
Learning-based methods for planning and
control of humanoid robots

Sapienza University of Rome

PhD Program in Automatic Control, Bioengineering and Operations Research
(XXXV cycle)

Paolo Maria Viceconte
ID number 1601242

Advisors
Prof. Giuseppe Oriolo
Dr. Daniele Pucci

May 2023

Thesis defended on 19 May 2023
in front of a Board of Examiners composed by:

Prof. Paola Cappanera, Università di Firenze, Italy
Prof. Danilo Pani, Università di Cagliari, Italy
Prof. Paolo Valigi, Università di Perugia, Italy

Thesis reviewed by the External Evaluators:

Dr. Francesco Nori, DeepMind, London, UK
Prof. Michiel van de Panne, UBC, Vancouver, Canada

Learning-based methods for planning and control of humanoid robots
PhD thesis. Sapienza University of Rome

© Paolo Maria Viceconte. License: Attribution 4.0 International (CC BY 4.0) cb

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: paolo.viceconte@iit.it, viceconte@diag.uniroma1.it, paolomariaviceconte@gmail.com

mailto:paolo.viceconte@iit.it, viceconte@diag.uniroma1.it, paolomariaviceconte@gmail.com

What is research but a blind date with knowledge?
Will Harvey

Research is formalized curiosity, it is poking and prying with a purpose.
Zora Neale Hurston

Abstract

Nowadays, humans and robots are more and more likely to coexist as time goes by.
The anthropomorphic nature of humanoid robots facilitates physical human-robot
interaction, and makes social human-robot interaction more natural. Moreover,
it makes humanoids ideal candidates for many applications related to tasks and
environments designed for humans.

No matter the application, an ubiquitous requirement for the humanoid is to
possess proper locomotion skills. Despite long-lasting research, humanoid locomotion
is still far from being a trivial task. A common approach to address humanoid
locomotion consists in decomposing its complexity by means of a model-based
hierarchical control architecture. To cope with computational constraints, simplified
models for the humanoid are employed in some of the architectural layers. At the
same time, the redundancy of the humanoid with respect to the locomotion task
as well as the closeness of such a task to human locomotion suggest a data-driven
approach to learn it directly from experience.

This thesis investigates the application of learning-based techniques to planning
and control of humanoid locomotion. In particular, both deep reinforcement learning
and deep supervised learning are considered to address humanoid locomotion tasks
in a crescendo of complexity.

First, we employ deep reinforcement learning to study the spontaneous emergence
of balancing and push recovery strategies for the humanoid, which represent essential
prerequisites for more complex locomotion tasks.

Then, by making use of motion capture data collected from human subjects, we
employ deep supervised learning to shape the robot walking trajectories towards an
improved human-likeness.

The proposed approaches are validated on real and simulated humanoid robots.
Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3.

Acknowledgments

It was not an easy walk, and if I got this far I can only thank those who stood by me.
I am deeply grateful to Prof. Oriolo for teaching me the value of research in the

first place. All the times we exchanged views, your determination in getting to the
core of the problem from a scientific standpoint inspired me profound reflections.

I cannot thank enough Daniele for welcoming me in the AMI lab and boosting my
research activity with all the available resources. You have constantly been looking
ahead, coming up with new ideas that often pushed me out of my local minimum.

A special thank goes to Raffaello and Stefano for their careful supervision. Your
suggestions saved me days and your dedication was pivotal in my time of need.

I also wish to thank Prof. Van de Panne and Dr. Nori for having enthusiastically
served as thesis reviewers. The feedback you provided me was truly valuable.

Finally, let me thank all the current and former members of the AMI lab. Silvio,
Diego, Lorenzo R., Prash, Gabri, Claudia, Moe, Kourosh, Yeshi, Valentino, Punith,
Fabio B., Gianluca, Gianmarco, Hosam, Evie, Cheng, Francesca, Marta, Guglielmo,
Roberto, Dario, Ehsan, Lorenzo M., Affaf, Giovanni, Italo, Enrico, Marco, Nuno,
Tong, Milad, Prajval, Riccardo Z., Adi, Andrea, Emilio, Venus, Fabio D., Anqing,
Filippo, Saverio, Gabriele. I had the pleasure to work with some of you, and it was
exciting. The kindness that you each demonstrate keeps making my day in the lab.

Un grazie, dal profondo del cuore, va tutti coloro che continuano a farmi costante-
mente emozionare.

Ai Baciotti et al. Giuse, Ines, Giulio, Anto, Rick, Carlotta, Marco, Yle, Rore:
riuscite a creare un’atmosfera magica, sfornando sorrisi che non hanno prezzo.

Ai Pirati. Sia in campo che fuori, siete una squadra fortissimi!
Ai ragazzi "di Roma". Trap, Rob, Vincenzo, Giuseppe: ci eravamo abituati ad

una quotidianità che manca terribilmente, rivedervi è ogni volta una gioia immensa.
To the FTW group. Xavi, Vic, Jenn, Chris, Iwan, Adrien, Yuka, Misato, Hinata,

Tomas, Colby: it is just unreal how so many different paths touched each other and
bonded like this.

Ai ragazzi del Circolo e del Comitato. Il vostro impegno nell’agire divertendosi è
una perenne fonte d’ispirazione.

Ai miei amici di una vita. Vincenzo, Marco, Nicola, Valentino, Emanuele. La
naturalezza con cui un minuto insieme spazza via mesi di distanza è indescrivibile.
E a Rosangela, il cui animo non smette mai di sorprendermi.

A mio fratello Nicola. Quando hanno fatto le squadre ci hanno messi insieme,
ed è incredibilmente bello sapere di poterti sempre passare la palla.

A mia madre Rosa e a mio padre Felice. Il vostro affetto mi sostiene e il vostro
esempio mi fortifica.

Ai miei nonni Nicola, Nina, Angelina e Giuseppe. La dolcezza delle vostre carezze
è il più intimo dei conforti.

v

Contents

List of Figures ix

List of Tables x

Notation xi

Prologue 1

I Background & Fundamentals 7

1 Modeling of Floating-Base Robots 8
1.1 Modeling of rigid body systems . 8

1.1.1 Rigid body transform . 9
1.1.2 Rigid body velocity . 10
1.1.3 Force applied to a rigid body 14

1.2 Modeling of multi-body system . 15
1.2.1 Multi-body kinematics . 19
1.2.2 Multi-body dynamics . 21
1.2.3 Centroidal dynamics . 22

1.3 Simplified models . 23
1.3.1 Linear inverted pendulum . 23
1.3.2 Zero moment point . 25
1.3.3 Divergent component of motion 26

2 Robot Learning 28
2.1 Supervised deep learning . 28

2.1.1 Feedforward neural networks 29
2.1.2 Neural networks training . 33
2.1.3 Backpropagation algorithm 37

2.2 Reinforcement learning . 40
2.2.1 RL basics . 40
2.2.2 Markov decision processes . 45
2.2.3 Policy gradient methods . 47

Contents vi

3 State of the Art and Thesis Context 52
3.1 State of the art in Bipedal Locomotion 52

3.1.1 Trajectory optimization layer 53
3.1.2 Simplified model control layer 55
3.1.3 Whole-body control layer . 56
3.1.4 Reinforcement learning based approaches 57

3.2 State of the art in Character Animation 58
3.2.1 Kinematic motion synthesis 58
3.2.2 Physics-based motion synthesis 62

3.3 Thesis context . 63
3.4 The iCub humanoid robot . 65

3.4.1 The iCub v2.7 humanoid . 66
3.4.2 The iCub v3 humanoid . 67
3.4.3 Software infrastructure . 69

II Contribution 70

4 Learning Whole-Body Push-Recovery Strategies 71
4.1 Environment . 72

4.1.1 State definition . 72
4.1.2 Reward shaping . 74
4.1.3 Episode specifications . 79

4.2 Agent . 80
4.2.1 Action definition . 80
4.2.2 Policy representation and training 81

4.3 Results . 82
4.3.1 Reward shaping . 82
4.3.2 Emerging behaviours . 84
4.3.3 Push-recovery performances 86

4.4 Conclusions . 89

5 Learning Human-Like Whole-Body Trajectory Generators 90
5.1 Background . 91

5.1.1 Whole-body Geometric Retargeting 91
5.1.2 Mode-Adaptive Neural Networks 92

5.2 Dataset collection . 95
5.2.1 Motion capture dataset . 96

5.3 Retargeting . 96
5.3.1 Kinematically-feasible base motion retargeting 97

5.4 Trajectory generation . 98
5.4.1 Features extraction . 98
5.4.2 User input processing . 101

5.5 Results . 104
5.5.1 Learned walking patterns . 104

Contents vii

5.5.2 Human-likeness . 107
5.6 Conclusions . 109

6 Human-Like Whole-Body Control of Humanoid Robots 110
6.1 Background . 111

6.1.1 Trajectory optimization layer 111
6.1.2 Simplified model control layer 114
6.1.3 Whole-body QP control layer 115

6.2 Trajectory control . 117
6.3 Crouching ability . 119

6.3.1 Dataset collection and retargeting 119
6.3.2 Trajectory generation and control 120

6.4 Results . 121
6.4.1 Controlled walking patterns 122
6.4.2 Transferability on a different platform 124
6.4.3 Robustness analysis . 126
6.4.4 Human-likeness . 133
6.4.5 Crouching . 135

6.5 Conclusions . 137

Epilogue 138

Bibliography 139

Appendices 161

A Texture Task for the ANA Avatar XPRIZE Finals 162

viii

List of Figures

1 Humanoid robots developed worldwide 2

1.1 Mixed reference frame . 12
1.2 Multi-body system model . 16
1.3 Multi-body system as a graph . 16
1.4 LIP model representation . 23

2.1 Artificial neuron . 29
2.2 Common activation functions . 30
2.3 Feedforward neural network . 31
2.4 Gradient-based optimization . 35
2.5 Agent-environment interaction loop in RL 40

3.1 Hierarchical humanoid control architecture 53
3.2 Walking pattern generation example 56
3.3 Taxonomy of character animation literature 59
3.4 Examples of character animation systems 61
3.5 The iCub v2.7 and iCub v3 humanoids 66
3.6 Force-torque and inertial sensors on iCub v2.7 67
3.7 Comparison between iCub v2.7 and iCub v3 68

4.1 Detailed agent-environment interaction loop 72
4.2 Learning curves . 82
4.3 Individual reward components evolution 83
4.4 Push-recovery emerging behaviours 84
4.5 Push-recovery performances for deterministic planar forces 86
4.6 Push-recovery performances for random spherical forces 88

5.1 Human-robot frame correspondences for WBGR 92
5.2 MANN architecture . 94
5.3 Dataset collection . 95
5.4 MANN features visualization . 100
5.5 User input processing . 102
5.6 MANN-generated forward walking 105
5.7 MANN-generated backward walking 105
5.8 MANN-generated left-side walking 105
5.9 MANN-generated right-side walking 105
5.10 MANN-generated mixed walking . 106

List of Figures ix

5.11 Blending coefficients activation . 107
5.12 Human-likeness of generated trajectories 108

6.1 ADHERENT architecture . 112
6.2 DCM trajectory planning . 113
6.3 Dataset collection for crouching motions 119
6.4 Trajectory control on iCub v2.7 . 123
6.5 Trajectory control on iCub v3 . 125
6.6 Robustness analysis of ADHERENT on iCub v2.7 127
6.7 ZMP, DCM and CoM tracking – forward walking on iCub v2.7 . . . 128
6.8 ZMP, DCM and CoM tracking – left-side walking on iCub v2.7 . . . 129
6.9 Robustness analysis of ADHERENT on iCub v3 130
6.10 ZMP, DCM and CoM tracking – backward walking on iCub v3 . . . 131
6.11 ZMP, DCM and CoM tracking – right-side walking on iCub v3 . . . 132
6.12 Human-likeness of controlled trajectories for iCub v2.7 134
6.13 Human-likeness of controlled trajectories for iCub v3 134
6.14 Crouching-to-upright walking transition on simulated iCub v2.7 . . . 135
6.15 Blending coefficients activation while crouching 135

A.1 The iCub v3 sensorized hand . 163
A.2 Data collection for the rock classifier 163
A.3 Rock classifier input . 165
A.4 Rock classifier performances . 165

x

List of Tables

4.1 Observation components . 73
4.2 Reward components . 77
4.3 Training parameters . 81

5.1 Motion capture dataset specifications 96

6.1 Crouching motion capture dataset specifications 119
6.2 Nominal and experimental velocity and step size for iCub v2.7 . . . 127
6.3 Nominal and experimental velocity and step size for iCub v3 130
6.4 Crouching features comparison . 136

xi

Notation

The following notation will be adopted throughout the thesis.

• The i-th component of a vector x is denoted by xi.

• The transpose operator is denoted by (·)⊤.

• Given a function of time f(t), the dot notation denotes the time derivative,
i.e., ḟ := df

dt . Higher-order derivatives are denoted by a corresponding amount
of dots.

• In ∈ Rn×n denotes the identity matrix of dimension n.

• 0n×m ∈ Rn×m denotes a zero matrix of dimension n×m, while 0n = 0n×1 is a
zero column vector of dimension n.

• ei is the canonical base in Rn, i.e., ei = [0, ..., 0, 1, 0, ..., 0]⊤ ∈ Rn, where the
only unitary element is in position i.

• I = (oI , [I]) is a fixed inertial frame with respect to which the robot’s absolute
pose is measured. oI denotes the origin of the frame. Its orientation [I] is
such that the z axis points against gravity while the x axis defines the forward
direction.

• Given the inertial frame I = (oI , [I]) and a frame A = (oA, [A]), the frame
A[I] = (oA, [I]) is defined with origin in oA and orientation as the inertial
frame.

• The operator × defines the cross product in R3.

• Given a vector w ∈ R3, the hat operator (·)∧ defines the skew-symmetric
operation associated with the cross product in R3, i.e., the skew-symmetric
matrix w∧ ∈ R3×3

w∧ :=

wx

wy

wz

∧

=

 0 −wz wy

wz 0 −wx

−wy wx 0

is such that, given another vector u ∈ R3, w∧u = w × u. Its inverse is the vee
operator (·)∨, meaning that

(w∧)∨ :=

 0 −wz wy

wz 0 −wx

−wy wx 0

∨

=

wx

wy

wz

 = w.

Notation xii

• Given a vector v = [v⊤, w⊤]⊤ ∈ R6, with v, w ∈ R3, the hat operator (·)∧ is
defined as

v∧ :=
[
v
w

]∧

=
[
w∧ v

01×3 0

]
.

Its inverse is the vee operator (·)∨, meaning that

(v∧)∨ :=
[
w∧ v

01×3 0

]∨

=
[
v
w

]
= v.

• The set SO(3), i.e., Special Orthogonal Group in three dimensions, is the set
of R3×3 orthogonal matrices with determinant equal to one, namely

SO(3) :=
{
R ∈ R3×3 |R⊤R = I3, det(R) = 1

}
.

• The set so(3) is the set of 3D skew-symmetric matrices

so(3) :=
{
S ∈ R3×3 | S⊤ = −S

}
.

• The set SE(3), i.e., Special Euclidean Group in three dimensions, is defined as

SE(3) :=
{[

R p
01×3 1

]
∈ R4×4 |R ∈ SO(3), p ∈ R3

}
.

• The set se(3) is defined as

se(3) :=
{[

w∧ v
01×3 0

]
∈ R4×4 | w∧ ∈ so(3), v ∈ R3

}
.

• ARB ∈ SO(3) and AHB ∈ SE(3) denote the rotation and transformation
matrices that transform a vector Bx expressed in the frame B into a vector
Ax expressed in the frame A.

• CvA,B ∈ R6 is the 6D velocity (aka twist) of frame B with respect to frame A,
whose coordinates are expressed in frame C.

• AfF ∈ R6 denotes the 6D force (aka wrench) applied in frame F , whose
coordinates are expressed in frame A.

• xCoM ∈ R3 is the center of mass (CoM) position expressed in I.

1

Prologue

As of May 2023, the humanoid robot Atlas1 by Boston Dynamics has been shown to
grasp, carry and promptly deliver, while climbing stairs and jumping with stunning
agility, a heavy bag of tools to a worker who asked for it2. The humanoid robot
Ameca3 by Engineered Arts has been demonstrated to perform lively gestures and
facial expressions which impressively mimick the human ones4. While these robots,
as many others, already exhibit unique physical and social interaction skills, new
humanoids with an even higher degree of autonomy such as Tesla Bot5 by Tesla
and CyberOne6 by Xiaomi have been announced. With a global market valued at
USD 1.5 billion in 2022 and estimated to reach USD 17.3 billion by 20277, humanoid
robotics cannot be considered anymore as a field of purely prototyping research but
gets closer and closer to industry and broader commercialization, with humans and
humanoids more likely to coexist as time goes by.

However, long-lasting research in humanoid robotics lies behind today’s exciting
achievements. Although the idea of building anthropomorphic machines has deep
philosophical roots dating back centuries, a starting point for humanoid robotics
research can be identified with the presentation of the WABOT-1 humanoid by
Waseda University in 1973. Since then, a large amount of robots with human-like
resemblance have appeared worldwide. Just to mention some: P2 and ASIMO
by Honda, TORO by the German Aerospace Center, Valkyrie by the National
Aeronautics and Space Administration agency of the United States Government,
and more recently Digit by Agility Robotics and TALOS by PAL Robotics. Initially
developed, as any robot, to replace people at tedious and tiring tasks, humanoids
gained over time a role that goes far beyond the mere execution of repetitive tasks.
Structurally suited for human-centered environments, they are now designed also to
assist humans and collaborate with them both in workplaces and domestic settings.
They are expected to operate in disaster scenarios, autonomously or under remote
control, in place of humans currently risking their lives for rescue operations. Even
more generally, they could represent physical avatars enabling human beings to exist,
through them, in a remote location, and be able to physically interact with the
remote environment as if they were actually there.

1https://www.bostondynamics.com/atlas
2https://www.youtube.com/watch?v=-e1_QhJ1EhQ
3https://www.engineeredarts.co.uk/robot/ameca/
4https://vimeo.com/651929733?embedded=true&source=vimeo_logo&owner=63229520
5https://www.youtube.com/live/ODSJsviD_SU?feature=share&t=836
6https://www.youtube.com/watch?v=CJhneBJIfOk
7www.marketsandmarkets.com/Market-Reports/humanoid-robot-market-99567653.html

https://www.bostondynamics.com/atlas
https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.engineeredarts.co.uk/robot/ameca/
https://vimeo.com/651929733?embedded=true&source=vimeo_logo&owner=63229520
https://www.youtube.com/live/ODSJsviD_SU?feature=share&t=836
https://www.youtube.com/watch?v=CJhneBJIfOk
https://www.marketsandmarkets.com/Market-Reports/humanoid-robot-market-99567653.html
www.marketsandmarkets.com/Market-Reports/humanoid-robot-market-99567653.html

Prologue 2

(a) (b) (c) (d) (e) (f)

Figure 1. Examples of humanoids developed worldwide, by increasing size. (a) ASIMO:
130 cm, 48 kg, 2011. (b) Atlas: 150 cm, 75 kg, 2016. (c) Digit: 155 cm, 42.2 kg, 2019.
(d) TORO: 174 cm, 76.4 kg, 2014. (e) TALOS: 175 cm, 95 kg, 2017. (f) Valkyrie: 187 cm,
129 kg, 2013. Images and specifications taken from [Ficht and Behnke, 2021].

The technological progress required even just to imagine such advanced applications
for humanoid robots was driven by several factors. International challenges were
definitely one of the key factors that, besides pushing technology, also highlighted
its limitations. From 2012 to 2015, the DARPA Robotics Challenge (DRC), funded
by the US Defense Advanced Research Projects Agency, promoted the usage of
humanoids in disaster scenarios. At the final event, tasks such as driving a utility
vehicle, walking through a door, and manipulating a tool to break through a concrete
panel were tested in a scenario emulating a nuclear disaster. During the trials,
a series of iconic failures highlighted the unripeness of humanoid robotics. For
instance, the Running Man humanoid fell while waving to the crowd after having
successfully completed all the required tasks. From 2018 to 2022, the ANA Avatar
XPRIZE, funded by All Nippon Airways, fostered the usage of robots as avatar
systems transporting human presence to a remote location in real time. Despite
humanoids being arguably one of the most natural solutions to such a challenge
(referred to as telexistence), only two humanoids qualified for the finals, confirming
therefore the need for further technological development in the field in order to
approach the full exploitation of humanoid robot capabilities.

No matter the application, whether it is domestic assistance, physical human-
robot collaboration or telexistence, as well as many others, an ubiquitous task for the
humanoid that cannot be avoided is locomotion. Nowadays, humanoid locomotion is
far from being a trivial task, especially when considered as a general problem, whose
solution is not meant to rely on the peculiar strengths of the specific robot used as a
development platform. In the case of Atlas, for instance, the locomotion algorithms
are designed hand-in-hand with the robot hardware, and the hardware features (e.g.,
compact and lightweight mechanical components with optimized shapes, powerful
hydraulic power unit and battery, etc.) play a fundamental role for the outstanding
achieved performances8.

8https://slideslive.com/38946802/boston-dynamics

https://slideslive.com/38946802/boston-dynamics

Prologue 3

As regards general approaches to humanoid locomotion, probably the best example
so far is given by the model-based hierarchical control architecture left as inheritance
by the DRC. Composed by several layers, this architecture copes with the high
complexity of the humanoid locomotion problem by splitting it into subproblems, and
taking a series of simplifying assumptions when modeling the humanoid (different
for each layer) which make the problem tractable online. Using simplified models
for the humanoid allows for remarkable results. However, this choice collides with
the objective of fully exploiting the humanoid complex mechanical structure, and
constrains the set of attainable behaviours. As a result, the robot locomotion
patterns obtained by following this approach are often far from those demonstrated
by humans. In other words, they cannot be said to exhibit a high degree of human-
likeness, a property that is definitely not required (and, indeed, often neglected) to
walk while maintaining balance, but gains prominence if the robot motion needs to
be predictable and interpretable for humans. For instance, human-likeness facilitates
physical human-robot interactions, and makes social human-robot interactions more
natural. More generally, it increases the social acceptability of robots, paving the
way for their integration in our everyday life.

Another general approach to humanoid locomotion, from a completely differ-
ent perspective, consists in tackling this problem using machine learning tech-
niques. More specifically, deep learning methods which allow to cope with the
high-dimensional continuous space of joint references (i.e., positions, velocities or
torques, depending on the control mode) used to control the humanoid. Among the
different machine learning paradigms, reinforcement learning appears as a natural
choice. The agent-environment interaction characterizing reinforcement learning is
indeed by definition particularly suitable for robotics, since a robot is probably the
most intuitive instance of an agent interacting with its surrounding environment
one can think of. Also supervised (imitation) learning can play a role in addressing
humanoid locomotion. The way a human walks is arguably the way we would like
the humanoids around us to walk. Expert demonstrations collected from human
subjects (e.g., using motion tracking systems) represent therefore useful sources of
information for the humanoid to learn the complex locomotion task from. Moreover,
human-collected demonstrations are whole-body (i.e., they provide a reference also
for the redundant degrees of freedom of the humanoid with respect to the locomotion
task) and, by definition, human-like.

In this thesis, we investigate the application of learning-based techniques to
planning and control of humanoid locomotion. In doing so, we exploit both deep
reinforcement learning and deep supervised learning. The former approach allows us
to study the spontaneous emergence of locomotion behaviours (specifically, balancing
and push-recovery strategies). The latter instead, by making use of motion capture
data collected from humans, enables us to shape the robot locomotion patterns
(specifically, walking trajectories) towards an improved human-likeness. We strongly
believe that such model-free approaches, based on deep neural networks, have
the potential to properly represent the complexity of the humanoid while taking
full advantage of its redundancy with respect to the locomotion task. Moreover,
they are remarkably efficient and particularly suitable to generalize from human
demonstration. All these features, combined together, motivate us in the choice of
learning-based methods to tackle humanoid locomotion.

Prologue 4

This thesis is divided into two parts, briefly summarized in the following along with
the content of each chapter.

Part I: Background & Fundamentals

This part provides the reader with the fundamental background about the concepts
exploited in the thesis, and reviews the state-of-the-art relevant for the thesis context.

• Chapter 1 describes the kinematics and dynamics modeling of humanoid robots,
along with some simplified models commonly adopted for bipedal locomotion.

• Chapter 2 introduces the basics of deep supervised learning and deep reinforce-
ment learning.

• Chapter 3 collects a concise overview of the relevant state-of-the-art related to
the fields of bipedal locomotion and character animation, and defines the thesis
context besides presenting the humanoid robots used for the experimental
validation of the thesis developments.

Part II: Contribution

This part presents the learning-based methods developed as contributions of this
thesis, along with their validation on simulated and real robots.

• Chapter 4 illustrates the design of a control policy for balancing and push
recovery of humanoid robots, trained using deep reinforcement learning. In our
setting, the agent controls joint velocities of both the lower and upper body
joints. We define the reward so to encourage the emergence of transient push-
recovery strategies as well as steady-state balancing. The policy is validated
on a simulated version of the iCub v2.7 humanoid.

• Chapter 5 presents a data-driven whole-body trajectory generator for humanoid
locomotion, trained by deep supervised learning. Our trajectory generator
adapts a peculiar deep network architecture, proved effective for the animation
of quadruped characters in computer graphics, to the generation of walking
patterns for humanoid robots. The kinematic validation of the proposed
approach is conducted on the iCub v2.7 humanoid model.

• Chapter 6 introduces an end-to-end architecture, named ADHERENT, result-
ing from the integration of the learning-based trajectory generator presented in
Chapter 5 with a state-of-the-art control architecture for humanoid locomotion.
In particular, the footstep plan and the human-like postural produced by the
learning-based trajectory generator are exploited for trajectory control. The
ADHERENT architecture is experimentally validated on both the iCub v2.7
and the iCub v3 humanoid robots.

This research work has been conducted during my tenure as Ph.D. candidate in the
Artificial and Mechanical Intelligence laboratory at the Istituto Italiano di Tecnologia
in Genoa, Italy. The doctoral program has been carried out in accordance with the
requirements of Sapienza University of Rome, Italy, in order to obtain a Ph.D. title.

Prologue 5

Summary of publications
The results of the research carried out for this thesis have been (or will be) dissem-
inated in peer-reviewed research publications. For each publication, we mention
additional material such as video presentation and released code when available.

The content of Chapter 4 partially appears in:

Ferigo, D., Camoriano, R., Viceconte, P. M., Calandriello, D., Traversaro,
S., Rosasco, L., and Pucci, D. (2021). On the Emergence of Whole-body
Strategies from Humanoid Robot Push-recovery Learning. IEEE Robotics
and Automation Letters, 6(4):8561–8568.

Video https://www.youtube.com/watch?v=Fa0MtfYZiGA

My personal contribution to this work primarily regards the definition of the rein-
forcement learning setting. I have been actively involved in the search, inspired by
domain knowledge on humanoid control and led through an iterative process, for an
action (Section 4.2.1), state (Section 4.1.1) and reward (Section 4.1.2) suitable for
learning the task at issue. As regards the evaluation of the policy performances after
training, I conceived, run and analyzed a relevant portion of the simulations involving
out-of-sample scenarios to demonstrate the policy robustness and generalization ca-
pabilities (Section 4.3.3). I was not the main developer of the training infrastructure,
and in particular I did not directly deal with the episodes characterization (Section
4.1.3) nor the implementation of the distributed training setup (Section 4.2.2).

The content of Chapter 5 and Chapter 6 partially appears in:

Viceconte, P. M., Camoriano, R., Romualdi, G., Ferigo, D., Dafarra, S.,
Traversaro, S., Oriolo, G., Rosasco, L., and Pucci, D. (2022). ADHERENT:
Learning Human-like Trajectory Generators for Whole-body Control of
Humanoid Robots. IEEE Robotics and Automation Letters, 7(2):2779–2786.

Video https://www.youtube.com/watch?v=s7-pML0ojK8
Github ami-iit/paper_viceconte_2021_ral_adherent
Zenodo https://zenodo.org/record/6201915#.YhOT_Bso-8g

The content of Sections 6.3 and 6.4.5 will be submitted for a publication tentatively
titled as:

D’Elia, E., Viceconte, P. M., Rapetti, L., and Pucci, D. Learning Human-like
Trajectory Generators for Humanoid Robot Locomotion with Crouching
Abilities. (To be submitted).

Video https://www.youtube.com/watch?v=Dor1hMqAAmo

https://www.youtube.com/watch?v=Fa0MtfYZiGA
https://www.youtube.com/watch?v=s7-pML0ojK8
https://github.com/ami-iit/paper_viceconte_2021_ral_adherent
ami-iit/paper_viceconte_2021_ral_adherent
https://zenodo.org/record/6201915#.YhOT_Bso-8g
https://www.youtube.com/watch?v=Dor1hMqAAmo

Prologue 6

My personal contribution to this work regards the conceptualization and definition of
the methodology to be followed for the extension of the ADHERENT framework to
deal with crouching motions (Section 6.3). I actively contributed to the validation of
the proposed approach (Section 6.4.5). Besides partially contributing to the software
implementation, I was not the main developer of the software for this work.

Apart from the publications directly relevant to the contributions of this thesis, the
content of Appendix A is under review in:

Dafarra, S., Pattacini, U., Romualdi, G., Rapetti, L., Grieco, R., Darvish, K.,
Milani, G., Valli, E., Sorrentino, I., Viceconte, P. M., Scalzo, A., Traversaro,
S., Sartore, C., Elobaid, M., Guedelha, N., Herron, C., Leonessa, A., Metta,
G., Maggiali, M., and Pucci, D. (2023). iCub3 Avatar System. Science
Robotics (Submitted, Under Review).

Preprint https://arxiv.org/pdf/2203.06972.pdf

My main contribution for this work was the development of the algorithm for the
texture classification task for the finals of the ANA Avatar XPRIZE competition,
included among the validation scenarios of the proposed iCub3 avatar system. Details
on the proposed solution to address the texture classification task are included in
the Appendix A.

https://arxiv.org/pdf/2203.06972.pdf

Part I

Background & Fundamentals

8

Chapter 1

Modeling of Floating-Base
Robots

In this chapter, we focus on the mathematical description of floating-base robots,
considered as systems of multiple interconnected rigid bodies. The kinematic and
dynamical models of floating-base robots introduced in this chapter are essential
for understanding the planners and controllers presented in Part II. Most of the
material presented in this chapter is based on [Siciliano et al., 2008; Featherstone,
2014; Traversaro, 2017; Marsden and Ratiu, 2010; Orin et al., 2013; Kajita et al.,
2001, 2003; Vukobratović and Borovac, 2004; Englsberger et al., 2013, 2015]. More
in detail, the chapter is organized as follows.

We start from the modeling of rigid bodies, in terms of their associated reference
frames, in Section 1.1. Homogeneous transformations to describe rigid body poses
are introduced in Section 1.1.1. Section 1.1.2 deals with different representations
of rigid body velocities defined as 6D vectors. In Section 1.1.3, 6D force vectors
describing the interaction of rigid bodies with the environment are presented.

Using concepts from graph theory, multi-body systems composed of links inter-
connected by joints are then modeled in Section 1.2. The forward and differential
kinematics of the multi-body system are presented in Section 1.2.1. Section 1.2.2 illus-
trates the equations of motion describing the multi-body dynamics. Such dynamics
projected at the robot center of mass is discussed in Section 1.2.3.

Finally, some approximations of the robot dynamics and related concepts widely
used for legged locomotion are introduced in Section 1.3. In particular, the linear
inverted pendulum model is illustrated in Section 1.3.1 and the zero moment point
in Section 1.3.2, while Section 1.3.3 presents the divergent component of motion.

1.1 Modeling of rigid body systems
A body is said to be rigid if it is not subject to internal deformation under the
action of external disturbances, i.e., if the distance between each pair of points of
the body remains constant no matter the external forces or moments acting on it.
Despite being an idealization of how objects behave in the real world, the rigid body
assumption underlies the study of most mechanical systems, robots included.

1.1 Modeling of rigid body systems 9

To describe the motion of a rigid body in space, it is convenient to define a reference
frame A = (oA, [A]) attached to the rigid body, characterized by a point oA called
origin and a 3D orientation frame [A] with an orthonormal basis. This facilitates
the description of rigid body motions both relative to each other and expressed
with respect to the so-called inertial frame I = (oI , [I]): a special reference frame
assumed fixed on the Earth’s surface and therefore, disregarding non-inertial effects
due to the Earth’s motion, not undergoing any acceleration. In the following, we
will often refer to rigid bodies directly in terms of their associated frames.

1.1.1 Rigid body transform

Let us consider two frames: A = (oA, [A]) and B = (oB, [B]). If roA,oB is the 3D
vector connecting oA with oB, pointing towards oB, the position of frame B with
respect to frame A is defined by the coordinates of its origin oB expressed in A, i.e.,

AoB =

roA,oB · xA

roA,oB · yA

roA,oB · zA

 , (1.1.1)

where (·) denotes the scalar product between vectors and xA, yA, zA are the unit
vectors constituting the orthonormal basis of [A].

Rotation matrix

Let us assume coincident origins oA = oB for the frames A and B. If the unit vectors
AxB, AyB and AzB denote the orthonormal basis of [B] expressed in frame A, the
orientation of frame B with respect to frame A is expressed by the rotation matrix
ARB ∈ SO(3) defined as

ARB = [AxB
AyB

AzB]. (1.1.2)
Given a 3D vector Bp whose coordinates are expressed in frame B, the rotation
matrix ARB also allows to express the vector coordinates in frame A as

Ap = ARB
Bp, (1.1.3)

and represents therefore the coordinate transformation from frame B to A.

Homogeneous transformation

Let us relax the assumption of frames A and B having coincident origins. Then, the
coordinate transformation of Bp into frame A is given by

Ap = ARB
Bp+ AoB, (1.1.4)

or, in matrix representation, by[
Ap
1

]
=
[

ARB
AoB

01×3 1

] [
Bp
1

]
. (1.1.5)

If Ap̃ := [Ap⊤1]⊤ ∈ R4 and B p̃ := [Bp⊤1]⊤ ∈ R4 are the homogeneous representations
of Ap and Bp, respectively, then Eq. (1.1.5) assumes the more compact form

Ap̃ = AHB
B p̃, (1.1.6)

1.1 Modeling of rigid body systems 10

where AHB ∈ SE(3) is referred to as homogeneous transformation from B to A.
Besides mapping homogeneous representations of vectors, homogeneous transfor-
mations provide a compact representation of the position-and-orientation, i.e. pose
[Siciliano et al., 2008], of a frame with respect to another.

Given a homogeneous transformation AHB, it can be easily shown, by premulti-
plying both sides of Eq. (1.1.4) with AR⊤

B and exploiting the orthogonality properties
of rotation matrices, that its inverse BHA is equal to

BHA = AH−1
B =

[
BRA

BoA

01×3 1

]
=
[

AR⊤
B −AR⊤

B
AoB

01×3 1

]
. (1.1.7)

1.1.2 Rigid body velocity

The 6D velocity (aka twist) of a frame vA,B ∈ R6 can be represented in several
ways, depending on the frame with respect to which the velocity coordinates are
expressed. Such different representations, also referred to as trivializations, arise
from manipulating the time derivative of the homogeneous transformation AHB, i.e.,

AḢB = d
dt(

AHB) =
[

AṘB
AȯB

01×3 0

]
. (1.1.8)

Before introducing different 6D velocity trivializations, let us express the term
AṘB in Eq. (1.1.8) in terms of the angular velocity of frame B relative to frame A
expressed either in A, i.e., AωA,B, or in B, i.e., BωA,B. Given the rotation matrix
ARB and its derivative AṘB , by differentiation of the SO(3) orthogonality conditions

ARB
AR⊤

B = I3, (1.1.9)
AR⊤

B
ARB = I3, (1.1.10)

we obtain
AṘB

AR⊤
B + ARB

AṘ⊤
B = 03×3, (1.1.11)

AṘ⊤
B

ARB + AR⊤
B

AṘB = 03×3, (1.1.12)
which can be rearranged as

AṘB
AR⊤

B = −
(

AṘB
AR⊤

B

)⊤
, (1.1.13)

AR⊤
B

AṘB = −
(

AR⊤
B

AṘB

)⊤
, (1.1.14)

where both AṘB
AR⊤

B ∈ so(3) and AR⊤
B

AṘB ∈ so(3) are 3D skew-symmetric matrices,
different from each other because of the matrix product being not commutative, that
can be rewritten as applications of the operator (·)∧ on two different 3D vectors, i.e.,

AṘB
AR⊤

B = AωA,B
∧, (1.1.15)

AR⊤
B

AṘB = BωA,B
∧. (1.1.16)

Therefore, it follows that
AṘB = AωA,B

∧ARB = ARB
BωA,B

∧, (1.1.17)

where the time derivative AṘB of the rotation matrix ARB is indeed expressed in
terms of the rotation matrix itself and of the angular velocity of frame B with respect
to frame A expressed either in A, i.e., AωA,B, or in B, i.e., BωA,B.

1.1 Modeling of rigid body systems 11

Left trivialized velocity

Let us focus on Eq. (1.1.8) again. A more compact representation of AḢB can be
obtained by premultiplying it with the inverse of AHB from Eq. (1.1.7), i.e.,

AH−1
B

AḢB =
[

AR⊤
B −AR⊤

B
AoB

01×3 1

] [
AṘB

AȯB

01×3 0

]

=
[

AR⊤
B

AṘB
AR⊤

B
AȯB

01×3 0

]
.

(1.1.18)

By defining BvA,B ∈ R3 so that
BvA,B := AR⊤

B
AȯB, (1.1.19)

and recalling the definition of BωA,B so that Eq. (1.1.16) holds, the left trivialized
velocity of frame B with respect to frame A is defined by

BvA,B :=
[

BvA,B
BωA,B

]
∈ R6, (1.1.20)

where BvA,B and BωA,B are the linear and angular components of BvA,B , respectively.
From Eq. (1.1.20) it follows, by construction, that

BvA,B
∧ = AH−1

B
AḢB ∈ se(3). (1.1.21)

If the frame B is attached to the moving rigid body and the frame A is the inertial
frame, the left trivialized velocity is also called body velocity, since the coordinates
of both its linear and angular components are expressed in the moving frame B.

Right trivialized velocity

Similarly to Eq. (1.1.18), by multiplying AḢB times the inverse of AHB, one has

AḢB
AH−1

B =
[

AṘB
AȯB

01×3 0

] [
AR⊤

B −AR⊤
B

AoB

01×3 1

]

=
[

AṘB
AR⊤

B
AȯB − AṘB

AR⊤
B

AoB

01×3 0

]
.

(1.1.22)

By defining AvA,B ∈ R3 so that
AvA,B := AȯB − AṘB

AR⊤
B

AoB, (1.1.23)

and by recalling the definition of AωA,B so that Eq. (1.1.15) holds, the right trivialized
velocity of frame B with respect to frame A is defined by

AvA,B :=
[

AvA,B
AωA,B

]
∈ R6, (1.1.24)

where AvA,B and AωA,B are the linear and angular components of AvA,B , respectively.
From Eq.(1.1.24) it follows, by construction, that

AvA,B
∧ = AḢB

AH−1
B ∈ se(3). (1.1.25)

1.1 Modeling of rigid body systems 12

oB
A

B

B[A]

oA

Figure 1.1. Representation of the mixed reference frame B[A], shown in dotted lines, having
the same origin oB of frame B and the same orientation [A] of frame A. The orthonormal
x, y and z axes of each frame are depicted in red, green and blue, respectively.

If the frame B is attached to the moving rigid body and the frame A is the inertial
frame, the right trivialized velocity is also called inertial velocity, since the coordinates
of both its linear and angular components are expressed in the inertial frame A.

Notice that, by exploiting Eq. (1.1.15) and the skew-symmetric nature of AωA,B
∧,

the linear part of the right trivialized velocity can alternatively be written as
AvA,B = AȯB + AoB

∧AωA,B. (1.1.26)

Adjoint matrix for velocity transformations

Eq. (1.1.21) and Eq. (1.1.25) directly provide the matrix form of the mapping
between the left and right trivialized velocities, i.e.,

AvA,B
∧ = AHB

BvA,B
∧ AH−1

B . (1.1.27)

The same mapping can also be expressed, using 6D vectors, in the linear form
AvA,B = AXB

BvA,B, (1.1.28)

where AXB is usually called adjoint matrix and defined as follows.
First, recall the rotational equivalence of cross products, stating that, for any

rotation matrix R ∈ SO(3) and vectors a, b ∈ R3, one has that

(Ra)× (Rb) = R(a× b). (1.1.29)

Then, let us prove that the relation

R a∧R⊤ = (Ra)∧ (1.1.30)

holds, by multiplying the right-hand side term by an arbitrary vector c ∈ R3, i.e.,

(Ra)∧c = (Ra)× c (1.1.31a)
= (Ra)× (RR⊤c) (1.1.31b)
= R(a× (R⊤c)) (1.1.31c)
= Ra∧R⊤c, (1.1.31d)

where the passage from Eq. (1.1.31b) to Eq. (1.1.31c) makes use of Eq. (1.1.29).

1.1 Modeling of rigid body systems 13

Finally, let us define the adjoint matrix AXB by developing Eq. (1.1.27), with no
superscripts and subscripts for the sake of readability, as

AvA,B =
(

AvA,B
∧)∨

=
(

AHB
BvA,B

∧ AH−1
B

)∨
(1.1.32a)

=
([

R o
01×3 1

] [
ω∧ v

01×3 0

] [
R⊤ −R⊤o
01×3 1

])∨

(1.1.32b)

=
[
Rω∧R⊤ −Rω∧R⊤o+Rv

01×3 0

]∨

(1.1.32c)

=
[
(Rω)∧ −(Rω)∧o+Rv
01×3 0

]∨

(1.1.32d)

=
[
(Rω)∧ o∧Rω +Rv
01×3 0

]∨

(1.1.32e)

=
[
o∧Rω +Rv

Rω

]
(1.1.32f)

=
[

ARB
AoB

∧ARB

03×3 ARB

] [
BvA,B
BωA,B

]
= AXB

BvA,B, (1.1.32g)

where the passage from Eq. (1.1.32c) to Eq. (1.1.32d) exploits Eq. (1.1.30) and then
the skew-symmetric property a∧b = −b∧a for a, b ∈ R3 is used to get to Eq. (1.1.32e).
The adjoint matrix AXB thus obtained, i.e.,

AXB =
[

ARB
AoB

∧ARB

03×3 ARB

]
∈ R6×6, (1.1.33)

besides mapping left to right trivialized velocities, assumes the more general meaning
of velocity transformation that changes the frame in which the 6D velocity coordinates
are expressed. Given a generic 6D velocity BvC,D of frame D relative to frame C,
expressed in frame B, the adjoint matrix allows indeed to express it in frame A as

AvC,D = AXB
BvC,D. (1.1.34)

Mixed trivialized velocity

The left and right trivialized velocities introduced in Eq. (1.1.20) and Eq. (1.1.24),
respectively, are constructed by serializing the linear component followed by the
angular one. While the angular component corresponds in both representations
to the angular velocity ωA,B, expressed in frame A for the left trivialized velocity
and in frame B for the right trivialized one, in neither case the linear component
corresponds to the time derivative of the position AȯB of frame B relative to frame A
– see Eq. (1.1.19) for the left trivialized velocity and Eq. (1.1.23) for the right one.

On the other side, it is also common in robotics [Siciliano et al., 2008] to represent
the 6D velocity of a rigid body just as[

AȯB
AωA,B

]
, (1.1.35)

a representation referred to as hybrid or mixed in [Traversaro et al., 2017].

1.1 Modeling of rigid body systems 14

This velocity can be easily related to the left and right trivialized velocities by
introducing the so-called mixed reference frame B[A] = (oB, [A]), that is, a frame
having the same origin oB of frame B and the same orientation [A] of frame A – see
Figure 1.1. Since the relative pose between frames B and B[A] is

B[A]HB =
[

ARB 03×1
01×3 1

]
, (1.1.36)

the velocity of frame B relative to A expressed in B[A] is

B[A]vA,B = B[A]XB
BvA,B =

[
ARB 03×3
03×3 ARB

] [
AR⊤

B
AȯB

BωA,B

]
=
[

AȯB
AωA,B

]
. (1.1.37)

Throughout this thesis, we will call B[A]vA,B in Eq. (1.1.37) the mixed velocity
of frame B with respect to A, where "mixed" is because its linear and angular
components relate to the left and right trivialized velocities, respectively.

1.1.3 Force applied to a rigid body

The interaction between a rigid body and the environment can be conveniently
described by 6D force vectors (aka wrenches) f ∈ R6 containing a linear force f ∈ R3,
the resultant of all the forces acting on the body, and a torque µ ∈ R3, resulting
from the moments of these forces with respect to a given point. Given a frame
B = (oB, [B]), the coordinates of a 6D force with respect to B are indicated by

Bf :=
[

Bf

Bµ

]
∈ R6. (1.1.38)

In this notation, B is the frame in which the 6D force vector Bf is represented,
meaning that the torque Bµ is taken with respect to oB and both Bf and Bµ are
expressed in [B]. No indication is given on the point of application of the force, that
is not assumed to be oB.

As in the case of 6D velocities, also for 6D forces a linear transformation can
be defined to change the frame in which the force coordinates are expressed. In
particular, given a 6D force Bf expressed in B, it can be expressed in A via

Af = AX
B

Bf, (1.1.39)

where the force coordinate transformation AX
B, induced by the velocity transfor-

mation in Eq. (1.1.33), is defined as

AX
B = AXB

⊤ =
[

ARB 03×3
AoB

∧ARB
ARB

]
∈ R6×6. (1.1.40)

For instance, given the mixed reference frame B[A] = (oB, [A]), related to the
frame B as in Eq. (1.1.36), the force coordinate transformation B[A]X

B can be used
to obtain the so-called mixed force representation [Traversaro and Saccon, 2019] as

B[A]f = B[A]X
B

Bf =
[

ARB 03×3
03×3 ARB

] [
Bf

Bµ

]
=
[

Af

B[A]µ

]
. (1.1.41)

1.2 Modeling of multi-body system 15

1.2 Modeling of multi-body system
Complex mechanical structures such as humanoid robots are commonly described
as systems of multiple interconnected rigid bodies. Let us consider a robot as a
multi-body mechanical system composed of nl rigid bodies, referred to as links,
connected by nj mechanisms, called joints. Figure 1.2 presents a multi-body system
consisting of nl = 6 links connected by nj = 5 joints.

Each joint connects pairs of links together and limits their relative motion, acting
as a kinematic constraint for the system. The constraint imposed by the joint
depends upon the nature of the joint and its degrees of freedom, as well as on
whether the corresponding connection generates a closed kinematic chain. In this
thesis we only consider:

• revolute joints with a single degree of freedom, i.e., joints providing for pure
rotation along a single axis;

• open kinematic chains, i.e., sequences of interconnected links with no loops.

These assumptions simplify the design and modeling of humanoid robots while
enabling a wide range of anthropomorphic motions for the robot. For more general
formulations that do not take into account the aforementioned assumptions, the
reader is referred to [Featherstone, 2014].

Topology

Let us denote by L = {L1, ..., Lnl
} and J = {J1, ..., Jnj} the sets of all the links

and joints of the multi-body system, respectively. Each link Li can be connected to
multiple joints. Each joint Ji connects its parent link Lpi to its child link Lci , and
therefore is modeled as a pair of connected links Ji = {Lpi , Lci} ∈ J .

The couple (L,J) represents an undirected graph. The links in L are the nodes
of the graph and the joints in J its edges. The graph is assumed to be connected,
meaning that there exists at least one path between each pair of links. For the open
kinematic chains considered in this thesis, the graph is also acyclic, meaning that
the path between any two links is unique.

The connected acyclic undirected graph representing the multi-body system is
also referred to as kinematic tree and is such that the number of links relates to
the number of joints by nl = nj + 1. Figure 1.3 shows the kinematic tree of the
multi-body system in Figure 1.2.

We assume that no link in L has an a priori fixed pose with respect to the inertial
frame I, i.e., the system is free floating. Any link in L can be then selected to be
the base B of the free floating system, that is, the root of the kinematic tree. For
instance, a common choice for humanoid robots is to place the base at the robot
waist [Wensing et al., 2015] or at one of the robot feet [Iwasaki et al., 2012]. The
pose of the base B with respect to the inertial frame I is defined as

IHB =
[

IRB
IpB

01×3 1

]
. (1.2.1)

This transformation varies over time, being the system free floating, and is therefore
pictured as a dashed arrow in Figure 1.2.

1.2 Modeling of multi-body system 16

B ≡ L0I

L1

L2

L3

L4

L5

J4

J2
J3

J1

J5

IHL2

IHB BHp(J1)

p(J1)Hs(J1)

L1 Hp(J2)

p(J2)Hs(J2)

p(J5)

s(J5)≡L5

Figure 1.2. A multi-body system consisting of nl = 6 links {L0, ..., L5} and nj = 5 joints
{J1, ..., J5}. The link L0 is chosen as floating base B. A blue frame Li is attached to
each link Li. Each joint Ji is associated with a pair of green frames, the predecessor
frame p(Ji) and the successor frame s(Ji), chosen to be coincident with the link frame
Li. Please look at J5 for an explicit labeling of the correspondent frames. Solid and
dashed arrows represent constant and time-varying transformations, respectively. The
transforms involved in the computation of the forward kinematics of L2 are illustrated.

0

1
2

3

4 5
4

1
3

2

5

Figure 1.3. The kinematic tree representing the multi-body system in Figure 1.2. Links
numbering (in blue) is such that each link has a higher number than its parent. Joints
are numbered (in green) as their child link.

1.2 Modeling of multi-body system 17

Given a choice for the base B, we further characterize the multi-body system and
its kinematic tree as follows:

• For each link Li ∈ L, the link numbering function ρl : L 7→ 0 ∪ N returns the
number i associated to the link. The base B is associated to ρl(B) = 0. For
the remaining links, any numbering such that each link has a higher number
with respect to its parent works. Figures 1.2 and 1.3 illustrate, in blue, one
possible link numbering for the considered structure.

• For each joint Ji ∈ J , the joint numbering function ρj : J 7→ N returns the
number i associated to the joint. Each joint is associated to the number of its
child link. Figures 1.2 and 1.3 illustrate, in green, the joint numbering induced
by the selected link numbering for the considered structure.

• Each link Li has an associated homonym link frame Li rigidly attached to it.
Similarly, the free floating base B has the frame B attached to it. Link frames
are depicted in blue in Figure 1.2.

• Each joint Ji has two associated frames, the predecessor frame p(Ji) located
on its parent link and the successor frame s(Ji) located on its child link. In
particular, the joint’s successor frame is located over its child link frame. Joint
frames are depicted in green in Figure 1.2. The complete frames’ labeling is
indicated for joint J5 only, for the sake of clarity. Notice how, for each link but
the base, the link frame and the successor frame of its parent joint overlap.

• For each link but the base, i.e., for each link Li ∈ {L/B}, the parent link
function λB : {L/B} 7→ L maps each link to its parent. Referring to Figure 1.2,
for instance, λB(L1) = B while λB(L5) = L4.

• Each link Li is connected to the base B through a unique path πB(Li), defined
as the ordered sequence of links connecting B (excluded) to Li (included) on the
kinematic tree. Referring to Figures 1.2 and 1.3, for instance, πB(L1) = [L1],
πB(L2) = [L1, L2] and πB(L3) = [L1, L3].

Parent-to-child link transform

For each joint Ji, the transformation λB(Li)HLi from its child link Li to its parent
link λB(Li) can be retrieved by making use of the joint’s predecessor and successor
frames, i.e., p(Ji) and s(Ji), respectively. In particular, λB(Li)HLi can be decomposed
into the following series of three transformations

λB(Li)HLi(si) = λB(Li)Hp(Ji)
p(Ji)Hs(Ji)(si) s(Ji)HLi , (1.2.2)

where λB(Li)Hp(Ji) and s(Ji)HLi are constant transformations depending on the
placement of p(Ji) and s(Ji), while p(Ji)Hs(Ji)(si) varies according to the joint
configuration si. Since the joint’s successor frame s(Ji) is assumed to be located
over its child link frame, s(Ji)HLi = I4 and Eq. (1.2.2) simplifies to

λB(Li)HLi(si) = λB(Li)Hp(Ji)
p(Ji)Hs(Ji)(si), (1.2.3)

1.2 Modeling of multi-body system 18

where λB(Li)Hp(Ji) and p(Ji)Hs(Ji)(si) are referred to as tree transform and joint
transform, respectively. Figure 1.2 illustrates the decomposition of λB(Li)HLi into a
constant tree transform followed by a time-varying joint transform for joints J1 and
J2, omitting the dependency of the joint transform on the joint configuration si for
the sake of clarity.

In the specific case of revolute joints considered in this thesis, the joint transform
is obtained through the axis-angle formalism. A revolute joint Ji, characterized by
a unitary-norm axis ia ∈ {x ∈ R3|x⊤x = 1} and an angle si ∈ R, provides for a
rotation of si along ia. Therefore, it induces a joint transform

p(Ji)Hs(Ji)(si) =
[

p(Ji)Rs(Ji)(si) 03×1
01×3 1

]
, (1.2.4)

where, assuming p(Ji)Hs(Ji)(0) = I4 , the rotation is given by the Rodrigues’ formula
p(Ji)Rs(Ji)(si) = I3 + cos(si) ia

∧ + sin(si) (ia
∧)2. (1.2.5)

Parent-to-child link velocity

For each joint Ji, the relative velocity of its child link Li with respect to its parent
link λB(Li) is retrieved by differentiating Eq. (1.2.3) as

d
dt
(

λB(Li)HLi(si)
)

= ∂

∂si

(
λB(Li)HLi(si)

)
ṡi. (1.2.6)

Let us introduce a frame placeholder F standing for Li, λB(Li) and Li[λB(Li)] in
the left-trivialized, right-trivialized and mixed velocity representations, respectively.
Expressed as a 6D velocity, Eq. (1.2.6) writes then as

F vλB(Li),Li
= FSλB(Li),Li

(si) ṡi (1.2.7)

where the joint motion subspace vector FSλB(Li),Li
(si), in the different representa-

tions, is given by

LiSλB(Li),Li
(si) =

(
λB(Li)H

−1
Li

(si)
∂

∂si

(
λB(Li)HLi(si)

))∨
, (1.2.8)

λB(Li)SλB(Li),Li
(si) =

(
∂

∂si

(
λB(Li)HLi(si)

)
λB(Li)H

−1
Li

(si)
)∨

, (1.2.9)

Li[λB(Li)]SλB(Li),Li
(si) =

 ∂
∂si

(
λB(Li)oLi(si)

)
(

∂
∂si

(
λB(Li)RLi(si)

) (
λB(Li)RLi(si)

)⊤
)∨

 . (1.2.10)

In the specific case of revolute joints considered in this thesis, it can be shown
that the left-trivialized, right-trivialized and mixed joint motion subspaces coincide,
are constant and are given by [Traversaro, 2017, Lemma 3.6]

LiSλB(Li),Li
= λB(Li)SλB(Li),Li

= Li[λB(Li)]SλB(Li),Li
=
[
03×1

ia

]
= SλB(Li),Li

. (1.2.11)

In this case, the 6D relative velocity of the child Li of joint Ji with respect to its
parent λB(Li), independently from the chosen representation, is therefore given by

vλB(Li),Li
= SλB(Li),Li

ṡi. (1.2.12)

1.2 Modeling of multi-body system 19

1.2.1 Multi-body kinematics

Given the definitions of the parent-to-child link transform λB(Li)HLi in Eq. (1.2.3)
and the parent-to-child link velocity vλB(Li),Li

in Eq. (1.2.12), it is possible to
examine the kinematics of the entire floating-base multi-body system.

Let us define first the floating-base system configuration q as

q :=
(

IHB, s
)
∈ SE(3)× Rn, (1.2.13)

where n denotes the number of degrees of freedom of the system that matches the
number of joints, i.e., n = nj , under the assumption of revolute joints only. The
system configuration is fully determined by the base pose IHB ∈ SE(3) and the
joint positions s ∈ Rn, also called shape.

Although the derivative of the system configuration is

q̇ :=
(

IḢB, ṡ
)
, (1.2.14)

where ṡ ∈ Rn are the joint velocities, it is often more convenient – as in the case of a
single rigid body – to represent the system velocity as a column vector. Selecting the
left-trivialized velocity representation for the base, we introduce the left-trivialized
floating-base system velocity as

Bν :=
[

BvI,B

ṡ

]
=

BvI,B
BωI,B

ṡ

 =

IR⊤

B
I ȯB(

IR⊤
B

IṘB

)∨

ṡ

 ∈ R6+n. (1.2.15)

Adopting instead the mixed velocity representation for the base, we introduce
the mixed system velocity B[I]ν as

B[I]ν :=
[

B[I]vI,B

ṡ

]
=

 I ȯB
IωI,B

ṡ

 ∈ R6+n, (1.2.16)

and the alternative definition of the free-floating system configuration q in the form

q :=
(

IoB,
IRB, s

)
∈ R3 × SO(3)× Rn. (1.2.17)

Link transform

The pose of a link Li with respect to the inertial frame I is a function of the
floating-base system configuration q. Given the unique path πB(Li) connecting Li

to the base B, the pose of Li is defined as

IHLi(q) = IHB
BHLi(s) = IHB

∏
Lk∈πB(Li)

λB(Lk)HLk
(sk). (1.2.18)

In other words, the pose of Li can be reconstructed by concatenating the base trans-
form IHB with the ordered sequence of parent-to-child link transforms λB(Lk)HLk

(sk)
of all the links Lk ∈ πB(Li), defined as in Eq. (1.2.3).

1.2 Modeling of multi-body system 20

We refer to Eq. (1.2.18) as the forward kinematics function Π. Given the floating-base
system configuration q, Π returns the absolute pose of a link, i.e.,

Π : SE(3)× Rn 7→ SE(3), Π(q) = IHLi(q). (1.2.19)

As an example, Figure 1.2 shows the forward kinematics for the pose of L2, computed
as IHL2(q) = IHB

BHp(J1)
p(J1)Hs(J1)(s1) L1Hp(J2)

p(J2)Hs(J2)(s2).

Link velocity

Assuming one-degree-of-freedom revolute joints, the velocity of link Li with respect
to the inertial frame is a function of the floating-base system velocity ν. In the
following, we will express 6D velocities using the left-trivialized representation,
i.e., we will relate the link velocity LivI,Li to the system velocity Bν. However,
similar results hold if the velocities are expressed in different representations. Let us
decompose the velocity of link Li as

LivI,Li = LivI,B + LivB,Li (1.2.20a)
= LiXB

BvI,B + LivB,Li , (1.2.20b)

where the velocity transformation in Eq. (1.1.34) is used to express the left-trivialized
base velocity BvI,B in the frame Li. By further developing the left-trivialized velocity
LivB,Li of Li with respect to B as sum of the parent-to-child link velocities of all
the links Lk ∈ πB(Li), we obtain

LivI,Li = LiXB
BvI,B +

∑
Lk∈πB(Li)

LivλB(Lk),Lk
(1.2.21a)

= LiXB
BvI,B +

∑
Lk∈πB(Li)

LiXLk

LkvλB(Lk),Lk
(1.2.21b)

= LiXB
BvI,B +

∑
Lk∈πB(Li)

LiXLk
SλB(Lk),Lk

ṡk, (1.2.21c)

where the parent-to-child link velocity LkvλB(Lk),Lk
is expressed in terms of the joint

motion subspace vector (constant for revolute joints) as introduced in Eq. (1.2.12).
In matrix form, LivI,Li can be written as

LivI,Li =
[

LiXB
LiJ ṡ

B,Li

] [BvI,B

ṡ

]
= LiJB

I,Li

Bν, (1.2.22)

where LiJB
I,Li
∈ R6×(6+n) is the left-trivialized Jacobian of link Li and LiJ ṡ

B,Li
∈ R6×n

is such that its k-th column is

(LiJ ṡ
B,Li

)(:,k) =
{

LiXLk
SλB(Lk),Lk

if Lk ∈ πB(Li),
06 otherwise.

(1.2.23)

By applying Eq. (1.1.37) to Eq. (1.2.22), the velocity of link Li can be expressed in
mixed representation. In particular, you can relate the mixed link velocity Li[I]vI,Li

1.2 Modeling of multi-body system 21

to the mixed system velocity B[I]ν as

Li[I]vI,Li = Li[I]XLi

[
LiXB

LiJ ṡ
B,Li

] [BXB[I] 06×n

0n×6 In

] [
B[I]vI,B

ṡ

]
(1.2.24a)

= Li[I]J
B[I]
I,Li

B[I]ν, (1.2.24b)

where Li[I]J
B[I]
I,Li

is the mixed Jacobian of link Li.

1.2.2 Multi-body dynamics

Let us assume a mixed velocity representation and simplify the notation by referring
to the mixed system velocity B[I]ν simply as ν. Let us also assume that the interaction
between the floating-base system and the environment takes place by exchanging nc

distinct 6D forces, with the k-th external 6D force fk applied to the contact frame
Ck. In the simplified notation assuming mixed representations, fk actually stands
for the mixed force Ck[I]fk measured in the frame having the same origin of Ck and
oriented as I - see Eq. (1.1.41).

Since the configuration space is not a vector space, rather than deriving the free-
floating system dynamics through the classical Euler-Lagrange equations [Wieber
et al., 2016] we employ the Euler-Poincaré formalism [Marsden and Ratiu, 2010, Sec-
tion 13.5]. Such a derivation, which is omitted here but can be found in [Traversaro,
2017, Section 3.5,Theorem 3.2], leads to the following equations of motion

M(q)ν̇ + C(q, ν)ν +G(q) =
[
06×n

In

]
τs +

nc∑
k=1

J⊤
Ck

fk, (1.2.25)

where M ∈ R(n+6)×(n+6) is the mass matrix, C ∈ R(n+6)×(n+6) accounts for Coriolis
and centrifugal effects, and G ∈ Rn+6 contains the gravity term. The vector τs ∈ Rn

contains the internal actuation torques. The Jacobian JCk
, standing for Ck[I]J

B[I]
I,Ck

in
the simplified notation assuming mixed representations, is the mixed Jacobian of
the contact frame Ck – see Eq. (1.2.24).

By stacking the Jacobians and contact forces, Eq. (1.2.25) can be rearranged as

M(q)ν̇ + C(q, ν)ν +G(q) =
[
06×n

In

]
τs + J⊤

C f, (1.2.26)

where

JC(q) =

JC1(q)
...

JCnc
(q)

 , f =

f1
...

fnc ,

 . (1.2.27)

Moreover, a set of holonomic constraints is assumed to act on the system in
combination with the nc rigid contacts. In particular, the k-th link in contact with
the environment (e.g., the support foot of a humanoid robot interacting with the
ground) is required to remain fixed as long as the contact is active. In Pfaffian form,
this translates into a set of holonomic constraints prescribing 6D velocities equal to
zero for the links in contact, i.e.,

JCk
(q)ν = 0. (1.2.28)

1.2 Modeling of multi-body system 22

Notice that Eq. (1.2.28) can be differentiated as

J̇Ck
ν + JCk

ν̇ = 0, (1.2.29)

obtaining a dependency of the constraint on ν̇. Taken together, Eq. (1.2.26) and
Eq. (1.2.29) provide the dynamical equations describing the motion of a floating-base
system that instantiates rigid contacts with the environment.

1.2.3 Centroidal dynamics

Let us denote the mass of each link Li of the multi-body system with mi ∈ R. The
link center of mass and its 3D inertia matrix, both expressed in Li, are denoted
by Lici ∈ R3 and LiIi ∈ R3×3, respectively. Then, the 6D inertia matrix of link Li,
expressed in Li, is defined as [Traversaro, 2017, Eq. (2.67)]

LiMLi :=
[

miI3 −(mi
Lici)∧

(mi
Lici)∧ LiIi

]
, (1.2.30)

and is a constant matrix. Moreover, the 6D momentum of link Li with respect to I,
expressed in the base frame B, is defined as

BhI,Li := BX
Li

LiMLi
LivI,Li , (1.2.31)

where BX
Li is the force coordinate transformation from Eq. (1.1.40).

If we denote with m the total mass of the multi-body system, i.e.,

m :=
∑

i

mi, (1.2.32)

then the system center of mass xCoM, expressed in the inertial frame I, is defined as
the weighted average of the centers of mass of all the links

xCoM := IHB

∑
i

mi

m
BHLi

Lici. (1.2.33)

Let us introduce the frame Ḡ, having its origin located on xCoM and oriented as
the inertial frame I. The centroidal momentum Ḡh ∈ R6 is then given by the sum
of all the link 6D momenta, projected on Ḡ

Ḡh =
[

Ḡh
p

Ḡh
ω

]
= ḠX

B
∑

i

BhI,Li (1.2.34a)

= ḠX
B
∑

i

BX
Li

LiMLi
LivI,Li (1.2.34b)

= JCMMν, (1.2.34c)

where the passage from Eq. (1.2.34b) to Eq. (1.2.34c) makes the dependency of Ḡh
on the robot velocity ν explicit by the use of Eq. (1.2.22) and JCMM ∈ R(6×n) is the
Centroidal Momentum Matrix (CMM) [Orin and Goswami, 2008], while Ḡh

p ∈ R3

and Ḡh
ω ∈ R3 are the linear and angular momentum, respectively. In particular, the

linear component of the centroidal momentum Ḡh
p is related to the center of mass

velocity ẋCoM via
Ḡh

p = m ẋCoM. (1.2.35)

1.3 Simplified models 23

mg

pf

I

xz
CoM

xCoM

xp

Figure 1.4. Representation of the Linear Inverted Pendulum (LIP) model. The external
force pf and the gravity mg acting on the system are highlighted in green and red,
respectively. The CoM position xCoM is assumed to belong to the yellow plane at
constant height x̄z

CoM.

The rate of change of the centroidal momentum balances the external forces acting on
the multi-body system [Orin et al., 2013; Wensing and Orin, 2016]. This consideration
leads to the formulation of the centroidal momentum dynamics, or simply centroidal
dynamics, which takes the form

Ḡḣ =
nc∑

k=1
ḠX

Ck Ck
fk +mḡ (1.2.36a)

=
nc∑

k=1

[IRCk
03×3(

IoCk
− xCoM

)∧ IRCk
IRCk

]
Ck

fk +mḡ, (1.2.36b)

where the adjoint matrix ḠX
Ck transforms the external force Ck

fk from the application
frame Ck to Ḡ and ḡ = [0, 0,−g, 0, 0, 0]⊤ denotes the 6D gravity acceleration vector.

1.3 Simplified models
To lower the computational burden arising from a complex dynamics modeling
that relies on the accurate knowledge of many parameters, a series of simplified
models have been proposed in the legged locomotion literature. This section briefly
introduces some of the most widely employed ones, along with related concepts of
particular relevance for bipedal locomotion.

1.3.1 Linear inverted pendulum

Consider a biped supporting its body on one leg. The Linear Inverted Pendulum
(LIP) model [Kajita et al., 2001, 2003] allows to approximate its dynamics by
considering an inverted pendulum with negligible inertia, having a point mass on
its top edge and making a rigid contact with the ground at its bottom edge – see
Figure 1.4. The point mass represents the robot center of mass, connected through
a massless leg to a point foot in contact with the ground.

1.3 Simplified models 24

Let xCoM ∈ R3 and xp ∈ R3 denote the position of the robot CoM and of the contact
point with respect to the inertial frame I, respectively. Assume that:

1. A single external force pf ∈ R3 acts on the system, applied in xp and parallel
to the pendulum.

2. The gravity vector g acts on the mass point m along the negative z axis of I.

3. The CoM height remains constant, i.e., e⊤
3 (xp − xCoM) = x̄z

CoM, which also
implies that e⊤

3 ẋCoM = 0 and e⊤
3 ẍCoM = 0 hold.

4. The centroidal angular momentum is constantly zero, i.e., Ḡh
ω = 0, implying

that also Ḡḣ
ω = 0 holds.

Then, the centroidal dynamics in Eq. (1.2.36) applied to the LIP model becomes

mẍCoM = pf +mg, (1.3.1a)
(xp − xCoM)∧

pf = 0, (1.3.1b)

where Eq. (1.3.1b) encodes the constant angular momentum constraint and, along
with hypothesis 3, allows to write the components of pf as

pfx = mω2e⊤
1 (xCoM − xp), (1.3.2a)

pfy = mω2e⊤
2 (xCoM − xp), (1.3.2b)

pfz = −m|g|, (1.3.2c)

where ω =
√

|g|
x̄z

CoM
is the time constant of the LIP model. By replacing Eq. (1.3.2)

into Eq. (1.3.1), we obtain

ẍCoM =

 e⊤
1
e⊤

2
01×3

ω2(xCoM − xp). (1.3.3)

Being this dynamics different from zero in the planar coordinates only, it is convenient
to rearrange it by considering xp ∈ R2 and defining xLIP ∈ R2 as

xLIP =
[
xx

LIP
xy

LIP

]
=
[
e⊤

1
e⊤

2

]
xCoM. (1.3.4)

We then obtain the LIP dynamics equation

ẍLIP = ω2(xLIP − xp), (1.3.5)

a second-order linear dynamics that is completely decoupled in the x and y coor-
dinates. Focusing on the xx

LIP component – with the same considerations holding
for xy

LIP – we can define x1 = xx
LIP and x2 = ẋx

LIP, and express Eq. (1.3.5) in the
state-space representation as[

ẋ1
ẋ2

]
=
[

0 1
ω2 0

] [
x1
x2

]
+
[

0
ω2

]
xx

p = A

[
x1
x2

]
+Bxx

p . (1.3.6)

1.3 Simplified models 25

Being the eigenvalues of A equal to λ1,2 = ±ω, the single equilibrium of the system[
xx

LIPe

xy
LIPe

]
=
[
xx

p

0

]
(1.3.7)

is unstable. The LIP model has also been extended to the case of a finite-sized
foot [Kajita et al., 2001; Koolen et al., 2012]. In this case, xp corresponds to the
position xZMP of the Zero Moment Point (ZMP) [Vukobratović and Borovac, 2004]
introduced in the next section.

1.3.2 Zero moment point

Consider a rigid body, with a frame B = (oB, [B]) attached, making contact with
the external environment through a contact domain Ω ∈ R3. The contact domain Ω
is associated to:

• A continuous force distribution ρ : Ω 7→ R3, that associates to each point
Bx ∈ Ω the force ρ(Bx);

• A continuous torque distribution σoB : Ω 7→ R3, that associates to each point
Bx ∈ Ω the torque σoB (Bx) computed with respect to the origin oB of B as

σoB (Bx) = Bx× ρ(Bx) (1.3.8)

The equivalent left-trivialized contact 6D force Bf acting on the body is then obtained
by integrating the force and the torque contributions over the contact domain [Caron
et al., 2015]

Bf =
[

Bf

Bµ

]
=
[∫

Ω ρ dΩ∫
Ω σoB dΩ

]
. (1.3.9)

Consider the mixed frame F [B] having its origin in oF and oriented as B. The Zero
Moment Point (ZMP) xZMP is defined as the point oF ∈ Ω (if it exists) such that

e⊤
1 F [B]µ = e⊤

2 F [B]µ = 0, (1.3.10)

namely, the point oF ∈ Ω such that the horizontal component of F [B]µ is equal to
zero. If it exists, the local ZMP, i.e., the ZMP expressed in the body frame B, is
given by [Vukobratović and Borovac, 2004]

BxZMP =

−Bµy

Bfz

Bµx

Bfz

 , (1.3.11)

where the superscripts extract specific vector coordinates.
The ZMP is used to describe whether the body can tilt. If oF ∈ Ω, the contact

domain Ω does not change, and therefore the contact dynamic balance is ensured.
If oF /∈ Ω, the rigid body is instead free to rotate around one of its edges. This
non-tilting condition is known as ZMP condition [Arakawa and Fukuda, 1997] or
ZMP stability criterion [Li et al., 1993] and has been widely used along with the

1.3 Simplified models 26

LIP model as a bipedal stability criterion [Kajita et al., 2003; Hirai et al., 1998]. In
particular, Eq. (1.3.5) combined with the ZMP definition leads to the CoM dynamics

ẍLIP = ω2(xLIP − IHB
BxZMP). (1.3.12)

In the presence of a floating-base system, more links can be in contact with the
environment. If the contact domains of the nc links L in contact belong to the same
plane, we define the global ZMP as

IxZMPg =
nc∑

k=1

IHLk

LkxZMPk

Lk
fz

k

fz
(1.3.13)

where fz is the sum of all the contact forces acting along the z axis

fz =
nc∑

k=1
Lk
fz

k (1.3.14)

Let us recall that the global ZMP is defined in the convex hull1 of all the points
in the contact domains, also referred to as support polygon. In this case, the ZMP
stability criterion requires the ZMP to remain strictly inside the support polygon.

1.3.3 Divergent component of motion

Consider a multi-body system of total mass m making nc contacts with the envi-
ronment. Let Ḡ := (xCoM, [I]) denote a frame having its origin in the CoM of the
multi-body system and oriented as the inertial frame I. The CoM dynamics is

ẍCoM = 1
m

(mg + Ḡf), (1.3.15)

where g is the gravity vector and Ḡf represents the sum of all the external forces
acting on the system, expressed in Ḡ.

The three-dimensional Divergent Component of Motion (DCM) [Englsberger
et al., 2011, 2013, 2015], denoted by ξ, is defined as

ξ = xCoM + bẋCoM, (1.3.16)

where b > 0 is the time-constant of the DCM dynamics. Therefore, the DCM is
defined as a point that is located at a certain distance from of the CoM, along the
CoM velocity direction. Eq. (1.3.16) can be rearranged to derive the CoM dynamics

ẋCoM = −1
b

(xCoM − ξ) , (1.3.17)

showing that the CoM has a stable first-order dynamics, i.e., it follows the DCM.
By differentiating Eq. (1.3.16) and inserting Eq. (1.3.15) and Eq. (1.3.17), the

DCM dynamics can be written as

ξ̇ = ẋCoM + bẍCoM (1.3.18a)

= −1
b

(xCoM − ξ) + b

m
(mg + Ḡf) . (1.3.18b)

1The convex hull of a set of points is the smallest convex region that contains all the points.

1.3 Simplified models 27

Since Ḡf directly influences the DCM dynamics, one can design external forces that
are appropriate for a stable locomotion of the multi-body system. To simplify the
design, the external forces can be defined through a force-to-point transform

Ḡf = α(xCoM − xeCMP), (1.3.19)

where α > 0 is a constant and xeCMP is the so-called Enhanced Centroidal Moment
Pivot (eCMP) point [Englsberger et al., 2015]. Replacing Ḡf from Eq. (1.3.19) into
Eq. (1.3.18), the DCM dynamics writes as

ξ̇ =
(
bα

m
− 1
b

)
xCoM + 1

b
ξ − bα

m
xeCMP + bg, (1.3.20)

showing that xCoM and ξ are in general coupled. However, by choosing α = m
b2 the

DCM dynamics becomes decoupled from the CoM dynamics, in the form

ξ̇ = 1
b
ξ − 1

b
xeCMP + bg. (1.3.21)

Let us further simplify the DCM dynamics by defining the Virtual Repellent Point
(VRP) [Englsberger et al., 2015] as

xVRP = xeCMP + b2g, (1.3.22)

and noticing that the VRP differs from the eCMP only in the z component, by a
vertical displacement b2|g|. Using the VRP, the DCM dynamics simplifies as

ξ̇ = 1
b

(ξ − xVRP) , (1.3.23)

showing that the DCM has an unstable first-order dynamics, i.e., it is "pushed" away
by the VRP on a straight line (while the CoM is following it).

The 3D-DCM dynamics equations hold for general free-floating robot models.
However, let us consider the case in which the multi-body system is approximated
by the LIP model and b is chosen as the inverse of the LIP model time constant ω,
i.e., b = 1/ω. If ξLIP ∈ R2 are the planar coordinates of the DCM, i.e.,

ξLIP =
[
e⊤

1
e⊤

2

]
ξ, (1.3.24)

it is possible to prove that the ground projection of the VRP, by definition equal
to the ground projection of the eCMP, coincides with the ZMP [Romualdi, 2022,
Section 4.4.1]. Therefore, the planar DCM and CoM dynamics, under the LIP model
assumptions, take the form

ξ̇LIP = ω (ξLIP − xZMP) , (1.3.25)

ẋLIP = −ω (xLIP − ξLIP) . (1.3.26)

Under the LIP assumptions, the DCM dynamics corresponds therefore to the
unstable part of the LIP dynamics highlighted in Eq. (1.3.6). In this case, the DCM
is equivalent to the Capture Point [Pratt et al., 2006, 2012; Koolen et al., 2012] and
has also been referred to as Extrapolated Center of Mass (xCoM) [Hof, 2008].

28

Chapter 2

Robot Learning

In the previous chapter, we described how to derive kinematic and dynamical models
of floating-base robots. This chapter introduces the basics of reinforcement learning
and supervised deep learning, two subfields of machine learning that we exploit
to design the controller in Chapter 4 and the planner in Chapter 5, respectively.
For more in-depth coverage of these topics, the reader is referred to the works on
which most of the material presented in this chapter is based, i.e., [Bishop, 2006;
Goodfellow et al., 2016; Rumelhart et al., 1986; Sutton and Barto, 2018; Schulman
et al., 2015, 2017]. More in detail, the chapter is organized as follows.

We address supervised deep learning in Section 2.1, starting from the descrip-
tion of deep feedforward neural networks in Section 2.1.1. Gradient-based training
algorithms for feedforward neural networks are reviewed in Section 2.1.2. The back-
propagation algorithm, enabling an efficient computation of the gradients required
by the gradient-based training algorithms, is illustrated in Section 2.1.3.

The basics of reinforcement learning are covered in Section 2.2. The key concepts
characterizing the reinforcement learning setting are introduced in Section 2.2.1. Its
formalization using Markov decision processes is tackled in Section 2.2.2. Finally,
the policy-gradient algorithms suitable for reinforcement learning agents operating
in high-dimensional continuous action spaces are detailed in Section 2.2.3.

2.1 Supervised deep learning
Within the broad field of machine learning, aiming at developing algorithms that
improve their performances at given tasks by learning from experience or data, the
nested hierarchical models studied in deep learning have seen a tremendous growth
in popularity and usefulness in response to the recent noticeable increase of available
data and computational power.

As for any other machine learning algorithm, developing a deep learning algorithm
involves the design of a certain model, the definition of a loss function measuring
the predictive performances of the model, and the implementation of a training
algorithm to minimize the selected loss function.

In this brief introduction, we present a combination of model family, loss function
and training algorithm that is suitable for tackling supervised deep learning, and in
particular the multiple regression task of interest for this thesis.

2.1 Supervised deep learning 29

w1

w2

wn

b

x1

x2

xn

∑
h(·) a

...
...

ϕ(·)

Figure 2.1. Schematic representation of a neuron, the computational unit ϕ(·) enclosed by
the dashed line mapping a vector input x into a scalar activation a. Within a neuron, a
linear combination of the input components xi with the neuron weights wi as coefficients,
added to the bias b, is mapped to the activation a by the nonlinear activation function
h(·). The trainable parameters, i.e., the weights w and the bias b, are highlighted in red.

2.1.1 Feedforward neural networks

Feedforward neural networks – the class of machine learning models at the core of
deep learning – can be thought of as function approximators designed to generalize
to previously unseen data.

Such models are called neural since they are loosely inspired by neuroscience,
meaning that their composing units can be interpreted as playing a role analogous
to the role of a neuron in a biological system. They are known as networks because
they are typically structured as a sequence of multiple groups of neurons, referred to
as layers, through which the input information flows in order to produce the desired
output. Finally, they are termed feedforward since the flow of information through
the network is one-directional, from the input to the output, with no feedback
interconnections among neurons.

Artificial neuron

The elementary unit composing feedforward neural networks is an evolution of the
perceptron, often referred to as artificial neuron [Rosenblatt, 1958; Minsky and Papert,
1969]. Given an input vector x ∈ Rn, a neuron is defined as the computational unit
ϕ : Rn 7→ R returning the scalar output or activation a ∈ R given by

a = ϕ(x) = h
(
w⊤x+ b

)
= h

(
n∑

i=1
wixi + b

)
, (2.1.1)

where w ∈ Rn and b ∈ R are the weights and bias, respectively, while h : R 7→ R
is the activation function. The neuron weights w and bias b control the affine
transformation of the input x, whose result is then mapped to the output y by
the nonlinear activation function h. While the weights w and bias b constitute
trainable parameters, the activation function h, once selected, usually remains fixed.
Figure 2.1 illustrates a schematic representation of a neuron.

2.1 Supervised deep learning 30

−6 −4 −2 2 4 6

−1

−0.5

0.5

1
σ(z)
tanh(z)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
h(z) = z

ReLU(z)
ELU(z)

Figure 2.2. Common activation functions. On the left, the logistic sigmoid σ(z) compared
to the hyperbolic tangent tanh(z). On the right, the linear unit compared to the rectified
linear unit ReLU(z) and the exponential linear unit ELU(z) (with α = 1). The three
activation functions coincide for non-negative inputs.

Activation function

The activation function embedded in the artificial neuron – see Eq. (2.1.1) – enables
it to perform nonlinear transformations, playing therefore a crucial role in the
function approximation capabilities of feedforward neural networks. Many functions,
recently also trainable ones [Scardapane et al., 2019; Apicella et al., 2021], have been
proposed in the literature as nonlinear activation functions [Dubey et al., 2022].

For the purpose of this thesis, let us consider fixed (i.e., non-trainable) activation
functions. If z = w⊤x+b is the affine transformation of the input x performed within
the neuron, common choices of activation functions h(z) are the logistic sigmoid

σ(z) = 1
1 + e−z

, (2.1.2)

the hyperbolic tangent

tanh(z) = e2z − 1
e2z + 1 , (2.1.3)

and the rectified linear unit or ReLU [Nair and Hinton, 2010]

ReLU(z) =
{
z if z > 0,
0 otherwise,

(2.1.4)

a piecewise linear function that coincides for positive arguments with the dummy
linear unit defined by the identity function

h(z) = z. (2.1.5)

Such activation functions are shown in Figure 2.2, along with the so-called exponential
linear unit or ELU [Clevert et al., 2016], a generalization of ReLU defined as

ELU(z) =
{
z if z > 0,
α (ez − 1) otherwise,

(2.1.6)

where the default value for the α hyperparameter is α = 1.

2.1 Supervised deep learning 31

x1

xn

y1

ym

w1
11

w1
n1

w1
1r

w1
nr

w2
11

w2
r1

w2
1p

w2
rp

w3
11

w3
p1

w3
1m

w3
pm

layer 2
layer 1

layer 3

ϕ1
1

ϕ1
r

ϕ3
m

ϕ2
1

ϕ3
1

ϕ2
p

Figure 2.3. Graph representation of a three-layer feedforward neural network mapping the
input x ∈ Rn to the output y ∈ Rm. Each node in the graph is a neuron ϕ(·). Weights w
are associated to the graph edges. Groups of neurons belonging to the same layer are
highlighted in blue.

Notice that all the aforementioned activation functions but ReLU are differentiable, a
key property for the exploitation of the gradient-based learning algorithms described
in Section 2.1.2. In practice, the non-differentiability of ReLU, limited to the singular
point z = 0, can be however safely disregarded [Goodfellow et al., 2016].

Multi-layer perceptron

Multiple neurons, organized in groups concatenated sequentially, compose a feed-
forward neural network, also referred to as multi-layer perceptron. A multi-layer
perceptron approximates a function f : Rn 7→ Rm mapping its input x ∈ Rn into
the output y ∈ Rm. The groups of neurons chained one after the other in the neural
network structure are known as layers. The number of neurons in each layer defines
the width of that layer, while the number of sequentially-chained layers defines the
depth of the neural network.

Figure 2.3 provides a schematic representation of a generic three-layer feedforward
neural network in the form of a graph. In this example, the three subsequent layers
have a width of r, p and m, respectively. They are therefore composed of r, p and
m neurons, respectively, with r ̸= p ̸= m. All the layers but the last one are called
hidden layers, the last one is referred to as output layer.

The i-th neuron of the l-th layer is represented in the graph by the node ϕl
i.

This is the very same computational unit described in Eq. (2.1.1) and depicted in
Figure 2.1, characterized by a bias bl

i ∈ R, an activation hl
i : R 7→ R and a set of

2.1 Supervised deep learning 32

weights wl
i ∈ Rd, where d is the dimension of the neuron input. Given the input

xl
i ∈ Rd, ϕl

i returns the scalar activation al
i ∈ R.

Since the network structure is such that the activation al
i of the i-th neuron

in the l-th layer acts as a component of the input xl+1
j for the j-th neuron in the

(l+1)-th layer, the graph representation in Figure 2.3 associates the neuron weights
w to the edges connecting neurons in subsequent layers. In particular, the weight
wl

ij is associated to the graph edge connecting the i-th neuron of the (l-1)-th layer
to the j-th neuron of the l-th layer.

For the sake of simplicity, let us assume that the same activation function h is
used for all the neurons in the hidden layers. Moreover, let us consider an output
layer with the linear activation function in Eq. (2.1.5). The network output y ∈ Rm

is obtained by combining the operations performed by the neurons at the different
network layers. In particular, the k-th output component yk for the network in
Figure 2.3 is given by

yk = a3
k =

p∑
j=1

w3
jk a

2
j + b3

k (2.1.7a)

=
p∑

j=1
w3

jk h

(
r∑

i=1
w2

ij a
1
i + b2

j

)
+ b3

k (2.1.7b)

=
p∑

j=1
w3

jk h

 r∑
i=1

w2
ij h

 n∑
q=1

w1
qi xq + b1

i

+ b2
j

+ b3
k, (2.1.7c)

where xq is the q-th component of the network input x ∈ Rn. Let us define the
weights and biases of each layer in matrix form as

W1 =

w1

11 · · · w1
n1

...
. . .

...
w1

1r · · · w1
nr

 ∈ Rr×n, b1 =

b1

1
...
b1

r

 ∈ Rr, (2.1.8)

W2 =

w2

11 · · · w2
r1

...
. . .

...
w2

1p · · · w2
rp

 ∈ Rp×r, b2 =

b2

1
...
b2

p

 ∈ Rp, (2.1.9)

W3 =

w3

11 · · · w3
p1

...
. . .

...
w3

1m · · · w3
pm

 ∈ Rm×p, b3 =

b3

1
...
b3

m

 ∈ Rm. (2.1.10)

With an abuse of notation for the activation function h, assumed to be applied
component-wise on its argument, Eq. (2.1.7) can be rearranged in matrix form as

y = W3 h (W2 h (W1 x+ b1) + b2) + b3, (2.1.11)

that makes clear the three-stages computation through which the output y ∈ Rm is
retrieved in the feedforward neural network in Figure 2.3.

2.1 Supervised deep learning 33

Notice that the network architecture in Figure 2.3 is fully-connected or dense, meaning
that all the neurons of the l-th layer are connected to all the neurons of the (l+1)-th
layer. Therefore, all the parameters in the set θ = {W1 ∈ Rr×n,W2 ∈ Rp×r,W3 ∈
Rm×p, b1 ∈ Rr, b2 ∈ Rp, b3 ∈ Rm} represent trainable parameters for the network.
Although a wide variety of extensions to the fully-connected architecture has been
proposed in the literature, we limit this brief introduction to the fully-connected
neural networks of interest for this thesis.

Universal approximation theorem

The function approximation capabilities of feedforward neural networks rely upon
the universal approximation theorem [Cybenko, 1989; Hornik et al., 1989].

The theorem states that a feedforward neural network with an output layer
characterized by a linear activation such as the one in Eq. (2.1.5) and a hidden layer
with a nonlinear activation of the kind of the logistic sigmoid in Eq. (2.1.2) is able to
approximate any continuous function1 from one finite-dimensional space to another,
provided that the hidden layer is composed of enough neurons. The theorem has
been extended to a broader class of activation functions, including the widely used
ReLU in Eq. (2.1.4) [Leshno et al., 1993].

In other words, the theorem states that no matter the continuous function to
be approximated there exists a large-enough two-layer feedforward neural network
capable of representing it. However, this does not guarantee that the training
algorithm – see Section 2.1.2 – will be able to find the actual values of the network
trainable parameters ensuring the desired approximation accuracy. Moreover, no
indications are given on the actual width of the hidden layer, that could also be
unfeasibly large for the desired function. In practice, it could be more convenient to
represent the same function by deeper architectures – such as the three-layer neural
network in Figure 2.3 – with more layers but a reduced number of neurons per layer
and, therefore, a possibly lower overall number of parameters to be trained.

2.1.2 Neural networks training

Training algorithms for feedforward neural networks aim at finding values for their
trainable parameters θ such that the network generalizes well, i.e., it achieves the
best possible approximation accuracy on unseen data. Depending on the network
architecture and the function to be approximated, several approaches are possible
[Goodfellow et al., 2016].

In the following, we briefly describe the training algorithm suitable for the
multiple regression task of interest for this thesis, targeting the approximation of a
function f : Rn 7→ Rm mapping an input x ∈ Rn into an output y ∈ Rm. Given the
task, we consider feedforward neural networks with an output layer whose neurons
are characterized by the linear activation function – see Eq. (2.1.5).

1In particular, the universal approximation theorem refers to Borel measurable functions, which
include the continuous functions on a closed and bounded subset of Rn of interest for this overview.

2.1 Supervised deep learning 34

Maximum likelihood estimation

From a probabilistic perspective, a feedforward neural network parameterized by θ
produces an output y ∈ Rm, given the input x ∈ Rn, by estimating the conditional
probability p(y|x; θ).

Consider a supervised training dataset of N datapoints composed of the inputs
X = {x1, ..., xN}, with xi ∈ Rn, and the correspondent observed targets Y =
{y1, ..., yN}, with yi ∈ Rm. The parameters θ such that the observed data is
most likely, i.e., the parameters θ obtained by following the Maximum Likelihood
Estimation (MLE) approach, are given by

θMLE = arg max
θ

p(Y |X; θ). (2.1.12)

By assuming the N datapoints independent and identically distributed, i.e., i.i.d.,
Eq. (2.1.12) can be decomposed into

θMLE = arg max
θ

N∏
i=1

p(yi|xi; θ), (2.1.13)

and, by taking the logarithm (that does not change the argmax, being a monotonically
increasing function), further developed as

θMLE = arg max
θ

N∑
i=1

log p(yi|xi; θ). (2.1.14)

The so-called log-likelihood in Eq. (2.1.14) can be then maximized to seek optimal
values for θ. Rather than maximizing the log-likelihood, the neural networks
literature often considers the (equivalent) minimization of the negative log-likelihood,
choosing therefore as loss function

J(θ) = −
N∑

i=1
log p(yi|xi; θ), (2.1.15)

whose specific form depends on the definition of the parametric family of probability
distributions p(y|x; θ).

Now, assume the neural network to predict the mean of an isotropic m-dimensional
Gaussian distribution, meaning that

p(y|x; θ) = N (y; ŷ(x; θ), σ2Im), (2.1.16)

where Σ = σ2Im ∈ Rm×m is the fixed diagonal Gaussian covariance while its θ-
dependent mean is the network prediction ŷ(x; θ) ∈ Rm – see for instance Eq. (2.1.11).
Under this assumption, the negative log-likelihood takes the form

J(θ) = −N log σ − N

2 log (2π)− 1
2σ2

N∑
i=1

∥∥∥ŷi(xi; θ)− yi
∥∥∥2
. (2.1.17)

Once constants and terms that do not depend on θ are discarded, it is clear that
minimizing Eq. (2.1.17) is equivalent to minimizing the Mean Squared Error (MSE)

JMSE(θ) = 1
N

N∑
i=1

∥∥∥ŷi(xi; θ)− yi
∥∥∥2
. (2.1.18)

2.1 Supervised deep learning 35

−2
−1

0
1

−1

0

1

0

5

−2
−1

0
1

−1

0

1

0

5

Figure 2.4. Optimization paths resulting from an execution of gradient descent (left)
and SGD (right) on a two-dimensional loss function, from the same initial point (□).
Gradient descent smoothly follows the negative gradient direction, reaching a local
minimum. Thanks to the variability of the update performed on the minibatches, in
this particular execution SGD escapes the local minimum and reaches the global one.

Therefore, the MSE represents a suitable loss function to be minimized when training
a feedforward neural network with linear output activations that is assumed to predict
the mean of an isotropic multivariate Gaussian with fixed covariance as a solution
for a multiple regression task. The same approach can be easily extended, with other
output activations, for more general and even θ-dependent covariances [Goodfellow
et al., 2016; Bishop, 2006].

To improve the network generalization performances, JMSE(θ) is often minimized
along with the weight decay2 regularization term J(w) encouraging smaller L2-norm
for the network weights w. The final loss becomes therefore

J(θ) = JMSE(θ) + J(w) (2.1.19a)
= JMSE(θ) + λw⊤w, (2.1.19b)

where λ is the parameter weighting the relative contribution of the regularization
term J(w) to the overall loss function J(θ).

Stochastic gradient descent

The non-linearity of feedforward neural networks leads to the minimization of non-
convex loss functions, an optimization problem that can be addressed by iterative
numerical procedures. Despite coming with no convergence guarantees, such pro-
cedures applied to deep neural networks proved to be effective in driving the loss
function to reasonably low values, quickly enough to be useful.

Given a loss function J(θ) and an initial value θ0 for its parameters, gradient
descent aims to iteratively decrease J(θ) by taking small steps in the direction of its
negative gradient – see Figure 2.4 (left). This results in the iterative update of the
current estimate of θ by means of the update rule

θi+1 = θi − η∇θJ(θ), (2.1.20)

where η ∈ R+ is the learning rate, a positive scalar determining the size of the step.
2For many other regularization techniques for deep neural networks, out of scope for this brief

overview, please refer to [Goodfellow et al., 2016, Chapter 7].

2.1 Supervised deep learning 36

Gradient descent applied to deep neural networks, however, is particularly challenging
due to the many local minima and flat regions of the loss functions to be minimized,
in which the gradient vanishes, invalidating the iterative update rule. Moreover, since
J(θ) is defined on the entire training set, each update of the parameters θ requires
the entire training set to be processed for the evaluation of ∇θJ(θ) – gradient descent
is indeed a batch method.

An approximation of gradient descent, known as stochastic gradient descent3

(SGD), obtains an estimate ∇θĴ(θ) of the gradient by randomly sampling from the
training set a minibatch of k samples {xi, yi}, with i ∈ {1, ..., k}, and taking the
average gradient on the minibatch only. This results in the iterative update rule

θi+1 = θi − η∇θĴ(θ) (2.1.21a)

= θi −
η

k

k∑
i=1
∇θJ(xi, yi; θ), (2.1.21b)

where J(xi, yi; θ) is the per-sample loss, e.g., for the MSE

JMSE(xi, yi; θ) =
∥∥∥ŷi(xi; θ)− yi

∥∥∥2
. (2.1.22)

The minibatch size k is fixed and typically relatively small. Therefore, no matter
the dimension N of the training set, SGD has a fixed computation time per update
that allows for feasible execution even with very large training sets. Moreover, since
in general stationary points of the entire training set are not stationary points of
the k-dimensional minibatches, SGD is more likely to escape from the local minima
of the overall loss function – see Figure 2.4.

Applied to non-convex loss functions, SGD is strongly affected by the initialization
of the parameters θ, which can determine whether, how quickly, and where the
training converges. Initialization heuristics for feedforward neural networks suggest
zero or small positive values as initial values for the network biases b, and small
random values for the network weights w. In particular, the normalized initialization
[Glorot and Bengio, 2010] for the weights of a network mapping x ∈ Rn into y ∈ Rm

suggests to sample them from the uniform distribution

w ∼ U
(
− 6√

m+ n
,

6√
m+ n

)
. (2.1.23)

Another key parameter for SGD is the learning rate η in Eq. (2.1.21), that is
usually gradually decreased over time not to prevent convergence of the algorithm.
A simple heuristic decreases η linearly from an initial value η0 to a final value ητ in
τ iterations, so that for the first k < τ iterations the learning rate is

ηk = (1− α)η0 + αητ , (2.1.24)
with α = k/τ , while for the remaining k ≥ τ iterations the learning rate ηk = ητ

remains constant. More advanced algorithms such as AdaGrad [Duchi et al., 2011]
or ADAM [Kingma and Ba, 2015] use separate learning rates for each optimization
parameter and automatically adapt the learning rates throughout the learning
process, leading to an improved robustness. However, no best algorithm emerges
when comparing different optimizers over a wide range of tasks [Schaul et al., 2014].

3Also referred to as stochastic gradient method, since it is not guaranteed to descend at each
step even for convex loss functions.

2.1 Supervised deep learning 37

2.1.3 Backpropagation algorithm

Neural networks training requires computing the gradients of complicated loss
functions – see Eq. (2.1.21) for SGD. The backpropagation algorithm provides
a simple and computationally efficient procedure to numerically evaluate these
gradients [Rumelhart et al., 1986].

Let us consider the generic three-layer feedforward neural network in Figure 2.3.
For the sake of simplicity, let us assume linear activation functions for all the neurons
in the output layer and identical non-linear activation functions h(·) for all the
neurons in the hidden layers.

Recall that in this architecture the i-th neuron of the l-layer is denoted by ϕl
i

and constitutes the computational unit

al
i = ϕl

i(xl
i) = h(zl

i) = h

 k∑
j=1

wl
jia

l−1
j + bl

i

 , (2.1.25)

where k is the width of the (l-1)-th layer whose neurons ϕl−1
j are connected to ϕl

i,
with the weights wl

ji associated to the correspondent connections.
Consider the per-sample gradient ∇θJ(xi, yi; θ) in Eq. (2.1.21) to be evaluated

at the iterative update of SGD for each sample {xi, yi} in the selected minibatch.
For the sake of clarity, let us simplify the notation and refer to the current sample
as {x, y} and to its associated per-sample gradient as ∇θJ . The backpropagation
algorithm provides a procedure, based on the chain rule of calculus, to efficiently
evaluate this gradient in two alternate stages that involve a forward and a backward
flow of information through the network, respectively.

Forward propagation

The first stage of the backpropagation algorithm is the so-called forward propagation.
It simply consists in feeding the network with the current input and letting the
information propagate forward through the network layers till the computation of
the network prediction along with its associated loss.

In particular, given the current value of θ and the input x ∈ Rn, Eq. (2.1.7)
shows how to compute each component of the network prediction ŷ(x; θ) ∈ Rm – in
the following simply referred to as ŷ – via the computation of the intermediate
activations al

i ∈ R of each neuron ϕl
i in the architecture.

Comparing ŷ ∈ Rm with the current target y ∈ Rm, the per-sample loss J(x, y; θ)
can be retrieved. Let us assume here the MSE loss with no regularization terms
from Eq. (2.1.18), leading to the per-sample loss

JMSE(x, y; θ) = ∥ŷ − y∥2 =
m∑

k=1
(ŷk − yk)2 , (2.1.26)

where m is the number of neurons in the output layer, each returning one component
of the network prediction ŷ ∈ Rm.

2.1 Supervised deep learning 38

Backward propagation

The second stage of the backpropagation algorithm is the backward propagation, hence
its name. It consists in evaluating the partial derivatives in the per-sample gradient
∇θJ starting from the output layer and propagating the information backward
through the network, by taking advantage of the chain rule of calculus.

Recall that ∇θJ is by definition the vector of partial derivatives of the loss with
respect to each parameter, i.e., each weight and bias, in the network. For the network
in Figure 2.3, it is defined as

∇θJ =
[
∂J

∂w1
11
. . .

∂J

∂w3
pm

∂J

∂b1
1
. . .

∂J

∂b3
m

]⊤

. (2.1.27)

Notice that the per-sample loss J depends on the weight wl
ji only through the

computation taking place at the neuron ϕl
i described in Eq. (2.1.25). Therefore, for

the chain rule of calculus, the partial derivative of the per-sample loss with respect
to a weight wl

ji is given by

∂J

∂wl
ji

= ∂J

∂al
i

∂al
i

∂zl
i

∂zl
i

∂wl
ji

. (2.1.28)

Similarly, for the bias bl
i we have

∂J

∂bl
i

= ∂J

∂al
i

∂al
i

∂zl
i

∂zl
i

∂bl
i

. (2.1.29)

Considering the MSE loss in Eq. (2.1.26), for an output neuron ϕ3
i in Figure 2.3

with linear activation function Eq. (2.1.28) translates into

∂J

∂w3
ji

= ∂J

∂a3
i

∂a3
i

∂z3
i

∂z3
i

∂w3
ji

= ∂J

∂a3
i

∂a3
i

∂z3
i

a2
j (2.1.30a)

= ∂J

∂a3
i

a2
j (2.1.30b)

= 2 (ŷi − yi) a2
j , (2.1.30c)

where a2
j is the activation of the j-th neuron of the second layer ϕ2

j connected to the
i-th neuron of the output layer ϕ3

i through the weight w3
ji. Accordingly, Eq. (2.1.29)

translates into

∂J

∂b3
i

= ∂J

∂a3
i

∂a3
i

∂z3
i

∂z3
i

∂b3
i

= ∂J

∂a3
i

∂a3
i

∂z3
i

(2.1.31a)

= ∂J

∂a3
i

(2.1.31b)

= 2 (ŷi − yi) . (2.1.31c)

2.1 Supervised deep learning 39

For a hidden neuron ϕl
i in Figure 2.3 with activation function h, instead,

Eq. (2.1.28) can be developed as

∂J

∂wl
ji

= ∂J

∂al
i

∂al
i

∂zl
i

∂zl
i

∂wl
ji

= ∂J

∂al
i

∂al
i

∂zl
i

al−1
j (2.1.32a)

= ∂J

∂al
i

h′(zl
i) al−1

j , (2.1.32b)

where al−1
j is the activation of the j-th neuron of the (l-1)-th layer ϕl−1

j connected
to the i-th neuron of the l-th layer ϕl

i through the weight wl
ji.

Since the per-sample loss J depends on the activation al
i of the neuron ϕl

i through
all the activations al+1

k of the nl+1 neurons ϕl+1
k of the (l+1)-layer to which ϕl

i is
connected, the first term in Eq. (2.1.32b) can be further developed my making use
of the chain rule as

∂J

∂al
i

=
nl+1∑
k=1

∂J

∂al+1
k

∂al+1
k

∂al
i

(2.1.33a)

=
nl+1∑
k=1

∂J

∂al+1
k

∂al+1
k

∂zl+1
k

∂zl+1
k

∂al
i

(2.1.33b)

=
nl+1∑
k=1

∂J

∂al+1
k

∂al+1
k

∂zl+1
k

wl+1
ik (2.1.33c)

=
nl+1∑
k=1

∂J

∂al+1
k

h′(zl+1
k) wl+1

ik . (2.1.33d)

Notice how the partial derivative of the per-sample loss J with respect to al
i depends

on its nl+1 partial derivatives with respect to al+1
k , already known if the computation

starts from the output layer and proceeds backward.
Finally, Replacing Eq. (2.1.33d) into Eq. (2.1.32b), the expression of Eq. (2.1.28)

for the hidden neuron ϕl
i becomes

∂J

∂wl
ji

= h′(zl
i) a

(l−1)
j

nl+1∑
k=1

∂J

∂al+1
k

h′(zl+1
k) wl+1

ik . (2.1.34)

Through similar computations, the expression of Eq. (2.1.29) for the hidden neuron
ϕl

i is given by
∂J

∂bl
i

= h′(zl
i)

nl+1∑
k=1

∂J

∂al+1
k

h′(zl+1
k) wl+1

ik . (2.1.35)

In summary, all the components of the per-sample gradient ∇θJ in Eq. (2.1.27) can
be evaluated by computing first Eqs. (2.1.30) and (2.1.31) for each neuron of the
output layer and then Eqs. (2.1.34) and (2.1.35) for each neuron of each hidden
layer, proceeding backwards.

The resulting per-sample gradient ∇θJ , summed up for all the samples in the
selected minibatch, is then exploited to perform SGD – see Eq. (2.1.21).

2.2 Reinforcement learning 40

Agent

Environment

Reward
rt

State
st

Action
at

Figure 2.5. A sketch of the interaction loop taking place between the agent and the
environment in a RL setting. Given the environment state st at time t, the learning
agent selects an action at whose application influences the next environment state and
results in the collection of the reward rt.

2.2 Reinforcement learning
Reinforcement learning (RL) is the machine learning paradigm dealing with decision-
making agents that interact with an uncertain environment with the aim of achieving
well-defined long-term goals or tasks [Sutton and Barto, 2018]. To improve its
task-related performances over time, a RL agent can take actions that have an
influence on the environment and then judge its progress by sensing information
from the environment. The loop arising from this repeated interaction between the
agent and the environment is sketched in Figure 2.5.

In the following, we detail the fundamental concepts required to formalize a
general RL problem and then focus on the specific knowledge relevant to understand
the contribution of this thesis related to RL. In particular, for the application of
RL to the robotics domain addressed in this work, we recall deep reinforcement
learning (DRL) algorithms for continuous control, i.e., policy-gradient algorithms that
optimize a stochastic policy operating in a continuous action space and represented
with a deep neural network – see Section 2.1.

2.2.1 RL basics

In the RL setting depicted in Figure 2.5, the agent and the environment represent
abstract entities whose boundary varies depending on the given problem. No
matter the definition of the learning problem, the RL paradigm assumes both the
environment and the agent to be characterized by certain essential features that
allow to properly formalize their interaction, as detailed in the remaining of this
section. The trial-and-error process arising from the agent-environment interaction,
through which the agent accumulates useful experience to progressively improve
towards its task, is a distinctive feature of the RL paradigm.

Notice that the entire RL paradigm relies on the so-called reward hypothesis, i.e.,
the assumption that any task can be formulated in terms of the maximization of a
cumulative scalar signal, the reward. Although at a first glance this may seem a
significantly limiting constraint, in practice the RL framework has proven flexible
and powerful enough to be even regarded as a suitable problem formulation for
artificial general intelligence [Legg and Hutter, 2007; Silver et al., 2021].

2.2 Reinforcement learning 41

Environment

In the RL setting depicted in Figure 2.5, the environment is the abstract entity
responsible for the evolution of the system the agent interacts with, and for the
generation of the reward the agent seeks to maximize over time.

At time t, the state st ∈ S fully characterizes the environment dynamics. Once
a certain state st has been reached, the future evolution of the environment is
independent from its previous states st−i, with i ∈ N+, i < t. If S is a non-Euclidean
space, we define the observation o ∈ O = Rn as the output of the function o : S 7→ O
that maps states into elements of an Euclidean space.

The environment state st (or the observation ot) is available for the agent to
select its action at ∈ A, whose choice results into the environment evolving to
the state st+1. In stochastic settings, this evolution takes place according to the
state-transition probability function P : S ×A 7→ Pr[S], i.e.,

st+1 ∼ P (s | st, at) . (2.2.1)

If S includes special states, called terminal states, that can be associated to a failure
or a success for the task the agent is trying to learn (e.g., winning or loosing a game),
such a task is referred to as an episodic task. In this case, the agent-environment
interaction naturally breaks into episodes starting at the randomly-sampled initial
state s0 and ending at a terminal state sT , with the episode duration T potentially
varying between episodes. On the contrary, tasks for which no terminal states
determining failure or success exist are referred to as continuing tasks. In continuing
tasks, the agent-environment interaction proceeds seamlessly, with no time limit,
i.e., T =∞ for continuing tasks4.

The environment is also in charge of generating the immediate reward rt ∈ R, a
scalar feedback signal that represents the basis for the agent to evaluate its choice of
actions with respect to the given task. The immediate reward is the output of the
reward function R : S ×A× S 7→ R, i.e.,

rt = R (st, at, st+1) . (2.2.2)

Notice that the immediate reward rt depends upon the current action at but also
upon the current state st, which is the result of all the previous actions performed
by the agent. In other words, the actions performed by the agent not only affect the
immediate reward but also – through future environment states – all the subsequent
rewards. Such an indirect impact of actions on delayed rewards is a crucial feature
of the RL setting, along with the assumption of both the state-transition probability
function P and the reward function R being unknown.

To consider the impact of actions on delayed rewards, it is particularly useful to
introduce the return Gt at time t, that is, the actual quantity the agent seeks to
maximize. For episodic tasks, the return Gt is defined as the sum of the immediate
rewards from the current time till the end of the episode, i.e.,

Gt = rt + rt+1 + rt+2 + ...+ rT =
T −t∑
k=0

rt+k. (2.2.3)

4In some cases, continuing tasks are then truncated at a finite time T , but such T is only defined
in terms of maximum length of the episode and is not related to the state sT reached by the agent
at time T , since there are no terminal states for continuing tasks.

2.2 Reinforcement learning 42

Applied to continuing tasks, where T =∞, the definition in Eq. (2.2.3) would lead
to infinite returns. In this case, it is more appropriate to define the discounted return
Gt at time t as an exponentially-weighted sum of immediate rewards over time, i.e.,

Gt = rt + γrt+1 + γ2rt+2 + ... =
∞∑

k=0
γkrt+k, (2.2.4)

where γ ∈ [0, 1) is the discount factor, whose exponential weights the sum of rewards.
The discount factor γ, assumed to belong to [0, 1) in order to ensure a finite discounted
return Gt, determines the current value of future rewards. With γ approaching 0,
future rewards give indeed a very little contribution to Gt, that coincides with the
current reward rt in the extreme case in which γ = 0. The more γ approaches 1,
the more future rewards contribute to Gt. Notice that the discounted return Gt in
Eq. (2.2.4) can also be expressed recursively as

Gt = rt + γrt+1 + γ2rt+2 + ... = rt + γ (rt+1 + γrt+2 + ...) = rt + γGt+1. (2.2.5)

Finally, the return definitions for the episodic and continuing tasks, i.e., Eq. (2.2.3)
and Eq. (2.2.4), respectively, can be unified by writing Gt as

Gt =
T∑

k=0
γkrt+k, (2.2.6)

with either T =∞ (continuing tasks) or γ = 1 (episodic tasks), but not both, since
T =∞ and γ = 1 would lead to infinite returns.

Agent

In the RL setting depicted in Figure 2.5, the agent is the abstract entity that
attempts to learn over time, by interacting with the environment, how to maximize
the cumulative (discounted) reward or, more precisely, the expected (discounted)
return. The agent is the decision maker, i.e., the RL algorithm that, depending on
its learning objectives and the information about the environment it has available,
is characterized as follows.

At time t, the agent selects the action at ∈ A to perform. This action is
chosen according to the agent’s behaviour function, that is, the policy. A stochastic
policy is defined as the probability distribution π : S 7→ Pr[A] mapping states into
probabilities of selecting each possible action. Given the current state st, the action
at is then sampled from π as

at ∼ π (a|st) . (2.2.7)

In the high-dimensional continuous state and action spaces of interest for this thesis,
a common choice for π is the isotropic m-dimensional Gaussian distribution

π (a|st) = N (a;µ(st), σ2Im), (2.2.8)

where Σ = σ2Im ∈ Rm×m is the Gaussian fixed diagonal covariance while µ(st) ∈ Rm

is the Gaussian state-dependent mean to be learned by the agent, with m being
the dimension of the action space. In particular, if the policy is modeled as a deep

2.2 Reinforcement learning 43

neural network parameterized by θ that takes as input the environment state st and
produces as output the mean of the isotropic Gaussian µθ(st), as in Eq. (2.1.16), we
describe the policy as

πθ (a|st) = N (a;µθ(st), σ2Im), (2.2.9)
where the dependency of π and µ on θ is denoted by the subscript.

Another relevant concept for a RL agent is the value of either a state st or a
state-action pair (st, at). The value of a state (or a state-action pair), defined with
respect to a policy π, expresses how good it is for the agent to be in that state (or
to perform that action in that state). In other words, it estimates the cumulative
future reward obtained from that state (or by performing that action in that state),
assuming that the policy π is followed from there on. Whereas the reward, provided
by the environment, gives the agent a short-term feedback about being in a certain
state, the value of a state (or a state-action pair), learned by the agent itself, encodes
the long-term utility of that state (or of performing that action in that state). For
instance, a defense move in a game, which gives zero or low immediate reward, can
be motivated by the value of the state it allows to reach (which may help chances of
winning later, that is the actual goal of the agent playing the game).

Despite providing potentially useful information to take decisions, state values
(or, more-commonly, state-action pair values) are not taken into account by all the
RL agents. An agent can indeed be classified as policy-based or value-based, with
actor-critic agents standing in the middle, as follows:

• Value-based agents aim to learn state-action pair values and derive their policy
implicitly from them. These agents do not scale well to high-dimensional
state spaces and are not compatible with continuous actions, therefore their
application in the robotics domain is severely limited.

• Policy-based agents directly parameterize a policy and search for its optimal
parameters, completely ignoring the estimation of state-action pair values.
These agents naturally handle continuous actions and scale well to high-
dimensional state spaces, which let them gain popularity in robotics research.

• Finally, actor-critic agents aim to learn the policy (actor) along with the
state values (critic), both parameterized, typically as deep neural networks,
and sometimes also sharing parameters. By combining the advantages of
policy-based or actor-only and value-based or critic-only agents, actor-critic
agents often represent a remarkably suitable option when applying RL to the
robotics domain.

Furthermore, RL agents may leverage a model of the environment they interact with.
In this case, they are classified as model-based agents. Such a model allows the agent
to predict the effects of its actions. An accurate model can be used to efficiently
guide the policy search and easily adapt to new tasks (in state-action regions close
to those visited by the agent) without additional experience. However, incorrect
models end up biasing what the agent learns. On the other hand, agents that do not
use any model of the environment and entirely learn from experience are referred
to as model-free agents. Despite typically requiring a large amount of experience
to learn properly, model-free agents are more suitable for scenarios in which the
environment dynamics is too complex to be modeled accurately.

2.2 Reinforcement learning 44

Agent-environment interaction

The interaction loop in Figure 2.5 between the agent and the environment results
in a sequence of states and actions from the initial state s0 to the state sT

5. We
denote this sequence as the trajectory τ – often also called rollout – given by

τ = (s0, a0, s1, a1, ..., sT −1, aT −1, sT) , (2.2.10)

where the initial state s0 is randomly sampled from the initial state distribution
ρ0 : S 7→ Pr(S), i.e.,

s0 ∼ ρ0(s). (2.2.11)
At time t, given the state st, the agent selects the action at according to its policy
π (a|st). The selected action results into the evolution of the environment at the
state st+1 and the collection of the reward rt

6. Therefore, trajectories can also be
expressed in terms of state-action-reward tuples as

τ = {(s0, a0, r0), (s1, a1, r1)..., (sT −1, aT −1, rT −1), (sT , ∅, 0)}, (2.2.12)

where the last element contains no action and zero reward since the agent-environment
interaction ends at sT (the last reward is rT −1).

Eq. (2.2.6) applied to the trajectory τ leads to the definition of the discounted
return G(τ) associated to τ , i.e.,

G(τ) =
T∑

t=0
γtrt, (2.2.13)

where in the specific case of the truncated continuing tasks of interest for this thesis
we assume a finite T and γ < 1.

A key feature of the RL setting is that the agent learns how to optimize its
policy while interacting with the environment, i.e., while collecting trajectories
τi in the form of Eq. (2.2.12) and their associated returns G(τi) computed as in
Eq. (2.2.13). Trajectories {τ0, ..., τN} and their associated returns {G(τ0), ..., G(τN)}
represent the experience that the agent can exploit to optimize its policy with
respect to the task once N trajectories have been executed, with N increasing as
the learning process progresses. Since the policy π varies over time as an effect
of the optimization process, the trajectories τi included in the stored experience
are associated to different policies. The ability to use data gathered using different
policies differentiate on-policy and off-policy training algorithms for the agent. In
particular, on-policy algorithms optimize the current policy by using data collected
according to that very same policy, while off-policy algorithms can exploit data
generated by following any arbitrary policy in the same environment. Since after
each policy optimization step all the previously-collected data become off-policy,
solely off-policy algorithms actually learn from the entire experience accumulated
over time, while on-policy algorithms learn from recently-sampled trajectories only.
Therefore, off-policy algorithms are characterized by a higher sample efficiency with
respect to on-policy ones.

5The state sT is a terminal state for episodic tasks, while it represents the state at which the
agent-environment interaction is truncated for truncated continuing tasks.

6In the RL literature, the reward generated after performing action at in state st can be denoted
either as rt or rt+1. We adopt the former notation here.

2.2 Reinforcement learning 45

2.2.2 Markov decision processes

The agent-environment interaction that characterizes the RL setting can be for-
malized by making use of the Markov Decision Processes (MDPs). These classical
formulations of sequential decision-making problems capture indeed all the essential
features of the RL setting described in the previous section. Given

• The set of valid sates S;

• The set of valid actions A;

• The state-transition probability function P : S ×A 7→ Pr[S];

• The reward function R : S ×A× S 7→ R;

• The initial state distribution ρ0 : S 7→ Pr(S);

• The discount factor γ;

we define a MDP as the tuple < S,A,P,R, ρ0, γ >. Being Markov processes, MDPs
satisfy the Markov property, stating that future states are conditionally independent
from past states given the current state. This translates into the dynamics of
the MDP being completely defined by the state-transition probability function
P (st+1 | st, at) that relates the next state st+1 to the previous state st and action at

only, with no dependency on the past states.
We have introduced in the previous section the concept of value of a state or

state-action pair. Within the MDP formulation, the value is defined in terms of
expected return. Given the policy π, the state-value function V π(s) for policy π
associates to the state s the expected return from s assuming that the agent follows
the policy π. It is defined as

V π(s) = Eπ[Gt|st] = Eπ

[∞∑
k=0

γkrt+k

∣∣∣∣ st

]
. (2.2.14)

Similarly, the action-value function Qπ(s, a) for policy π associates to the state-
action pair (s, a) the expected return from s assuming that the agent performs a
and then follows the policy π. It is defined as

Qπ(s, a) = Eπ[Gt|st, at] = Eπ

[∞∑
k=0

γkrt+k

∣∣∣∣ st, at

]
. (2.2.15)

Moreover, from the state-value and action-value functions we define the advantage
function Aπ(s, a) for policy π as

Aπ(s, a) = Qπ(s, a)− V π(s). (2.2.16)

This function provides a relative measure of the quality of the action a in state s with
respect to the average action quality in s. If the action a performs better than average
in the state s, then Qπ(s, a) > V π(s) and therefore a positive advantage Aπ(s, a) > 0
is associated to the state-action pair (s, a). On the contrary, worse-than-average
actions a in the state s correspond to a negative advantage Aπ(s, a) < 0.

2.2 Reinforcement learning 46

State-value and action-value functions allow to compare policies. A policy π′ is
considered better than or equal to a policy π, i.e., π′ ≥ π, if and only if V π′(s) ≥ V π(s)
for all the states s ∈ S. Let us denote by π∗ the optimal policy of a MDP, i.e., the
policy that is better than or equal to all the other policies. There exists always at
least one π∗ and it may be not unique. Then the optimal state-value function V ∗(s)
for policy π∗ is defined as

V ∗(s) = max
π

V π(s). (2.2.17)

Accordingly, the optimal action-value function Q∗(s, a) for policy π∗ is defined as

Q∗(s, a) = max
π

Qπ(s, a). (2.2.18)

Bellman expectation equations

By applying the recursive expression of the return in Eq. (2.2.5) to the definition
of the state-value function in Eq. (2.2.14), we get a recursive relationship for the
state-value function known as Bellman expectation equation for V π. It relates the
value of a state st with the value of all its possible successor states as

V π(st) = Eπ[Gt|st] (2.2.19a)

= Eπ[rt + γGt+1|st] (2.2.19b)

=
∑
at

π(at|st)
∑
st+1

P(st+1|st, at)
[
rt + γEπ [Gt+1|st+1]

]
(2.2.19c)

=
∑
at

π(at|st)
∑
st+1

P(st+1|st, at) [rt + γV π(st+1)] . (2.2.19d)

Similarly, the Bellman expectation equation for Qπ is a recursive relationship between
the value of a state-action pair (st, at) and the value of all its possible successor
state-action pairs, in the form

Qπ(st, at) = Eπ[Gt|st, at] (2.2.20a)

= Eπ[rt + γGt+1|st, at] (2.2.20b)

=
∑
st+1

P(st+1|st, at)

rt + γ
∑
at+1

π(at+1|st+1)Eπ [Gt+1|st+1, at+1]

(2.2.20c)

=
∑
st+1

P(st+1|st, at)

rt + γ
∑
at+1

π(at+1|st+1)Qπ(st+1, at+1)

 . (2.2.20d)

The Bellman expectation equations for V π and Qπ are descriptions of the systems
to be solved to get V π and Qπ, respectively. V π and Qπ represent indeed the unique
solutions to their correspondent Bellman expectation equations, and can be even
retrieved in closed form under specific assumptions.

2.2 Reinforcement learning 47

Bellman optimality equations

The Bellman expectation equations also hold for the optimal state-value function V ∗

in Eq. (2.2.17) and the optimal action-value function Q∗ in Eq. (2.2.18). However,
being V ∗ and Q∗ optimal, their Bellman expectation equations do not depend on
any policy, since in the optimal case the best policy is assumed to be followed at
any state. In particular, by replacing the first term in Eq. (2.2.19d) with the action
maximization performed by the optimal policy, the Bellman expectation equation
for V ∗ – known as Bellman optimality equation for V ∗ – takes the form

V ∗(st) = max
at

∑
st+1

P(st+1|st, at) [rt + γV ∗(st+1)] . (2.2.21)

Similarly, by replacing the term averaging the actions according to the policy π in
Eq. (2.2.20d) with the action maximization performed by the optimal policy, the
Bellman optimality equation for Q∗ is given by

Q∗(st, at) =
∑
st+1

P(st+1|st, at)
[
rt + γ max

at+1
Q∗(st+1, at+1)

]
. (2.2.22)

In principle, Eq. (2.2.21) and Eq. (2.2.22) can be explicitly solved to get V ∗ and Q∗,
respectively. Notice that the knowledge of Q∗ provides a direct way to compute an
optimal policy π∗. Any policy selecting the action at that maximizes Q∗(st, at) at st

is indeed an optimal policy.
In most real cases of interest, however, it is not possible to derive an optimal

policy by explicitly solving the Bellman optimality equations. In these cases, Bellman
optimality equations can only be solved approximately. For high-dimensional state
and action spaces, approximations of V ∗ and Q∗ can be maintained as parameterized
functions such as deep networks – see Section 2.1 – trained to match the collected
experience. Several algorithms have been proposed to this purpose, such as SARSA
[Rummery and Niranjan, 1994] or Q-learning [Watkins, 1989].

Deriving policies from value functions, even approximated, is troublesome when
dealing with continuous action spaces, as it is often the case for the application of RL
to the robotics domain. The selection of the action at maximizing Q∗(st, at) at st is
indeed problematic for continuous action spaces. In this setting, directly optimizing
parameterized policies rather than deriving optimal policies from parameterized
value functions is more convenient, as illustrated in the next section.

2.2.3 Policy gradient methods

Policy search methods directly operate with parameterized policies πθ. Among the
large variety of methods classified as policy search [Deisenroth et al., 2013], in this
brief overview we will focus on policy gradient methods [Sutton et al., 2000], i.e.,
model-free methods that exploit gradient ascent to optimize the policy parameters
θ with respect to a certain performance function J(θ). Being model-free, these
methods make use of sampled trajectories only – and no models of the environment –
to optimize the policy. Also known as likelihood-ratio policy gradient methods, they
update the policy parameters θ such that higher-rewarding trajectories become more
likely under the updated policy.

2.2 Reinforcement learning 48

Vanilla policy gradient

Consider a stochastic policy πθ parameterized by θ and differentiable with respect
to its parameter θ, e.g., the Gaussian policy modeled as a deep neural network
in Eq. (2.2.9). By following πθ, trajectories τ in the form of Eq. (2.2.12) can be
sampled, along with their associated returns G(τ).

The probability of sampling a trajectory τ under πθ – with τ of length T – is
given by the product of the probabilities of passing through the T states sequentially
visited along τ , i.e.,

P (τ |θ) = ρ0(s0)
T −1∏
t=0
P(st+1|st, at)πθ(at|st), (2.2.23)

where the state-transition probability P(st+1|st, at) is unknown.
The performance function J(θ) to be maximized by the agent over the trajecto-

ries τ for the reward maximization objective is then defined as

J(θ) = E
τ∼πθ

[G(τ)] =
∫

τ
P (τ |θ)G(τ) dτ, (2.2.24)

and the corresponding maximization problem takes the form

θ∗ = arg max
θ

J(θ). (2.2.25)

This can be solved via gradient ascent using the update rule

θi+1 = θi + α∇θJ(θ), (2.2.26)

where α ∈ R+ is the learning rate determining the size of the step in the direction
of the gradient. In particular, the policy gradient ∇θJ(θ) can be expressed as

∇θJ(θ) = ∇θ

∫
τ
P (τ |θ)G(τ) dτ (2.2.27a)

=
∫

τ
∇θP (τ |θ)G(τ) dτ (2.2.27b)

=
∫

τ
P (τ |θ)∇θlogP (τ |θ)G(τ) dτ (2.2.27c)

= E
τ∼πθ

[
∇θlogP (τ |θ)G(τ)

]
, (2.2.27d)

where the passage from Eq. (2.2.27a) to Eq. (2.2.27b) is due to the Leibniz integral
rule for differentiation under the integral sign, while the passage from Eq. (2.2.27b)
to Eq. (2.2.27c) relies on the log derivative trick stating that, given a function g(x),
as a direct consequence of the chain rule applied to calculate ∇x log g(x), i.e.,

∇x log g(x) = 1
g(x)∇xg(x), (2.2.28)

the gradient ∇xg(x) can be expressed as

∇xg(x) = g(x)∇x log g(x). (2.2.29)

2.2 Reinforcement learning 49

Thanks to the log derivative trick, the policy gradient is therefore expressed as an
expectation. The log derivative trick also allows – by exploiting the properties of the
logarithm functions – to further expand the term ∇θlogP (τ |θ) in Eq. (2.2.27d) as

∇θlogP (τ |θ) = ∇θlog
[
ρ0(s0)

T −1∏
t=0
P(st+1|st, at)πθ(at|st)

]
(2.2.30a)

= ∇θ

[
log ρ0(s0) +

T −1∑
t=0

log P(st+1|st, at) +
T −1∑
t=0

log πθ(at|st)
]

(2.2.30b)

= ∇θ

T −1∑
t=0

log πθ(at|st) (2.2.30c)

=
T −1∑
t=0
∇θ log πθ(at|st), (2.2.30d)

where the passage from Eq. (2.2.30b) to Eq. (2.2.30c) removes all the terms that do
not depend on θ and are therefore irrelevant for the gradient computation. Finally,
by replacing Eq. (2.2.30d) into Eq. (2.2.27d), the policy gradient takes the form

∇θJ(θ) = E
τ∼πθ

[
G(τ)

T −1∑
t=0
∇θ log πθ(at|st)

]
, (2.2.31)

which can be interpreted as the expectation of the gradient of the policy log-
likelihood over τ weighted by the trajectory return G(τ). This expectation, unlike
Eq. (2.2.27d), does not depend on the unknown state-transition probability. However,
it still requires the evaluation of all the possible trajectories τ ∼ πθ and cannot
therefore be used in practice.

For practical usage, ∇θJ(θ) is then approximated with its empirical average over
a finite batch D of sampled trajectories, i.e., with its approximate gradient ĝ

ĝ = Êt

[
G(τ)

T −1∑
t=0
∇θ log πθ(at|st)

]
(2.2.32a)

= 1
|D|

∑
τ∈D

G(τ)
T −1∑
t=0
∇θ log πθ(at|st). (2.2.32b)

With the approximate ĝ in place of ∇θJ(θ), the update rule in Eq. (2.2.26) can
be directly exploited for the optimization of the policy parameters θ via stochastic
gradient ascent, and represents the core of the so-called vanilla policy gradient or
REINFORCE algorithm [Williams, 1992].

A well-known drawback of vanilla policy gradient methods is that they are
extremely sensitive to the selection of the learning rate α – see Eq. (2.2.26). In
particular, too small an α results in slow convergence but too large an α leads to
diverging updates. However, the instability characterizing the training process of
vanilla policy gradient methods in presence of large policy updates is mitigated in
several ways by more advanced policy gradients algorithms.

2.2 Reinforcement learning 50

Proximal policy optimization

For more advanced policy gradient methods, alternative expressions of the policy
gradient ∇θJ(θ) and its approximate version ĝ, with terms weighting the policy
log-likelihood other than G(τ), have been proposed. In its most general form, the
policy gradient can be written as

∇θJ(θ) = E
τ∼πθ

[
T −1∑
t=0

Ψt∇θ log πθ(at|st)
]
, (2.2.33)

where Ψt represents a generic log-likelihood weighting term. A common choice
for Ψt is the advantage function At = Aπθ(st, at) - see Eq. (2.2.16). Using the
advantage as a weighting term for the policy log-likelihood results indeed in an
increased likelihood for actions that perform better than average, and a correspondent
decreased likelihood for worse-than-average actions. In this case, the approximate
policy gradient ĝ takes the form

ĝ = Êt

[
∇θ log πθ(at|st)Ât

]
, (2.2.34)

where Ât is an estimator of the unknown advantage At, e.g., the generalized advantage
estimator (GAE) [Schulman et al., 2016].

The advantage-based ĝ is in practice obtained by defining a loss function whose
gradient coincides with ĝ and then exploiting automatic differentiation. The most
common solution for such a loss is the policy gradient (PG) loss function

LP G(θ) = Êt

[
log πθ(at|st)Ât

]
, (2.2.35)

while another popular option, derived using importance sampling (IS), is the surrogate
loss function [Schulman et al., 2015]

LIS(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
, (2.2.36)

where θold are the pre-update policy parameters and rt(θ) is the likelihood ratio
between the post-update and the pre-update policies.

Inspired by the natural policy gradient algorithms [Amari, 1998; Kakade, 2001],
the Trust Region Policy Optimization (TRPO) algorithm [Schulman et al., 2015]
proposes to optimize the surrogate loss in Eq. (2.2.36) while constraining the policy
change from one update to another, i.e., maintaining the policy within a trust region
during the update. The constraint on the policy update is formulated in terms of the
Kullback-Leibler (KL) divergence between the pre-update and post-update policies,
and the resulting optimization problem takes the form

max
θ

Êt

[
rt(θ)Ât

]
s.t. Êt

[
KL[πθold(a|st), πθ(a|st)]

]
≤ δ, (2.2.37)

where δ is a hyperparameter. By exploiting the conjugate gradient algorithm
to solve the above constrained optimization, TRPO guarantees monotonic policy
improvement, mitigating therefore the issue characterizing vanilla policy gradient
algorithms in presence of large policy updates.

2.2 Reinforcement learning 51

Furthermore, the Proximal Policy Optimization (PPO) algorithm [Schulman et al.,
2017] achieves comparable or even better empirical performances than TRPO with
a much simpler implementation. This algorithm proposes two variations of the
surrogate loss in Eq. (2.2.36) aiming to tackle the issues characterizing vanilla policy
gradient algorithms in the presence of large policy updates. The proposed variations
of the surrogate loss can be used separately or combined together, leading in both
cases to an unconstrained optimization.

In particular, the clipped surrogate loss takes the minimum between the usual
surrogate loss and a version of the surrogate loss with the likelihood ratio rt(θ)
clipped in the interval [1− ϵ, 1 + ϵ], where ϵ is a hyperparameter. It is defined as

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (2.2.38)

where taking the minimum ensures that the clipping has an effect only when the
unclipped loss is not beneficial.

On the other hand, the adaptive KL penalty surrogate loss is defined as the soft
version of the TRPO optimization in Eq. (2.2.37), which makes use of a penalty
rather than a constraint and takes therefore the form

LKLP EN (θ) = Êt

[
rt(θ)Ât − β KL[πθold(a|st), πθ(a|st)]

]
, (2.2.39)

where the coefficient β is adapted in such a way to achieve a target KL divergence
d∗ at each policy update. Specifically, given the estimated KL divergence

d = Êt

[
KL[πθold(a|st), πθ(a|st)]

]
, (2.2.40)

at each policy update the coefficient β is set as

β ← β/2, if d < d∗/1.5,
β ← β × 2, if d > d∗ × 1.5, (2.2.41)

where the hardcoded parameters 2 and 1.5 are chosen heuristically.
Finally, the clipped surrogate loss and the adaptive KL penalty loss, when used

together, take the form

LCLIP +KLP EN (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)
− β KL[πθold(a|st), πθ(a|st)]

]
.

(2.2.42)

52

Chapter 3

State of the Art and Thesis
Context

This chapter presents the state of the art in the fields of Bipedal Locomotion and
Character Animation relevant for this thesis, contextualized at the end of the chapter.
More in detail, the chapter is organized as follows.

The state of the art in Bipedal Locomotion is illustrated in Section 3.1, focusing
on the three subsequent layers of a hierarchical control architecture. Methods
employed in the outer trajectory optimization layer are described in Section 3.1.1.
Solutions for the central simplified model control layer are discussed in Section 3.1.2.
Techniques adopted in the inner whole-body control layer are introduced in Section
3.1.3. In addition, Section 3.1.4 covers alternative approaches to bipedal locomotion
based on reinforcement learning.

The state of the art in Character Animation is illustrated in Section 3.2. Kine-
matic motion synthesis techniques aiming at realistic character animation without
necessarily satisfying physics constraints are covered in Section 3.2.1. Physics-based
motion synthesis methods operating instead on dynamically-simulated characters
are covered in Section 3.2.2.

Finally, the thesis contributions are contextualized with respect to the limitations
and criticalities of the state of the art in Section 3.3, while the robotic platforms
used for their experimental validation are described in Section 3.4.

3.1 State of the art in Bipedal Locomotion
Designed to mimic human shape and behaviour, humanoid robots are characterized
by an articulated mechanical structure with many degrees of freedom. They are
supposed to interact with challenging environments to pursue a large variety of tasks.
Given their ambitious multi-purpose objective, such robotic platforms come with a
series of intrinsic and distinctive complexities.

Bipeds, compared to other morphologies such as quadrupeds [Poulakakis et al.,
2005], are inherently unstable. Their sparse mass distribution and narrow support
surface, defined by relatively small and close feet in contact with the ground, require
dynamic balancing for effective locomotion. Being underactuated [Spong, 1998], hu-
manoids cannot affect their global pose without exploiting contacts with the external

3.1 State of the art in Bipedal Locomotion 53

Trajectory
Optimization

Simplified Model
Control

Whole-Body
Control Humanoid

Perception

Figure 3.1. Three-layer hierarchical control architecture commonly adopted for humanoid
locomotion. Each layer provides inputs to the subsequent one, down to the actual
references for the humanoid. Perception is exploited to close the loop at different levels.

environment. Handling contacts is already non-trivial in structured environments,
where unlike wheeled robots [Borst et al., 2009] humanoids are expected to fully
exploit their legged structure and resemble human motion capabilities, which could
also mean climbing stairs or jumping over holes. Unstructured environments, due
to their unpredictability, make this interaction even more tricky. In addition, hu-
manoids are redundant [Wieber et al., 2016; Siciliano et al., 2008] with respect to the
locomotion task, typically involving their lower body while leaving free their upper
body motion. All these issues and many others, e.g., the low efficiency of the robot
sensor and actuation system, make bipedal locomotion an extremely challenging
research area within the broader field of humanoid robotics.

A recent approach to tackle bipedal locomotion comes from the DARPA Robotics
Challenge, and consists in breaking down the complexity of the problem by means of
a hierarchical control architecture composed of several layers [Feng et al., 2015]. The
three main layers of this architecture, commonly adopted in the bipedal locomotion
literature [Carpentier et al., 2017; Romualdi et al., 2018, 2020], are referred to as
trajectory optimization, simplified model control and whole-body control layers – see
Figure 3.1. Each layer generates references for the subsequent layer by processing
inputs from the robot and the environment. Inner layers usually exploit more complex
models to compute their output, on a shorter time horizon to satisfy computational
constraints. If external disturbances act on the robot, all the layers are involved in
adjusting the trajectory and letting the robot keep walking without falling.

3.1.1 Trajectory optimization layer

Given the specification of some walking target, the trajectory optimization layer is in
charge of computing the sequence of robot footsteps to proceed towards the target,
i.e., the locations and timings of the contacts that the robot is going to make with
the ground. Depending on the assumptions on the robot model and the environment
made at this stage, the complexity of the footsteps generation varies considerably.
For instance, assuming flat terrain and modeling the robot as a simple unicycle
[Truong et al., 2010; Morin and Samson, 2008] fast solutions to the walking pattern
generation problem can be retrieved [Dafarra et al., 2018]. However, too simple
models impose constraints on the footstep sequence, compromising therefore the
execution of highly dynamic motions which often require unconstrained footsteps
placement. On the other hand, several planners considering the centroidal dynamics
and the full robot kinematics have proved successful in different scenarios [Dai et al.,
2014; Herzog et al., 2015; Fernbach et al., 2018; Dafarra et al., 2020].

3.1 State of the art in Bipedal Locomotion 54

Certain solutions to the trajectory optimization problem also allow for the integration
of reactive strategies [Shafiee et al., 2019; Bombile and Billard, 2017]. When the robot
undergoes the effect of external disturbances, these methods adjust the contacts
accordingly so that the robot maintains its balance. Different strategies are available
for push-recovery, from ankle-based to hip-based as well as stepping strategies
[Stephens, 2007], often truly effective only when combined together [McGreavy et al.,
2020; Jeong et al., 2019]. However, due to the hand-crafted models required by each
of these strategies, ensuring robust transitions from one to another turns out to be
particularly challenging and requires careful tuning.

Based on the amount of information on the contacts they assume to be provided,
the methods for trajectory optimization can be classified in the four main categories
illustrated below from the most to the least dependent on contact information.

Predefined contact locations and timings. Methods assuming contact locations
and timings provided by an external contact planner aim at generating the remain-
ing quantities, i.e., centroidal quantities and possibly body postures. To solve the
problem online, either the CoM dynamics alone is considered [Caron and Kheddar,
2016] or a convex relaxation of the angular momentum dynamics to be minimized
[Ponton et al., 2016]. Given the footsteps, online whole-body posture generators
exploit Differential Dynamic Programming (DDP) [Budhiraja et al., 2018; Giraud-
Esclasse et al., 2020], even in combination with model predictive control [Dantec
et al., 2021; Mastalli et al., 2022]. The assumption of having predefined contact
locations and timings plays a major role in enabling online solution for these planners.

Predefined contact sequence. Methods assuming only the contact sequence
being predefined [Carpentier et al., 2016; Caron and Pham, 2017; Winkler et al.,
2018] aim at planning the contact locations and timings. This is often the case for
bipedal locomotion, since a biped robot can be often assumed to produce a periodic
alternate contact sequence, in which a contact with the right foot is followed by
another one with left foot, and so on. This simplification, however, does not reduce
the computational effort enough to enable online planning.

Mixed-integer methods. These methods model contact activations through inte-
ger variables that determine where to establish contacts [Deits and Tedrake, 2014;
Mirjalili et al., 2018; Mason et al., 2018] and in which time instant [Ibanez et al.,
2014; Aceituno-Cabezas et al., 2018], making use of mixed integer programming tools.
Although enhancing modeling capabilities, the exploitation of integer variables char-
acterizing these methods strongly affects the computational performances, especially
in the case of multiple contacts and a subsequent high number of associated integer
variables to handle. Therefore, mixed-integer methods cannot be used online.

Complementarity-free methods. These methods model contacts explicitly,
letting the planner decide sequence, locations and timings of the footsteps. Using
such a complete modeling, with no a priori information about the contacts, these
methods allow to generate remarkably complex motions [Dafarra et al., 2020, 2022b].
However, their computational time exceeds the time horizon for which they look for
a feasible solution, preventing therefore their usage online.

3.1 State of the art in Bipedal Locomotion 55

3.1.2 Simplified model control layer

Given the footsteps sequence, timings and locations from the trajectory optimization
layer, the simplified model control layer is responsible for finding feasible trajectories
for the robot center of mass (CoM). The computational burden arising from the
search of feasibility regions for the CoM is usually balanced by the adoption of
simplified models to characterize the robot dynamics.

Assuming constant CoM height and angular momentum, it is possible to exploit
the well-known Linear Inverted Pendulum (LIP) model [Kajita et al., 2001] – see
Section 1.3.1 – to design simple and effective controllers. The decomposition of the
LIP dynamics into a stable and an unstable component [Pratt et al., 2006; Hof, 2008;
Takenaka et al., 2009; Englsberger et al., 2011; Koolen et al., 2012; Pratt et al.,
2012] leads to walking stabilization strategies built around the unstable component,
denoted by a series of different names ranging from the Extrapolated Center of Mass
(xCoM) [Hof, 2008] to the instantaneous Capture Point (CP) [Pratt et al., 2012;
Koolen et al., 2012] and the Divergent Component of Motion (DCM) [Takenaka
et al., 2009]. Initially formulated in 2D, the DCM has been extended to the 3D case
as well [Englsberger et al., 2013, 2015] – see Section 1.3.3.

The aforementioned simplified models gained popularity also in combination
with the Zero Moment Point (ZMP) [Vukobratović and Borovac, 2004] – see Section
1.3.2 – as a walking stability criterion [Caron and Kheddar, 2017], also extended
to non-coplanar contacts [Caron et al., 2017]. Nowadays, these models are widely
adopted for both position-controlled robots [Shafiee-Ashtiani et al., 2017b; Kamioka
et al., 2018; Leng et al., 2020; Ramuzat et al., 2021] and torque-controlled robots
[Stephens and Atkeson, 2010; Pratt et al., 2012; Dafarra et al., 2016; Griffin and
Leonessa, 2016; Englsberger et al., 2018a,b].

The main advantage of both the LIP and DCM models is that of being linear
models, as a result of the assumption of constant CoM height and angular momentum.
The DCM model has been demonstrated to remain linear even in the case of varying
CoM height [Englsberger et al., 2013], although a time-varying pendulum natural
frequency needs to be considered for generic CoM height trajectories [Hopkins et al.,
2014]. The hypothesis of constant CoM height is also relaxed in [Koolen et al., 2016],
where an extension of the LIP model named variable-height inverted pendulum
(VHIP) is introduced.

By taking advantage of these simplified models, various successful instantaneous
[Hopkins et al., 2014; Englsberger et al., 2015, 2018a,b] and predictive [Wieber, 2006;
Diedam et al., 2008; Griffin and Leonessa, 2016; Bombile and Billard, 2017; Dafarra
et al., 2018] controllers have been designed, also providing references for the footstep
locations [Joe and Oh, 2018; Shafiee-Ashtiani et al., 2017a] and timings [Griffin et al.,
2017; Khadiv et al., 2016]. Finally, model predictive controllers using the LIP model
have been shown to produce CoM trajectories guaranteed to be stable [Scianca et al.,
2016, 2020; De Simone et al., 2017; Smaldone et al., 2019, 2020, 2021, 2022].

3.1 State of the art in Bipedal Locomotion 56

Figure 3.2. Extremely complex example of walking pattern generation for humanoid
locomotion over uneven terrain. The CoM and the swing foot trajectories are highlighted
in color. Image taken from [Caron and Pham, 2017].

3.1.3 Whole-body control layer

Given the reference trajectories from the simplified model control layer, the whole-
body control layer is in charge of ensuring their tracking by generating the references
that are directly sent to the robot – see Figure 3.1. Depending on the available
robot control modes, these references can be in the form of joint positions, velocities
or torques. With respect to position-controlled robots, torque-controlled robots are
intrinsically compliant under the action of external disturbances [Fahmi et al., 2019;
Mesesan et al., 2019], allowing for safe interactions with the environment [Ott et al.,
2011; Saab et al., 2013] as well as with human collaborators [Romano et al., 2018;
Tirupachuri et al., 2020].

Within the hierarchical architecture depicted in Figure 3.1, the whole-body
control layer is the layer running at higher frequency. In this layer, instantaneous al-
gorithms on whole-body robot models are employed rather than advanced techniques
such as model predictive control on simplified models. To meet the computational
constraints imposed by the high frequency, the whole-body optimization problems
solved in this layer are often framed as Quadratic Programming (QP) problems.
The layer itself is therefore often defined as whole-body QP control layer.

Being humanoids redundant with respect to the locomotion task, whole-body
controllers adopted in this layer are often organized in a hierarchical stack-of-tasks
formulation, with strict or weighted hierarchies. Strict hierarchies aim to solve each
task in the null-space of its higher priority tasks [Park and Khatib, 2006; Wensing
and Orin, 2013; Nava et al., 2016; Pucci et al., 2016; Padois et al., 2017]. As a result,
tasks do not interfere with each other. Weighted hierarchies incorporate all the tasks
in a cost function, whose terms are weighted to encode priorities [Lee and Goswami,
2012; Bouyarmane and Kheddar, 2018; Schuller et al., 2021]. With this approach,
all the tasks compete in the search for the solution according to their associated
weight. Particular care is needed in the definition of a well-posed cost function and
tuning of the task weights, for which also automatic procedures have been proposed
[Modugno et al., 2016a,b]. In practice, it is common to combine strict hierarchies
for high-priority tasks with weighted hierarchies for low-priority tasks, addressed by
using the redundant degrees of freedom with respect to the high-priority tasks.

3.1 State of the art in Bipedal Locomotion 57

3.1.4 Reinforcement learning based approaches

Alternative approaches to bipedal locomotion aim at sidestepping the computational
complexities of the hierarchical control architecture presented in the previous sections
by leveraging learning-based techniques, mainly RL methods – see Section 2.2. The
application of RL algorithms to the control of simulated robots has been proven
capable of providing model-free end-to-end successful policies for a wide variety
of high-dimensional tasks, including legged locomotion, in [Lillicrap et al., 2016].
Afterwards, extensive research in the field has led to outstanding results, especially
for what concerns quadrupedal locomotion [Hwangbo et al., 2019; Bin Peng et al.,
2020; Lee et al., 2020; Yang et al., 2020b]. Recently, a RL-based controller enabled
a quadruped robot to successfully complete a 1-hour-long hike in the Alps in the
time recommended for human hikers [Miki et al., 2022].

RL-based bipedal locomotion needs further development to achieve performances
comparable to RL-based quadrupedal locomotion. However, a series of RL-based
solutions for bipedal locomotion can be found in the literature demonstrating
promising results for both simulated and real bipeds.

As regards simulated bipeds, different balancing and push-recovery strategies
have been shown to emerge from a single policy controlling the robot lower body joints
if the training process is guided by a carefully-shaped locomotion-oriented reward
[Yang et al., 2017, 2018]. A similar approach, additionally leveraging motion capture
data as postural regularizers in the reward function and a peculiar neural network
architecture to represent the policy, extends to robust locomotion in simulation
[Yang et al., 2020a]. By incorporating model information in the RL setting, feasible
walking gaits for simulated bipeds are obtained with no need for reference trajectories
in the form of motion capture data [Castillo et al., 2020; Ordonez-Apraez et al.,
2022]. Given an external contact planner, feeding a policy with the two upcoming
footsteps has been shown sufficient for achieving omnidirectional walking, turning
in place and even climbing stairs in simulation, with no need for motion capture
references but an appropriate curriculum learning strategy to progress toward tasks
with an increasing level of complexity [Singh et al., 2022].

For what concerns RL policies deployed on real bipeds, [Xie et al., 2019] propose
to combine imitation and reinforcement learning to retrieve locomotion policies
resembling deterministic feasible motions produced by existing controllers. An
extensive usage of domain randomization during training turns out to be pivotal
to obtain robust dynamic behaviours on a real biped capable of recovering from
significant external perturbations [Li et al., 2021]. Thanks to domain randomization
techniques compensating for the differences between the simulated and the physical
system, also a policy learning target dynamical motions in the form of motion capture
data seamlessly transitions from training in simulation to executing on a reduced-
height physical humanoid [Taylor et al., 2021]. A methodology based on curriculum
learning that gradually increases the target velocity is used to train a single control
policy for omnidirectional walking on a lightweight adult-size humanoid [Rodriguez
and Behnke, 2021]. No curriculum learning nor domain randomization are instead
employed for a cascade architecture achieving sustained walking gaits under external
disturbances on a real humanoid, capable of adapting to challenging terrains not
included in the training process [Castillo et al., 2021]. Recently, [Bloesch et al., 2022]

3.2 State of the art in Character Animation 58

introduced an end-to-end procedure to train a locomotion policy for a small bipedal
robot directly on hardware, with minimal human intervention, paving the way for
alternative strategies for real-robot learning with respect to the challenging transfer
of policies trained in simulation.

Finally, learning-based techniques other than RL – specifically, Gaussian pro-
cesses – also allowed for an efficient synthesis of highly dynamical walking patterns
for humanoid robots demonstrated on real platforms [Clever et al., 2017]. In this
work, feasible movement primitives are learned from an offline-generated dataset of
reference trajectories obtained by solving optimal control problems which also take
into account the robot’s dynamical model.

3.2 State of the art in Character Animation
Synthesizing natural-looking motions for animated characters is a long-standing
challenge in computer graphics. Besides having a realistic appearance, animations are
often required to interactively follow user-specified goals or input signals driving their
generation. Responsive realistic character animation has been tackled through a wide
variety of methods that can be primarily divided into two streams, kinematic and
physics-based, depending on whether the animation obeys some physics constraints.
As opposed to robotics research aimed at developing methods eventually meant
for real-world platforms, character animation is indeed intended for virtual-world
deployment. Therefore, obtaining dynamically-consistent motions can be convenient,
but it is not strictly required.

Both kinematic and physics-based methods can be further characterized ac-
cording to their nature and target. Given a dataset of motion clips, parametric
models trained on it can be used later to synthesize novel motions. On the contrary,
non-parametric methods only look for effective ways of re-playing the given data.
Methods for generating task-specific motions – even new ones – close to the reference
data usually rely on supervised learning only. More general techniques that first
learn a generic motion model from the data, regardless of the motion generation
target, and then adapt it to even remarkably different tasks typically take advantage
of reinforcement learning. The taxonomy of the literature overview provided in this
section is summarized in Figure 3.3.

3.2.1 Kinematic motion synthesis

Kinematic motion synthesis methods animate characters with no regards for physics
constraints. Since they do not operate in dynamically-simulated environments, to
avoid designing the animation from scratch they typically exploit reference motion
capture data and are therefore also known as data-driven methods – although
physics-based methods taking advantage of reference motion capture data exist as
well. The large variety of tools used for data-driven animation synthesis, including
graphs, linear methods, kernel methods, and most recently neural networks, are
briefly introduced by category in the following.

3.2 State of the art in Character Animation 59

Character Animation

motion
blending

statistical
methods

neural
networks

trajectory
optimization

torque-based

kinematic
motion synthesis

physics-based
motion synthesis

phase-aware
mode-aware

...

GAN
VAE

...

with
MoCap

without
MoCap

Figure 3.3. Taxonomy of the Character Animation literature introduced in this section.
The two main streams of kinematic and physics-based motion synthesis are further
categorized in subfields. Notice that often the distinction between branches is not sharp,
and there exist methods contributing to more than one field.

Non-parametric motion blending methods. Given a dataset of motion clips,
motion blending approaches attempt to concatenate them into a coherent task-
oriented trajectory [Agrawal and van de Panne, 2016]. Blending enables seamless
transitions between clips, that are directly played back from the original dataset by
following some control logic often based on finite state machines. Data structures
such as motion graphs [Arikan and Forsyth, 2002; Kovar et al., 2002; Lee et al., 2002;
Beaudoin et al., 2008] have been alternatively proposed to model transitions between
arbitrary clips. In this case, a pose distance metric characterizing clip transitions is
used to build the graph. Then, coherent motion sequences are extracted by searching
the graph. However, the discrete nature of graphs allows for transitions only at the
end of a motion segment. Continuous representations such as motion fields [Lee et al.,
2010b] cope with this issue by moving the blending at the individual frames level,
i.e., in the high-dimensional field of character poses. Motion Matching [Clavet, 2016]
follows the idea of motion fields to synthesize locomotion behaviours by searching for
the best possible successor frame over the entire dataset of motion clips, given the
current frame and a user-specified input. In particular, each motion generation step
involves a nearest-neighbour search on feature vectors embedding the locomotion
task – in the form of desired future root trajectory – to retrieve the best-matching
frame to play back. Besides providing an extremely powerful and efficient solution
for kinematic motion synthesis, this method was also employed as a lightweight
kinematic controller to guide physics-animated systems [Bergamin et al., 2019; Hong
et al., 2019], proving flexible and highly responsive. Its main drawback, i.e., the
large memory usage required to store the original dataset of motion clips and its
associated dataset of matching features, was drastically reduced by its learning-based
extension [Holden et al., 2020]. However, as all the motion-blending-related methods,
Motion Matching has by design no generalization capabilities outside the original
dataset of motions, carefully selected and played back in a realistic sequence.

3.2 State of the art in Character Animation 60

Statistical models. To develop animation systems that synthesize novel motions
rather than simply playing back the existing ones, researchers have looked towards
statistical methods and early machine learning approaches. Maximum a Posteriori
(MAP) frameworks use a motion prior to regularize user-specified motion constraints
[Chai and Hodgins, 2007; Min et al., 2009]. Linear methods such as local Principal
Component Analysis (PCA) synthesize animation from low dimensional signals [Chai
and Hodgins, 2005; Tautges et al., 2011]. Kernel-based approaches such as Radial
Basis Functions (RBF) and Gaussian Processes (GP) overcome the limitations of
linear character animators and consider non-linearities in the data [Mukai and
Kuriyama, 2005; Wang et al., 2008; Mukai, 2011]. A generative model combining
functional PCA to learn within each motion class and GP for the transitions between
classes is proposed in [Min and Chai, 2012]. Gaussian Process Latent Variable
Models (GPLVM) [Grochow et al., 2004; Levine et al., 2012] learn an underlying
low-dimensional motion latent space and then animate characters in the latent
space at runtime to meet the user-specified motion constraints, leading to better
generalization performances. All these methods, however, suffer from scalability
issues, both for their computational and memory cost.

Neural-network-based generative models. Conversely, neural-network-based
generative models are able to scale with increasing data and learn from very large
motion capture datasets while maintaining low memory and computational costs
at runtime. In this case, the consistency of the generated motion is maintained by
making use of recurrent or autoregressive models, both suitable for learning time-
series data. The former keep an internal memory state, while the latter predict the
next character pose using the previously-predicted pose blended with the user input.
Conditional Restricted Boltzmann Machines (cRBM) were originally used to predict
subsequent poses during locomotion [Taylor and Hinton, 2009]. Recurrent Neural
Networks (RNN) have been demonstrated to successfully operate on complex human
characters [Harvey and Pal, 2018] and effectively learn locomotion and basketball
motions [Lee et al., 2018b]. A Long Short-Term Memory (LSTM) network is used
to robustly synthesize high-quality motions between temporally-sparse animation
keyframes [Harvey et al., 2020]. For offline motion synthesis, Convolutional Neural
Networks (CNN) along the time domain [Holden et al., 2015, 2016] have been used
to learn a latent motion manifold from task-relevant data, to which high-level user
commands are mapped to drive the animation synthesis. Nevertheless, RNNs and
other NN-based generative models are known to suffer from converging to an aver-
age pose – the so-called dying-out effect – when generating long motion sequences
[Fragkiadaki et al., 2015].

Phase-aware and mode-aware NN-based models. In order to overcome over-
smoothed motions or convergence to an average pose observed in deep-network-based
generative models [Fragkiadaki et al., 2015], phase-aware and mode-aware neural
networks have been proposed. Phase-Functioned Neural Networks (PFNN) [Holden
et al., 2017] are phase-weighted mixtures of neural networks trained on bipedal
locomotion data. At prediction time, the weights of PFNN are blended according
to a cyclic phase function encoding the periodicity of the walking motion. The
character animation system for PFNN is shown in Figure 3.4 (bottom left). This

3.2 State of the art in Character Animation 61

Figure 3.4. Examples of character animation systems. From top-left, clockwise: the
DeepMimic character [Peng et al., 2018], the MANN quadruped [Zhang et al., 2018],
the DReCon character [Bergamin et al., 2019], and the PFNN character [Holden et al.,
2017]. Each system shows the associated user control interface.

resulted in a significant breakthrough for character animation, enabling remarkably
natural motion and smooth transitions between arbitrary frames in different types
of variable-terrain locomotion. However, training data need to be annotated with
phase function values, which can be costly or unfeasible for the complex non-periodic
motions that may arise in realistic unconstrained humanoid locomotion scenarios.
[Starke et al., 2020] propose to automatically extract separate local motion phases for
each character limb, enabling this approach for asynchronous motions that cannot be
associated to a global phase. In Mode-Adaptive Neural Networks (MANN) [Zhang
et al., 2018], the phase-related issues are solved by substituting the phase function
with a gating network, which learns end-to-end how to effectively blend the network
weights, and produces successful quadruped locomotion patterns on complex terrains.
The quadruped animated using MANN is shown in Figure 3.4 (top right). This work
builds upon the Mixture of Experts (MoE) paradigm [Nowlan and Hinton, 1990;
Jacobs et al., 1991; Jordan and Jacobs, 1994], a classic machine learning approach
with a series of extensions [Yuksel et al., 2012] where several experts specialize in
problem subdomains assigned by the gating network as the training progresses. A
similar approach has been extended to tasks involving interaction with objects and
the environment such as carrying objects, sitting and opening doors [Starke et al.,
2019], and enhanced towards a modular framework enabling iterative addition of
control modules for different tasks with no need for retraining from scratch [Starke
et al., 2021]. Besides the long training time shared by all the deep-learning-based
methods, one drawback of phase-aware and mode-aware architectures – shared with
Motion Matching – is the careful tuning required to properly handle user inputs at
runtime. For locomotion and interaction tasks, this has been done by adding future
trajectory data [Holden et al., 2017; Zhang et al., 2018] and object representations
[Starke et al., 2019] to the network input features, respectively, but how to constrain
more general motions remains an open problem.

3.2 State of the art in Character Animation 62

Alternative NN-based models. Alternative solutions to the issues of standard
deep-network-based generative models exist in the literature other than phase-aware
and mode-aware networks. Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014] involve a motion generator trained in an adversarial setting to fool another
network, the discriminator, trying to differentiate real motions from generated ones.
Generative Adversarial Imitation Learning (GAIL) [Ho and Ermon, 2016] combines
GANs with RL to address the challenge of data-driven reward design for imitation
learning. GAN-based methods for physics-based motion synthesis are also proposed
in [Peng et al., 2021]. Similarly, Variational Autoencoders (VAE) have been employed
to model the motion manifold [Habibie et al., 2017; Ling et al., 2020], with a RL
policy controlling the input of the VAE during interactive motion synthesis. Finally,
Transformers [Vaswani et al., 2017] have been exploited for goal-conditioned high-
quality motion synthesis from large unstructured datasets [Li et al., 2020].

3.2.2 Physics-based motion synthesis

Physics-based motion synthesis methods make use of physics simulations to generate
motions [Geijtenbeek and Pronost, 2012]. The motion dynamics and the action
space – either joint torques or muscles – are defined by the simulation, and the
challenge is to design or learn controllers for the dynamically-simulated characters
that, when successful, will implicitly produce motions with physical realism.

Similarly to bipedal locomotion in robotics – see Section 3.1 – physics-based mo-
tion synthesis can be addressed via trajectory optimization methods, often relying on
simplified models, or learning-based methods, also known as torque-based approaches
in reference to their direct decision-making on torque references with no intermedi-
ate optimization stages. Both trajectory-based and torque-based methods can take
advantage of motion capture data, as regularizers towards natural-looking behaviours.

Trajectory optimization methods. A classical yet enduring approach to physics-
based motion synthesis has been to manually design controllers using finite state
machines and heuristic feedback rules [Yin et al., 2007; Coros et al., 2009, 2010;
Lee et al., 2010a]. Despite leading to results for specific task-oriented applications,
handcrafted controllers require deep domain knowledge and remain hard to generalize
to different tasks. Trajectory optimization approaches make use of optimization
techniques to enforce motion feasibility [Wampler and Popović, 2009; Levine and
Popović, 2012; Wampler et al., 2014], typically by resorting to simplified models
such as centroidal dynamics for computational efficiency. As for the control of
humanoid robots, Quadratic Programming (QP) optimization [Da Silva et al., 2008;
Macchietto et al., 2009] as well as Model Predictive Control (MPC) methods [Hong
et al., 2019] have been used for physics-based motion synthesis. Complex multi-
contact interactions between the character and the environment have been tackled
by learning control graphs [Liu et al., 2016] or scheduling short motion fragments
[Liu et al., 2010] with deep Q-learning, resulting into highly dynamic behaviours
such as walking on a ball or skateboarding [Liu and Hodgins, 2017] as well as playing
basketball [Liu and Hodgins, 2018]. Similar results are extended for muscle-actuated
characters [Lee et al., 2019]. A common drawback of trajectory-based approaches is,
however, that they are typically not suitable for real-time operation.

3.3 Thesis context 63

Torque-based methods, without motion capture data. Torque-based ap-
proaches overcome the limitations of trajectory-based optimization by taking advan-
tage of model-free deep reinforcement learning. The core issue is then shifted to the
definition of an appropriate reward function for the desired animation. Tracking-free
methods do not exploit reference motion capture data for the definition of the re-
ward. Their reward is simple and goal-oriented, e.g., proceed forward or maintain a
certain speed, with marginal concern on the emerging behaviour. Robust locomotion
performances across several tasks from such simple rewards were firstly shown to
emerge in [Heess et al., 2017], encouraged by the interaction of the character with
rich environments. Deep RL with simple goal-oriented rewards was also successfully
applied to quadrupeds [Peng et al., 2015] and bipeds [Peng et al., 2016] control in
2D environments. In the absence of motion regularizers, the behaviours obtained by
tracking-free methods show however asymmetric gaits and further artifacts which
confer them low realism.

Torque-based methods, with motion capture data. To obtain more realistic
motions, torque-based approaches using deep RL learn, among the various objectives,
also to imitate reference expert motions. An imitation term is added to the reward
function in DeepLoco [Peng et al., 2017] to implement walking style imitation in
navigation tasks on a simplified armless biped. Imitation and goal-conditioned
learning are also combined in DeepMimic [Peng et al., 2018], where the exploitation
of short sequences of motion capture data as references leads to a remarkably large
variety of natural-looking dynamically-consistent motion skills. The DeepMimic
animated character is depicted in Figure 3.4 (top left). [Chentanez et al., 2018]
build upon DeepMimic to train a recovery policy to be used if the character deviates
significantly from the reference motion. Moreover, [Won et al., 2020; Wang et al.,
2022] overcome the need for retraining at each new motion to be learned, that took
hours or even days in the case of DeepMimic. Learning a family of motor skills from
a single motion clip was proposed in [Lee et al., 2021; Li et al., 2022], while longer
motions clips dynamically selected according to the desired motion speed, direction
and style were adopted in [Bergamin et al., 2019], whose animated character is
shown in Figure 3.4 (bottom right). Recently, tracking-based methods have further
demonstrated their effectiveness and generality when combined with VAEs [Yin
et al., 2021] or GANs [Xu and Karamouzas, 2021; Peng et al., 2022]. It is worth
to mention, though, that careful reward design plays a fundamental role in all the
works combining imitation learning with goal-directed learning via deep RL.

3.3 Thesis context
Given the concise overview on the state-of-the-art in Bipedal Locomotion (Section
3.1) and Character Animation (Section 3.2) provided in the former part of this
chapter, we now detail the context of the thesis contributions which fall, to a
large extent, at the intersection of the two aforementioned domains. The thesis
contributions will be further elaborated in the three chapters of Part II, whose
content is summarized in the following.

3.3 Thesis context 64

Chapter 4: Learning Whole-Body Push-Recovery Strategies

This chapter presents the design of a control policy for balancing and push-recovery
of humanoid robots trained by model-free deep Reinforcement Learning (RL). As in
[Yang et al., 2018], we develop a low-frequency high-level policy that, rather than
directly generating joint torques, assumes the presence of low-level PID controllers
for the joints. Differently from [Yang et al., 2018], where actions are defined as joint
position targets, our policy commands joint velocities, subsequently integrated to
get the references for the PID controllers. This is to guarantee continuous inputs for
the low-level controllers even in the event of discontinuous actions selected by the
policy. Moreover, as opposed to [Kim et al., 2019; Yang et al., 2018, 2020a] which
investigate RL-based push recovery by controlling the humanoid lower body joints
only, our method targets high-dimensional whole-body humanoid control. Our policy
controls therefore all the humanoid joints but those of the hands, wrists and neck,
which arguably play a minor role in balancing.

Compared to [Peng et al., 2017, 2018; Bergamin et al., 2019], no expert knowledge
in the form of reference motion capture data is used in our approach to shape the
agent behaviour. We investigate indeed the emergence of whole-body push-recovery
strategies exclusively through autonomous agent exploration. Inspired by [Yang
et al., 2018], we encourage successful exploration for the agent by defining reward
components that incorporate domain knowledge in humanoid control to promote
transient push-recovery strategies as well as steady-state balancing in the absence
of external disturbances. We validate the proposed approach on the simulated
iCub v2.7 humanoid, showing that our policy can withstand repeated applications
of strong out-of-sample external pushes through a combination of ankle, step and
momentum-based strategies (enabled by the control of the humanoid upper body),
proving therefore robust and characterized by remarkable generalization capabilities.

Chapter 5: Learning Human-Like Whole-Body Trajectory Generators

In this chapter, we propose a data-driven whole-body trajectory generator of locomo-
tion patterns for humanoid robots trained by deep Supervised Learning on motion
capture data. Motivated by the responsive and natural-looking behaviours obtained
by Mode-Adaptive Neural Networks (MANN) [Zhang et al., 2018] in the context of
kinematic animation of quadruped characters, we adopt such a model for learning
human-like locomotion trajectories for humanoid robots. Similarly to [Zhang et al.,
2018; Bergamin et al., 2019], we collect an unstructured motion capture dataset that
includes various locomotion modes and transitions between them. To retarget our
motion capture dataset onto the given robot model, extending [Darvish et al., 2019],
we propose a geometric approach that guarantees kinematic feasibility of the robot
base motion.

Given the retargeted dataset, we train our MANN implementation on input and
output features inherited from [Clavet, 2016; Holden et al., 2017; Zhang et al., 2018]
that, being suitable for blending with a user-specified input, enable the exploitation
of the selected autoregressive model for interactive trajectory generation. We validate
the proposed approach on the iCub v2.7 humanoid model, demonstrating how our
learning-based trajectory generator can efficiently provide kinematically-feasible

3.4 The iCub humanoid robot 65

whole-body trajectories for the robot spanning a wide range of walking patterns
and smooth transitions among them, while also exhibiting a certain degree of
human-likeness inherited from the human-retargeted training data.

Chapter 6: Human-Like Whole-Body Control of Humanoid Robots

We present here the end-to-end system architecture, named ADHERENT, obtained
by integrating the learning-based whole-body trajectory generator introduced in
Chapter 5 with a state-of-the-art control architecture for humanoid locomotion
[Romualdi et al., 2018, 2020] characterized by the three-layer hierarchical structure
depicted in Figure 3.1. At the trajectory optimization layer, differently from [Fara-
gasso et al., 2013; Cognetti et al., 2016; Dafarra et al., 2018] which rely on a simple
unicycle model to generate footsteps for the humanoid, we leverage the MANN-
generated whole-body trajectories to extract contact locations and timings. This
enables unconstrained footsteps placement from minimal references as in [Dafarra
et al., 2020, 2022b], compared to which our approach only ensures kinematic feasi-
bility and not dynamical consistency, but overcomes the computational complexity
that prevents an online usage.

At the whole-body QP control layer, as opposed to [Righetti et al., 2011; Nava
et al., 2016; Romualdi et al., 2018, 2020] that adopt a constant reference configuration
for the low-priority postural task, we retrieve a time-varying whole-body postural
from the MANN-generated trajectories. Such a postural, besides being coherent
with the footstep plan, acts as a regularizer towards human-like walking motions.
We validate the proposed ADHERENT architecture in terms of robustness and
human-likeness with experiments on both the iCub v2.7 and the iCub v3 humanoids,
showing therefore how our method easily adapts to different robots. Additionally,
we investigate the modularity of ADHERENT with respect to the addition of new
motion skills such as crouching.

3.4 The iCub humanoid robot
The iCub humanoid robot is an open-source state-of-the-art robotic platform de-
veloped at the Italian Institute of Technology, originally conceived for research in
embodied artificial intelligence as part of the RobotCub European Project [Metta
et al., 2010; Parmiggiani et al., 2012; Natale et al., 2017]. Since the first release of
the iCub in 2006, more than 40 copies of this robot have been distributed worldwide,
each with its own features depending on the release date, maintenance upgrades,
and custom modifications, which identify the iCub version1.

We present here the two specific versions of the iCub humanoid that have been
used as validation platforms for the methods developed in this thesis, namely the
iCub v2.7 and the recently-presented iCub v3 [Dafarra et al., 2022a], both depicted
in Figure 3.5. Section 3.4.1 presents the iCub v2.7 humanoid and Section 3.4.2
illustrates the iCub v3 humanoid, while the software infrastructure employed to
control and simulate all the iCub robots is introduced in Section 3.4.3.

1Details on the different iCub versions are available at https://icub-tech-iit.github.io/
documentation/icub_versions/.

https://icub-tech-iit.github.io/documentation/icub_versions/
https://icub-tech-iit.github.io/documentation/icub_versions/

3.4 The iCub humanoid robot 66

(a) The iCub v2.7 humanoid. (b) The iCub v3 humanoid.

Figure 3.5. The two versions of the iCub robot used as validation platforms for this thesis.

3.4.1 The iCub v2.7 humanoid

The iCub v2.7 humanoid, shown in Figure 3.5a, is a 104 cm tall robot weighing
33 kg, whose feet have a rounded shape delimited by a 19 cm long and 9 cm wide
box. It possesses a total of 54 degrees of freedom, provided by its revolute joints
distributed as follows: 4 in the head, 3 in the neck, 3 in the torso, 7 in each arm (3
in the shoulder, 1 in the elbow, 3 in the wrist), 9 in each hand, and 6 in each leg (3
in the hip, 1 in the knee, 2 in the ankle).

For the purpose of this thesis, a reduced set of joints that are the most relevant
ones for the locomotion task is taken into account, namely 23 joints (i.e., all the
joints but those of the head, neck, hands and wrists). These joints are all electrically
actuated by brushless motors with harmonic drive transmissions and equipped with
joint position encoders. Additionally, the torso and shoulder joints are mechanically
coupled and driven by tendon mechanisms.

The robot is endowed with a series of sensors, of different nature, distributed
across its body. It possesses six internal six-axis force-torque sensors, four attached
to the base of each limb and the other two mounted in the feet, right below the
ankles (see Figure 3.6a). It is also equipped with tactile sensors distributed on the
torso, arms, legs and hands (both palm and fingertips), acting as an artificial skin
[Cannata et al., 2008; Maiolino et al., 2013]. Since iCub v2.7 does not mount joint

3.4 The iCub humanoid robot 67

(a) Force-torque sensors. (b) Gyroscopes. (c) Accelerometers.

Figure 3.6. Distribution of (a) six-axis force-torque sensors and (b,c) inertial sensors, i.e.,
(b) gyroscopes and (c) accelerometers, on iCub v2.7.

torque sensors, both the internal torques and the external forces are estimated using
the force-torque sensors and the skin [Fumagalli et al., 2012]. Moreover, a vast array
of three-axis gyroscopes and three-axis accelerometers are spread over the robot
structure, as illustrated in Figures 3.6b and 3.6c, respectively. Such a distributed
inertial sensing setup is completed by two full-fledged Inertial Measurement Units,
one on the head and the other one on the waist. Finally, two VGA cameras, a
microphone and a speaker are located in the robot head.

More than 30 electronic boards operate the robot motors and sensors, connected
by an Ethernet network in daisy chain. The boards provide three control strategies
for the motors, namely position, velocity and torque. The robot is powered by either
an external supplier, operating at 40V with about 3A current, or by a custom-made
battery with a 9.3 Ah capacity included in a rigidly attached backpack, allowing for
about 45 minutes of continuous usage.

The robot head is equipped with an on-board computer characterized by a 4-th
generation Intel® Core i7 CPU @ 1.7 GHz and 8 GB of RAM, running Ubuntu
Linux. Finally, the connection to the robot can be established via an Ethernet cable
or a standard 5 GHz Wi-Fi network.

3.4.2 The iCub v3 humanoid

The iCub v3 humanoid, shown in Figure 3.5b, is the latest evolution of the iCub
platform, and introduces novelties at the mechanics, actuation, electronics and
sensing level [Dafarra et al., 2022a]. It is about 20 cm taller and 19 kg heavier than
iCub v2.7, reaching a height of 125 cm and a weight of 52 kg. Its feet, composed
by two separate rectangular sections each, are 25 cm long and 10 cm wide. The
different dimensions of the two robots are shown in Figure 3.7.

3.4 The iCub humanoid robot 68

Figure 3.7. The iCub v3 (left) side to side to the iCub v2.7 (right).

The iCub v3 humanoid maintains the same number (54) and distribution of degrees-
of-freedom of iCub v2.7. However, as opposed to iCub v2.7, its torso and shoulder
joints are not coupled tendon-driven but serial direct mechanisms, which allows for a
higher range of motion and greater mechanical robustness. Moreover, the increased
size of the actuators on the legs (due to the increased overall robot weight requiring
more powerful motors) leads to a different approach for the knee and ankle pitch
joints, whose motor and actuator, rather than being on the same axis, are displaced
and linked by belts. The 23 joints considered for this thesis as the most relevant for
locomotion are all electrically actuated by three-phase brushless motors equipped
with harmonic drive transmissions.

As regards sensing, iCub v3 extends the vast array of sensors of iCub v2.7
with higher resolution cameras for the eyes and two additional six-axis force-torque
sensors. In particular, iCub v3 mounts eight six-axis force-torque sensors, of which
six with a 45 mm diameter (F/T-45), as those of iCub v2.7, and two with a 58 mm
diameter (F/T-58). The two F/T-58 are located in the middle of the robot thighs.
Two F/T-45 are mounted at the shoulders, and two on each foot, connecting the
two rectangular sections of each foot to its ankle assembly.

From the electronics point of view, iCub v3 shares with iCub v2.7 the architecture
of distributed boards operating motors and sensors, connected via Ethernet. It is
powered either by an external supplier or by a custom-made battery, which has a
higher capacity of 10.05 Ah and is part of the torso assembly, rather than being
located within an external backpack as for iCub v2.7.

The iCub v3 head is equipped with a more powerful on board computer, namely
a 11-th generation Intel® Core i7 CPU @ 1.8 GHz and 16 GB of RAM, also running
Ubuntu Linux. Additionally, the robot possess a NVIDIA® Jetson Xavier NX Module.
Finally, as for iCub v2.7, the connection to the robot can be established through an
Ethernet cable or wirelessly through a standard 5 GHz Wi-Fi network.

3.4 The iCub humanoid robot 69

3.4.3 Software infrastructure

The core software infrastructure to control the robot is largely shared among the
two aforementioned platforms, as well as among all the iCub robots. To control an
iCub, the Yet Another Robot Platform (YARP) open-source middleware [Metta
et al., 2006] is exploited. YARP consists of an abstraction layer whose main purpose
is to let applications (modules) communicate, even if they run on different machines.
Additionally, such an abstraction layer provides interfaces to interact with the robot
physical devices no matter their actual implementation. Both sensor acquisition and
motor control are therefore provided by YARP interfaces.

Besides the YARP middleware, software development on iCub can also rely on
the iDynTree library [Nori et al., 2015], a library of robot dynamics algorithms for
control, estimation and simulation, specifically designed for free-floating robots but
also suitable for fixed-base ones. Written in C++, iDynTree provides Python and
MATLAB bindings and is compatible with any robot described by a Universal Robot
Description Format (URDF) model.

Finally, an ideal choice for developing software for the iCub robot is the Gazebo
simulator [Koenig and Howard, 2004], an open-source simulator that efficiently
handles complex multi-body systems and in particular supports the simulated
version of the iCub robot. Since the simulated iCub comes with the corresponding
YARP plugins [Mingo Hoffman et al., 2014] which allow to test the very same
software on both the simulated and the real robot, software prototyping for iCub in
Gazebo is transparent and therefore particularly convenient.

Part II

Contribution

71

Chapter 4

Learning Whole-Body
Push-Recovery Strategies

In Part I, we introduced the background and presented the state of the art relevant
for this thesis. This chapter illustrates, instead, the first contribution of the thesis,
related to the application of deep reinforcement learning techniques to let general
and robust whole-body balancing and push-recovery strategies for humanoid robots
emerge in a simulation environment.

As opposed to classical control schemes often involving different specifically-
designed controllers for handling different kinds of perturbation, and a tricky logic to
switch from one to another, in this work we address balancing and push recovery via a
single model-free whole-body control policy. To this purpose, we define a RL setting
with a state space inspired by floating-base dynamics and a reward function shaped
to guide the agent towards steady-state balancing while promoting the emergence of
different transient push-recovery strategies. We validate the proposed approach in
simulation on the iCub v2.7 humanoid robot – see Section 3.4.1 – demonstrating
the emergence of robust momentum-based whole-body push-recovery strategies in
addition to ankle, hip, and stepping ones.

More in detail, the chapter is organized as follows. With reference to the general
RL agent-environment interaction loop depicted in Figure 2.5 and described in
Section 2.2.1, we characterize the environment and the agent interacting with one
another in our specific RL setting for balancing and push recovery of humanoid
robots in Section 4.1 and Section 4.2, respectively. Extensive validation in simulation
of the proposed approach for the tasks at issue is presented in Section 4.3. Finally,
Section 4.4 concludes the chapter.

The content of this chapter partially appears in:

Ferigo, D., Camoriano, R., Viceconte, P. M., Calandriello, D., Traversaro,
S., Rosasco, L., and Pucci, D. (2021). On the Emergence of Whole-body
Strategies from Humanoid Robot Push-recovery Learning. IEEE Robotics
and Automation Letters, 6(4):8561–8568.

Video https://www.youtube.com/watch?v=Fa0MtfYZiGA

https://www.youtube.com/watch?v=Fa0MtfYZiGA

4.1 Environment 72

Simulated
Robot

PID
τ

1000 Hz

∫

25 Hz

ṡd sd

s

{o, r}

s0π(a|o)
Environment

Figure 4.1. A sketch of the agent-environment interaction loop characterizing our RL
setting. Given the observation o and the reward r, the agent provides desired joint
velocities ṡd at 25 Hz. Such velocities are then integrated to retrieve reference joint
positions sd for the low-level PIDs, running at 1000 Hz as the physics simulation.

4.1 Environment
In the RL setting depicted in Figure 2.5, the environment comprises – by definition –
everything outside the agent. It is characterized by its own dynamics and by the
interface it exposes to the agent, which includes the state (for non-Euclidean states,
the observation) and the reward. We define the state and the reward characterizing
our environment in Section 4.1.1 and Section 4.1.2, respectively.

Since our agent generates reference joint velocities but we control the robot in
position (see Section 3.4.1), in addition to its own dynamics our environment also
includes a series of integrators in charge of retrieving the reference joint positions
for the low-level PID controllers – see Figure 4.1. The physics simulation and the
low-level PIDs run at 1000 Hz. Observations and rewards for the agent are instead
produced at 25 Hz. The rational behind such design choices for our agent-environment
interaction loop is further explained in Section 4.2.

4.1.1 State definition

The state x ∈ X of our environment contains information about the kinematics and
dynamics of the robot. In particular, it is defined as the tuple

x := ⟨q, ν, fL, fR⟩ ∈ X , (4.1.1)

where, given the robot base frame B = (oB, [B]), q is the floating-base robot
configuration defined in Eq. (1.2.17), namely,

q =
(

IoB,
IRB, s

)
∈ R3 × SO(3)× Rn, (4.1.2)

and ν is the left-trivialized robot velocity defined in Eq. (4.1.3), namely,

Bν =

BvI,B
BωI,B

ṡ

 =

IR⊤

B
I ȯB(

IR⊤
B

IṘB

)∨

ṡ

 ∈ R6+n, (4.1.3)

while fL and fR are the 6D forces applied to the left and right foot frames expressed
in the inertial frame I, i.e., I fL and I fR, respectively (see Section 1.1.3).

4.1 Environment 73

Table 4.1. Components of the observation o ∈ O, with the associated normalization ranges.

Name Value Set Range Unit

Joint positions os = s R23 [slb, sub] rad
Joint velocities oṡ = ṡ R23 [−π, π] rad/s
Base height oh = Ipz

B R [0, 0.78] m
Base orientation oR =

(
IρB,

IϕB
)

R2 [−2π, 2π] rad
Contact configuration oc = (cL, cR) {0, 1}2 - -
CoP forces of = (fz

L,CoP, f
z
R,CoP) R2 [0, 330] N

Feet positions oF = (BpL,
BpR) R6 [0, 0.78] m

CoM velocity ov = ḠvCoM R3 [0, 3] m/s

The observation o ∈ O computed from the non-Euclidean state x ∈ X , i.e., the
perceptual input actually available to the agent, is defined as the tuple

o := ⟨os, oṡ, oh, oR, oc, of , oF , ov⟩ ∈ O := R62, (4.1.4)

where:
• os = s ∈ R23 are the positions of the controlled joints (see Section 4.2.1) in

radians, normalized component-wise within the joint hard limits [slb, sub];

• oṡ = ṡ ∈ R23 are the velocities of the controlled joints, normalized component-
wise in [−π, π] rad/s;

• oh = Ipz
B ∈ R is the height of the robot base frame B, normalized in [0, 0.78] m,

where 0.78 m represents a highly unlikely value to overcome for the base height
of our robot, even in the case of extremely dynamic motions;

• oR =
(

IρB,
IϕB

)
∈ R2 is a tuple containing the roll and pitch angles of the

robot base frame B with respect to the inertial frame I, normalized component-
wise in [−2π, 2π] rad;

• oc = (cL, cR) ∈ {0, 1}2 is a tuple of boolean values defining whether each foot
is in contact with the ground, with no need for normalization;

• of =
(
fz

L,CoP, f
z
R,CoP

)
∈ R2 is a tuple containing the vertical forces applied

to the local centers of pressure of the feet, normalized component-wise in
[0, 330] N, where, if m is the robot mass and g the gravitational constant,
mg = 330 N is the nominal weight force of the robot;

• oF = (BpL,
BpR) ∈ R6 is a tuple containing the positions of the feet frames

expressed in the base frame, whose norm is normalized in [0, 0.78] m;

• ov = ḠvCoM ∈ R3 is the linear velocity of the CoM expressed in the mixed
reference frame Ḡ – see Section 1.2.3 – whose norm is normalized in [0, 3] m/s.

The observation components including relevant information for the agent to distin-
guish promising states among those encountered throughout the training process
are also summarized in Table 4.1.

4.1 Environment 74

Although this work is focused on the design and validation of learning methods for
the emergence of whole-body balancing and push-recovery strategies in simulation
and does not address sim-to-real transfer, it is worth to mention that we carefully
select the state and observation so that they can be either measured or estimated
online to promote policy transfer on real robots. We avoid indeed to include in the
state definition in Eq. (4.1.1) measurements from sensors that are known to be noisy
and values that cannot usually be estimated online with sufficient accuracy. For
instance, the ground reaction forces included in the state can be estimated on-board
on the iCub v2.7 humanoid [Nori et al., 2015].

4.1.2 Reward shaping

In our RL setting, the dynamic behaviours for balancing and push recovery are
learned by the agent exclusively through autonomous exploration and interaction
with the environment. No expert data, e.g., specialized motion capture data collected
by human experts, are used to guide the agent exploration during training nor shape
the resulting behaviours. In such cases, reward shaping plays a vital role. Defining
a reward structure that encodes all the relevant performance indicators for the
task at hand is indeed the only mechanism available for promoting successful agent
exploration strategies. How to design in practice such a suitable reward remains
however an open problem, often addressed empirically.

Inspired by previous works [Yang et al., 2017, 2018], we approach the reward
design problem with a reward structure that we iteratively extend – exploiting
domain knowledge in humanoid control – to allow high-dimensional whole-body
strategies to emerge. The reward resulting from this heuristic process includes a
series of terms categorized as regularizers, steady-state, and transient components, all
detailed in Section 4.1.2. In particular, we report there the reward formulation that,
among the ones we validated, led to the most satisfactory results, shown in Section
4.3. Given the duration of each individual training in our setup (around 2 days),
we could not afford an exhaustive ablation study to select with enough confidence
the minimal formulation of the reward guaranteeing the same performances and we
were forced to rely on heuristic search guided by domain expertise only. However,
thanks to our interpretable reward formulation illustrated in Section 4.1.2, we were
able to shape the reward in such a way that each of its many components positively
affects the total reward as training progresses – see Section 4.3.1.

Radial basis function kernels

Our heuristic search for suitable reward components and their effective combination
to compute the total reward exploits the formulation of individual reward components
using Radial Basis Function (RBF) kernels [Yang et al., 2017]. Given two vectors
x, x∗ ∈ Rk, the RBF kernel is defined as the function

K(x, x∗) = e−γ̃||x−x∗||2 ∈ [0, 1], (4.1.5)

where γ̃ is the kernel bandwidth. RBF kernels measure similarities between their
inputs. If its inputs x and x∗ coincide, the RBF kernel returns a unitary output, i.e.,

K(x∗, x∗) = 1. (4.1.6)

4.1 Environment 75

The sensitivity of the kernel, i.e., how different the inputs x and x∗ must be for the
kernel output to approach 0, can be tuned through γ̃. Let us introduce the pair
(xc, ϵ), with xc, ϵ ∈ R+ and ϵ≪ 1. By exploiting xc and ϵ, we can parameterize γ̃ as

γ̃ = ln(ϵ)
x2

c

. (4.1.7)

This formulation ensures that, given an input xm such that ||xm − x∗|| = xc, the
kernel output is equal to ϵ, i.e.,

||xm − x∗|| = xc ⇒ K(xm, x
∗) = ϵ. (4.1.8)

Assuming a constant ϵ, the kernel sensitivity only depends on xc, referred to as the
kernel cutoff parameter.

We exploit RBF kernels and the parameterization of γ̃ in Eq. (4.1.7) to formulate
our individual reward components. If x is the measurement associated to a certain
component and x∗ the target value for that component, the kernel K(x, x∗) provides
indeed an estimate of the similarity between x and x∗, normalized in [0, 1]. For
measurements x that are further from the target x∗ than the cutoff xc, the kernel
returns an output smaller than ϵ, and is said to be inactive. The kernel becomes
instead active for measurements x closer to the target x∗ than the cutoff xc, with
its output approaching 1 as x gets closer to x∗. A suitable tuning of the cutoff xc

of the RBF kernel related to each reward component – depending on the scale and
variance of its associated measurements – is therefore crucial to allow for a proper
activation of the kernel during training.

Rather than defining the total reward r ∈ R returned by our environment simply
as the weighted sum of individual reward components, i.e.,

r =
∑

i

wiri, (4.1.9)

with ri denoting each reward component and wi its associated weight, we define r as
the weighted sum of individual reward components processed by a RBF kernel, i.e.,

r =
∑

i

wi K(xi, x
∗
i |xci), (4.1.10)

where wi, xi and x∗
i are the weight, the current measurement and the target value of

the i-th reward component, respectively, while xci is the cutoff of its associated RBF
kernel. With the RBF kernels normalizing the distance between xi and x∗

i in [0, 1]
– no matter its original scale – for each reward component, Eq. (4.1.10) represents a
weighted sum over similarly-scaled reward components, much more interpretable
and easier to shape with respect to Eq. (4.1.9).

Monitoring, during training, the output of the kernels associated to the individual
reward components via Eq. (4.1.10) enables indeed a useful reward shaping strategy.
First, the cutoff parameters xci are adjusted to have all the kernels properly activated.
Then, the weights wi are adjusted with the twofold aim of increasing the relevance
of the reward components whose kernel output is still far from 1 (i.e., whose average
measurement is still far from the target) and promoting reward components that are
considered crucial for learning the task. In summary, this is how we retrieved the
reward illustrated in the next section, which includes a series of terms individually
selected based on domain knowledge and effectively combined using RBF kernels.

4.1 Environment 76

Reward definition

The terms summed up according to Eq. (4.1.10) to obtain the the total reward r ∈ R
of our environment can be categorized as regularizers, steady-state, and transient.
Regularizers are terms often used in optimal control for the minimization of control
action and joint torques. Steady-state components help to obtain the balancing
behaviour in the absence of external perturbations, and are active only during
double support (DS) phases. Finally, transient components favor the emergence of
push-recovery whole-body strategies.

In the following, we detail all the Regularizers (R), Steady-state (S) and Transient
(T) terms composing the total reward r, which are also summarized in Table 4.2
along with their associated weights, targets and kernel cutoff parameters.

Joint torques rτ (R). Joint torques applied by the PID controllers as shown in
Figure 4.1 are penalized. Since the agent-environment interaction takes place at
25 Hz while the low-level PID controllers run at 1000 Hz, several torques τi, with
i ∈ {1, ..., 40}, are actuated between two subsequent reward computations. For each
controlled joint, we define the joint torques reward component rτ as the average

τstep = 1
40

40∑
i=1
|τi| (4.1.11)

of all the applied torques’ absolute values between two subsequent agent steps.

Joint velocities rṡ (R). The control scheme employed by the agent – see Sec-
tion 4.2 – ensures continuous reference joint positions. However, during training
the learning algorithm explores the action space of joint velocities. To promote
smoother trajectories, we penalize the norm of the latest action a – see Section 4.2.
The joint velocities reward component rṡ penalizing the norm of a corresponds to
the minimization of the control effort.

Postural rs (S). Whole-body humanoid controllers following a stack-of-tasks ap-
proach – see Section 3.1.3 – usually combine high and low priority tasks. The
postural task is notably one of the most used [Nava et al., 2016], although it is
usually assigned a low priority. We include a fixed postural reward term that helps to
reach a target posture during balancing, otherwise realized in odd joint configurations
corresponding to local minima found by the policy. The postural reward component
rs penalizes the mismatch between the sampled joint configuration s and the refer-
ence joint configuration s̄0 (postural), shown in the top-left corner frame of Figure 4.4.

CoM projection rCoM (S). Statically balanced robots, in order to maintain stability,
keep the ground projection of their CoM within their support polygon (SP), defined
as the convex hull1 (CH) of the contact points between their feet and the ground.
With the same aim, we introduce a boolean component rewarding the agent if its
CoM projection on the ground pxy

CoM remains within its SP. For additional safety, we
shrink the SP by a 2.5 cm margin all along its perimeter.

1The convex hull of a set of points is the smallest convex region which contains them all.

4.1
E

nvironm
ent

77

Table 4.2. Components of the total reward r, with their associated targets and weights. For the reward terms processed by a RBF kernel, i.e.,
all the non-boolean terms but the negative reward related to the episode termination, the associated properly-tuned cutoff is reported. The
table also indicates whether each component is active in single support (SS) and in double support (DS).

Name Class Symbol Unit Value x Target x∗ Weight w Cutoff xc SS DS

Joint torques R rτ Nm τstep 0n 5 10.0 ✓ ✓

Joint velocities R rṡ rad/s a 0n 2 1.0 ✓ ✓

Postural S rs rad s s̄0 10 0.13 ✓

CoM projection S rCoM - pxy
CoM ∈ SP 1 10 - ✓

Horizontal CoM velocity S rxy
v m/s vz

CoM ω(pxy
CoM − pSP) 2 0.5 ✓

Vertical CoM velocity T rz
v m/s vxy

CoM 0 2 1.0 ✓ ✓

Centroidal momentum T rh kg m2/s ∥Ḡhp∥2 + ∥Ḡhω∥2 0 1 50.0 ✓ ✓

Feet contact forces T {rL
f , r

R
f } N {fz

L,CoP, f
z
R,CoP} mg/2 {4,4} mg/2 ✓ ✓

Feet CoPs T {rL
p , r

R
p } m {pL,CoP, pR,CoP} {pL,CH, pR,CH} {10,10} 0.3 ✓ ✓

Feet orientation T {rL
o , r

R
o } - {Irz

L · e3, Irz
R · e3} 1 {1.5,1.5} 0.01 ✓ ✓

Feet in contact T rc - cL ∧ cR 1 2 - ✓ ✓

Links in contact T rl - cl 0 -10 - ✓ ✓

4.1 Environment 78

Horizontal CoM velocity rxy
v (S). We define a target horizontal velocity for the

CoM as the vector pointing from the ground projection of the CoM pxy
CoM to the

center of the SP pSP. In order to promote faster motions if the CoM is relatively
close to the ground, the magnitude of the target horizontal CoM velocity is amplified
by the time constant of the LIP model ω =

√
g

pz
CoM

, where pz
CoM is the CoM height

and g is the gravitational constant – see Section 1.3.1. Rewarding a CoM horizontal
velocity vxy

CoM as close as possible to the aforementioned target encourages the motion
of the CoM ground projection towards the center of the SP. In other words, this
term promotes static balancing in DS (and is not active in SS, see Table 4.2).

Vertical CoM velocity rz
v (T). We penalize vertical motions of the robot CoM, i.e.,

vertical CoM velocities vz
CoM, promoting instead the exploitation of the horizontal

component vxy
CoM for balancing purposes.

Centroidal momentum rh (T). Among the controlled joints detailed in Section 4.2
there are also joints belonging to the robot torso and its arms. Also the momentum
generated by the upper body can therefore be exploited for balancing and push
recovery. This term minimizes the sum of the norms of the linear and angular
components of the robot centroidal momentum Ḡh – see Section 1.2.3.

Feet contact forces {rL
f , r

R
f } (T). This reward term pushes the transient towards

a steady-state pose in which the robot weight is distributed equally on the two feet.
To do so, we reward vertical forces applied to the feet local CoP {fz

L,CoP, f
z
R,CoP} as

close as possible to half of the robot nominal weight, i.e., mg/2.

Feet CoPs {rL
p , r

R
p } (T). Beyond equally-distributed contact forces at the feet CoPs,

we also promote the local feet CoP positions {pL,CoP, pR,CoP} to be located at the
center of the convex hull (CH) of the correspondent foot {pL,CH, pR,CH}.

Feet orientation {rL
o , r

R
o } (T). The first training attempts exhibit feet tipping

behaviours, i.e., policies maintaining balance without keeping the feet in stable
contact with the ground. Targeting flat terrains only, we discourage feet tipping by
promoting feet orientations such that the feet soles are parallel to the ground. If
IRF = [Irx

F
Iry

F
Irz

F] represents the orientation of the foot frame F ∈ {L,R} with
respect to the inertial frame I, this reward component promotes the alignment of
Irz

F with the z axis e3 ∈ R3 of the inertial frame I, pointing against gravity. We im-
plement this alignment by rewarding the scalar products {Irz

L ·e3, Irz
R ·e3} close to 1.

Feet in contact rc (T). We encourage the robot feet to stay on the ground. In
order to promote steps and increase movement freedom, rather than rewarding the
whole foot surface to be in contact with the ground, we reward cases in which both
feet have at least one contact with the ground, i.e., cL ∧ cR = 1, with cL and cR

indicating contacts for the left and right foot, respectively.

Links in contact rl (T). If any link but the feet is in contact with the ground, we
consider the balancing task failed and terminate the episode with a reward of −10.

4.1 Environment 79

4.1.3 Episode specifications

Given the state x ∈ X and the observation o ∈ O defined in Section 4.1.1 along with
the reward r ∈ R illustrated in Section 4.1.2, our balancing and push-recovery task
is structured as a continuing task2 truncated according to certain early termination
conditions or after T = 150 s. Therefore, we refer to episodes as agent-environment
interactions truncated due to maximum length or failure. In the following, we
characterize the episodes occurring in our RL setting in terms of the initial state
selection and the domain randomization performed at the beginning of each episode,
the external perturbations applied throughout the episodes, and the early termination
criteria which determine their conclusion.

The initial state x0 in which the agent begins each episode is sampled from an
initial state distribution ρ0(x) : X → Pr(X). We observe indeed that sampling x0,
and in particular the initial joint positions s0 and velocities ṡ0, from a distribution
with small variance positively affects the policy exploration without degrading the
learning performance. Therefore, at the beginning of each episode, we sample the
j-th joint initial position sj,0 from the Gaussian distribution N (µ = s̄j,0, σ = 10deg),
where s̄j,0 is the j-th joint reference also used for the postural reward rs, and its initial
velocity ṡj,0 from N (µ = 0, σ = 90 deg/s). To avoid the feet from interpenetrating
the ground in x0, we increase the initial base height Ioz

B,0 so that the robot starts
the episode with no feet in contact with the ground, which also encourages the agent
to learn how to land and deal with impacts.

At the beginning of each episode, we implement the following domain random-
ization. To account for possible model inaccuracies, the masses of the k robot links
are sampled from k normal distributions Ni(µ = mi, σ = 0.2mi), where mi is the
nominal mass of the i-th link in the robot model. To address a wider range of
materials for the robot feet and the ground, we randomize the Coulomb friction µc

of the feet by sampling it from the uniform distribution U(0.5, 3). Finally, since the
simulation does not include the real dynamics of the actuators, we further encourage
policy robustness by randomizing the delay applied to the position references fed to
the PID controllers, sampled from U(0, 20) ms.

Throughout the episodes, we promote exploration beyond the choice of the
initial state and favor the emergence of push-recovery strategies by applying external
perturbations in the form of 3D forces to the robot base frame. Such forces have a
fixed magnitude of 200 N and duration of 200 ms, resulting into a 40 Ns impulse
which, normalized on the 33kg-weighing iCub v2.7, acts as a 1.21 m/s push per
unitary mass. Their direction is sampled from a uniform spherical distribution.
Also their frequency is sampled from a uniform distribution, with an average of 5
simulated seconds between two subsequent force applications.

Despite the continuing nature of the balancing and push-recovery task, we define
early-termination criteria for the episode to stop as soon as the state reaches a
subspace from which it is not possible to recover or uninteresting to keep exploring.
The state space of interest for our work is where the robot is almost standing on its
feet, therefore we terminate the episodes as soon as it falls on the ground. A fall is
detected in the event of any link but the feet making contact with the ground.

2For the balancing and push-recovery task, there exist no terminal states such that the task can
be considered accomplished. The best the agent can do is indeed to keep balancing over and over.

4.2 Agent 80

4.2 Agent
In our RL setting depicted in Figure 4.1, given the observation o ∈ O from the
environment, the agent selects the action a, characterized in Section 4.2.1, according
to its policy π(a|o), parameterized and trained as reported in Section 4.2.2.

Inspired by the results obtained in previous works [Yang et al., 2017, 2018], we
design a low-frequency agent interacting with the environment at 25 Hz. Although
increasing the policy rate would likely provide a more responsive behaviour and pos-
sibly help to transfer the policy to real platforms, given the acceptable performances
observed at 25 Hz and the multitude of parameters characterizing our setup, we
decide to keep the policy rate unchanged and tune other parameters instead.

4.2.1 Action definition

In our nested structure, the agent’s policy generates an action a ∈ R23 composed
of the reference velocities ṡd for a large subset of the robot joints, referred to as
controlled joints. The set of controlled joints includes joints belonging to the robot
legs, torso, and arms. Hands, wrists, and neck, which arguably play a minor role in
balancing, are not included in the set of controlled joints and are simply maintained
locked in their natural positions, i.e., at 0 deg. For each controlled joint, the
policy provides a reference joint velocity bounded in [−180, 180] deg/s. The policy
commands each joint independently, and is not subject to symmetry constraints.
The output of the policy is then integrated to get the reference joint positions sd

which are actually fed to the low-level PID controllers.
Commanding joint velocities rather than joint positions prevents target joint

positions from being too distant from each other in consecutive control steps. Espe-
cially at training onset, directly commanding joint positions would lead to highly
jumpy references that the low-level PID controllers would not be able to track at all,
affecting therefore the capability of the policy to discover the actual effect of the
selected action on the environment state transition from xt to xt+1. Commanding
joint velocities subsequently integrated to get the actual joint position references
allows, instead, to use a stochastic policy that generates discontinuous actions while
maintaining continuous inputs to the low-level PID controllers with no need for
additional filters.

Finally, let us clarify why we opt in the first place for the design of a policy for a
position-controlled rather than a torque-controlled robot. First, high-level action
parameterizations including local feedback, such as PID targets, have been shown
to lead to higher policy performance and learning speed with respect to low-level
actions such as torque references across several locomotion tasks [Peng and van de
Panne, 2017]. Then, despite not addressing sim-to-real transfer in this work, we take
into account the current capabilities of our target platform, the iCub v2.7 humanoid
illustrated in Section 3.4.1, which suggest a position-control approach for dynamic
push-recovery. Although past works [Nori et al., 2015] on this platform have shown
interesting results for balancing in torque control, more recent works [Dafarra et al.,
2018; Romualdi et al., 2020] targeting scenarios characterized by richer contacts
with the environment, e.g., walking, report instead bottlenecks for torque control
preventing high performances for highly-dynamic tasks.

4.2 Agent 81

Table 4.3. PPO, SGD, and distributed training parameters.

Parameter Value

Clip parameter ϵ 0.3
Discount factor γ 0.95
GAE parameter λ 1.0
Learning rate α 0.0001

Batch size 10000
Minibatch size 512

Number of SGD epochs 32
Number or parallel workers 32

4.2.2 Policy representation and training

We define the agent as an actor-critic – see Section 2.2.1 – parameterizing both its
stochastic policy π(a|o), which selects the action a to take given the observation
o, and its value function V̂ (o), which estimates the average return when starting
from the observation o and then following the policy π, as deep feedforward neural
networks – see Section 2.1.1.

In particular, we represent the policy and the value function using two distinct
feedforward neural networks composed of two fully-connected hidden layers, with
512 and 128 units each, followed by a linear output layer. The hidden units use the
ReLU activation function in Eq. (2.1.4), while the output layer the linear activation
function in Eq. (2.1.5). The networks do not share any layer.

We select Proximal Policy Optimization (PPO) – see Section 2.2.3 – as training
algorithm, in its variant which includes both the clipped surrogate loss and the
adaptive KL penalty loss, expressed by Eq. (2.2.42). We set the clip hyperparameter
ϵ = 0.3. As advantage function estimator Ât, we choose the Generalized Advantage
Estimator (GAE) [Schulman et al., 2016], with a discount factor γ = 0.95 and a
decay parameter λ = 1.0.

Since the chosen PPO algorithm scales gracefully to a setup where the batch
samples are collected from multiple workers in parallel, we exploit a distributed
setup for training. Our distributed setup is composed of 32 parallel workers with
an independent copy of the environment, and one trainer. The workers run on
CPU resources only, while the trainer has access to the GPU for accelerating
the optimization process. The trainer is indeed in charge of performing a policy
optimization step every 10000 transitions collected by the parallel workers. In
particular, once a batch of 10000 on-policy transitions has been collected, the trainer
optimizes the neural networks parameterizing the policy and the value function
using Stochastic Gradient Descent (SGD) – see Section 2.1.2. The optimization is
repeated for 32 epochs per batch, using minibatches of 512 samples each, with a
learning rate α = 0.0001. Each training execution is interrupted once it reaches 20
millions of agent steps, roughly equivalent to 7 days of simulated experience.

All the agent training parameters, empirically found given the impossibility to
conduct an exhaustive grid-search in our setup because of the considerable duration
of each training instance, are also summarized in Table 4.3.

4.3 Results 82

0 0.5 1 1.5 2 ·107

0

0.5

1

1.5

2

·105

Agent steps

Average episode reward

±σ

0 0.5 1 1.5 2 ·107
0

50

100

150

Agent steps

Average episode duration [s]

±σ

Figure 4.2. Average learning curves over 11 independent training executions. Mean and
variance of the episode reward (left) and duration (right) across 20 millions agent steps
performed for each training instance are reported. As the training proceeds, both curves
increase, with the average episode duration getting closer to its maximum of 150 s.

4.3 Results
This section illustrates the results obtained by training the agent detailed in Section
4.2 in the environment described in Section 4.1 according to the training specifications
reported in Section 4.2.2. The proposed approach is validated in simulation on the
iCub v2.7 humanoid model – see Section 3.4.1.

First, let us detail the frameworks and tools we exploit for the practical imple-
mentation of our RL setting. To simulate the environment dynamics, we use the
Gazebo Sim simulator embedded into the gym-ignition framework [Ferigo et al.,
2020], compatible with OpenAI Gym [Brockman et al., 2016]. As physics engine,
we enable the default one for Gazebo Sim, i.e. DART [Lee et al., 2018a]. For calcu-
lating rigid-body dynamics quantities, using an accurate model of the free-floating
system dynamics from Eq. (1.2.26), we take advantage of the iDynTree library
[Nori et al., 2015]. Finally, to train the agent in a distributed fashion we adopt the
high-performance PPO implementation available within the RLlib library [Liang
et al., 2018], built on top of the Ray framework [Moritz et al., 2018].

4.3.1 Reward shaping

Figure 4.2 reports the learning curves of the average episode reward and duration
over N = 11 independent training instances for the selected agent-environment
configuration, run with different random seeds. As thoroughly illustrated in [Hen-
derson et al., 2018], high variance in performances due to the stochasticity of the
environment and the learning process is a major concern with deep RL agents
and therefore results averaged on a small number of trials, e.g., N < 5, or worse
on the top-N trials only, are potentially misleading. No matter the high training
time required for the N = 11 training instances, i.e., around 20 days in total, we
decide to extensively test the agent performances without discarding any training
instance. Both average episode reward (Figure 4.2, left) and duration (see Figure 4.2,
right) across the N trials exhibit consistent growth and low variance as the training
proceeds. In particular, episode duration approaches its maximum of 150 s towards
the end of the training instances, set to 20 million agent steps.

4.3 Results 83

Figure 4.3. Average component-wise episode reward over 11 independent training executions.
For each reward component, weighted by the correspondent weight from Table 4.2, mean
and average across the 20 millions agent steps of each training instance are reported.
Light gray areas represent upper and lower bounds of each weighted reward component.

Besides monitoring the evolution of the total reward r reported in Figure 4.2, as
training progresses we also inspect the evolution of the individual reward components
that contribute to r according to Eq. (4.1.10). As explained in Section 4.1.2, such a
component-wise inspection of the reward is crucial to select helpful reward terms
while simultaneously tuning their associated RBF kernel cutoff xci and weight wi. We
report in Figure 4.3 the evolution over N = 11 independent training instances of the
average reward for the 12 individual terms composing our total reward r. For each
component, the average output of its associated RBF kernel is shown, weighted by
the correspondent weight wi (see Table 4.2). In the best case, each weighted average
reward component would reach the associated wi, e.g., wi = 2 for the horizontal
CoM velocity component or wi = 8 for the feet contact forces component (4 per foot).
The links in contact component, related to the episode termination and characterized
by a negative weight, is instead expected to reach 0 as maximum. Figure 4.3 shows
as in our RL configuration, while training progresses, each reward term consistently
increases with low variance, and some terms approach their maximum value. This
confirms that each selected component positively contributes to the total reward,
resulting therefore helpful to guide the agent exploration towards the task.

4.3 Results 84

t5t4t3t2t1

t5t4t3t2t1

Figure 4.4. Two motion sequences of the simulated iCub v2.7 humanoid implementing
a combination of ankle, step, and articulated momentum-based recovery strategies
emerged from the learning process. In both the sequences, the robot is pushed by a 4 kg
sphere thrown horizontally at 1.5 m/s. The impact takes place on the robot right side
and on its back in the upper and lower sequence, respectively. For each sequence, five
representative frames show the highly-dynamic motions through which the policy faces
the push without falling.

4.3.2 Emerging behaviours

A qualitative analysis of the balancing and push-recovery strategies demonstrated
by the policy after training highlights the emergence of rich whole-body recovery
behaviours, no matter the robot dynamic randomization performed at training
stage – see Section 4.1.3 – which could have caused the control policy to be overly-
conservative [Xie et al., 2019]. The emerging behaviours include the well-known
ankle, hip and stepping strategies [Stephens, 2007] combined with more articulated
momentum-based strategies. Such complex behaviours that exploit the total mo-
mentum of the robot kinematic structure are indeed enabled by letting the policy
control also the joints of the upper body, as opposed to previous works tackling
RL-based humanoid push recovery by considering lower-body joints only [Yang et al.,
2017, 2018]. Moreover, let us recall that all the emerging strategies are handled
simultaneously by our control policy, with no need of any switching logic, as opposed
to many classical control schemes for humanoid push-recovery.

Figure 4.4 shows two representative sequences in which the learned control policy
faces remarkable pushes resulting from throwing at high speed a heavy object towards
the robot, i.e., a 4 kg sphere shot horizontally at 1.5 m/s. This is an unseen scenario
during training, used to trigger more realistic force profiles for testing purposes. At
training time, constant forces for a fixed time interval are indeed applied to the robot
base link only – see Section 4.1.3. Nevertheless, such constant forces applied during
training succeed in triggering agent exploration enough to discover the complex
behaviours demonstrated at testing time, and detailed in the following.

4.3 Results 85

In the upper sequence of Figure 4.4, the 4 kg sphere hits the robot on the right
side of its waist (right before t2). The strong push makes the robot jump on its left
side (t3). After a few consecutive small jumps (t4), the policy successfully achieves
landing in double support (t5). Throughout the motion, both the torso and the
arms are exploited to vary the centroidal angular momentum, as you can see by
comparing, for instance, t3 and t5. The simulation from which these screenshots
are taken is shown in a dedicated portion of the accompanying video available at
https://youtu.be/Fa0MtfYZiGA?t=88. In the video you can also appreciate how,
once in double support, a straighter posture (closer to the reference steady-state
postural shown at t1) is finally retrieved.

In the lower sequence of Figure 4.4, instead, the 4 kg sphere hits the robot
on the back of its torso (right after t1). As a consequence, the robot performs a
series of small steps forward (from t2 to t4) and a final rotational adjustment (t5).
Also here, it can be seen how the upper body is actively exploited to maintain
balance. For instance, the torso pitch varies significantly if you compare t3 with
either t2 or t4. At the same time, the configuration of the robot arms is remarkably
different between t2 and t5. Although the simulation from which these screenshots
are taken is not included in the accompanying video, a larger variety of emerging
push-recovery strategies is displayed in the final portion of the video available at
https://youtu.be/Fa0MtfYZiGA?t=110.

A few additional remarks on the emerging behaviours follow. First, commanding
joint velocities rather than joint positions – see Section 4.2.1 – leads to fairly smooth
behaviours, as one would expect. On the other hand, we cannot compare this choice
against a policy that directly controls joint positions, since our training attempts
for such a policy (with no additional filter, not to introduce further delays in the
control pipeline) do not succeed. Then, let us recall that no self-collision avoidance
is implemented in the proposed approach. For instance, as it can be seen in the
accompanying video, the robot arms often collide with their corresponding legs.
Despite this, interestingly, the policy learns to keep the legs distant from each
other, and therefore no legs crossing nor feet touching is observed at testing time –
although the robot kinematics does not prevent it. Finally, let us remark the need
for the steady-state postural reward – see Section 4.1.2 – without which undesirable
foot tipping and asymmetric steady-state configurations can be noticed – see the
accompanying video at https://youtu.be/Fa0MtfYZiGA?t=63.

The main drawback of the emerged behaviours is not to be as natural as human
ones, and also probably unfeasible. Especially when the robot is subject to strong
external pushes, the resulting recovery strategy may not look natural at all. The
control policy tends to prefer small jumps to full steps, which we relate to three
main factors: the stiffness given by the low-level PIDs, the difficulty of accurate
contact modeling, and the absence of reference motion capture data.

As concerns low-level control, we already mentioned our choice of controlling
the robot in position based on the current state-of-the-art controllers for iCub v2.7
– see Section 4.2.1. Moreover, despite introducing variable delay – see Section 4.1.3 –
our simulations do not saturate joint torques. The joint torques minimization in
the reward does not prevent occasional high torque spikes synthesized by the PIDs.
Integrating more realistic actuator dynamics or adopting intrinsically-compliant
torque-based controllers should (at least partially) address these issues.

https://youtu.be/Fa0MtfYZiGA?t=88
https://youtu.be/Fa0MtfYZiGA?t=110
https://youtu.be/Fa0MtfYZiGA?t=63

4.3 Results 86

Figure 4.5. Push-recovery success rates for deterministic forces with magnitudes in
[50, 700] N and directions spanning the horizontal plane (forward push: 0 rad) applied to
the robot base link. The robot feet friction coefficient is µc = 1 (left) or µc = 0.2 (right).

Regarding contacts, using only DART (with its default collision detector and con-
straint solver) may have caused the policy to overfit to subtle implementation details.
Modeling differences between physics engines3 notably make policies hardly trans-
ferable among them or the real world. Higher robustness could be achieved by
randomizing the entire engine beyond the common physics parameters.

As for the absence of reference motion capture data in our reward (the postural
s̄0 is fixed and only acts as a regularizer at steady-state, not during the transient
dynamic recovery), our choice is motivated by two main reasons. First, our interest
is to investigate the emergence of balancing and push-recovery strategies with no
prior expert knowledge in the form of motion capture data exploited by other works
[Peng et al., 2017, 2018] and understand whether interesting behaviours for such a
challenging task can be learned from scratch. Second, the definition and collection of
proper expert motions is not straightforward in our specific push-recovery scenario.

4.3.3 Push-recovery performances

We validate the robustness and generalization capabilities of the trained policy by
performing an extensive quantitative analysis on the simulated iCub v2.7, including
out-of-sample tasks of increasing complexity. The validation scenarios involving
planar and spherical forces of different magnitude and duration, applied to the robot
base link as well as to other links, are detailed in the following.

Deterministic planar forces

First, we evaluate the policy push-recovery performances in the event of individual
deterministic horizontal forces. In this setting, forces of different horizontal direction
and magnitude are applied to the robot base frame for the fixed duration used at
training time, i.e., 200 ms, when the robot is stably standing still and front-facing,
i.e., after 3 s from the beginning of the simulation. We define a test successful if the
robot is still standing after 7 s. Figure 4.5 (left) reports the average success rates
for forces spanning 12 directions in the horizontal plane, with magnitudes increasing
from 50 N to 700 N at intervals of 25 N. For each combination of magnitude and
direction, the average success rate over 5 tests is reported, starting at initial joint
configurations randomized by adding zero-mean Gaussian noise (σ = 2 deg).

3Please refer to [Yoon et al., 2023] for a comparison of different physics engines for robotics, and to
https://leggedrobotics.github.io/SimBenchmark for a more locomotion-oriented benchmarking.

https://leggedrobotics.github.io/SimBenchmark

4.3 Results 87

The plot shows how forces with magnitudes within the training range of [0, 200] N
are always counteracted successfully. Remarkably, the policy is also robust to forces
in all the directions with magnitudes in the out-of-sample range of [200, 300] N, even
up to 400 N in some directions. The very same validation illustrated in Figure 4.5
(left), where the Coulomb friction coefficient of the robot feet is set to µc = 1, is
repeated for an out-of-sample friction coefficient µc = 0.2 and shown in Figure 4.5
(right). Also in such a challenging scenario, the policy is able to successfully recover
from pushes with magnitudes in the training range of [0, 200] N.

Random spherical forces on the base link

We further evaluate the robustness of the control policy in challenging scenarios
involving sequences of random spherical forces with different combinations of magni-
tude and duration. In this setting, forces are applied to the robot base frame in a
random spherical direction at a higher frequency with respect to training time, i.e.,
on average every 3 s rather than every 5 s. For each combination, 50 testing episodes
are executed, with no domain randomization. Episodes terminate if the robot falls
or after 60 s, with an average of 20 force applications for each successfully-completed
episode. In this case, we select as evaluation metric the number of consecutive force
applications that the policy manages to withstand.

Figure 4.6 (top) reports aggregate results for all the combinations of force
magnitude and duration. In particular, forces of 5 different magnitudes in [100, 300] N
and 4 different durations in [0.1, 0.4] s are considered. No matter their magnitude,
forces lasting 0.1 s are properly balanced. As expected, performances decrease with
growing magnitude and duration of the applied force. Nevertheless, the agent proves
able to withstand repeated applications of out-of-sample forces. For instance, on
average it withstands 9 consecutive applications of forces of 300 N lasting 0.2 s.

Random spherical forces on the chest and elbow links

Finally, we evaluate the robustness of the control policy to forces applied to robot
links different than the base, i.e., in a previously-unseen scenario for the policy
trained through force applications to the base link only. In particular, we repeat for
the chest link and the elbow link the very same analysis illustrated in Figure 4.6
(top) for the robot base link, with the results averaged over 50 different trials for
each considered testing scenario.

Figure 4.6 (middle) and (bottom) show the obtained results for the chest and
elbow links, respectively. As expected, forces applied on links which are far from the
robot CoM turn out to be more challenging to counterbalance. Nevertheless, the
policy is able to generalize also in this case with good performances. For instance,
it proves able to recover, on average, from 10 consecutive applications of forces of
200 N lasting 0.2 s on the elbow link, as opposed to an average of 17 for the base link.
The average number of consecutive counterbalanced forces with the same magnitude
and duration decreases to 5 for the chest link. Let us remark, however, that the
randomness of the interval between two subsequent force applications considered for
this analysis leads sometimes to extremely challenging scenarios in which multiple
forces are applied in a very short time span.

4.3 Results 88

0.1 s 0.2 s 0.3 s 0.4 s
0

10

20

30

C
ou

nt
er

ba
la

nc
ed

fo
rc

es

Base link

0.1 s 0.2 s 0.3 s 0.4 s
0

10

20

30

C
ou

nt
er

ba
la

nc
ed

fo
rc

es

Chest link

0.1 s 0.2 s 0.3 s 0.4 s
0

10

20

30

C
ou

nt
er

ba
la

nc
ed

fo
rc

es

Elbow link

100N 150N 200N 250N 300N

Figure 4.6. Consecutive counterbalanced forces in random spherical directions applied
to the robot base (top), chest (middle) and elbow (bottom) links. Forces of 5 different
magnitudes in [100, 300] N and 4 different durations in [0.1, 0.4] s are considered. For
each combination of magnitude and duration, results are averaged over 50 trials.

4.4 Conclusions 89

4.4 Conclusions
In this chapter, we present a control architecture based on deep reinforcement learning
to address whole-body balancing and push recovery for simulated humanoids. The
proposed approach involves a state definition inspired by floating-base dynamics
and an interpretable reward formulation shaped by domain knowledge in humanoid
control. Compared to previous works, our agent controls a larger number of joints
belonging to the robot legs, torso and arms, which enables it to extend the space of
push-recovery motions to complex whole-body behaviours.

We validate the proposed control policy on the simulated iCub v2.7 humanoid,
demonstrating the emergence of robust and highly-dynamic whole-body push-
recovery strategies through which our policy is able to withstand repeated ap-
plications of strong external pushes.

The main limitation of the proposed approach is that the emerging recovery
strategies, although successful in simulation, look often unnatural and unreliable.
This is partially due to the stiffness introduced by the low-level position control and
the modeling inaccuracies of the simulation, and could be mitigated in future works
by considering alternative low-level controllers and more realistic actuator models,
as well as by including in the domain randomization the entire physics engine, which
would in turn enable an easier policy transfer to real robots.

The unnatural-looking behaviours learned by our control policy also arise from
the absence of prior expert knowledge in the form of motion capture data driving the
training process. While avoiding to shape the learned behaviours was a requirement
for this work, focused on investigating the emergence of complex behaviours from
scratch, in the next chapter we will examine the advantages of exploiting motion
capture data with deep supervised learning to efficiently generate human-like walking
motions for humanoid robots. Given the limitations of the approach proposed in
this chapter, rather than directly extend it from the balancing to the walking task,
we prefer indeed to address walking by deep supervised learning and take advantage
of motion capture data.

90

Chapter 5

Learning Human-Like
Whole-Body Trajectory
Generators

In the previous chapter, we introduced a control architecture based on deep rein-
forcement learning capable of producing robust whole-body push-recovery strategies
for simulated humanoids. Because of the inaccuracies of actuator modeling and
simulated dynamics, along with the lack of regularizers driving the policy towards
desired solutions, we did not achieve motions reliable enough to directly target
sim-to-real transfer. Inspired by the performances demonstrated by character an-
imation systems exploiting motion capture data to efficiently generate responsive
natural-looking behaviours [Holden et al., 2017; Zhang et al., 2018; Starke et al.,
2021], in this chapter we target the problem of general and human-like whole-body
trajectory generation for humanoid robots via efficient learning-based techniques
proved successful in computer graphics.

To this purpose, we collect a wide-ranging dataset of motion capture locomotion
trajectories, properly retargeted from the human subject to the robot, and exploit
deep supervised learning to train a whole-body trajectory generator. Our solution,
kinematically validated on the iCub v2.7 humanoid model, efficiently produces
diverse walking patterns and smooth transitions among them that state-of-the-art
methods can only compute offline due to high computational cost. Moreover, the
motions thus generated exhibit a certain degree of human-likeness both at the
joint and footstep levels. Therefore, they represent a valid source of footstep plans
and postural references for whole-body humanoid locomotion controllers to obtain
human-like real-world robot motions, as detailed in the next chapter.

More in detail, the chapter is organized as follows. Section 5.1 introduces state-of-
the-art techniques for motion retargeting and responsive motion synthesis. Details on
the motion capture dataset collected for this work are provided in Section 5.2, while
the methodology followed to retrieve from it kinematically-feasible robot motions is
presented in Section 5.3. The learning-based architecture trained to interactively
generate whole-body trajectories is illustrated in Section 5.4 and kinematically
validated, also in terms of human-likeness of the generated motion, in Section 5.5.
Finally, Section 5.6 concludes the chapter.

5.1 Background 91

The content of this chapter partially appears in:

Viceconte, P. M., Camoriano, R., Romualdi, G., Ferigo, D., Dafarra, S.,
Traversaro, S., Oriolo, G., Rosasco, L., and Pucci, D. (2022). ADHERENT:
Learning Human-like Trajectory Generators for Whole-body Control of
Humanoid Robots. IEEE Robotics and Automation Letters, 7(2):2779–2786.

Video https://www.youtube.com/watch?v=s7-pML0ojK8
Github ami-iit/paper_viceconte_2021_ral_adherent
Zenodo https://zenodo.org/record/6201915#.YhOT_Bso-8g

5.1 Background
Before illustrating the details of the learning-based trajectory generation pipeline
proposed in this work, let us briefly introduce two state-of-the-art approaches for
retargeting and interactive character animation on which we will build upon in the
following sections, i.e., Whole-Body Geometric Retargeting and Mode-Adaptive
Neural Networks, respectively.

5.1.1 Whole-body Geometric Retargeting

Given a robotic platform and a series of movements performed by a human subject,
the goal of human-robot motion retargeting is to transfer the human motion onto the
robot in such a way to obtain an anthropomorphic robot motion, i.e., a robot motion
that mimics as much as possible the original motion performed by the human. The
substantial dissimilarities in the mechanical structures characterizing the human and
the robot prevent a direct mapping of the human motion onto the robot, making
human-robot motion retargeting a non-trivial challenge.

Among the various approaches addressing human-robot motion retargeting in
the literature, e.g., [Pollard et al., 2002; Ott et al., 2008; Miura et al., 2009; Penco
et al., 2018]), Whole-Body Geometric Retargeting (WBGR) is a recently-proposed
method relying on geometric mapping between the human and the robot links
and inverse kinematics, which easily adapts to different robot models and human
subjects [Darvish et al., 2019].

Assuming a certain degree of topological similarity between the human’s and
robot’s mechanical structures, WBGR builds upon the definition of a set of corre-
spondences between the frames associated with m human and robot links. Such
correspondences for the iCub v2.7 humanoid – see Section 3.4.1 – are shown in Fig-
ure 5.1, where numbering highlights correspondent frames. This geometric mapping
between human (H) and robot (R) link frames is complemented by the constant
rotations HR i

R, with i ∈ {1, ...,m}, accounting for possible human-robot link frame
misalignments, manually identified by comparing the human and robot models in a
reference configuration such as the T-pose shown in Figure 5.1.

https://www.youtube.com/watch?v=s7-pML0ojK8
https://github.com/ami-iit/paper_viceconte_2021_ral_adherent
ami-iit/paper_viceconte_2021_ral_adherent
https://zenodo.org/record/6201915#.YhOT_Bso-8g

5.1 Background 92

Figure 5.1. Human-robot frame correspondences exploited by WBGR. Frames with
the same number are associated with each other, although they can have a different
orientation when compared in a reference configuration such as the T-pose shown here.

Then, given the human link orientations IR i
H, with i ∈ {1, ...,m}, defining at

each time instant the pose of the human to be retargeted onto the robot, WBGR
retrieves the robot joint angles realizing a pose which resembles the human’s one by
solving an inverse kinematics optimization [Sciavicco and Siciliano, 1998; Latella
et al., 2019] where the target robot link orientations are given by

IR i
R = IR i

H
HR i

R. (5.1.1)

The inverse kinematics formulation, optionally benefiting from a dynamical opti-
mization method that ensures the convergence of the frame orientation errors to
a minimum [Rapetti et al., 2020], is then expressed as a quadratic programming1

(QP) problem and solved using off-the-shelf solvers, e.g., [Stellato et al., 2020].
Notice that, thanks to the geometric approach which only requires the identifica-

tion of suitable correspondences between the human and the robot links and the
computation of fixed rotations accounting for their misalignments, WBGR allows for
changes of human subject or robotic platform with minimal effort, proving increased
scalability with respect to concurrent state-of-the-art retargeting methods.

5.1.2 Mode-Adaptive Neural Networks

Among the wide variety of methods for responsive and realistic character anima-
tion proposed in the computer graphics literature presented in Section 3.2, and in
particular within the category of kinematic motion synthesis methods illustrated in
Section 3.2.1, Mode-Adaptive Neural Networks (MANN) [Zhang et al., 2018] is a
recently-proposed neural network architecture specifically designed for multi-modal
and unlabeled data, built upon the Mixture of Experts (MoE) paradigm [Nowlan
and Hinton, 1990; Jacobs et al., 1991; Jordan and Jacobs, 1994].

1The definition of a quadratic programming (QP) problem and its close form solution are given
in Eq. (6.1.10) and Eq. (6.1.11), respectively.

5.1 Background 93

As other interactive kinematic motion synthesis approaches exploiting motion capture
data, MANN frames the character animation problem as the kinematic prediction
of the whole-body character configuration in the next animation step, given the
character configuration in the current animation step and some high-level target
specification, in the form of a future trajectory to be followed, provided by the
user interactively commanding the motion synthesis. This problem, modeled as a
nonlinear autoregressive model with exogenous inputs, is then solved by employing
powerful learning-based predictive architectures able to capture the complexity of
the character motion in high dimensions. In particular, MANN proposes a peculiar
network architecture composed of two fully-connected feedforward neural networks:

• the Motion Prediction Network (MPN), in charge of predicting the next user-
compatible character configuration;

• the Gating Network (GN), producing the blending coefficients used to compute
the weights of the MPN dynamically.

Let us indicate with the subscript ·i quantities related to the i-th animation step ti.
Assume xi ∈ Rn to encode the current character configuration as well as the desired
future motion specified by the user. The MPN, whose weights are denoted by α,
predicts the vector yi ∈ Rm encoding the next character configuration, compatible
with the user-specified motion, along with other features. Proposed in the form of a
three-layer neural network with ELU activation function – see Eq. (2.1.6) – for the
hidden units and a linear output unit, it implements the operation

yi = Θ(xi|α) = W2 ELU(W1 ELU(W0 xi + b0) + b1) + b2, (5.1.2)

where the MPN weights α are defined as

α = {W0 ∈ Rh×n,W1 ∈ Rh×h,W2 ∈ Rm×h, b0 ∈ Rh, b1 ∈ Rh, b2 ∈ Rm}, (5.1.3)

and h is the width of the MPN hidden layers.
Given xi ∈ Rn or, more often, a subset x̂i ∈ Rn′ , with n′ < n, the GN, whose

weights are denoted by µ, produces the blending coefficients θi ∈ RK used to
dynamically compute the MPN weights αi as follows. Let us introduce the softmax
activation function ρ defined component-wise on its input z ∈ RK as

ρ(z)k = ezk∑K
j=1 e

zj
, k ∈ {1, ...,K}. (5.1.4)

Proposed as a three-layer neural network with ELU and softmax activation functions
for the hidden and output units, respectively, the GN implements the operation

θi = Ω(x̂i|µ) = ρ(W ′
2 ELU(W ′

1 ELU(W ′
0 x̂i + b

′
0) + b

′
1) + b

′
2), (5.1.5)

where the GN weights µ are defined as

µ = {W ′
0 ∈ Rh

′ ×n,W
′
1 ∈ Rh

′ ×h
′
,W

′
2 ∈ RK×h

′
, b

′
0 ∈ Rh

′
, b

′
1 ∈ Rh

′
, b

′
2 ∈ RK}, (5.1.6)

and h
′ is the width of the GN hidden layers.

5.1 Background 94

x̂i xi

yi
θi αi

{α1, ..., αK}

xi+1

ui

Network
Gating Motion Prediction

Network

Ω(x̂i|µ) Θ(xi|αi)∑
θijαj

j = 1

K

Blending
Experts

Blending
User Input

Figure 5.2. Sketch of the autoregressive MANN architecture, composed of the GN with
parameters µ, the K expert weights {α1, ..., αK} and the MPN with parameters αi. The
parameters highlighted in red are learned during training and fixed at inference time,
while those highlighted in green are dynamically recomputed at each inference step. The
GN input x̂i either coincides with the MPN input xi or is a subset of its components.

As already mentioned, the blending coefficients θi outputed by the GN are used to
dynamically compute the weights α of the MPN. This is implemented by actually
maintaining K copies of the MPN weights α, i.e., K expert weights {α1, ..., αK}. At
training time, both the GN weights µ and the K expert weights {α1, ..., αK} are
simultaneously learned. At runtime, the MPN weights αi are dynamically computed
by linearly combining the K experts {α1, ..., αK} with the blending coefficients θi

produced by the GN, that is,

αi =
K∑

j=1
θijαj , (5.1.7)

where θij is the j-th blending coefficient at time i, i.e., θi = [θi1, ..., θiK]⊤.
The whole MANN architecture is summarized in Figure 5.2. At each animation

step, the GN and the MPN are fed with the subsampled input x̂i and the full
input xi, respectively. The GN outputs the blending coefficients θi from Eq. (5.1.5),
used as prescribed by Eq. (5.1.7) to dynamically compute the MPN weights αi.
Notice how such a "mixture-of-weights" approach can be equivalently interpreted as
a mixture-of-experts (MoE) whose blending occurs at the features level rather than
at the final output layer (as in conventional MoE). Finally, the MPN weights αi are
exploited by the MPN to retrieve the output yi from Eq. (5.1.2).

The next character configuration included in yi is then used to update the
character state and let the animation proceed. In an autoregressive fashion, the
output yi is also combined with the next high-level target ui from the user to form
the next MANN input xi+1. Such a mechanism enables MANN, once trained for a
typical regression task on a dataset of suitable I/O features {xi, yi} extracted from
motion capture data, to efficiently generate trajectories which accurately resemble
the reference data while being highly responsive to the user-specified commands.

5.2 Dataset collection 95

Figure 5.3. The human subject equipped with the XSens sensorized suit during the motion
capture data collection, along with its 48-DoFs associated model composed by 23 simple
geometrical shapes. The locations of the 17 IMUs spanning the human body (some of
which are covered by elastic bands) are highlighted in red, with dashed lines indicating
sensors placed on the back.

5.2 Dataset collection
To collect human locomotion reference trajectories in the form of motion capture data,
we take advantage of the human wearable data processing framework from [Latella,
2019; Rapetti et al., 2020] that fuses data from a sensorized suit by XSens technologies
[Roetenberg et al., 2009].

The whole-body motion tracking suit by XSens consists of a set of 17 Inertial
Measurement Units (IMUs) distributed all over the human body, providing kinematic
and dynamic quantities relevant for estimating the human motion at a rate of 60 Hz.
Figure 5.3 (left) shows the human subject wearing the XSens suit during the
acquisition of motion capture data.

Measurements from the XSens suit are exploited to reconstruct the human motion
on a simplified model of the human [Latella, 2019; Tirupachuri, 2020], extended
from the one that comes with the XSens suit [Roetenberg et al., 2009] and shown in
Figure 5.3 (right). In our case, the human is modeled with a set of nl = 23 rigid
bodies as links, characterized by basic geometrical shapes such as cylinders, spheres
and parallelepiped boxes with uniform and isotropic density. In this simplified human
model, most of the links are connected with each other by three subsequent revolute
joints ensuring 3 degrees of freedom (DoFs) per joint, which would lead to a total of
3(nL−1) = 66 DoFs. However, according to the properties of human biological joints,
a few joints in the simplified human model are connected by 1 or 2 revolute joints
only, with the total number of DoFs actually dropping to 48 DoFs. Despite being far
from capturing the real biomechanics of the human body, much more complex due
to the combined action of muscles, tendons and sophisticated articulations, such a
representation allows for sufficiently-accurate reference locomotion trajectories for
the purpose of this work.

5.3 Retargeting 96

Table 5.1. Breakdown of the motion capture dataset collected at 60 Hz.

Walking motion Duration [min] Datapoints Stops

Forward 8.2 29500 25
Backward 9 32450 25

Side 9.45 34000 27
Diagonal 4.2 15125 16

Mixed 30.48 109710 75

5.2.1 Motion capture dataset

Our motion capture dataset spans a wide range of walking motions (forward, back-
ward, lateral, and diagonal) performed on a flat terrain while continuously changing
the steering direction. The collected sequences, characterized by footsteps of variable
length and also including several stops and restarts, are detailed in Table 5.1. We
perform our dataset collection by first acquiring data for several minutes in a row
for each individual walking pattern. This is to sufficiently cover each target motion
and produce an overall balanced dataset. Then, a 30-minutes long mixed sequence
involving all the walking patterns is collected. This is to include enough informa-
tion about the transitions between the different motions, crucial for the trajectory
generator to learn good blending capabilities.

Our final dataset comprises around 1 hour of unlabeled motion capture data at
60 Hz. In order to compensate for asymmetries we finally double our dataset by
mirroring. In particular, for each datapoint the base orientation is mirrored with
respect to the world X-Z plane, while the link orientations for the left and right limbs
are switched and mirrored with respect to the model’s mid-sagittal plane. After
mirroring, we obtain a motion capture dataset of 441570 datapoints, that is publicly
available on Zenodo at https://zenodo.org/record/6201915#.YhOT_Bso-8g.

5.3 Retargeting
For our purposes, the reference locomotion trajectories collected from the human
need to be retargeted onto the robot. We deal with this issue by exploiting the
Whole-Body Geometric Retargeting (WBGR) technique introduced in Section 5.1.1.
WBGR, however, does not address retargeting for the base motion, and simply uses
for the robot base the reference motions collected for the human base. Nevertheless,
depending on the human and robot mechanical structures, such motions may not
be compatible with the robot kinematics. As a result, a swaying effect arises
when dynamic motions are retargeted via WBGR to robot models with remarkable
structural differences with respect to the human subject [Darvish et al., 2019]. For
instance, the robot moves faster than what its walking pace entails.

While in computer graphics generating models which perfectly fit the collected
data is a viable workaround [Zhang et al., 2018; Bergamin et al., 2019], base motion
retargeting for actual robots requires special attention. This is why we complement
WBGR with a kinematically-feasible base motion retargeting procedure which renders
the robot base motion compatible with the retargeted robot joint trajectories.

https://zenodo.org/record/6201915#.YhOT_Bso-8g

5.3 Retargeting 97

5.3.1 Kinematically-feasible base motion retargeting

In order to obtain kinematically-feasible robot base motions compatible with the
motion of the other links retrieved via WBGR, we implement the following procedure.
First, we assume that:

1. The robot makes at least one known contact with the environment at each
retargeting step.

2. Each robot foot is modeled as a rectangular patch.

Notice that the first assumption prevents the application of our kinematically-feasible
base motion retargeting procedure to motions which involve phases with no contact
with the external environment, such as running or jumping. Despite being a strong
assumption, it cannot be relaxed in the proposed approach. The second assumption,
instead, is made for computational reasons. It allows indeed to evaluate contacts
between the robot feet and the ground by simply considering a discrete set of
points, i.e., the vertices of the rectangular patch. Without this assumption, contacts
evaluation would be more tricky, especially for complex feet shapes such as the
rounded shape of the iCub v2.7 feet – see Section 3.4.1.

Given the above assumptions, we retrieve kinematically-feasible base motions
that are compatible with the retargeted motions of the other robot links by means
of the following procedure:

1. The contact point Ipc between the robot and the ground is identified as the
lowest vertex among the eight vertices of the robot feet’s rectangular patches;

2. The retargeted base orientation IRB is directly maintained from the human
motion capture data (as in WBGR);

3. The kinematically-feasible retargeted base position Ipb is computed by forward
kinematics from the selected contact point Ipc, constrained to remain fixed
between two consecutive retargeting steps.

In particular, the kinematically-feasible retargeted base position Ipb is given by
Ipb = Ipc + IRC[F]

C[F]pb, (5.3.1)

where C[F] is the mixed reference frame – see Section 1.1.2 – having its origin in
the lowest vertex selected as contact point and the same orientation as the frame F
attached to the foot the lowest vertex belongs to, i.e., the support foot. Accordingly,
in Eq. (5.3.1) C[F]pb denotes the robot base position, expressed in C[F], computed by
forward kinematics from the known contact point in the joint configuration returned
by the latest WBGR iteration.

As a result, we obtain retargeted motions for the robot that resemble the human
ones at the links level and are also kinematically-feasible at the base level, being
therefore suitable for the extraction of the network I/O features described in the
next section. A complete overview of the final dataset, retargeted onto the iCub
v2.7 humanoid and including the forward, backward, right-side, left-side, diagonal
and mixed motions described in Section 5.2.1, is provided in a dedicated portion of
the accompanying video available at https://youtu.be/s7-pML0ojK8?t=202.

https://youtu.be/s7-pML0ojK8?t=202

5.4 Trajectory generation 98

5.4 Trajectory generation
For the interactive generation of data-driven trajectories for the humanoid robot,
we exploit the Mode-Adaptive Neural Network (MANN) architecture outlined in
Section 5.1.2. Our MANN implementation, inspired by the original one [Zhang
et al., 2018], consists of a Motion Prediction Network (MPN) and a Gating Network
(GN) both composed of three hidden layers with h = 512 and h

′ = 32 units each,
respectively. We employ the ELU activation function from Eq. (2.1.6) for both the
networks. We use K = 4 sets of expert weights.

The exact definition of the input xi and output yi for our MANN implementation
is given in Section 5.4.1. Motivated by empirical results, we use the full input
xi rather than a reduced input x̂i to feed the GN. With reference to the MANN
architecture shown in Figure 5.2, the processing of the exogenous input ui from the
user and its blending with the MANN output yi is illustrated in Section 5.4.2.

5.4.1 Features extraction

In order to generate trajectories for the robot, we would like our MANN implemen-
tation to output at each generation step the free-floating system configuration q,
defined in Eq. (1.2.17), and the free-floating system velocity ν, defined for instance in
mixed representation in Eq. (1.2.16). Moreover, to allow for an interactive generation,
we would like the network input to include a description of the desired future motion
that an external user can influence to drive the process.

Inspired by previous work [Zhang et al., 2018; Holden et al., 2017], we decide
to let our network predict only a reduced configuration of the free-floating system.
In particular, our network predicts the robot joint state {s, ṡ} and the variation
ψ̇ of the robot base yaw angle ψ, ignoring instead the base linear motion and the
base roll and pitch angles. The base roll and pitch are simply constrained to zero.
While walking, these angles remain anyways close to zero and therefore this seems a
reasonable simplification for the task to be learned. On the contrary, the base yaw
needs to remain free to let the user command steering motions. As regards instead
the base linear motion, we apply to the network output the very same procedure
used to ensure kinematic feasibility at retargeting stage (see Section 5.3.1). This
procedure computes indeed a base linear motion compatible with the joint motion
predicted by the network but also kinematically-feasible, i.e. such that the contact
point between the robot foot and the ground remains fixed and, consequently, no
sliding nor similar artifacts affect the generated motion.

To make the generation interactive, again inspired by previous work [Zhang et al.,
2018; Holden et al., 2017], we encode the information related to the desired robot
motion via the motion of its base projected on the ground. The user input ui is
indeed relatively simple to express as a desired ground-projected trajectory of the
robot base. By including in yi a component representing the network prediction for
the future ground-projected evolution of the robot base, we can then blend it with ui

and exploit it in an autoregressive fashion to build the next input xi+1. Blending is
essential to ensure smooth changes in xi, which would instead be missing by directly
including ui in xi. Further details and visualization of both the features (Figure 5.4)
and the user input processing (Figure 5.5) are provided in the following.

5.4 Trajectory generation 99

Before illustrating the definitions of our MANN input xi and output yi resulting from
the above considerations, let us introduce the facing direction as the bidimensional
vector given by the normalized ground-projected mean between the frontal robot
base and chest directions. Notice that the definition of the frontal robot base and
chest directions depends, in turn, on the definition of the robot base B and chest
T frames. For instance, in the case of the iCub v2.7 humanoid, B and T are the
frames denoted by (9) and (2) in Figure 5.1, respectively. Therefore, the frontal base
direction coincides with the negative x axis of B while the frontal chest direction
with the positive z axis of T . Their mean, projected on the ground and normalized,
defines the facing direction for such a robot.

Let us also introduce the bidimensional local reference frame L in which we
assume all the quantities related to the ground-projected base trajectory in xi and
yi to be expressed. At each step ti, L is defined to have its origin in the current
ground-projected robot base position and orientation defined by the current facing
direction (along with its orthogonal vector). L is shown, for instance, in the frame
at t = t1 + 1.5s of Figure 5.4. Notice the importance of expressing the features in L,
i.e., locally. Consider for instance two forward walking motions in different global
directions. Only by expressing the correspondent features locally, such motions
would appear to the network in a similar form and could be recognized as instances of
the same task, i.e., walking forward, which is independent from the global direction.

Input features

The input vector xi includes the robot joint state at ti−1 and the ground-projected
base trajectory data at ti. We define the ground-projected base trajectory data,
i.e., past and future data about the robot base trajectory projected on the ground,
over a time window of 2 s centered at ti. In particular, we subsample k = 2r = 12
datapoints equally-spaced over the considered window. As a result, xi is defined as

xi = {vec(Pi), vec(Di), vec(Vi), li,︸ ︷︷ ︸
Ground-projected

base trajectory data

si−1, ṡi−1︸ ︷︷ ︸
Joint state

} ∈ R137, (5.4.1)

where the vec(·) operator vectorizes matrices by rows and
• Pi = {p1

i , ..., p
k
i } ∈ R2×k are ground-projected base positions (among which pr

i

is the current ground-projected base position), expressed in L;

• Di = {d1
i , ..., d

k
i } ∈ R2×k are facing directions (among which dr

i is the current
facing direction), expressed in L;

• Vi = {v1
i , ..., v

k
i } ∈ R2×k are ground-projected base velocities (among which vr

i

is the current ground-projected base velocity), obtained in the training data
by differentiation of Pi, expressed in L;

• li =
∑k

j=r+1

∥∥∥pj
i − p

j−1
i

∥∥∥ ∈ R is the length of the future ground trajectory,

• si−1 ∈ R32 and ṡi−1 ∈ R32 are the joint positions and velocities at ti−1.
The ground-projected base positions Pi and facing directions Di included in the
network input xi are shown, for different time instants during a forward walking
motion with multiple turns, in Figure 5.4.

5.4 Trajectory generation 100

t1 t1 + 0.5s t1 + 1s t1 + 1.5s t1 + 2s

t1 + 2.5s t1 + 3s t1 + 4.5st1 + 4st1 + 3.5s

{p1
i , ..., p5

i , p7
i , ..., p12

i } {d1
i , ..., d5

i , d7
i , ..., d12

i }p6
i d6

i

L

I

I

Figure 5.4. Ground-projected base positions Pi = {p1
i , ..., p

k
i } and facing directions

Di = {d1
i , ..., d

k
i }, with k = 2r = 12, at sequential time instants ti of a forward walking

with multiple turns, distant 0.5 s from each other. At each ti, the top view below the
robot visualization shows the correspondent Pi (black dots, with the current ground-
projected position p6

i in red) and Di (green arrows, with the current facing direction d6
i

in blue and longer) spanning the considered 2 s time window. For the sake of clarity, Pi

and Di are visualized here expressed in the global frame I, but those actually included
in xi are expressed in the local frame L, shown explicitly at t1 + 1.5s. Notice how, at
time ti, Pi and Di actually encode information about 1s in the past and 1s in the future,
since they store the past ground-projected base trajectory up to ti − 1s and anticipate
the future ground-projected base trajectory until ti + 1s. For instance, at t1 + 1s, the
first black dot p1

1+1s is almost coincident with the central red dot p6
1 at t1, while the last

black dot p12
1+1s is almost coincident with the central red dot p6

1+2s at t1 + 2s.

5.4 Trajectory generation 101

Output features

The output vector yi includes the joint state at ti, the base yaw variation from ti−1
to ti, and the future ground-projected base trajectory data at ti+1 (i.e., r = k/2 = 6
datapoints equally-spaced in a 1s window starting at ti). As a result, yi is defined as

yi = {vec(Pi+1), vec(Di+1), vec(Vi+1)︸ ︷︷ ︸
Future ground-projected

base trajectory data

, si, ṡi︸ ︷︷ ︸
Joint
state

, ḃa
i︸︷︷︸

Base yaw
variation

} ∈ R101, (5.4.2)

where the vec(·) operator vectorizes matrices by rows and

• Pi+1 = {p1
i+1, ..., p

r
i+1} ∈ R2×r are future ground-projected base positions;

• Di+1 = {d1
i+1, ..., d

r
i+1} ∈ R2×r are future facing directions;

• Vi+1 = {v1
i+1, ..., v

r
i+1} ∈ R2×r are future ground-projected base velocities;

• si ∈ R32 and ṡi ∈ R32 are the joint positions and velocities at ti;

• ḃa
i = βi/∆ti ∈ R is the base yaw variation, with ∆ti = ti−ti−1, and βi denoting

the angle between the current facing directions dr
i at ti and dr

i−1 at ti−1.

The network output yi is used to update the robot configuration q. In particular,
si becomes the new joint configuration and ḃa

i is exploited to update the base yaw,
obtaining therefore the updated base orientation IRB.

We observe that, when the user tries to stop the robot by releasing the analog for
the motion direction (see Section 5.4.2) , a small in-place rotation persists. Indeed,
given an xi corresponding to a desired stop, the network predicts a yi whose ḃa

i

component is slightly different from zero. To mitigate this issue, we impose ḃa
i = 0

once a desired stop for the robot is detected. Notice that we are referring here
to desired stops at the network level, which can also occur several time instants
after the user releases the joypad analog. We detect such stops by searching for
almost-identical consecutive network outputs. In particular, a stop is detected if
∥yi − yi−1∥ < τstop, with τstop = 0.05 from empirical considerations.

Moreover, let us recall that yi contains no information on the linear motion of the
robot base. The updated base position Ipb is indeed computed by applying the very
same procedure ensuring kinematic feasibility at the retargeting stage (see Section
5.3.1). Finally, the future ground-projected base trajectory data {Pi+1, Di+1, Vi+1}
included in yi is blended with the user input ui as described in the next section.

5.4.2 User input processing

At inference time, the user provides via the analogs of a joypad two continuous
signals to interactively shape the robot trajectories:

• The desired motion direction, i.e., the direction in which the user wants the
robot to move;

• The desired facing direction, i.e., the direction towards which the user wants the
robot to align its ground-projected mean of base and torso frontal directions.

5.4 Trajectory generation 102

ϑ

Figure 5.5. (Left) The desired motion and facing directions provided by the user through
the joypad analogs highlighted with the correspondent colors. (Center) The desired
future ground-projected base trajectory ui = {P ∗

i+1, D
∗
i+1, V

∗
i+1} retrieved from the user

input on the left. P ∗
i+1 are the red dots and D∗

i+1 the blue vectors, while V ∗
i+1 are not

visualized for the sake of clarity. (Right) The user-specified desired future trajectory ui

(grey) is blended with the future trajectory included in the previous network prediction
yi (magenta), leading to the future ground-projected base trajectory actually included
in the next network input xi+1 (green).

At fixed desired facing direction, varying the desired motion direction allows to
switch between frontal, sideways, and backward walking. At fixed desired motion
direction, varying the desired facing direction enables steering. Moreover, releasing
the analog for the motion direction leads the robot to a stop. The user inputs
are visualized in Figure 5.5 (left), from the local viewpoint of a robot which is
commanded to proceed forward while steering left.

Notice that the user-specified motion and facing directions may result in a desired
robot motion which is absent or extremely rare in the training dataset. In this
case, the network may generate unexpected motions. In particular, we observe
such an issue arising if the user requests the robot to steer too abruptly. With
reference to Figure 5.5 (left), we decide therefore to enforce a constraint on the angle
ϑ between the nominal forward facing direction and the desired facing direction.
Specifically, ϑ is constrained to remain in [−π/4, π/4] rad during forward walking
and in [−π/9, π/9] rad during backward and sideways walking, where the acceptable
intervals are found empirically. Preventing too abrupt motions by constraining ϑ,
despite representing a limitation on the trajectories that can be commanded by the
user, is essential to keep the motion generation consistent.

Moreover, an accurate processing of the user-specified inputs is critical for the
predictive performances of MANN. Given the desired facing and motion directions,
such a processing involves two main steps:

1. The definition of a desired future ground-projected base trajectory ui from the
user-specified inputs;

2. The blending of ui with the future ground-projected base trajectory included
in the network prediction yi.

5.4 Trajectory generation 103

As regards the first step, we smoothly interpolate the two signals from the user to
generate a desired future ground-projected base trajectory ui = {P ∗

i+1, D
∗
i+1, V

∗
i+1},

whose components are defined as in Eq. (5.4.2).
In particular, the desired motion direction is used to define the last point of

a quadratic Bézier curve starting from the current ground-projected base position
pr

i and constrained to end on the asymmetric shape shown in black in Figure 5.5,
composed of two experimentally-found semi-ellipses with same horizontal axis of
0.35 m, and vertical axes of 0.4 m and 0.25 m for the upper and lower semi-ellipse,
respectively. We obtain P ∗

i+1 by subsampling r = k/2 = 6 datapoints from this Bézier
curve. As a result of the asymmetric constraint, P ∗

i+1 is longer for forward rather
than sideways or backward walking. The user-specified facing direction is instead
mapped into a series of facing directions D∗

i+1 progressively driving the current facing
direction (always forward in the local robot perspective) to the desired one. Finally,
V ∗

i+1 is obtained by differentiating P ∗
i+1. Figure 5.5 (center) provides a visualization

of P ∗
i+1 (red dots) and D∗

i+1 (blue vectors) generated from the user-specified inputs
shown in the left part of the same figure.

Concerning the second step, we blend ui = {P ∗
i+1, D

∗
i+1, V

∗
i+1} (retrieved as

described above) with {Pi+1, Di+1, Vi+1} included in the previous network output yi

by following the method proposed in [Holden et al., 2017]. In particular, we blend
correspondent elements, e.g., P ∗

i+1 with Pi+1 or D∗
i+1 with Di+1, that we generically

denote by a∗
i+1, ai+1 ∈ R2×r, through the blending function

Ψ : R2×r × R2×r × Rr × R 7→ R2×r,

Ψ(ai+1, a
∗
i+1, t, τa) = diag(1r − tτa) ai+1 + diag(tτa) a∗

i+1,
(5.4.3)

where

• the operator diag(·) : Rn 7→ Rn×n casts its vector argument into a diagonal
matrix,

• 1r is a column vector of ones of dimension r,

• t ∈ Rr is a column vector of dimension r of elements equally-spaced in [0, 1],

• τa ∈ R is a parameter, associated to the generic element a to be blended, that
controls the responsiveness of the blending.

In particular, we set the responsiveness parameters τa for ground-projected base
positions, facing directions and ground-projected base velocities to τP = 1.5, τD = 1.3
and τV = 1.3, respectively. An example of the blending of P ∗

i+1 with Pi+1 and D∗
i+1

with Di+1 according to the selected τP and τD is shown in Figure 5.5 (right).
Especially for the positions Pi+1, it can be seen how the blended trajectory (green)
remains close to the network prediction (magenta) at the beginning, and smoothly
gets closer and closer to the user-specified trajectory (gray) as it goes further in
the future, until coinciding with it at the very end. Responsiveness parameters
τa different from those that we experimentally selected would result in a different
shaping of the blended trajectory.

5.5 Results 104

5.5 Results
In this section, we illustrate the results obtained after training the architecture
detailed in Section 5.4 on the dataset described in Section 5.3. Notice that the
following validation is conducted in a purely kinematic setting, as if we were targeting
a computer graphics application. Our first step towards the exploitation of the
proposed data-driven trajectory generator for real-world humanoids is indeed to
obtain efficiently-generated whole-body trajectories adaptable to diverse walking
pattern which also exhibit a certain degree of human-likeness, and all these properties
do not need dynamic simulations to be evaluated. For the kinematic validation, we
use the iCub v2.7 humanoid robot model.

First, let us detail the frameworks and tools we exploit to implement our learning-
based trajectory generator. For calculating rigid-body quantities, both at retargeting
and trajectory generation stage, we use the iDynTree library [Nori et al., 2015]. For
visualization purposes, i.e., with no physics engine enabled, we exploit the Gazebo
Sim simulator. The MANN architecture is implemented in TensorFlow [Abadi et al.,
2016] (although we also tested a PyTorch [Paszke et al., 2019] implementation with
comparable performances) and trained as follows.

We obtain the input and output matrices X ∈ R441570×137 and Y ∈ R441570×101 by
stacking the network features computed on the overall retargeted dataset. Normalized
to have zero mean and unit variance, X and Y constitute our training dataset. We
perform 150 training epochs on such a dataset, using mini-batches of 32 randomly-
selected samples, for a total training time of around 25 hours on an NVIDIA GeForce
GTX 1650 GPU. The learning task is a classical regression task, aiming at minimizing
the mean squared error (MSE) between the ground truth and the network prediction
– see Eq. (2.1.18). We use Adam optimizer with warm restart (AdamWR) [Loshchilov
and Hutter, 2017], configured with learning rate η = 1.0 · 10−4, weight decay rate
λ = 2.5 · 10−3, and η-restart control parameters Ti = 10 and Tmul = 2. We apply
dropout regularization with a keep-probability set to 0.7.

5.5.1 Learned walking patterns

After training, our MANN implementation proves capable of responsively generating
whole-body trajectories for different walking patterns, with each network prediction
requiring around 3 ms on a 9-th generation Intel® Core i7 CPU @ 2.60 GHz. By
simply varying motion and facing directions, the user can generate forward, backward,
and sideways walking motions. Changes in the input signals promptly translate
into smooth transitions between different walking patterns. By releasing the analog
sticks, the user can stop and then restart the robot motion at will.

Figures 5.6, 5.7, 5.8 and 5.9 show the kinematic visualization of a 10-s forward,
backward, right-side and left-side motion thus obtained, respectively. The figures
include a top view of the generated footsteps, highlighting how each walking pattern
is learned with different speed and accuracy. Also depending on the user input
processing described in Section 5.4.2, forward walking is generated at higher speed
and straighter with respect to backward walking. An intermediate speed and a
slight curvature characterize sideways walking. For each generated motion, the mean
footstep displacement from the desired motion direction is reported.

5.5 Results 105

Figure 5.6. 10-s MANN-generated forward walking. Mean footstep displacement: 0.05 cm.

Figure 5.7. 10-s MANN-generated backward walking. Mean footstep displacement: 3.12 cm.

Figure 5.8. 10-s MANN-generated left-side walking. Mean footstep displacement: 6.02 cm.

Figure 5.9. 10-s MANN-generated right-side walking. Mean footstep displacement: 5.86 cm.

5.5 Results 106

t1 t1 + 0.5s t1 + 2.5s t1 + 5s t1 + 6.5s

t1 + 8.5s t1 + 9s t1 + 13.5st1 + 10st1 + 9.5s

t1 + 14s t1 + 15s t1 + 17s t1 + 19.5s t1 + 20s

Figure 5.10. Kinematic visualization of a complex trajectory interactively generated
using the proposed learning-based architecture. The trajectory spans 20 s. Frames at
representative time instants ti are shown. For each frame, the user-specified motion (red)
and facing (blue) directions are displayed below the robot visualization. The trajectory
starts and ends with the user asking the robot to stay still. All along the trajectory, a
variety of walking patterns are commanded: straight forward walking (e.g., at t1 + 0.5s),
right-oriented forward walking (e.g., at t1 + 5s), right-side walking (e.g., at t1 + 9s), and
backward walking (e.g., at t1 + 15s). Our MANN implementation successfully generates
the requested motions and smoothly handles transitions from one to the other.

Figure 5.10 shows the kinematic visualization of a complex trajectory, including
different walking patterns and smooth transitions between them, interactively gen-
erated from the user inputs shown below each frame. For the sake of clarity, the
contacts between the feet and the ground for the entire trajectory are visualized, in
red and blue for the right and left foot, respectively. Further examples of interactive
trajectory generations are displayed in a dedicated portion of the accompanying
video available at https://youtu.be/s7-pML0ojK8?t=212.

https://youtu.be/s7-pML0ojK8?t=212

5.5 Results 107

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

time [s]

θ
pr

ofi
le

s

θ1 θ2 θ3 θ4

Figure 5.11. Blending coefficients θ profiles for an articulated trajectory of 15 s including
standing (0-1 s), straight forward walking (1-4 s), steered forward walking (4-6 s), right-
side walking (6-10 s), and left-side walking (10-15 s).

Blending coefficients activation

Besides visually inspecting the quality of the generated trajectories, we analyze
how the experts {α1, ..., α4} trained in our MANN implementation specialize in
different motions. For this purpose, we plot the profiles of the blending coefficients
θ = {θ1, ..., θ4} weighting the experts to dynamically compute the weights αi of the
Motion Prediction Network – see Eq. (5.1.7).

Figure 5.11 shows the blending coefficient profiles for different walking patterns
which follow one another within a trajectory of 15 s. Note how such profiles show
distinctive periodic patterns characterizing each motion type. For instance, in
both the straight and steered forward walking phases, only θ1 and θ2 are active,
and specialize in left and right swing motions, respectively. On the contrary, θ3
and θ4 become more active during right-side and left-side walking, respectively.
The specialization of the experts in different motions and their periodic activation
represents a qualitative confirmation of the appropriateness of the Mixture of Experts
(MoE) approach to the task of generating locomotion trajectories. The real-time
evolution of the expert profiles is shown in a dedicated portion of the accompanying
video available at https://youtu.be/s7-pML0ojK8?t=212.

5.5.2 Human-likeness

We evaluate here the human-likeness of the trajectories generated with the proposed
approach. Let us clarify first that a quantitative formulation of the concept of
human-likeness is still an open point, as well as the definition of an objective and
widely-accepted metric to measure it. Nevertheless, in order to understand which
degree of human-likeness characterizes the trajectories generated by our MANN
implementation, we compare them with trajectories directly retargeted from the
human to the robot. Despite the fact that the retargeting process could modify the
original motions to adapt them to the robot structure, which is not as flexible as
the human one, this is the closest example of human-like motions (by definition) we
can think of for our comparison. Therefore, we select trajectories retargeted from
the human to the robot as our ground-truth in terms of human-likeness.

https://youtu.be/s7-pML0ojK8?t=212

5.5 Results 108

0 1 2 3 4

−10

0

10

20
jo

in
t

po
sit

io
ns

[d
eg

] Right Hip Pitch

0 1 2 3 4
−60

−40

−20

0

Right Knee

0 1 2 3 4

−5

0

5

time [s]

jo
in

t
po

sit
io

ns
[d

eg
] Torso yaw

0 1 2 3 4
15

20

25

30

time [s]

Right Elbow

Retargeted Generated

Figure 5.12. Generated vs. human-retargeted joint trajectories for a set of representative
joints during forward walking.

In particular, we compare a forward walking generated after training with a
human-retargeted forward walking. Figure 5.12 illustrates the comparison for four
representative joints spread over the robot body, i.e., the elbow, torso yaw, hip pitch
and knee. The generated trajectories do not follow in every detail the retargeted
motion they are compared with. This is however expected, since we compare the
output of the trajectory generator, learned from a large dataset including several
instances of forward walking different from one another, with a specific individual
example of retargeted forward walking. Still, the similarity of the patterns emerging
in Figure 5.12 demonstrates that the trained model is indeed able to generate
trajectories which resemble the human motions retargeted onto the robot, and can
therefore be said to have at least a certain degree of human-likeness.

An additional indicator of the performances of the trained model in producing
motions resembling those it has been trained on is given by the root mean squared
error (RMSE) of the network-predicted joint positions si ∈ yi. Notice that we do not
consider the RMSE of the entire network output yi since it includes a lot of other
components which are irrelevant in terms of human-likeness of the generated motion.
We compute the RMSE of the network-predicted joint positions on a previously
unseen test set of around 10000 datapoints including all the considered motions
(forward, sideways, and backward) as well as transitions between them and several
stops and restarts. An average RMSE of 3.09 deg is obtained, confirming that the
network has effectively learned the regression task on this output component.

5.6 Conclusions 109

5.6 Conclusions
In this chapter, we present a learning-based whole-body trajectory generator for
humanoid robots, trained by deep supervised learning on a dataset of locomotion
trajectories in the form of motion capture data. We collect our dataset to span
a wide range of walking motions and retarget it from the human onto the robot
while guaranteeing kinematic feasibility. After extracting suitable features from the
retargeted dataset, we train our MANN implementation which allows an external
user to interactively shape the generated trajectories by simply specifying desired
motion and facing directions for the robot.

We validate the proposed approach, in a kinematic setting, on the iCub v2.7
humanoid robot model. Our trajectory generator proves efficient (3 ms per prediction
step) at providing responsive whole-body trajectories for different walking patterns
while smoothly handling transitions among them. Moreover, we show that the
generated trajectories exhibit a certain degree of human-likeness, inherited from the
human-retargeted training data.

Our approach, assuming at least one known contact with the environment at any
time step, cannot be applied to contact-free motions such as running or jumping. Its
extension to motion skills other than simple locomotion, given the task-oriented choice
of training features and processing of the user inputs, requires careful investigation.
Moreover, the proposed architecture must be retrained from scratch whenever new
motion skills are added. Besides architectural changes to increase modularity, future
work could pursue navigation of uneven ground by including perceptual terrain
features in the network input.

However, in the context of walking pattern generation on flat terrains, our
learning-based whole-body trajectory generator demonstrates efficient and general
enough to motivate its integration with state-of-the-art controllers for humanoid
locomotion, that is the topic addressed in the next chapter.

110

Chapter 6

Human-Like Whole-Body
Control of Humanoid Robots

In the previous chapter, we introduced a learning-based trajectory generator for
humanoid robots capable of efficiently producing whole-body trajectories that re-
actively follow the desired motion specified by an external user while mimicking
the motion capture data used for training. This chapter deals with the integration
of the proposed trajectory generator with a state-of-the-art whole-body controller
for humanoid robots, with the aim of deploying efficient human-like locomotion on
real-world humanoids.

We name the end-to-end system architecture resulting from such an integration
ADHERENT (humAn-Driven wHolE-body REference geNerator and conTroller).
With reference to the block diagram of ADHERENT depicted in Figure 6.1, the
pipeline that leads to the online MANN Inference block leverages the work presented
in the previous chapter. The exploitation of the MANN output within the Trajectory
Control component constitutes instead the topic of this chapter, along with some
extensions of the ADHERENT framework towards additional motions and different
robotic platforms. We validate ADHERENT with extensive simulations and real-
world experiments on both the iCub v2.7 and the iCub v3 humanoid robots (see
Sections 3.4.1 and 3.4.2, respectively), thus demonstrating the robustness and
transferability of the proposed approach.

The detailed organization of the chapter follows. Section 6.1 illustrates the differ-
ent layers composing a state-of-the-art hierarchical control architecture for humanoid
locomotion. Section 6.2 describes how to integrate our learning-based whole-body
trajectory generator with the aforementioned hierarchical control architecture to
form the end-to-end ADHERENT framework. An extension of ADHERENT covering
crouching motions is illustrated in Section 6.3. Section 6.4 presents the experimen-
tal validation of ADHERENT, also in terms of portability across different robotic
platforms. Finally, Section 6.5 concludes the chapter.

The content of this chapter partially appears in:

Viceconte, P. M., Camoriano, R., Romualdi, G., Ferigo, D., Dafarra, S.,
Traversaro, S., Oriolo, G., Rosasco, L., and Pucci, D. (2022). ADHERENT:
Learning Human-like Trajectory Generators for Whole-body Control of

6.1 Background 111

Humanoid Robots. IEEE Robotics and Automation Letters, 7(2):2779–2786.

Video https://www.youtube.com/watch?v=s7-pML0ojK8
Github ami-iit/paper_viceconte_2021_ral_adherent
Zenodo https://zenodo.org/record/6201915#.YhOT_Bso-8g

The content of Sections 6.3 and 6.4.5 will be submitted for a publication tenta-
tively titled as:

D’Elia, E., Viceconte, P. M., Rapetti, L., and Pucci, D. Learning Human-like
Trajectory Generators for Humanoid Robot Locomotion with Crouching
Abilities. (To be submitted).

Video https://www.youtube.com/watch?v=Dor1hMqAAmo

6.1 Background
We introduce here the state-of-the-art control architecture for humanoid locomotion
that we selected for the integration with our learning-based trajectory generator. In
Section 3.1, we already presented a commonly-adopted approach to address bipedal
locomotion which employs the three-layer architecture depicted in Figure 3.1. Among
the alternative architectures proposed in [Romualdi et al., 2018, 2020; Romualdi,
2022] by following this approach, we select and present here the one that defines:

• A trajectory optimization layer that starts from a unicycle-based planner to
generate the desired DCM (see Section 1.3.3) and foot trajectories;

• A simplified model control layer that implements an instantaneous control law
for the tracking of the DCM;

• A whole-body QP control layer that implements a kinematics-based controller
ensuring the tracking of the desired CoM and foot trajectories by considering
the complete robot kinematics.

The three aforementioned layers are described in the following.

6.1.1 Trajectory optimization layer

Assuming flat terrain, the trajectory optimization layer proposed in [Romualdi et al.,
2018, 2020] relies on a simple unicycle model [Siciliano et al., 2008, Chapter 11]
to generate the desired footstep locations and timings, which represents a viable
solution either with constant [Faragasso et al., 2013; Cognetti et al., 2016] or variable
[Dafarra et al., 2018] length and velocity of the footsteps. Since in our case the
footstep plan provided by the learning-based trajectory generator will remove the
need for the unicycle-based footstep generator, we skip the details related to the
unicycle planner in this overview.

https://www.youtube.com/watch?v=s7-pML0ojK8
https://github.com/ami-iit/paper_viceconte_2021_ral_adherent
ami-iit/paper_viceconte_2021_ral_adherent
https://zenodo.org/record/6201915#.YhOT_Bso-8g
https://www.youtube.com/watch?v=Dor1hMqAAmo

6.1
B

ackground
112

Dataset Collection Retargeting

MoCap
data

retargeted
MoCap

data
I/O

features

Trajectory Generation

Trajectory Control
trained
weights

MANN
output

footsteps

DCM desired

contact wrenches,
joint pos/vel,
CoM pos/vel

joint positions

CoM desired

postural

Offline
Online

Motion
Capture

Acquisition

WBGR and kinematically
feasible base motion

retargeting

Footstep and
Postural

Extraction

Features
Extraction

MANN
Training

MANN
Inference

User Input
Processing

Whole-body QP
Control

Trajectory
Optimization

Simplified Model
Control

user input

Figure 6.1. Block diagram of the end-to-end ADHERENT architecture proposed in this work, a comprehensive learning-based architecture for
efficient human-like whole-body trajectory generation and control of humanoid robots. ADHERENT consists of four main components: Dataset
Collection, Retargeting, Trajectory Generation, and Trajectory Control. In light of the modularity characterizing such an architecture, specific
methods implementing each component in the currently-proposed implementation can be easily replaced by more efficient and effective ones in
future instances of the architecture.

6.1 Background 113

xZMP5

ξeosDS
1

xZMP4

xZMP3

xZMP2

xZMP1

ξiosDS
2

ξeosDS
2

ξiosDS
3 ξeosDS

3
ξiosDS

4
ξeosDS

4

ξiosDS
5

ξiosDS
1

ξeosDS
5

ξiosDS
6

ξiosSS
1

ξeosSS
1 ≡ ξiosSS

2

ξeosSS
2 ≡ ξiosSS

3

ξeosSS
3

ξiosSS
5

ξiosSS
4

≡
xZMP6

ξeosSS
5

ξeosDS
6
≡

Figure 6.2. DCM trajectory planning for five straight footsteps on a flat terrain. The
orange segments represent the portions of DCM trajectory planned in SS by applying
the exponential interpolation technique in Eq (6.1.1) between pairs of {ξiosSS

i , ξeosSS
i }

(red circles). The blue curves represent the portions of the DCM trajectory planned in
DS by applying the polynomial interpolation method in Eq. (6.1.3) between pairs of
{ξiosDS

i , ξeosDS
i } (yellow and brown circles, respectively).

DCM trajectory planner

Given a set of footstep locations and timings from an external footstep planner,
the DCM trajectory generator proposed in [Romualdi et al., 2018, 2020] extends
[Englsberger et al., 2014] to plan a desired DCM trajectory which takes into account
both single support (SS) and double support (DS) phases. An example of the desired
DCM trajectory generated in the case of five straight footsteps on a flat terrain is
illustrated in Figure 6.2.

First, the reference DCM trajectory during SS phases is planned. Assuming the
LIP model hypothesis (see Section 1.3.1), the reference DCM trajectory in SS can
be retrieved from the solution of Eq. (1.3.25) for a constant ZMP [Romualdi, 2022,
Section 10.1.3]. In particular, the desired DCM ξSS

i for the i-th SS step is given by

ξSS
i (t) = xZMPi + eω(t−tstep

i)(ξeosSS
i − xZMPi), (6.1.1)

where xZMPi is the desired ZMP location during the i-th step (fixed and coincident
with the step location), tstep

i is the step duration, ξeosSS
i is the end-of-step desired

DCM position, ω is the time constant of the LIP model, and the time t belongs to
the step domain t ∈ [0, tstep

i]. Moreover, assume that the position of the reference
DCM at the end of the last SS phase belongs to the affine combination of the ZMPs
at the two last steps, i.e.,

ξeosSS
N−1 = αLS xZMPN

+ (1− αLS) xZMPN−1 , (6.1.2)

where the parameter αLS weighs the last two ZMP locations in the computation of
ξeosSS

N−1 (e.g., ξeosSS
5 in Figure 6.2). Since instantaneous transitions between consecutive

SS phases are assumed when planning the DCM in SS, consecutive steps are related
by ξeosSS

i−1 = ξiosSS
i , where ξiosSS

i is the initial desired DCM position for the i-th step.
A recursive application of the exponential interpolation technique in Eq. (6.1.1) from
the last to the first step of the given footstep plan allows therefore to retrieve the
desired DCM trajectory for the SS steps, depicted in orange in Figure 6.2.

6.1 Background 114

Then, the reference DCM trajectory during DS phases is planned. Since a DCM
trajectory with continuous derivative guarantees a continuous ZMP trajectory, third-
order polynomials are exploited to smooth the edges of the reference DCM trajectory
in DS. The desired DCM ξDS in DS is given by the polynomial interpolation

ξDS(t) = a3t
3 + a2t

2 + a1t1 + a0, (6.1.3)

where the coefficients aj are chosen to satisfy the DCM velocity and position
boundary conditions at the beginning and at the end of each DS phase – please refer
to [Romualdi, 2022, Section 10.1.3] for further details. Figure 6.2 depicts in blue the
desired DCM trajectory in DS, which smooths the overall DCM trajectory.

Finally, further boundary conditions to the DCM generation problem are applied
in [Romualdi, 2022, Section 10.2.1] to ensure that the initial desired DCM ξiosDS

1
coincides with the measured ground-projected CoM and the final desired DCM ξeosDS

N

with the desired ground-projected CoM, i.e., the middle point between the feet.

Swing foot trajectory planner

Given the set of footstep locations and timings from an external footstep planner,
the swing foot trajectory planner proposed in [Romualdi et al., 2018, 2020] aims
to find minimum acceleration trajectories between pairs of consecutive footstep
poses. The positional swing foot trajectory pF (t) ∈ R3 and its rotational trajectory
IRF (t) ∈ SO(3) are evaluated separately as follows.

Throughout a step, the swing foot moves from the initial position pF (t0) = pF0

to the final position pF (tN) = pFN
, reaching its maximum height pF (tapex) = pFapex

at the apex time tapex. The minimum acceleration trajectory pF (t) ∈ R3 from
pF0 to pFN

which passes by pFapex at tapex is obtained by concatenating 3rd-order
polynomial functions [Romualdi, 2022, Section 10.2.2]

pF (t) =
{
a0,3t3 + a0,2t2a0,1t1a0,0 if t0 ≤ t ≤ tapex,

a1,3t3 + a1,2t2a1,1t1a1,0 if tapex < t ≤ tN ,
(6.1.4)

with the coefficients ai,j chosen to meet the position and velocity boundary conditions
for each portion of the trajectory.

Moreover, during the step, the swing foot rotates from the initial orientation
IRF (t0) = IRF0 to the final orientation IRF (tN) = IRFN

. The minimum accel-
eration trajectory IRF (t) ∈ SO(3) from IRF0 to IRFN

, with zero initial and final
angular velocity, is given by [Romualdi, 2022, Section 10.2.2]

IRF (t) = e

(
s(t−t0) log

(
IRFN

IR⊤
F0

))
IRF0 , (6.1.5)

where s(τ) is defined as

s(τ) = 3
(tN − t0)2 τ

2 − 3
(tN − t0)3 τ

3. (6.1.6)

6.1.2 Simplified model control layer

Given a desired DCM trajectory, the simplified model control layer aims at stabilizing
it by assuming the ZMP position xZMP as control input, and consists of a DCM
instantaneous controller followed by a ZMP-CoM controller.

6.1 Background 115

DCM instantaneous controller

The DCM instantaneous controller implements the control law

x∗
ZMP = ξref − 1

ω
ξ̇ref +Kξ

p(ξ − ξref) +Kξ
i

∫
ξ − ξrefdt, (6.1.7)

where Kξ
p > I2 and Kξ

i > 02×2. Applied to Eq. (1.3.25), the proposed control law
leads to the closed-loop dynamics

ξ̇ − ξ̇ref = ω
(
I2 −Kξ

p

) (
ξ − ξref

)
− ωKξ

i

∫
ξ − ξrefdt, (6.1.8)

and therefore guarantees the tracking of the DCM references, with the DCM error
and its integral asymptotically converging to zero. However, it does not guarantee
the ZMP stability criterion (see Section 1.3.2), since it does not constrain the ZMP
strictly inside the support polygon, and may therefore lead to unfeasible motions.

ZMP-CoM controller

The desired ZMP x∗
ZMP returned by the DCM instantaneous controller according to

Eq. (6.1.7) is then stabilized, along with the planar CoM dynamics from Eq. (1.3.4),
by the control law [Choi et al., 2006]

ẋ∗
LIP = ẋref

LIP −KZMP
(
xref

ZMP − xZMP
)

+KLIP
(
xref

LIP − xLIP
)
, (6.1.9)

where KLIP > ωI2 and 02 < KZMP < ωI2.

6.1.3 Whole-body QP control layer

Given the desired CoM and foot trajectories, along with other kinematic references,
the kinematics-based whole-body QP control layer ensures their tracking by consid-
ering the complete robot kinematics. In particular, it computes the mixed system
velocity B[I]ν, defined in Eq. (1.2.16) and simply denoted as ν here, by following
the stack-of-tasks approach briefly introduced in Section 3.1.3. The constrained
optimization problem embedding low-priority tasks in the cost function and dealing
with high-priority tasks as constraints is expressed as a quadratic programming1

(QP) problem and solved using off-the-shelf solvers, e.g., [Stellato et al., 2020].
1An optimization problem with n variables and m constraints is defined a quadratic programming

(QP) problem if the objective is convex quadratic and the constraints are affine functions. A QP
problem can be expressed in the form

minimize
x

1
2x⊤P x + q⊤x + r

s.t. Gx ⪯ h,
(6.1.10)

where x ∈ Rn, P ≻ 0 is a positive definite matrix, q ∈ Rn, G ∈ Rm×n, h ∈ Rm, and r ∈ R. If the set
S = {x|Gx ⪯ h} is not empty, the solution to the QP problem exists and is unique. In particular,
being the cost function quadratic and therefore convex, such a solution is retrieved by setting the
gradient of the cost function to zero, i.e.,

∇x

[1
2x⊤P x + q⊤x + r

]
= 0, (6.1.11)

which leads to the closed-form solution x∗ = −P −1q.

6.1 Background 116

Low and high priority tasks

To evaluate the desired system velocity ν, the kinematics-based whole-body QP
controller exploits the following tasks, either with low and high priority.

The centroidal momentum task Ψh specifies a desired trajectory for the centroidal
momentum Ḡh (see Section 1.2.3) in the form

Ψh = Ḡh
∗ − JCMMν =

[
Ḡh

p∗

Ḡh
ω∗

]
−
[
I3 03×3

03×3 I3

] [
JCMMp

JCMMω

]
ν (6.1.12a)

=
[

Ḡh
p∗ − JCMMpν

Ḡh
ω∗ − JCMMων

]
=
[
ΨCoM
Ψhω

]
, (6.1.12b)

where JCMM is the centroidal momentum matrix (see Section 1.2.3) and Eq. (6.1.12b)
makes explicit the task decomposition into its linear ΨCoM and angular Ψhω com-
ponents. The linear target Ḡh

p∗ is often selected to guarantee the tracking of the
reference CoM, while the angular target Ḡh

ω∗ is often set equal to zero, i.e.,

Ḡh
p∗ = m

[
ẋref

CoM +KCoM
(
xref

CoM − xCoM
)]
, (6.1.13)

Ḡh
ω∗ = 03×1, (6.1.14)

where KCoM is a positive matrix.
The cartesian task ΨLSE(3) specifies a desired cartesian trajectory IHref

L =
(pref

L , IRref
L) for the link L via its mixed velocity L[I]vI,L (see Eq. (1.2.24)) as

ΨLSE(3) = L[I]v∗
I,L − JLν =

[
ṗ∗

L
Iω∗

I,L

]
−
[
I3 03×3

03×3 I3

] [
JLp

JLω

]
ν (6.1.15a)

=
[
ṗ∗

L − JLpν
Iω∗

I,L − JLων

]
=
[

ΨLR3

ΨLSO(3)

]
, (6.1.15b)

where JL is the mixed Jacobian of the link L (see Eq. (1.2.24)) and Eq. (6.1.15b)
makes explicit the task decomposition into its linear ΨLR3 and angular ΨLSO(3)

components. The linear ṗ∗
L and angular Iω∗

I,L targets are selected to guarantee the
tracking of the reference position pref

L and orientation IRref
L , respectively, i.e.,

ṗ∗
L = ṗref

L +KLp

(
pref

L − pL

)
, (6.1.16)

Iω∗
I,L = Iωref

I,L +KLω log
(

IRref
L

IR⊤
L

)
, (6.1.17)

where KLp and KLω are positive matrices.
Finally, the joint regularization task Ψs specifies desired values sref for the joint

positions through the joint velocities ṡ in the form

Ψs = ṡ∗ −
[
0n×6 In

]
ν, (6.1.18)

where n are the robot actuated degrees of freedom and the target ṡ∗ is chosen as

ṡ∗ = ṡref +Ks

(
sref − s

)
, (6.1.19)

where Ks is a positive definite diagonal matrix.

6.2 Trajectory control 117

6.2 Trajectory control
We illustrate here how we integrate the learning-based whole-body trajectory genera-
tor presented in Chapter 5 with the hierarchical state-of-the-art control architecture
for humanoid locomotion introduced in Section 6.1 to form the end-to-end ADHER-
ENT framework shown in Figure 6.1. In the following, we detail our implementation
of the three layers composing the selected locomotion controller, with a particu-
lar focus on how each individual layer exploits the output of the learning-based
whole-body trajectory generator.

Trajectory optimization layer

We provide as inputs to both the DCM planner (see Section 6.1.1) and the swing foot
planner (see Section 6.1.1) the desired feet positions and orientations composing the
footstep plan directly retrieved from the MANN-generated trajectories. While the
interactive trajectory generation proceeds (in open-loop with respect to the actual
tracking on the robot), our Footstep Extractor module adds a new footstep location
to the plan every time a change of support foot is detected. Concerning orientations,
since we assume a flat terrain, only the network-predicted yaw angle of the support
foot is considered in the plan.

Notice that the direct exploitation of the MANN-generated trajectories to build a
footstep plan in the proposed architecture removes the need for commonly-employed
external footstep planners, such as the unicycle-based ones [Faragasso et al., 2013;
Cognetti et al., 2016; Dafarra et al., 2018], which employ simplified models limiting
their generalization capabilities when generating footsteps.

Finally, let us remark that also the swing foot trajectories may have been directly
extracted from the MANN-generated robot motion, removing therefore the need for
the swing foot planner as well. We observe, however, that minimum acceleration
swing trajectories with a fixed maximum height pFapex (see Section 6.1.1) increase
the overall feasibility of the walking motions (keep in mind that the employed DCM
instantaneous controller from Section 6.1.2 does not guarantee feasible motions).
Therefore, we maintain the swing foot planner in our current implementation.

Simplified model control layer

We compute the desired CoM velocity ẋ∗
LIP by concatenating the DCM instantaneous

controller from Eq. (6.1.7) and the ZMP-CoM controller from Eq. (6.1.9). Then, we
retrieve the desired CoM position x∗

LIP by simple Euler integration.

Whole-body QP control layer

We consider the following high and low priority tasks for the kinematics-based
whole-body QP controller:

• The right and left feet poses returned by the swing foot planner are considered
as high-priority cartesian tasks (see Eq. (6.1.15)), denoted by ΨRSE(3) and
ΨLSE(3) , respectively.

6.2 Trajectory control 118

• The CoM trajectory returned by the simplified model control layer is considered
as a high-priority linear momentum task (see Eq. (6.1.12b)), denoted by ΨCoM.

• The data-driven whole-body joint postural {s, ṡ} included in the MANN-
generated output y (see Eq. (5.4.2)) is considered as low-priority joint reg-
ularization task (see Eq. (6.1.18)), denoted by Ψs. Notice that while our
learning-based trajectory generator provides references compatible with the
frequency of the data on which it has been trained, i.e., 60 Hz, the whole-body
QP controller expects postural references at its own control frequency. There-
fore, we implement a Postural Extractor module which smoothly interpolates
network-predicted posturals to obtain references at the required frequency.

• An additional task with the purpose of zeroing the torso roll and pitch angles is
considered as low-priority SO(3) task (see Eq. (6.1.15b)), denoted by ΨTSO(3) .

Notice that, as opposed to classical humanoid robot locomotion controllers which
usually adopt a constant postural term for the joints to remain as close as possible
to a fixed predefined configuration [Righetti et al., 2011; Romualdi et al., 2018, 2020;
Nava et al., 2016], our data-driven postural changes in time and acts as a joint
regularizer towards human-like walking motions.

As regards the SO(3) task related to the roll and pitch angles for the torso,
we observe that it increases the overall feasibility of the walking motions (that
is not guaranteed by the employed DCM instantaneous controller described in
Section 6.1.2). Therefore, we decide to add it despite the fact that it competes with
the motion of the torso promoted by the network-generated whole-body postural.
The torso yaw angle remains, however, free of following as much as possible the
data-driven postural reference.

The whole-body optimization problem resulting from the definition of the afore-
mentioned high and low priority tasks takes the form:

minimize
ν

Ψ⊤
TSO(3)

ΛT ΨTSO(3) + Ψ⊤
s ΛsΨs (6.2.1a)

s.t. ΨRSE(3) = 0 (6.2.1b)
ΨLSE(3) = 0 (6.2.1c)
ΨCoM. (6.2.1d)

Being the tasks linearly dependent on the robot velocity ν, the optimization problem
in Eq. (6.2.1) can be casted into a QP problem which takes the form:

minimize
ν

ν⊤Hν + 2g⊤ν

s.t. Aν ⪯ b,
(6.2.2)

where the Hessian matrix H and the gradient vector g are evaluated from the cost
function in Eq. (6.2.1a), while the constraint matrix A and vector b are evaluated
from the constraints in Eqs. (6.2.1b), (6.2.1c), and (6.2.1d).

The QP problem in Eq. (6.2.2) is solved using off-the-shelf solvers, e.g., [Stellato
et al., 2020], to retrieve the optimal ν∗. Finally, the desired joint velocity ṡ∗ included
in the QP problem solution ν∗ is integrated to obtain the desired joint position s∗

actually set as references for the low-level position controller.

6.3 Crouching ability 119

6.3 Crouching ability

Figure 6.3. An example of crouching-to-upright walking transition included in the motion
capture dataset collected for the extension of ADHERENT to crouching skills. Notice
how the subject makes the transition while performing a step, i.e., without stopping.

Table 6.1. Breakdown of the crouching motion capture dataset. For each walking motion,
also the number of transitions (both crouching-to-upright and viceversa) is reported.

Walking motion Duration [min] Datapoints Stops Transitions

Forward 3.8 13775 13 40
Backward 3.5 12429 7 32

Side 3.8 13821 7 30
Diagonal 1.6 5628 5 13

Mixed 11.4 41125 31 64

We describe here our investigation about the flexibility of the proposed ADHER-
ENT architecture with respect to the addition of new motion skills. For this purpose,
we extend ADHERENT to handle crouching capabilities while walking, including
smooth transitions from upright to crouching walking and viceversa. Crouching is
per se a desirable motion capability, because it can enhance walking stability [Lee
et al., 2015] and help navigating in scenarios with low ceiling. More importantly, it
allows us to assess the modularity of the proposed framework. In the following, we
present the modifications to the whole ADHERENT pipeline (from dataset collection
to trajectory control) required to extend it towards the new crouching skill.

6.3.1 Dataset collection and retargeting

To consider crouching motions, we extend our motion capture dataset presented
in Section 5.2. The new dataset contains the same walking patterns considered
in Section 5.2 but performed while crouching, including starts and stops as well
as transitions from crouching to upright walking and viceversa. Details about the
collected motions are reported in Table 6.1, while Figure 6.3 shows an example of
crouching-to-upright walking transition. Before mirroring, our dataset comprises
around 25 minutes of unlabeled motion capture data, that we retarget using the
very same procedure guaranteeing kinematic feasibility described in Section 5.3.

6.3 Crouching ability 120

6.3.2 Trajectory generation and control

For the network to distinguish and learn crouching, and for the user to be able
to interactively command such an additional motion, we implement the following
modifications to the trajectory generation and control ADHERENT components.

Crouching parameterization

To parameterize crouching, we examine different metrics (including the evolution
of the CoM, the robot base frame B and its head frame H) looking for those
demonstrating a more distinctive variation between crouching and upright walking.
Due to the forward leaning characterizing crouching, the x coordinates of the CoM
Bxx

CoM and head Bxx
h, expressed locally in the robot base frame B, as well as the

global head height Ixz
h, show a remarkable variation between crouching and upright

walking. Since the CoM is also influenced by other types of actions besides crouching,
e.g., reaching the arms out to hold an object, we decide to parameterize crouching
using information related to the head frame only, i.e., Bxx

h and Ixz
h. The head motion

is quite a natural parameterization for crouching, whose main purpose is lowering
the head to pass under low ceilings. Table 6.4 (left) reports the average variation of
the selected features between crouching and upright walking, for a sample forward
walking retargeted from the human onto the robot.

Features extraction

The selected features, extracted over the 2 s time window including k = 2r = 12
datapoints considered in Section 5.4.1, are added to the MANN input which becomes

xi = { vec(Hi),︸ ︷︷ ︸
Crouching

parameterization

vec(Pi), vec(Di), vec(Vi), li,︸ ︷︷ ︸
Ground-projected

base trajectory data

si−1, ṡi−1︸ ︷︷ ︸
Joint state

} ∈ R161, (6.3.1)

where the vec(·) operator vectorizes matrices by rows and Hi = {h1
i , ..., h

k
i } ∈ R2×k,

with h = [Bxx
h

Ixz
h]⊤, are the head local x and global z coordinates, while the other

terms are defined as in Eq. (5.4.1).
Similarly, by adding the crouching parameterization, the MANN output becomes

yi = { vec(Hi+1),︸ ︷︷ ︸
Future crouching
parameterization

vec(Pi+1), vec(Di+1), vec(Vi+1)︸ ︷︷ ︸
Future ground-projected

base trajectory data

, si, ṡi︸ ︷︷ ︸
Joint
state

, ḃa
i︸︷︷︸

Base yaw
variation

} ∈ R113, (6.3.2)

where the vec(·) operator vectorizes matrices by rows, Hi+1 = {h1
i+1, ..., h

r
i+1} ∈ R2×r

are the future head local x and global z coordinates, and the remaining terms are
defined as in Eq. (5.4.2).

Let us recall that the extension of the network input and output vectors to
include the additional features which parameterize crouching is required to have
a future head trajectory in the network prediction blended with the user-specified
input. Blending the network-predicted head trajectory with the desired one specified
by the user (as opposed to feeding the network directly with the user-specified input)
ensures indeed gradual changes in the network input when crouching is enabled
or disabled, that is coherent with the training data in which transitions between
upright and crouching walking take at least 0.5 s to complete.

6.4 Results 121

User input processing

The crouching input joins the two other existing input signals, i.e., the motion
and facing directions introduced in Section 5.4.2, as a third user-specified input
for trajectory generation. In particular, the user is allowed to enable or disable
crouching by pressing a dedicated button.

Depending on the boolean crouching status, i.e., either crouching enabled or
disabled, a future desired trajectory H∗

i+1 for the head is planned, whose components
are defined in Eq. (6.3.2). The processing of the crouching input is simpler than
the processing of the other user-specified inputs performed to retrieve the desired
future ground-projected base trajectory ui = {P ∗

i+1, D
∗
i+1, V

∗
i+1} described in Section

5.4.2. Specifically, the future head trajectory retrieved from the crouching input is a
constant trajectory over the 1-s future time window. When crouching is disabled, it
prescribes the features Bxx

h and Ixz
h to remain at their nominal values for upright

walking for the entire window. When crouching is enabled, both features are shifted
by their average variation between crouching and upright walking measured from
the retargeted dataset (see Table 6.4, left).

Finally, the user-specified H∗
i+1 is blended with the network-predicted Hi+1

using the very same function adopted to blend corresponding elements in ui, i.e.,
the blending function defined in Eq. (5.4.3). For the head trajectories, we use a
responsiveness parameter τH = 1.5.

Trajectory control

To stabilize trajectories that also include crouching motions, we exploit our imple-
mentation of the trajectory optimization, simplified model control and whole-body
QP control layers detailed in Section 6.2, with no modifications.

Since the crouching objective is hindered by the SO(3) task ΨTSO(3) aiming at
zeroing the roll and pitch angles for the torso (see Section 6.2), we deactivate such a
task when crouching is enabled.

6.4 Results
In this section, we address the experimental validation of the proposed ADHERENT
framework. After showing the trajectory control performances of ADHERENT on
the iCub v2.7 humanoid in Section 6.4.1, we investigate the transferability of the
proposed approach on different robotic platforms by porting the entire ADHERENT
architecture on the iCub v3 humanoid. Given the successful results of such a porting
illustrated in Section 6.4.2, we further validate the trajectory control performances
of the proposed framework on both robots.

In particular, the performances of ADHERENT in terms of robustness and
human-likeness are evaluated in Section 6.4.3 and Section 6.4.4, respectively, with
experiments carried out on both the iCub v2.7 humanoid and the iCub v3 humanoid in
each section. Finally, Section 6.4.5 shows the results of the extension of ADHERENT
to crouching motions, obtained using the simulated iCub v2.7 humanoid in the
Gazebo simulator [Koenig and Howard, 2004].

6.4 Results 122

6.4.1 Controlled walking patterns

By combining the learning-based whole-body trajectory generator from Chapter 5
with the hierarchical humanoid locomotion controller from Section 6.2, the proposed
ADHERENT architecture allows to execute on the iCub v2.7 humanoid – see
Section 3.4.1 – the learning-based walking trajectories shown in a kinematic setting
in Section 5.5.1. These include forward, backward, and sideways walking, with start
and stops as well as smooth transitions from one to another. Depending on the
walking motion, the data-driven trajectories need to be scaled in terms of walking
speed and/or footstep length for a successful execution on the real robot – see Section
6.4.3 for a deeper analysis. Once the DCM plan has been computed, the simplified
model and whole-body QP controllers stabilize the trajectories at 100 Hz on a 4-th
generation Intel® Core i7 @ 1.7 GHz.

Figure 6.4 (bottom) illustrates the successful execution on the iCub v2.7 humanoid
of the complex data-driven trajectory visualized in a kinematic setting in the upper
part of the same figure. Such a trajectory starts with a forward walking, which is
then oriented towards right, and is followed by a right-side walking. After a few
steps on the right, the robot smoothly transitions to backward walking before finally
stopping. The complete footstep sequence performed by the robot is drawn on the
screenshots for the sake of clarity. Further successful trajectory executions on the
iCub v2.7 humanoid are shown in a dedicated portion of the accompanying video
available at https://youtu.be/s7-pML0ojK8?t=237.

Let us remark here the key role of the hierarchical locomotion controller from
Section 6.2 for the ADHERENT framework to succeed on physics-based simulations
and real-robot experiments. Despite the MANN-generated trajectory being human-
like – see Section 5.5.2 – and therefore likely "close" to feasible, directly tracking the
joint references from the MANN-based trajectory generator in a physics simulation
leads the robot to immediately fall. This is because, especially with our position-
controlled robot, joint references which correspond to even slightly-unfeasible motions
have a significant impact on the overall walking performances.

For instance, it is highly likely for the MANN-based trajectory generator to learn
slightly non-zero roll and pitch angles for the support foot, leading to problematic
impacts with the ground or imbalance during single support – these issues are instead
mitigated by replanning the swing foot trajectories as described in Section 6.1.1.
Similarly, the oscillatory references for the torso roll and pitch angles learned by the
MANN-based trajectory generator represent a source of imbalance for the robot,
increasing therefore the probabilities of a fall – this issue is instead mitigated by the
torso-related SO(3) task described in Section 6.2.

In summary, we observe that in our experimental setting directly tracking the
joint references from the MANN-based trajectory generator does not lead to suc-
cessful walking motions, and further trajectory optimization is required to increase
the overall motion feasibility (that, however, is not guaranteed by the employed
DCM instantaneous controller described in Section 6.1.2). The locomotion controller
from Section 6.2 plays here a role which is equivalent to that of the RL-based
policy allowing for tracking data-driven posturals as best as physically possible in
concurrent works, e.g., [Bergamin et al., 2019].

https://youtu.be/s7-pML0ojK8?t=237

6.4
R

esults
123

Figure 6.4. (Top) Kinematic visualization of a mixed trajectory including forward (1-3), oriented-forward (4-6), side (7-11), and backward (12-15)
walking, with smooth transitions between them and a final stop (16). Below each frame, the user inputs interactively shaping the trajectory
are plotted from the robot’s local viewpoint (red: desired motion direction; blue: desired facing direction). (Bottom) The same trajectory
performed on the iCub v2.7 humanoid. Numbering highlights frame correspondences.

6.4 Results 124

Despite being successful in that the robot is able to walk without falling, the
trajectories in the accompanying video at https://youtu.be/s7-pML0ojK8?t=237
cannot be said to exhibit a high degree of agility. Both at the mechanical and at the
control level, this is related to our specific validation platform.

The joints of the iCub v2.7 humanoid exploited for locomotion purposes are
indeed all electrically actuated by brushless motors with harmonic drive transmissions
– see Section 3.4.1. Compared to other actuation technologies such as the hydraulic
actuation of Atlas2 or the series elastic actuation of Valkyrie [Paine et al., 2015], such
an actuation system does not provide high impact robustness, resulting therefore
less adequate for dynamic locomotion [Hutter et al., 2016]. Improved agility could
also be achieved by using leaf springs as Digit3 does.

Moreover, the stiffness imposed by controlling the robot in position penalizes
agile motions. However, current state-of-the-art controllers for iCub v2.7 are not
suitable yet for torque control of highly dynamic motions [Romualdi et al., 2020],
especially due to the lack of joint torque sensors and the subsequent noisy estimation
of joint torques from the force-torque sensors depicted in Figure 3.6a.

6.4.2 Transferability on a different platform

We analyze the transferability of the proposed ADHERENT framework by porting
the entire pipeline onto the iCub v3 humanoid (see Section 3.4.2). With reference to
the four main components of the ADHERENT architecture shown in Figure 6.1, the
minimal changes required for the porting are summarized in the following:

• Dataset collection: no changes are required at this stage, since the motion
capture dataset (see Section 5.2.1) does not depend on the robot.

• Retargeting: once proper human-robot frame correspondences are defined (see
Figure 5.1), both WBGR (see Section 5.1.1) and its extension guaranteeing
kinematic-feasibility of the base motion (see Section 5.3.1) seamlessly apply to
different robots. Retargeting simply needs to be repeated on the new model.

• Trajectory generation: apart from little details such as the proper definition of
the frontal robot base and chest direction, which depend on the robot base
B and chest T frames definition (see Section 5.4.1), also the MANN-based
trajectory generator does not depend on the adopted robot. However, the input
and output features need to be recomputed on the new retargeted dataset and
the MANN architecture needs to be trained from scratch on the new features.
The user input processing and blending remains unchanged.

• Trajectory control: apart from gain tuning, also the trajectory control archi-
tecture is robot-independent. Even the tasks and priorities (see Section 6.2)
are general enough to be maintained when switching platform.

In summary, the proposed ADHERENT framework is particularly suitable for being
ported across different humanoids (under the basic assumption that reasonable
human-robot link correspondences can be defined), although it is not optimized for
this process (retraining from scratch can require a significant amount of time).

2https://www.bostondynamics.com/atlas
3https://agilityrobotics.com/robots

https://youtu.be/s7-pML0ojK8?t=237
https://www.bostondynamics.com/atlas
https://agilityrobotics.com/robots

6.4 Results 125

Figure 6.5. Backward (top) and right-side (bottom) walking performed on iCub v3.

As regards the specific porting of the ADHERENT framework on the iCub v3
humanoid, both at the trajectory generation level and at the trajectory control level
we obtain comparable results with those illustrated for the iCub v2.7 humanoid in
Section 5.5.1 and Section 6.4.1, respectively.

In terms of trajectory generation, after training with the very same parameters
reported in Section 5.5 for iCub v2.7, also with iCub v3 our implementation allows
an external user to interactively shape the robot trajectories for different walking
patterns including forward, backward, and sideways motions, as well as starts and
stops, with transitions among them smoothly handled by the network. The network
prediction time remains around 3 ms on a 9-th generation Intel® Core i7 CPU @
2.60 GHz, since the architecture is unchanged.

In terms of trajectory control, the proposed ADHERENT architecture allows
to successfully execute on the iCub v3 humanoid all the aforementioned walking
motions, including starts and stops and smooth transitions among the different
motions. Also in this case, depending on the motion, a scaling in terms of walking
speed and/or step length can be needed for successful executions on the real robot
(see Section 6.4.3 for a deeper analysis). For the iCub v3 humanoid, the control loop
runs at 100 Hz on a 11-th generation Intel® Core i7 @ 1.8 GHz.

Figure 6.5 illustrates the successful execution on the iCub v3 humanoid of two
sample data-driven trajectories, i.e., backward (top) and right-side (bottom) walking.

6.4 Results 126

6.4.3 Robustness analysis

Given the retargeted motion capture data used for training, the walking patterns
learned through ADHERENT are characterized by a nominal walking speed4 v and
a nominal average step size f . Depending on the motion style of the human subject
who carried out the data collection and on the robot kinematic structure taken
into account at retargeting stage, v and f may vary considerably. However, the
trajectories generated at their nominal v and f , despite being kinematically-feasible,
are not always successfully controlled (for several reasons, among which especially
the performances of the employed high-level and low-level controllers). Particularly
on real robots, they often need to be scaled both in terms of walking speed and
footstep length for a successful tracking.

Therefore, we evaluate the robustness of the proposed framework on a challenging
range of step sizes and walking speeds, both in simulation and on real robots. In
particular, we scale the ADHERENT-generated trajectories in terms of walking
speed by a factor cv ∈ {0.25, 0.33, 0.5, 1} (where 1 denotes no scaling, i.e., nominal
walking speed) and in terms of footstep length by a factor cf ∈ {0.2, 0.4, 0.6, 0.8, 1}
(where 1 denotes no scaling, i.e., nominal step size). A trajectory scaled by cv and
cf is characterized by a scaled footstep size

f̄ = cf · f, (6.4.1)

and a scaled walking speed
v̄ = cv · cf · v. (6.4.2)

In the following, we report the results of this analysis on the simulated and real iCub
v2.7 and iCub v3 humanoids. All the combinations of velocity and footstep scaling
{cv, cf} within the aforementioned ranges are tested on the simulated humanoids. As
regards the real platforms, we restrict the analysis to a limited number of experiments,
for which we also discuss the ZMP, DCM, and CoM tracking performances.

iCub v2.7 humanoid

The walking patterns learned through ADHERENT on the iCub v2.7 humanoid are
characterized by:

• A nominal walking speed v of 0.525 ms−1, 0.175 ms−1, and 0.24 ms−1 for
forward, backward, and side walking, respectively.

• A nominal average step size f of of 28.0 cm, 19.5 cm, and 17.5 cm for forward,
backward, and side walking, respectively.

Figure 6.6 summarizes the results of the robustness analysis of ADHERENT on the
simulated and real iCub v2.7 humanoid. Forward, backward and sideways walking
motions are considered. Concerning simulations, the green and red areas in Figure 6.6
highlight successes and failures, respectively. For each considered motion, most of
the scaling combinations are successful. Regardless of cv, the maximum admissible
cf for a successful backward and sideways walking is 0.8 and 0.6, respectively.

4We define the walking speed as average swing velocity, i.e., as ratio between the measured step
length and its duration [Romualdi et al., 2020]. The duration of each step is obtained by summing
the duration of its swing phase plus the duration of the subsequent double support (DS) phase.

6.4 Results 127

0.2 0.4 0.6 0.8 1

1

0.5

0.33

0.25

footstep scaling cf

ve
lo

ci
ty

sc
al

in
g
c v

Forward Walking

0.2 0.4 0.6 0.8 1

1

0.5

0.33

0.25

footstep scaling cf

Backward Walking

0.2 0.4 0.6 0.8 1

1

0.5

0.33

0.25

footstep scaling cf

Sideways Walking

Figure 6.6. Simulated and experimental results of the robustness analysis of ADHERENT
on the iCub v2.7 humanoid. For the different walking patterns, each combination {cv, cf}
is included in a red or green area depending on whether it resulted into a failure or
a success on the simulated iCub v2.7 humanoid. The green lines connect the most
challenging successes (highlighted by green squares) on the real iCub v2.7 humanoid.

As regards experiments on the real robot, the solid green lines in Figure 6.6 connect
the most challenging successful ones. Notice that we did not perform an extensive
tuning of the locomotion controller on the real robot, which could have reduced the
mismatch between the simulated and experimental results. In particular, the most
challenging successful experiments on the iCub v2.7 humanoid are characterized by:

• A walking speed v̄ of 0.158 ms−1, 0.07 ms−1, and 0.072 ms−1 for forward,
backward, and side walking, respectively.

• An average step size f̄ of 16.8 cm, 7.9 cm, and 10.5 cm for forward, backward,
and side walking, respectively.

The nominal walking velocities and step sizes characterizing the different walking
motions are summarized, along with the walking velocities and step sizes actually
achieved for the most challenging combinations of scaling factors successfully tested
on the robot, in Table 6.2.

Moreover, Figure 6.7 and Figure 6.8 report the ZMP, DCM, and CoM tracking
for the most challenging forward ({cv = 0.5, cf = 0.6}) and left-side ({cv = 0.5, cf =
0.6}) walking successfully executed on the iCub v2.7 humanoid. For the forward
walking, the DCM and the CoM errors are kept below 8 cm and 2 cm, respectively.
For the left-side walking, the DCM error reaches peaks of 12 cm but the CoM error
still remains below 2 cm.

Table 6.2. Nominal and experimental velocities and step sizes for the iCub v2.7 humanoid.

Forward Backward Sideways

nominal
cv = 0.5
cf = 0.6 nominal

cv = 1.0
cf = 0.4 nominal

cv = 0.5
cf = 0.6

v (ms−1) 0.525 0.158 0.175 0.07 0.24 0.072
f (cm) 28.0 16.8 19.5 7.9 17.5 10.5

6.4 Results 128

0 1 2 3 4 5 6
0

0.2

0.4

time (s)

x
(m

)

0 1 2 3 4 5 6

−0.2

0

0.2

y
(m

)

ZMP

0 1 2 3 4 5 6
0

0.2

0.4

time (s)

x
(m

)

0 1 2 3 4 5 6

−0.2

0

0.2

y
(m

)

DCM

0 1 2 3 4 5 6
0

0.2

0.4

time (s)

x
(m

)

Desired Measured

0 1 2 3 4 5 6

−0.2

0

0.2
y

(m
)

CoM

Desired Measured

Figure 6.7. ZMP (top), DCM (center) and CoM (bottom) tracking for a forward walking
performed on the iCub v2.7 humanoid, characterized by a velocity scaling cv = 0.5 and
a footstep scaling cf = 0.6.

6.4 Results 129

0 1 2 3 4 5 6

0

0.2

time (s)

x
(m

)

0 1 2 3 4 5 6

0

0.2

y
(m

)

ZMP

0 1 2 3 4 5 6

0

0.2

time (s)

x
(m

)

0 1 2 3 4 5 6

0

0.2

y
(m

)

DCM

0 1 2 3 4 5 6
−0.2

0

0.2

time (s)

x
(m

)

Desired Measured

0 1 2 3 4 5 6

0

0.2

y
(m

)

CoM

Desired Measured

Figure 6.8. ZMP (top), DCM (center) and CoM (bottom) tracking for a left-side walking
performed on the iCub v2.7 humanoid, characterized by a velocity scaling cv = 0.5 and
a footstep scaling cf = 0.6.

6.4 Results 130

0.2 0.4 0.6 0.8 1

1

0.5

0.33

0.25

footstep scaling cf

ve
lo

ci
ty

sc
al

in
g
c v

Forward Walking

0.2 0.4 0.6 0.8 1

1

0.5

0.33

0.25

footstep scaling cf

Backward Walking

0.2 0.4 0.6 0.8 1

1

0.5

0.33

0.25

footstep scaling cf

Sideways Walking

Figure 6.9. Simulated and experimental results of the robustness analysis of ADHERENT
on the iCub v3 humanoid. Red and green areas denote failures and successes in simulation.
The green squares highlight successful experiments on the real robot.

iCub v3 humanoid

The ADHERENT-learned walking motions on the iCub v3 are characterized by:

• A nominal walking speed v of 0.59 ms−1, 0.346 ms−1, and 0.34 ms−1 for
forward, backward, and side walking, respectively.

• A nominal average step size f of of 38.8 cm, 26.5 cm, and 20.8 cm for forward,
backward, and side walking, respectively.

Figure 6.9 summarizes the results of the robustness analysis of ADHERENT on the
simulated and real iCub v3 humanoid. Concerning simulations, for forward and
backward walking the iCub v3 robot succeeds in the full range of parameters. Its
performances in sideways walking are the same of the iCub v2.7 robot. As regards
real experiments, the most challenging successes on iCub v3 – with no extensive
tuning of the locomotion controller – are characterized by:

• A walking speed v̄ of 0.177 ms−1, 0.104 ms−1, and 0.068 ms−1 for forward,
backward, and side walking, respectively.

• An average step size f̄ of 23.3 cm, 15.9 cm, and 8.3 cm for forward, backward,
and side walking, respectively.

In comparison with iCub v2.7, iCub v3 achieves therefore better performances in
forward and backward walking, while it is slowed down by a footstep scaling factor
cf = 0.4 for sideways walking. See also Table 6.3.

Table 6.3. Nominal and experimental velocities and step sizes for the iCub v3 humanoid.

Forward Backward Sideways

nominal
cv = 0.5
cf = 0.6 nominal

cv = 0.5
cf = 0.6 nominal

cv = 0.5
cf = 0.4

v (ms−1) 0.59 0.177 0.346 0.104 0.34 0.068
f (cm) 38.8 23.3 26.5 15.9 20.8 8.3

6.4 Results 131

0 1 2 3 4 5 6

−0.4

−0.2

0

time (s)

x
(m

)

0 1 2 3 4 5 6

−0.2

0

0.2

y
(m

)

ZMP

0 1 2 3 4 5 6

−0.4

−0.2

0

time (s)

x
(m

)

0 1 2 3 4 5 6

−0.2

0

0.2

y
(m

)

DCM

0 1 2 3 4 5 6

−0.4

−0.2

0

time (s)

x
(m

)

Desired Measured

0 1 2 3 4 5 6

−0.2

0

0.2
y

(m
)

CoM

Desired Measured

Figure 6.10. ZMP (top), DCM (center) and CoM (bottom) tracking for a backward walking
performed on the iCub v3 humanoid, characterized by a velocity scaling cv = 0.5 and a
footstep scaling cf = 0.6.

6.4 Results 132

0 1 2 3 4 5 6

−0.2

0

0.2

time (s)

x
(m

)

0 1 2 3 4 5 6

−0.2

0

y
(m

)

ZMP

0 1 2 3 4 5 6

−0.2

0

0.2

time (s)

x
(m

)

0 1 2 3 4 5 6
−0.4

−0.2

0

y
(m

)

DCM

0 1 2 3 4 5 6

−0.2

0

0.2

time (s)

x
(m

)

Desired Measured

0 1 2 3 4 5 6
−0.4

−0.2

0
y

(m
)

CoM

Desired Measured

Figure 6.11. ZMP (top), DCM (center) and CoM (bottom) tracking for a right-side walking
performed on the iCub v3 humanoid, characterized by a velocity scaling cv = 0.5 and a
footstep scaling cf = 0.4.

6.4 Results 133

Finally, Figure 6.10 and Figure 6.11 report the ZMP, DCM and CoM tracking for the
most challenging backward ({cv = 0.5, cf = 0.6}) and right-side ({cv = 0.5, cf = 0.4})
walking successfully executed on the iCub v3 humanoid. In both cases, the DCM
and CoM errors are kept below 6 cm and 3 cm, respectively. When comparing
these results with the tracking results reported for the iCub v2.7 in Figure 6.7 and
Figure 6.8, keep in mind that while the iCub v3 backward and the iCub v2.7 forward
walking are characterized by the same scaling parameters, the iCub v3 right-side
and the iCub v2.7 left-side walking are not (in particular, the footstep scaling is
higher for iCub v3, which makes only seem performances better).

In general, we can conclude that the tracking performances among the two robots
(which also strongly depend on the tuning of the high-level and low-level controllers)
are comparable, and the slight differences in terms of walking velocities and step
sizes mainly reflect the structural differences among the robots (see Section 3.4).

6.4.4 Human-likeness

Given the human-like postural provided by the MANN-based trajectory generator (see
Section 5.5.2), we evaluate the human-likeness of the actual robot motion obtained
using the ADHERENT framework by comparing the joint positions measured on
the robot with those in the MANN-generated postural. Showing that the MANN-
generated postural is closely tracked by the measured robot joints (despite the action
of the whole-body QP controller) indicates indeed that also the final robot motion
exhibits a certain degree of human-likeness.

As an additional evaluation, we compare the walking motions obtained by
using the data-driven MANN-generated postural with those obtained by adopting a
fixed postural for the upper body, as is often the case in classical humanoid robot
locomotion [Righetti et al., 2011; Nava et al., 2016; Romualdi et al., 2018, 2020].

iCub v2.7 humanoid

Figure 6.12 compares, for a representative set of joints, the reference postural and
the measured joint positions for two forward walking trajectories executed on the
iCub v2.7 humanoid. For one of the trajectories, the data-driven MANN-generated
postural is active. The good tracking performances in this case demonstrate that the
reference motion produced by the trajectory generator trained on human-retargeted
data is actually realized on the robot, obtaining therefore an overall human-like robot
motion. The other trajectory uses instead a fixed postural. In this case, measured
joint positions obviously oscillate in proximity of the constant reference.

This emphasizes how ADHERENT, as opposed to most state-of-the-art controllers
for humanoid locomotion, exploits humanoid upper-body redundancy when tackling
locomotion tasks to improve the human-likeness of the overall robot motion.

iCub v3 humanoid

Figure 6.13 presents a similar analysis (without fixed postural) for the iCub v3
humanoid. Apart from a tracking delay which remains to be investigated (possibly
leading to better overall walking performances), also in this case the human-like
MANN-generated postural is followed quite accurately by the measured joints.

6.4 Results 134

0 5 10 15
−4
−2

0
2
4

jo
in

t
po

s
[d

eg
]

Torso Yaw

0 5 10 15

−10

0

10

Left Shoulder Yaw

0 5 10 15

−5

0

5

time [s]

jo
in

t
po

s
[d

eg
]

Left Shoulder Pitch

0 5 10 15

15
20
25
30

time [s]

Left Elbow

PosturalMP MeasuredMP PosturalFP MeasuredFP

Figure 6.12. Reference postural and measured joint positions with MANN-generated
Postural (MP) vs. Fixed Postural (FP) for four representative upper-body joints of the
iCub v2.7 humanoid.

0 5 10 15

−5

0

5

jo
in

t
po

s
[d

eg
]

Torso Yaw

0 5 10 15
−26
−24
−22
−20
−18

Left Shoulder Yaw

0 5 10 15

−20

−15

−10

time [s]

jo
in

t
po

s
[d

eg
]

Left Shoulder Pitch

0 5 10 15

0

5

10

time [s]

Left Elbow

PosturalMP MeasuredMP

Figure 6.13. Reference postural and measured joint positions with MANN-generated
Postural (MP) for four representative upper-body joints of the iCub v3 humanoid.

6.4 Results 135

Figure 6.14. Crouching-to-upright walking transition of the iCub v2.7 simulated in
Gazebo. Notice how the transition during stepping demonstrated in the training data
(see Figure 6.3) is effectively learned and succesfully executed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

time [s]

θ
pr

ofi
le

s

θ1 θ2 θ3 θ4

Figure 6.15. Blending coefficients θ profiles for a 15 s forward walking which includes
crouching motions. The robot is standing still at the beginning (0-1.8s), walks forward
upright in the middle (1.8-8.7s), and then proceeds forward while crouching (8.7-15s).

6.4.5 Crouching

Finally, we evaluate the performances of the ADHERENT framework extended to
include crouching motions after training it on the motion capture dataset resulting
from the combination of the collected upright (see Section 5.2) and crouching (see
Section 6.3.1) trajectories. We use the very same architecture (see Section 5.4) and
training parameters (see Section 5.5) of the original ADHERENT implementation,
retrained from scratch to learn the additional task. In particular, we maintain K = 4
experts no matter the additional motions to be learned.

In terms of trajectory generation, the performances obtained with the extended
ADHERENT framework are close but not equivalent to those demonstrated by the
original implementation. Once trained, the extended framework is able to generate
forward and backward walking while crouching, with changes of direction and smooth
transitions between crouching and upright locomotion. The increased complexity of
the task, however, makes it difficult to learn symmetric gaits and perform combina-
tions such as walking sideways while crouching, for which the current implementation
of the extended framework does not succeed.

6.4 Results 136

Table 6.4. Comparison of the crouching features Bxx
h and Ixz

h averaged over a 20 s forward
walking directly retargeted from human data (left) vs generated and controlled using
ADHERENT (right). Notice that the x axis for iCub v2.7 points backward, and therefore
the more negative Bxx

h the more the head is leaning forward.

Retargeted data ADHERENT-controlled
Bxx

h (m) Ixz
h (m) Bxx

h (m) Ixz
h (m)

Crouching -0.1790 0.7092 -0.1405 0.7808
Upright -0.0643 0.8592 -0.0540 0.8435

Difference 0.1147 0.1500 0.0970 0.0663

Compared to the original implementation, the K = 4 experts specialize differently.
Figure 6.15 shows the profiles of the blending coefficients θ determining the experts
activations for a forward upright walking followed by a forward walking while
crouching. In this case, θ2 only activates during the former, while alternate periodic
activations of θ1 and θ4 characterize the latter. Not having a periodic alternation of
experts for forward upright walking, as opposed to the original implementation (see
Figure 5.11), would motivate the idea of increasing the number of experts for better
performance here, although that would also increase the training time.

Concerning trajectory control performances, we observe that, if the postural task
ΨTSO(3) is deactivated while crouching (see Section 6.3.2), the trajectory controller
is able to track the ADHERENT-generated references while maintaining balance.
Also smooth transitions between upright and crouching walking without stopping,
such as the one shown in Figure 6.14, are successfully executed. Further results of
trajectories including crouching controlled on the simulated iCub v2.7 are shown in a
dedicated video available at https://youtu.be/Dor1hMqAAmo. Given the bottleneck
at the trajectory generation level (asymmetric gaits, inability to generate sideways
walking while crouching) which leads to trajectories at least occasionally challenging
to track, we decide not to perform an experimental validation of the crouching-
extended ADHERENT framework on real robots. As future work, we plan to further
investigate solutions (e.g., use more experts) which mitigate the current issues and
enable proper experimental validation.

As an additional evaluation of the learned model performances in reproducing the
crouching ability demonstrated in the training data, Table 6.4 compares the selected
head-related crouching features Bxx

h and Ixz
h (see Section 6.3) for a sample upright

and crouching forward walking from the retargeted data and a trajectory controlled
on the simulated iCub v2.7 humanoid. It can be noticed that the head position
difference between crouching and upright walking, from the retargeted data to the
trajectory control, is in the same range for Bxx

h but not for Ixz
h. In other words,

the final crouching motion obtained on the robot is characterized by a head height
that is not as low as the one demonstrated by the human in the training crouching
trajectories. This could be related to the action of the low-level whole-body QP
controller on the reference postural as well as to the footstep scaling applied at
trajectory control stage. Despite lowering the head less than the training data, the
controlled crouching trajectories properly exhibit torso leaning and subsequent head
lowering, as shown in the initial frames of Figure 6.14.

https://youtu.be/Dor1hMqAAmo

6.5 Conclusions 137

6.5 Conclusions
In this chapter, we present ADHERENT, an end-to-end architecture for whole-
body trajectory generation and control of humanoid robots. ADHERENT joins
together the advantages of learning-based trajectory generation and state-of-the-art
hierarchical locomotion control. By doing so, it allows for human-like whole-body
motions, more predictable and interpretable for humans, to be efficiently computed
and executed on complex humanoids.

We demonstrate the robustness of ADHERENT through an extensive validation
in simulation and real experiments on both the iCub v2.7 and the iCub v3 humanoid
robots, showing how, as long as meaningful correspondences between the human and
the robot links can be defined to retarget the training motion capture dataset, the
proposed approach can be easily transferred to other humanoids. Moreover, through
the use case of crouching motions, we investigate the modularity of ADHERENT to
the integration of additional skills.

The proposed approach exhibits several limitations that we would like to address
in future works. First, when controlling the data-driven trajectories on real robots,
a scaling of the walking velocity and step size is required. This could be due to
the limitations of the simple instantaneous controllers employed in the current
ADHERENT implementation, that we would like to replace with more advanced
MPC-based or RL-based controllers in future implementations, hopefully enabling to
track higher speeds and longer steps without loosing balance. Secondly, the proposed
approach assumes flat terrains. By exploiting motion capture data collected on
uneven terrains and including measurements perceived from the external environment
in the input and output features for the MANN-based trajectory generator, we would
like to relax this assumption and target data-driven locomotion in more complex
terrains. Finally, our learning-based generator needs to be trained from scratch every
time a new motion skill or a new robot is targeted. As a future work, we would like
to investigate network architectural changes as well as continual/lifelong learning
methods to increase the modularity of the proposed architecture.

138

Epilogue

This thesis attempted to investigate the application of different learning-based
approaches to planning and control of humanoid robot locomotion, by combining
methods that proved their effectiveness in different research areas. Part I contains
indeed an overview of the state-of-the-art relevant for this work from both robotics
and computer graphics research. In particular, the literature related to bipedal
locomotion in robotics and character animation in computer graphics is reviewed,
trying to highlight the many contact points between these two fields. Both humanoid
robots, in the physical world, and humanoid characters, in the virtual world, are
expected to resemble, to a certain degree, the human beings they are inspired to.
As a result, the correspondent research areas share a certain number of issues and
potential solutions, despite their research being driven by different targets, namely
physical applications in robotics and virtual applications in computer graphics.
Part I also includes the fundamental background required for a correct interpretation
of the methods developed in the thesis.

Part II presents instead the learning-based methods proposed in the thesis, along
with their validation on simulated and real robots. Motivated by the curiosity of in-
vestigating the emergence of learning-based control policies for humanoid locomotion,
in Chapter 4 we design a deep reinforcement learning agent for learning balancing and
push-recovery strategies, fundamental skills for more complex locomotion tasks. To
guide the agent towards the development of effective whole-body strategies, we shape
the reward function using domain knowledge in humanoid control. Validated on a
simulated version of the iCub v2.7 humanoid, the proposed approach proves robust
in generating highly-dynamic whole-body policies to counteract even significantly
out-of-sample external pushes. However, during validation we observe the emergence
of robot motions which, despite being effective for the simulated humanoid, look
unnatural and above all far from being feasible.

Rather than tackling walking (as a natural extension of the balancing task)
using deep reinforcement learning, inspired by the impressive performances of
character animation systems generating natural-looking behaviours from motion
capture data, in Chapter 5 we introduce a whole-body trajectory generator for
humanoid locomotion that exploits deep supervised learning. After collecting a rich
and wide-ranging motion capture dataset, properly retargeted on the selected robot,
we train our trajectory generator on suitable features extracted from the retargeted
dataset, thus enabling an interactive trajectory generation with minimal user inputs.
Validated in a kinematic setting on the iCub v2.7 humanoid model, the proposed
approach proves capable of efficiently producing diverse walking patterns and smooth
transitions among them, also exhibiting a certain degree of human-likeness.

Epilogue 139

The performances of the learning-based trajectory generator presented in Chapter 5,
although limited to flat terrains, motivate us to integrate it with a state-of-the-art
locomotion controller for humanoid robots. Chapter 6 introduces the end-to-end
architecture, named ADHERENT, resulting from such an integration. Within
ADHERENT, the footstep plan and the whole-body postural produced by our
learning-based trajectory generator are exploited by the locomotion controller to
improve the human-likeness of the overall robot motion. We experimentally validate
ADHERENT on both the iCub v2.7 and the iCub v3 humanoids, thus also proving
the transferability of our architecture across different platforms.

In summary, satisfactory experiments on the real robot could only be achieved
when integrating the proposed learning-based methods with state-of-the-art hier-
archical control architectures for humanoid locomotion. Having enough feasibility
guarantees to adopt on the real platform purely learning-based approaches, such
as the RL-based control policy for balancing and push-recovery, remains an open
question. Even the approach that proves successful on the real robot (i.e., supervised-
learning-based trajectory generation combined with model-based trajectory control)
does not allow for the execution of the data-driven walking trajectories without
scaling their velocity or footstep length. We believe that this is mainly related to
the simple instantaneous controllers integrated, in the current implementation, with
the learning-based trajectory generator. As a future work, we would like to replace
them with more advanced controllers, e.g., MPC-based ones, to fully exploit the
potential of the human-driven trajectories.

In the Prologue, we mentioned that humanoid locomotion, as a general problem,
is still far from being a trivial task, and that its solution could be addressed from
several perspectives. The attempt made in this thesis to make the best of both the
model-free learning-based approach and the model-based hierarchical approach is
only a preliminary step, still suffering from many limitations. Nevertheless, we hope
that the work presented in this thesis may inspire further developments towards
more natural behaviours for humanoid robots at no expense (actually, in favour) of
their robustness and safety guarantees.

140

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., and Zheng, X. (2016). TensorFlow: a system for large-scale machine learning.
In Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation.

Aceituno-Cabezas, B., Mastalli, C., Dai, H., Focchi, M., Radulescu, A., Caldwell,
D. G., Cappelletto, J., Grieco, J. C., Fernández-López, G., and Semini, C. (2018).
Simultaneous Contact, Gait, and Motion Planning for Robust Multilegged Loco-
motion via Mixed-Integer Convex Optimization. IEEE Robotics and Automation
Letters, 3(3):2531–2538.

Agrawal, S. and van de Panne, M. (2016). Task-based locomotion. ACM Transactions
on Graphics, 35(4):82:1–82:11.

Amari, S.-i. (1998). Natural Gradient Works Efficiently in Learning. Neural Compu-
tation, 10(2):251–276.

Apicella, A., Donnarumma, F., Isgrò, F., and Prevete, R. (2021). A survey on
modern trainable activation functions. Neural Networks, 138:14–32.

Arakawa, T. and Fukuda, T. (1997). Natural motion generation of biped locomotion
robot using hierarchical trajectory generation method consisting of GA, EP layers.
In Proceedings of International Conference on Robotics and Automation, volume 1,
pages 211–216.

Arikan, O. and Forsyth, D. A. (2002). Interactive motion generation from examples.
ACM Transactions on Graphics, 21(3):483–490.

Beaudoin, P., Coros, S., van de Panne, M., and Poulin, P. (2008). Motion-motif
graphs. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation.

Bergamin, K., Clavet, S., Holden, D., and Forbes, J. R. (2019). DReCon: data-driven
responsive control of physics-based characters. ACM Transactions on Graphics,
38(6):1–11.

Bin Peng, X., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., and Levine, S. (2020).
Learning Agile Robotic Locomotion Skills by Imitating Animals. In Robotics:
Science and Systems XVI.

Bibliography 141

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bloesch, M., Humplik, J., Patraucean, V., Hafner, R., Haarnoja, T., Byravan, A.,
Siegel, N. Y., Tunyasuvunakool, S., Casarini, F., Batchelor, N., Romano, F.,
Saliceti, S., Riedmiller, M., Eslami, S. M. A., and Heess, N. (2022). Towards Real
Robot Learning in the Wild: A Case Study in Bipedal Locomotion. In Proceedings
of the 5th Conference on Robot Learning. ISSN: 2640-3498.

Bombile, M. and Billard, A. (2017). Capture-point based balance and reactive omni-
directional walking controller. In 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics.

Borst, C., Wimböck, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F.,
Giordano, P., Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schäeffer, A.,
and Hirzinger, G. (2009). Rollin’ Justin - Mobile Platform with Variable Base.

Bouyarmane, K. and Kheddar, A. (2018). On Weight-Prioritized Multitask Control
of Humanoid Robots. IEEE Transactions on Automatic Control, 63(6):1632–1647.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
and Zaremba, W. (2016). OpenAI Gym.

Budhiraja, R., Carpentier, J., Mastalli, C., and Mansard, N. (2018). Differential
Dynamic Programming for Multi-Phase Rigid Contact Dynamics. In 2018 IEEE-
RAS 18th International Conference on Humanoid Robots (Humanoids).

Cannata, G., Maggiali, M., Metta, G., and Sandini, G. (2008). An embedded
artificial skin for humanoid robots. In 2008 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems.

Caron, S. and Kheddar, A. (2016). Multi-contact walking pattern generation based
on model preview control of 3D COM accelerations. In 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids).

Caron, S. and Kheddar, A. (2017). Dynamic walking over rough terrains by nonlinear
predictive control of the floating-base inverted pendulum. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Caron, S. and Pham, Q.-C. (2017). When to make a step? Tackling the timing
problem in multi-contact locomotion by TOPP-MPC. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids).

Caron, S., Pham, Q.-C., and Nakamura, Y. (2015). Stability of Surface Contacts
for Humanoid Robots: Closed-Form Formulae of the Contact Wrench Cone for
Rectangular Support Areas. In Proceedings - IEEE International Conference on
Robotics and Automation.

Caron, S., Pham, Q.-C., and Nakamura, Y. (2017). ZMP Support Areas for Multi-
contact Mobility Under Frictional Constraints. IEEE Transactions on Robotics,
33(1):67–80.

Bibliography 142

Carpentier, J., Del Prete, A., Tonneau, S., Flayols, T., Forget, F., Mifsud, A.,
Giraud-Esclasse, K., Atchuthan, D., Fernbach, P., Budhiraja, R., Geisert, M.,
Stasse, O., Mansard, N., and Solà, J. (2017). Multi-contact Locomotion of Legged
Robots in Complex Environments – The Loco3D project. RSS Work- shop on
Challenges in Dynamic Legged Locomotion.

Carpentier, J., Tonneau, S., Naveau, M., Stasse, O., and Mansard, N. (2016). A
versatile and efficient pattern generator for generalized legged locomotion. In 2016
IEEE International Conference on Robotics and Automation (ICRA).

Castillo, G. A., Weng, B., Zhang, W., and Hereid, A. (2020). Hybrid Zero Dynamics
Inspired Feedback Control Policy Design for 3D Bipedal Locomotion using Re-
inforcement Learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA).

Castillo, G. A., Weng, B., Zhang, W., and Hereid, A. (2021). Robust Feedback
Motion Policy Design Using Reinforcement Learning on a 3D Digit Bipedal Robot.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Chai, J. and Hodgins, J. K. (2005). Performance animation from low-dimensional
control signals. ACM Transactions on Graphics, 24(3):686–696.

Chai, J. and Hodgins, J. K. (2007). Constraint-based motion optimization using a
statistical dynamic model. ACM Transactions on Graphics, 26(3):8–es.

Chentanez, N., Müller, M., Macklin, M., Makoviychuk, V., and Jeschke, S. (2018).
Physics-based motion capture imitation with deep reinforcement learning. In
Proceedings of the 11th ACM SIGGRAPH Conference on Motion, Interaction and
Games.

Choi, Y., Kim, D., and You, B.-J. (2006). On the walking control for humanoid
robot based on the kinematic resolution of CoM Jacobian with embedded motion.
In Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006. ISSN: 1050-4729.

Clavet, S. (2016). Motion Matching and The Road to Next-Gen Animation. Proc.
of GDC.

Clever, D., Harant, M., Mombaur, K., Naveau, M., Stasse, O., and Endres, D. (2017).
COCoMoPL: A Novel Approach for Humanoid Walking Generation Combining
Optimal Control, Movement Primitives and Learning and its Transfer to the Real
Robot HRP-2. IEEE Robotics and Automation Letters, 2(2):977–984.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs). In 4th International
Conference on Learning Representations.

Cognetti, M., De Simone, D., Lanari, L., and Oriolo, G. (2016). Real-time planning
and execution of evasive motions for a humanoid robot. In 2016 IEEE International
Conference on Robotics and Automation.

Bibliography 143

Coros, S., Beaudoin, P., and van de Panne, M. (2009). Robust task-based control
policies for physics-based characters. ACM Transactions on Graphics, 28(5):1–9.

Coros, S., Beaudoin, P., and van de Panne, M. (2010). Generalized biped walking
control. In ACM SIGGRAPH 2010 papers.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314.

Da Silva, M., Abe, Y., and Popović, J. (2008). Simulation of Human Motion
Data using Short-Horizon Model-Predictive Control. Computer Graphics Forum,
27(2):371–380.

Dafarra, S., Darvish, K., Grieco, R., Milani, G., Pattacini, U., Rapetti, L., Romualdi,
G., Salvi, M., Scalzo, A., Sorrentino, I., Tomè, D., Traversaro, S., Valli, E.,
Viceconte, P. M., Metta, G., Maggiali, M., and Pucci, D. (2022a). iCub3 Avatar
System. arXiv:2203.06972.

Dafarra, S., Nava, G., Charbonneau, M., Guedelha, N., Andrade Chavez, F., Traver-
saro, S., Fiorio, L., Romano, F., Nori, F., Metta, G., and Pucci, D. (2018). A
Control Architecture with Online Predictive Planning for Position and Torque
Controlled Walking of Humanoid Robots. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Dafarra, S., Romano, F., and Nori, F. (2016). Torque-controlled stepping-strategy
push recovery: Design and implementation on the iCub humanoid robot. In 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

Dafarra, S., Romualdi, G., Metta, G., and Pucci, D. (2020). Whole-Body Walking
Generation using Contact Parametrization: A Non-Linear Trajectory Optimization
Approach. In IEEE International Conference on Robotics and Automation.

Dafarra, S., Romualdi, G., and Pucci, D. (2022b). Dynamic Complementarity Condi-
tions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion.
IEEE Transactions on Robotics, 38(6):3414–3433.

Dai, H., Valenzuela, A., and Tedrake, R. (2014). Whole-body motion planning
with centroidal dynamics and full kinematics. In 2014 IEEE-RAS International
Conference on Humanoid Robots.

Dantec, E., Budhiraja, R., Roig, A., Lembono, T., Saurel, G., Stasse, O., Fernbach,
P., Tonneau, S., Vijayakumar, S., Calinon, S., Taix, M., and Mansard, N. (2021).
Whole Body Model Predictive Control with a Memory of Motion: Experiments on
a Torque-Controlled Talos. In 2021 IEEE International Conference on Robotics
and Automation (ICRA). ISSN: 2577-087X.

Darvish, K., Tirupachuri, Y., Romualdi, G., Rapetti, L., Ferigo, D., Chavez, F.
J. A., and Pucci, D. (2019). Whole-Body Geometric Retargeting for Humanoid
Robots. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids).

Bibliography 144

De Simone, D., Scianca, N., Ferrari, P., Lanari, L., and Oriolo, G. (2017). MPC-
based humanoid pursuit-evasion in the presence of obstacles. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A Survey on Policy Search
for Robotics. Foundations and Trends in Robotics, 2(1-2):1–142.

Deits, R. and Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-
integer convex optimization. In 2014 IEEE-RAS International Conference on
Humanoid Robots.

Diedam, H., Dimitrov, D., Wieber, P.-B., Mombaur, K., and Diehl, M. (2008). Online
walking gait generation with adaptive foot positioning through Linear Model
Predictive control. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Dubey, S. R., Singh, S. K., and Chaudhuri, B. B. (2022). Activation functions in deep
learning: A comprehensive survey and benchmark. Neurocomputing, 503:92–108.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization. Journal of Machine Learning
Research, 12(61):2121–2159.

Englsberger, J., Koolen, T., Bertrand, S., Pratt, J., Ott, C., and Albu-Schäffer, A.
(2014). Trajectory generation for continuous leg forces during double support and
heel-to-toe shift based on divergent component of motion. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Englsberger, J., Mesesan, G., Ott, C., and Albu-Schäffer, A. (2018a). DCM-Based
Gait Generation for Walking on Moving Support Surfaces. In 2018 IEEE-RAS
18th International Conference on Humanoid Robots (Humanoids).

Englsberger, J., Mesesan, G., Werner, A., and Ott, C. (2018b). Torque-Based
Dynamic Walking - A Long Way from Simulation to Experiment. In 2018 IEEE
International Conference on Robotics and Automation (ICRA).

Englsberger, J., Ott, C., and Albu-Schaffer, A. (2013). Three-dimensional bipedal
walking control using Divergent Component of Motion. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Englsberger, J., Ott, C., and Albu-Schäffer, A. (2015). Three-Dimensional Bipedal
Walking Control Based on Divergent Component of Motion. IEEE Transactions
on Robotics, 31(2):355–368.

Englsberger, J., Ott, C., Roa, M. A., Albu-Schäffer, A., and Hirzinger, G. (2011).
Bipedal walking control based on Capture Point dynamics. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Fahmi, S., Mastalli, C., Focchi, M., and Semini, C. (2019). Passive Whole-Body
Control for Quadruped Robots: Experimental Validation Over Challenging Terrain.
IEEE Robotics and Automation Letters, 4(3):2553–2560.

Bibliography 145

Faragasso, A., Oriolo, G., Paolillo, A., and Vendittelli, M. (2013). Vision-based
corridor navigation for humanoid robots. In 2013 IEEE International Conference
on Robotics and Automation.

Featherstone, R. (2014). Rigid Body Dynamics Algorithms. Springer.

Feng, S., Whitman, E., Xinjilefu, X., and Atkeson, C. G. (2015). Optimization-based
Full Body Control for the DARPA Robotics Challenge. Journal of Field Robotics,
32(2):293–312.

Ferigo, D., Traversaro, S., Metta, G., and Pucci, D. (2020). Gym-Ignition: Repro-
ducible Robotic Simulations for Reinforcement Learning. In 2020 IEEE/SICE
International Symposium on System Integration (SII).

Fernbach, P., Tonneau, S., and Taïx, M. (2018). CROC: Convex Resolution of
Centroidal Dynamics Trajectories to Provide a Feasibility Criterion for the Multi
Contact Planning Problem. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Ficht, G. and Behnke, S. (2021). Bipedal Humanoid Hardware Design: a Technology
Review. Current Robotics Reports, 2(2):201–210.

Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. (2015). Recurrent Network
Models for Human Dynamics. In 2015 IEEE International Conference on Computer
Vision (ICCV).

Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., and Nori,
F. (2012). Force feedback exploiting tactile and proximal force/torque sensing.
Autonomous Robots, 33(4):381–398.

Geijtenbeek, T. and Pronost, N. (2012). Interactive Character Animation Us-
ing Simulated Physics: A State-of-the-Art Review. Computer Graphics Forum,
31(8):2492–2515.

Giraud-Esclasse, K., Fernbach, P., Buondonno, G., Mastalli, C., and Stasse, O.
(2020). Motion Planning with Multi-Contact and Visual Servoing on Humanoid
Robots. In 2020 IEEE/SICE International Symposium on System Integration
(SII).

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems.

Bibliography 146

Griffin, R. J. and Leonessa, A. (2016). Model predictive control for dynamic footstep
adjustment using the divergent component of motion. In 2016 IEEE International
Conference on Robotics and Automation (ICRA).

Griffin, R. J., Wiedebach, G., Bertrand, S., Leonessa, A., and Pratt, J. (2017).
Walking stabilization using step timing and location adjustment on the humanoid
robot, Atlas. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. (2004). Style-based
inverse kinematics. ACM Transactions on Graphics, 23(3):522–531.

Habibie, I., Holden, D., Schwarz, J., Yearsley, J., and Komura, T. (2017). A
Recurrent Variational Autoencoder for Human Motion Synthesis. In Procedings
of the British Machine Vision Conference 2017.

Harvey, F. G. and Pal, C. (2018). Recurrent transition networks for character
locomotion. In SIGGRAPH Asia 2018 Technical Briefs.

Harvey, F. G., Yurick, M., Nowrouzezahrai, D., and Pal, C. (2020). Robust Motion
In-betweening. ACM Transactions on Graphics, 39(4).

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez,
T., Wang, Z., Eslami, S. M. A., Riedmiller, M., and Silver, D. (2017). Emergence
of Locomotion Behaviours in Rich Environments.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018).
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications
of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational
Advances in Artificial Intelligence.

Herzog, A., Rotella, N., Schaal, S., and Righetti, L. (2015). Trajectory generation
for multi-contact momentum control. In 2015 IEEE-RAS 15th International
Conference on Humanoid Robots.

Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. (1998). The development
of Honda humanoid robot. In Proceedings. 1998 IEEE International Conference
on Robotics and Automation (Cat. No.98CH36146), volume 2, pages 1321–1326.
ISSN: 1050-4729.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In Proceedings
of the 30th International Conference on Neural Information Processing Systems.

Hof, A. L. (2008). The ‘extrapolated center of mass’ concept suggests a simple
control of balance in walking. Human Movement Science, 27(1):112–125.

Holden, D., Kanoun, O., Perepichka, M., and Popa, T. (2020). Learned motion
matching. ACM Transactions on Graphics, 39(4).

Holden, D., Komura, T., and Saito, J. (2017). Phase-functioned neural networks for
character control. ACM Transactions on Graphics, 36(4):1–13.

Bibliography 147

Holden, D., Saito, J., and Komura, T. (2016). A deep learning framework for character
motion synthesis and editing. ACM Transactions on Graphics, 35(4):138:1–138:11.

Holden, D., Saito, J., Komura, T., and Joyce, T. (2015). Learning motion manifolds
with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical Briefs.

Hong, S., Han, D., Cho, K., Shin, J. S., and Noh, J. (2019). Physics-based full-body
soccer motion control for dribbling and shooting. ACM Transactions on Graphics,
38(4):74:1–74:12.

Hopkins, M. A., Hong, D. W., and Leonessa, A. (2014). Humanoid locomotion on
uneven terrain using the time-varying divergent component of motion. In 2014
IEEE-RAS International Conference on Humanoid Robots. ISSN: 2164-0580.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366.

Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo,
J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S., Melzer, A.,
and Hoepflinger, M. (2016). ANYmal - a highly mobile and dynamic quadrupedal
robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., and
Hutter, M. (2019). Learning agile and dynamic motor skills for legged robots.
Science Robotics, 4(26):eaau5872.

Ibanez, A., Bidaud, P., and Padois, V. (2014). Emergence of humanoid walk-
ing behaviors from mixed-integer model predictive control. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Iwasaki, T., Venture, G., and Yoshida, E. (2012). Identification of the inertial
parameters of a humanoid robot using grounded sole link. In 2012 12th IEEE-
RAS International Conference on Humanoid Robots (Humanoids 2012). ISSN:
2164-0580.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive
Mixtures of Local Experts. Neural Computation, 3(1):79–87.

Jeong, H., Lee, I., Oh, J., Lee, K. K., and Oh, J.-H. (2019). A Robust Walking
Controller Based on Online Optimization of Ankle, Hip, and Stepping Strategies.
IEEE Transactions on Robotics, 35(6):1367–1386.

Joe, H.-M. and Oh, J.-H. (2018). Balance recovery through model predictive
control based on capture point dynamics for biped walking robot. Robotics and
Autonomous Systems, 105:1–10.

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical Mixtures of Experts and the
EM Algorithm. Neural Computation, 6(2):181–214.

Bibliography 148

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and
Hirukawa, H. (2003). Biped walking pattern generation by using preview control
of zero-moment point. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422), volume 2, pages 1620–1626.

Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. (2001). The
3D linear inverted pendulum mode: a simple modeling for a biped walking
pattern generation. In Proceedings 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No.01CH37180), volume 1, pages 239–246.

Kakade, S. M. (2001). A Natural Policy Gradient. In Advances in Neural Information
Processing Systems, volume 14.

Kamioka, T., Kaneko, H., Takenaka, T., and Yoshiike, T. (2018). Simultaneous
Optimization of ZMP and Footsteps Based on the Analytical Solution of Divergent
Component of Motion. In 2018 IEEE International Conference on Robotics and
Automation (ICRA).

Khadiv, M., Herzog, A., Moosavian, S. A. A., and Righetti, L. (2016). Step timing
adjustment: A step toward generating robust gaits. In 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids).

Kim, H., Seo, D., and Kim, D. (2019). Push Recovery Control for Humanoid Robot
Using Reinforcement Learning. In 2019 Third IEEE International Conference on
Robotic Computing (IRC).

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In
3rd International Conference for Learning Representations.

Koenig, N. and Howard, A. (2004). Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Koolen, T., de Boer, T., Rebula, J., Goswami, A., and Pratt, J. (2012). Capturability-
Based Analysis and Control of Legged Locomotion, Part 1: Theory and Application
to Three Simple Gait Models. The International Journal of Robotics Research,
31(9):1094–1113.

Koolen, T., Posa, M., and Tedrake, R. (2016). Balance control using center of mass
height variation: Limitations imposed by unilateral contact. In 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids).

Kovar, L., Gleicher, M., and Pighin, F. (2002). Motion graphs. ACM Transactions
on Graphics, 21(3):473–482.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90.

Latella, C. (2019). Human Whole-Body Dynamics Estimation for Enhancing Physical
Human-Robot Interaction. PhD thesis.

Bibliography 149

Latella, C., Lorenzini, M., Lazzaroni, M., Romano, F., Traversaro, S., Akhras, M. A.,
Pucci, D., and Nori, F. (2019). Towards real-time whole-body human dynamics
estimation through probabilistic sensor fusion algorithms. Autonomous Robots,
43(6):1591–1603.

Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. (2002). Inter-
active control of avatars animated with human motion data. ACM Transactions
on Graphics, 21(3):491–500.

Lee, J., Grey, M. X., Ha, S., Kunz, T., Jain, S., Ye, Y., Srinivasa, S. S., Stilman,
M., and Liu, C. K. (2018a). DART: Dynamic Animation and Robotics Toolkit.
Journal of Open Source Software, 3(22):500.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2020). Learning
quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):eabc5986.

Lee, K., Lee, S., and Lee, J. (2018b). Interactive character animation by learning
multi-objective control. ACM Transactions on Graphics, 37(6):180:1–180:10.

Lee, S., Lee, S., Lee, Y., and Lee, J. (2021). Learning a family of motor skills from
a single motion clip. ACM Transactions on Graphics, 40(4):93:1–93:13.

Lee, S., Park, M., Lee, K., and Lee, J. (2019). Scalable muscle-actuated human
simulation and control. ACM Transactions on Graphics, 38(4):73:1–73:13.

Lee, S.-H. and Goswami, A. (2012). A momentum-based balance controller for
humanoid robots on non-level and non-stationary ground. Autonomous Robots,
33(4):399–414.

Lee, Y., Kim, S., and Lee, J. (2010a). Data-driven biped control. ACM Transactions
on Graphics, 29(4):129:1–129:8.

Lee, Y., Lee, K., Kwon, S.-S., Jeong, J., O’Sullivan, C., Park, M. S., and Lee,
J. (2015). Push-recovery stability of biped locomotion. ACM Transactions on
Graphics, 34(6):180:1–180:9.

Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z. (2010b). Mo-
tion fields for interactive character locomotion. ACM Transactions on Graphics,
29(6):138:1–138:8.

Legg, S. and Hutter, M. (2007). Universal Intelligence: A Definition of Machine
Intelligence. Minds and Machines, 17(4):391–444.

Leng, X., Piao, S., Chang, L., He, Z., and Zhu, Z. (2020). Universal Walking Control
Framework of Biped Robot Based on Dynamic Model and Quadratic Programming.
Complexity.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function.
Neural Networks, 6(6):861–867.

Bibliography 150

Levine, S. and Popović, J. (2012). Physically plausible simulation for character
animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation.

Levine, S., Wang, J. M., Haraux, A., Popović, Z., and Koltun, V. (2012). Continu-
ous character control with low-dimensional embeddings. ACM Transactions on
Graphics, 31(4):28:1–28:10.

Li, J., Yin, Y., Chu, H., Zhou, Y., Wang, T., Fidler, S., and Li, H. (2020). Learning
to Generate Diverse Dance Motions with Transformer. CoRR.

Li, P., Aberman, K., Zhang, Z., Hanocka, R., and Sorkine-Hornung, O. (2022).
GANimator: Neural Motion Synthesis from a Single Sequence. ACM Transactions
on Graphics, 41(4):1–12.

Li, Q., Takanishi, A., and Kato, I. (1993). Learning control for a biped walking
robot with a trunk. In Proceedings of 1993 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’93), volume 3, pages 1771–1777.

Li, Z., Cheng, X., Peng, X. B., Abbeel, P., Levine, S., Berseth, G., and Sreenath, K.
(2021). Reinforcement Learning for Robust Parameterized Locomotion Control
of Bipedal Robots. In 2021 IEEE International Conference on Robotics and
Automation (ICRA).

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J.,
Jordan, M., and Stoica, I. (2018). RLlib: Abstractions for Distributed Reinforce-
ment Learning. In Proceedings of the 35th International Conference on Machine
Learning.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2016). Continuous control with deep reinforcement learning. In
4th International Conference on Learning Representations.

Ling, H. Y., Zinno, F., Cheng, G., and van de Panne, M. (2020). Character
Controllers Using Motion VAEs. ACM Transactions on Graphics, 39(4).

Liu, L. and Hodgins, J. (2017). Learning to Schedule Control Fragments for Physics-
Based Characters Using Deep Q-Learning. ACM Transactions on Graphics,
36(4):42a:1.

Liu, L. and Hodgins, J. (2018). Learning basketball dribbling skills using trajectory
optimization and deep reinforcement learning. ACM Transactions on Graphics,
37(4):1–14.

Liu, L., Panne, M. V. D., and Yin, K. (2016). Guided Learning of Control Graphs
for Physics-Based Characters. ACM Transactions on Graphics, 35(3):29:1–29:14.

Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. (2010). Sampling-based
contact-rich motion control. ACM Transactions on Graphics, 29(4):128:1–128:10.

Loshchilov, I. and Hutter, F. (2017). Decoupled Weight Decay Regularization.

Bibliography 151

Macchietto, A., Zordan, V., and Shelton, C. R. (2009). Momentum control for
balance. ACM Transactions on Graphics, 28(3):80:1–80:8.

Maiolino, P., Maggiali, M., Cannata, G., Metta, G., and Natale, L. (2013). A
Flexible and Robust Large Scale Capacitive Tactile System for Robots. IEEE
Sensors Journal, 13(10):3910–3917.

Marsden, J. E. and Ratiu, T. S. (2010). Introduction to Mechanics and Symmetry:
A Basic Exposition of Classical Mechanical Systems. Springer.

Mason, S., Rotella, N., Schaal, S., and Righetti, L. (2018). An MPC Walking
Framework with External Contact Forces. In 2018 IEEE International Conference
on Robotics and Automation (ICRA).

Mastalli, C., Merkt, W., Marti-Saumell, J., Ferrolho, H., Solà, J., Mansard, N., and
Vijayakumar, S. (2022). A feasibility-driven approach to control-limited DDP.
Autonomous Robots, 46(8):985–1005.

McGreavy, C., Yuan, K., Gordon, D., Tan, K., Wolfslag, W. J., Vijayakumar, S.,
and Li, Z. (2020). Unified Push Recovery Fundamentals: Inspiration from Human
Study. In 2020 IEEE International Conference on Robotics and Automation
(ICRA).

Mesesan, G., Englsberger, J., Garofalo, G., Ott, C., and Albu-Schäffer, A. (2019).
Dynamic Walking on Compliant and Uneven Terrain using DCM and Passivity-
based Whole-body Control. In 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids).

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: Yet Another Robot
Platform. International Journal of Advanced Robotic Systems, 3(1):8.

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten,
C., Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., and Montesano,
L. (2010). The iCub humanoid robot: An open-systems platform for research in
cognitive development. Neural Networks, 23(8):1125–1134.

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2022).
Learning robust perceptive locomotion for quadrupedal robots in the wild. Science
Robotics, 7(62):eabk2822.

Min, J. and Chai, J. (2012). Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Transactions on Graphics,
31(6):153:1–153:12.

Min, J., Chen, Y.-L., and Chai, J. (2009). Interactive generation of human animation
with deformable motion models. ACM Transactions on Graphics, 29(1):9:1–9:12.

Mingo Hoffman, E., Traversaro, S., Rocchi, A., Ferrati, M., Settimi, A., Romano,
F., Natale, L., Bicchi, A., Nori, F., and Tsagarakis, N. G. (2014). Yarp Based
Plugins for Gazebo Simulator. In Hodicky, J., editor, Modelling and Simulation
for Autonomous Systems.

Bibliography 152

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Computational
Geometry. MIT Press.

Mirjalili, R., Yousefi-Korna, A., Shirazi, F. A., Nikkhah, A., Nazemi, F., and Khadiv,
M. (2018). A Whole-Body Model Predictive Control Scheme Including External
Contact Forces and CoM Height Variations. In 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids).

Miura, K., Morisawa, M., Nakaoka, S., Kanehiro, F., Harada, K., Kaneko, K., and
Kajita, S. (2009). Robot motion remix based on motion capture data towards
human-like locomotion of humanoid robots. In 2009 9th IEEE-RAS International
Conference on Humanoid Robots.

Modugno, V., Chervet, U., Oriolo, G., and Ivaldi, S. (2016a). Learning soft task
priorities for safe control of humanoid robots with constrained stochastic opti-
mization. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids).

Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J., and Ivaldi, S.
(2016b). Learning soft task priorities for control of redundant robots. In 2016
IEEE International Conference on Robotics and Automation (ICRA).

Morin, P. and Samson, C. (2008). Motion Control of Wheeled Mobile Robots.
In Siciliano, B. and Khatib, O., editors, Springer Handbook of Robotics, pages
799–826. Springer.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M.,
Yang, Z., Paul, W., Jordan, M. I., and Stoica, I. (2018). Ray: a distributed
framework for emerging AI applications. In Proceedings of the 13th USENIX
conference on Operating Systems Design and Implementation.

Mukai, T. (2011). Motion rings for interactive gait synthesis. In Symposium on
Interactive 3D Graphics and Games.

Mukai, T. and Kuriyama, S. (2005). Geostatistical motion interpolation. In ACM
SIGGRAPH 2005 Papers.

Nair, V. and Hinton, G. E. (2010). Rectified Linear Units Improve Restricted
Boltzmann Machines.

Natale, L., Bartolozzi, C., Pucci, D., Wykowska, A., and Metta, G. (2017). iCub: The
not-yet-finished story of building a robot child. Science Robotics, 2(13):eaaq1026.

Nava, G., Romano, F., Nori, F., and Pucci, D. (2016). Stability analysis and
design of momentum-based controllers for humanoid robots. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., and Pucci, D. (2015).
iCub Whole-Body Control through Force Regulation on Rigid Non-Coplanar
Contacts. Frontiers in Robotics and AI, 2.

Bibliography 153

Nowlan, S. and Hinton, G. E. (1990). Evaluation of Adaptive Mixtures of Competing
Experts. In Advances in Neural Information Processing Systems, volume 3.

Ordonez-Apraez, D., Agudo, A., Moreno-Noguer, F., and Martin, M. (2022). An
Adaptable Approach to Learn Realistic Legged Locomotion without Examples. In
2022 International Conference on Robotics and Automation (ICRA).

Orin, D. E. and Goswami, A. (2008). Centroidal Momentum Matrix of a humanoid
robot: Structure and properties. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems.

Orin, D. E., Goswami, A., and Lee, S.-H. (2013). Centroidal dynamics of a humanoid
robot. Autonomous Robots, 35(2-3):161–176.

Ott, C., Lee, D., and Nakamura, Y. (2008). Motion capture based human motion
recognition and imitation by direct marker control. In Humanoids 2008 - 8th
IEEE-RAS International Conference on Humanoid Robots.

Ott, C., Roa, M. A., and Hirzinger, G. (2011). Posture and balance control for biped
robots based on contact force optimization. In 2011 11th IEEE-RAS International
Conference on Humanoid Robots.

Padois, V., Ivaldi, S., Babič, J., Mistry, M., Peters, J., and Nori, F. (2017). Whole-
body multi-contact motion in humans and humanoids: Advances of the CoDyCo
European project. Robotics and Autonomous Systems, 90:97–117.

Paine, N., Mehling, J. S., Holley, J., Radford, N. A., Johnson, G., Fok, C.-L., and
Sentis, L. (2015). Actuator Control for the NASA-JSC Valkyrie Humanoid Robot:
A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots.
Journal of Field Robotics, 32(3):378–396.

Park, J. and Khatib, O. (2006). Contact consistent control framework for humanoid
robots. In Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006.

Parmiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis, N.,
Victor, J. S., Becchi, F., Sandini, G., and Metta, G. (2012). The design of the iCub
humanoid robot. International Journal of Humanoid Robotics, 09(04):1250027.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. (2019). PyTorch: an imperative style, high-performance deep learning
library. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems.

Penco, L., Clement, B., Modugno, V., Mingo Hoffman, E., Nava, G., Pucci, D.,
Tsagarakis, N. G., Mouret, J. B., and Ivaldi, S. (2018). Robust Real-Time Whole-
Body Motion Retargeting from Human to Humanoid. In 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids).

Bibliography 154

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). DeepMimic:
example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions on Graphics, 37(4):1–14.

Peng, X. B., Berseth, G., and van de Panne, M. (2015). Dynamic terrain traversal
skills using reinforcement learning. ACM Transactions on Graphics, 34(4):80:1–
80:11.

Peng, X. B., Berseth, G., and van de Panne, M. (2016). Terrain-adaptive locomo-
tion skills using deep reinforcement learning. ACM Transactions on Graphics,
35(4):81:1–81:12.

Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M. (2017). DeepLoco:
dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics, 36(4):1–13.

Peng, X. B., Guo, Y., Halper, L., Levine, S., and Fidler, S. (2022). ASE: Large-Scale
Reusable Adversarial Skill Embeddings for Physically Simulated Characters. ACM
Transactions on Graphics, 41(4):1–17. arXiv:2205.01906 [cs].

Peng, X. B., Ma, Z., Abbeel, P., Levine, S., and Kanazawa, A. (2021). AMP:
adversarial motion priors for stylized physics-based character control. ACM
Transactions on Graphics, 40(4):144:1–144:20.

Peng, X. B. and van de Panne, M. (2017). Learning Locomotion Skills Using DeepRL:
Does the Choice of Action Space Matter? In Proceedings of the ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation.

Pollard, N., Hodgins, J., Riley, M., and Atkeson, C. (2002). Adapting human motion
for the control of a humanoid robot. In Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No.02CH37292).

Ponton, B., Herzog, A., Schaal, S., and Righetti, L. (2016). A convex model of
humanoid momentum dynamics for multi-contact motion generation. In 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

Poulakakis, I., Smith, J., and Buehler, M. (2005). Modeling and Experiments of
Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot.
The International Journal of Robotics Research, 24:239–256.

Pratt, J., Carff, J., Drakunov, S., and Goswami, A. (2006). Capture Point: A
Step toward Humanoid Push Recovery. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots.

Pratt, J., Koolen, T., de Boer, T., Rebula, J., Cotton, S., Carff, J., Johnson, M., and
Neuhaus, P. (2012). Capturability-based analysis and control of legged locomotion,
Part 2: Application to M2V2, a lower-body humanoid. The International Journal
of Robotics Research, 31(10):1117–1133.

Pucci, D., Romano, F., Traversaro, S., and Nori, F. (2016). Highly dynamic balancing
via force control. In 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids).

Bibliography 155

Ramuzat, N., Buondonno, G., Boria, S., and Stasse, O. (2021). Comparison of
Position and Torque Whole-Body Control Schemes on the Humanoid Robot
TALOS. In 20th International Conference on Advanced Robotics (ICAR).

Rapetti, L., Tirupachuri, Y., Darvish, K., Latella, C., and Pucci, D. (2020). Model-
Based Real-Time Motion Tracking using Dynamical Inverse Kinematics on SO(3).
Algorithms.

Righetti, L., Buchli, J., Mistry, M., and Schaal, S. (2011). Inverse dynamics control
of floating-base robots with external constraints: A unified view. In 2011 IEEE
International Conference on Robotics and Automation.

Rodriguez, D. and Behnke, S. (2021). DeepWalk: Omnidirectional Bipedal Gait
by Deep Reinforcement Learning. In 2021 IEEE International Conference on
Robotics and Automation (ICRA). ISSN: 2577-087X.

Roetenberg, D., Luinge, H., and Slycke, P. (2009). Xsens MVN: Full 6DOF Human
Motion Tracking Using Miniature Inertial Sensors. Xsens Motion Technol. BV,
Tech. Rep.

Romano, F., Nava, G., Azad, M., Čamernik, J., Dafarra, S., Dermy, O., Latella, C.,
Lazzaroni, M., Lober, R., Lorenzini, M., Pucci, D., Sigaud, O., Traversaro, S.,
Babič, J., Ivaldi, S., Mistry, M., Padois, V., and Nori, F. (2018). The CoDyCo
Project Achievements and Beyond: Toward Human Aware Whole-Body Controllers
for Physical Human Robot Interaction. IEEE Robotics and Automation Letters,
3(1):516–523.

Romualdi, G. (2022). Online Control of Humanoid Robot Locomotion. PhD thesis.

Romualdi, G., Dafarra, S., Hu, Y., and Pucci, D. (2018). A Benchmarking of DCM
Based Architectures for Position and Velocity Controlled Walking of Humanoid
Robots. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids). arXiv:1809.02167 [cs].

Romualdi, G., Dafarra, S., Hu, Y., Ramadoss, P., Chavez, F. J. A., Traversaro, S.,
and Pucci, D. (2020). A Benchmarking of DCM Based Architectures for Position,
Velocity and Torque Controlled Humanoid Robots. International Journal of
Humanoid Robotics, 17(01):1950034.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386–408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088):533–536.

Rummery, G. and Niranjan, M. (1994). Online Q-Learning Using Connectionist
Systems. Technical Report CUED/F-INFENG/TR 166.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Souères, P., and Fourquet, J.-Y.
(2013). Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other
Unilateral Constraints. IEEE Transactions on Robotics, 29(2):346–362.

Bibliography 156

Scardapane, S., Scarpiniti, M., Comminiello, D., and Uncini, A. (2019). Learning
Activation Functions from Data Using Cubic Spline Interpolation. In Esposito,
A., Faundez-Zanuy, M., Morabito, F. C., and Pasero, E., editors, Neural Ad-
vances in Processing Nonlinear Dynamic Signals, Smart Innovation, Systems and
Technologies. Springer International Publishing.

Schaul, T., Antonoglou, I., and Silver, D. (2014). Unit Tests for Stochastic Opti-
mization. In International Conference on Learning Representations.

Schuller, R., Mesesan, G., Englsberger, J., Lee, J., and Ott, C. (2021). Online
Centroidal Angular Momentum Reference Generation and Motion Optimization
for Humanoid Push Recovery. IEEE Robotics and Automation Letters, 6(3):5689–
5696.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2015). Trust
Region Policy Optimization. In Proceedings of the 32nd International Conference
on Machine Learning.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In 4th
International Conference for Learning Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
Policy Optimization Algorithms. In Conference on Robot Learning.

Scianca, N., Cognetti, M., De Simone, D., Lanari, L., and Oriolo, G. (2016).
Intrinsically stable MPC for humanoid gait generation. In 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids).

Scianca, N., De Simone, D., Lanari, L., and Oriolo, G. (2020). MPC for Humanoid
Gait Generation: Stability and Feasibility. IEEE Transactions on Robotics,
36(4):1171–1188.

Sciavicco, L. and Siciliano, B. (1998). A solution algorithm to the inverse kinematic
problem for redundant manipulators. IEEE Journal on Robotics and Automation,
4(4):403–410.

Shafiee, M., Romualdi, G., Dafarra, S., Chavez, F. J. A., and Pucci, D. (2019). Online
DCM Trajectory Generation for Push Recovery of Torque-Controlled Humanoid
Robots. In IEEE-RAS International Conference on Humanoid Robots.

Shafiee-Ashtiani, M., Yousefi-Koma, A., Mirjalili, R., Maleki, H., and Karimi, M.
(2017a). Push Recovery of a Position-Controlled Humanoid Robot Based on
Capture Point Feedback Control. In 2017 5th RSI International Conference on
Robotics and Mechatronics (ICRoM).

Shafiee-Ashtiani, M., Yousefi-Koma, A., and Shariat-Panahi, M. (2017b). Robust
bipedal locomotion control based on model predictive control and divergent
component of motion. In 2017 IEEE International Conference on Robotics and
Automation (ICRA).

Bibliography 157

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2008). Robotics: Modelling,
Planning and Control. Springer.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. (2021). Reward is enough.
Artificial Intelligence, 299:103535.

Singh, R. P., Benallegue, M., Morisawa, M., Cisneros, R., and Kanehiro, F. (2022).
Learning Bipedal Walking On Planned Footsteps For Humanoid Robots. In 2022
IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).

Smaldone, F. M., Scianca, N., Lanari, L., and Oriolo, G. (2021). Feasibility-Driven
Step Timing Adaptation for Robust MPC-Based Gait Generation in Humanoids.
IEEE Robotics and Automation Letters, 6(2):1582–1589.

Smaldone, F. M., Scianca, N., Lanari, L., and Oriolo, G. (2022). From Walking to
Running: 3D Humanoid Gait Generation via MPC. Frontiers in Robotics and AI,
9.

Smaldone, F. M., Scianca, N., Modugno, V., Lanari, L., and Oriolo, G. (2019).
Gait Generation using Intrinsically Stable MPC in the Presence of Persistent
Disturbances. In 2019 IEEE-RAS 19th International Conference on Humanoid
Robots (Humanoids).

Smaldone, F. M., Scianca, N., Modugno, V., Lanari, L., and Oriolo, G. (2020). ZMP
Constraint Restriction for Robust Gait Generation in Humanoids. In 2020 IEEE
International Conference on Robotics and Automation (ICRA).

Spong, M. W. (1998). Underactuated mechanical systems. In Siciliano, B. and
Valavanis, K. P., editors, Control Problems in Robotics and Automation, Lecture
Notes in Control and Information Sciences, pages 135–150. Springer.

Starke, S., Zhang, H., Komura, T., and Saito, J. (2019). Neural state machine for
character-scene interactions. ACM Transactions on Graphics, 38(6):1–14.

Starke, S., Zhao, Y., Komura, T., and Zaman, K. (2020). Local motion phases for
learning multi-contact character movements. ACM Transactions on Graphics,
39(4).

Starke, S., Zhao, Y., Zinno, F., and Komura, T. (2021). Neural animation layering for
synthesizing martial arts movements. ACM Transactions on Graphics, 40(4):1–16.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2020). OSQP:
an operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12(4):637–672.

Stephens, B. (2007). Humanoid push recovery. In 2007 7th IEEE-RAS International
Conference on Humanoid Robots.

Stephens, B. J. and Atkeson, C. G. (2010). Push Recovery by stepping for hu-
manoid robots with force controlled joints. In 2010 10th IEEE-RAS International
Conference on Humanoid Robots.

Bibliography 158

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: an introduction.
Second edition. MIT press.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy
Gradient Methods for Reinforcement Learning with Function Approximation.
Advances in Neural Information Processing Systems.

Takenaka, T., Matsumoto, T., and Yoshiike, T. (2009). Real time motion generation
and control for biped robot 1st report: Walking gait pattern generation. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems.

Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten, T., Müller,
M., Seidel, H.-P., and Eberhardt, B. (2011). Motion reconstruction using sparse
accelerometer data. ACM Transactions on Graphics, 30(3):18:1–18:12.

Taylor, G. W. and Hinton, G. E. (2009). Factored conditional restricted Boltz-
mann Machines for modeling motion style. In Proceedings of the 26th Annual
International Conference on Machine Learning.

Taylor, M., Bashkirov, S., Rico, J. F., Toriyama, I., Miyada, N., Yanagisawa, H., and
Ishizuka, K. (2021). Learning Bipedal Robot Locomotion from Human Movement.
In 2021 IEEE International Conference on Robotics and Automation (ICRA).

Tirupachuri, Y. (2020). Enabling Human-Robot Collaboration via Holistic Human
Perception and Partner-Aware Control. PhD thesis.

Tirupachuri, Y., Nava, G., Latella, C., Ferigo, D., Rapetti, L., Tagliapietra, L., Nori,
F., and Pucci, D. (2020). Towards Partner-Aware Humanoid Robot Control Under
Physical Interactions. In Bi, Y., Bhatia, R., and Kapoor, S., editors, Intelligent
Systems and Applications, Advances in Intelligent Systems and Computing, pages
1073–1092.

Traversaro, S. (2017). Modelling, Estimation and Identification of Humanoid Robots
Dynamics. PhD thesis.

Traversaro, S., Pucci, D., and Nori, F. (2017). A Unified View of the Equations of
Motion used for Control Design of Humanoid Robots. Online.

Traversaro, S. and Saccon, A. (2019). Multibody dynamics notation (version 2).
Technische Universiteit Eindhoven.

Truong, T.-V.-A., Flavigne, D., Pettrée, J., Mombaur, K., and Laumond, J.-P.
(2010). Reactive synthesizing of human locomotion combining nonholonomic and
holonomic behaviors. In 2010 3rd IEEE RAS & EMBS International Conference
on Biomedical Robotics and Biomechatronics, pages 632–637.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
, and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural
Information Processing Systems.

Vukobratović, M. and Borovac, B. (2004). Zero-moment point — thirty five years of
its life. International Journal of Humanoid Robotics, 1(1):157–173.

Bibliography 159

Wampler, K. and Popović, Z. (2009). Optimal gait and form for animal locomotion.
In ACM SIGGRAPH 2009 papers.

Wampler, K., Popović, Z., and Popović, J. (2014). Generalizing locomotion style
to new animals with inverse optimal regression. ACM Transactions on Graphics,
33(4):49:1–49:11.

Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008). Gaussian Process Dynamical
Models for Human Motion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(2):283–298.

Wang, Z., Albarghouthi, A., Prakriya, G., and Jha, S. (2022). Interval universal
approximation for neural networks. Proceedings of the ACM on Programming
Languages, 6(POPL):14:1–14:29.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis.

Wensing, P. M. and Orin, D. E. (2013). Generation of dynamic humanoid behaviors
through task-space control with conic optimization. In 2013 IEEE International
Conference on Robotics and Automation.

Wensing, P. M. and Orin, D. E. (2016). Improved Computation of the Humanoid
Centroidal Dynamics and Application for Whole-Body Control. International
Journal of Humanoid Robotics, 13(01):1550039.

Wensing, P. M., Palmer, L. R., and Orin, D. E. (2015). Efficient recursive dynamics
algorithms for operational-space control with application to legged locomotion.
Autonomous Robots, 38(4):363–381.

Wieber, P.-b. (2006). Trajectory Free Linear Model Predictive Control for Sta-
ble Walking in the Presence of Strong Perturbations. In 2006 6th IEEE-RAS
International Conference on Humanoid Robots.

Wieber, P.-B., Tedrake, R., and Kuindersma, S. (2016). Modeling and Control of
Legged Robots. In Siciliano, B. and Khatib, O., editors, Springer Handbook of
Robotics, pages 1203–1234. Springer.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256.

Winkler, A. W., Bellicoso, C. D., Hutter, M., and Buchli, J. (2018). Gait and
Trajectory Optimization for Legged Systems Through Phase-Based End-Effector
Parameterization. IEEE Robotics and Automation Letters, 3(3):1560–1567.

Won, J., Gopinath, D., and Hodgins, J. (2020). A scalable approach to control diverse
behaviors for physically simulated characters. ACM Transactions on Graphics,
39(4).

Xie, Z., Clary, P., Dao, J., Morais, P., Hurst, J., and van de Panne, M. (2019).
Iterative Reinforcement Learning Based Design of Dynamic Locomotion Skills for
Cassie. In Conference on Robot Learning.

Bibliography 160

Xu, P. and Karamouzas, I. (2021). A GAN-Like Approach for Physics-Based
Imitation Learning and Interactive Character Control. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 4(3):1–22. arXiv:2105.10066 [cs].

Yang, C., Komura, T., and Li, Z. (2017). Emergence of human-comparable balancing
behaviours by deep reinforcement learning. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids).

Yang, C., Yuan, K., Heng, S., Komura, T., and Li, Z. (2020a). Learning Natural
Locomotion Behaviors for Humanoid Robots Using Human Bias. IEEE Robotics
and Automation Letters, 5(2):2610.

Yang, C., Yuan, K., Merkt, W., Komura, T., Vijayakumar, S., and Li, Z. (2018).
Learning Whole-Body Motor Skills for Humanoids. In 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids).

Yang, C., Yuan, K., Zhu, Q., Yu, W., and Li, Z. (2020b). Multi-expert learning of
adaptive legged locomotion. Science Robotics, 5(49):eabb2174.

Yin, K., Loken, K., and van de Panne, M. (2007). SIMBICON: simple biped
locomotion control. ACM Transactions on Graphics, 26(3):105–es.

Yin, Z., Yang, Z., Van De Panne, M., and Yin, K. (2021). Discovering diverse
athletic jumping strategies. ACM Transactions on Graphics, 40(4):1–17.

Yoon, J., Son, B., and Lee, D. (2023). Comparative Study of Physics Engines for
Robot Simulation with Mechanical Interaction. Applied Sciences, 13(2):680.

Yuksel, S. E., Wilson, J. N., and Gader, P. D. (2012). Twenty Years of Mixture of
Experts. IEEE Transactions on Neural Networks and Learning Systems, 23(8):1177–
1193.

Zhang, H., Starke, S., Komura, T., and Saito, J. (2018). Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics, 37(4):1–
11.

Appendices

162

Appendix A

Texture Task for the ANA
Avatar XPRIZE Finals

This Appendix presents the implementation of the algorithm adopted by the iCub
Team to address the Texture Task for the finals of the ANA Avatar XPRIZE
competition1, whose purpose was to create an avatar system capable of transporting
human presence to a remote location in real time.

The ANA Avatar XPRIZE finals took place at the Long Beach Convention Center
in Los Angeles, California, in the period 1-5 November 2022. They involved a total
of 17 teams and focused on testing the avatar system (operated by an XPRIZE
judge) in terms of complex locomotion and manipulation of heavy and textured
objects in a scenario themed on the exploration of an alien planet. As iCub Team,
we participated with the iCub3 Avatar System [Dafarra et al., 2022a], using the
iCub v3 humanoid robot (see Section 3.4.2).

Among the tasks of the finals testing, the Texture Task is summarized as: the
Avatar reaches through a curtain to identify a rough textured rock and retrieve it.
Unfortunately, because of system failure on the first day of the competition, we did
not get to test the Texture Task on stage during the finals. However, we illustrate
in the following the method employed to attempt to address it.

Texture Task
For the identification of the rough textured rock, we take advantage of the artificial
skin covering the iCub v3 hand palms. In particular, each sensorized palm includes
48 tactile sensors, shown in Figure A.1. Since the rocks are supposed to be light
and not fastened to the table during the tests, they can easily slip away if the
operator tries to scan their surface using the avatar sensorized fingers. This is why
we instruct the operator to approach the rocks from the top and make contact with
them through the sensorized robot hand palm as shown in Figure A.2. When a
contact is detected, a vibration pattern resembling either plain or rough texture is
triggered on the operator’s hand by means of a dedicated motor on the haptic glove
worn by the operator. The rock texture is classified as follows.

1https://www.xprize.org/prizes/avatar

https://www.xprize.org/prizes/avatar

Texture Task for the ANA Avatar XPRIZE Finals 163

(a) The hand of iCub v3. (b) The skin sensors on the iCub v3 hand.

Figure A.1. Detail of the sensorized hand of the iCub v3 humanoid, with the area covered
by the artificial skin highlighted in red. The distribution of the 48 tactile sensors within
their coverage area is reported (sensors indexes vary in [96,143]).

(a) Plain rock. (b) Rough rock.

Figure A.2. Examples of training data collection for the rock texture classifier. The
teleoperated robot reaches the rock from the top and tries to make contact through the
palm of its hand.

Texture Task for the ANA Avatar XPRIZE Finals 164

For the classification of the rock texture which triggers the vibration pattern for
the operator, we rely on a neural network trained for a binary classification task on
the type of contact (i.e., rough or plain) from the tactile sensors’ activations. In
particular, the 48 tactile sensors of each robot hand provide measurements in [0,255].
The higher the value, the higher the measured pressure.

Given the location of the sensors on the iCub v3 hand shown in Figure A.1b,
we decide to interpret their measurements as a 9x11-pixels grayscale image, where
each pixel – excluding padding – corresponds to a tactile sensor. Figure A.3 shows
sample images retrieved from the palm in contact with a plain and a rough rock,
respectively. You can notice how in this case the active tactile sensors are more
sparse during the contact with the rough rock.

Images of this kind represent the input for our binary classifier. In order to
compose our training dataset with such images, we teleoperate the robot and make
contact with each of the sample rocks while continuously changing their location
on the table and approaching them from different directions with the robot hand.
An example of data collection for both the plain and the rough rock is shown in
Figure A.2. Our final dataset consists of around 150 contacts per class, where each
contact includes the whole sequence of images collected throughout its duration. In
this simple implementation, however, the time correlation between the subsequent
instants of the same contact is not exploited, since the classifier, as detialed in the
following, is not characterized by a recursive neural network architecture nor receives
in input a temporal sequence.

As a classifier, we adopt a customized version of the Deep Convolutional Neural
Network (DCNN) architecture for image classification known as AlexNet [Krizhevsky
et al., 2017], composed in its original implementation by 5 2D-convolutional layers
followed by 3 fully-connected layers. In particular, we customize it as follows:

• We use 3x3 convolutional filters from the very first 2D-convolutional layer
(rather than the 11x11 and 5x5 filters applied in the first and second layer
of the original implementation, respectively). This is to cope with our very
low-dimensional input consisting of 9x11-pixels grayscale images.

• We remove the max pooling layers placed after the first three 2D-convolutional
layers in the original implementation. We keep instead the max pooling after
the fifth 2D-convolutional layer. Again, this is because of the our specific
low-dimensional input.

• We scale the network in size (both in terms of number of filters for the 2D-
convolutional layers and in terms of number of units of the fully-connected
layers) by a factor of 32. This is to meet the real-time inference constraints.

• We return a single output from the last fully-connected layer, with a final
sigmoid activation function, as required by our binary classification problem.

We train our classifier for 25 epochs on the training dataset, using batches of 32
samples and the Adam optimizer [Kingma and Ba, 2015]. On our test dataset which
includes around 40 contacts in total, the overall trained model accuracy is 78%,
although the misclassification rate is not completely balanced among the two classes.
Please refer to Figure A.4 for a visualization of the achieved performances.

Texture Task for the ANA Avatar XPRIZE Finals 165

(a) Plain rock. (b) Rough rock.

Figure A.3. Grayscale 9x11-pixels images extracted from the sensorized robot palm in
contact with a plain and a rough rock. The higher the pressure measured by each tactile
sensor, the whiter the correspondent pixel. The pixels outside the area covered by the
skin sensors (highlighted in red) are simply padded in black.

Figure A.4. The rock classifier’s performances on the 36 contacts of our test dataset.
Each plot corresponds to a separate contact, either plain Pi or rough Ri, and shows
a comparison of the ground truth and the predicted class for the entire duration of
the contact. When the prediction and the ground truth do not coincide, the gap is
filled in red to highlight the error. Although the misclassification rate increases for
rough contacts, the overall accuracy on the test set, i.e., the average of the per-contact
accuracies labeling each plot, reaches 78%.

	List of Figures
	List of Tables
	Notation
	Prologue
	I Background & Fundamentals
	Modeling of Floating-Base Robots
	Modeling of rigid body systems
	Rigid body transform
	Rigid body velocity
	Force applied to a rigid body

	Modeling of multi-body system
	Multi-body kinematics
	Multi-body dynamics
	Centroidal dynamics

	Simplified models
	Linear inverted pendulum
	Zero moment point
	Divergent component of motion

	Robot Learning
	Supervised deep learning
	Feedforward neural networks
	Neural networks training
	Backpropagation algorithm

	Reinforcement learning
	RL basics
	Markov decision processes
	Policy gradient methods

	State of the Art and Thesis Context
	State of the art in Bipedal Locomotion
	Trajectory optimization layer
	Simplified model control layer
	Whole-body control layer
	Reinforcement learning based approaches

	State of the art in Character Animation
	Kinematic motion synthesis
	Physics-based motion synthesis

	Thesis context
	The iCub humanoid robot
	The iCub v2.7 humanoid
	The iCub v3 humanoid
	Software infrastructure

	II Contribution
	Learning Whole-Body Push-Recovery Strategies
	Environment
	State definition
	Reward shaping
	Episode specifications

	Agent
	Action definition
	Policy representation and training

	Results
	Reward shaping
	Emerging behaviours
	Push-recovery performances

	Conclusions

	Learning Human-Like Whole-Body Trajectory Generators
	Background
	Whole-body Geometric Retargeting
	Mode-Adaptive Neural Networks

	Dataset collection
	Motion capture dataset

	Retargeting
	Kinematically-feasible base motion retargeting

	Trajectory generation
	Features extraction
	User input processing

	Results
	Learned walking patterns
	Human-likeness

	Conclusions

	Human-Like Whole-Body Control of Humanoid Robots
	Background
	Trajectory optimization layer
	Simplified model control layer
	Whole-body QP control layer

	Trajectory control
	Crouching ability
	Dataset collection and retargeting
	Trajectory generation and control

	Results
	Controlled walking patterns
	Transferability on a different platform
	Robustness analysis
	Human-likeness
	Crouching

	Conclusions

	Epilogue
	Bibliography
	Appendices
	Texture Task for the ANA Avatar XPRIZE Finals

