compu-
tational cost. In this context, a convenient pathway
to meet the increasing industrial demand for afford-
able yet trustworthy predictions is to improve RANS
reliability by quantifying the uncertainties associated
with the numerical simulations. Turbulent combus-
tion simulations are affected by several sources of
uncertainty, which degrade the reliability of predic-
tions [9, 10]: uncertainty in the system’s geometry,
boundary and initial conditions, as well as in numer-
ical discretization and solution methods; uncertainty
due to model form assumptions; parametric uncer-
tainty due to lack of knowledge of model coefficients.
We focus on the latter source of uncertainty. Un-
certainty quantification (UQ) techniques were already
employed to propagate uncertainties associated with
chemical kinetics rate coefficients [11] and subfilter

models’ coefficients, e.g., Smagorinksy constant and
turbulent Prandtl and Schmidt numbers [12] or spray
dispersion models [13].

In this work, we investigate the predictive uncer-
tainty of the PaSR combustion closure in RANS sim-
ulations due to the lack of knowledge of the scalar
dissipation rate model parameters. We build Polyno-
mial Chaos Expansions (PCE) surrogates [9, 14, 15]
for the thermal flowfield in RANS simulations of the
Cabra Flame in the methane/air configuration [1], as
functions of the uncertain parameters. We exploit the
PC surrogates to provide a global sensitivity analysis
to such parameters and to drive the selection of a set
of deterministically optimal parameters to recover ex-
perimental measurements.

2. Partially-stirred Reactor Model
At the core of the PaSR model is the assumption that
the computational cell can be split into two locally
uniform zones, one where reactions occur and one
which is only characterized by mixing. The species
concentration is determined by the mass exchange be-
tween the two zones. The mass fraction of the reactive
region can be estimated as:

κ =
τc

τc + τm
(1)

where τc, τm are the characteristic chemical and mix-
ing timescales, respectively. The mean source term in
the species transport equation is then expressed as:

˜̇ω = κ
ρ̄(Y ∗

i − Y 0
i )

τ∗
(2)

Y 0
i is the initial ith species mass fraction in the cell

and Y ∗
i is the ith species mass fraction in the reactive

region. To obtain Y ∗
i , a time-splitting approach is em-

ployed: the reactive zone is modelled as a plug-flow
reactor evolving from Y 0

i over a residence time τ∗.
In the present work, τ∗ is chosen as the minimum be-
tween the mixing and the chemical timescale. While
the chemical timescale is derived from the formation
rates [3, 6], the mixing timescale is determined using
the so-called dynamic approach:

τmdyn =
Z̃”2

χ̃
(3)

where Z”2 is the mixture fraction variance and χ is
the scalar dissipation rate. The two scalars are mod-
elled using the following transport equations [7]:

Dρ̄Z̃”2

Dt
=

∂

∂xj
(ρ̄(D +Dt))

∂Z”2

∂xj

+2ρ̄Dt(
∂Z̃”2

∂xj
)2 − ρ̄χ̃ (4)

Dρ̄χ̃

Dt
=

∂

∂xj
(ρ̄(D +Dt))

∂χ

∂xj
− CD1ρ̄

χ̃2

Z̃”2

−CD2ρ̄
χ̃ϵ̃

k̃
+ CP1

χ̃

Z̃”2
Pf + CP2

χ̃

k̃
Pk (5)
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where Z is the mixture fraction, D and Dt are
the molecular and turbulent diffusivity, Pf =

−2ρ̄ũ”
kZ

”(∂Z̃/∂xk) is the production of scalar fluc-

tuation and Pk = −ρ̄ũ”
ku

”
i (∂Ũi/∂xk) is the produc-

tion of turbulent kinetic energy.
Several values are proposed in literature for the co-

efficients CP1, CP2, CD1, CD2 [6–8]. These values
were determined in quite different contexts, such as
heat transfer in wall bounded turbulent flows, jet type
flows, homogeneous flows behind a grid with a mean
temperature gradient, premixed turbulent combustion
and flameless combustion. To the authors’ knowl-
edge, no in-depth parametric study concerning the
four constants exists in literature, as previous studies
focused on a variety of test cases, ranging from lab-
scale flames to semi-industrial furnaces, each of them
only testing a few sets of constants.

In the present work, we systematically investigate
and quantify the uncertainties in the thermal flow field
prediction of a non-premixed lifted flame due to the
lack of knowledge of the 4 scalar dissipation rate
transport equation model parameters, that impact the
determination of the mixing timescale in the dynamic
PaSR closure. We employ Polynomial Chaos Expan-
sions (PCEs) to efficiently describe the explicit func-
tional relationships between uncertain inputs and out-
put quantities of interest (QoIs), both represented as
Random Variables (RVs).

3. Uncertainty Propagation

PCEs provide an approximate representation of ran-
dom response functions in terms of finite-dimensional
series expansions in standardized random variables
[9, 14, 15]:

R(ξ) ≈
P+1∑
i=0

αiΨi(ξ), (6)

where αi is a deterministic coefficient, Ψi is a
multivariate functional built upon orthogonal polyno-
mial basis sets, ξ is a vector, usually termed as germ,
of random variables (i.e., model input variables) and
P + 1 is the number of terms at which the expan-
sion is truncated. In this work, we consider all the
random variables in ξ as normally distributed. There-
fore, we employ Hermite orthogonal basis polynomi-
als for the expansion and the multidimensional or-
thogonal polynomials Ψi(ξ) in Eq. 6 are products
of one-dimensional Hermite polynomials ψ(ξk):

Ψi(ξ) =

N∏
k=1

ψti
k
(ξk). (7)

In Eq. (7), N is the number of random variables,
and the multi-index tik represents an efficient way to
encode the orders of each Hermite polynomial [15].
Here, a total-order expansion is employed, in which
limits on the order of the polynomials are applied
on the sum of the Hermite polynomials order, which

compose the functionals in equ. 7. Namely, the ex-
pansion term multi-index tik defining the set of Ψi is
constrained by sumkt

i
k ≤ pi, where pi is the polyno-

mial order bound for the i-th dimension. The tensor-
product expansion therefore allows polynomial order
bounds to be specified independently for each dimen-
sion. We evaluate the polynomial coefficients αi in
Eq. (6) using spectral projections of R against the sub-
space spanned by each functional Ψi, according to the
following equation:

αi =
⟨Rξ,Ψi⟩
⟨Ψ2

i ⟩
=

1

⟨Ψ2
i ⟩

∫
Ω

Rξ Ψiρx(ξ)dξ, (8)

where ⟨.⟩ denotes the inner product, ρx is the in-
put parameters’ multivariate normal probability den-
sity function. Simulation methods, e.g., random sam-
pling, or deterministic approaches, e.g. cubature
methods, can be used to evaluate the 4-dimensional
integral in Eq. (8). Both methods rely on a set of de-
terministic model resolutions, corresponding to some
specific realizations of ξ, thus belonging to the class
of non-intrusive PCE methods. Given the cost of a
model realization, i.e., one RANS computation, the
not too large dimensionality of the integral, and the
slow convergence rate of sampling methods, we ap-
proximate the integral with a 4-dimensional tensor-
product cubature rule:

αi ≈
1

⟨Ψ2
i ⟩

Nc∑
j=1

R(ξ(j))W (j), (9)

where Nc represents the number of cubature nodes,
RANS solutions of the thermal flow field in given
spatial locations are used to extract R over the corre-
sponding node ξ(j), and W (j) are the weights of the
rule in each node. To alleviate the curse of dimen-
sionality of such rules, hence reducing the number
of cubature nodes, we resort to sparse grid tensoriza-
tion. Sparse grids were proposed by Smolyak [16]
for use in high-dimensional problems to provide sim-
ilar accuracy as full tensor-product expansions, while
requiring significantly fewer collocation points, as
shown in several studies where sparse grids were used
[17–21]. The sparse grid method is computationally
efficient for moderately high-dimensional problems.
It uses linear combinations of carefully selected ten-
sor products to preserve the interpolation property for
a high-dimensional random space [20].

In this work, we employ a sparse grid with level
l=2 and Genz-Keister rules to evaluate the spec-
tral projections and map the uncertain parameters to
the predicted profiles of temperature in the investi-
gated flame. Once obtained, the meta-model R(ξ)
in Eq. (6) will be used to perform a global sensitiv-
ity analysis at no cost. Interactions between different
parameters are accounted for, as well as non linear ef-
fects on model responses. The fractional contribution
of each random input to the overall model predictive
uncertainty can be estimated via the main-effect Sobol
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indices [22, 23]:

Sk =
Vξk (Eξ∼k (R(ξ)|ξk))

V (R(ξ))
=

∑L
k=1 α

2
i∑P+1

i=1 α2
j

(10)

where V (R(ξ)) is the total variance of the model
response, and the numerator represents the variance
determined by the k-th variable, calculated with re-
spect to an expected value of the model response. The
latter is obtained by varying all the random variables
within their full uncertainty ranges, but the k-th one
(ξ∼k), kept constant. As suggested in Eq. (10), the
GSA indices are related to the functional coefficients
in Eq. (6). In Eq. (10), L is the number of expan-
sion terms containing only Hermite polynomials of
nonzero order for the k-th variable. The contribution
to the output variance of ξk, including the variance
caused by its interactions with the other input vari-
ables, is computed with the total-effect indices:

STk = 1− Vξ∼k (Eξk (R(ξ|ξ∼k))

V (R(ξ))
(11)

4. Application

4.1. RANS of the Cabra flame

The test case used in the present work is the methane-
air Cabra flame described in [1]. This vitiated coflow
flame consists of a lifted jet flame formed by a fuel
jet issuing from a central nozzle into a coaxial flow
of hot combustion products from a premixed hydro-
gen/air flame. The numerical domain consists of a
structured 2D axisymmetric grid of 30000 cells; Fig.
1 shows a sketch of the flame setup. A grid conver-
gence study can be found in the supplemental ma-
terial. The uRANS simulations are carried out us-
ing the FiReSMOKE solver [24], based on the Open-
FOAM®framework. Turbulence is modelled using

Fig. 1: Flame schematic representation and luminosity im-
age of the methane-air Cabra flame. Adapted from [1].

the k − ε model with Pope’s correction for round
jets [25]. The PaSR model examined in Sec. 2 is

employed to handle the turbulence-chemistry interac-
tion. The 57 species, 268 reactions kinetic mechanism
from San Diego [26] is employed for all simulations,
based on a preliminary investigation on the sensitiv-
ity to the kinetic mechanism. These results can be
found in the supplementary material along with pre-
liminary simulations which explain the choice of tur-
bulence model and using different formulations of the
mixing timescale discussed in the previous section to
assess the potential gain associated to a dynamic for-
mulation of τm (Eq. 3).

4.2. Uncertain Parameters Definition

The explicit probability distributions of the uncertain
model coefficients are required to build the input pa-
rameters’ space and consequently determine the cuba-
ture nodes. The values of the 4 coefficients in Eq.(5)
employed in several literature studies [6–8] are shown
in Table 1. We assign a normal distribution to each
of the uncertain parameters and we use such values
to define their mean C̄i and standard deviations σi,
which are shown in Table 2. Note that the values for
CP2 show very little variance compared to the other
three.

CP1 CP2 CD1 CD2

Jones-Musonge [7] 1.7 1.45 1 0.9
Borghi [7] 0.5 1 1.9 0.95

Mantel-Borghi [7] 1 1.45 0.625 0
Chen [7] 0.5 1.45 1.15 0.65

Ferrarotti C1 [8] 0.85 1.45 2 0.9
Ferrarotti C2 [8] 1.7 1.45 2 0.9

Li 1 [6] 1.7 1.4 2 1.8
Li 2 [6] 1.7 1.4 1 1.8

Ye 1 [27] 0.85 1.4 2 1.8
Ye 2 [27] 1.7 1.4 1 1.8
Ye 3 [27] 1.7 1.4 2 1.8
Ye 4 [27] 0.85 1.4 1 1.8

Table 1: Literature constants sets used to determine the 4D
parameter space for the UQ analysis. Values taken from [6–
8, 27].

Henceforth, as mentioned in section 3, the sam-
pled input parameters for each simulation are deter-
mined using a 4-dimensional nested sparse grid of
level 2. This results in a total of 57 simulations re-
quired to evaluate the coefficients αi as per Eq.(9) up
to second-order (P=14 in Eq.(7)) and carry out the
UQ analysis.

CP1 CP2 CD1 CD2

C̄i 1.229 1.388 1.473 1.258
σi 0.205 0.050 0.219 0.247

Table 2: Mean and standard deviation for the four input pa-
rameters.
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5. Results

The evaluation of the PCE coefficients allows the re-
construction of closed-form polynomial expressions
of the QoIs probability distributions as functions of
the uncertain input parameters. Once these distribu-
tions are known, crucial information about the relia-
bility of RANS simulations predictions become avail-
able. Random sampling from such distributions en-
ables the computation of statistics, e.g. median, vari-
ance, and percentiles. Note that the cost of one eval-
uation of the surrogate model is negligible. The out-
put QoIs considered for this analysis are the Favre-
averaged temperature T and mixture fraction Z, be-
ing the ability to appropriately capture the lift-off
height the key point in simulating this burner config-
uration. Experimental measurements are available [1]
for direct comparison of the uncertainty intervals.
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Fig. 2: Radial and axial profiles of favre-averaged mix-
ture fraction PDFs. Red dots indicate 95th/5th percentiles.
Black dots and bars represent experimental values and their
measured RMS.

5.1. Uncertainty Propagation

The uncertainty in the evolution of the mixture frac-
tion are shown in Fig. 2 on the centerline and on a
radial profile at a selected distance from the inflow
(z/D = 30). Close to the nozzle, where only mixing
occurs, the uncertainty band is narrow, i.e., the mix-
ture fraction is predicted with very high confidence.
Starting from z/D = 30 the uncertainty increases,
especially close to the centerline. This is due to the in-
crease in both the mixture fraction variance and scalar
dissipation rate that occurs as the flame ignites. The
maximum relative distance between the 95th/5th per-
centiles curves and the median is 7.8%/3.6%.

The predictive uncertainty bands of temperature
due to the uncertain model parameters are shown in
Fig. 3. By observing the narrow uncertainty at the
first radial position (z/D = 15) and along the center-
line up to z/D ≈ 30, we infer that the impact of the
investigated model parameters in the regions where
only mixing occurs and the flame is not yet ignited is
negligible. From the experimental data collected and
from visual investigation, Cabra et al. [1] established

the liftoff height near z/D = 35. As a matter of fact,
an increase in the experimental temperature fluctua-
tions is observed at z/D = 40 along with an increase
of the mean temperature above the coflow inlet value.
On the other hand, the PaSR model slightly underpre-
dicts the liftoff height, as we can observe a definite
increase in the predicted temperature profile starting
from z/D = 30. The liftoff prediction result is in line
with previous works, which employed flamelet-based
models [28] and the more computationally expensive
transported PDF models [1, 29, 30], while PaSR sim-
ulations yield a better prediction of the temperature
profiles in the positions considered. As chemical re-
actions begin to occur, temperature uncertainty be-
comes significant. As expected, model predictions
are less confident at higher temperature, given the in-
fluence the scalar dissipation rate holds on the mix-
ing time and species average source term integration
time. Looking at the radial profiles in Fig. 3, the
highest variability from the predicted median value
can be found at z/D = 30, 40 and 50, where the
maximum temperature for the 95th/5th percentiles is
respectively 7.0%/4.5% of the median maximum tem-
perature. It is interesting to note that the experimental
measurements RMS and the probability bands have
opposite trends at z/D = 70: while the measured
temperature fluctuations grow larger at the outer edge
of the radial profile, the predicted uncertainty band
narrows. This can be explained by the fact that the
experimental values fluctuations are due to the mix-
ing with the outer air stream (measured temperatures
drop below the coflow inlet value) that starts to af-
fect the flame in the downstream region. However,
this is not affecting our current numerical simulations,
as the outer stream is not included in the numerical
model. Along the centerline, the uncertainty band
steadily grows larger as the temperature increases,
starting from z/D ≈ 40. The maximum spread be-
tween the 95th/5th percentiles curves and the median
temperature is 5.9%/4.6%.

5.2. Sensitivity Analysis

The PC surrogate model allows us to perform a global
sensitivity analysis in order to determine the impact
each one of the four parameters has on the uncertainty
in the QoIs. Figure 4 shows the main and total effect
sensitivity indices for the Favre-averaged temperature
at the z/D = 30 location and along the centerline
of the flame, starting from z/D = 30. As men-
tioned in section 3, these indices are normalized with
respect to the total variance of the model response
for the selected QoI. Focusing on the main effect (i.e.
the indices calculated using only the first-order coeffi-
cients) one can see how most of the uncertainty is due
to the two dissipation constants CD1 and CD2, with
the second one being more important as the predicted
temperature increases. This result can be explained
considering that the CD1 and CD2 are the parame-
ters relative to the dissipation of scalar fluctuations
and turbulent kinetic energy, respectively. The scalar
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Fig. 3: Radial and axial profiles of favre-averaged temperature PDFs. Red dots indicate 95th/5th percentiles. Black dots and
bars represent experimental values and their measured RMS.

dissipation fluctuations are in fact most prominent in
the ignition and extinction regions and this behaviour
is reflected in the fractional contribution to the uncer-
tainty associated to the parameter CP1. On the other
hand the sensitivity indices for the two production pa-
rameters CP1 and CP2 hold less influence over the
global uncertainty, with the latter having virtually no
effect in the downstream regions and farther from the
centerline.

This behaviour strongly changes if we look at
the total effect indices, determined by also including
second-order terms in their calculation. The most sig-
nificant change can be found in the sensitivity to the
CP1 parameter. Contrary to the main effect analy-
sis, the first production parameter holds a constant
value across both the radial and centerline profiles.
To a lesser degree, the global uncertainty sensitivity
to CP2 also increases across the board. The total ef-
fect analysis then shows that second order effects and
the cross-coupling between the parameters have a def-
inite effect on the overall uncertainty of the QoI which
must be taken into account.

The sensitivity analysis confirms a trend that was
already inferred in literature [3, 6, 8], as CD1 and
CD2 were already found to have the largest influence
on the predicted temperature profiles. However, our
analysis adds to these empirical findings a quantita-
tive support. An accurate determination of the uncer-
tainty related to the scalar dissipation rate modelling
can indeed lead to improvements in the mixing mod-
elling which is one of the most critical links in many
combustion closures such as transported probability

density function approach.

5.3. Deterministic Optimization

Lastly, the surrogate models R(ξ) are employed in
an exhaustive search to find the optimal set of coeffi-
cients as:

argmin
ξ

 1

Nexp

Nexp∑
j

(ej −Rj(ξ))
2

(3σ(ej))2

 (12)

where ej are the experimental values, σ(ej) is the ex-
perimental standard deviation, Nexp is the number of
experimental points. The resulting parameter com-
bination is reported in Table 3. Figure 5 shows

CP1 CP2 CD1 CD2

Opt 1.6053 1.1978 1.5604 1.1854
Table 3: Optimal set of parameter determined from minimiz-
ing Eq.(12).

the predicted temperature profiles, against experimen-
tal measurements and the numerical simulation ob-
tained with the coefficients named Li-2 in Table 1,
already employed in [6]. While the lift-off height is
still slightly underpredicted at z/D = 30, the results
mostly fall within the experimental uncertainties in
the remaining axial positions and improve the predic-
tions obtained with the Li-2 set of coefficients.
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ature profile obtained with the optimum set of parameters
(black), with the Li 2 set (red), and experimental measure-
ments (black diamonds) with their RMS.

6. Conclusions

An uncertainty quantification study for Reynolds-
Averaged Navier-Stokes simulations of the methane-
fed Cabra flame is presented. Polynomial Chaos

Expansions are employed to build surrogate models
to efficiently assess the effect of parametric uncer-
tainty in the four parameters of the scalar dissipa-
tion rate transport equation used in the context of the
dynamic Partially-Stirred Reactor combustion model.
The PCE coefficients are obtained with sparse grid cu-
bature using Genz-Keister rules. The uncertainty is
then propagated to the predictions of mixture fraction
and temperature. The results show the effectiveness
of the approach to provide predictions with estimates
of uncertainty. The highest uncertainty is found as
temperature increases, because of the influence of the
scalar dissipation rate holds on the mixing timescale
determination. The surrogate models are then em-
ployed to perform a variance-based sensitivity anal-
ysis of the four parameters of the model. Analyzing
both first and second order effects on the output vari-
ance, it is found that the two dissipation coefficients
CD1, CD2 hold the strongest influence on the vari-
ability of the model response across all regions of the
flame. Second order effect analysis shows that cross
correlation effects between the parameters must not
be neglected. Finally, an optimization procedure us-
ing experimental results as targets is followed to de-
termine an optimal set of parameters. The resulting
set of constants yields improved predictions of both
mixture fraction and temperature. Future develop-
ments will focus on the extension of this UQ approach
to model form and model parameter uncertainties as-
sociated with turbulence and chemical kinetics mod-
elling, in the perspective of providing a more compre-
hensive quantification of uncertainty in RANS mod-
elling of turbulent flames.
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