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Summary of the whole work 
Lung adenocarcinoma (LUAD) is the most common type of non-small-cell lung cancer, and 
a subset of patients with early-stage LUAD experience relapses and adverse prognosis. Here 
we identified by a 10-gene prognostic signature an aggressive LUAD subtype, named C1, 
that is characterized by loss of lung cell lineage and gain of stem cell-like characteristics, 
along with mutator and immune evasion phenotypes.  
In addition, with a multi-tiered approach using coupled RNA-seq and miRNA-seq data 
analysis of a large cohort of lung cancer patients, we found high accuracy in scoring 
aggressive disease and identified a minimal signature of 7-miRNAs, which we validated in 
a cohort of FFPE lung adenocarcinoma samples. The results demonstrate the reliability of 
miRNA-based biomarkers for lung cancer prognostication and make a step forward to the 
application of miRNA biomarkers in the clinical routine. 
In line with this, we finally identified a 6-exo-miRNA signature derived from LUAD 
patients exosomes that is a reliable biomarker to identify the C1-LUAD subtype. Moreover, 
we also showed that miR-223-3p was significantly enriched in exosomes derived from C1-
like cells and acted as a modulator of immune response. 
Overall, we provide new insights into the molecular and biological features of aggressive 
C1-LUAD, providing new biomarkers for the early identification of aggressive subtypes of 
lung cancer. 
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Synopsis of the whole work 
Lung cancer accounts for ~2 million of new diagnoses and ~1.8 millions of deaths worldwide 
every year and lung adenocarcinoma (LUAD) is the most common subtype accounting 
~50% of all lung cancer cases. Despite the improvements made in lung cancer early detection 
and prognosis, a large fraction of patients (~30–40%) still experiences poor prognosis due to 
cancer progression. The molecular heterogeneity of lung cancer is often associated with the 
metastatic dissemination of tumor cells and chemoresistance. Therefore, the discovery of 
lung cancer molecular subtypes can help to improve diagnosis, prognostication, and 
identification of key druggable targets. The main objective of this thesis was to characterize 
a new aggressive molecular subtype of lung cancer, named C1-LUAD, and to discover 
circulating biomarkers for its early identification. We addressed this aim by using two 
distinct approaches: 1) multi-tiered approach to comprehensively characterize the 
molecular profile of C1-LUAD; 2) analysis of exosomal miRNAs derived from patients to 
generate a predictive signature. In order to characterize the C1-LUAD subtype, we dissected 
the transcriptional profile of three independent cohorts of LUAD patients (N=1183), 
classifying patients in C1 and nonC1 based on the 10-gene prognostic signature. We 
uncovered that in all the cohorts, C1-LUAD is associated to worst prognosis also when 
disease is diagnosed at stage I. Importantly, we observed that C1-LUAD revealed a 
significant increase in the expression of some “Esophagus” and “Midgut/Hindgut” markers 
along with a significant downregulation of lineage-specifying genes associated with lung 
cell identity (e.g. NKX2-1, SFTPC). Moreover, gene set enrichment analysis (GSEA) 
highlighted an overrepresentation of molecular signatures associated to epithelial-to-
mesenchymal transition (EMT)/stem cells, the immune system and hypoxia, which are 
hallmarks of metastatic cancer. Next, we performed a phenotypic screening in 12 LUAD cell 
lines. Combining proliferation, migration, invasion and spheres forming efficiency 
parameters in a phenotypic scoring algorithm, C1-like cell lines showed an overall higher 
aggressive phenotype as compared to the nonC1-like cell lines. We also investigated the 
mutational profile showing that the tumor mutation burden was significantly higher in C1-
LUAD. Consistently, we found higher rates of mutations in C1-LUAD of known tumor 
suppressor genes, oncogenes, or genes described to have both tumor suppressor and 
oncogene activities. Finally, we investigated the tumor-infiltrating immune composition of 
C1-LUAD. Overall, Th2(CD4+) cells were predominant, whereas pro-inflammatory T helper 
Th1 and Th17 cells were depleted in C1-LUAD. Interestingly, GSEA and CIBERSORTx 
confirmed a significant higher fraction of IRF4+ Tregs in C1-LUAD and a reduction of the 
IRF4− Tregs population. Taken together these data demonstrated that loss of lung cell 
lineage with acquirement of stem cell-like features, along with the occurrence of mutator 
and immune evasion phenotype, characterize the aggressiveness of C1-LUAD  
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In order to discover new biomarkers to early identify C1-LUAD, we performed miRNA 
expression profile of the TCGA-LUAD cohort, showing 200 miRNAs differentially 
expressed. Lasso regularization was then applied to identify two signatures of 14- and 19-
miRNA, which displayed a high accuracy in C1/non-C1 cancer patients stratification. 
Next, we explored the miRNA-mRNA interactome characterizing C1 tumors by performing 
ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) using the set 
of 200 miRNA, and a set of 2900 mRNA genes found significantly regulated in C1-LUAD.  
We found a set of interacting networks with 7 miRNA as “HUBs” which derived from both 
the 19-miRNA and 14-miRNA signatures. Hierarchical clustering analysis of this 7-miRNA 
signature showed an overall increased expression in C1-LUAD. Importantly, the 7-miRNA 
signature had a cross-validated AUC of 0.79 in C1/non-C1 patients’ stratification.  Finally, 
we validated the 7 miRNA-signature in an external cohort of 44 lung adenocarcinoma 
tissues, which was collected at the IRCCS Casa Sollievo della Sofferenza Hospital (CSS). We 
used the 10-gene signature and calculated relative risk-score to stratify the cohort into C1 
(n = 16) and non-C1 (n = 28) groups as a control. Next, using logistic regression, we found 
that the 7-miRNA model stratified C1 from non-C1 tumors with an AUC of 0.76 and with 
significant difference in C1 predicted probability. To investigate exosomal miRNAs as 
circulating biomarkers for C1-LUAD identification, we isolated exosomes from 32 plasma 
samples of the CSS Cohort, divided in 15 C1 and 17 nonC1. We then performed qRT-PCR 
on a subset of 23-miRNAs derived from the previous analysis, highlighting a total 13-
miRNAs differentially expressed in C1 and nonC1 exosomes. Using unconditional logistic 
regression analysis, we found that the 13-exo-miRNA signature identified correctly C1 
patients with a bootstrap corrected AUC=0.64. Then we reduced the numbers of predictors 
to 6 exo-miRNAs, which stratified C1 from non-C1 tumors with a corrected AUC of 0.73 
and with significant difference in C1 predicted probability. Then, we started to investigate 
the role of exosomes and exo-miRNA in aggressiveness using the 12 LUAD cell lines 
previously stratified in C1-like and nonC1-like. We demonstrated that C1-like cells are more 
prone to internalize self and exogenous exosomes then nonC1-like cells. Coherently, we 
performed the exo-miRNAs analysis as for the patients, showing 9 exo-miRNAs 
differentially expressed. Of such miRNAs, exo-miR-223-3p levels of C1-like cells were in 
accord with levels founded in C1-patients. Of note, miR-223-3p was significantly associated 
with immune, migration and proliferation gene-pathways in a miRPathDb analysis, 
suggesting a key-role for C1-like cells. Surprisingly, LUAD cells had low levels of miR-223-
3p and C1-like cells overexpressing miR-223-3p showe significative reduction of migration 
and invasion. Consistently with high levels of miR-223-3p in C1-like exosome, we observed 
significantly lower production of Interferon gamma associated with lower vitality and 
proliferation of Jurkat activated cells conditioned with media derived from C1-like cells 
overexpressing miR-223-3p. These data confirmed a role of exo-miR-223-p in producing an 
immune evasion phenotype.  
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In conclusion here we demonstrated that the characterization of new molecular subtypes of 
lung cancer is crucial to better understand the heterogeneity of this disease. Moreover, we 
generated a circulating miRNA signature to early identify C1-LUAD subtype, highlighting 
the role of exosomes and exo-miRNA as reliable biomarkers and key-players in metastatic 
phenotype. 
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I.1 Aim of the thesis  
The principal aim of my PhD project was to demonstrate the presence of new molecular 
subtypes of lung cancers which impact the diagnosis and prognosis by means of miRNA-
based expression signatures. This thesis will go through the description of experimental 
strategies and results focused on three main aims: 
 
Aim I: Characterization of an aggressive molecular subtype of lung adenocarcinoma 
identified by a gene expression (mRNA) signature. 
 
Aim II: Identification of a miRNA-based expression signature which capture the molecular 
complexity of this LUAD aggressive molecular subtype. 
 
Aim III: Dissecting exosomal-miRNA as key-players for the early-identification of 
aggressive lung adenocarcinoma using plasma samples. 
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II.1 Summary 
Lung adenocarcinoma (LUAD) is the most common type of non-small-cell lung cancer, 
accounting for about 40-50% of all cases. Despite improvements in early detection and 
personalized medicine, many patients with early-stage LUAD still experience disease 
relapses and poor outcomes. Previous studies have identified molecular subtypes of LUAD 
with distinct gene expression and mutational profiles, which are associated with prognosis, 
but their underlying biological and molecular features are not well understood. Therefore, 
it is not clear what causes aggressive LUAD. 
In this study, we used a multi-tiered approach to investigate the molecular and functional 
characteristics of LUAD in multiple patient cohorts and LUAD cell lines. We analyzed the 
tumor transcriptome and the mutational and immune gene expression profiles, and we 
conducted cancer cell phenotypic screening using LUAD cell lines. Our findings suggest 
that a specific subset of LUAD, which we called C1-LUAD, has aggressive behavior due to 
the loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and 
immune evasion phenotypes. This subset can be identified using a 10-gene prognostic 
signature, and it is found in both early-stage and advanced-stage disease. Patients with this 
subtype have a poor prognosis. Our data suggest that transformed lung stem/progenitor 
cells and/or reprogrammed epithelial cells with CSC characteristics are the underlying 
causes of this aggressive disease. These findings may lead to new, more aggressive, 
therapeutic strategies for early-stage C1-LUAD. 
 

II.2 Introduction  
Every year, approximately 2 million new cases of lung cancer are diagnosed worldwide, 
resulting in around 1.8 million deaths [1]. The most common type of lung cancer is non-
small-cell lung cancer (NSCLC), which comprises various tumor subtypes, including 
adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [2]. Despite 
advancements in early detection and prognosis, around 30-40% of patients with early-stage 
NSCLC who undergo surgery still experience poor outcomes due to cancer progression [3-
5]. The molecular heterogeneity of lung cancer plays a crucial role in metastatic 
dissemination and chemoresistance [6]. This cancer is characterized by high tumor 
mutational burden and genetic heterogeneity, which is influenced by smoking, the primary 
risk factor for lung cancer development [5]. Studies have identified a mutational signature 
induced by tobacco smoke carcinogens [9]. Genome instability fuels molecular 
heterogeneity and tumor evolution, leading to cell subsets with inheritable metastatic 
potential [8, 10]. The tumor transcriptome can be a valuable tool in studying genetic 
heterogeneity, as exemplified by recent research on lung cancer molecular subtypes [7, 11]. 
The discovery of these subtypes can help improve lung cancer diagnosis, prognostication, 
and identify targets for treatment. For instance, the TRU subtype has a lower tumor 
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mutational burden and ploidy, is enriched in mutations in the epidermal growth factor 
receptor and has a more favorable prognosis [7]. On the other hand, tumors of the PI subtype 
have an unfavorable prognosis and are enriched in NF1 and TP53 co-mutations, while the 
PP subtype has frequent mutations in KEAP1 and STK11 genes [7]. The expression of certain 
lineage-specifying genes, such as NKX2-1 and SOX2, can trigger alternative developmental 
programs leading to distinct molecular subtypes, each dominated by different gene 
expression profiles and actionable genetic alterations. A previous study identified a robust 
prognostic model for lung adenocarcinoma based on a 10-gene expression signature [15]. 
The loss of lung cell lineage and the acquisition of stem cell-like features, along with the 
occurrence of mutator and immune evasion phenotypes, are characteristic of an aggressive 
subtype of early-stage lung adenocarcinoma, which was named C1-LUAD and identified 
using the 10-gene prognostic signature [15]. The molecular diagnosis of C1-LUAD has 
greater prognostic significance than other biomarkers and previous molecular 
classifications, providing new possibilities for more aggressive treatment strategies for 
patients with early-stage C1-LUAD. 

 
II.3 Results  

C1-LUAD has the worst prognosis and is characterized by loss of lung cell lineage  
To gain a thorough understanding of the molecular profile of LUAD, we used a multi-tiered 
strategy (Fig.1). Initially, we analyzed the transcriptome of 1183 LUAD patients from three 
separate cohorts (Cohorts 1–3). Using a 10-gene expression signature [16] and hierarchical 
clustering analysis, useful to identify molecular subtype [7, 11, 17,18,19,20], we identify a 
previously described subset of LUAD known as C1-LUAD (also referred to as C1) [15, 16], 
which was present in all three cohorts and consisted of 37% of the patients (N = 438). We 
found that even patients with stage I disease had an unfavorable prognosis if they had C1-
LUAD (Fig. 2). We then used principal component analysis (Fig.2) to investigate the extent 
of transcriptional change in C1- vs. nonC1-LUAD, which revealed different transcriptional 
profiles characterizing C1- and nonC1-LUAD. Out of 338 commonly regulated genes across 
Cohorts 1–3, 330 had the same trend of regulation (107 upregulated and 223 
downregulated). Recently, Tata et al. [24]  reported that invasive mucinous adenocarcinoma 
(IMA), also known as MAD, has a poor prognosis and is characterized by the loss of 
expression of NKX2-1 and SOX2. In our study, we found that 84% of the IMAs originally 
classified in Tata et al. were included in C1-LUAD (Fig. 3A,B), which had an increase in the 
expression of some "Esophagus" and "Midgut/Hindgut" markers (Fig. 3C) and a significant 
downregulation of lineage-specifying genes associated with lung cell identity (such as 
NKX2-1 and SFTPC, as shown in Fig. 3C). 
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 Chapter II.3 Figure 1: Multi-tiered analysis of molecular features of the C1-LUAD subtype. 

Study flow-chart with data sets, analysis, and main results. 
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Chapter II.3 Figure 2: Gene expression analysis of 1183 patients with lung adenocarcinoma. 
Overall survival of patients with C1- and nonC1-LUAD tumors stratified by the 10-gene signature is shown for A Cohort 1 
(TCGA), B Cohort 2 (GSE31210), and C in Cohort 3 (GSE72094). Numbers of patients at risk at 0, 20, 40, and 60 months are 
reported underneath the graphs. Log-rank p value is also shown. Color codes are as per the legend. On the right, in A–C, the 
first two dimensions (Dim1 and Dim2) of PCA are shown for every cohort analyzed as well as the relative distribution plots. The 
percentage of variability captured by Dim1 and Dim2 is shown in Y- and X-axes, respectively. Color codes are as per the legend. 
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C1-LUAD is enriched in molecular signatures characteristic of undifferentiated cancer 
To delve further into the molecular characteristics of C1-LUAD, we conducted gene set 
enrichment analysis (GSEA) using a large collection of curated gene sets (N = 4738) that 
virtually represent all known molecular mechanisms and cellular phenotypes. By 
comparing the transcriptional profiles of C1-LUAD and nonC1-LUAD, the GSEA identifies 
the overrepresentation of gene sets in a ranked list of genes. We discovered that among the 
positively and significantly enriched gene sets in stage I C1-LUAD, there was an 
overrepresentation (>20%, in at least two out of three cohorts; p < 0.0001, Z-test) of molecular 
signatures that are associated with metastatic cancer, such as epithelial-to-mesenchymal 
transition (EMT)/stem cells, metastases, the immune system, and hypoxia (Fig. 4A) [25]. 
Notably, upon analyzing the expression profile of genes relevant to stem cell biology and 
EMT, we identified a significant upregulation of several markers in stage I C1-LUAD 
(adjusted p < 0.05; Fig. 4B, C). In contrast, we observed an enrichment of gene sets related to 
RAS signaling in IMA samples, which drives differentiation toward mucinous 
adenocarcinoma, as previously reported (Fig. 4D) [24, 26]. Moreover, the enrichment of 
signatures related to stemness, poor survival, and metastasis was exclusively retained in 
"non-IMA" C1-LUAD. 
C1-like LUAD cells have are characterized by aggressive phenotype 
Then, we investigated whether C1-LUAD was functionally linked to biologically aggressive 
phenotypes. We utilized a large collection of LUAD cell lines from the Cancer Cell Line 
Encyclopedia (CCLE, N = 76, [29]), which we binarily categorized into C1-like or nonC1-like 
based on their 10-gene expression profile (Fig. 4E). We then conducted a phenotypic 
screening using a subset of 12 cell lines (8 C1-like and 4 nonC1-like) that were already 
present in our laboratory to measure various parameters that are related to established 
cancer phenotypes. These parameters included: (1) doubling time to measure cell 
proliferation, (C1-like = 32 h, nonC1-like = 50 h; median values); (2) wound healing 
percentage to measure cell migration (C1-like = 89%, nonC1-like = 29%; median values); (3) 
the number of cells in transwell assay to measure cell invasion (C1-like = 82 Cells/Field, 
nonC1-like = 22 Cells/Field; median values) and the efficiency to generate tumor spheres for 
cancer stem cell (CSC) enrichment (C1-like = 12%, nonC1-like = 8%, median values) (see Fig. 
S1 and Table S1) [30]. These parameters were then combined to create a phenotypic score 
and ranking, which provided a comprehensive index of tumor cell aggressiveness. As 

Chapter II.3 Figure 3: Lineage-specifying gene expression profile of C1- and nonC1-LUAD samples. 
A Scatterplot analysis of the NKX2-1 (x-axes) and the SOX2 (y-axes) expression (Log2 RSEM normalized counts) 
of the TCGA lung cancer samples (Cohort 1, and squamous cell carcinoma samples (LUSC, N = 499), for a total of 
1014 samples) grouped by different histological and molecular subtypes: AD adenocarcinoma, SCC squamous cell 
carcinoma, IMA invasive mucinous carcinoma; and C1- and nonC1-LUAD. B On the left, pie charts showing the 
percentage of C1- and nonC1-LUAD overlapping with IMA. Middle and right, pie charts showing the percentage of 
IMA or adenocarcinoma (AD) in C1- or in nonC1-LUAD samples. Results are shown for all tumor stages or limited 
to stage I tumors. The number of samples in each category is also shown. C Heatmaps of differentially expressed 
lineage-specifying genes in C1- vs. nonC1-LUAD in the three cohorts analyzed (Cohorts 1–3). Genes are grouped 
based on the developmental lineage specification (esophagus, lung, midgut, and hindgut). ALL all tumors, I stage I 
tumors, II–IV stages II–IV tumors. Color codes are as per the legend (FC fold change differences). 
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hypothesized, the C1-like cell lines exhibited an overall higher phenotypic score and 
ranking (p = 0.0014 and p = 0.0133, respectively, Wilcoxon test; Fig. 4F) compared to the 
nonC1-like cell lines. All these observations are likely to contribute to the clinical 
aggressiveness of C1-LUAD. 
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Chapter II.3 Figure 4: Functional analysis of C1-LUAD. 
A Gene set enrichment analysis (GSEA) of curated gene sets (N = 4 738) in C1- vs. nonC1-LUAD, in the Cohorts 1–3. Pie 
charts represent the percentage of gene sets mapping to hypoxia, immune system, metastases, and stem/EMT that we 
found overrepresented (>20%) among the top C2 curated gene sets enriched in C1-LUAD tumors (FDR < 25%). N total 
number of gene sets overrepresented (>20%). B Gene expression profile analysis of stem cell and C EMT markers. Violin 
plots and box plots represent the distribution of log2 ratio (median centered) expression values in C1- and nonC1-LUAD, 
in the three cohorts of samples analyzed (Cohorts 1–3). Asterisks indicate significant differential expression (FDR < 0.05; 
Benjamini–Hochberg correction). NS not significant (FDR > 0.05). D Gene set enrichment analysis (GSEA) of RAS 
associated pathways in IMA samples (N = 44) vs. C1-LUAD (non-IMA, N = 164). E Classification in C1-like or nonC1-like of 
the Cancer Cell Line Encyclopedia (CCLE) lung adenocarcinoma cells (N = 76). Y-axes, correlation coefficient (power of 
ten) of CCLE 10-gene expression profile with centroid values calculated in C1-LUAD samples (see “Methods”). X-axes, 
correlation coefficient (power of ten) of CCLE 10-gene expression profile with centroid values calculated in nonC1-LUAD 
samples (see “Methods”). The size of the filled circles corresponds to the probability of being a C1-LUAD (see “Methods”). 
The indicated cell lines correspond to the ones available in the lab and considered for further experiments. F On the left, 
violin plot of the phenotypic scores (z-scores) of the 12 cell lines analyzed. Bell curve for expected distribution of data. Cell 
lines are labeled in red (C1-like) or blue (nonC1-like). On the right, the stacked bar chart of the phenotypic rankings obtained 
by the indicated assay using the 12 adenocarcinoma cell lines. Cell lines are labeled in red (C1-like) or blue (nonC1-
like). p value for phenotypic score was calculated using t-test; p value for phenotypic ranking was calculated using Wilcoxon 
test. 
 

 
 
 
 
 
 
 
 
 
 
 
 
The mutational profile of C1-LUAD 
Overall, the tumor mutation burden (TMB) was significantly higher in stage I C1-LUAD 
samples and there was also a trend towards significance for stages II-IV C1-LUAD samples 
(Fig. 5A). We observed higher rates of mutations in C1-LUAD for genes known to be 
involved in tumor suppression (tsg), oncogenes (onc), or genes that have both tumor 
suppression and oncogene activities (onc;tsg) (Fig.5B). However, the enrichment of tumor 
mutational signatures defined by single base substitution (SBS) signatures in the COSMIC 
database (cancer.sanger.ac.uk [34]) confirmed that tobacco smoking associated SBS4 and 
SBS5 signatures [34] were the most common in both C1-LUAD and nonC1-LUAD tumors 
(>40% and >30%, respectively) (Fig. 5C). Notably, we found that SBS2 and SBS13 signatures 
were significantly higher (p < 0.0001; Wilcoxon test) in C1-LUAD compared to nonC1-
LUAD tumors (Fig. 5C). These two signatures are associated with the activity of APOBEC3 
family members (APOBEC3 A-H), which normally function in RNA editing to protect cells 
from pathogens, but in cancer, they increase mutagenesis and promote subclonal evolution 
[35]. Specifically, APOBEC3B expression is upregulated in multiple cancer types and is 
linked to poor prognosis and resistance to treatment [35]. We also observed a significant 
increase (p < 0.05; Wilcoxon test) in APOBEC3B expression in C1-LUAD samples from all 
cohorts analyzed (Fig. 5D). Taken together, these findings suggest an elevated mutator 
phenotype in C1-LUAD that requires further investigation.  
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Chapter II.3 Figure 5:  Mutational profile of C1- and nonC1-LUADs. 
A Box plot of tumor mutation burden (TMB) of stage I C1-LUAD, stage I nonC1-LUAD and stages II–IV C1- and nonC1-LUAD 
samples. p values were computed by the Wilcoxon test. B Bar plot of tumor suppressor genes (tsg), oncogenes (onc), or of genes 
with both tumor suppressor and oncogene activities (onc; tsg), of stage I C1- and nonC1-LUAD (on the left), or considering all stages 
C1- and nonC1-LUAD samples (on the right). p values were computed by the Wilcoxon test. C Pie chart of the single base substitution 
(SBS) signatures distribution in stage I C1-LUAD and stage I nonC1-LUAD samples and, on the right, the graphical representation 
of the distribution of percentage of SBS2 and SBS13 signatures in Cohort 1. Adjusted p values were computed by Wilcoxon test 
(Benjamini–Hochberg correction). D Box plot of APOBEC3B gene expression in C1- and nonC1-LUAD samples (stage I, and ALL: 
all tumor stages) in Cohorts 1–3. p value was computed by the Wilcoxon test. Median fold change (FC) is also shown for all 
comparisons. 
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Exploiting the immune-infiltration of C1-LUAD 
Finally, we investigated whether the immune composition [36] of the tumor 
microenvironment infiltrating C1-LUAD contributes to its aggressive behavior. Our initial 
analysis identified significant enrichment of several signatures associated with the immune 
system in C1-LUAD (as demonstrated in Fig. 4A). To predict the hierarchy of the immune 
tumor microenvironment in C1- and nonC1-LUAD stage I or all-stage disease, we analyzed 
the distribution of different immune cell subsets using the “Immune Subtypes” 
characterized by Thorsson et al. [37] in the TCGA-LUAD dataset (Cohort 1) (Fig. 6A). The 
wound healing subtype (C1), which is enriched in Th2(CD4+) cells, was predominantly 
present in C1-LUAD (31% in C1-LUAD vs. 11% in nonC1-LUAD; p < 0.0001; post hoc test 
following chi-square, Bonferroni correction). In contrast, the inflammatory subtype (C3), 
which is enriched in pro-inflammatory T helper Th1 and Th17 cells that enhance CD8+ T 
cells cytotoxicity, was depleted in C1-LUAD (20% in C1-LUAD vs. 50% in nonC1-LUAD; 
p < 0.0001; post hoc test following chi-square, Bonferroni correction) (as shown in Fig. 6A). 
Recently, a subset of CD4+ regulatory T cells, which are activated by interferon regulatory 
factor 4 (IRF4) transcription factor (IRF4+ Tregs), have been identified in various human 
cancers, including non-small cell lung cancer (NSCLC). These cells have been found to 
possess a superior capacity to suppress the antitumor immune response and are associated 
with the accumulation of exhausted CD8+ T cells [38]. To assess the abundance of IRF4+ 
Tregs in C1- and nonC1-LUAD samples, we employed the IRF4+ Treg specific 
transcriptional signature (consisting of 382 genes) developed by Alvisi et al. [38] and utilized 
GSEA and CIBERSORTx. Interestingly, the GSEA revealed that the IRF4+ Treg signature 
was significantly enriched in C1-LUAD (Fig. 6B). CIBERSORTx analysis confirmed a 
significant (in Cohorts 1 and 3) higher fraction of IRF4+ Tregs in C1-LUAD (Fig. 6C) and a 
reduction of the IRF4− Tregs population (Fig. 6C). While no significant differences were 
found in Cohort 2, where most of the samples (198 out of 226; 88%) were negative for IRF4+ 
Tregs (data not shown). These findings indicate that the more aggressive C1-LUAD subtype 
is characterized by a strong immunosuppressive microenvironment, in line with previous 
data on NSCLC [38]. Finally, we conducted an immunohistochemistry (IHC) analysis on an 
independent cohort of LUAD patients (N = 85) admitted to the Casa Sollievo della 
Sofferenza Research Hospital (CSS) to evaluate the levels of CD4+ and CD8+ T cells and PD-
L1 expression [39]. We performed the IHC and qRT-PCR analysis on formalin-fixed 
paraffin-embedded (FFPE) tumor tissue samples. Out of the 85 samples, 44 samples were 
suitable for qRT-PCR analysis of the 10-gene signatures. Using hierarchical clustering 
analysis, we observed that the clusters of samples corresponded to C1- or nonC1-LUAD, as 
we had previously observed in Cohorts 1-3 (Fig. 6D). Remarkably, the expression of a cancer 
stem cell (CSC) associated biomarker, specifically THY1/CD90, was discovered to be 
significantly upregulated in C1-LUAD (p = 0.002, Wilcoxon test; Fig. 6E), confirming 
previous analyses. The frequency of samples exhibiting high levels of CD4+ cell infiltration 
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was comparable between C1-LUAD (10/17, 59%) and nonC1-LUAD samples (17/27, 63%) (p 
= 0.78; Fig. 6F). Conversely, there was a tendency towards lower CD8+ lymphocyte 
infiltration in the C1-LUAD samples (3/17, 18%) compared to nonC1-LUAD (12/27, 44%) (p 
= 0.06; Fig. 6F), which is consistent with our previous findings from immune expression 
profiling. Lastly, PD-L1 expression was found to be comparable between C1/nonC1-LUAD 
samples (Fig. 6F). 
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Chapter II.3 Figure 6:  Immunoprofile analysis of C1- and nonC1-LUADs. 
A Bar plots represent distribution (percentage; Y-axes) of patients according to the immune subtype classes defined by 
Thorsson et al. in all stages and stage I C1- and nonC1-LUAD samples of the Cohort 1. Adjusted p values were computed 
by post hoc test following chi-square (Bonferroni correction). The C5 subtype, immunologically quiet and dominated by 
M2 macrophages, was not reported within the Cohort 1 samples. B GSEA of the immunoexpression signatures specific 
for CD4+ IRF4+ effector Tregs (Treg Up upregulated genes in Treg, Treg Down downregulated genes in Treg) in C1-LUAD 
vs. nonC1-LUAD tumors. NES normalized enrichment score, FDR false-discovery rate based on 1000 random samples 
permutations. C CIBERSORTx analysis of abundances of CD4+ IRF4+ effector Tregs in stage I LUAD (C1- and nonC1-
LUAD samples) in Cohorts 1 and 3 samples. Y-axes, CIBERSORTx score representing an estimation of cell fraction of 
each specific subpopulation in each tumor sample. Significant p values were computed by the Wilcoxon test. Median 
Ratio, ratios of median CIBERSORTx scores in C1 vs. nonC1. D Hierarchical clustering analysis of the 10-gene 
expression signature in the CSS cohort (N = 44). C1- and nonC1-LUAD samples are colored as per the legend. The false-
discovery rates (FDR; expressed as −Log) of 10 genes differential expression analysis of C1 vs. nonC1 are also shown 
and colored as per the legend. E Box plots of THY1/CD90 gene expression measured by qRT-PCR in the CSS cohort 
(N = 44). Y-axes, normalized (GUSB, HPRT1, and ESD1 genes used as housekeeping) quantification cycle 
(Cqn). F Immunohistochemistry analysis of CD4+ and CD8+ immune cells, and PD-L1 expression in C1- (N = 17) and 
nonC1-LUAD (N = 27) samples of CSS cohort. Significant p values were computed by the Likelihood-ratio test. 
 

 
 
 
 
 
 
 
 
 
 
 

II.4 Discussion  
In this study, we presented proof of a molecular subtype of LUAD, called C1-LUAD, which 
we identified through the use of a prognostic 10-gene signature. This 10-gene signature 
comprises genes involved in divergent mechanisms but that are synergistic in the 
progression of cancer, including (1) cell proliferation genes (E2F1, E2F4, RRM2, MCM6), (2) 
genes involved in development/stemness (HOXB7 [40, 41], SF3B1 [42]), cell migration and 
invasion (SERPINB5 [43], NUDCD1 [44], HSPG2 [45]), and (3) genes involved in epithelial 
airway differentiation (SCGB3A1 [46,47,48]). Overall, we have observed that the expression 
changes in a substantial proportion of these genes indicate the aggressive behavior of C1-
LUAD. Gene expression profile analysis revealed approximately 3000 genes that were 
differentially regulated between C1- and nonC1-LUAD, with enriched gene expression 
signatures linked to the activation of molecular mechanisms related to tumor 
dedifferentiation and progression (Fig. 4A). The C1-LUAD displayed an increased 
expression of cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) markers 
and a reduced expression of genes related to lung cell lineage. This is in line with our 
previous observations in which the overexpression of HOXB7, a member of the 10-gene 
signature, promotes cell reprogramming by inducing the LIN28B, a pluripotency factor (Fig. 
4B [40]). Interestingly, a sizable fraction (approximately 15-18%) of these C1-LUAD patients 
featured invasive mucinous adenocarcinoma (IMA) [24], which are characterized by 
missing lineage-specifying factors in the lung, such as the NKX2-1 (TTF-1) gene [13] and the 
SOX2 gene [14], and gain of KRAS(G12D) mutation, which induce the lineage conversion to 
gut differentiation (e.g., CDX2, TFF1, HNF4a, PDX1, MUC2, MUC6 overexpression) [24, 26]. 
Furthermore, the IMA subtype, but not the other C1-LUAD, was identified as having an 
enrichment in RAS-related signatures by the GSEA analysis (Fig. 4D), leading to the 
retention of stem cell-related signatures. Activation of RAS signaling pathway may trigger 
the conversion of C1-LUAD tumors into gut-like differentiated entities, an area that 
necessitates further research. The elevated expression of keratin 6A (KRT6A; Fig. 3C) 
supports the less differentiated state of C1-LUAD. Keratin 6A is a marker of p63+/KRT5+ 
distal airway stem cells that act as stem/progenitor cells for the regeneration of damaged 
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alveoli. Notably, there was significant enrichment of an expression signature of a human 
proximal stem cell (HPSC) in LUAD cells [28]. HPSC cells are characterized by low 
expression of NKX2-1 and mixed cellular identity and are thought to serve as a precursor to 
the EMT state, which drives the metastatic capacity in primary LUAD [28]. Furthermore, 
C1-LUAD tumors demonstrated an increased occurrence of genetic mutations, indicating 
an elevated mutator phenotype, as demonstrated by a higher tumor mutational burden 
(TMB) and an enriched presence of APOBEC-related substitution signatures, along with an 
upregulated expression of APOBEC3B. It is noteworthy that the expansion of 
subpopulations of CSCs can increase the genetic and non-genetic intra-tumor heterogeneity 
(ITH) [55]. The ITH and CSCs have been shown to impact the cytotoxic activity of tumor-
infiltrating lymphocytes [56] which plays a crucial role in tumor progression. The cancer 
cells can reprogram a range of host cells, such as resident and infiltrating cells, by interacting 
with membrane receptors, the release of cytokines and microvesicles, to escape 
immunosurveillance during metastatic dissemination [57]. Our immune gene expression 
profiling analyses revealed heterogeneity in lung adenocarcinoma, with C1-LUAD 
exhibiting a more permissive immune environment than other LUAD subtypes. C1-LUAD 
exhibited a specific immune molecular subtype pattern, as originally described by Thorsson 
et al. [37], correlating with the infiltration of immunosuppressive Th2 cells involved in 
cancer progression [57] and with the depletion of cytotoxic Th1 and Th17 cells. The presence 
of a more favorable immune environment in C1-LUAD was further reinforced by the higher 
abundance of Tregs IRF4+. Infiltrating Tregs IRF4+ cells in tumors were found to have a 
negative correlation with cytotoxic CD8+ T cells and to co-occur with exhausted T cells 
(CD8, C5) [38]. Smoking tobacco was found to suppress the immune response and to 
associate with tumor immune suppressive phenotypes [60]. Interestingly, our analysis of 
IHC data in our cohort of samples (CSS) confirmed a reduction in cytotoxic T cells (CD8+) 
in C1-LUAD samples with a moderate trend towards significance (Fig. 6F).  
A limitation of present study is the unavailability of molecular data (beyond gene 
expression data) in Cohorts 2 and 3. However, Cohort 1 is actually considered the 
benchmark for lung cancer molecular analysis with matched RNA, DNA, protein profile 
data, and molecular (i.e., TRU, non-TRU) immune subtypes characterization. However, 
Cohorts 2 and 3 are both monocentric consecutive series, with accurate follow-up 
information and previously used for survival analysis [61, 62]. 
Despite previous research has suggested that different molecular subtypes of lung 
adenocarcinoma exist, their biological and molecular features have not been thoroughly 
investigated. In this study, we demonstrate that the C1-LUAD molecular subtype is 
characterized by the loss of lung cell identity and the acquisition of stem cell-like properties, 
as well as mutator and immune evasion phenotypes, which contribute to its aggressive 
behavior. Additional research is required to investigate the underlying mechanisms 



 24 

responsible for the development of C1-LUAD, which may lead to the identification of new 
and effective therapeutic targets for LUAD patients. 
 
II.5 Material and Methods 
Cell culture 
All LUAD cell lines were obtained from ATCC and maintained in RPMI (Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) with 10% FBS, 1% penicillin/streptomycin 
(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA). Cells were growth at 37 °C in a 
humidified incubator with 5% CO2. Mycoplasma testing was routinely performed during 
all experimental procedures.  
 
Real-time PCR gene expression profiling 
The total mRNA was extracted from all 85 FFPE blocks using the RNeasy FFPE Kit (Qiagen, 
Inc.; Hilden, Germany). The qRT-PCR analysis was performed using the QuantStudio 12K 
Flex Real-Time PCR System. The expression of the GUSB gene was used as mRNA quality 
control. Further details can be found in the Supplementary Information. 
Immunohistochemical analysis 
The IHC analysis was performed by an automated Autostainer Link 48 (Agilent DAKO; 
Carpinteria, CA, USA) platform according to the manufacturer’s instructions. The 
histopathological evaluation of tumor tissues was performed by a board-certified 
pathologist (PG). Further details can be found in the Supplementary Information. 
 
Gene expression analysis 
Details on cohorts of samples, data sets availability, data processing and analysis can be 
found in the Supplementary Information. 
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II.7 Supplemental Information 

 
Supplemental Methods 
Gene expression profile analysis (RNAseq and Affymetrix) of LUAD datasets 
From the cBIO data portal (https://www.cbioportal.org/), we downloaded gene 
expression data of Cohort 1 (i.e., TCGA-LUAD) and clinical information of 515 patients with 
lung adenocarcinoma as well gene expression data of TCGA lung squamous cell carcinoma 
(SCC) samples (N=499, originally used by Tata et al.). Cohort 2 (GSE31210) and Cohort 3 
(GSE72094) gene expression data and clinical information of 226 and 442 patients with lung 
adenocarcinoma, respectively, were downloaded from the GEO Database 
(https://www.ncbi.nlm.nih.gov/geo/). The CCLE reads per kilobase of transcript per 
million reads mapped (RPKM) data were downloaded from the Depmap portal 
(https://depmap.org/portal/; 18Q2 release). From the original file, we extracted only lung 
adenocarcinoma cell lines, resulting in a total of 76 cell lines. Details on datasets 
normalization, gene expression profile analysis, mutation and CNV analysis and immune 
expression profiling, are reported in the Supplementary Information. All statistical tests 
were two-sided. We used RSEM normalized counts from the Cohort 1 (TCGA-LUAD) and 
from the TCGA-LUSC (N=499) cohort, while we used log2 normalized data available in 
GEO database (https://www.ncbi.nlm.nih.gov/geo/) for Cohort 2 (accession #: GSE31210) 
and Cohort 3 (accession #: GSE72094) datasets. Since Cohort 2 and Cohort 3 datasets derive 
from Affymetrix microarray analysis, multiple probes mapping to unique genes were 
averaged in order to obtain a single expression value for each gene. Median centered data 
were used for all analyses. For differential gene expression (DEG) analysis, we selected most 
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informative genes in terms of their variability of gene expression across samples, i.e. those 
belonging to the upper 25% (standard deviation > Q3) of the standard deviation distribution. 
A total of 4899 genes for Cohort 1, 5877 genes for Cohort 2 and 5530 genes for Cohort 3, were 
retain for subsequent DEG analyses. We then applied DESeq2 R package (Cohort 1) and 
Wilcoxon test (Cohort 2 and 3), followed by Benjamini-Hochberg adjustment to identify 
differentially expressed genes. For hierarchical clustering analysis, after median centering 
data, the uncentered correlation and the centroid linkage methods were used to cluster gene 
expression data in Cluster 3.0 for Mac OS X 
(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm). Hierarchical clustering 
structures and heatmaps were generated using Java TreeView 1.1.1 
(http://jtreeview.sourceforge.net). JMP 15 (JMP®, Version 15. SAS Institute Inc., Cary, NC, 
1989-2019) generated Kaplan-Meier survival plots based on clustering analysis together 
with calculation of p-values based on the log-rank test. 
 
Dataset selection criteria (GEO database) 
In GEO database (homo sapiens), we first searched for datasets (high throughput 
sequencing, or array-based) with >200 samples by using the term “lung adenocarcinomas”. 
A total of 99 datasets were identified: i) 94 datasets were excluded because total samples 
were less than 200; ii) 1 dataset was excluded because only expression data for 8 out of 10 
genes (10-gene signature) were available (GSE68465); iii) 3 datasets were excluded because 
contain samples derived from tumor cell lines (GSE83744, GSE5949, GSE57083); iv) 1 dataset 
was then selected for our analyses i.e., the Cohort 2 (GSE31210). Furthermore, we searched 
for datasets (high throughput sequencing, or array-based) with >200 samples by using the 
term “lung adenocarcinoma” and “survival”. A total of 73 datasets were identified: i) 70 
datasets were excluded because total samples were less than 200; ii) 1 dataset was excluded 
because only expression data for 8 out of 10 genes (10-gene signature) were available 
(GSE68465); iii) 1 dataset was excluded because samples were derived from non-tumor lung 
tissue (GSE71181); iv) 1 dataset was then selected for our analyses i.e., the Cohort 3 
(GSE72094). 
 
CSS lung adenocarcinoma cohort 
Between January 2017 and April 2020, 85 patients with lung adenocarcinoma underwent 
surgery at the Casa Sollievo della Sofferenza Research Hospital (CSS, San Giovanni 
Rotondo, Italy). Informed consent for the experimentation was obtained from all patients 
involved in the study. None of these patients received preoperative chemotherapy. Clinical 
information was obtained through review of medical records. Vital status was assessed 
through the Vital Records Offices of the patients’ towns of residence or by contacting 
directly the patients or their families. 
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Survival analysis 
Overall survival was defined as the time from the date of tumor resection until death from 
any cause and estimated by the Kaplan-Meier method. Follow-up was truncated at 3 years 
in order to reduce the potential overestimation of overall mortality with respect to lung-
cancer specific mortality. Univariate and multivariable Cox regression models were used to 
relate survival time to clinical-pathological and molecular information. All survival analyses 
were performed using the SAS software, version 9.4 (SAS Institute, Inc., Cary, NC, USA) 
and R 3.3.1 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria 2016). 
P-values lower than 0.05 were considered statistically significant. 
 
Principal Component Analysis (PCA) 
PCA was performed using most informative genes in terms of variability (standard 
deviation>Q3) as previously described. We used the prcomp R function and the R library 
cowplot for plotting. PCA was limited to lower-order components (Dim1 and Dim2) due to 
previously reported low dimensionality of gene expression data.  
 
Lineage analysis 
To be consistent with the classification of Cohort 1 patients into LUAD and IMA reported 
in Tata et al. we used the very same data to analyze the distribution of C1- and nonC1-
LUAD patients according to lineage specific markers (SOX2 and NKX2-1). IMA (aka 
MAD)/AD classification was retrieved from the supplemental data available in Tata et al. 
We then retrieved gene expression data of genes preferentially expressed in the lung, 
esophagus and midgut/hindgut for all the 3 datasets we analyzed. Using this list of genes, 
we calculated the C1- vs. nonC1-LUAD fold change (FC) for stage I patients as the difference 
of the means using R and we plot the results using JMP 15. 
 
 
 
Gene Set Enrichment Analysis (GSEA) 
GSEA (GSEA, https://www.gsea-msigdb.org/gsea/index.jsp) was performed using 
Signal2Noise metric, 1000 random sample sets permutation, and median gene expression 
values for class comparison. Significant Gene Sets were considered as those with a false-
discovery rate (q-value) less then 25% (default GSEA setting). Among all the enriched 
signatures we identified those regarding stem/EMT phenotypes, hypoxia status, immune 
system differentiation and metastasis as hallmarks of aggressiveness. The complete results 
are available online as ‘Supplementary Dataset SD2-7’. For each dataset, we compared the 
number of observed enriched signatures in the aforementioned hallmarks of aggressiveness 
to the expected distribution (Z-test) derived from 100 GSEA analyses (comparing C1 vs 
nonC1) of 100 random datasets. 
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CCLE lung cancer cell lines classification 
Bulk gene expression profile characterizing C1 and non-C1 tumor subtypes is the result of 
complex interaction of tumors and their microenvironment. Therefore, in order to classify 
CCLE lung adenocarcinoma cell lines (growth in 2D, without any microenvironment) in C1-
like or nonC1-like subtypes, we implemented centroid correlation where the bulk 10-gene 
expression profile of C1- and nonC1-LUAD was used as reference for calculating correlation 
scores with CCLE 10-gene expression profiles. SCGB3A1 and SERPINB5 of the 10-gene 
signature were barely detected in CCLE datasets (~95% of cell lines were negative to 
SCGB3A1, and ~40% of cell lines scored negative to SERPINB5), therefore they were 
excluded from further analyses. Next, Z-score values of each gene of the 10-gene signature 
were computed in all samples of Cohort 1. We then calculated the averages of the 10-gene 
signature Z-scores in the cluster of C1-LUAD patients with unfavorable prognosis (N=201) 
and in the cluster of ‘C4’ patients (N=177) previously reported with most favorable 
prognosis. These Z-score averages were used as C1-LUAD and nonC1-LUAD centroids, to 
calculate their expression correlation (Pearson, 𝛒) to that of the CCLE dataset. Next, we 
transformed 𝛒 values to power of ten (i.e., 10^𝛒) to stabilize variance to get normally 
distributed data, and we used these values to stratify CCLE cell lines. A cell line was 
classified as C1-like if its 10^𝛒C1 was greater than its 10^𝛒nonC1 , and vice versa. CCLE cell 
lines were finally stratified in in C1-like (N=41) or nonC1-like cells (N=35). To calculate the 
probability of a cell line to be classified as C1- or nonC1-like we used ridge-penalized 
unconditional logistic regression that was applied in the Cohort 1(N=378) to model the odds 
of being in the C1-LUAD cluster (vs. nonC1-LUAD cluster) as a function of the 8 genes 
detected in CCLE dataset. The expression of each gene was dichotomized according to the 
median. Cross-validated (10-fold) log-likelihood with optimization (50 simulations) of the 
tuning penalty parameter was applied. Probability of being in the C1-LUAD cluster was 
estimated, and model performance was assessed using the area under the receiver operating 
curve (AUC=0.83). 
 
Proliferation Assay 
Cell proliferation (i.e., doubling time) was evaluated with the CyQUANT Cell Proliferation 
Assay Kit (Molecular Probes, Thermo Fisher Scientific, Inc., Waltham, MA, USA), 
accordingly with manufactures instruction. Briefly, lung adenocarcinoma cell lines were 
seeded onto 96-well plates in exponential phase and CyQuant was added in a ratio of 1:10 
directly in cell media at 24h and 96h. Fluorescence was measured using a microplate 
spectrofluorometer (Synergy HTX; BioTek, Agilent, Carpinteria, CA, USA) at excitation and 
emission wavelengths of 480 and 520 nm, respectively. Then, the growth rate (gr) was 
computed as follow: 
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𝑔𝑟 =
ln '𝑁(𝑡)𝑁(0)-

𝑡  

- N(t) = number of cells at time t 
- N(0) = number of cells at time 0 
- gr = growth rate 
- t = time in hours 

 Finally, the doubling time was obtained as follow: 
 

𝑑𝑜𝑢𝑏𝑙𝑖𝑛𝑔	𝑡𝑖𝑚𝑒 =
ln(2)

𝑔𝑟𝑜𝑤𝑡ℎ	𝑟𝑎𝑡𝑒	 

 
Migration (wound-healing) assay 
Cells were seeded onto a 6-well plate and left to almost reach confluency (90-95% 
confluence) at 37°C in a humidified incubator with 5% CO2. Once obtained the desired 
confluence, cells were starved over-night using RPMI with 1% FBS and 1% 
penicillin/streptomycin. The day after, a scratch was made on the cell monolayer by using a 
sterile P-200 pipette tip. Cells were then washed with 1 ml of sterile 1X PBS to remove 
floating cells and debris, followed by the addition of 2 ml of complete growth media (10% 
FBS). Ten images were acquired at 0h time point with a 10X magnification using an Eclipse 
TE300 fluorescence microscope (Nikon; Tokyo, Japan). Cells were incubated (at 37°C in a 
humidified incubator with 5% CO2) and other ten images were acquired after 24h. Fiji 
software (ImageJ) was used to measure the wound area at 0h and 24h to calculate the 
percentage of healing. Representative images can be found in Supplemental Figure S1. 
 
Invasion Assay 
 Invasion assays were performed using trans-well chambers with 8.0-µm pore 
polycarbonate membrane (Falcon; Corning, NY, USA) coated with Matrigel growth factor 
reduced (Corning; Corning, NY, USA, Lot 4132005) at a concentration of 150 µg/ml in a 24-
well plate. Cells were suspended in RPMI medium (0% FBS) and seeded at a density of 1x105 
into the upper chamber of the trans-well. In the lower chamber, cell culture RPMI medium 
supplemented with 20% of FBS was added and used as chemoattractant. After 24h of 
incubation at 37°C in a humidified incubator with 5% CO2, trans-wells were fixed using 4% 
PFA and cells nuclei stained using DAPI (1ng/ml working solution; Sigma-Aldrich; St. 
Louis, MO, USA). Cells remained in the upper chamber were removed by using cotton 
swabs and washed 2 times with 1ml of 1X PBS. After DAPI staining (1ng/ml working 
solution; Sigma-Aldrich), ten images were acquired at 10X magnification for each cell line 
using Eclipse TE300 Microscope (Nikon). Invaded cells were evaluated counting nuclei with 
Cell Count tool of Fiji software (ImageJ). Representative images can be found in 
Supplemental Figure S1. 
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Tumor Spheres Formation Assay 
Spheroid formation was performed in a 12-well plates coated (48h) with poly-HEMA 
(4.8mg/well; Sigma Aldrich). Cells in serum-free RPMI were passed through a 50µm strainer 
and a total of 500 cells were admixed to Matrigel (growth factor reduced; Corning, Lot 
4132005) in a 1:1 ratio and left to solidify for 1h at 37°C in a humidified incubator with 5% 
CO2. Spheroids were growth in a DMEM-F12 (Sigma Aldrich) supplemented with 2 mM 
Glu, 100 U/ml, 5 µg/ml insulin, 0.5 µg/ml hydrocortisone, 2% B27 (Invitrogen; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA), 20 ng/ml EGF and human b-FGF, and 4 µg/ml 
heparin. After Matrigel solidification, 1ml of pre-warmed (37°C) spheroid media was slowly 
added in the center of the well to avoid Matrigel disruption. After 20 days, spheres were 
counted and images acquired at 10X magnification using the Eclipse TE300 Microscope 
(Nikon). Images were analyzed using Fiji software (ImageJ) to measure sphere diameter by 
setting the cut-off at 50µm.  
 
Phenotypic score 
Each parameter was transformed into z-scores and a phenotypic score was defined as the 
sum over the four z-scores and divided by 2, obtaining a variable still following the standard 
distribution (mean of 0 and standard deviation of 1). Cell lines (N=12) were also ordered by 
descending proliferation and increasing migration, invasion, and tumor spheres formation, 
and four ranks (from 1 to 12) were assigned to each cell line, for each assay. Next, we 
obtained a phenotypic ranking of the 12 cell lines by summing the ranks obtained (higher 
values correspond to more aggressive cell line). T-test and Wilcoxon test were used to 
compare C1-like/non-C1-like cell lines phenotypic score and phenotypic ranking 
distributions, respectively. 
 
Mutation analysis 
The Mutect maf data available for 510 out of 515 patients of Cohort 1 was downloaded from 
TCGA portal (https://portal.gdc.cancer.gov/) and was used in our analysis. Silent 
mutations were discarded. Tumor mutation burden (TMB) was calculated as the number of 
mutations over the total Mb sequenced (34.8 Mbases). We downloaded COSMIC Single Base 
Substitutions (SBS) signatures corresponding to each Cohort 1 patient from synapse.org 
website (accession ID: syn11801497) and we calculated the average of the number of 
mutations belonging to each SBS across C1- and nonC1-LUAD patients, both in all stages 
and stage I. Somatic mutations were also annotated with tumor suppressor genes (TSG), 
retrieved from the tumor suppressor gene database, and oncogenes (ONC), retrieved from 
oncogene database. TSG and ONC rate for stage I C1- and nonC1-LUAD subtypes were 
calculated as the number of mutations in TSG/ONC genes over the number of mutated 
patients. 
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Copy Number Alteration analysis 
Copy number values for DNA repair genes (N=18) were downloaded from cBIO data portal 
(https://www.cbioportal.org/). We calculated, for each gene, the number of amplification 
(GISTIC value = 2 or 1) and deletions (GISTIC value = -2 or -1) for patients of C1- and nonC1-
LUAD subset, both in all stages and stage I, as the total number of patients with 
amplifications/deletions over the total number of patients. 
 
 
Thorsson dataset analysis 
We retrieved data regarding the immune subtypes defined by Thorsson et al. [37] and the 
subclonal genome fraction for 510 Cohort 1 samples from supplementary data of Thorsson 
et al. [37] Each sample was assigned to a specific immune subtype class according to the 
prevalence of different expression traits of the immune system as described in Thorsson et 
al. [37] 
Real Time PCR gene expression profiling 
Samples (N=41) with GUSB housekeeping expression higher than 30 CT (low quality RNA) 
were excluded from further analyses. The CD90/THY1 expression was also detected in 41 
out of 44 (CTn<30) samples. 
 
CIBERSORTx analysis. CIBERSORTx  was run using the online web tool 
(https://cibersortx.stanford.edu/index.php) and following developers’ instructions. For 
Cohort 1, i.e. RNAseq level data, the CIBERSORTx analysis was conducted using the 
following settings: disabled quantile normalization, absolute mode running and 100 
permutations. For Cohort 2 and Cohort 3, i.e. Affymetrix level data, we used the following 
settings: batch correction (B-mode), absolute mode running and 100 permutations. 
CIBERSORTx score is an estimation of cell fraction of each specific subpopulation in each 
tumor sample. 
 
Immunohistochemical analysis 
Briefly, the 3µm thick FFPE tissue sections were deparaffinized in xylene, rehydrated in 
graded alcohols, washed in double-distilled water, and pretreated with the DAKO solution 
(EnVision FLEX Target Retrieval Solution, High pH) at 97°C. The slides were incubated with 
primary monoclonal antibodies against CD4 (clone 4B12, Ready-touse, Agilent DAKO), 
CD8 (clone C8/144B diluted 1:25, Agilent DAKO), for 30 min. The Antigen–antibody 
reaction was visualized using the EnVision FLEX kit with diaminobenzidine as chromogen. 
Finally, the slides were counterstained with hematoxylin and covered. 
A semi-quantitative scoring method of intratumoral lymphocytes on each representative 
lung adenocarcinoma full section was adopted. Necrosis, artifacts and macrophages were 
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excluded. CD4 and CD8 immunoreactivity was respectively evaluated as a score low and 
high (low: 1-49% and high :>50%) as the percentage of total number of lymphocytes within 
tumor areas. Programmed death-ligand 1 (PD-L1) immunohistochemical testing was 
performed using companion diagnostic 22C3 pharmDx kit (Dako, Carpintera, CA, USA) on 
Dako Autostainer. PD-L1 protein expression was assessed using tumor proportion score 
(TPS), i.e. the percentage of viable tumor cells showing partial or complete membrane 
staining at any intensity. PD-L1 status was clustered into three categories, negative (TPS < 
1%), low (1-49%) and high (≥50%), respective. 
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Chapter II.8 Figure S1: Phenotypic Screening assay in C1-like and nonC1-like cells 
From left to right, box plots representing: i) the proliferation rate expressed as hours (h) for cell doubling time (DT); ii) the 
percentage area wound healed (expressed as percentage); iii) the number of invaded cells/field (absolute number); iv) 
the tumor sphere efficiency (TSE) expressed as percentage versus number of cells plated. Tables within the plots 
represent the first (Q1), second (Q2, median), and third (Q3) quartile of data distribution considering C1-like (C1) or nonC1-
like (nonC1) cell lines. Representative images of migration, invasion assays and tumor spheroids were reported. White 
bars within the pictures correspond to 100um size. P-values were calculated by Wilcoxon test. 
 

Chapter II.8 Table S1: Phenotypic characterization of the 12 lung cancer cell lines. 
Results of proliferation, migration, invasion and tumor sphere efficiency, are reported with relative means and standard 
error (SE). Sphere forming efficiency was performed in biological duplicate while all other experiments were biological 
triplicates. 
 

 
 
II.8 Supplemental Tables and Figures 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Table 2. Phenotipic analysis of C1- and nonC1-like lung cancer cell lines

Mean SE Mean SE Mean SE Mean SE
A549 C1-like 33.8 5.37 22.72 0.81 297.33 16.61 94.54 2.65
H1437 C1-like 72 26.87 26.36 1.13 34.47 1.56 39.83 3.00
H1944 C1-like 50.9 4.38 37.36 2.18 92.2 2.91 22.87 0.49
H1975 C1-like 15.7 4.10 31.75 0.55 72.67 4.43 100.00 0.00
H2023 C1-like 0.8 1.41 32.59 2.01 453.97 22.17 100.00 0.00
H23 C1-like 1.8 5.66 33.67 1.50 71.53 4.39 83.02 1.81
H2347 C1-like 8.9 0.71 59.34 2.52 22.65 2.79 43.74 4.19
H838 C1-like 2.5 0.99 25.31 1.03 393.1 12.44 100.00 0.00
CALU-3 nonC1-like 3.7 0.42 50.23 0.51 37.6 2.76 43.49 1.15
H1573 nonC1-like 14.7 0.42 54.97 2.97 10.6 0.69 28.89 3.35
H2126 nonC1-like 11.9 2.40 49.69 2.44 4.65 0.67 28.56 6.10
H2228 nonC1-like 0.6 0.00 41.81 1.47 33.67 1.73 29.42 4.99
SE, standard error of mean

Migration (Wound Repair %)Cell Line Cluster CCLE Tumor Sphere Efficency (%) Proliferation Doubling Time (h) Invasion (Cell/Field)
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III.1 Summary 
The burden of lung cancer can be alleviated through primary and secondary prevention 
strategies, including anti-smoking campaigns and low-dose CT screening for high-risk 
individuals (those over the age of 50 and who have a smoking history of over 30 packs/year). 
Trials of CT screening have demonstrated a stage-shift towards earlier detection of lung 
cancer and a decrease in mortality by approximately 20%. However, a significant proportion 
of early-stage patients (30-50%) still experience relapse and poor prognosis, emphasizing 
the need for effective prognostic biomarkers in stage I lung cancer. In this study, we 
employed a multi-tiered approach that involved analyzing RNA-seq and miRNA-seq data 
from a large cohort of lung cancer patients (TCGA-LUAD, n = 510) to identify prognostic 
miRNA signatures in stage I lung adenocarcinoma. The identified signatures demonstrated 
high accuracy (AUC ranging between 0.79 and 0.85) in predicting aggressive disease. 
Furthermore, using a network-based approach, we identified a minimal signature of 7 
miRNAs that was validated in a cohort of FFPE lung adenocarcinoma samples (CSS, n = 44) 
and controlled a variety of genes associated with cancer-relevant pathways. Our results 
highlight the potential of miRNA-based biomarkers for prognostication in lung cancer and 
represent a promising step towards the clinical application of such biomarkers. 

III.2 Introduction  
The most recent worldwide lung cancer data reveals a burden of 2.09 million new cases and 
1.76 million fatalities in 2018 [1]. Non-Small-Cell Lung Cancer (NSCLC) represents the 
primary type of lung cancer (80-85%) comprising several heterogeneous tumor subtypes, 
including lung adenocarcinoma (ADC) (~40% of lung cancers), squamous cell carcinoma 
(SqCC) (~25% of lung cancers), and large cell carcinoma (LCC) (~10% of lung cancers) [2]. 
Although advances in lung cancer treatment, such as stereotactic ablative radiotherapy 
(SABR), targeted therapy, and immunotherapy, have been significant in the past few 
decades [3,4,5], global lung cancer mortality rates have remained relatively unchanged in 
the last 40 years, with some variability worldwide due to different lifestyle, environmental, 
and occupational exposures [4,6]. However, the use of primary and secondary prevention 
strategies, such as anti-smoking campaigns and large CT screening programs, have led to a 
reduction of lung cancer mortality by approximately 20% in enrolled patients, and an 
increase in the progression-free survival of lung cancer patients [7,8]. Nonetheless, the high 
degree of molecular heterogeneity in lung adenocarcinoma (ADC) contributes to the 
dissemination of a substantial fraction of early stage tumors (~30–50%) and poses significant 
challenges for effective therapeutic interventions [9]. In-depth molecular and functional 
profiling of ADC could provide valuable insights into specific molecular subtypes, thereby 
identifying alternative therapeutic options. Recently, we developed a 10-gene prognostic 
signature for stage I ADC that can identify a subset of tumors known as C1-ADC [10,11]. 
This subtype exhibits distinctive gene/protein expression patterns and genetic alterations 
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that resemble more advanced cancer, and the signature can be accurately measured using 
qRT-PCR, Affymetrix or RNA-seq, in both fresh-frozen and formalin-fixed, paraffin-
embedded (FFPE) specimens [11]. In order to facilitate the clinical implementation of the 10-
gene signature, we introduce a miRNA signature that serves as a substitute for the 10 genes 
to predict the prognostic risk of ADC. A miRNA-based prognostic signature would mitigate 
the issues of utilizing low-quality mRNA extracted from FFPE samples that are frequently 
utilized for diagnostic purposes. Shorter non-coding RNA molecules, such as miRNA, are 
more resilient to adverse conditions and suitable for most of the expression profiling 
methods, including quantitative real-time polymerase chain reaction (qRT-PCR), due to 
their stability and compatibility [12,13]. 
 
 

III.3 Results  
Identification of miRNA-signature  
We devised a multi-tiered strategy as illustrated in Fig. 1 to identify a surrogate miRNA-
based prognostic signature for patients with ADC. Initially, we conducted a gene expression 
analysis of 515 ADC patients from the TCGA-LUAD cohort with mRNA data. Table 1 
provides details about patients characteristics. Stage I tumors accounted for 54% of the 
cohort, and 71% had a smoking history. The median follow-up duration for survivors was 
2.1 years. Hierarchical clustering analysis of the TCGA-LUAD cohort (n = 515) patients 
utilizing the 10-gene signature resulted in four main clusters, namely C1 (n = 201), C2 (n = 
98), C3 (n = 39), and C4 (n = 177) (Fig. 2a), which is in accordance with prior studies [11]. 
Analysis of 3-year overall survival showed no significant differences between C2, C3, and 
C4 clusters (log-rank test p-value = 0.90 and p-value = 0.48 in stage I and advanced stages, 
respectively), which were thus combined into non-C1 clusters. C1 cluster had the worst 
prognosis in both stage I (p-value = 0.0010) and more advanced stages (p-value = 0.0061) 
(Fig. 2b). Additionally, the C1 cluster had a significantly higher proportion of male patients, 
more advanced lung cancer, and nearly significant higher percentage of smokers, in 
agreement with the worse prognosis previously reported [9]. 
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Chapter III.3 Figure 1: Flow chart of study design with data sets and analysis. 
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We then performed miRNA expression profile of 510 out of the 515 ADC of the TCGA-
LUAD cohort, with miRNAs expression data available. We used both DESeq2 R package 

Chapter III.3 Figure 2: mRNA and miRNA expression profile analysis of the TCGA-LUAD cohort. 
(a) Hierarchical clustering analysis of the 10-gene expression signature. C1-C4 clusters are colored as per the legend. Age, 
gender, smoking status and stage are colored as per the legend; Unavailable information is colored in white. (b) Kaplan–
Meier curves for 3-years overall survival stratified by C1–C4 clusters. Log-rank p-values are shown for C1 vs. non-C1 
clusters (C2-C4) comparison. (c) Receiver operating characteristic (ROC) curves showing the False Positive Fraction and 
True Positive Fraction of the 19- (in blue) and 14-miRNA (in red) models. The areas under curve (AUC) are reported. (d) 
Networks of miRNA derived from 19-, 14- and 7-miRNAs model and corresponding target genes. Light blue rectangles 
represent genes; red rectangles represent miRNA from 19-miRNA model; yellow rectangles represent miRNA from 14-
miRNA model; green rectangles represent miRNA from both 14- and 19-miRNA model. (e) Hierarchical clustering of 7-
miRNAs in the TCGA-LUAD cohort. C1 and non-C1 tumors (defined according to the 10-gene signature) are colored as per 
the legend. Predicted C1 and non-C1 tumors (defined according the 7-miRNA logistic model) are colored as per the legend. 
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Next, we proceeded with miRNA expression profiling of 510 ADC patients out of the 
TCGA-LUAD cohort, whose miRNA data were available. We used both the DESeq2 R 
package and BRB-ArrayTools as alternative statistical methods to identify differentially 
expressed miRNAs in C1 and non-C1 ADC clusters. We analyzed a total of 382 miRNAs 
and found 200 to be differentially expressed by DESeq2 and 90 by BRB-ArrayTools. Among 
these, 87 miRNAs were found to overlap in both sets. We then applied Lasso regularization 
to identify optimized miRNA-based signatures that could stratify C1 from non-C1 tumors. 
We derived two signatures consisting of 14 miRNAs (from the 90 miRNA-set) and 19 
miRNAs (from the 200 miRNA-set), respectively, of which 5 miRNAs overlapped (Table 2). 
These signatures demonstrated high accuracy in stratifying C1/non-C1 cancer patients 
(cross-validated AUC = 0.81 and AUC = 0.85, respectively; Fig. 2c) 
.

 
 
In order to simplify the miRNA-based biomarkers, we aimed to identify a minimal set of 
miRNAs that could accurately identify C1 aggressive disease, similar to the 14- and 19-
miRNA signatures. Our approach was based on two assumptions: (i) the function of a 
miRNA is dependent on the network of targeted mRNAs, which in this case are those 
differentially expressed in C1/non-C1 tumors, and (ii) a prognostic biomarker should be 
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functionally linked to mechanisms involved in tumor progression. Therefore, we 
investigated the miRNA-mRNA interactome in C1 tumors using ARACNe (a computational 
algorithm for the reconstruction of accurate cellular networks) using a set of 200 miRNAs 
and 2900 mRNA genes found to be significantly regulated in C1-ADC (with a p-value < 0.05) 
by DESeq2. To minimize technical variability, we restricted our analysis only to genes 
identified by DESeq2, and we applied the following criteria to rewire the C1 miRNA-mRNA 
interactome: (1) selecting miRNA-mRNA pairs unique to C1 tumors and specific, but not 
exclusive, to stage I,(n = 2858); (2) selecting miRNA that are predicted to target C1 genes (n 
= 1787, using miRWalk3.0), and (3) those with an opposite expression trend to C1 genes (n 
= 598); (4) selecting miRNA that interact with at least three C1 genes (n = 528). We identified 
a set of interacting networks with seven miRNAs as "HUBs" derived from both the 19-
miRNA and 14-miRNA signatures (Fig. 2d) among the miRNA-mRNA networks. 
Hierarchical clustering analysis of this 7-miRNA signature revealed an overall increased 
expression in more aggressive C1 tumors (Fig. 2e). Significantly, the 7-miRNA signature 
exhibited a cross-validated area under the curve (AUC) of 0.79 in stratifying C1 and non-C1 
patients, which is comparable to the other two signatures (Fig. 3a), even when differences 
in C1 predicted probability were considered (Fig. 3b). The predicted C1 class from all three 
signatures (7-, 14-, and 19-miRNA) presented a significantly increased hazard of death at 3 
years in patients of all stages, with an increased risk equivalent to that of C1 patients 
identified by using the 10-gene signature (Table 3). However, focusing the analysis on stage 
I ADC patients revealed that the 7-miRNA signature was the best risk-stratification method, 
with a two-fold increased risk of death for C1 patients (HR = 2.11; 95% confidence interval: 
1.11-4.00; p-value = 0.0223) (Table 3). Interestingly, the networks of genes targeted by these 
7 miRNAs were significantly enriched (q-value < 0.0001) in gene sets representing molecular 
mechanisms related to cancer progression, thus confirming our initial hypotheses (Fig. 3c)  
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Chapter III.3 Figure 3: Validation of the 7-miRNA model. 
(a) ROC curve showing the False Positive Fraction and True Positive Fraction of the 7-miRNA model. The AUC is 
reported. (b) Box-plot for C1 predicted probability in C1 and non-C1 patients. Predicted probabilities are calculated 
through the 19-, 14- and 7-miRNA models. Wilcoxon–Mann–Whitney test p-values are reported. (c) Bubble plot of top 
10 GeneSets found significantly overlapping with gene networks targeted by the 7-miRNA signature. Bubbles size is 
proportional to statistical significance (-Log of q-value) and color codes refer to number of genes found in the overlap. 
In X-axis, ratios (k/K) of overlap of the query set of genes (k) with overlapping GeneSet size (K). (d) Heatmap of the 
10-gene expression of CSS cohort. C1 and non-C1 tumors are colored as per the legend. Risk scores are calculated 
based on the 10-gene risk model. (e) ROC curves showing the False Positive Fraction and True Positive Fraction of 
the 7-miRNA model in the CSS cohort, for all stages (in green) or only stage I tumors (in orange). The AUC are 
reported. (f) Box-plot for C1 predicted probability in C1 and non-C1 tumors in CSS cohort, for all-stages tumors and 
stage I tumors. Predicted probabilities are calculated through the 7-miRNA model. Wilcoxon–Mann–Whitney test p-
values are reported. 
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Seven-miRNA-Signature Validation 
To validate our findings, we evaluated the 7 miRNA-signature in a separate group of 44 
patients with lung adenocarcinoma at the IRCCS Casa Sollievo della Sofferenza Hospital. 
The clinical pathological characteristics of this cohort are described in Table 1, and it was 
found to have a higher proportion of stage I tumors (70%) than the TCGA-LUAD cohort 
(54%). We analyzed FFPE samples using qRT-PCR and calculated relative risk-score to 
stratifiy the cohort into C1 (n = 16) and non-C1 (n = 28) groups. We then used Low-Density 
Taqman miRNA Arrays to profile the 7-miRNA signature in the same cohort and derived a 
model based on its expression profile using logistic regression. The 7-miRNA model 
accurately stratified C1 from non-C1 tumors with an AUC of 0.76 (Fig. 3e) and significant 
differences (p-value = 0.0028) in C1 predicted probability (Fig. 3f). Remarkably, when we 
focused on stage I tumors, we obtained even better results, with an AUC of 0.81 (Fig. 3e) 
and a significant difference (p-value = 0.0108) in C1 predicted probability (Fig. 3f). 

 
III.4 Discussion  

Recent advancements in early diagnosis of lung cancer through large-scale low-dose CT 
screening trials have resulted in a shift towards diagnosing patients at earlier stages, leading 
to a decrease in mortality as demonstrated by the NELSON and NLST trials [7,8]. 
Consequently, there is a pressing need for prognostic biomarkers that can identify stage I 
lung cancer patients who could benefit from systemic adjuvant chemotherapy (platinum-
based) instead of molecular targeted/immunotherapeutic approaches in cases of aggressive 
disease. With the development of more sophisticated and precise bioinformatic tools and 
computational approaches, novel diagnostic and prognostic cancer biomarkers can be 
identified quickly and accurately, focusing on proteins, coding and non-coding transcripts, 
and epigenetic modifications [14,15]. In the field of lung cancer, the differential expression 
of miRNAs has shown promise for the development of innovative cancer biomarkers [16]. 
In this study, we present miRNA signatures that can serve as surrogates for a previously 
reported 10-gene prognostic signature in stage I ADC [11]. Our analysis revealed that the 7-
, 14-, and 19-miRNA signatures were all effective in identifying aggressive C1-ADC disease 
(AUC = 0.79–0.85). It is worth noting that 6 out of 7 miRNAs of the 7-miRNA signature were 
well-detected in FFPE samples (median Ct < 30), which confirmed the higher stability of 
miRNAs in low-quality RNA [17]. We adopted a network-rewiring strategy in our approach 
by specifically selecting miRNA-mRNA pairs that characterize aggressive stage I tumors 
(C1). This allowed us to select a core of 7 miRNAs that can stratify C1 from non-C1 samples 
with an accuracy comparable to the 14- and 19-miRNA models (Fig. 2c and Fig. 3a). 
Importantly, these miRNAs interacted with the C1 tumor transcriptome, indicating their 
potential involvement in molecular mechanisms associated with tumor progression. Our 
analysis revealed a significant overlap between the "7-miRNA network" and several gene 
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sets representing cancer-relevant pathways (Fig. 3c). Further experiments are needed to 
investigate the functional relevance of this 7-miRNA network in lung cancer progression. 
The 7-miRNA signature is composed by hsa-miR-31-5p, hsa-miR-31-3p, hsa-miR-193b-3p, 
hsa-miR-193b-5p, hsa-miR-196b-5p, hsa-miR-550a-5p and hsa-miR-584-5p. Some of these 
miRNAs were described to be altered in cancer and also with a functional role. Alterations 
in the expression of miR-31-5p and miR-31-3p were associated with a variety of cancers 
including lung cancer and have both oncogenic and onco-suppressor behavior [18-24]. 
Furthermore, hsa-miR-193b-3p was found associated to a tumor-suppressor phenotype (by 
targeting STMN1) in hepatocellular carcinoma [25] and colorectal cancer [26]. Remarkably, 
hsa-miR-193 in prostate cancer was shown to target FOXM1 and RRM2 [27], the last being 
one of the genes composing the prognostic 10-gene signature. The hsa-miR-196b-5p was 
found to promote tumor progression in non-small cell lung cancer when up-regulated [28]. 
Interestingly, hsa-miR-196b-5p was also found to molecularly interact 
with HOXB7 and GALNT5 and inhibit their expression in colorectal cancer [29]. 
Again, HOXB7 is one of the genes composing the 10-gene signature, which we also recently 
showed to promote a stem cell-like phenotype in lung adenocarcinoma [30]. On the other 
hand, very little is known about hsa-miR-550a-5p and hsa-miR-584-5p biological functions. 
However, hsa-miR-550a-5p was found to be a prognostic factor in ADC in association with 
other 3 miRNAs indicating its possible oncogenic role [31]. Lastly, in gastric cancer, hsa-
miR-584-5p was found to induce apoptosis and inhibits proliferation [32], while in 
hepatocellular carcinoma hsa-miR-584-5p was shown to have an oncogenic role [33]. 
In conclusion, our study established a 7-miRNA signature that effectively identifies 
aggressive stage I lung adenocarcinoma. These miRNAs can be quantified using standard 
qRT-PCR, and FFPE samples. Nonetheless, a limitation of our research is the modest size of 
the external validation cohort (CSS) and the brief follow-up period (1.6 median years in 
survivors, and three deaths recorded within 3 years), which precludes us from accurately 
determining the extent of excess mortality risk in patients with predicted aggressive tumors. 

 
III.5 Material and Methods 

TCGA-LUAD Cohort 
We selected the cohort of 515 patients with lung adenocarcinomas from the TCGA data 
portal (https://portal.gdc.cancer.gov/) at 2018. A total of 510 tumors were profiled for both 
gene and miRNA expression. Log2 read counts were used for expression analysis. Patients 
follow-up information was used for survival analysis: overall survival was defined as the 
time from the date of tumor resection until death from any cause. Follow-up was truncated 
at 3 years to reduce the potential overestimation of overall mortality with respect to lung 
cancer–specific mortality. 
The CSS Cohort 
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We selected a cohort of 44 patients with lung adenocarcinoma underwent surgery between 
February 2017 and February 2020 at the CSS. Written informed consent was obtained from 
all study patients. None of these patients received preoperative chemotherapy. Clinical 
information was obtained through review of medical records. Vital status was assessed 
through the Vital Records Offices of the patients’ towns of residence or by contacting 
directly the patients or their families. 
 
Gene Expression Analysis of the TCGA-LUAD Cohort 
Hierarchical clustering analysis was performed on the 10-gene signature for the entire 
cohort of 510 patients. Clustering was done by using Cluster 3.0 for Mac OS X (C Clustering 
Library 1.56, Tokyo, Japan) with uncentered correlation and centroid linkage, and Java 
TreeView software environment (version 1.1.6r4; http://jtreeview.sourceforge.net). A total 
of four main branches were selected to build clusters. Kaplan–Meier survival curves were 
stratified by clusters and log-rank test p-values were calculated. C1 cluster was associated 
to the worse prognosis, and all other clusters were pooled together (non-C1 clusters). 
To retain most informative expression data (i.e., transcripts detected in most of tumor 
samples), we considered miRNAs with raw counts >0 in at least the 50% of patients either 
in C1 or non-C1, identifying a total of 382 miRNAs. This allowed us to reduce also the 
complexity of the TCGA-LUAD dataset (2237 miRNAs). We applied the complexity 
reduction also to genes and we selected the most varying across all samples (standard 
deviation in the top 25%), identifying a total of 4899 genes. Using DESeq2 R package (R Core 
Team, R Foundation for Statistical Computing, Vienna, Austria) [34], we identified a total 
of 2900 differentially expressed genes between C1 and non-C1 tumors. 
BRB-ArrayTools [35] and DESeq2 (R package) [34] tools were used for class prediction (C1 
cluster vs. non-C1 clusters) according to miRNA expression. BRB-ArrayTools uses statistics 
based on two-sample T-test with multivariate permutations test (1000 random 
permutations); confidence level of false discovery rate assessment, 80%; maximum allowed 
proportion of false-positive genes, 0.05. DESeq2 is based on Wald test statistics to identify 
differentially expressed transcripts. Lists of miRNAs differentially expressed obtained from 
BRB-ArrayTools and DESeq2 tools were subsequently reduced via Lasso regularization. In 
details, a penalized unconditional logistic regression was applied considering cluster as 
discrete outcome (C1 cluster vs. non-C1 clusters) and miRNA expressions as explanatory 
variables. Cross-validated (10-fold) log-likelihood with optimization (50 simulations) of the 
tuning penalty parameter was used to control for potential overfitting. 
Starting from differentially expressed genes (identified with DESeq2) and miRNAs 
(identified with both DESeq2 and BRB-ArrayTools), we used ARACNe [36] with 1000 
bootstraps to infer direct regulatory relationships between transcriptional regulators (i.e., 
miRNAs) and target genes. ARACNe was performed using all patients, stage I patients and 
stage II-IV patients. miRNA target genes were retrieved using miRWalk 3.0 [37]. 
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Probability of being in the C1 cluster was estimated using the unconditional logistic 
regression for the three signatures of 19, 14 and 7 miRNAs. Model performance was 
assessed using the cross-validated area under the receiver operating curve, and assessing 
the difference in C1 predicted probability between C1 and non-C1 patients (Wilcoxon–
Mann–Whitney test). Cox regression model was used to evaluate the prognostic role of these 
miRNA signatures and their ability to recapitulate the risk-stratification of the original 10-
genes signature. 
To receive insights into the biology of the 7-miRNA model, we verified the enrichment of 
cancer-relevant pathways associated to their target genes. We investigated the Molecular 
Signature Database (MSigDB; v7.2) (https://www.gsea-
msigdb.org/gsea/msigdb/annotate.jsp) using the list of 87 targeted genes by interrogating 
the CGP (chemical and genetic perturbations, 3358 gene sets). Bubble plot analysis was 
performed using JMP 15.2.1 (SAS Institute, Inc., Cary, NC, USA) software. 
Hierarchical clustering analysis was performed on the 7-miRNA signature for 510 patients, 
those with available miRNA expression data. Clustering was completed by using Cluster 
3.0 for Mac OS X (C Clustering Library 1.56) with uncentered correlation and centroid 
linkage, and Java TreeView software environment (version 
1.1.6r4; http://jtreeview.sourceforge.net). 
 
RNA Extraction and qRT-PCR Analysis and Data Interpretation 
One tissue core (1.5 mm in diameter) from FFPE blocks, in representative tumor areas with 
adequate tumor cellularity (>60%) selected by a pathologist, was processed for total RNA 
extraction. The AllPrep DNA/RNA FFPE kit (QIAGEN, Inc., Hilden, Germany) was used 
for total RNA extraction. Quantitative real-time PCR (qRT-PCR) was performed to analyze 
the 10-genes signature as described in Dama et al. [11]. Briefly, RNA was quantified using 
Nanodrop ND-10000 Spectrophotometer and a total of 200 ng was retro-transcribed using 
SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
(Thermo Fisher Scientific) and pre-amplified for 10 cycles with PreAmp Master Mix Kit 
(Thermo Fisher Scientific), following manufacturer’s instructions. qRT-PCR analysis was 
performed starting from 1:10 diluted pre-amplified cDNA, using the TaqMan Fast Advance 
Master Mix and hydrolysis probes (Thermo Fisher Scientific; for primers see Dama et al. 
[11]), in a QuantStudio 12k Flex (Thermo Fisher Scientific). Thermal cycling amplification 
was performed with an initial incubation at 95 °C for 30 s, followed by 45 cycles of 95 °C for 
5 s and 60 °C for 30 s. For miRNA expression analysis, a total of 10 ng RNA was reverse-
transcribed using the TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher 
Scientific). Poly(A) tailing, adapter ligation, RT reaction and miR-Amp were performed 
following manufacturer’s instructions. qRT-PCR was performed following manufacturer’s 
instructions (i.e., 95 °C for 30 s, 45 cycles of 95 °C for 5 s, and 60 °C for 30 s) using a Card 
Custom Advance (Thermo Fisher Scientific; see chapter IV Table S2 for the list of primers) 
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in a QuantStudio 12k Flex (Thermo Fisher Scientific). The hsa-miR-16-5p was used as 
standard reference for CT normalization using a previously described methodology [38]. 
Briefly, the normalized CT of each miRNA (i) of each sample (j) was calculated as the 
difference between the raw CTij and a scaling factor (SF) specific for each sample (j); the 
SFj represented the difference between the raw CT of the miRNA “hsa-miR-16-5p” used as 
a reference in the sample (j) and a constant equal to 21.87. Notably, hsa-miR-16-5p 
expression profile analysis in both TCGA-LUAD and CSS cohorts revealed a comparable 
expression in C1 and non-C1 tumors subsets. 
Risk-scores were assigned to each patient based to the 10-gene risk model described in 
Dama et al. [11]. Before applying the risk-model, data were rescaled (q1-q3 normalization). 
Patients with risk-scores higher than the 66th percentiles [11] were classified as C1 tumors. 
Next, unconditional logistic regression (C1 vs. non-C1 tumors) with 7 miRNAs as 
explanatory variables was applied, and the area under the receiver operating curve was 
calculated. Difference in C1 predicted probability between C1 and non-C1 patients was 
evaluated through Wilcoxon–Mann–Whitney test. 
All statistical analyses were performed using SAS software, version 9.4 (SAS Institute, Inc., 
Cary, NC, USA) and R 3.3.1 (R Core Team, 2016) and JMP 15 (SAS). p-values less than 0.05 
were considered statistically significant. 
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Chapter IV: 
Dissecting exosomal-miRNAs as key-players for the early 

identification of an aggressive subtype of lung adenocarcinoma 
 

This Chapter answer to the Aim III 
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IV.1 Summary 
Recently, tumor cells were found to release exosomes that are nanosized vesicles of 40-
150nm in diameter, which can contribute to EMT and metastasis by delivering their 
molecular cargo to other targeted tumor cells. Exosomes cargo can also contain microRNAs 
(i.e., exo-miR) which mediate cancer-relevant phenotypes such as tumor invasiveness, EMT, 
immuno-escaping, stromal activation and pre-metastatic niche formation.   
Here, we demonstrated that a 6-exo-miRNA signature derived from LUAD patients is a 
reliable biomarker to identify the C1-LUAD subtype. Moreover, we investigated the 
biological activity of exosomes, showing that C1-like cells were more prone to internalize 
both self and exogenous exosomes. Finally, we showed that miR-223-3p was significantly 
more expressed in C1-like exosomes and acting as a modulator of immune response. 
Overall, this study provides insights into the role of exo-miRNAs in lung cancer progression 
and identifies a potential biomarker for the early identification of aggressive subtypes of 
lung cancer.
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IV.2 Introduction  
Lung cancer is the main cause of cancer related deaths in industrialized world with 
approximately 1.8 million death every year. Non-Small Cell Lung cancer (NSCLC) is the 
most frequently diagnosed lung cancer type (80-90% of all cases) and lung adenocarcinoma 
(LUAD) is the major subtype.[1] Early diagnosis by low-dose computed tomography 
(LDCT) was recently shown to be effective in reducing lung cancer mortality (~20% at 5 
years)[2]. However, the management of lung cancer patients can be difficult due to 
pathological and genetic heterogeneity of the disease. Indeed, a significant fraction of 
patients underwent surgery (~30%) still experience local and distant recurrence, which 
ultimately makes relatively unpredictable the prognosis of patients.[1] The presence of 
subpopulation of  cancer cells in the primary lesion with stem-like features contribute to 
metastatic spreading of the disease ultimately leading to local and distant recurrence.[3] 
Stem-like cancer cells expand under the pressure of an aberrant activation of the epithelial-
to-mesenchymal-transition (EMT) pathway. Indeed, epithelial cancer cells can be 
reprogrammed in cells with mesenchymal traits under the action of a group of transcription 
factors (e.g., SLUG, SNAIL, TWIST, ZEB1 etc.) frequently overexpressed in metastatic 
cancer.[3] In line with this events,  we previously discovered a molecular subtype of lung 
adenocarcinoma by a 10-genes signature, namely C1-LUAD, which correlates with worst 
prognosis and have peculiar gene expression characteristic of mesenchymal and stem-like 
cells.[4] Yet, we recently identified also a signature of 7 microRNAs as a surrogates of the 
10-genes to distinguish C1-LUAD subtype and which targets a set of genes differentially 
expressed in C1-LUAD thus suggesting a relevant role of these miRNAs as hubs of 
mechanisms for tumor progression [5]. Importantly, miRNAs can be secreted in body fluids 
(e.g., serum, plasma) via exosomes i.e. extracellular vesicles of 30-150nm in diameter.[6],[7] 
Exosomes were shown to have crucial role in tumor progression, immuno-escaping, stromal 
activation and pre-metastatic niche formation, although mechanisms of action were only 
partially unveiled.[8], [9] Tumor exosomes has also drawn increasing attention in the last 
years because are stable and accessible biomarkers for diagnosis and prognosis of cancer.[6] 
Actually, there is a lack of non-invasive biomarkers for the identification of aggressive 
molecular subtype like the C1-LUAD. For such reasons, here we propose a comprehensive 
exo-miRNA profile in plasma samples of lung adenocarcinoma patients with the C1-LUAD 
subtype, to develop biomarkers for the early-identification of this aggressive subtype as well 
as to investigate the role of exo-miRNAs as key-players in the acquirement of the aggressive 
features of C1-LUAD.  
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IV.3 Results  
C1-patients have a peculiar plasma exosomal miRNA profile able identify the aggressive 
molecular subtype 
We first analyzed the miRNA expression profile of C1- and nonC1-LUAD using the TCGA 
cohort (see chapter III)[5]. We found 200 miRNAs resulted significantly differentially 
expressed (Fig. 1 A) which targeted network of genes related to aggressiveness (see also 
Chapter III)[4], [5]. Of these, we selected a total 23 miRNAs (overlapping also the stepwise 
miRNA identified in the tissue signature, see chapter III [5] )to be further investigated in 
exosomes purified from plasma samples by qRT-PCR. First, we took advantage of our CSS 
FFPE LUAD Cohort (N=44) already stratified in C1- and nonC1- using both 10-genes 
signature (Fig. 1 B, see also Chapter II).  
Then, we collected 32 plasma samples in our institute (i.e., the CSS Cohort), divided in 14 
C1- and 17 nonC1-LUAD. We performed a quality control evaluating hemolytic index (ref, 
Fig.1 C eventually discarding samples with a value >0,2) and we proceeded with the 
isolation of exosomes using the kit ExoQuick[10], [11] which is the gold standard for 
exosomes purification. Before RNA extraction, we also evaluated the quality and purity of 
our exosomes following the ISEV guidelines[5], [12]. Exosomes were analyzed for diameter 
using Nanosight (Fig.1D) that confirmed a diameter ranging between 30-150nm in line with 
exosomes-like particles; then we also performed a western blot on tetraspanins (CD9, CD81, 
CD63) which are transmembrane proteins decorating exosome surface, and other non-
exosome proteins such as GM130 and Calnexin used as negative controls markers, which 
confirmed the purity of our samples (Fig1. E). Finally, we extracted RNA from exosomes 
and performed expression screening of the subset of 23 miRNAs by qRT-PCR. Fifteen out 
of 23 miRNAs were detected in exosomes (Fig. 1F). Of these, let-7a-5p, miR-193b-3p, miR-
584-5p and miR-223-3p had significant higher expression in C1 exosomes, whereas miR-24-
3p had a strong trend of higher expression in C1 exosomes (Fig. 1 F). Next, we performed a 
differential expression analysis on a total 13-miRNAs that were expressed in at least the 75% 
of the patients, showing 8 miRNAs enriched and 2 miRNAs depleted in C1 exosomes (Fig. 
1 G). Based on these data, we used unconditional logistic regression analysis to build a risk 
model based on this 13-miRNA exosomal signature (13-exo-miRNA) to diagnose C1-
/nonC1-LUAD subtype.  Performance of the model was evaluated by calculating the Area 
Under the Curve (AUC). We found that the 13-exo-miRNA signature identified correctly C1 
patients with a bootstrap corrected AUC of 0.64 (Fig. 1 H, left), and significantly higher 
predicted probability in C1- vs. nonC1-LUAD (Fig. 1 H, right). Then we evaluated a reduced 
model composed by 6 miRNAs to reduce complexity of the test  (let-7a-5p, miR-126-3p, miR-
584-5p, miR-15b-5p, miR-30d-5p and miR-31-5p). We obtained a bootstrap corrected AUC 
of 0.76 (Fig1. H, left), with significantly higher predictive probability value in C1 respect to 
nonC1 LUAD (Fig1. H, right). These data showed a peculiar exosomal miRNA signature in 
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plasma samples which can identify C1 subtype which holds the potential to early-identify 
C1 aggressive subtype using small aliquots of plasma (~0.5mL) samples. 
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C1-like cells internalize high quantity of exosomes and showed exo-miRNAs differential 
expression   
Next, we further investigated the role of C1-exo-miRNA in LUAD aggressiveness. We took 
the advantage of a panel of LUAD cell lines already stratified in C1-like (N=8) and nonC1-
like (N=4) by the 10-genes signature and validated by phenotypic screening analysis (Fig.1 
A and B; see also Chapter II)[5]. Next, we isolated exosomes using by an optimized 
differential centrifugation protocol we already published[13] and we performed quality 
control evaluation as previously described. As showed in Figure 2 C and D, exosomes 
derived from LUAD cells had a diameter comprise in 30-150nm and were enriched in 
tetraspanins. Then, we evaluated biologically activity of exosomes purified. To this, we 
labelled exosomes derived from a C1-like LUAD cell line (i.e., A549) with PKH-26 (a 
lipophilic dye) and visualized their cell internalization by confocal microscopy (Fig. 2 E). 
Next, we labelled exosomes released by a nonC1-like cell lines (i.e. H2228) and we 
conducted a combined time-course analysis to evaluate kinetic up-take of C1-/nonC1-
exosomes in C1-like cells or in non-C1-like cells by FACS analysis. As showed in Fig. 2 F, 
C1-like cells and nonC1-like cells have a kinetic up-take which is time and dose dependent. 
Moreover C1-like cells are more prone to internalize self and exogenous exosomes then 
nonC1-like cells (Fig. 2 F). Of note, nonC1-like cells have higher up-take of C1-like exosomes 
in respect of self-exosomes, but they remain less efficient in kinetic up-take compared with 
C1-like cells. 
Finally, we evaluated the expression of these 23 miRNAs in C1-/nonC1-like cells. 
Coherently, we found expressed 16 out of 23 miRNAs in both C1-like and nonC1-like 
derived exosomes (Fig 2 F). In agreement with data previously obtained from CSS cohort of 
LUAD patients, Exo-miRNAs were found differentially expressed in C1-like and nonC1-
like exosomes. Of these, miR-15b-5p, miR-192-5p and miR-29b-5p had higher expression 
trend in exosomes derived from C1-like cells, although only miR-223-3p was significantly 
more expressed in C1-like exosomes (Fig. 2 F).  

Chapter IV.3 Figure 1: Plasma derived exosomal miRNA signatures to identify C1-LUAD. 
A. Volcano plot showing differentially expressed miRNAs analyzed by DESeq2 in C1-LUAD vs. nonC1-LUAD patients. Gray 
dot, not significant; green dot, down-regulated (p < 0.05); red dot, upregulated (p < 0.05); statistical significance was 
calculated using the Wald test with Benjamin-Hochberg adjustment. B. Hierarchical clustering analysis of the 10-gene 
expression signature in the CSS cohort (N = 44). C1- and nonC1-LUAD samples are colored as per the legend. C. Box plot 
representing the Haemolytic Index in plasma samples of CSS cohort (N=32). On the y-axes, Absorbance levels (A) derived 
from the formula of Hemolytic Index (see methods) were represented. D. Representative Nanosight analysis of exosomes 
isolated from C1 and nonC1 plasma. Most abundant peaks are comprised between 30-150nm as expected. E. Western Blot 
representing CD63 (Up, 37-75 kDA, stripped bands due to the glycosylated state of the protein), CD9 (Middle, 25 kDA), 
CD81 (Down, 25 kDA) of exosomes pool-C1 and pool-nonC1 isolated from plasma. GM130 and Calnexin are used as control 
markers of other vesicles. F. Dot-plot of exosomal-miRNAs expression as normalized Cq (nCq) in C1 and nonC1 patients. 
Ath-159a spike-in was used as normalizer. On y-axes, dot-line represents the cut-off of miRNA expression (nCq>35). 
Statistical significance (p < 0.05) was calculated using Student t-test. P-values <0.2 are reported in the graph. G. Differential 
expression analysis of exo-miRNAs represented as Fold Change values (FC; log2 of 2-ΔΔCq ) in C1 vs nonC1 patients. 
Green bar, down-regulated; red bar, up-regulated.  Dot lines on x-axes (-0.55 and+0,55) represent the FC cut-off. H. ROC 
curve of the 13-exo-miRNA model and box-plot for C1 predicted probability in C1 and non-C1 patients using the 13-exo-
miRNA model. Bootstrap corrected AUC and Student t-test p-value are reported. I. ROC curve of the reduced 6-exo-miRNA 
model and box-plot for C1 predicted probability in C1 and non-C1 patients using the 6-exo-miRNA model. Bootstrap 
corrected AUC and Student t-test p-value are reported. 
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Conversely, miR-24-3p showed a lower expression in C1-like exosomes with only miR-135b-
5p significantly down-regulated (Fig. 2 F). To focus our attention only on reliable exo-
miRNAs, we performed a differential expression analysis on a total 9-miRNAs expressed in 
at least the 75% of the samples, showing 4 miRNAs up-regulated and 5 miRNAs down-
regulated in C1-like exosomes (Fig. 2 G). Interestingly, miR-223-3p was significantly 
enriched in C1-like exosomes as previously showed in human plasma and included also in 
the 13-exo-miRNA model (Fig. 1 G, H). For such reasons, we performed a miR-223-3p/gene-
pathways analysis using miRPathDB[14], selecting the top 10 gene-pathways related to 
miR-223-3p experimentally validated in Gene Ontology. We found that miR-223-3p strongly 
correlated with Immune, Migration and Proliferation gene-pathways (Fig. 2 I). These data 
suggest us that exo-miR-223-3p could be a key-player in the aggressiveness of C1-LUAD. 
 
miR-223-3p overexpressed in C1-like reduce aggressive phenotype, but his secretion 
modulates cytotoxic T-cells activity 
To better understand how miR-223-3p can be functional in C1-like cells enhanced 
aggressiveness, we first evaluated its intracellular expression by qRT-PCR and found in 
both C1-like and nonC1-like cells a very low expression of this miRNA which was in 
contrast with the results obtained in exosomes (Fig. 3 A). Then, we transiently 
overexpressed miR-223-3p (Fig. 3 B) in C1-like A549 cells to study phenotypic changes in 
terms of proliferation, migration and invasion (Fig. 3 C to E). Despite proliferation was 
augmented (Fig. 3 C), we found a significantly lower migration (Fig. 3 D, left) and invasion 
(Fig. 3 E, left) in overexpressing miR-223-3p cells relative to control condition (i.e. using a 
scramble oligo), suggesting a tumor suppressive role of miR-223-3p in C1-like cells, in line 
with its endogenous low expression level in intracellular compartment. Our previous 
analysis using miRPathDB (Fig. 2 I) disclosed a potential role of miR-223-3p in immune 
related pathways, we thus tested how the conditioned media derived from the A549 C1-like 

Chapter IV.3 Figure 2: Biological activity evaluation of LUAD cells exosomes and characteristic exo-miRNA profile 
of C1-like and nonC1-like cells. 
A. Network of CCLE lung adenocarcinoma cell lines (N=12) based on 10-gene expression correlation (edges) and probability 
of being a C1-like (node size) (see Methods and Chapter II) B. Violin plot of the phenotypic scores (z-scores) for the 12 cell 
lines analyzed. P-value (Student t-test) are reported. C. Representative Nanosight analysis of exosomes isolated from C1-
like and nonC1-like cells. Most abundant peaks are comprised between 30-150nm as expected D. Western Blot representing 
CD63 (Up, 37-75 kDA, stripped bands due to the glycosylated state of the protein), CD9 (Middle, 25 kDA) of exosomes 
derived from a panel of 14 LUAD cells, comprising the 8 C1-like and the 4 nonC1-like. GM130 and Calnexin are used as 
control markers of other vesicles.  E. PKH-26 labelled exosomes internalization in A549 visualized with magnitude 63X plus 
digital zoom by confocal microscope. Control: media with FBS exosomes depleted. Scale bar are reported. F. Flow 
cytometric analysis of exosomes-PKH26 kinetic up-take by C1-like and nonC1 like cells. Cells were conditioned with 
exosomes derived from both C1-like cells (A549, Up) and non C1-like cells (H2228, Down). P-values calculated with student 
t-test.*p<0.05; **p<0.005; ***p<0.0005; ****p<0.00001 G. Dot-plot representative of exosomal-miRNAs expression as 
normalized Cq (nC1) in C1-like and nonC1-like cells. Ath-159a spike-in was used as normalizer. On y-axes, dot-line 
represent the cut-off of miRNA expression (nCq>35). Statistical significance (p < 0.05) was calculated using Student t-test. 
P-values <0.2 are also reported. H. Differential expression analysis of exo-miRNAs represented as Fold Change values (FC; 
log2 of 2-ΔΔCq) in C1-like vs nonC1-like cells. Green bar, down-regulated; red bar, up-regulated.  Dot lines on x-axes (-0.55 
and+0,55) represent the FC cut-off. I. Lollipop graph representing analysis performed with miRPathDB[14] of the top 10 
gene-pathways related to miR-223-3p derived from experimentally validated Gene Ontology Cell Biology Processes. On y-
axes Genes Pathways, colored as per the legend.  On x-axes number of genes involved in the pathway (Hits). Size of the 
bubbles represent p-value expressed as adjusted FDR -Log10 p-values. 
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cells over-expressing miR-223-3p (CM-miR-223-3p-OE) could impact on cytotoxic T-cells, 
using Jurkat leukemic T cell line as model system [15]. First, we treated Jurkat cells with 
anti-CD3/CD28 for 72h and we observed the Interferon gamma (INFG) production by 
FACS, taking advantage of an inhibitory cocktail which retain secretion factors in the 
intracellular compartment (Fig. 3 F). Next, because of INFG produced by cytotoxic T-cells 
could negatively impact lung cancer cell proliferation[16], we evaluated if CM-miR-223-3p-
OE modulates levels of INFG production by FACS and indeed we confirmed a significantly 
lower production after 72h of growth conditioning (Fig. 3 G). Finally, we verified the 
number of live cells by trypan blue count, showing a significantly lower percentage of viable 
cells in activated Jurkat with CM-miR-223-3p-OE compared to control CM (Fig. 3 I). In line 
with this, the doubling time of activated Jurkat cells was higher thus indicating a lower 
proliferation rate. These results highlighted a dual role for miR-223-3p which intracellularly 
can reduce cancer cell migration and invasion while its secretion through exosomes can 
inactivate T-cells and reduce INFG production thus contributing to elicit an immune evasive 
phenotype which we previously found to hallmark C1 tumors [4].  
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IV.4 Discussion  
 
Here we showed that the analysis of exosomal-miRNAs in plasma samples of LUAD 
patients can yield reliable biomarkers for the identification of an aggressive subtype of lung 
cancer, namely the C1-LUAD. We demonstrated that a model of 6-exo-miRNA can identify 
C1 subtype with an AUC=0.73.  In literature there are several studies about circulating 
miRNAs signature diagnostic for lung cancer. However, an accurate prediction of prognosis 
is still difficult due to the high heterogeny of lung cancer [17]–[19]. Recently, extracellular 
vesicles and exosomes have been deeply investigated as sources for diagnostic and 
prognostic biomarkers[20]–[26], due to their higher stability and good representation of 
intrinsic molecular characteristics of the tumor[24], [27], [28]. Notably, our 6-exo-miRNA 
signature can distinguish aggressive lung tumors with peculiar molecular characteristics 
which can be exploited for developing next-generation therapeutics. Moreover, this 
signature is composed by miRNAs with an already established role in lung cancer. Indeed, 
let-7a-5p, miR-126-3p and miR-584-5p were reported to be tumor suppressor in lung 
cancer.[29]–[31] Yet, miR-30d-5p  and miR-31-5p  are very well-known biomarkers of lung 
cancer, with mechanisms involved in tumor progression.[32]–[35]  Of note, miR-31-5p was 
also already reported in lung cancer exosomes with a role in promoting metastasis 
formation, whereas miR-126-3p was found to be secreted in exosomes but with a 
controversial role[36]–[38]. Interestingly, miR-126-3p was enriched in exosomes of high-risk 
lung cancer patients and it has a pro-tumorigenic effect on stromal cells [37], which is in line 
with our findings showing high metastatic potential of C1-LUAD also when disease was 
diagnosed at stage I (see also chapter II)[4], [39]. Instead, the roles of miR-15b-5p are largely 
unknown in lung cancer though already involved in tumor chemoresistance[40]–[44].  
Exosomes are fundamental regulator of cancer traits and metastasis propagation. However, 
the mechanisms involved in their secretion and internalization remain poorly understood 
[45]–[47]. Interestingly, we demonstrated that C1-like cells are more prone to internalize 

Chapter IV.3 Figure 3: miR-223-3p phenotypic investigation in C1-like cells 
A. Intracellular (left) and exosomal (right) miR-223-3p expression is shown as normalized Cq (nCq; Intracellular expression 
was normalized using miR-16-5p; expression in exosomes was normalized using the ath-159a) in C1-like and nonC1-like 
cells. Grey dot: Undetermined miRNA (Cq>40); the dot-line represents the Cq cutoff (40 Cq). P-values calculated with 
student t-test were reported.  B. qRT-PCR differential expression analysis of miR-223-3p in A549 transfected with mimic-
miR-223-3p. CTRL: siRNA_CTRL. P-value calculated with student t-test was reported. C. Proliferation evaluation by 
Doubling Time in A549 transfected with mimic-miR-223-3p. CTRL: siRNA_CTRL. P-value calculated with student t-test was 
reported. D. Representative images and quantification of cells migration  by trans-well assay in A549 transfected with mimic-
miR-223-3p. CTRL: siRNA_CTRL. P-value calculated with student t-test was reported. Scale bar: 10 um E. Representative 
images and quantification of cells invasion by trans-well assay in A549 transfected with mimic-miR-223-3p. CTRL: 
siRNA_CTRL. P-value calculated with student t-test was reported. Scale bar: 10 um F. Interferon-𝛄 production evaluation 
by FACS in Jurkat cell line, comparing control vs. activated cells with anti-CD3/CD28 (see methods) G. Differential 
expression analysis of Interferon-𝛄 production in Jurkat activated cells conditioned with the C1-like A549 CM_miR-223-3p-
OE. CM_CTRL: Conditioned media derived from siRNA CTRL transfected A549. Student t-test p-value reported in the graph 
H. Proliferation evaluation by Doubling Time in Jurkat activated cells conditioned with the C1-like A549 CM_miR-223-3p-
OE. CM_CTRL: Conditioned media derived from siRNA CTRL transfected A549. Student t-test p-value reported in the graph. 
I. Vitality evaluation by Doubling Time in Jurkat activated cells conditioned with the C1-like A549 CM_miR-223-3p-OE. 
CM_CTRL: Conditioned media derived from siRNA CTRL transfected A549. Student t-test p-value reported in the graph. 
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both self and exogenous exosomes compared with nonC1-like cells (Fig. 2 F) thus suggesting 
a differential tropism of up-take. In details, despite C1-like cells internalize high amount of 
self-exosomes, they drastically prefer exogenous one, reaching the 100% of up-take in just 8 
hours of growth conditioning with the highest quantity of nonC1-like exosomes (Fig. 2F). 
Accordingly, similar result was observed for nonC1-like cells, which can achieve the 90% of 
up-take at 36 hours with the highest quantity of C1-like exosomes, compared to less than 
20% with their self-exosomes (Fig. 2 F). These preliminary findings, suggest how lung cancer 
exosomes can be transferred among tumor cells characterized by a different aggressive 
behavior (i.e. C1- vs. nonC1-like). It has been demonstrated that lung cancer derived 
exosomes drive invasion and tumorigenic initiation modulating E-cadherin, a well-known 
marker of EMT [48]. Notably, CD9, a tetraspanins highly enriched in membrane exosomes, 
was showed to mediate up-take of exosomes in pancreatic cancer providing aggressiveness 
[49]. Similarly, we also observed expression of CD9 in LUAD exosomes, otherwise, a more 
quantitative analysis is needed to understand if there are differences in CD9 levels between 
C1-like and nonC1-like exosomes. [49]–[51].  
C1-like cells showed also a peculiar exo-miRNAs profile, with miR-223-3p being the top 
significantly differentially expressed and highly enriched in C1-like exosomes. Upon miR-
223-3p overexpression in C1-like cells, we observed a reduction in migration and in invasion 
which hallmark the behavior of metastatic cells. This data is in line with literature were miR-
223-3p act as a tumor suppressor miRNA[41], [42], [44]. Otherwise, the higher secretion of 
miR-223-3p in exosomes of C1-like cells, demonstrated a role in reducing, vitality, 
proliferation and IFNG production of activated Jurkat cells. This effect could be linked to 
the role of miR-223-3p in the modulation of immune system [50]–[54]. Indeed, miR-223-3p 
is involved in modulating immune responses by regulating the activation of immune cells 
such as macrophages, neutrophils, and dendritic cells[51]. Furthermore, miR-223-3p serves 
as a negative feedback mechanism controlling excessive innate immune responses in the 
maintenance of myeloid cell homeostasis[52], and regulates the expression of several genes 
involved in the immune response, including TLR2, TLR4, and STAT3[55]. Our data suggest 
that C1-tumors prefer to secrete miR-223-3p via exosomes in the microenvironment 
resulting in immunoevasion phenotype, which is in line with the strong immune-
modulative role of the miR-223-3p. Of note, this hypothesis could exploit the already 
demonstrated role of exosomes in modulating immune infiltration in cancer[9], [56], [57], 
suggesting a crucial role of the exo-miR-223-3p. Furthermore, the immune evasion 
phenotype is a characteristic trait of C1-LUAD, confirming indirectly the role of high exo-
miR-223-3p in this aggressive cancer (see also Chapter II).[4]  
In conclusion, our study provides important insights into the potential of exosomal miRNAs 
as biomarkers for the identification of aggressive subtypes of lung cancer, such as the C1-
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LUAD. Moreover, our findings highlight the requirement to better understand the 
mechanisms that regulate exosome internalization in aggressive lung cancer, as well as the 
potential of exosomal miRNAs in modulating cancer phenotypes. Future studies are needed 
to further validate these findings in larger cohorts of LUAD patients. 

 
IV.5 Material and Methods 
 CSS Cohort 
We selected a cohort of 44 patients with lung adenocarcinoma underwent surgery between 
February 2017 and February 2020 at the CSS. Written informed consent was obtained from 
all study patients. None of these patients received preoperative chemotherapy. Clinical 
information was obtained through review of medical records. Vital status was assessed 
through the Vital Records Offices of the patients’ towns of residence or by contacting 
directly the patients or their families. 
 
miRNA Expression Analysis of the TCGA-LUAD Cohort 
We used TCGA-LUAD cohort (N=510; https://portal.gdc.cancer.gov/) with matched gene 
and miRNA expression data available in Log2 read count and previously analyzed in Dama 
et al. [5]. Patients were previously stratified in C1 and nonC1 based on 10-gene signature[5]. 
To focus on the most informative data, we only considered miRNAs with raw counts >0 in 
at least 50% of patients in either C1 or non-C1, resulting in 382 miRNAs.   
 
FFPE RNA Extraction and qRT-PCR for 10-gene signature 
Up to 5 tissue sections (5 µm thick) were prepared from each specimen according to tumor 
size and/or adequate tumor cellularity (>60%) selected by the pathologist. RNA from FFPE 
tissues was extracted using AllPrep DNA/RNA FFPE Kit (Qiagen) following the 
manufacturer’s instructions. Briefly, samples were deparaffinized using Xylene and then 
washed twice in Ethanol. Next, Proteinase K was added to degraded proteins and 
supernatant was collected and processed in the RNA binding mini-spin column. RNA was 
then quantified using the Nanodrop ND-1000 Spectrophotometer; a total of 200ng were 
used for the retro-transcription reaction (SuperScript In Vilo IV Reverse Transcriptase, 
Invitrogen, ThermoFisher Sicentific) and pre-amplified using the PreAmp Master Mix Kit 
(Thermo Fisher Scientific) for 10 cycles, following the manufacturer's instructions. The 
resulting cDNA was then diluted 1:10 prior to PCR analysis (2 ng of cDNA/reaction). 
Finally, for the analysis of 10-genes were used TaqMan gene expression probes 
(ThermoFisher Scientific) and the TaqMan Fast Advance Master Mix (ThermoFisher 
Scientific). qRT-PCR reactions were run on the QuantStudio 12K Flex with a 96-block 
(ThermoFisher Scientific). For primers list see Supplemental Table 1. 
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Plasma samples processing  
The matched plasma samples were obtained from patients of the Thoracic Surgery 
Department at CSS, before surgery and in fasting conditions that had signed the informed 
consent. Plasma samples were collected in BD Vacutainer PPT Tubes. Plasma were 
centrifugated two times at 1300 x g for 10 min. After the centrifugation plasma samples were 
aliquoted into 0.5 mL barcoded tubes for long-storage at -80°C.  To evaluate the Heamolytic 
Index of plasma samples, haemolysis was measured by use of different lipemia independent 
measurement of haemolysis (haemolytic index), a method based on the absorption 
spectrum of oxyhemoglobin (A=414 nm), haemoglobin (A=385 nm) and lipemia-
independent haemolysis score (coefficient a=0.16) following the equation:  
 
H.I.=A414-A385+0.16*A385 
 
following the method of Marzi et al.[18]. Briefly, 70 ul of plasma was dispensed in a 96-well 
PCR plate, centrifuged at 1000 x g for 5 minutes at 4°C. Then 50ul were transferred to a clean 
well of a 96-well flat-bottomed clear plate, avoiding touching the bottom of the well. The 
same volume (50ul) of PBS was likewise dispensed into a clean well and used as a blank 
reference. Ultraviolet-visible (UV-Vis) absorbance measurements are carried out using an 
Epoch Spectrophotometer (Bioteck) at a wavelength of 414 nm and 385 nm. After 
normalization of data to the blank measurement the ‘H.I.’ The absorbance peak at 414 nm 
and 385 nm, and the H.I. are then annotated in the database. Samples with H.I. > 0.2 were 
flagged as haemolytic and discarded, because of the higher presence of oxohaemoglobin, 
haemoglobin and lipemia, that change miRNAs expression.[58][18] 
 
Exosomes isolation from plasma and cell lines 
Exosomes were isolated from plasma samples using ExoQuick (System Bioscience), 
following manufacturer recommendations. The pellet obtained was resuspended in 1X PBS 
for further analysis or lysed with RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM sodium 
chloride, 1 mM ethylenediaminetetraacetic acid (EDTA), 1% NP-40 1% Sodium Deoxycholic 
acid, 0.1% sodium dodecylsulfate (SDS)). Exosomes from cell culture media were isolated 
following our optimized protocol consisting in four successive rounds of centrifugation and 
one filtration step. First, the medium collected from cell cultures after 72 h of incubation was 
submitted to 10 min low speed centrifugation at 300 x g at 4° C. The supernatant was 
transferred in a new tube and centrifuge at 2000 x g, 4°C for 10min. The supernatant was 
then filtered at 0.22 µm to remove larger size vesicles. To generate the exosome pellet, the 
supernatant was transferred to ultraclear ultracentrifuge tubes (Beckman Coulter) and 
centrifuged at 100,000 x g for 90 min at 4°C, using an Optima™ L-90K ultracentrifuge 
(Beckman Coulter) with a SW 41 Ti swinging-bucket rotor (Beckman Coulter). The resulting 
exosome pellet was resuspended in PBS 1X and washed with another ultracentrifugation 
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step in the same conditions; the final pellet was lysed in RIPA Buffer for Western Blot 
analysis or resuspended in 1X PBS for other purpose. For fluorescent exosomes labelling, 
after the first ultracentrifugation we added a lipophilic fluorescent dye (PKH26; Sigma-
Aldrich) to label exosomes followed by other two ultracentrifuges to wash contaminants 
and dye excess. A red colored exosomes pellet was obtained. Labelled exosomes were 
resuspended in 50 µl 1X PBS and stored at 4°C. 
 

Nanoparticle Tracking Analysis (NTA) 
Exosomes number and size distribution was determined by nanoparticle tracking analysis 
(NTA) using a NanoSight NS300 system (Malvern Technologies, Malvern, UK).  The NTA 
was configured with a 488 nm laser and a high sensitivity scientific CMOS camera. Samples 
were analysed under constant flow conditions (flow rate =30) at 25 °C and 5 × 60 s videos 
were captured with a camera level ranging between 14 and 16, based on the sample. Data 
were analyzed using NTA 3.4 Build 3.4.4 software with a detection threshold ranging 
between 4 and 6, based on the sample. 
 
Western Blot  
The exosome protein samples were diluted with Laemli Pierce™ LDS Sample Buffer 4X 
(ThermoFisher Scientific<9 in Non-Reducing condition for tetraspanins (CD63, CD9, CD81) 
or in Reducing condition for negative exosomes markers (GM130, Calnexin), and heated to 
90°C for 10 minutes. 20 µl of exosomes lysate was then loaded in a 12% gel. Gels were run 
at 130 volts for 1:30 hour and a Trans-Blot® Turbo™ Transfer System was used for the 
transfer of the proteins from the gel to a polyvinylidene difluoride (PVDF) membrane. After 
the transfer, the membranes were blocked 1 hour with a 5% milk or BSA blocking solution. 
The antibodies used for exosomes characterization were anti-CD9 (CBL162, MM2/57 
monoclonal-mouse, Merck Millipore), anti-CD63 (CBL553, RFAC4 monoclonal-mouse, 
Merck Millipore), anti-CD81 (Monoclonal Mouse IgG2B Clone # 454720; Bio-Techne), anti-
GM130 (D6B1 XP Rabbit mAb #12480; Cell Signaling) and anti-Calnexin (C5C9 Rabbit mAb 
#2679; Cell Signaling), all diluted in ratio 1:1000 in BSA 5%. All the primary antibodies have 
been incubated overnight at 4°C in gently agitation. All the secondary antibodies were 
diluted in ratio 1:3000 and were incubated for 1 hour at RT, in gently agitation and 
subsequently washed three times for 10 min in TBS-Tween 0,1%. Detection was aided by 
the reporter enzyme horseradish peroxidase (HRP), which is conjugated to the secondary 
antibody. In the presence of hydrogen peroxide, HRP oxidizes the compound luminol in a 
chemical reaction that emits light (chemiluminescence). Pico PLUS Chemiluminescent 
Substrate (ThermoFisher Scientific) or SuperSignal™ West Femto Maximum Sensitivity 
Substrate (ThermoFisher Scientific) were used to the detection of chemiluminescent signal 
using the ChemiDoc Imaging System (BioRad) and ImageLab software was used to analyze 
the images (BioRad). 
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CCLE lung cancer cell lines classification.  
In order to classify CCLE lung adenocarcinoma cell lines in C1-like or nonC1-like subtypes 
we followed our method already published [4]. Briefly, ee implemented centroid correlation 
where the bulk 10-gene expression profile of C1- and nonC1-LUAD was used as reference 
for calculating correlation scores with CCLE 10-gene expression profiles. We excluded from 
the analysis SCGB3A1 and SERPINB5 because they are principally expressed. Next, Z-score 
values of each gene of the 10-gene signature were computed in all samples of TCGA-LUAD. 
We then calculated the averages of the 10-gene signature Z-scores in the cluster of C1-LUAD 
patients with unfavorable prognosis) and in the cluster of ‘C4’ patients. These Z-score 
averages were used as C1-LUAD and nonC1-LUAD centroids, to calculate their expression 
correlation (Pearson, 𝛒) to that of the CCLE dataset. Next, we transformed 𝛒 values to power 
of ten (i.e., 10^𝛒) to stabilize variance to get normally distributed data, and we used these 
values to stratify CCLE cell lines. A cell line was classified as C1-like if its 10^𝛒C1 was greater 
than its 10^𝛒nonC1 , and vice versa. To calculate the probability of a cell line to be classified as 
C1- or nonC1-like we used ridge-penalized unconditional logistic regression that was 
applied in the TCGA-LUAD to model the odds of being in the C1-LUAD cluster (vs. nonC1-
LUAD cluster) as a function of the 8 genes detected in CCLE dataset. The expression of each 
gene was dichotomized according to the median. Cross-validated (10-fold) log-likelihood 
with optimization (50 simulations) of the tuning penalty parameter was applied. Probability 
of being in the C1-LUAD cluster was estimated, and model performance was assessed using 
the area under the receiver operating curve (AUC=0.83). 
 
Phenotypic score 
Each parameter of phenotypic assay was transformed into z-scores and a phenotypic score 
was defined as the sum over the four z-scores and divided by 2, obtaining a variable still 
following the standard distribution (mean of 0 and standard deviation of 1). Cell lines 
(N=12) were also ordered by descending proliferation and increasing migration, invasion, 
and tumor spheres formation, and four ranks (from 1 to 12) were assigned to each cell line, 
for each assay. T-test test was used to compare C1-like/non-C1-like cell lines phenotypic 
score distributions. 
 
Cell Culture 
H2023, H1975, A549, H23, H2347, H838, H1944, H1437, H1573, CALU-3, H2228, H2126 and 
H1993 lung adenocarcinoma cell lines were obtained from ATCC. H322M lung 
adenocarcinoma and Jurkat human T lymphocyte cell lines were gently granted from IFOM. 
All cell lines were maintained in RPMI (Gibco; Invitrogen) with 10% FBS, and 1% 
penicillin/streptomycin (Gibco;Invitrogen) at 37°C in a humidified incubator with 5% CO2. 
Every cell line was plated at different concentration, based on their growth curves, so that 
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all lines can be processed at a confluence of about 80%. One day after plating for the 
experiments, media of all cells was changed with another one containing the same 
composition and concentration, but with exosome’s depleted FBS (Euroclone).  

Cell transfection experiments 
Transfection experiments on A549 cell line were carried out by performing reverse 
transfection with Lipofectamine RNAiMAX (ThermoFisher Scientific) according to the 
manufacturer’s instructions. Briefly, A549 150.000 cells were plated in a 6-well with 0,5 nM 
of miR-223-3p mimic (MSY0007230, Qiagen) or recommended 0,5 nM All Stars negative 
control siRNA (cat. 1027281, Qiagen). After 24h cell media was changed with complete 
RPMI with FBS w/o exosomes. Cells were detached and lysed after 72h post-transfection 
and conditioned media was collected and submitted to two steps of centrifugation (first at 
300g 10 min; second at 2000g 10min) to eliminate cell debris and apoptotic bodies. 
Conditioned media was stored at 4°C and used for further experiment. 
 
Activation of Jurkat and Interferon gamma staining 
Jurkat cells were plated at a density of 1x106/ml and were treated for 72h with 
ImmunoCult™ Human CD3/CD28 T Cell Activator (Stemcell Technologies) and with 
eBioscience™ Protein Transport Inhibitor Cocktail (500X; ThermoFisher Scientific; 00-4980-
03), following manufacturer’s instructions. Moreover, Jurkat growth was with media 
derived from A549 transfected with negative control siRNA or with mimic-miR-223-3p. 
After 72h, cells were pelleted at 300g 5min and fixed with PFA 0,4%. Then, cells were 
permeabilized using permeabilization buffer (Invitrogen, ThermoFisher Scientific) and 
stained with anti-IFN-gamma (Monoclonal Antibody (4S.B3), PE, eBioscience™) for flow 
cytometry analysis. 
 
Flow Cytometry 
Cellular internalization of PKH26-positive exosomes in LUAD cell lines and Interferon-
gamma staining in Jurkat cells were measured by MoFlo Astrios cell sorter (Beckman 
Coulter). From the initial forward scatter vs. side scatter plot (FSC/SSC), the cell population 
was gated. A second plot showed the specific fluorescence. DAPI was used to stain nuclei 
of viable cells. On each experiment unstained control samples were used. Final analyses 
were performed using FlowJo (BD Biosciences). 
 
Cells and exosomes RNA extraction 
Total RNA purification, including miRNAs, from exosome and cells is based on lysis with 
guanidinium thiocyanate-phenol-chloroform extraction (TriZol-LS and QIazol, Thermo 
Fisher Scientific) and spin column-based total RNA purification (MiRneasy Mini Kit, 
Qiagen). Exosomes pellet were resuspended in 300ul of 1X sterile PBS and were mixed with 
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Trizol-LS in volumetric ratios of 3:1 for lysis. After denaturation, one synthetic miRNA was 
added to the solution at fixed amount (3 x 109 copies of ath-159a) to monitor the extraction 
procedure. A volume of 240ul mL of chloroform is then added to the solution, which was 
centrifuged for 15 minutes at 11,800 x g at 4°C. A fixed amount (350ul; around 70%) of 
aqueous phase was recovered. This amount was chosen to limit contamination from the 
interphase and speed up the RNA isolation procedure. The following steps were performed 
using the miRNEASY Mini Kit (QIAGEN, ThermoFisher Scientific) standard protocol 525ul 
of 100% ethanol (1.5 volumes) were added and the mixture was then loaded onto a RNeasy 
Mini spin column that is subsequently washed with 700ul of RWT Buffer, and 500ul of RPE 
buffer, repeated two times. Total RNA, enriched in small RNAs, is finally eluted in 30ul of 
RNase-free water, transferred into 1.5 mL barcoded tubes and stored at -80°C, until further 
analysis.  
For the intracellular RNA extraction, cells were pelleted with a low-speed centrifugation 
(300 x g, 5’), supernatant was discarded and 700ul of QIazol reagent was added on pelleted 
cells. The following steps are performed using the miRNEASY Mini Kit (QIAGEN, 
ThermoFisher Scientific) standard protocol, as previously described.  
 
miRNA qRT-PCR in exosomes and cells 
For miRNA expression analysis in exosomes, a total of 3ul of RNA was reverse-transcribed 
using the TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific). 
Poly(A) tailing, adapter ligation, RT reaction and miR-Amp were performed following 
manufacturer’s instructions. The resulting cDNA was then diluted 1:10 prior to perform 
PCR.  TaqMan Fast Advance Master Mix (ThermoFisher Scientific) and Card Custom 
Advance (Thermo Fisher Scientific) were used for the analysis of subselected miRNAs. qRT-
PCR reactions were run on the QuantStudio 12K Flex with an Array-block (ThermoFisher 
Scientific). 
For miRNA expression analysis in cell lines, we used the same protocol, but we 
retrotranscribed a total of 10ng of intracellular RNA. Then, we diluted 1:10 the cDNA prior 
to proceed to qRT-PCR for miR-223-3p using TaqMan Fast Advance Master Mix and 
TaqMan hydrolysis probe in a QuantStudio 12K Flex with a 96-block (ThermoFisher 
Scientific). For primers list see Supplemental Table 2. 
 
Exo-miRNA signature development 
Unconditional logistic regression was applied in the cohort of 32 FFPE samples (N=17 
nonC1-like; N=15 C1-like) to model the odds of C1-like as function of the 13 miRNAs 
expressed in at least 75% of samples. To reduce the number of predictors, the stepwise 
approach was used, obtaining a 7-miRNAs model. Probability of being C1-like was 
estimated, and models performance was assessed using the area under the receiver 
operating curve (AUC). Internal validation of model discrimination was conducted by 
calculating the bootstrap optimism-corrected AUC. 
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All statistical analyses were performed using SAS software, version 9.4 (SAS Institute, Inc., 
Cary, NC, USA), Graphpad 9 (Prism) and JMP 15 (SAS). p-values less than 0.05 were 
considered statistically significant. 
 
miRPathDB Analysis 
Has-miR-223-3p gene-pathways were analyzed with miRPathDB (https://mpd.bioinf.uni-
sb.de/mirna.html?mirna=hsa-miR-223-3p&organism=hsa) [14]. Briefly, we filtered the gene 
pathways of Gene Ontology Biological Process based on their role in cancer (i.e. 
Proliferation, Migration, Immune, Stemness, EMT, Angiogenesis, Hypoxia). Then, we 
selected only these gene-pathways experimentally validated and significantly related to 
has-miR-223-3p, with at least 5 genes involved in the pathway (Hits). Finally, we reported 
the top 10 gene-pathways as the most representative of miR-223-3p function. 
 
Migration and Invasion Assay 
To evaluate migration of cell lines, cells were suspended in serum-free RPMI and plated at 
a density of 1x10^4 into the upper chamber of trans-well with 8.0-µm pore polycarbonate 
membrane (Falcon). RPMI with 20% of FBS was added to the lower well as chemoattractant. 
After 24h, trans-well was fixed using 4%PFA and nuclei of the cells in the trans-well 
chamber were stained using DAPI (Sigma Aldrich, working solution 1ng/ml). Non-
migrated cells were removed from the upper chamber membrane with a cotton-tipped 
swabs and then the chamber was washed twice in PBS 1X. After DAPI staining ten images 
were acquired at 10X magnification for each cell line using the Axiocam 105 color (Zeiss) 
connected at the Eclipse TE300 Microscope (Nikon). Migrated cells were evaluated counting 
nuclei with Cell Count tool of Fiji software.  
For invasion assay the protocol was the same of the migration, but we coated with Matrigel 
Growth Factor Reduced and Phenol red free (Corning, Lot 4132005) at a concentration of 
150 µg/ml, the trans-well chambers with 8.0-µm pore polycarbonate membrane (Falcon). 
All experiments were performed in at least duplicate. 
 
Proliferation Assay 
To calculate doubling time, we performed the experiments s at 0h, 24h and 72h putting 10ul 
of cell suspension in Luna counter slide (Logos Byosistem) and analyzing the number of 
cells with Cell Luna II Counter (Logos Byosistem) with the followed parameters: Noise 
reduction: 5; Live cell sensitivity: 1; Roundness: 60%; Min cell size: 2um; Max cell size: 60um; 
Declustering level: medium. Then, it was obtained growth rate as follow: 
 
 

𝑔𝑟 =
ln '𝑁(𝑡)𝑁(0)-

𝑡  

- N(t) = number of cells at time t 
- N(0) = number of cells at time 0 
- gr = growth rate 
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- t = time in hours 
 Finally, it was calculated the doubling time as follow: 
 

𝑑𝑜𝑢𝑏𝑙𝑖𝑛𝑔	𝑡𝑖𝑚𝑒 =
ln(2)

𝑔𝑟𝑜𝑤𝑡ℎ	𝑟𝑎𝑡𝑒	 

 
All experiments were performed at least in triplicates. 
 
 
Cell Viability assay 
We evaluate vitality at 0h and 72h in Jurkat cell line adding 1:2 trypan blue 0.4% (Logos 
Byosistem) to cell solution and putting 10ul of cell suspension in Luna counter slide (Logos 
Byosistem). Then we automatically counted the live cells with the Luna II cell counter 
(Logos Byosistem). Percentage of live cells was calculated by the instrument based on the 
followed parameters: Noise reduction: 5; Live cell sensitivity: 1; Roundness: 90%; Min cell 
size: 10um; Max cell size: 60um; Declustering level: medium. 
All experiments were performed at least in triplicates. 
 
Statistical analysis 
To perform hierarchical clustering, we used Cluster 3.0 and Java Tree View software, using 
the uncentered correlation and centroid linkage method. Heatmaps were generated with 
MORPHEUS or Java Tree View. Statistical analyses and graphs were generated using 
GraphPad 9 (Prism), SPSS version 15.0, SAS software, and R version 3.3.1. Normality of data 
distribution was checked using Shapiro-Wilk test and the other statistical test were 
performed based on data distribution. All the statistical tests used and the p-values were 
reported in figures, legends or in method details. A p-value less than 0.05 was considered 
as significant.  
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V.1 General Conclusion 

Results of these studies allowed to characterize a newly identified aggressive molecular 
subtype of lung cancer, C1-LUAD, and to discover circulating biomarkers for early 
identification. In particular: 
1)We used a multi-tiered approach, to analyze the transcriptional profile of three 
independent cohorts of LUAD patients, as well as we performed a phenotypic screening in 
12 LUAD cell lines. We found that C1-LUAD exhibited a loss of lung cell lineage and an 
acquisition of stem cell-like features, as well as an increased mutator and immune evasion 
phenotype. These characteristics ultimately led to a more aggressive cancer with a worse 
prognosis, even at stage I.  
2) To aid in a better identification of C1-LUAD, we performed miRNA expression profiling, 
ultimately identifying two signatures of 14- and 19-miRNA, which accurately stratified C1 
and non-C1 cancer patients. We then explored the miRNA-mRNA interactome, identifying 
a set of seven miRNAs as "HUBs" which derived from both the 19-miRNA and 14-miRNA 
signatures. This seven-miRNA signature had a cross-validated AUC of 0.79 in C1/non-C1 
patients' stratification, which was validated in an external cohort of 44 lung adenocarcinoma 
tissues.  
3)Finally, we investigated exosomal miRNAs as potential circulating biomarkers for C1-
LUAD identification, identifying a total of 13 miRNAs differentially expressed in C1 and 
non-C1 exosomes. Consistently, we demonstrated that a minimal set of 6-exo-miRNAs 
identified C1 patients with a bootstrap corrected AUC of 0.73. Moreover, we started to 
investigate the role of exo-miR-223-3p in C1-like aggressive cells. 
Overall, this thesis provides valuable insights into the molecular characteristics of C1-LUAD 
and the development of potential biomarkers for early identification. These findings have 
important implications for the diagnosis, prognosis, and treatment of lung cancer patients, 
particularly those with the aggressive C1-LUAD subtype. 
 

V.2 Future Perspectives 

Despite the overall data here presented, there is still much work to be done to translate these 
findings into improved clinical outcomes for lung cancer patients. 
One promising avenue for future research is the development of targeted therapies for C1-
LUAD. The identification of stem cell-like features and immune evasion phenotype in C1-
LUAD suggests that targeting these pathways may be effective in treating this subtype of 
lung cancer. Additionally, further exploration of the miRNA-mRNA interactome could 
reveal additional therapeutic targets for C1-LUAD. 
Another important area of future research is the validation of the miRNA signatures and 
exosomal miRNA biomarkers in larger, independent cohorts. While the miRNA signatures 
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showed promising results in stratifying C1 and non-C1 patients, validation in larger patient 
populations will be necessary to establish their clinical utility. Additionally, further 
investigation into the functional roles of these miRNAs in C1-LUAD could provide 
important insights into the mechanisms underlying the aggressive behavior of this subtype. 
Lastly, the development of non-invasive diagnostic tests for the early detection of C1-LUAD 
could have a significant impact on the prognosis and survival of lung cancer patients. The 
identification of exosomal miRNA biomarkers suggests that liquid biopsy approaches may 
be a promising avenue for the development of such tests. However, further optimization 
and validation of these tests will be necessary before they can be implemented in a clinical 
setting. 
In summary, the research presented in this thesis has provided important insights into the 
molecular characteristics of the aggressive C1-LUAD subtype and the development of 
potential biomarkers for early identification. Further research in the areas of targeted 
therapies, validation of biomarkers, and development of non-invasive diagnostic tests will 
be necessary to translate these findings into improved clinical outcomes for lung cancer 
patients. 
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