
Vol.:(0123456789)

SN Computer Science (2023) 4:314 
https://doi.org/10.1007/s42979-023-01716-1

SN Computer Science

ORIGINAL RESEARCH

On Information Granulation via Data Filtering for Granular 
Computing‑Based Pattern Recognition: A Graph Embedding Case 
Study

Alessio Martino1  · Enrico De Santis2 · Antonello Rizzi2

Received: 30 June 2022 / Accepted: 30 January 2023 / Published online: 8 April 2023 
© The Author(s) 2023

Abstract
Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recogni-
tion systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the 
pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recog-
nition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where 
common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion 
paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different 
strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly 
differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of 
using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ 
a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results 
on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if 
compared to a clustering-based granulation stage.

Keywords Structural pattern recognition · Supervised learning · Graph classification · Inexact graph matching · Granular 
computing · Information granulation · Data mining and knowledge discovery

Introduction

In the early 2000s, Granular Computing emerged as a novel 
information processing paradigm that exploits pivotal 
mathematical structures called granules of information to 
describe an underlying set of (likely complex) data, describ-
ing a (likely complex) process under analysis [2, 3]. The 
concept of information granulation dates back to the mid-
1990s, thanks to soft computing and fuzzy logic pioneer 
Lotfi Aliasker Zadeh. In their words:

Among the basic concepts which underlie human cog-
nition there are three that stand out in importance. The 
three are: granulation, organization and causation.
L.A. Zadeh [4]

and

Informally, granulation of an object A  results in a col-
lection of granules of A, with a granule being a clump 
of objects (or points) which are drawn together by 
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indistinguishability, similarity, proximity or function-
ality. In this sense, the granules of a human body are 
the head, neck, arms, chest, etc. In turn, the granules of 
a head are the forehead, cheeks, nose, ears, eyes, hair, 
etc. In general, granulation is hierarchical in nature. 
A familiar example is granulation of time into years, 
years in months, months into days and so on.
L.A. Zadeh [4]

 This philosophical viewpoint behind the birth of Granu-
lar Computing as human-inspired information processing 
paradigm has been embraced by other well-known scholars, 
notably Ronald R. Yager. In their words:

Language, which is central to most human cognitive 
activities, is based on granularization. In addition 
human facilities for distinctions are limited. Being lim-
ited, at the very least by language and perhaps addi-
tionally by their ability to perceive, human beings have 
been developed a granular view of the world. Thus, we 
see that the objects with which humankind perceives, 
measures, conceptualizes and reasons are granular.
R.R. Yager and D. Filev [5]

 As the 1990s marked the golden age of fuzzy logic and 
fuzzy-based pattern recognition, L.A. Zadeh further argues 
that information granules should be inherently fuzzy, since 
most of human reason and concept formation are fuzzy 
rather than crisp [4, 6].

Clearly, Granular Computing is not a set of computational 
pipelines and is not a set of algorithms; rather, it can be 
considered as a goal-driven umbrella that, according to Y.Y. 
Yao, in their ”Granular Computing manifesto” [7] should 
fulfill the following points:

• Be a truthful representation of the real world;
• Be consistent with human thinking and problem solving;
• Allow a simplification of the problem;
• Provide economic and low-cost solutions.

Thus, in the realm of Granular Computing, we can easily 
find techniques that have not been developed for Granular 
Computing but nonetheless they satisfy the above goals. 
Indeed, information granulation can be performed by a 
plethora of different strategies, notably fuzzy sets [4, 8, 9], 
rough sets [9–11], shadowed sets [12], interval analysis [13] 
and data clustering [14–16].

Recently, the granular computing paradigm has been 
employed for the synthesis of pattern recognition systems, 
as well as in structured domains, such as graphs, sequences 
and images [17, 18]. The rationale behind these pattern 
recognition systems is to automatically extract recurrent 
and/or meaningful substructures (i.e., subgraphs, subse-
quences, portions of images) suitable to be considered as 

granules of information. On the top of these pivotal ele-
ments, it is possible to build an embedding space in such 
a way that the pattern recognition problem is cast from 
the structured domain towards the Euclidean space. The 
latter, being a metric space, allows to comfortably use one 
of the many statistical classifiers currently available in the 
pattern recognition and machine learning literature [19].

This work is the second part of our analysis in the con-
text of granulation techniques. Our investigation began 
in [1], where we compared 4 different clustering-based 
granulation strategies originally proposed in [20–22]. The 
comparison involved two important aspects: 

1. The topology of the candidate information granules 
(paths extracted via random walks vs. cliques extracted 
via the maximal clique decomposition);

2. The possibility of exploiting the ground-truth class 
labels in the granulation procedure (which, being based 
on data clustering, is unsupervised by definition).

In this work, as instead, we exploit a filtering-based 
approach originally proposed in [23, 24] and later extended 
in [25] for the same goal, that is, the automatic synthesis 
of information granules in the context of graph classifica-
tion. The information granules reflect pivotal subgraphs 
extracted from the training data endowed with high dis-
criminative power. On the top of these information gran-
ules, we perform an embedding procedure thanks to the 
symbolic histograms approach [26]. Following our origi-
nal work, we review and compare two different candidate 
topologies for the synthesis of granules of information 
(paths and cliques) and we compare two additional strate-
gies for their synthesis: a stratified approach, where the 
ground-truth labels of the classification problem play an 
important role in the information granules synthesis, and 
a non-stratified approach, where the ground-truth labels 
are completely discarded in the process.

The remainder of this paper is structured as follows: in the 
section  “High-Level Framework Description”, we describe 
the four main building blocks of the Granular Computing 
framework (extraction and synthesis of granules of informa-
tion, graph embedding and classification), which we exploit 
to perform our twofold investigation. In the section “Infor-
mation Granulation Strategies”, we discuss in detail four 
granulation strategies based on different combination of sub-
graph topologies (paths vs. cliques) and stratification (class-
aware vs. no stratification). In the section “Model Synthesis 
and Testing”, we detail how these building blocks co-operate 
to synthesize an optimized model for graph classification. In 
the section “Tests and Results”, we show the computational 
results obtained by the four combinations of topology and 
granulation and, finally, the section “Conclusion” concludes 
the paper.
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High‑Level Framework Description

The proposed pattern recognition system is composed of the 
following four main modules:

• Extractor, which is in charge of extracting, from the train-
ing set, a suitable set of candidate information granules;

• Granulator, which is in charge of building an alphabet of 
symbols starting from the candidate information granules 
provided by the Extractor block;

• Embedder, which is in charge of mapping a graph data 
set towards the Euclidean space;

• Classifier, which is in charge of training and testing a 
suitable classification system in the Euclidean space 
spanned by the Embedder block.

Extractor and Granulator

Let P be an unknown, oriented and possibly complex pro-
cess to be modeled, where the inputs are annotated graphs 
and where the output domain is a finite set of class labels. 
Furthermore, let S be an input–output sampling of P and let 
Str , Sval and Sts be a split of S into training, validation and 
test sets, respectively. The split should be performed so that 
each subset should share the same statistics to be considered 
as valid representation of the same process. Moreover, this 
split must satisfy the partition properties, notably:

• The union of the three sets yields the original set: 
Str ∪ Sval ∪ Sts = S;

• The intersection of any two distinct sets is empty: 
Str ∩ Sval = Str ∩ Sts = Sts ∩ Sval = �.

The Extractor is a block that takes as input Str and returns a 
bucket B of subgraphs drawn from graphs in Str.

Conversely, the Granulator block takes as input B and 
returns an alphabet of symbols A ⊂ B , namely, suitable 
granules of information, by calculating a statistical score 
called INDVAL and retaining only statistically relevant 
items from B.

The INDVAL score has been originally proposed 
in [27] for spotting representative species in different 

environments. The idea at the basis of the INDVAL score 
is straightforward: a given species s is representative, 
hence useful for the recognition of an environmental con-
dition c if both of the following properties are met: 

1. s must be present in only (or almost only) of the c-posi-
tive objects;

2. s must be present in all (or the great majority) of the 
c-positive objects.

The INDVAL score (I) can be re-stated to spot signature 
subgraphs in a set of training graphs as [23, 24, 28]:

By definition, since A(j)

i
∈ [0, 1] and B(j)

i
∈ [0, 1] , then 

I
(j)

i
∈ [0, 100] . The two supporting scores A and B have a 

straightforward interpretation:

• The maximum value of A is obtained when the ith sub-
graph can be found only in patterns (graphs) belonging 
to class j;

• The maximum value for B is obtained if all patterns of 
class j have subgraph i.

Finally, the maximum INDVAL I corresponds to the maxi-
mum sensitivity and specificity for the ith subgraph within 
group j: all patterns of class j have subgraph i and no pat-
terns belonging to other classes have subgraph i.

Given these preliminary definitions, let us consider the 
following example useful for understanding how the IND-
VAL score can be used to spot meaningful subgraphs.

Example 1 Fig. 1 shows a toy data set with 4 graphs equally 
distributed in two classes.

(1)A
(j)

i
=

#graphs having subgraph i in group j

#graphs having subgraph i

(2)B
(j)

i
=

#graphs having subgraph i in group j

#graphs in group j

(3)I
(j)

i
= A

(j)

i
⋅ B

(j)

i
⋅ 100

(a) Class 1 (b) Class 1 (c) Class 2 (d) Class 2

Fig. 1  Toy data set with 2 graphs per class
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For the sake of example, let us consider only order-2 sub-
graphs, notably A–B, B–D, B–C, C–D, A–C. Then, we can 
calculate the scores A, B and I by means of Eqs. (1)–(3), 
yielding:

A
(1)

A–B
= 2∕2             B(1)

A–B
= 2∕2             I(1)

A–B
= 1 ⋅ 1 ⋅ 100 = 100

A
(2)

A–B
= 0∕2             B(2)

A–B
= 0∕2             I(2)

A–B
= 0 ⋅ 0 ⋅ 100 = 0

A
(1)

B–D
= 1∕3             B(1)

B–D
= 1∕2             I(1)

B–D
= 0.3 ⋅ 0.5 ⋅ 100 = 15

A
(2)

B–D
= 2∕3             B(2)

B–D
= 2∕2             I(2)

B–D
= 0.6 ⋅ 1 ⋅ 100 = 60

A
(1)

B–C
= 0∕1             B(1)

B–C
= 0∕2             I(1)

B–C
= 0 ⋅ 0 ⋅ 100 = 0

A
(2)

B–C
= 1∕1             B(2)

B–C
= 1∕2             I(2)

B–C
= 1 ⋅ 0.5 ⋅ 100 = 50

A
(1)

C–D
= 1∕2             B(1)

C–D
= 1∕2             I(1)

C–D
= 0.5 ⋅ 0.5 ⋅ 100 = 50

A
(2)

C–D
= 1∕2             B(2)

C–D
= 1∕2             I(2)

C–D
= 0.5 ⋅ 0.5 ⋅ 100 = 50

A
(1)

A–C
= 2∕4             B(1)

A–C
= 2∕2             I(1)

A–C
= 0.5 ⋅ 1 ⋅ 100 = 50

A
(2)

A–C
= 2∕4             B(2)

A–C
= 2∕2             I(2)

A–C
= 0.5 ⋅ 1 ⋅ 100 = 50

By looking at the INDVAL scores, we can immediately 
spot edge A–B as “the perfect subgraph”, since it has maxi-
mum score for class 1 and null score for class 2: indeed (cf. 
Figure 1) edge A–B is found only and in all graphs belong-
ing to class 1 while being (at the same time) completely 
absent in all graphs belonging to class 2. In this example, 
edge A–B alone will allow us to perfectly discriminate 
graphs belonging to class 1 and class 2 (i.e., by checking 
whether is present or not in the graph to be classified). Other 
notable results include edges C–D and A–C: C–D can be 
found in half of the graphs, regardless of the class, and A–C 
can be found in all graphs in the data set. Their INDVAL 
score ( I = 50 , regardless of the class) reflects the fact that 
such edges do not significantly characterize graphs belong-
ing to either class 1 or class 2.

The above example shows a simplistic case, where graphs 
have unlabelled edges and nodes are labelled with plain cat-
egorical values. In this case, the evaluation of Eqs. (1)–(3) is 
straightforward, since the procedure of counting how many 
times a given subgraph appears in a graph can be done in 
an exact manner [23]. However, graphs are by definition 
very general data structures whose nodes and edges can be 
equipped with labels of any nature. This problem has been 
addressed in [25] and here below we summarize our solution 
to account for an inexact graph matching: 

1. Let G be a graph and let G̃ be a subgraph to be found in 
G : we can start by decomposing G into its constituent 
parts;

2. Match G̃ against any of the constituent parts from G 
thanks to a suitable dissimilarity measure;

3. A match is considered as a hit if the dissimilarity meas-
ure is below a user-defined threshold �.

As regards step #2, we employ the node Best Match First 
(nBMF) dissimilarity measure, belonging to the wider fam-
ily of graph edit distances [29, 30]. Mathematical details 
on nBMF can be found in [25, Appendix A]. We anticipate 
that nBMF is a parametric dissimilarity measure, where the 
importance of insertion, deletion and substitution on nodes 
and edges can be tuned by the end-user via suitable weights. 
Similarly, the dissimilarity measures to match (dis)similar 
nodes and/or edges can be parametric themselves, depending 
on the data and the problem at hand.

Therefore, the Granulator block receives the bucket of 
candidate information granules from the Extractor block (the 
four strategies for populating B will be separately discussed 
in Sect. “Information Granulation Strategies”) and, for each 
candidate information granule, its INDVAL score is evalu-
ated against each of the problem-related classes. If, for at 
least one class, the INDVAL score is greater than a thresh-
old T ∈ (0, 100) , that particular subgraph is included in the 
alphabet A , otherwise it will be filtered out (i.e., discarded).

Embedder

The Embedder block takes as input the alphabet as returned 
by the Granulator block and runs an embedding function to 
cast each graph (belonging to an input graph set, e.g., Str ) 
towards the Euclidean space.

The mapping function yields the so-called symbolic 
histogram [26] by transforming each input graph G into an 
n-length feature vector of the form:

where A = {s1,… , sn} and occ ∶ A × G → ℕ
+
0
 is the enu-

meration function that counts the number of times each sym-
bol s ∈ A appears in G.

Here, the process of counting subgraphs into graphs is 
subject to the same observations as for the INDVAL case 
and, likewise, operates as follows: 

1. The input graph G is decomposed into its constituent 
parts, yielding a decomposition G� = {g1,… , gk}.

2. For the ith symbol in A:

(a) The pairwise dissimilarities between si and all sub-
graphs in G′ are evaluated;

(b) All dissimilarities below a threshold � are retained and 
considered as a ’hit’;

(c) The ith entry in h is filled with the number of occur-
rences (i.e., the number of ’hits’);

(4)h(A,G) = [occ(s1,G),… , occ(sn,G)]
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1. Repeat step 2 for i = 1,… , n.

One important aspect in this procedure regards the pairwise 
dissimilarities between symbols and subgraphs, which is 
evaluated by means of the very same nBMF dissimilarity 
measure already used by the Granulator block.

Classifier

The Classifier block trains a classification system on the 
embedded version of Str , say Htr , namely, an ||Str

|| × n 
instance matrix with patterns (i.e., graphs from Str ) organ-
ized as rows.

To validate the behavior of the classifier, the Classifier 
block also needs the embedded version of Sval , say Hval . 
The ability of the classification system, previously trained 
on Htr , in predicting the ground-truth labels of Hval dic-
tates the performance of the Classifier.

In this work, we use a K-Nearest Neighbors (K-NN) 
decision rule [31] with K = 5 as the classification system.

Information Granulation Strategies

Random Walk

The random walk extractor, proposed in [25], takes 
as input a bucket B of candidate information granules 
extracted via a plain random walk on the graphs belong-
ing to the training set.

In a plain random walk [32, 33], the next-hop u ∈ V is 
chosen uniformly at random among the neighbors of the 
current node v ∈ V . Formally, the probability of moving 
from v to u is

where N(v) is the neighborhood of node v and deg(v) is its 
degree, i.e., deg(v) = |N(v)|.

Populating the bucket B relies on two important 
parameters:

• W, the user-defined number of subgraphs in B , i.e., 
W = |B|;

• o, the user-defined maximum number of nodes for sub-
graphs in B.

and it works as follows: 

1. Start with B = �;

(5)pv→u =

{
1

deg(v)
, ifu ∈ N(v)

0, otherwise

2. Let W � =
W

o
 be the number of subgraphs to be extracted 

for each of the candidate subgraph orders;
3. For l = 1,… , o:

(a) Let B(l) = � be a temporary bucket containing only 
subgraphs of order l;

(b) Until |||B
(l)||| equals W ′:

 (i) Extract uniformly at random a graph G from the train-
ing set;

 (ii) Extract uniformly at random a node v from G;
 (iii) Start a simple random walk of length l from node v;
 (iv) The subgraph emerged from the random walk is 

added to B(l);

(c) B = B ∪ B(l);

The so-collected bucket B is the main input to the Granula-
tor module. As anticipated in Sect. “High-Level Framework 
Description”, the Granulator block calculates the INDVAL 
scores for each subgraph in B , eventually collecting statisti-
cally relevant granules in the alphabet A.

Clique

The clique extractor aims at investigating a particular sub-
graph topology: the clique, namely, an induced subgraph 
that is complete [34, 35].

In this scenario, the bucket B will be filled with a subset 
of the cliques extracted from the graphs belonging to the 
training set. The end-user is still required to specify W, 
as for the section “Random Walk”, yet the maximal order 
parameter o is meaningless as cliques are concerned, since 
the formation (and the size) of a clique is strictly topology-
dependent rather than user-defined.

The clique extractor works as follows: 

1. Start with B = �;
2. For each graph G from the training set:

(a) Evaluate C as the maximal clique decomposition of 
G . The maximal clique decomposition of a graph 
G = (V, E) can be evaluated thanks to the Bron–Ker-
bosh algorithm [36] with a worst-case complexity of 
O(3|V|∕3) [37];

(b) B = B ∪ C;
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3. Let B≃ be a set of W subgraphs selected uniformly at 
random from B;

4. B ← B′.

The so-collected bucket B is the main input to the granula-
tor module. The Granulator block works exactly as the one 
described in the section “Random Walk”, yet on a bucket B 
composed of cliques only.

Stratified Clique

The two extractors and granulator strategies in the sec-
tions. “Random Walk” and “Clique” populate the bucket 
B uniformly at random. Such procedures present the fol-
lowing two potential drawbacks:

• The information about the ground-truth labels (freely 
available in classification problems) is not exploited 
in the extraction and granulation stages;

• A uniformly at random selection can bias the con-
tents of B , especially in case of unbalanced data sets; 
indeed, training graphs pertaining to the majority class 
have a higher change of being selected.

To overcome both problems, we further proposed a strati-
fied clique-based extractor and granulator [20]. The main 
objective of the stratified extractor is to build the bucket 
B as a set-of-sets B = {B(1),… ,B(p)} , with p being the 
number of classes for the classification problem at hand, 
with the constraint that B(i) contains subgraphs drawn 
from the subset of training graphs belonging to the ith 
class only.

The stratified clique-based extractor works as follows: 

1. For each ground-truth class i = 1,… , p:

(a) Let S(i)
tr  be the subset of the training set containing 

only patterns belonging to class i;
(b) Calculate the (relative) frequency of the ith class as 

fi = ⌊∗⌋
���S

(i)
tr

���
�Str� +

1

2
 , where the operator ⌊∗⌋x + 1

2
 rounds x 

to the nearest integer;
(c) Evaluate Wi = ⌊∗⌋W ⋅ fi +

1

2
 , namely, the size of B(i);

(d) Set B(i) = �;
(e) For each graph G ∈ S

(i)
tr :

 (i) Evaluate C as the maximal clique decomposition of 
G;

 (ii) Update B(i) = B(i) ∪ C.

(f) If |||B
(i)||| > Wi , then replace B(i) with a uniform random 

selection of Wi of its own subgraphs.

Due to the set-of-sets nature of the stratified bucket, the 
Granulator described in the section “Random Walk” and 
later employed in the section Clique” loses its effectiveness. 
To overcome this problem, we flat the set-of-sets and run the 
Granulator Section from “Random Walk”.

Stratified Random Walk

The stratified path-based extractor, originally proposed in 
[21], works as follows: 

1. For each ground-truth class i = 1,… , p:

(a) Let S(i)
tr  be the subset of the training set containing only 

patterns belonging to class i;
(b) Calculate the (relative) frequency of the ith class as 

fi = ⌊∗⌋
���S

(i)
tr

���
�Str� +

1

2
;

(c) Evaluate Wi = ⌊∗⌋W ⋅ fi +
1

2
 , namely, the size of B(i);

(d) Evaluate W �
i
= ⌊∗⌋Wi ⋅ o +

1

2
 , namely, the number of 

subgraphs to be extracted for each of the candidate sub-
graphs order, yet considering only graphs belonging to 
class i;

(e) Set B(i) = �;
(f) For l = 1,… , o:

 (i) Set B(i,l) = � , namely, a temporary bucket that will 
hold subgraphs of order l extracted from graphs of 
class i;

 (ii) Until |||B
(i,l)||| is equal to W ′

i
:

(A) Extract uniformly at random a graph G from S(i)
tr ;

(B) Extract uniformly at random a node v from G;
(C) Start a simple random walk of length l from node v;
(D) The subgraph emerged from the random walk is added 

to B(i,l);

 (iii) B(i) = B(i) ∪ B(i,l)

The Granulator block works exactly as the one described 
in the section “Stratified Clique”, yet on a bucket-of-buck-
ets B composed of random walks (see the section “Random 
Walk”).
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Model Synthesis and Testing

In this section, we explain in detail how the above-described 
four blocks (Extractor, Granulator, Embedder and Classifier) 
co-operate to synthesize the classification model and subse-
quent testing of its final performance on the test set. Since 
there are several hyper-parameters involved in the model 
synthesis, notably:

• The thresholds T (used in the Granulator block) and � (used 
in both Granulator and Embedder);

• The weights for the nBMF dissimilarity measure (used in 
both Granulator and Embedder).

We employ a differential evolution algorithm [38] for an auto-
matic tuning of these parameters, hence driving the overall 
model synthesis.

The model synthesis starts by triggering the Extractor 
block, which yields the set of candidate information granules 
B by properly processing the training graphs. As B is returned, 
the differential evolution optimization scheme can take place.

The search space for the optimization procedure is defined 
as

Each individual from the evolving population forwards B to 
the Granulator block. As anticipated in the section “High-
Level Framework Description”, the Granulator calculates 
the INDVAL score by exploiting a suitable dissimilarity 
measure d(⋅, ⋅) and a threshold � ∈ [0, 1] and, finally, filters 
out any subgraph whose INDVAL score is below T. Recall 
that the dissimilarity measure between any two patterns is 
evaluated by a parametric nBMF dissimilarity measure that, 
in turn, depends on:

• Six real-valued weights that account for the importance of 
each atomic transformation (insertion, deletion and substi-
tution) on nodes and edges: wnode

sub
 , wnode

ins
 , wnode

del
 , wedge

sub
 , wedge

ins
 , 

w
edge

del
;

• A set Πedge of parameters, if needed, to drive the dissimilar-
ity measure between edges;

• A set Πnode of parameters, if needed, to drive the dissimilar-
ity measure between nodes.

At the end of the Granulation stage, the alphabet A is available 
for feeding the Embedder block, which yields the embedded 
version of Str and Sval , namely, Htr and Hval.

These two instance matrices are finally fed to the Classifier 
block, which trains a K-NN decision rule on Htr and predicts 
the ground-truth labels on Hval.

(6)

[
T � wnode

sub
wnode
ins

wnode
del

w
edge

sub
w
edge

ins
w
edge

del
Πedge Πnode

]

Each individual is evaluated by means of a fitness function 
(to be minimized) formalized as follows:

where � is an error term and � is a penalty term. Specifically:

where rec(i) is the recall of class i. Hence, Eq. (8) reads as 
the complement of the balanced accuracy [39]. On the other 
hand, � is a penalty term defined as

to penalize large alphabets and foster the optimization 
towards smaller alphabets.

At the end of the optimization stage, the best individual is 
retained, along with the best alphabet A⋆ synthesized with 
its genetic code and the two instance matrices H⋆

tr
 and H⋆

val
 

embedded against A⋆.
The choice of the trade-off parameter � ∈ [0, 1] in Eq. (7) 

that weights performance against dimensionality can hardly 
be set a priori. To overcome this problem, a second light-
weight optimization stage can be employed to further reduce 
the size of the alphabet.

In this second optimization stage, the genetic code is sim-
ply a binary mask:

and each individual from the evolving population: 

1. Projects H⋆

tr
 and H⋆

val
 on the subset of columns spanned 

by the indices {i ∶ mi = 1} , say H⋆′
tr

 and H⋆′
val

;
2. Trains the classifier on H⋆′

tr
 and validates its performance 

on H⋆′
val

.

The fitness function (to be minimized) reads as

where the leftmost term reads as in Eq. (8) and the rightmost 
term aims at fostering the evolution towards smaller alpha-
bets by preferring sparse binary masks.

At the end of this second optimization stage, the (possi-
bly) reduced alphabet A⋆′ ⊆ A⋆ is retained, along with the 
projected training instance matrix H⋆′

tr
 . The test set is itself 

embedded against A⋆′ , yielding H⋆′
ts

 . The classifier is finally 
trained on H⋆′

tr
 and its final performance is evaluated on H⋆′

ts
.

(7)f = � × � + (1 − �) × �

(8)� = 1 −
1

p

p∑

i=1

rec(i)

(9)� =
|A|
|B|

(10)m = {0, 1}|A⋆|

(11)f � = 𝛽 × 𝜋 + (1 − 𝛽) ×
||{i ∶ mi = 1}||

||A
⋆||
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Tests and Results

Data sets Description

The proposed comparison among different data granula-
tion strategies involves 6 different data sets, with the first 5 
data sets being taken from the IAM Repository [40] and the 
remaining one being taken from the TUDataset Repository 
[41]. A brief description of the data sets, along with the for-
mal definition of the dissimilarity measures between nodes 
and edges, follows: 

AIDS: The AIDS data set consists of 2000 graphs repre-
senting molecules showing activity or not against HIV 
(two classes). Molecules are converted into graphs in a 
straightforward manner by representing atoms as nodes 
and the covalent bonds as edges. Nodes are labeled by 
a three-element tuple that collects the 2D ⟨x, y⟩ coor-
dinates of the atom, the chemical symbol (categorical) 
and its charge (integer). Although edges are originally 
labeled with the valence of the linkage, such a value has 
been discarded, since it is not useful for the classification 
task.

Letter-L: The Letter-L data set involves graphs that 
represent distorted letter drawings with a low level of 
distortion. The recognition task involves the 15 capital 
letters of the Roman alphabet that can be represented 
by straight lines only. Each handwritten letter is trans-
formed into a graph by representing lines as edges and 
endpoints of lines as nodes. Each node is labeled by a 
two-dimensional real-valued vector giving its position 
within a reference coordinate system. Conversely, edges 
are unlabeled.

Letter-M: Same as Letter-L, but with medium level 
of distortion in handwritten digits.

Letter-H: Same as Letter-L, but with high level of 
distortion in handwritten digits.

GREC: The GREC data set consists of symbols from elec-
tronic and architectural drawings and, after suitable 
pre-processing, graphs are extracted from such images. 
Ending points, corners, intersections and circles are rep-
resented by nodes and labeled with a two-dimensional 

attribute giving their position. The nodes are connected 
by undirected edges, which are labeled as ”line” or 
”arc”. An additional attribute specifies the ”angle” with 
respect to the horizontal direction or the diameter in case 
of arcs.

MUTAG: The MUTAG data set consists of 188 
graphs corresponding to chemical compounds divided 
into two classes according to their respective muta-
genic effect on a bacterium. Both nodes and edges are 
equipped with categorical labels: node labels identify 
the atom type and edge labels identify the bond type 
(single, double, triple or aromatic).

Brief statistics about the data sets can be found in Table 1, 
along with the reference paper in which each data set has 
been originally presented, to which we refer the interested 
reader for more information. Specifically, for each data set, 
we show the number of graphs in the whole data set, the 
average number of nodes and edges amongst graphs in the 
data set, the number of classes for the classification prob-
lem, whether the classes are balanced or not and the data set 
application domain.

Table 1  Data set statistics

Data set Name # Graphs Avg. # Nodes Avg. # Edges # Classes Balanced Domain References

AIDS 2000 15.69 16.20 2 No Chemoinformatics [40]
Letter-L 2250 4.7 3.1 15 Yes Computer Vision [40]
Letter-M 2250 4.7 3.2 15 Yes Computer Vision [40]
Letter-H 2250 4.7 4.5 15 Yes Computer Vision [40]
GREC 1100 11.5 12.2 22 Yes Electronics [40, 42]
MUTAG 188 17.93 19.79 2 No Chemoinformatics [43, 44]
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Fig. 2  Accuracy on the test set (in percentage)
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Each data set has been split into three disjoint sets: train-
ing, validation and test. For the 5 IAM data sets, we used 
the very same training/validation/test splits provided in the 
repository, whereas for MUTAG we had to perform our own 

splits with the following ratio: training set (50%), validation 
set (25%) and test set (25%). The splitting procedure has 
been performed in a stratified manner in order to preserve 
labels’ distribution across the three sets.

For Letter-L, Letter-M, Letter-H, GREC and AIDS, 
details about the dissimilarity measures on nodes and edges 
can be found in [25, Appendix B]. We anticipate that GREC 
is the only data set with parametric dissimilarity measures 
on nodes and edges, i.e., for which Πedge ≠ � and Πnode ≠ �.

For MUTAG, since nodes and edges are equipped with 
categorical labels, the dissimilarity between nodes and the 
dissimilarity between edges are set as the plain discrete dis-
tance between labels (i.e., their distance is 1 if they are not 
equal and 0 otherwise) [45, Chapter 1].

Algorithmic Setup

The software has been fully implemented in Python with 
the support of the following third-party libraries: NetworkX 
[46] and Little Ball Of Fur [47] for handling and processing 
graph data structures, Scikit-Learn [48] for machine learning 
routines and SciPy [49] for optimization routines.

Fig. 3  Distribution of the 
accuracy boosts for paths and 
cliques across the 10 data sets. 
A positive shift means that the 
stratified approach outperforms 
the non-stratified approach
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Fig. 5  Distribution of the dif-
ferences of the alphabet size for 
paths and cliques across the 10 
data sets (after feature selec-
tion). A positive shift means 
that the stratified approach 
underperforms the non-stratified 
approach
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Other algorithm parameters have been configured as 
follows:

• � = 0.9 in the fitness function of the first genetic optimi-
zation (cf. Equation (7));

• � = 0.9 in the fitness function of the second genetic opti-
mization (cf. Equation (11));

• Maximum number of 20 generations for both genetic 
optimizations;

• A total of 20 and 100 individuals in the population for 
the first and second genetic optimization, respectively;

• Maximum walk length o = 5;
• The user-defined bucket size W has been chosen accord-

ing to a given percentage of the maximum number of 
paths or cliques that can be drawn from the training 
graphs. The percentages are chosen according to the fol-
lowing rule: the larger the data set, the higher the sub-
sampling rate. For the sake of shorthand, we omit any 
sensitivity analysis on the behavior of the Granulators 
as a function of W. In this regard, we refer the interested 
reader to our previous work [25]. The values for W for 
both clique-based and path-based Granulators can be 
found in [1, Table 2].

Computational Results

In this section, we proceed in comparing the four different 
granulation strategies proposed in the section “Information 
Granulation Strategies”, namely:

• The random walk-based granulator, in the following also 
called Paths for the sake of shorthand, presented in the 
section “Random Walk”

• The clique-based granulator, in the following also called 
Cliques, presented in the section “Clique”

• The stratified clique-based granulator, in the follow-
ing also called Stratified Cliques, presented in the sec-
tion “Stratified Clique”, and

• The stratified random walk-based granulator, in the fol-
lowing also called Stratified Paths, presented in the sec-
tion “Stratified Random Walk”.

In Figs. 2 and 4 we show the accuracy on the test set and 
the number of resulting alphabet symbols, respectively, with 
Figs. 3 and 5 showing their respective detailed breakdown. 
For the sake of completeness, in Fig. 6, we show also the 
size of the alphabet before the second genetic optimization 
stage. Due to the stochastic nature of the model synthesis 
procedure, the results shown below have been obtained by 
averaging across 10 different runs of the algorithm. Each fig-
ure shows a heatmap whose color scale has been normalized 
by rows (i.e., independently for each data set) and ranges 
from white (lower values) towards blue (higher values).

By considering Fig.  2, it is possible to observe that 
(regardless of the topology) a stratified approach leads to 
generally better performance (i.e., higher accuracy on the 
test set). The breakdown of the shifts in accuracy is shown 
in Fig. 3: for both path-based and clique-based granulators, 
the majority of the differences between stratified and non-
stratified approaches are positive. For path-based extractors, 
the only two data sets for which the opposite is true are 
AIDS and Letter-L. Conversely, for clique-based extrac-
tors, the two data sets showing the same phenomenon are 
Letter-M and Letter-H. By looking at the magnitude of the 
differences in terms of accuracy between stratified and non-
stratified approaches, it can be observed that such differ-
ences are within ±3% at most. On the other hand, clustering-
based extractors [1] have been shown to benefit more from 
a stratified approach (i.e., up to a +10% accuracy boost): 
this should not surprise, since clustering-based extractors are 
unsupervised by definition and the advantages of exploiting 
the ground-truth class labels are straightforward. Conversely, 
the INDVAL-based granulator (see the section “Extractor 
and Granulator”) natively exploits the ground-truth class 
labels (cf. Eqs (1)–(3)).

By looking at Fig. 4, we can observe the number of sym-
bols (i.e., the size of the alphabet) after the second genetic-
driven feature selection stage. In principle, a clique-based 
approach is likely to yield a smaller alphabet: this is due 
to the fact that an n-vertex graph can have at most O(3n∕3) 
cliques, whereas the number of paths can grow as O(n!) in 
the worst case, so the set of prospective information granules 
(even without any subsampling) is smaller. As for the accu-
racy case, a stratified approach yields some benefits. As can 
be seen in the breakdown (Fig. 5), as paths are concerned, 
the stratification yields a smaller alphabet for 3 data sets out 
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of 6. As cliques are concerned, only 1 data set (i.e., AIDS) 
sees a larger alphabet when no stratification is done.

In Table 2, we finally show a brief comparison against 
current approaches for graph classification. Competitors 
span a variety of techniques, including classifiers working 
on the top of GEDs [40, 50], kernel methods [51–54] and 
several embedding techniques [51, 55, 56], including Gran-
ular Computing-based [25, 57] and those based on neural 
networks and deep learning [58–62]. For the sake of com-
pleteness, we also include the results obtained with cluster-
ing-based granulators in our companion paper [1]. We can 

see that our method has comparable performances against 
current approaches in the graph classification literature. It is 
worth remarking that, aside from the mere numerical results, 
our approach has considerable higher perspectives to be 
deployed for analytical investigation by field experts thanks 
to its interpretability advantages, a common facet of Granu-
lar Computing-based systems [1, 25, 57], since the resulting 
set of automatically extracted granules of information can 
be analyzed by field experts to gather further insights on the 
problem at hand, paving the way for knowledge discovery.

Table 2  Comparison against state-of-the-art graph classification system in terms of classification accuracy

∗ Results refers to cross-validation rather than a separate test set

Technique AIDS GREC Letter-L Letter-M Letter-H MUTAG References

Bipartite Graph Matching + K-NN – 86.3 91.1 77.6 61.6 – [50]
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 – [55]
Graph Edit Distance + K-NN 97.3 95.5 99.6 94 90 – [40]
Graph of Words + K-NN – 97.5 98.8 – – – [56]
Graph of Words + kPCA + K-NN – 97.1 97.6 – – – [56]
Graph of Words + ICA + K-NN – 58.9 82.8 – – – [56]
Topological embedding 99.4 – – – – – [51, 63]
FMGE 99.0 – – – – – [51, 64]
Attribute Statistics 99.6 – – – – – [51, 65]
Hypergraph Embedding + SVM 99.3 – – – – 84.6 [57]
ODD ST+ kernel 82.06 * – – – – – [52]
ODD STTANH

+
 kernel 82.54 * – – – – – [52]

Laplacian kernel 92.6 – – – – – [51, 66]
Treelet kernel 99.1 – – – – – [51, 67]
Treelet kernel with MKL 99.7 – – – – – [51, 68]
WJK Hypergraph kernel + SVM 99.5 * – – – – 90.9 * [53]
CGMM + linear SVM 84.16 * – – – – 91.18 * [59]
G-L-Perceptron – 70 95 64 70 – [60]
G-M-Perceptron – 75 98 87 81 – [60]
C-1NN – – 96 93 84 – [60]
C-M-1NN – – 98 81 71 – [60]
EigenGCN-1 – – – – – – [58]
EigenGCN-2 – – – – – – [58]
EigenGCN-3 – – – – – – [58]
GCN with logical descriptors – 96.93 96.64 85.27 79.91 – [61]
MPNN – 89.5 91.3 81.2 64.24 – [62]
MPNN (no set2set) – 92.98 94.8 86.1 75.7 – [62]
Deep Graphlet Kernel – – – – – 82.66 * [54]
GRALG Paths 99.09 79.13 96.80 91.11 88.31 83.69 [1]
GRALG Stratified Paths 99.02 82.15 97.20 92.09 90.00 85.82 [1]
GRALG Cliques 97.93 90.3 96.31 58.36 74.4 88.65 [1]
GRALG Stratified Cliques 99.22 92.74 97.24 80.22 77.82 90.07 [1]
INDVAL Paths 98.67 94.35 96.84 90.09 88.44 85.11 This work
INDVAL Stratified Paths 98.36 95.44 96.71 91.11 88.98 85.11 This work
INDVAL Cliques 99.22 93.13 95.42 80.3 74.67 89.36 This work
INDVAL Stratified Cliques 99.36 96.15 96.31 78.49 73.16 89.36 This work
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Conclusion

In this work, we performed a two-fold investigation of fil-
tering-based strategies for the automatic synthesis of infor-
mation granules in the graph domain for solving (graph) 
classification problems on labeled graphs.

Our investigation jointly considers the subgraph topol-
ogy to extract granules of information (i.e., cliques vs. 
paths extracted via a random walk) and the possibility of 
performing a class-aware, stratified procedure over the set 
of candidate information granules to build class-specific 
alphabets of symbols.

These strategies are tested in a graph embedding envi-
ronment, where the set of automatically extracted granules 
of information serve as pivotal subgraphs for building and 
embedding space. The soundness of the latter is addressed 
by a statistical classifier working on the embedding space. 
A two-stage optimization process takes care of tuning the 
hyper-parameters of the classification model and perform-
ing an additional feature selection to ensure the selection 
of optimal granules of information.

To address the behavior of the granulation strategies, 
we performed a two-fold comparison in terms of clas-
sification performance and number of granules of infor-
mation. To this end, 6 different open-access data sets of 
labeled graphs pertaining to different application domains 
have been considered. Computational results show that, 
conversely to a clustering-based granulator, a stratified 
approach does not yield any particular benefit in terms of 
classification accuracy, since the proposed filtering method 
natively performs a class-aware evaluation of the statistical 
significance of each candidate information granule.
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