
Vol.:(0123456789)

SN Computer Science (2023) 4:314
https://doi.org/10.1007/s42979-023-01716-1

SN Computer Science

ORIGINAL RESEARCH

On Information Granulation via Data Filtering for Granular
Computing‑Based Pattern Recognition: A Graph Embedding Case
Study

Alessio Martino1 · Enrico De Santis2 · Antonello Rizzi2

Received: 30 June 2022 / Accepted: 30 January 2023 / Published online: 8 April 2023
© The Author(s) 2023

Abstract
Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recogni-
tion systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the
pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recog-
nition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where
common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion
paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different
strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly
differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of
using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ
a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results
on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if
compared to a clustering-based granulation stage.

Keywords Structural pattern recognition · Supervised learning · Graph classification · Inexact graph matching · Granular
computing · Information granulation · Data mining and knowledge discovery

Introduction

In the early 2000s, Granular Computing emerged as a novel
information processing paradigm that exploits pivotal
mathematical structures called granules of information to
describe an underlying set of (likely complex) data, describ-
ing a (likely complex) process under analysis [2, 3]. The
concept of information granulation dates back to the mid-
1990s, thanks to soft computing and fuzzy logic pioneer
Lotfi Aliasker Zadeh. In their words:

Among the basic concepts which underlie human cog-
nition there are three that stand out in importance. The
three are: granulation, organization and causation.
L.A. Zadeh [4]

and

Informally, granulation of an object A results in a col-
lection of granules of A, with a granule being a clump
of objects (or points) which are drawn together by

This article is part of the topical collection “Computational
Intelligence 2021” guest edited by Juan Julian Merelo, Kevin
Warwick, Thomas Bäck, Christian Wagner, Jonathan Garibaldi, H.
K. Lam and Marie Cottrell.

 * Alessio Martino
 amartino@luiss.it

 Enrico De Santis
 enrico.desantis@uniroma1.it

 Antonello Rizzi
 antonello.rizzi@uniroma1.it

1 Department of Business and Management, LUISS
University, Viale Romania 32, 00197 Rome, Italy

2 Department of Information Engineering, Electronics
and Telecommunications, University of Rome “La Sapienza”,
Via Eudossiana 18, 00184 Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01716-1&domain=pdf
http://orcid.org/0000-0003-1730-5436

 SN Computer Science (2023) 4:314314 Page 2 of 14

SN Computer Science

indistinguishability, similarity, proximity or function-
ality. In this sense, the granules of a human body are
the head, neck, arms, chest, etc. In turn, the granules of
a head are the forehead, cheeks, nose, ears, eyes, hair,
etc. In general, granulation is hierarchical in nature.
A familiar example is granulation of time into years,
years in months, months into days and so on.
L.A. Zadeh [4]

 This philosophical viewpoint behind the birth of Granu-
lar Computing as human-inspired information processing
paradigm has been embraced by other well-known scholars,
notably Ronald R. Yager. In their words:

Language, which is central to most human cognitive
activities, is based on granularization. In addition
human facilities for distinctions are limited. Being lim-
ited, at the very least by language and perhaps addi-
tionally by their ability to perceive, human beings have
been developed a granular view of the world. Thus, we
see that the objects with which humankind perceives,
measures, conceptualizes and reasons are granular.
R.R. Yager and D. Filev [5]

 As the 1990s marked the golden age of fuzzy logic and
fuzzy-based pattern recognition, L.A. Zadeh further argues
that information granules should be inherently fuzzy, since
most of human reason and concept formation are fuzzy
rather than crisp [4, 6].

Clearly, Granular Computing is not a set of computational
pipelines and is not a set of algorithms; rather, it can be
considered as a goal-driven umbrella that, according to Y.Y.
Yao, in their ”Granular Computing manifesto” [7] should
fulfill the following points:

• Be a truthful representation of the real world;
• Be consistent with human thinking and problem solving;
• Allow a simplification of the problem;
• Provide economic and low-cost solutions.

Thus, in the realm of Granular Computing, we can easily
find techniques that have not been developed for Granular
Computing but nonetheless they satisfy the above goals.
Indeed, information granulation can be performed by a
plethora of different strategies, notably fuzzy sets [4, 8, 9],
rough sets [9–11], shadowed sets [12], interval analysis [13]
and data clustering [14–16].

Recently, the granular computing paradigm has been
employed for the synthesis of pattern recognition systems,
as well as in structured domains, such as graphs, sequences
and images [17, 18]. The rationale behind these pattern
recognition systems is to automatically extract recurrent
and/or meaningful substructures (i.e., subgraphs, subse-
quences, portions of images) suitable to be considered as

granules of information. On the top of these pivotal ele-
ments, it is possible to build an embedding space in such
a way that the pattern recognition problem is cast from
the structured domain towards the Euclidean space. The
latter, being a metric space, allows to comfortably use one
of the many statistical classifiers currently available in the
pattern recognition and machine learning literature [19].

This work is the second part of our analysis in the con-
text of granulation techniques. Our investigation began
in [1], where we compared 4 different clustering-based
granulation strategies originally proposed in [20–22]. The
comparison involved two important aspects:

1. The topology of the candidate information granules
(paths extracted via random walks vs. cliques extracted
via the maximal clique decomposition);

2. The possibility of exploiting the ground-truth class
labels in the granulation procedure (which, being based
on data clustering, is unsupervised by definition).

In this work, as instead, we exploit a filtering-based
approach originally proposed in [23, 24] and later extended
in [25] for the same goal, that is, the automatic synthesis
of information granules in the context of graph classifica-
tion. The information granules reflect pivotal subgraphs
extracted from the training data endowed with high dis-
criminative power. On the top of these information gran-
ules, we perform an embedding procedure thanks to the
symbolic histograms approach [26]. Following our origi-
nal work, we review and compare two different candidate
topologies for the synthesis of granules of information
(paths and cliques) and we compare two additional strate-
gies for their synthesis: a stratified approach, where the
ground-truth labels of the classification problem play an
important role in the information granules synthesis, and
a non-stratified approach, where the ground-truth labels
are completely discarded in the process.

The remainder of this paper is structured as follows: in the
section “High-Level Framework Description”, we describe
the four main building blocks of the Granular Computing
framework (extraction and synthesis of granules of informa-
tion, graph embedding and classification), which we exploit
to perform our twofold investigation. In the section “Infor-
mation Granulation Strategies”, we discuss in detail four
granulation strategies based on different combination of sub-
graph topologies (paths vs. cliques) and stratification (class-
aware vs. no stratification). In the section “Model Synthesis
and Testing”, we detail how these building blocks co-operate
to synthesize an optimized model for graph classification. In
the section “Tests and Results”, we show the computational
results obtained by the four combinations of topology and
granulation and, finally, the section “Conclusion” concludes
the paper.

SN Computer Science (2023) 4:314 Page 3 of 14 314

SN Computer Science

High‑Level Framework Description

The proposed pattern recognition system is composed of the
following four main modules:

• Extractor, which is in charge of extracting, from the train-
ing set, a suitable set of candidate information granules;

• Granulator, which is in charge of building an alphabet of
symbols starting from the candidate information granules
provided by the Extractor block;

• Embedder, which is in charge of mapping a graph data
set towards the Euclidean space;

• Classifier, which is in charge of training and testing a
suitable classification system in the Euclidean space
spanned by the Embedder block.

Extractor and Granulator

Let P be an unknown, oriented and possibly complex pro-
cess to be modeled, where the inputs are annotated graphs
and where the output domain is a finite set of class labels.
Furthermore, let S be an input–output sampling of P and let
Str , Sval and Sts be a split of S into training, validation and
test sets, respectively. The split should be performed so that
each subset should share the same statistics to be considered
as valid representation of the same process. Moreover, this
split must satisfy the partition properties, notably:

• The union of the three sets yields the original set:
Str ∪ Sval ∪ Sts = S;

• The intersection of any two distinct sets is empty:
Str ∩ Sval = Str ∩ Sts = Sts ∩ Sval = �.

The Extractor is a block that takes as input Str and returns a
bucket B of subgraphs drawn from graphs in Str.

Conversely, the Granulator block takes as input B and
returns an alphabet of symbols A ⊂ B , namely, suitable
granules of information, by calculating a statistical score
called INDVAL and retaining only statistically relevant
items from B.

The INDVAL score has been originally proposed
in [27] for spotting representative species in different

environments. The idea at the basis of the INDVAL score
is straightforward: a given species s is representative,
hence useful for the recognition of an environmental con-
dition c if both of the following properties are met:

1. s must be present in only (or almost only) of the c-posi-
tive objects;

2. s must be present in all (or the great majority) of the
c-positive objects.

The INDVAL score (I) can be re-stated to spot signature
subgraphs in a set of training graphs as [23, 24, 28]:

By definition, since A(j)

i
∈ [0, 1] and B(j)

i
∈ [0, 1] , then

I
(j)

i
∈ [0, 100] . The two supporting scores A and B have a

straightforward interpretation:

• The maximum value of A is obtained when the ith sub-
graph can be found only in patterns (graphs) belonging
to class j;

• The maximum value for B is obtained if all patterns of
class j have subgraph i.

Finally, the maximum INDVAL I corresponds to the maxi-
mum sensitivity and specificity for the ith subgraph within
group j: all patterns of class j have subgraph i and no pat-
terns belonging to other classes have subgraph i.

Given these preliminary definitions, let us consider the
following example useful for understanding how the IND-
VAL score can be used to spot meaningful subgraphs.

Example 1 Fig. 1 shows a toy data set with 4 graphs equally
distributed in two classes.

(1)A
(j)

i
=

#graphs having subgraph i in group j

#graphs having subgraph i

(2)B
(j)

i
=

#graphs having subgraph i in group j

#graphs in group j

(3)I
(j)

i
= A

(j)

i
⋅ B

(j)

i
⋅ 100

(a) Class 1 (b) Class 1 (c) Class 2 (d) Class 2

Fig. 1 Toy data set with 2 graphs per class

 SN Computer Science (2023) 4:314314 Page 4 of 14

SN Computer Science

For the sake of example, let us consider only order-2 sub-
graphs, notably A–B, B–D, B–C, C–D, A–C. Then, we can
calculate the scores A, B and I by means of Eqs. (1)–(3),
yielding:

A
(1)

A–B
= 2∕2 B(1)

A–B
= 2∕2 I(1)

A–B
= 1 ⋅ 1 ⋅ 100 = 100

A
(2)

A–B
= 0∕2 B(2)

A–B
= 0∕2 I(2)

A–B
= 0 ⋅ 0 ⋅ 100 = 0

A
(1)

B–D
= 1∕3 B(1)

B–D
= 1∕2 I(1)

B–D
= 0.3 ⋅ 0.5 ⋅ 100 = 15

A
(2)

B–D
= 2∕3 B(2)

B–D
= 2∕2 I(2)

B–D
= 0.6 ⋅ 1 ⋅ 100 = 60

A
(1)

B–C
= 0∕1 B(1)

B–C
= 0∕2 I(1)

B–C
= 0 ⋅ 0 ⋅ 100 = 0

A
(2)

B–C
= 1∕1 B(2)

B–C
= 1∕2 I(2)

B–C
= 1 ⋅ 0.5 ⋅ 100 = 50

A
(1)

C–D
= 1∕2 B(1)

C–D
= 1∕2 I(1)

C–D
= 0.5 ⋅ 0.5 ⋅ 100 = 50

A
(2)

C–D
= 1∕2 B(2)

C–D
= 1∕2 I(2)

C–D
= 0.5 ⋅ 0.5 ⋅ 100 = 50

A
(1)

A–C
= 2∕4 B(1)

A–C
= 2∕2 I(1)

A–C
= 0.5 ⋅ 1 ⋅ 100 = 50

A
(2)

A–C
= 2∕4 B(2)

A–C
= 2∕2 I(2)

A–C
= 0.5 ⋅ 1 ⋅ 100 = 50

By looking at the INDVAL scores, we can immediately
spot edge A–B as “the perfect subgraph”, since it has maxi-
mum score for class 1 and null score for class 2: indeed (cf.
Figure 1) edge A–B is found only and in all graphs belong-
ing to class 1 while being (at the same time) completely
absent in all graphs belonging to class 2. In this example,
edge A–B alone will allow us to perfectly discriminate
graphs belonging to class 1 and class 2 (i.e., by checking
whether is present or not in the graph to be classified). Other
notable results include edges C–D and A–C: C–D can be
found in half of the graphs, regardless of the class, and A–C
can be found in all graphs in the data set. Their INDVAL
score (I = 50 , regardless of the class) reflects the fact that
such edges do not significantly characterize graphs belong-
ing to either class 1 or class 2.

The above example shows a simplistic case, where graphs
have unlabelled edges and nodes are labelled with plain cat-
egorical values. In this case, the evaluation of Eqs. (1)–(3) is
straightforward, since the procedure of counting how many
times a given subgraph appears in a graph can be done in
an exact manner [23]. However, graphs are by definition
very general data structures whose nodes and edges can be
equipped with labels of any nature. This problem has been
addressed in [25] and here below we summarize our solution
to account for an inexact graph matching:

1. Let G be a graph and let G̃ be a subgraph to be found in
G : we can start by decomposing G into its constituent
parts;

2. Match G̃ against any of the constituent parts from G
thanks to a suitable dissimilarity measure;

3. A match is considered as a hit if the dissimilarity meas-
ure is below a user-defined threshold �.

As regards step #2, we employ the node Best Match First
(nBMF) dissimilarity measure, belonging to the wider fam-
ily of graph edit distances [29, 30]. Mathematical details
on nBMF can be found in [25, Appendix A]. We anticipate
that nBMF is a parametric dissimilarity measure, where the
importance of insertion, deletion and substitution on nodes
and edges can be tuned by the end-user via suitable weights.
Similarly, the dissimilarity measures to match (dis)similar
nodes and/or edges can be parametric themselves, depending
on the data and the problem at hand.

Therefore, the Granulator block receives the bucket of
candidate information granules from the Extractor block (the
four strategies for populating B will be separately discussed
in Sect. “Information Granulation Strategies”) and, for each
candidate information granule, its INDVAL score is evalu-
ated against each of the problem-related classes. If, for at
least one class, the INDVAL score is greater than a thresh-
old T ∈ (0, 100) , that particular subgraph is included in the
alphabet A , otherwise it will be filtered out (i.e., discarded).

Embedder

The Embedder block takes as input the alphabet as returned
by the Granulator block and runs an embedding function to
cast each graph (belonging to an input graph set, e.g., Str)
towards the Euclidean space.

The mapping function yields the so-called symbolic
histogram [26] by transforming each input graph G into an
n-length feature vector of the form:

where A = {s1,… , sn} and occ ∶ A × G → ℕ
+
0
 is the enu-

meration function that counts the number of times each sym-
bol s ∈ A appears in G.

Here, the process of counting subgraphs into graphs is
subject to the same observations as for the INDVAL case
and, likewise, operates as follows:

1. The input graph G is decomposed into its constituent
parts, yielding a decomposition G� = {g1,… , gk}.

2. For the ith symbol in A:

(a) The pairwise dissimilarities between si and all sub-
graphs in G′ are evaluated;

(b) All dissimilarities below a threshold � are retained and
considered as a ’hit’;

(c) The ith entry in h is filled with the number of occur-
rences (i.e., the number of ’hits’);

(4)h(A,G) = [occ(s1,G),… , occ(sn,G)]

SN Computer Science (2023) 4:314 Page 5 of 14 314

SN Computer Science

1. Repeat step 2 for i = 1,… , n.

One important aspect in this procedure regards the pairwise
dissimilarities between symbols and subgraphs, which is
evaluated by means of the very same nBMF dissimilarity
measure already used by the Granulator block.

Classifier

The Classifier block trains a classification system on the
embedded version of Str , say Htr , namely, an ||Str

|| × n
instance matrix with patterns (i.e., graphs from Str) organ-
ized as rows.

To validate the behavior of the classifier, the Classifier
block also needs the embedded version of Sval , say Hval .
The ability of the classification system, previously trained
on Htr , in predicting the ground-truth labels of Hval dic-
tates the performance of the Classifier.

In this work, we use a K-Nearest Neighbors (K-NN)
decision rule [31] with K = 5 as the classification system.

Information Granulation Strategies

Random Walk

The random walk extractor, proposed in [25], takes
as input a bucket B of candidate information granules
extracted via a plain random walk on the graphs belong-
ing to the training set.

In a plain random walk [32, 33], the next-hop u ∈ V is
chosen uniformly at random among the neighbors of the
current node v ∈ V . Formally, the probability of moving
from v to u is

where N(v) is the neighborhood of node v and deg(v) is its
degree, i.e., deg(v) = |N(v)|.

Populating the bucket B relies on two important
parameters:

• W, the user-defined number of subgraphs in B , i.e.,
W = |B|;

• o, the user-defined maximum number of nodes for sub-
graphs in B.

and it works as follows:

1. Start with B = �;

(5)pv→u =

{
1

deg(v)
, ifu ∈ N(v)

0, otherwise

2. Let W � =
W

o
 be the number of subgraphs to be extracted

for each of the candidate subgraph orders;
3. For l = 1,… , o:

(a) Let B(l) = � be a temporary bucket containing only
subgraphs of order l;

(b) Until |||B
(l)||| equals W ′:

 (i) Extract uniformly at random a graph G from the train-
ing set;

 (ii) Extract uniformly at random a node v from G;
 (iii) Start a simple random walk of length l from node v;
 (iv) The subgraph emerged from the random walk is

added to B(l);

(c) B = B ∪ B(l);

The so-collected bucket B is the main input to the Granula-
tor module. As anticipated in Sect. “High-Level Framework
Description”, the Granulator block calculates the INDVAL
scores for each subgraph in B , eventually collecting statisti-
cally relevant granules in the alphabet A.

Clique

The clique extractor aims at investigating a particular sub-
graph topology: the clique, namely, an induced subgraph
that is complete [34, 35].

In this scenario, the bucket B will be filled with a subset
of the cliques extracted from the graphs belonging to the
training set. The end-user is still required to specify W,
as for the section “Random Walk”, yet the maximal order
parameter o is meaningless as cliques are concerned, since
the formation (and the size) of a clique is strictly topology-
dependent rather than user-defined.

The clique extractor works as follows:

1. Start with B = �;
2. For each graph G from the training set:

(a) Evaluate C as the maximal clique decomposition of
G . The maximal clique decomposition of a graph
G = (V, E) can be evaluated thanks to the Bron–Ker-
bosh algorithm [36] with a worst-case complexity of
O(3|V|∕3) [37];

(b) B = B ∪ C;

 SN Computer Science (2023) 4:314314 Page 6 of 14

SN Computer Science

3. Let B≃ be a set of W subgraphs selected uniformly at
random from B;

4. B ← B′.

The so-collected bucket B is the main input to the granula-
tor module. The Granulator block works exactly as the one
described in the section “Random Walk”, yet on a bucket B
composed of cliques only.

Stratified Clique

The two extractors and granulator strategies in the sec-
tions. “Random Walk” and “Clique” populate the bucket
B uniformly at random. Such procedures present the fol-
lowing two potential drawbacks:

• The information about the ground-truth labels (freely
available in classification problems) is not exploited
in the extraction and granulation stages;

• A uniformly at random selection can bias the con-
tents of B , especially in case of unbalanced data sets;
indeed, training graphs pertaining to the majority class
have a higher change of being selected.

To overcome both problems, we further proposed a strati-
fied clique-based extractor and granulator [20]. The main
objective of the stratified extractor is to build the bucket
B as a set-of-sets B = {B(1),… ,B(p)} , with p being the
number of classes for the classification problem at hand,
with the constraint that B(i) contains subgraphs drawn
from the subset of training graphs belonging to the ith
class only.

The stratified clique-based extractor works as follows:

1. For each ground-truth class i = 1,… , p:

(a) Let S(i)
tr be the subset of the training set containing

only patterns belonging to class i;
(b) Calculate the (relative) frequency of the ith class as

fi = ⌊∗⌋
���S

(i)
tr

���
�Str� +

1

2
 , where the operator ⌊∗⌋x + 1

2
 rounds x

to the nearest integer;
(c) Evaluate Wi = ⌊∗⌋W ⋅ fi +

1

2
 , namely, the size of B(i);

(d) Set B(i) = �;
(e) For each graph G ∈ S

(i)
tr :

 (i) Evaluate C as the maximal clique decomposition of
G;

 (ii) Update B(i) = B(i) ∪ C.

(f) If |||B
(i)||| > Wi , then replace B(i) with a uniform random

selection of Wi of its own subgraphs.

Due to the set-of-sets nature of the stratified bucket, the
Granulator described in the section “Random Walk” and
later employed in the section Clique” loses its effectiveness.
To overcome this problem, we flat the set-of-sets and run the
Granulator Section from “Random Walk”.

Stratified Random Walk

The stratified path-based extractor, originally proposed in
[21], works as follows:

1. For each ground-truth class i = 1,… , p:

(a) Let S(i)
tr be the subset of the training set containing only

patterns belonging to class i;
(b) Calculate the (relative) frequency of the ith class as

fi = ⌊∗⌋
���S

(i)
tr

���
�Str� +

1

2
;

(c) Evaluate Wi = ⌊∗⌋W ⋅ fi +
1

2
 , namely, the size of B(i);

(d) Evaluate W �
i
= ⌊∗⌋Wi ⋅ o +

1

2
 , namely, the number of

subgraphs to be extracted for each of the candidate sub-
graphs order, yet considering only graphs belonging to
class i;

(e) Set B(i) = �;
(f) For l = 1,… , o:

 (i) Set B(i,l) = � , namely, a temporary bucket that will
hold subgraphs of order l extracted from graphs of
class i;

 (ii) Until |||B
(i,l)||| is equal to W ′

i
:

(A) Extract uniformly at random a graph G from S(i)
tr ;

(B) Extract uniformly at random a node v from G;
(C) Start a simple random walk of length l from node v;
(D) The subgraph emerged from the random walk is added

to B(i,l);

 (iii) B(i) = B(i) ∪ B(i,l)

The Granulator block works exactly as the one described
in the section “Stratified Clique”, yet on a bucket-of-buck-
ets B composed of random walks (see the section “Random
Walk”).

SN Computer Science (2023) 4:314 Page 7 of 14 314

SN Computer Science

Model Synthesis and Testing

In this section, we explain in detail how the above-described
four blocks (Extractor, Granulator, Embedder and Classifier)
co-operate to synthesize the classification model and subse-
quent testing of its final performance on the test set. Since
there are several hyper-parameters involved in the model
synthesis, notably:

• The thresholds T (used in the Granulator block) and � (used
in both Granulator and Embedder);

• The weights for the nBMF dissimilarity measure (used in
both Granulator and Embedder).

We employ a differential evolution algorithm [38] for an auto-
matic tuning of these parameters, hence driving the overall
model synthesis.

The model synthesis starts by triggering the Extractor
block, which yields the set of candidate information granules
B by properly processing the training graphs. As B is returned,
the differential evolution optimization scheme can take place.

The search space for the optimization procedure is defined
as

Each individual from the evolving population forwards B to
the Granulator block. As anticipated in the section “High-
Level Framework Description”, the Granulator calculates
the INDVAL score by exploiting a suitable dissimilarity
measure d(⋅, ⋅) and a threshold � ∈ [0, 1] and, finally, filters
out any subgraph whose INDVAL score is below T. Recall
that the dissimilarity measure between any two patterns is
evaluated by a parametric nBMF dissimilarity measure that,
in turn, depends on:

• Six real-valued weights that account for the importance of
each atomic transformation (insertion, deletion and substi-
tution) on nodes and edges: wnode

sub
 , wnode

ins
 , wnode

del
 , wedge

sub
 , wedge

ins
 ,

w
edge

del
;

• A set Πedge of parameters, if needed, to drive the dissimilar-
ity measure between edges;

• A set Πnode of parameters, if needed, to drive the dissimilar-
ity measure between nodes.

At the end of the Granulation stage, the alphabet A is available
for feeding the Embedder block, which yields the embedded
version of Str and Sval , namely, Htr and Hval.

These two instance matrices are finally fed to the Classifier
block, which trains a K-NN decision rule on Htr and predicts
the ground-truth labels on Hval.

(6)

[
T � wnode

sub
wnode
ins

wnode
del

w
edge

sub
w
edge

ins
w
edge

del
Πedge Πnode

]

Each individual is evaluated by means of a fitness function
(to be minimized) formalized as follows:

where � is an error term and � is a penalty term. Specifically:

where rec(i) is the recall of class i. Hence, Eq. (8) reads as
the complement of the balanced accuracy [39]. On the other
hand, � is a penalty term defined as

to penalize large alphabets and foster the optimization
towards smaller alphabets.

At the end of the optimization stage, the best individual is
retained, along with the best alphabet A⋆ synthesized with
its genetic code and the two instance matrices H⋆

tr
 and H⋆

val

embedded against A⋆.
The choice of the trade-off parameter � ∈ [0, 1] in Eq. (7)

that weights performance against dimensionality can hardly
be set a priori. To overcome this problem, a second light-
weight optimization stage can be employed to further reduce
the size of the alphabet.

In this second optimization stage, the genetic code is sim-
ply a binary mask:

and each individual from the evolving population:

1. Projects H⋆

tr
 and H⋆

val
 on the subset of columns spanned

by the indices {i ∶ mi = 1} , say H⋆′
tr

 and H⋆′
val

;
2. Trains the classifier on H⋆′

tr
 and validates its performance

on H⋆′
val

.

The fitness function (to be minimized) reads as

where the leftmost term reads as in Eq. (8) and the rightmost
term aims at fostering the evolution towards smaller alpha-
bets by preferring sparse binary masks.

At the end of this second optimization stage, the (possi-
bly) reduced alphabet A⋆′ ⊆ A⋆ is retained, along with the
projected training instance matrix H⋆′

tr
 . The test set is itself

embedded against A⋆′ , yielding H⋆′
ts

 . The classifier is finally
trained on H⋆′

tr
 and its final performance is evaluated on H⋆′

ts
.

(7)f = � × � + (1 − �) × �

(8)� = 1 −
1

p

p∑

i=1

rec(i)

(9)� =
|A|
|B|

(10)m = {0, 1}|A⋆|

(11)f � = 𝛽 × 𝜋 + (1 − 𝛽) ×
||{i ∶ mi = 1}||

||A
⋆||

 SN Computer Science (2023) 4:314314 Page 8 of 14

SN Computer Science

Tests and Results

Data sets Description

The proposed comparison among different data granula-
tion strategies involves 6 different data sets, with the first 5
data sets being taken from the IAM Repository [40] and the
remaining one being taken from the TUDataset Repository
[41]. A brief description of the data sets, along with the for-
mal definition of the dissimilarity measures between nodes
and edges, follows:

AIDS: The AIDS data set consists of 2000 graphs repre-
senting molecules showing activity or not against HIV
(two classes). Molecules are converted into graphs in a
straightforward manner by representing atoms as nodes
and the covalent bonds as edges. Nodes are labeled by
a three-element tuple that collects the 2D ⟨x, y⟩ coor-
dinates of the atom, the chemical symbol (categorical)
and its charge (integer). Although edges are originally
labeled with the valence of the linkage, such a value has
been discarded, since it is not useful for the classification
task.

Letter-L: The Letter-L data set involves graphs that
represent distorted letter drawings with a low level of
distortion. The recognition task involves the 15 capital
letters of the Roman alphabet that can be represented
by straight lines only. Each handwritten letter is trans-
formed into a graph by representing lines as edges and
endpoints of lines as nodes. Each node is labeled by a
two-dimensional real-valued vector giving its position
within a reference coordinate system. Conversely, edges
are unlabeled.

Letter-M: Same as Letter-L, but with medium level
of distortion in handwritten digits.

Letter-H: Same as Letter-L, but with high level of
distortion in handwritten digits.

GREC: The GREC data set consists of symbols from elec-
tronic and architectural drawings and, after suitable
pre-processing, graphs are extracted from such images.
Ending points, corners, intersections and circles are rep-
resented by nodes and labeled with a two-dimensional

attribute giving their position. The nodes are connected
by undirected edges, which are labeled as ”line” or
”arc”. An additional attribute specifies the ”angle” with
respect to the horizontal direction or the diameter in case
of arcs.

MUTAG: The MUTAG data set consists of 188
graphs corresponding to chemical compounds divided
into two classes according to their respective muta-
genic effect on a bacterium. Both nodes and edges are
equipped with categorical labels: node labels identify
the atom type and edge labels identify the bond type
(single, double, triple or aromatic).

Brief statistics about the data sets can be found in Table 1,
along with the reference paper in which each data set has
been originally presented, to which we refer the interested
reader for more information. Specifically, for each data set,
we show the number of graphs in the whole data set, the
average number of nodes and edges amongst graphs in the
data set, the number of classes for the classification prob-
lem, whether the classes are balanced or not and the data set
application domain.

Table 1 Data set statistics

Data set Name # Graphs Avg. # Nodes Avg. # Edges # Classes Balanced Domain References

AIDS 2000 15.69 16.20 2 No Chemoinformatics [40]
Letter-L 2250 4.7 3.1 15 Yes Computer Vision [40]
Letter-M 2250 4.7 3.2 15 Yes Computer Vision [40]
Letter-H 2250 4.7 4.5 15 Yes Computer Vision [40]
GREC 1100 11.5 12.2 22 Yes Electronics [40, 42]
MUTAG 188 17.93 19.79 2 No Chemoinformatics [43, 44]

Paths

Stra
tifi

ed Paths
Cliques

Stra
tifi

ed Cliques

Letter-L

Letter-M

Letter-H

AIDS

GREC

MUTAG

98.67

94.35

85.11

98.36

85.11

95.42

80.36

74.67

93.13

96.31

78.49

73.16

96.84

90.09

88.44

96.71

91.11

88.98

95.44

99.22

89.36

99.36

96.15

89.36

Fig. 2 Accuracy on the test set (in percentage)

SN Computer Science (2023) 4:314 Page 9 of 14 314

SN Computer Science

Each data set has been split into three disjoint sets: train-
ing, validation and test. For the 5 IAM data sets, we used
the very same training/validation/test splits provided in the
repository, whereas for MUTAG we had to perform our own

splits with the following ratio: training set (50%), validation
set (25%) and test set (25%). The splitting procedure has
been performed in a stratified manner in order to preserve
labels’ distribution across the three sets.

For Letter-L, Letter-M, Letter-H, GREC and AIDS,
details about the dissimilarity measures on nodes and edges
can be found in [25, Appendix B]. We anticipate that GREC
is the only data set with parametric dissimilarity measures
on nodes and edges, i.e., for which Πedge ≠ � and Πnode ≠ �.

For MUTAG, since nodes and edges are equipped with
categorical labels, the dissimilarity between nodes and the
dissimilarity between edges are set as the plain discrete dis-
tance between labels (i.e., their distance is 1 if they are not
equal and 0 otherwise) [45, Chapter 1].

Algorithmic Setup

The software has been fully implemented in Python with
the support of the following third-party libraries: NetworkX
[46] and Little Ball Of Fur [47] for handling and processing
graph data structures, Scikit-Learn [48] for machine learning
routines and SciPy [49] for optimization routines.

Fig. 3 Distribution of the
accuracy boosts for paths and
cliques across the 10 data sets.
A positive shift means that the
stratified approach outperforms
the non-stratified approach

-1 -0.5 0 0.5 1 1.5 2
Accuracy shift [%]

0

0.5

1

1.5

2

O
cc

ur
re

nc
es

(a) Paths

-2 0 2 4 6
Accuracy shift [%]

0

0.5

1

1.5

2

2.5

3

O
cc

ur
re

nc
es

(b) Cliques

Paths

Stra
tifi

ed Paths
Cliques

Stra
tifi

ed Cliques

Letter-L

Letter-M

Letter-H

AIDS

GREC

MUTAG

45

77

188

78

34

129

5

246

83

159

10

182

115

32

121

60

305

220

113

256

214

96

251

202

Fig. 4 Size of the alphabet after feature selection

Fig. 5 Distribution of the dif-
ferences of the alphabet size for
paths and cliques across the 10
data sets (after feature selec-
tion). A positive shift means
that the stratified approach
underperforms the non-stratified
approach

-100 -50 0 50 100
Alphabet size shift

0

0.5

1

1.5

2

2.5

3

O
cc

ur
re

nc
es

(a) Paths

-100 -50 0 50
Alphabet size shift

0

0.5

1

1.5

2

2.5

3

3.5

4

O
cc

ur
re

nc
es

(b) Cliques

 SN Computer Science (2023) 4:314314 Page 10 of 14

SN Computer Science

Other algorithm parameters have been configured as
follows:

• � = 0.9 in the fitness function of the first genetic optimi-
zation (cf. Equation (7));

• � = 0.9 in the fitness function of the second genetic opti-
mization (cf. Equation (11));

• Maximum number of 20 generations for both genetic
optimizations;

• A total of 20 and 100 individuals in the population for
the first and second genetic optimization, respectively;

• Maximum walk length o = 5;
• The user-defined bucket size W has been chosen accord-

ing to a given percentage of the maximum number of
paths or cliques that can be drawn from the training
graphs. The percentages are chosen according to the fol-
lowing rule: the larger the data set, the higher the sub-
sampling rate. For the sake of shorthand, we omit any
sensitivity analysis on the behavior of the Granulators
as a function of W. In this regard, we refer the interested
reader to our previous work [25]. The values for W for
both clique-based and path-based Granulators can be
found in [1, Table 2].

Computational Results

In this section, we proceed in comparing the four different
granulation strategies proposed in the section “Information
Granulation Strategies”, namely:

• The random walk-based granulator, in the following also
called Paths for the sake of shorthand, presented in the
section “Random Walk”

• The clique-based granulator, in the following also called
Cliques, presented in the section “Clique”

• The stratified clique-based granulator, in the follow-
ing also called Stratified Cliques, presented in the sec-
tion “Stratified Clique”, and

• The stratified random walk-based granulator, in the fol-
lowing also called Stratified Paths, presented in the sec-
tion “Stratified Random Walk”.

In Figs. 2 and 4 we show the accuracy on the test set and
the number of resulting alphabet symbols, respectively, with
Figs. 3 and 5 showing their respective detailed breakdown.
For the sake of completeness, in Fig. 6, we show also the
size of the alphabet before the second genetic optimization
stage. Due to the stochastic nature of the model synthesis
procedure, the results shown below have been obtained by
averaging across 10 different runs of the algorithm. Each fig-
ure shows a heatmap whose color scale has been normalized
by rows (i.e., independently for each data set) and ranges
from white (lower values) towards blue (higher values).

By considering Fig. 2, it is possible to observe that
(regardless of the topology) a stratified approach leads to
generally better performance (i.e., higher accuracy on the
test set). The breakdown of the shifts in accuracy is shown
in Fig. 3: for both path-based and clique-based granulators,
the majority of the differences between stratified and non-
stratified approaches are positive. For path-based extractors,
the only two data sets for which the opposite is true are
AIDS and Letter-L. Conversely, for clique-based extrac-
tors, the two data sets showing the same phenomenon are
Letter-M and Letter-H. By looking at the magnitude of the
differences in terms of accuracy between stratified and non-
stratified approaches, it can be observed that such differ-
ences are within ±3% at most. On the other hand, clustering-
based extractors [1] have been shown to benefit more from
a stratified approach (i.e., up to a +10% accuracy boost):
this should not surprise, since clustering-based extractors are
unsupervised by definition and the advantages of exploiting
the ground-truth class labels are straightforward. Conversely,
the INDVAL-based granulator (see the section “Extractor
and Granulator”) natively exploits the ground-truth class
labels (cf. Eqs (1)–(3)).

By looking at Fig. 4, we can observe the number of sym-
bols (i.e., the size of the alphabet) after the second genetic-
driven feature selection stage. In principle, a clique-based
approach is likely to yield a smaller alphabet: this is due
to the fact that an n-vertex graph can have at most O(3n∕3)
cliques, whereas the number of paths can grow as O(n!) in
the worst case, so the set of prospective information granules
(even without any subsampling) is smaller. As for the accu-
racy case, a stratified approach yields some benefits. As can
be seen in the breakdown (Fig. 5), as paths are concerned,
the stratification yields a smaller alphabet for 3 data sets out

Paths

Stra
tifi

ed Paths
Cliques

Stra
tifi

ed Cliques

Letter-L

Letter-M

Letter-H

AIDS

GREC

MUTAG

122

199

268

123

273

24

247

103

409

247

242

352

500

421

657

491

578

316

609

476

751

551

538

752

Fig. 6 Size of the alphabet before feature selection

SN Computer Science (2023) 4:314 Page 11 of 14 314

SN Computer Science

of 6. As cliques are concerned, only 1 data set (i.e., AIDS)
sees a larger alphabet when no stratification is done.

In Table 2, we finally show a brief comparison against
current approaches for graph classification. Competitors
span a variety of techniques, including classifiers working
on the top of GEDs [40, 50], kernel methods [51–54] and
several embedding techniques [51, 55, 56], including Gran-
ular Computing-based [25, 57] and those based on neural
networks and deep learning [58–62]. For the sake of com-
pleteness, we also include the results obtained with cluster-
ing-based granulators in our companion paper [1]. We can

see that our method has comparable performances against
current approaches in the graph classification literature. It is
worth remarking that, aside from the mere numerical results,
our approach has considerable higher perspectives to be
deployed for analytical investigation by field experts thanks
to its interpretability advantages, a common facet of Granu-
lar Computing-based systems [1, 25, 57], since the resulting
set of automatically extracted granules of information can
be analyzed by field experts to gather further insights on the
problem at hand, paving the way for knowledge discovery.

Table 2 Comparison against state-of-the-art graph classification system in terms of classification accuracy

∗ Results refers to cross-validation rather than a separate test set

Technique AIDS GREC Letter-L Letter-M Letter-H MUTAG References

Bipartite Graph Matching + K-NN – 86.3 91.1 77.6 61.6 – [50]
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 – [55]
Graph Edit Distance + K-NN 97.3 95.5 99.6 94 90 – [40]
Graph of Words + K-NN – 97.5 98.8 – – – [56]
Graph of Words + kPCA + K-NN – 97.1 97.6 – – – [56]
Graph of Words + ICA + K-NN – 58.9 82.8 – – – [56]
Topological embedding 99.4 – – – – – [51, 63]
FMGE 99.0 – – – – – [51, 64]
Attribute Statistics 99.6 – – – – – [51, 65]
Hypergraph Embedding + SVM 99.3 – – – – 84.6 [57]
ODD ST+ kernel 82.06 * – – – – – [52]
ODD STTANH

+
 kernel 82.54 * – – – – – [52]

Laplacian kernel 92.6 – – – – – [51, 66]
Treelet kernel 99.1 – – – – – [51, 67]
Treelet kernel with MKL 99.7 – – – – – [51, 68]
WJK Hypergraph kernel + SVM 99.5 * – – – – 90.9 * [53]
CGMM + linear SVM 84.16 * – – – – 91.18 * [59]
G-L-Perceptron – 70 95 64 70 – [60]
G-M-Perceptron – 75 98 87 81 – [60]
C-1NN – – 96 93 84 – [60]
C-M-1NN – – 98 81 71 – [60]
EigenGCN-1 – – – – – – [58]
EigenGCN-2 – – – – – – [58]
EigenGCN-3 – – – – – – [58]
GCN with logical descriptors – 96.93 96.64 85.27 79.91 – [61]
MPNN – 89.5 91.3 81.2 64.24 – [62]
MPNN (no set2set) – 92.98 94.8 86.1 75.7 – [62]
Deep Graphlet Kernel – – – – – 82.66 * [54]
GRALG Paths 99.09 79.13 96.80 91.11 88.31 83.69 [1]
GRALG Stratified Paths 99.02 82.15 97.20 92.09 90.00 85.82 [1]
GRALG Cliques 97.93 90.3 96.31 58.36 74.4 88.65 [1]
GRALG Stratified Cliques 99.22 92.74 97.24 80.22 77.82 90.07 [1]
INDVAL Paths 98.67 94.35 96.84 90.09 88.44 85.11 This work
INDVAL Stratified Paths 98.36 95.44 96.71 91.11 88.98 85.11 This work
INDVAL Cliques 99.22 93.13 95.42 80.3 74.67 89.36 This work
INDVAL Stratified Cliques 99.36 96.15 96.31 78.49 73.16 89.36 This work

 SN Computer Science (2023) 4:314314 Page 12 of 14

SN Computer Science

Conclusion

In this work, we performed a two-fold investigation of fil-
tering-based strategies for the automatic synthesis of infor-
mation granules in the graph domain for solving (graph)
classification problems on labeled graphs.

Our investigation jointly considers the subgraph topol-
ogy to extract granules of information (i.e., cliques vs.
paths extracted via a random walk) and the possibility of
performing a class-aware, stratified procedure over the set
of candidate information granules to build class-specific
alphabets of symbols.

These strategies are tested in a graph embedding envi-
ronment, where the set of automatically extracted granules
of information serve as pivotal subgraphs for building and
embedding space. The soundness of the latter is addressed
by a statistical classifier working on the embedding space.
A two-stage optimization process takes care of tuning the
hyper-parameters of the classification model and perform-
ing an additional feature selection to ensure the selection
of optimal granules of information.

To address the behavior of the granulation strategies,
we performed a two-fold comparison in terms of clas-
sification performance and number of granules of infor-
mation. To this end, 6 different open-access data sets of
labeled graphs pertaining to different application domains
have been considered. Computational results show that,
conversely to a clustering-based granulator, a stratified
approach does not yield any particular benefit in terms of
classification accuracy, since the proposed filtering method
natively performs a class-aware evaluation of the statistical
significance of each candidate information granule.

Funding Open access funding provided by Luiss University within the
CRUI-CARE Agreement. This research received no external funding.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Martino A, Baldini L, Rizzi A. On information granulation via
data clustering for granular computing-based pattern recogni-
tion: a graph embedding case study. Algorithms. 2022;15(5):148.
https:// doi. org/ 10. 3390/ a1505 0148.

 2. Bargiela A, Pedrycz W. Granular computing: an introduction.
Boston, USA: Kluwer Academic Publishers; 2003.

 3. Pedrycz W, Skowron A, Kreinovich V. Handbook of granular
computing. England: Wiley; 2008.

 4. Zadeh LA. Toward a theory of fuzzy information granulation and
its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst.
1997;90(2):111–27.

 5. Yager RR, Filev D. Operations for granular computing: mixing
words and numbers. In: 1998 IEEE International Conference on
Fuzzy Systems Proceedings. IEEE World Congress on Compu-
tational Intelligence (Cat. No.98CH36228), vol. 1, p. 123–1281
(1998). https:// doi. org/ 10. 1109/ FUZZY. 1998. 687470.

 6. Zadeh LA. Fuzzy logic = computing with words. IEEE Trans
Fuzzy Syst. 1996;4(2):103–11. https:// doi. org/ 10. 1109/ 91. 493904.

 7. Yao Y. Perspectives of granular computing. In: 2005 IEEE Inter-
national Conference on Granular Computing. IEEE. vol. 1, p.
85–90 (2005).

 8. Pedrycz A, Hirota K, Pedrycz W, Dong F. Granular representa-
tion and granular computing with fuzzy sets. Fuzzy Sets Syst.
2012;203:17–32.

 9. Dubois D, Prade H. Bridging gaps between several forms of gran-
ular computing. Granul Comput. 2016;1(2):115–26.

 10. Pawlak Z. Rough sets. Int J Comput Inf Sci. 1982;11(5):341–56.
https:// doi. org/ 10. 1007/ BF010 01956.

 11. Zhang Q, Zhang Q, Wang G. The uncertainty of probabilistic
rough sets in multi-granulation spaces. Int J Approx Reason.
2016;77(C):38–54. https:// doi. org/ 10. 1016/j. ijar. 2016. 06. 001.

 12. Pedrycz W. Shadowed sets: representing and processing
fuzzy sets. IEEE Trans Syst, Man, Cybern, Part B (Cybern).
1998;28(1):103–9. https:// doi. org/ 10. 1109/ 3477. 658584.

 13. Kreinovich V. Interval computation as an important part of granu-
lar computing: an introduction. England: Wiley; 2008. p. 1–31.
https:// doi. org/ 10. 1002/ 97804 70724 163. ch1.

 14. Pedrycz W. Proximity-based clustering: a search for structural
consistency in data with semantic blocks of features. IEEE Trans
Fuzzy Syst. 2013;21(5):978–82.

 15. Ding S, Du M, Zhu H. Survey on granularity clustering. Cogn
Neurodynamics. 2015;9(6):561–72.

 16. Peters G, Weber R. DCC: a framework for dynamic granular clus-
tering. Granul Comput. 2016;1(1):1–11.

 17. Livi L, Del Vescovo G, Rizzi A. Graph recognition by seriation
and frequent substructures mining. In: ICPRAM 2012 - Proceed-
ings of the 1st International Conference on Pattern Recognition
Applications and Methods, vol. 1, p. 186–191 (2012).

 18. Rizzi A, Del Vescovo G. Automatic image classification by a gran-
ular computing approach. In: 2006 16th IEEE Signal Processing
Society Workshop on Machine Learning for Signal Processing, p.
33–38 (2006). https:// doi. org/ 10. 1109/ MLSP. 2006. 275517.

 19. Hastie T, Tibshirani R, Friedman J. The elements of statistical
learning: data mining, inference, and prediction. 2nd ed. New
York: Springer; 2009.

 20. Baldini L, Martino A, Rizzi A. Exploiting cliques for granular
computing-based graph classification. In: 2020 International Joint
Conference on Neural Networks (IJCNN), IEEE, p. 1–9 (2020).
https:// doi. org/ 10. 1109/ IJCNN 48605. 2020. 92066 90.

 21. Baldini L, Martino A, Rizzi A. Towards a class-aware infor-
mation granulation for graph embedding and classification.
In: Merelo, J.J., Garibaldi, J., Linares-Barranco, A., War-
wick, K., Madani, K. (eds.) Computational Intelligence: 11th

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a15050148
https://doi.org/10.1109/FUZZY.1998.687470
https://doi.org/10.1109/91.493904
https://doi.org/10.1007/BF01001956
https://doi.org/10.1016/j.ijar.2016.06.001
https://doi.org/10.1109/3477.658584
https://doi.org/10.1002/9780470724163.ch1
https://doi.org/10.1109/MLSP.2006.275517
https://doi.org/10.1109/IJCNN48605.2020.9206690

SN Computer Science (2023) 4:314 Page 13 of 14 314

SN Computer Science

International Joint Conference, IJCCI 2019, Vienna, Austria,
September 17–19, 2019, Revised Selected Papers. Springer,
Cham; 2021. p. 263–290. https:// doi. org/ 10. 1007/ 978-3- 030-
70594-7_ 11.

 22. Baldini L, Martino A, Rizzi A. Stochastic information granules
extraction for graph embedding and classification. In: Proceedings
of the 11th International Joint Conference on Computational Intel-
ligence - Volume 1: NCTA, (IJCCI 2019), SciTePress, INSTICC,
p. 391–402 (2019). https:// doi. org/ 10. 5220/ 00081 49403 910402.

 23. Martino A, Giuliani A, Todde V, Bizzarri M, Rizzi A. Metabolic
networks classification and knowledge discovery by information
granulation. Comput Biol Chem. 2020;84: 107187. https:// doi.
org/ 10. 1016/j. compb iolch em. 2019. 107187.

 24. Martino A, Giuliani A, Rizzi A. The universal phenotype.
Organisms. J Biol Sci. 2019;3(2):8–10.

 25. Martino A, Rizzi A. An enhanced filtering-based information
granulation procedure for graph embedding and classifica-
tion. IEEE Access. 2021;9:15426–40. https:// doi. org/ 10. 1109/
ACCESS. 2021. 30530 85.

 26. Baldini L, Martino A, Rizzi A. Relaxed Dissimilarity-based
Symbolic Histogram Variants for Granular Graph Embedding.
In: Proceedings of the 13th International Joint Conference on
Computational Intelligence - NCTA, p. 221–235. SciTePress,
INSTICC (2021). https:// doi. org/ 10. 5220/ 00106 52500 003063.

 27. Dufrêne M, Legendre P. Species assemblages and indicator spe-
cies: the need for a flexible asymmetrical approach. Ecol Monogr.
1997;67(3):345–66. https:// doi. org/ 10. 2307/ 29634 59.

 28. Martino A, De Santis E, Rizzi A. An ecology-based index for text
embedding and classification. In: 2020 International Joint Confer-
ence on Neural Networks (IJCNN), p. 1–8 (2020). https:// doi. org/
10. 1109/ IJCNN 48605. 2020. 92072 99

 29. Sanfeliu A, Fu K-S. A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans Syst, Man,
Cybern. 1983;SMC–13(3):353–62. https:// doi. org/ 10. 1109/
TSMC. 1983. 63131 67.

 30. Gao X, Xiao B, Tao D, Li X. A survey of graph edit distance.
Pattern Anal Appl. 2010;13(1):113–29. https:// doi. org/ 10. 1007/
s10044- 008- 0141-y.

 31. Cover T, Hart P. Nearest neighbor pattern classification. IEEE
Trans Inf Theory. 1967;13(1):21–7.

 32. Lovász L. Random walks on graphs: a survey. Combinatorics.
1993;2:1–46.

 33. Göbel F, Jagers AA. Random walks on graphs. Stoch Process
Appl. 1974;2(4):311–36. https:// doi. org/ 10. 1016/ 0304- 4149(74)
90001-5.

 34. Tichy N. An analysis of clique formation and structure in organi-
zations. Adm Sci Q. 1973;18(2):194–208.

 35. Luce RD, Perry AD. A method of matrix analysis of group struc-
ture. Psychometrika. 1949;14(2):95–116. https:// doi. org/ 10. 1007/
BF022 89146.

 36. Bron C, Kerbosch J. Algorithm 457: finding all cliques of an undi-
rected graph. Commun ACM. 1973;16(9):575–7. https:// doi. org/
10. 1145/ 362342. 362367.

 37. Moon JW, Moser L. On cliques in graphs. Israel J Math.
1965;3(1):23–8. https:// doi. org/ 10. 1007/ BF027 60024.

 38. Storn R, Price K. Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces. J Global
Optim. 1997;11(4):341–59. https:// doi. org/ 10. 1023/A: 10082
02821 328.

 39. Grandini M, Bagli E, Visani G. Metrics for multi-class classifica-
tion: an overview. arXiv (2020). https:// doi. org/ 10. 48550/ ARXIV.
2008. 05756.

 40. Riesen K, Bunke H. IAM graph database repository for graph
based pattern recognition and machine learning. In: da Vitoria
Lobo N, Kasparis T, Roli F, Kwok JT, Georgiopoulos M, Anag-
nostopoulos GC, Loog M, editors. Structural, syntactic, and

statistical pattern recognition. Berlin, Heidelberg: Springer; 2008.
p. 287–97. https:// doi. org/ 10. 1007/ 978-3- 540- 89689-0_ 33.

 41. Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann
M. Tudataset: A collection of benchmark datasets for learning
with graphs. In: ICML 2020 Workshop on Graph Representation
Learning and Beyond (GRL+ 2020) (2020). www. graph learn ing.
io.

 42. Dosch P, Valveny E. Report on the second symbol recogni-
tion contest. In: Liu W, Lladós J, editors. Graphics recognition.
Ten years review and future perspectives. Berlin, Heidelberg:
Springer; 2006. p. 381–97.

 43. Debnath AK, de Compadre RLL, Debnath G, Shusterman AJ,
Hansch C. Structure-activity relationship of mutagenic aro-
matic and heteroaromatic nitro compounds correlation with
molecular orbital energies and hydrophobicity. J Med Chem.
1991;34(2):786–97. https:// doi. org/ 10. 1021/ jm001 06a046.

 44. Kriege N, Mutzel P. Subgraph matching kernels for attributed
graphs. In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. ICML’12. Omni-
press, Madison, WI, USA; 2012. p. 291–298.

 45. Deza MM, Deza E. Encyclopedia of distances. 1st ed. Berlin,
Heidelberg: Springer; 2009. p. 1–583.

 46. Hagberg AA, Schult DA, Swart PJ. Exploring network structure,
dynamics, and function using networkx. In: Varoquaux G, Vaught
T, Millman J (eds) Proceedings of the 7th Python in Science Con-
ference, Pasadena, CA USA; 2008. p. 11–15.

 47. Rozemberczki B, Kiss O, Sarkar R. Little ball of fur: a python
library for graph sampling. In: Proceedings of the 29th ACM
International Conference on Information and Knowledge Man-
agement (CIKM ’20), ACM; 2020. p. 3133–3140.

 48. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E. Scikit-learn: machine learning in python. J Mach Learn Res.
2011;12:2825–30.

 49. ...Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy
T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright
J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov
N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ,
Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimr-
man R, Henriksen I, Quintero EA, Harris CR, Archibald AM,
Ribeiro AH, Pedregosa F, van Mulbregt P. SciPy 1.0: fundamen-
tal algorithms for scientific computing in python. Nat Methods.
2020;17:261–72. https:// doi. org/ 10. 1038/ s41592- 019- 0686-2.

 50. Riesen K, Bunke H. Approximate graph edit distance computa-
tion by means of bipartite graph matching. Image Vis Comput.
2009;27(7):950–9.

 51. Conte D, Ramel J-Y, Sidère N, Luqman MM, Gaüzère B, Gibert
J, Brun L, Vento M. A comparison of explicit and implicit graph
embedding methods for pattern recognition. In: Kropatsch WG,
Artner NM, Haxhimusa Y, Jiang X, editors. Graph-based repre-
sentations in pattern recognition. Berlin, Heidelberg: Springer;
2013. p. 81–90. https:// doi. org/ 10. 1007/ 978-3- 642- 38221-5_9.

 52. Da San Martino G, Navarin N, Sperduti A. Ordered decom-
positional DAG kernels enhancements. Neurocomputing.
2016;192:92–103.

 53. Martino A, Rizzi A. (hyper)graph kernels over simplicial com-
plexes. Entropy. 2020;22(10):1155. https:// doi. org/ 10. 3390/ e2210
1155.

 54. Yanardag P, Vishwanathan SVN. Deep graph kernels. In: Pro-
ceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’15. Associa-
tion for Computing Machinery, New York, NY, USA; 2015. p.
1365–1374. https:// doi. org/ 10. 1145/ 27832 58. 27834 17.

https://doi.org/10.1007/978-3-030-70594-7_11
https://doi.org/10.1007/978-3-030-70594-7_11
https://doi.org/10.5220/0008149403910402
https://doi.org/10.1016/j.compbiolchem.2019.107187
https://doi.org/10.1016/j.compbiolchem.2019.107187
https://doi.org/10.1109/ACCESS.2021.3053085
https://doi.org/10.1109/ACCESS.2021.3053085
https://doi.org/10.5220/0010652500003063
https://doi.org/10.2307/2963459
https://doi.org/10.1109/IJCNN48605.2020.9207299
https://doi.org/10.1109/IJCNN48605.2020.9207299
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1016/0304-4149(74)90001-5
https://doi.org/10.1016/0304-4149(74)90001-5
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/362342.362367
https://doi.org/10.1007/BF02760024
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.48550/ARXIV.2008.05756
https://doi.org/10.48550/ARXIV.2008.05756
https://doi.org/10.1007/978-3-540-89689-0_33
http://www.graphlearning.io
http://www.graphlearning.io
https://doi.org/10.1021/jm00106a046
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-642-38221-5_9
https://doi.org/10.3390/e22101155
https://doi.org/10.3390/e22101155
https://doi.org/10.1145/2783258.2783417

 SN Computer Science (2023) 4:314314 Page 14 of 14

SN Computer Science

 55. Riesen K, Bunke H. Graph classification by means of lipschitz
embedding. IEEE Trans Syst, Man, Cybern Part B (Cybern).
2009;39(6):1472–83.

 56. Gibert J, Valveny E, Bunke H. Dimensionality reduction for graph
of words embedding. In: Jiang X, Ferrer M, Torsello A, editors.
Graph-based representations in pattern recognition. Berlin, Hei-
delberg: Springer; 2011. p. 22–31.

 57. Martino A, Giuliani A, Rizzi A. (hyper)graph embedding and clas-
sification via simplicial complexes. Algorithms. 2019;12(11):223.
https:// doi. org/ 10. 3390/ a1211 0223.

 58. Ma Y, Wang S, Aggarwal CC, Tang J. Graph convolutional net-
works with eigenpooling. In: Proceedings of the 25th ACM SIG-
KDD International Conference on Knowledge Discovery & Data
Mining. KDD ’19. Association for Computing Machinery, New
York, NY, USA; 2019. p. 723–731. https:// doi. org/ 10. 1145/ 32925
00. 33309 82.

 59. Bacciu D, Errica F, Micheli A. Contextual graph markov model: a
deep and generative approach to graph processing. In: 35th Inter-
national Conference on Machine Learning, ICML 2018, vol. 1,
pp. 495–504 (2018).

 60. Martineau M, Raveaux R, Conte D, Venturini G. Learning error-
correcting graph matching with a multiclass neural network. Pat-
tern Recognit Lett. 2020;134:68–76. https:// doi. org/ 10. 1016/j.
patrec. 2018. 03. 031.

 61. Kajla NI, Missen MMS, Luqman MM, Coustaty M. Graph neural
networks using local descriptions in attributed graphs: an appli-
cation to symbol recognition and hand written character recog-
nition. IEEE Access. 2021;9:99103–11. https:// doi. org/ 10. 1109/
ACCESS. 2021. 30968 45.

 62. Riba P, Dutta A, Lladós J, Fornés A. Graph-based deep learning
for graphics classification. In: 2017 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR), vol. 02,
p. 29–30 (2017). https:// doi. org/ 10. 1109/ ICDAR. 2017. 262.

 63. Sidère N, Héroux P, Ramel J-Y. Vector representation of graphs:
application to the classification of symbols and letters. In: 2009
10th International Conference on Document Analysis and Recog-
nition, p. 681–685 (2009). https:// doi. org/ 10. 1109/ ICDAR. 2009.
218.

 64. Luqman MM, Ramel J-Y, Lladós J, Brouard T. Fuzzy multilevel
graph embedding. Pattern Recognit. 2013;46(2):551–65. https://
doi. org/ 10. 1016/j. patcog. 2012. 07. 029.

 65. Gibert J, Valveny E, Bunke H. Graph embedding in vector spaces
by node attribute statistics. Pattern Recognit. 2012;45(9):3072–83.

 66. Brun L, Conte D, Foggia P, Vento M. A graph-kernel method
for re-identification. In: Kamel M, Campilho A, editors. Image
analysis and recognition. Berlin, Heidelberg: Springer; 2011. p.
173–82.

 67. Gaüzère B, Brun L, Villemin D. Two new graphs kernels in chem-
oinformatics. Pattern Recogn Lett. 2012;33(15):2038–47. https://
doi. org/ 10. 1016/j. patrec. 2012. 03. 020.

 68. Gaüzère B, Brun L, Villemin D, Brun M. Graph kernels based
on relevant patterns and cycle information for chemoinformatics.
In: Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), p. 1775–1778 (2012).

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/a12110223
https://doi.org/10.1145/3292500.3330982
https://doi.org/10.1145/3292500.3330982
https://doi.org/10.1016/j.patrec.2018.03.031
https://doi.org/10.1016/j.patrec.2018.03.031
https://doi.org/10.1109/ACCESS.2021.3096845
https://doi.org/10.1109/ACCESS.2021.3096845
https://doi.org/10.1109/ICDAR.2017.262
https://doi.org/10.1109/ICDAR.2009.218
https://doi.org/10.1109/ICDAR.2009.218
https://doi.org/10.1016/j.patcog.2012.07.029
https://doi.org/10.1016/j.patcog.2012.07.029
https://doi.org/10.1016/j.patrec.2012.03.020
https://doi.org/10.1016/j.patrec.2012.03.020

	On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study
	Abstract
	Introduction
	High-Level Framework Description
	Extractor and Granulator
	Embedder
	Classifier

	Information Granulation Strategies
	Random Walk
	Clique
	Stratified Clique
	Stratified Random Walk

	Model Synthesis and Testing
	Tests and Results
	Data sets Description
	Algorithmic Setup
	Computational Results

	Conclusion
	References

