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Introduction

The starting point of this thesis is the Buchweitz—Flenner semiregularity map, introduced in
1999 by Buchweitz and Flenner [15, 16] and generalising the semiregularity maps investigated
by Severi, Kodaira and Spencer, and Bloch. For a coherent sheaf & on a complex manifold X
the Buchweitz—Flenner semiregularity map

o: BExt3(F,F) — H H*2(X, 0k%)
k=0

is defined in terms of the Atiyah class At(F) € Exty (F,F @ Q%) of F, introduced in 1957
by Atiyah [3] as the obstruction to the existence of a holomorphic connection on &, namely a

C-linear map of sheaves
V:F - Fo0%

such that the Leibniz rule holds:
V(f-e)=f-V(e)+exdf, VfecOx,ecH,
where d: Ox — Qﬁf denotes the universal derivation. More explicitly, via the Yoneda product
Extly (F,F © Q%) x Exth (F,F @ Q%) = ExtY7(F, F @ O89),  (a,b) = a — b,

it is possible to construct the powers, and hence the exponential, of the opposite of the Atiyah
class

exp(— At(F)) € [] Ext&(F,F ® Q%).

q=0

When X is smooth, every coherent sheaf has locally finite projective dimension and the trace
maps are well-defined

Tr: Exty(F,F @ Q%) — H(X,Q%),  i,7>0.

As proved by Atiyah for vector bundles and by Illusie in the general case [3, 42], when X is a
projective manifold, then with respect to the Hodge decomposition in cohomology, the trace of
the exponential of the opposite of the Atiyah class is the Chern character

ch(F) = Tr(exp(— At(F))) .
The Buchweitz—Flenner semiregularity map is defined by the formula:

o Ext3(F,F) = [[ B¥A(X,9%), o(x) = Tr(exp(— At(F)) — ). (*)
k=0

In order to explain the importance of this map in deformation theory, it is useful to give a brief
history of semiregularity maps.

The concept of semiregularity is due to Severi, who called a curve C' in a surface S semiregular
if the restriction map H°(S,wg) — H°(C,wg|c), where wg denotes the canonical sheaf of S, is



Introduction v

surjective and proved, in modern terminology, that the Hilbert scheme of S is smooth at every
semiregular curve [71].

For a smooth hypersurface Z in a compact complex manifold X, Kodaira and Spencer [46]
introduced a semiregularity map

oxs: HY(Z,Nyx) - H*(X,Ox),

which is induced by the short exact sequence

They proved that, if oxg is injective, then the Hilbert scheme of X is smooth at Z. The
cohomology group H*(Z,N 7)x) is an obstruction space for the functor of embedded deformations
of Z C X, see e.g. [35, Example 11.0.1]. This means that for every small extension of finitely
generated local Artin C-algebras 0 - C — A — B — 0 and every embedded deformation of
Z over Spec(B), there is a canonically defined obstruction v € H(Z, N 71x ), which vanishes if
and only if the deformation lifts to Spec(A). From Kodaira and Spencer’s proof it is possible to
infer the more general statement that the obstructions to embedded deformations of Z in X are
contained in the kernel of the semiregularity map oxg, see e.g. [59, Thm. 8.1.5].
In 1972, Bloch defined a semiregularity map

op: HY(Z,Nyx) — HHX, Q%)

for every locally complete intersection Z of codimension p in a smooth projective variety X and
proved, by using variations of Hodge structures, that every simple obstruction to embedded
deformations of Z in X is annihilated by op [12].

An obstruction is called simple if it comes from a simple small extension, i.e., from a small
extension 0 -+ C — A — B — 0 such that the differential map d: C — Q,4,c ®4 B in the
second exact sequence of Kéhler differentials is injective. In general, simple obstructions do not
generate the whole obstruction space, but in characteristic zero their vanishing is sufficient to
ensure smoothness. Hence, if the Bloch semiregularity map is injective, then Z has unobstructed
embedded deformations in X.

The Buchweitz—Flenner semiregularity map is important both for the variational Hodge
conjecture and for the deformation theory of coherent sheaves. In this work we are interested in
its application to deformation theory; Buchweitz and Flenner’s result regarding the variational
Hodge conjecture is stated in Chapter 3.

The deformation theory of coherent sheaves has been studied extensively, see e.g [8, 24,
35, 39, 62]. Every problem in infinitesimal deformation theory can be formally described by
a functor of Artin rings, namely a covariant functor F' from the category of local Artin rings
to the category of sets such that F(K) = {x}. We denote by Artk the category of local Artin
K-algebras with residue field K, which can be thought of as infinitesimal thickenings of a point.

Let & be coherent sheaf on a smooth separated scheme X of finite type over a field K of
characteristic zero. An infinitesimal deformation of & over A € Artk is given by a coherent sheaf
of Ox ® A-modules F4 on X x Spec A, flat over A, with a morphism of sheaves of Ox ® A-modules
7: F4 — F inducing an isomorphism F4 ® 4 K & F. Two deformations F4, F { are isomorphic if
there exists an isomorphism of sheaves of Ox ® A-modules f: F4 — F E that commutes with the
morphisms to F. Thus, studying the infinitesimal deformations of F corresponds to studying
the following deformation functor of Artin rings:

Definition 0.0.1. The functor of infinitesimal deformations of the coherent sheaf F is
Defs: Artgx — Set,

Defy (A) = {(?A,W) ‘ HF4 is a coherent sheaf of Ox ® A-modules, flat over A }/ -

m: F4 — F induces an isomorphism F4 ® 4 K= F
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It is well known that the tangent space to the functor Defy is given by Exti (¥, ), and
Ext3 (F,F) is a complete obstruction space.

The Buchweitz—Flenner semiregularity map is connected to the deformation theory of coherent
sheaves, in the same way as the semiregularity maps of Severi, Kodaira—Spencer and Bloch are
connected with embedded deformations of a subvariety. Explicitly, we have this key result:

Theorem 0.0.2 (Buchweitz—Flenner). The semiregularity map of a coherent sheaf 5 on a smooth
projective variety X annihilates all simple obstructions to deformations of . In particular,
if the Buchweitz-Flenner map o defined by Equation (*) is injective, then & has unobstructed
deformations.

This theorem relies on the fact that in characteristic zero the vanishing of simple obstructions
is enough to ensure the smoothness of the deformation functor, as does Bloch’s result.

Buchweitz and Flenner left open the problem of whether their semiregularity map annihilates
all obstructions to deformations of a coherent sheaf, but they conjectured that this should be true
and suggested a strategy to prove it. This strategy, outlined in [16], is to realise each component
of the semiregularity map

—1)k
or: Ext:(F,F) = H*2(X,0%), op(z) = ( k,) Tr(At(F)*z), k>0,
as the obstruction map of a morphism of deformation theories with unobstructed target, which
would automatically imply the annihilation of all obstructions.
This can be done easily for Oth component of the semiregularity map, which is just the trace
map, recovering a result by Mukai [64] and Artamkin [2]:

Theorem 0.0.3 (Artamkin). Let & be a coherent sheaf on a complex projective manifold X.
Then the Oth semiregularity map (=trace) oo = Tr: Ext?(#,%) — H?(X,Ox) annihilates all
obstructions to deformations of 7.

This thesis is based on on a series of articles written together with Ruggero Bandiera and
Marco Manetti [4, 5] with Marco Manetti [50] and alone [49], where the main goal was to
employ the strategy suggested by Buchweitz and Flenner for all the higher components of the
semiregularity map, i.e., to prove that each oy : Ext3 (F,F) — H**?(X, Q%) is the obstruction
map of a morphism of deformation theories with unobstructed target, and hence it annihilates
all the obstructions to deformations of the coherent sheaf F.

Buchweitz and Flenner suggested that the unobstructed target should be given by an
intermediate Jacobian or by Deligne cohomology.

Intermediate Jacobians have been used in [26] and [40] as the target of the Abel-Jacobi
map and of the Bloch semiregularity map. More precisely, in [26] Fiorenza and Manetti proved
that the Abel-Jacobi map is the tangent map of a morphism of deformation theories, where
the target is an intermediate Jacobian, and in [40] Iacono and Manetti proved that the Bloch
semiregularity map for a locally complete intersection subvariety with extendable normal bundle
is the obstruction map of a morphism of deformation theories with target an intermediate
Jacobian, and hence that it annihilates all the obstructions to embedded deformations.

In the setting of derived algebraic geometry, Pridham [68] proved that the Buchweitz—Flenner
semiregularity map can be realised as the tangent of a generalised Abel-Jacobi map on the
derived moduli stack of perfect complexes on X, with target given by an analogue of Deligne
cohomology, which entails that, for every coherent sheaf F on a complex projective manifold,
the semiregularity map ¢ annihilates all obstructions.

In characteristic zero, the homotopy category of DG-Lie algebras is one of the possible
frameworks to study deformation theory. This approach, due to Deligne, Drinfeld and others,
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which follows the principle “In characteristic 0, a deformation problem is controlled by a
di Cerbntial graded Lie algebra, with quasi-isomorphic DG-Lie algebras giving the same deformation
theory”, has been investigated thoroughly by Goldman and Millson, Hinich, Kontsevich, Manetti
and many others [33, 37, 47, 55, 59], and has been formalised independently by Lurie and
Pridham [52, 67]. In this setting, a deformation functor corresponds to a quasi-isomorphism
class of DG-Lie algebras, and a morphism of deformation functors corresponds to a morphism in
the homotopy category of DG-Lie algebras, or equivalently to an Le morphism between DG-Lie
algebras.

The relation between DG-Lie algebras and functors of Artin rings is obtained via Maurer—
Cartan equation and gauge equivalence. Precisely, given a DG-Lie algebra L and A € Artk with
maximal ideal m 4, the deformation functor associated to L is defined as

Defy,: Artgx — Set, DefL(A) = {SL‘ S Ll ®my

1
dx + 5[!13790} = 0} /~ gauge -

The strategy of this approach is to find a DG-Lie algebra L controlling a geometric deformation
problem, namely such that Def; is isomorphic to the deformation functor of the geometric
problem considered. The DG-Lie algebra L then contains information about the deformation
problem: for instance, the first cohomology group HY(L) is equal to the Zariski tangent space of
the local moduli space, while the second cohomology group H?(L) is a complete obstruction
space.

For instance, the deformation theory of a coherent sheaf F is controlled by R Home, (¥, %)
considered as an element in the homotopy category of differential graded Lie algebras, see e.g.
[24, 39, 62]. When X is a complex manifold, if F admits a finite locally free resolution (e.g. if X
is projective)

058" .28 5F =0

then a representative of R Home, (¥, F) is given by the Dolbeault complex Agé%(fom(lc):)'( (&58H).
Morphisms of DG-Lie algebras and more generally Lo morphisms between DG-Lie algebras

induce morphisms between the associated deformation functors. They also induce morphisms in

cohomology, giving in degrees 1 and 2 the tangent and obstruction map respectively.

In this framework, to show that each component of the Buchweitz—Flenner semiregularity
map is the obstruction map of a morphism of deformation theories, we need to show that there
exists a sequence of Lo, morphisms between DG-Lie algebras whose linear components induce
in cohomology the components of the semiregularity map. If the DG-Lie algebra which is the
target of this Lo morphism is abelian, i.e., it has trivial bracket, then its associated deformation
functor is unobstructed and we automatically obtain that each component of the semiregularity
map annihilates all obstructions to deformations of the coherent sheaf.

In view of the discussion about the unobstructed target and intermediate Jacobians, the goal
of our works [4, 49, 50] was to construct a sequence of Lo, morphisms whose linear components
induce in cohomology the components of the modified Buchweitz—Flenner semiregularity map

e Ext}(F,F) 2 H2(X,0k) = H2(X, Q% [K]) 5 H2(X, QFF[2k]), k>0,

where Q)S(k = (DF_yQ[—i], 0) denotes the truncated holomorphic de Rham complex and iy, is
induced by the inclusion of complexes Q% [k] C Q)s(k[%]
The main result of [4] was the construction of canonical Leo liftings

ok Agé%fom(lg:}! (8 C I‘_}) A)gfk’ L—f"ék]

of the modified Buchweitz—Flenner semiregularity maps for a coherent sheaf & equipped with
a finite locally free resolution §=bn a complex manifold X. Then the modified Buchweitz—
Flenner semiregularity maps are obstruction maps of a morphism of deformation theories with
unobstructed target, and we obtain:
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Theorem 0.0.4 (=Corollaries 4.5.7 and 4.5.8). Let F be a coherent sheaf on a complex manifold
X admitting a locally free resolution. Then for every k > 0 the semiregularity map

1
e Exty(F,5) - H72H(X, 055, o~ o Tr(At(F)* - z),
annihilates obstructions to deformations of F.
If the Hodge to de Rham spectral sequence of X degenerates at F1, then every obstruction to
the deformations of F belongs to the kernel of the map

1
op: Bxt3 (F,F) — H*2(X,0%), T Tr(At(F)* - z).

This was achieved by considering curved DG-pairs, abstract algebraic structures which encode
the geometric situation of a complex of locally free sheaves equipped with a connection of type
(1,0). A curved DG-pair is the data of a curved DG-algebra and of a Lie ideal which is closed
for the derivation and contains the curvature. It is possible to associate to a curved DG-pair an
Atiyah class and abstract semiregularity maps, and to introduce Chern—Simons classes, which
we used to construct Leo liftings of the abstract semiregularity maps.

This construction of Leo liftings of semiregularity maps can be also employed effectively in
other contexts. Consider the situation of a Lie algebroid A over a smooth separated scheme X
of finite type over K, i.e., the data of a locally free sheaf of Ox-modules A equipped with a
K-linear bracket [—, —]: A x A — A and a morphism of sheaves of Ox-modules a: A — Ox,
which commutes with brackets, and such that the Leibniz rule holds:

[, fm] = a()(f)m + f[l,m], VI,m e A, e Ox.

Define a Lie pair (£, A) of Lie algebroids to be an inclusion of Lie algebroids A C £ such that
the quotient is locally free. An A-module is a locally free sheaf & on X equipped with a flat
A-connection V, namely a morphism of ©x-modules

V: A — #Homk(8,8), 11—V,

Vi(fe) =al)(fle+ fVi(e), Vf€Ox,leA, ecé

with the property that V;V,, —V;,,V; = V) for all [,m € A.
Given an A-module (&,V) and a Lie pair (L, A), it is possible to define the Atiyah class

Atr/7(8) € HY(A; (L)) =D tomo, (6, 6))

as the primary obstruction to the extension of V to a flat JL-connection. Here, for any A-module
(F,VY, we denote by HYZ; F) the cohomology of the complex (Q51) ® &, VY, where Q5(7)
is the de Rham DG-algebra of A. More precisely, the Atiyah class At (&) is the obstruction
to the extension of V to an JL-connection compatible with the A-module structure, i.e., to a
connection V= £ — Fomk (8, E) such that [V V5] = V['ia] for every [ € L and a € A.

In [5] we constructed Lo liftings of semiregularity maps associated to a locally free A-module
& and a Lie pair (£, A), which are defined as

k 1
it HA(A; #omoy (6,8)) — HZHF (ﬂ; N (L/A) '33 (@) = Tr(Atg,7(8)F).
We also proved that the DG-Lie algebra of derived sections of the sheaf of DG-Lie algebras
QYA @ #Home, (&, 8) controls the deformations of the A-module &, and then, by the principles
explained above, the semiregularity maps 7, annihilate all obstructions to the deformations of
the A-module &, provided that a certain spectral sequence associated to the Lie pair degenerates
at Fj.
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Chapter 1 The first chapter contains some algebraic preliminaries: the basic definitions and
theory of DG-Lie algebras, graded coalgebras, Leo-algebras and Leo morphisms. It also contains
a brief recall of the Thom—Whitney totalisation of a semicosimplicial complex of vector spaces.

Chapter 2 The second chapter begins with a brief introduction to deformation functors
and obstruction theory, with an emphasis on simple obstructions. The deformation functors
associated to DG-Lie algebras and semicosimplicial Lie algebras are described. The last section
concerns the deformation theory of coherent sheaves, and three DG-Lie algebras controlling this
deformation problem are given.

Chapter 3 This chapter consists of a history of the semiregularity maps of Severi, Kodaira—
Spencer, Bloch and Buchweitz—Flenner and an account of their importance in deformation theory.
The annihilation of all obstructions for the Buchweitz—Flenner semiregularity map is discussed
thoroughly.

Chapter 4 The core of this part is based on [4] and it contains the construction of a
sequence of canonical Le, morphisms associated to a curved DG-pair via Chern—Simons classes.
A particular case of this construction, where the curved DG-pair is obtained via a connection
of type (1,0) on a complex of locally free sheaves on a complex manifold, allows to construct
canonical Leo liftings of all the components of the Buchweitz—Flenner semiregularity map, and
therefore to prove that the semiregularity map annihilates all obstructions to deformations of a
coherent sheaf on a complex manifold. Also contained in this chapter is a part based on [50],
where we used connections of type (1,0) on complexes of locally free sheaves to construct a
lifting of the first component of the semiregularity map via an explicit computation.

Chapter 5 This chapter is based on [49], where the results of [50] were extended to the
algebraic case. The situation considered is that of a transitive DG-Lie algebroid (A, p) over a
smooth separated scheme X of finite type over a field K of characteristic 0. Using simplicial
methods, it is possible to define a notion of connection on the kernel of the anchor map p,
and to construct an Le. morphism between DG-Lie algebras f: RI'(X,Kerp) RI'(X, Q)S(lm)
associated to a connection and to a cyclic form on the DG-Lie algebroid, from which one obtains
a lifting of the first component of the semiregularity map.

Chapter 6 The last chapter is based on [5] and it concerns more general semiregularity
maps, defined for a Lie pair (£, A) and a locally free module over a Lie algebroid A on a smooth
separated scheme of finite type over a field K of characteristic zero.. We determine a DG-Lie
algebra controlling the deformations of the A-module, and prove that these semiregularity maps
annihilate the obstructions if a certain spectral sequence associated to the Lie pair degenerates
at F1. By considering the trivial Lie pair (©x,0) one can recover the results of the Chapter 4
for a locally free sheaf in the algebraic setting.
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Notation

By K we denote a fixed field of characteristic 0; unless otherwise specified every (graded)
vector space is intended over K.

The term differential graded (DG) means graded over the integers and with differential of
degree +1. The degree of a homogeneous element z in a graded vector space will be denoted
z. We adopt the Grothendieck—Verdier formalism for degree shifting: given a DG-vector space
(V. = @,V",dy) and an integer p, we define the DG-vector space (V'[p],dyy,) by setting
V[p]n = Vn+p’ dV[p] = (—l)pdv.

All rings are commutative and unitary, unless specified. For any local ring R, we denote by
mp its maximal ideal. Let Artk denote the category with objects Artin local K-algebras with
residue field K, and morphisms given by local morphisms of K-algebras.

If L is a DG-Lie algebra, HYL) always denotes the cohomology of the underlying complex
of vector spaces, which inherits a graded bracket from the one on L.

For every pair of sheaves of Ox-modules &, ¢ we denote by #Homk(F,¢) and Homo, (F,QG)
the sheaves of K-linear morphisms and Ox-linear morphisms respectively. The ©Ox-module
structure on ¢ induces an Ox-module structure both on #Homk (¥, ¢) and Home, (F,G). We
also write éndk (F) and éndo, (F) for #Homk(F,F) and Homo, (F,F) respectively.

For two complexes of ©x-modules §, F we denote by gfom('@——)'{ (8,F) the graded sheaf of
©O©x-linear morphisms

Homg, (6, F) = @ Foml, (8,F), Fomy, (8,F) = H Fomo, (&, F7),

7 J

For a complex manifold, A% denotes the sheaf of differential forms of type p, ¢, and A% (&)
denotes the sheaf of differential forms of type p, ¢ with coefficients in a locally free sheaf &. The
global sections of these sheaves will be denoted by AK? and AR7(8) respectively.



Chapter 1

DG-Lie algebras and L., morphisms

In characteristic zero, the homotopy category of DG-Lie algebras is one of the possible
frameworks to study deformation theory; this chapter contains a basic introduction to DG-Lie
algebras and Lo, morphisms, with the objective of deformation theory in view. Deformation
functors associated to DG-Lie algebras will be treated in the next chapter.

In the first section, the basic definitions and examples of DG-Lie algebras are given. The
third section concerns Lo algebras and morphisms; one definition of Lo morphism used here
relies on the properties of coalgebras and their coderivations, described in Section 1.2. In the
last section, we describe semicosimplicial objects and review the definition and of some of the
main properties of the Thom—Whitney totalisation functor.

The main reference for this chapter is [59]. For more details on the Thom-Whitney totalisation
we refer also to [23, 24, 27, 40].

1.1 DG-Lie algebras

A graded vector space is a vector space with a Z-graded direct sum decomposition V' =
D, V" ItV =8, V" is a graded vector space, we denote by a the degree of a non-zero
homogeneous element a: in other words a = n whenever a # 0 and a € V™. It is implicitly
assumed that if a formula contains the degree symbols @,b, ... then all the elements a,b, ...
involved are homogeneous and different from 0.

Definition 1.1.1. A differential graded vector space (a DG-vector space for short), or complex
of vector spaces, is the data of a graded vector space V = @,, V" together with a linear map
d: V — V, called differential, such that d(V") C V"*! for every n and d? = dd = 0.

yi—1 d Vi d yit+l .

A morphism f: (V,dy) — (W, dw) of DG-vector spaces is a linear map f: V — W such that
f(V™) Cc W™ for every n and dy f = fdy.

dy dy

Vi—l Vz Vz‘+l e
I
Wi

...%Wi_l Wi+1*>...

dw dyw

A complex of vector spaces (V,d) is called bounded above if there exists n € Z such that
Vk =0 for all k > n, bounded below if there exists m € Z such that V¥ = 0 for all k¥ < m, and
bounded if it is bounded both above and below.

The tensor product of differential graded vector spaces is defined as follows:

VoW=@gVew), (VaWw)"= V'eWw,

n[Z1 i+j=n
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with differential dy un(v @ w) = dyv @ w + (=1)%v @ dyw.
The Hom complex of DG-vector spaces V, W is the DG-vector space

Homy(V, W) = @ Homg (V, W), Homp (V,W) = [ [ Homk (V*, W"™*™)
n Z1 i 21

with the differential _
df (v) = dw (f(v)) = (=1)! f(dvv).

For every DG-vector space (V,d), Z L) = Ker d denotes the graded subspace of cocycles,
BYV) = d(V) denotes the graded subspace of coboundaries and H"V) = Z5V)/BYV) is
the cohomology of V. The cohomology of V' can be considered as a DG-vector space with
trivial differential. A morphism f: V — W of DG-vector spaces naturally induces a map in
cohomology f: H"V) — H). Morphisms of DG-vector spaces V — W correspond exactly
to the elements of Z°(Homk(V, W)).

Definition 1.1.2. 1. A morphism of DG-vector spaces f: V — W is a quasi-isomorphism if
it induces an isomorphism in cohomology, i.e. if f: HXV) — H"W) is an isomorphism.

2. A DG-vector space V is called acyclic if HV) = 0.

3. Two morphisms of DG-vector spaces f,g: V — W are homotopic if there exists h €
Hom ™ Y(V, W) such that f — g = dyh + hdy.

4. A DG-vector space V is contractible if the identity is a coboundary in Hom @V, V), ie
there exists h € Hom™}(V, V) such that dh + hd = Idy. It is equivalent to saying that the
identity is homotopic to the zero morphism.

Given a DG-vector space (V,dy) and an integer p we define the DG-vector space (V'[p], dy1))
by setting
Vp" =V"P dypy = (=1)Pdy.

For instance, K[—n] is the complex that has K in degree n and 0 in degrees different from n.
The tautological map s: V' — V[—1] of degree 1, defined in each degree n as the identity map
V" — V[=1]"*! = V" is called a suspension; more generally, for any integer p there exists a
tautological morphism s: V' — V[p] of degree —p, defined in each degree n as the identity map
V = V[p]"™P = V"; the definition of dyr, implies that s is a cocycle in Hom™V, V[p]).

Definition 1.1.3. A double complex or bicomplex of vector spaces C' is a family {CP?}, p,q € Z,
of vector spaces, together with maps

dv: OP4 — cpatt gh ot ort W p g e Z,
called vertical and horizontal differential respectively, such that

(dv)Z — (dh)Z — dvdh —i—dhdv = 0.

h
. s opatl 4t op¥lel
dv av

+1

.%vaq—>c’p 4 s
dh
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Definition 1.1.4. Define the product total complex Totn(C’) associated to a double complex C'
as
Tot"(C)" = H cPA,

prq=n

with differential the sum of the horizontal and vertical differentials. Define the sum total complex

Tot &) as
Tot"&)"= @ c»4, d=d"+d"

prq=n

Remark 1.1.5. A double complex (C,d", d") is called a first quadrant double complex if it is
concentrated in the first quadrant of the plane, i.e. if CP4 =0if p <0 or ¢ < 0.

Notice that for a first quadrant double complex C' one has that Tot™(C) = Tot “(€"), because
there are finitely many terms in any diagonal.

Definition 1.1.6. A differential graded Lie algebra, or DG-Lie algebra, over a field K of
characteristic zero is the data of a DG-vector space (L, d) with a bilinear bracket [—, —]: LXL — L
satisfying the following conditions:

1. [—,—] is homogeneous graded skew-symmetric of degree 0. This means that:
« [L',L7) C L™,
o [a,b] + (—l)ag[b, a] = 0 for every a, b homogeneous,

2. (Leibniz identity) d[a,b] = [da, b] + (—1)%[a, db] for every a,b homogeneous;

3. (Jacobi identity) every triple of homogeneous elements a, b, ¢ satisfies the equality [a, [b, c]] =
Ha7 b}v C] + (_1)Eb[b7 [CL, CH

A DG-Lie algebra with trivial differential d = 0 is simply referred to as a graded Lie algebra,
while a DG-Lie algebra is called abelian if its bracket is trivial. A morphism of differential
graded Lie algebras is a morphism of DG-vector spaces commuting with brackets.

Example 1.1.7. Every Lie algebra can be considered as a DG-Lie algebra concentrated in
degree 0, with trivial differential. If L = @ L is a DG-Lie algebra, L? is a Lie algebra in the
usual sense.

Definition 1.1.8. A graded algebra over a field K of characteristic zero is the data of a graded
vector space A with a bilinear map A x A — A, (a,b) — ab, called a product, that satisfies the
following conditions:

1. ab=a+b;
2. (ab)c = a(be).

A differential graded algebra, or DG-algebra, is the data of a graded algebra A as above
and of a degree 1 map d: A — A, called differential, such that d> = 0 and the Leibniz rule holds:

d(ab) = d(a)b+ (=1)%ad(b), Va,bc A.
A commutative DG-algebra is a DG-algebra such that the graded commutativity holds:
ab= (—1)ba, Va,be A.

Remark 1.1.9. Notice that every (differential) graded associative algebra is also a (differential)
graded Lie algebra, with bracket given by the graded commutator [a,b] = ab — (—1)%ba.

Example 1.1.10. Given a DG-Lie algebra L and a commutative differential graded algebra A,
the DG-vector space L ® A has a natural structure of DG-Lie algebra, with bracket given by

[r®a,y®0b = (-1)" Y[z, y] ® ab.
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Example 1.1.11. Let V be a DG-vector space, then the Hom complex HomRV, V') has a natural
structure of differential graded Lie algebra, with the bracket equal to the graded commutator

[f,9) = fg— (=1)7 9,
and the differential equal to the adjoint operator [d, —], where d is the differential of V.

Example 1.1.12. Let A be a DG-algebra over the field K. The DG-Lie algebra of derivations
of A is the DG-Lie subalgebra of HomKQA, A) defined by:

DercfA, A) = @ Derf(A, A) € Homi(A, A),
Deri (4, A) = {¢ € Homi(A, A) | ¢(ab)=¢(a)b + (—1)""ag(b)}.

Notice that the differential of A is a derivation of degree +1.
Let L be a differential graded Lie algebra, then the derivations of L

Deri(L, L) = @) Deri(L, L),

Derg(L, L) = {¢ € Homg (L, L) | ¢la, 8] = [¢(a),b] + (=1)"*[a. $(b)]}

form a DG-Lie algebra, with bracket equal to the graded commutator [¢,¢] = ¢ — (—1)6 Yo
and differential equal to [d, —].

The cohomology of a DG-Lie algebra is defined as the cohomology of the underlying DG-vector
space. For any DG-Lie algebra (L,d,[—, —]) and every z,y € L we have that if dx = dy = 0,
then d[z,y] = 0, and if dy = 0, then [dx,y] = d[x,y]. Therefore the bracket of L factors to a
bracket in HYL), inducing a graded Lie algebra structure on the cohomology of L. If f: L — M
is a morphism of differential graded Lie algebras, then f: HYL) — HYW) is a morphism of
graded Lie algebras.

Definition 1.1.13. A quasi-isomorphism of DG-Lie algebras is a morphism of DG-Lie algebras
which is a quasi-isomorphism of the underlying DG-vector spaces.

Definition 1.1.14. The descending central series L™, n > 1, of a DG-Lie algebra L is defined
as LM = [ and

LM = Span{[as, [ - - [an—1,an] - -] | a1,--- ,an € L}, n>2.

Equivalently, it is defined by the recursive formulas LY = L and LM = [L, LI*~1),
A DG-Lie algebra L is nilpotent if LIl = 0 for some n > 0.

In particular, for every differential graded Lie algebra L and every proper ideal I of an Artin
local K-algebra, the DG-Lie algebra L ® I is nilpotent.
1.2 Graded coalgebras

Definition 1.2.1. A graded coalgebra is the data (C, A) of a graded vector space C' together
with a morphism of graded vector spaces A: C' — C' ® C such that (Idc ®A)A = (A ® Idg)A.
The map A is called coproduct and the above property is called coassociativity.

The twist map tw: V@ W — W ® V is defined as
twv@w) = (-1)"Ywev, veV,weW. (1.2.1)

Definition 1.2.2. A graded coalgebra (C, A) is called cocommutative if tw oA = A.
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Given a graded coalgebra (C, A), using coassociativity, one can define the iterated coproducts
A" O — O HL 59
A’ =1dg, A" = (Idc @A™ oA,

Definition 1.2.3. A graded coalgebra (C, A) is called conilpotent if A" =0 for n >> 0. It is
called locally conilpotent if C' = J,, Ker A™.

Definition 1.2.4. A morphism of graded coalgebras F': (C,A) — (B,T') is a morphism of
graded vector spaces F': C' — B such that T'F = F ZA,

cC-L,c00C

| |

B?B@)B

Definition 1.2.5. Let (C,A) be a graded coalgebra. A morphism of graded vector spaces
p: C =V is called a cogenerator of C' if for every x € C, ¢ # 0, there exists n > 0 such that
pA () £ 0 in V " Equivalently, p: C — V is a cogenerator of C' if the linear map

(p,ptz%,p':%z,...): C — HVL'T_'

n>0

is injective. For a cogenerator p: C' — V and a linear map f: B — C, the compositionpf: B — V
is called the corestriction of f to p.

Proposition 1.2.6. Let p: B — V be a cogenerator of a graded coalgebra (B,T"). Then every
morphism of graded coalgebras ¢: (C,A) — (B,T) is uniquely determined by its corestriction
pp: C — V.

Proof. Given a morphism of graded coalgebras F': (C,A) — (B,I') for every n > 0 one has that
"F=F2MAr: ¢ — pt#t,

Given two morphisms of graded coalgebras F,G: C — B such that pF' = pG we have

p T p _ I p A _ () AR _ () AR _ ) M G A _ ) G e

and the claim follows. O

Definition 1.2.7. Given a morphism of graded coalgebras F': (C,A) — (B,I") the set of
F-coderivations of degree n is

Coder™(C,B; F) :={Q € Homg(C,B) | TQ = (F®Q +Q ® F)A}

and we set
CoderC, B; F) = @ Coder™(C, B; F).
n [Z1

We denote Coder 7, C;1d¢) by Coder ().
Given a graded vector space V, the twist map of (1.2.1)
tw: VoW -WwWaV, tw(v @ w) = (=1)"Yw @ v,

extends naturally, for every n > 0, to a right action of the symmetric group >, on the nth tensor
power of V:
tw: Vs, - v

More explicitly, for vq, ..., v, homogeneous elements and o € ¥,, we have:
tw(v1 ® -+ @, 0) = £(Vp1) @ - -+ @ V()

where the above sign + is equal to the signature of the restriction of ¢ to the subset of indices i
such that v; has odd degree.
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Definition 1.2.8. Given a permutation o € %.,, a graded vector space V and non-trivial
homogeneous elements v1,...,v, € V' \ {0}, the Koszul sign (o, V;v1,...,v,) = £1 is defined
by the relation

tw(v1 ® - @ vp,0) = (0, Vi1, .., 00) (Vo) @ - ® Ug(ny)

The antisymmetric Koszul sign x(o,V;v1,...,v,) = %1 is the product of the Koszul
sign and the signature of the permutation:

x(o,Vivg, ... on) = (=1)%(0, V01, ..., vp).
By convention, if v; = 0 for some index ¢ we set
e(o, Vivg, ... ,on) = x(o, Vivg, ..o o) =0.

Definition 1.2.9 (Shuffles). Given two non-negative integers p,q > 0 with p +¢ > 0, a
(p, q)-shuffle is a permutation o of the set {1,...,p + ¢} such that

c(l)<o(2)<---<o(p) and o(p+1)<---<o(p+q).
The subset of (p, ¢)-shuffles is denoted by S(p,q) C Xp+q-
The (p, ¢)-shuffles are (p:;q) in number.

Example 1.2.10. For every n > 0 one has that S(0,n) = S(n,0) = {Id}, while S(1,1) = ¥,
and the three (2, 1)-shuffles are:

1,2,3),  (1,3,2),  (2,3,1).

It is possible to associate to a graded vector space V a cocommutative coalgebra, the
symmetric coalgebra of V. This is the graded coalgebra (S(V),[), where S(V) = @,,-o V "'and
[: S(V) = S(V)® S(V) is given by

n—1
[(Ul ©---0 UTL) = Z Z 8(0)(1)0(1) ©--0 Ua(a)) ® (Ua(a+l) ©-0O vU(n))a (122)
a=1 o [S(a,n—a)

where S(a,n — a) denotes the set of (a,n — a)-shuffles and e the symmetric Koszul sign.
The projection map py: S(V) — V is a cogenerator.

Lemma 1.2.11. Every morphism of locally conilpotent cocommutative coalgebras F': (C,A) —
(S(V), 1) is uniquely determined by its corestriction f =pyF: C — V.

Every coderivation of a reduced symmetric coalgebra Q € CoderS(V)) is uniquely deter-
mined by its corestriction pyQ =3, 0qn: S(V) = V.

For a proof we refer to [59, 11.5].

Definition 1.2.12. A differential graded coalgebra is the data of a graded coalgebra
C together with a coderivation d € Coder!(C, C), called a differential, such that d®> = 0. A
morphism of differential graded coalgebras is a morphism of graded coalgebras commuting with
differentials.

Definition 1.2.13. The bar construction of a DG-Lie algebra (L, d, [—, —]) is the cocommutative
DG-coalgebra (S(L[1]),1,Q), where S(L[1]) is the symmetric coalgebra of the graded vector
space L[1], with the coproduct defined in (1.2.2) and the coderivation Q: S(L[1]) — S(L[1]) is
defined via Lemma 1.2.11 by

gi: L)% L], qi(z) = —dz, qo(z,y) = (=1)%[z,y], ¢ =0 Vi>3.
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1.3 L and Ly[l]-algebras

Definition 1.3.1. An Lo structure on a graded vector space L is a sequence of skew-symmetric
maps
lp: L™ L, deg(lp) =2—n, n>0,

such that for every n > 0 and every sequence of homogeneous vectors z1,...,x, we have:
n
SEDTE ST X (0) kst (o), - - - To(r))s To(hrtys - - - Tomy) = 0, (1.3.1)
k=1 o [SQk,n—k)

where S(k,n — k) are the (k,n — k) shuffles of Definition 1.2.9 and x is the antisymmetric Koszul
sign. An Leo-algebra (L,l1,ls,...) is a graded vector space L equipped with an Leo structure
li,lo,. ...

The first equations of (1.3.1) are, for n = 1,2, 3:
1. ll(ll(l'l)) = 0;

2. > xohla(zeay:to@) = Y. x(0)2(l1(zqy); @) = 0;
o [5(2,0) o [5(1,1)
3.0 Y. X(0B(L(Tx), To@y To@) — P, X(0)a(l2(To@): o)) To@) +
o [5(1,2) o [5(02,1)
+ Y xX(0)h(l3(Toy Te@), To@)) = 0
o [5(3,0)

Remark 1.3.2. Notice that from the first equation for an Leo-algebra (L,l1,l2,...) we have
deg(l1) = 1 and 13 = 0. Therefore (L, 1) is a DG-vector space, and it is possible to consider its
cohomology H YIL).

Example 1.3.3. Differential graded Lie algebras are Loo-algebras with I equal to the differential,
l2 equal to the Lie bracket and [,, = 0 for every n > 2. In fact, the axioms of a differential graded
Lie algebra (L, d, [—, —]) over a field of characteristic 0:

1. d(d(z1)) = 0;

2. dlx1, x2] — ([dz1, 22] — (—l)ﬁ@[d:vg,xﬂ) = 0;

3. [[w1, w2], w3] — (—1)"2%3 [, w3], 2] + (—1)"1 @24 [z, 23], 1] = 0
may be rewritten as:

L d(d(z4(1))) = 0;

2. > X0z Te@] = Y. x(0)dr,qy, To@) = 0;
o [5(2,0) o [5(1,1)

3. Y X(O[[Zo@): To@)s To@)] =0
o [5(2,1)

Definition 1.3.4. The décalage isomorphisms of a graded vector space V are the linear
isomorphisms

déc: Homp (V") I:Tlomﬁ k+1 (sV) L), nkeZ k>0,
defined by imposing the commutativity of the diagrams
vt gy
§ L s

4
(sV) III%/SV
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or, equivalently, by the formula
déc(f)(sv1,...,svE) = (—1)Zi(k_i)1’_isf(vl, Ce V)
The importance of décalage isomorphisms is expressed by the following proposition.

Proposition 1.3.5. The décalage isomorphisms exchange symmetric map into skew-symmetric
maps and conversely. For every n,k € Z, k > 0, we have two linear isomorphisms:

déc: Homp (V™) —Hom *1((sV)"]sv),

(1.3.2)
déc: Homp(V H]V) —>|:hom’|}_k+l((sV) HE1gy7).

Proof. See [59, 10.6]. O

The equations (1.3.1) take a simpler form after a décalage isomorphism, so it is convenient
to encode these new equations into a new algebraic structure called Leo[1] structure, which is
equivalent to the old one.

Definition 1.3.6. An Lo [1] structure on a graded vector space V is a sequence of symmetric
linear maps
. o _
Gn: V1V, deg(qn) =1, n >0,

such that for every n > 0 and every sequence of homogeneous vectors vy, . .., vp:
n
Yo Y e(0) nk+1 (@ (Vo) - - Vo)) Voert)s - - - Vo(n)) = O - (1.3.3)
k=1 o [SQk,n—Fk)
An Loo[1]-algebra (V,q1,q2,...) is a graded vector space equipped with an Leo[1] structure.

For notational convenience we shall sometimes denote an Leo[1]-algebra (V,q1, g2, ...) by the
pair (V, q), where

VS Hole(@nzlv IJTT‘V), q= Z qn -
n=1

Lemma 1.3.7. For every graded vector space V, the opposite of the décalage isomorphisms give
a canonical bijection from the set of Loo[1] structures on V' and the set of L., Structures on
sV =V[-1]

—déc: {Loo[1] structures on V'} —:>'{Loo structures on sV'}.

More explicitly, in the notation above, the bijection is given by:
Iy = — déc(qr), le(svt, ... sup) = —(=1)2EDisqy (v, ... vp).

It is possible to give an equivalent, more concise definition of Leo[1]-algebras in terms of
symmetric coalgebras, see e.g. [56, Chapter IX]:

Definition 1.3.8. An Lo [1]-algebra is a pair (V,Q), where V is a graded vector space, and
Q € Coder(S(V)) such that Q = %[Q, Q] =0.

Equivalently, (S(V), @) is a DG-coalgebra, as in Definition 1.2.12
An advantage of this second definition is the possibility of defining Leo-morphisms easily:

Definition 1.3.9. An Leo-morphism of Leo[1]-algebras f: (V,q) — (W, r) is the corestriction of
a morphism of symmetric coalgebras F': (S(V), Q) — (S(W), R) such that FQ) = RF.



1.3 Loo and Lo [1]-algebras 10

Denoting by f,, n > 0, the components of f, i.e.,
F=>"fan  fo€Hom®(VW),
n>0

we shall call fi the linear part of f, f» the quadratic part and so on.
An Lo, morphism of Leo[1]-algebras can be written more explicitly as follows:

Proposition 1.3.10. Given two Lo [1]-algebras (V,q1,q2,...) and (W,r1,rz,...), a sequence
of linear maps f,, € HomO(V tnJyy7) gives an Le.-morphism f = 3" £, if and only if for every
v1,...,U, € V we have

Zm - O vp)

, (1.3.4)
=3 > e(0) famir1(Gi(Vo)y @ - O Upy) O+ O V()
=1 o [S{i,n—1)
where the maps F: V 'L, 77 Bi-dre defined recursively by the formulas F! = f,, and
) n—i+1
Fiv10--Quyp) = Z S e(0) falto@y @ O Vp(ay) © Fimt(Vo(ast) @+ @ Ug(ny)-
a=1 o [S{a,n—a)

Definition 1.3.11. An Le-morphism of Les-algebras is an Leo-morphism of the corresponding
Loo[1]-algebras.

Given two Leo-algebras (H, hi, hy,...) and (L,l1,12,...), via the décalage isomorphisms of
Definition 1.3.4:
déc: Hom% (H[1]™] Hom "(H™IL),

every Leo-morphism g: (H,h1,ho,...) (L, ll, lz, ...) is given by a sequence of maps
gn € Homy, "(H™]L), n>1,

such that the maps f, = déc(g,) satisfy the condition of Proposition 1.3.10.

The general expression of the equations satisfied by the maps g, is complicated and outside
the scope of this thesis. However, in the following chapters, it will be useful to consider the
special case of a Lo morphism between DG-Lie algebras, as in the following definition.

Definition 1.3.12. Let (V,4,[—,—]) and (L,d,{—, —}) be DG-Lie algebras over the same field.
An Lo, morphism g: V' L is a sequence of linear maps g,: V"™ — L, n > 1, with g, of degree
1 — n such that g1 is a morphism of complexes, while for every n > 2 and every v1,...,v, € V
homogeneous we have

- Z Z (1 n+p) (W 1)+ +0s(p) D) {gp(ua(l), o ,Ug(p)), gn—p(vo—(p+l), o ,vg(n))}
p—l o CS{p, n—p)
+ dgn(Ul, SRR UTL) = (_1)n—1 Z X(O—)gn(é(va(l))a Vs(2)s - - - 7”0(71))
o [S(1,n—1)
+ (=12 > X(0)gn-1([Vo(1)s Vo@)]s Vo@@)s - - - » Vo(n)-
o [5[2,n—2)
When we deal with Lo morphisms of DG-Lie algebras where the target L is abelian,
{—,—} = 0 and the above definition reduces to:
Definition 1.3.13. Let (V,d,[—, —]) be a DG-Lie algebra and (L, d) an abelian DG-Lie algebra.

An Lo, morphism ¢g: V' L is a sequence of maps g,: V™= L, n > 1, with g¢,, of degree 1 —n
such that the following conditions C,,, n =1,2,3,..., are satisfied:
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C1 916 = dga;
Ch, n > 2 for every vs,...,v, € V homogeneous we have

dgn(’U]_, ce 7vn) = (_1)n—1 Z X(J)gn((sva(l)a Vo(2)s - - - 7va(n))
o [S(1,n—1)

+(=D"2 T X(0)In-1([061) Vo@))s Vo@)s - - -+ Von))-
o [8(12,n—2)

Notice that if g, = 0 for every n > N then C, is trivially satisfied for every n > N.

Remark 1.3.14. Notice that condition C7 entails that the linear component g1 induces a map in
cohomology g1: H"V) — HYM). Tt is clear that the cohomology H M) of an abelian DG-Lie
algebra M is an abelian graded Lie algebra. Condition C» can be written as

g1([v1,v2]) = dga(v1, v2) + g2(dv1,v2) + (—1)" g2(v1, v2),
which implies that the map induced by ¢; in cohomology is a morphism of graded Lie algebras.

Definition 1.3.15. An Le-morphism f: (V,q1,---)  (W,r1,---) is called a weak equivalence
if its linear component f1: (V,q1) — (W,r1) is a quasi-isomorphism of DG-vector spaces.

Theorem 1.3.16. Two DG-Lie algebras are weakly equivalent as Lo.-algebras if and only if
they are quasi-isomorphic as DG-L.ie algebras.

For the proof, we refer to [51, 11.4] or to [59, 12.6].

1.4 Semicosimplicial objects and the Thom—Whitney totalisation

For every integer n > 0, consider the finite set [n] = {0,1, - ,n}, equipped with the usual

_)
order relation. Let A be the category whose objects are [0] = {0}, [1] = {0,1}, [2] = {0, 1, 2}, etc.
and whose morphisms are the strictly monotone maps. For instance, Morx ([n — 1], [n]) contains
exactly n 4+ 1 morphisms called face maps, namely:

if k
Sifn—1 =, & =14  “P° k=0, n.
p+1 ifp>k

The face maps satisfy the semicosimplicial identities:
010 = Op+16; for every [ < k.
Every strictly monotone map f: [n] — [n + k], k > 0, admits a unique factorisation as
f=0i,-6,, ntk>ixg>ip>-->i,>0.

Deﬁ_r)ﬁtion 1.4.1. Let C be a category. A semicosimplicial object in C is a covariant functor
A: A — C. Equivalently, a semicosimplicial object A is a diagram

o1 752% E—

where each A; is an object of C, and, for each n > 0, there are n+1 face operators dx: Ap—1 — An,
k=0,---,n, which are morphisms in the category C and satisfy the semicosimplicial identities.

A morphism of semicosimplicial objects is a natural transformation of functors; equivalently,
a morphism f: A — B of semicosimplicial objects is a sequence of morphisms f,: 4, — B,
such that 6y f,.—1 = fndy for every k,n.
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Definition 1.4.2. A semicosimplicial Lie algebra over a field K is a semicosimplicial object
in the category of Lie algebras over K; it is represented by a diagram of Lie algebras

% b,
g: g0 — =S 91 “dhig g2 —
01 5o —_—

in which every face operator d; is a morphism of Lie algebras.

Analogously, a semicosimplicial DG-Lie algebra over K is a semicosimplicial object in
the category of DG-Lie algebras.

The Thom—Whitney totalisation is a functor from the category of semicosimplicial DG-vector
spaces to the category of DG-vector spaces. For every n > 0 consider

Klto, ..., tn,dto, ..., dty]

the commutative differential graded algebra of polynomial differential forms on the affine standard
n-simplex, and the maps

A, =

ti i<k
A, - A1, 0<k<n SHt) =<0 i=k
ti—1 1> k.

Definition 1.4.3. The Thom—Whitney totalisation of a semicosimplicial DG-vector space V'

5o _bo
V: Vo*ﬁvliélj‘/z*ﬂ'“
51 5 —

is the DG-vector space

Tot(V) = {(2n) € [ An ®k Vi | (65 Id)zy, = (Id ®6p)2p—1 for every 0 < k < n},

n=0

with differential induced by the one on [],,~g An ® V,,. To simplify notation, we will sometimes
denote this differential by dtot = da + dy, where d4 denotes the differential of polynomial
differential forms, and dy the differential on V.

If f: V — W is a morphism of semicosimplicial DG-vector spaces, then Tot(f): Tot(V) —
Tot(W) is defined as the restriction of the map

[Tldef: I] 4wk Va = [ A0 ©K Wi

n=0 n=0

The Tot functor is exact: given semicosimplicial DG-vector spaces V, W, Z and morphisms
f: V=W, g: W — Z such that for every n > 0 the sequence

f

0 v, w, —2— Z, 0

is exact, one obtains an exact sequence
0 —— Tot(V) —L Tot(W) —% Tot(Z) —— 0,

see e.g. [23, 59].

Given two semicosimplicial DG-vector spaces V' and W, then Tot(V x W) is naturally
isomorphic to Tot(V') x Tot(W). An important consequence is the preservation of multiplicative
structures; in particular, we will use the fact that the functor Tot sends semicosimplicial DG-Lie
algebras to DG-Lie algebras.

To fix notation we recall here the definition of the Cech complex and its sheafified version.



1.4 Semicosimplicial objects and the Thom—Whitney totalisation 13

Definition 1.4.4. Let X be smooth separated scheme of finite type over the field K, let
U = {U;}, i € I, be an affine open cover of X, and denote by U;,...;,, = U;; N---NUj;,,.

1. The Cech complex of a quasi-coherent sheaf F is

C’p(u,ﬂ”): H g(UiO---ip), p €N, io,...,iPEI

o< <ip

. 5 p+1

d: Cp(u,g) — C’p+1(u’3’), d(a)io...ip+1 = Z(_l)kaio'“i’l‘g"'iwrl|U1'0"'ip+1 . (141)
k=0

2. Let (851g) be a finite complex of quasi-coherent sheaves, the Cech hypercomplex is

(CHU, &5 = Poi(u, e

q=0
cru, e = ] € (Uis,), PEN, do,...ip€l, kEZ
G0 < <ip

with differential d + dg.

3. The sheafified Cech complex of F is the complex of Ox-modules given by

(G%ag)adv)a Gp(uag) = H (jio---ip)§|Uio...ip ) p S N7 iOv s 7ip € Ia

io<<ip
where d is defined as in (1.4.1) and Jig-ip * Uig-i, — X denotes the inclusion map.

4. The sheafified Cech hypercomplex of (& 5He) is defined as

CHU, e d+ds), (CHU, &P =P ei(u,&779).

q=0

In the above situation, the Cech cohomology, defined as the cohomology of the Cech
(hyper)complex, is isomorphic to the (hyper)cohomology of the (complex of) sheaves, and
the sheafified Cech complex is a resolution of the sheaf, see e.g. [34, II1.4].

Example 1.4.5. Let (§5¥) be a bounded below complex of quasi-coherent sheaves on a smooth
separated scheme X of finite type over the field K, and let U = {U;} be an open affine cover of
X. Consider the semicosimplicial DG-vector space of Cech cochains:

0 750% [N
eXu) - Hg'i—‘tfi)z:liné’%zj)élj II 5%%)51“-,

i<j b2 <<k

Og: H g%mzn) — H g%iominﬂ)v (5Sa>i0“‘in+1 = aiO""L‘;"‘in+1|Ui

0 ind1’
10 <ty 10 < <lpi41

According to the Whitney integration theorem, there exists a natural quasi-isomorphism

I: Tot(U,85 = cHu, &Y

where CYl, 5 is the hypercomplex of Cech cochains of Definition 1.4.4 (see [76] for the
C*® version, [21, 31, 59, 66] for the algebraic version used here). Therefore the cohomology
of Tot(U,&%'is isomorphic to the hypercohomology of the complex of sheaves & “hnd then
the quasi-isomorphism class of Tot(U, &% does not depend on the affine open cover, since
H(Tot(U, D) = H{(X, §H'and the map I commutes with refinements of affine covers.
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For our later application it is important to point out that there exists a natural inclusion of
DG-vector spaces I'(X, 85— Tot(U, & such that the restriction of I to I'(X, §%'is the natural

inclusion map
i: DX, &5 = [[ &), i(s) = {siw,}-

In fact, dg7 = 114, therefore

004,y 040 = 56%', for every 0 < js < s,

and this implies that
v D(X, 85— Tot(U, 5 1(a) = (1®i(a),1® doi(a),1 ® d5i(a),...) (1.4.2)

is a properly defined injective morphism of DG-vector spaces.
For later use we also point out that for every quasi-coherent sheaf & and every affine open
cover U, the inclusion T'(X, F) C Tot(U, F) induces an isomorphism T'(X, F) =2 H°(Tot(U, F)).
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Chapter 2

Infinitesimal deformations and
obstructions

This chapter begins with a brief review of functors of Artin rings, deformation functors
and obstruction theories, with a particular emphasis on simple obstructions. To a differential
graded Lie algebra L one can associate two functors of Artin rings MCy and Defr, called
Maurer—Cartan and deformation functor respectively. These are defined in Section 2.4, together
with their tangent spaces and natural obstruction theory. The references for Sections 2.1-2.4 are
[22, 59].

Section 2.5 concerns the deformation theory of coherent sheaves. In particular, using locally
free and injective resolutions of a coherent sheaf #, three DG-Lie models for R Homgo, (¥, %)
are outlined.

2.1 Deformation functors

For a fixed field K we denote by Artk the category of Artin local K-algebras with residue
field K, with morphisms local morphisms inducing isomorphisms on the residue field. For every
local ring R, mp will denote its maximal ideal. In this chapter, unadorned tensor products are
taken over the field K. We denote by Set the category of sets (to avoid foundational problems
we always work in a fixed universe), and by 0 € Set the singleton, i.e., the terminal object in
the category of sets.

Definition 2.1.1. A functor of Artin rings is a covariant functor F': Artk — Set such that
F(K) =0.

Functors of Artin rings are objects of a category where the morphisms are natural transfor-
mations.

Example 2.1.2. A vector space V over the field K induces a functor of Artin rings
V: Artk — Set, V(A) =V @k my.

The category Artk has fibre products: the fibre product of two maps f: S — R and
g: S"— R in Artg is the set-theoretic fibre product S x p S which is an Artin local K-algebra
with residue field K and maximal ideal given by mg X g mgu

Definition 2.1.3. Let F': Artx — Set be a functor of Artin rings. For every fibre product

Bx,C—IC

B—" A
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in Artk consider the induced map
n: F(B x4 C)— F(B) xpy F(C).
The functor F' is called a deformation functor if:
1. n is surjective, whenever [ is surjective;
2. n is bijective, whenever A = K.

Definition 2.1.4. A natural transformation ¢: F' — G of functors of Artin rings is called
smooth if for every surjective morphism B — A in the category Artg, the natural map

F(B) = G(B) xgay F(A)

is surjective. A functor of Artin rings F' is called smooth or unobstructed if the natural
transformation F' — 0 is smooth; equivalently F' is smooth if F/(B) — F(A) is surjective for
every surjective morphism B — A in Artg.

Definition 2.1.5. Let I': Artk — Set be a deformation functor. The set
K
T'F = F <[5]>
(€?)
is called the tangent space of F'.

The tangent space of a deformation functor has a natural structure of vector space, and for
every natural transformation of deformation functors F — G, the induced map T F — T1G is
linear; for a proof see e.g. [59, 3.4.2].

2.2 Obstruction theory

In this context, by obstructions we intend obstructions for a deformation functor F' to be
smooth, i.e., obstructions to the existence of a lifting of a € F(A) to F(B), for any surjection
B— Ain AI‘tK.

Definition 2.2.1. A morphism «: B — A in Artg is a small surjection if « is surjective and
its kernel is annihilated by the maximal ideal mp.

If a: B — A is surjective with kernel I = ker(a) there exists an integer s > 0 such that
m%I = 0, and then « factors as the composition of the finite sequence of small surjections

B — — A.

=17 T
my 1 mpg

Definition 2.2.2. A small extension e in Artk is an exact sequence of abelian groups

e: 0-MELB5S A0,

such that « is a morphism in the category Artgk, ¢ is a morphism of B-modules and the ideal
©(M) is annihilated by the maximal ideal mp. In particular M is a finite dimensional vector
space over B/mp = K.

A small extension as above is called principal if M = K.

A small extension is a small surjection together with a framing of its kernel. Every surjective
morphism in Artk is a finite composition of small surjections arising from principal small
extensions.
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A morphism of small extensions is a commutative diagram

e1: 0 /My By /A lo (2.2.1)
QN ap A
er: 0 /MZ /32 /A2 lo

with a4 and ap morphisms in Artk. The push-out of a small extension
e: 05> M2 B2 A0,

by a morphism of finite dimensional K-vector spaces g: M — N is the small extension

) (0,1d), B® N
grer 0= N o tm), —g(m)) [m € M]

Definition 2.2.3. Let F' be a functor of Artin rings. An obstruction theory for F' with values
in a vector space V is the data, for every small extension in Artg

I A0, gra(b,n) = a(b) .

e: 0—-M—-B—>A—0,

of an obstruction map, a map v.: F(A) — V ® M with the base change property with respect
to morphisms of small extensions: this means that for every morphism of small extensions

er: 0 /vy /By /A4 1o
[e%Vs ap ap
e 0 M, B, /A, 1o

we have v, (aa(a)) = (Idy ®anr)(ve, (a)) for every a € F(Az).
The name obstruction theory is motivated by the following:

Lemma 2.2.4. Let (V,v.) be an obstruction theory for a functor of Artin rings F', and let

e: 0oM-SB2 A0

be a small extension. If an element a € F(A) lifts to F(B), i.e., if a = 5(b) for some b € F(B),
then v.(a) = 0.

Proof. Immediate consequence of the base change property applied to the morphism of small
extensions

0 o Ip gy
Id B
e: | QY ) S )/ — )
In particular, we have v, = 0 whenever there exists a morphism s: A — B in Artgk such that
Bs = 1d 4. O

Every obstruction theory is uniquely determined by its behaviour on principal small extensions.
In fact, let
e: 0-M—->B—-A—=0

be a small extension and a € F'(A); the obstruction v.(a) € V ® M is uniquely determined by
the values (Idy ® f)ve(a) € V, where f varies along a basis of Homg (M, K). By the base change
property, (Idy @ f)ve(a) = viefa), where freis the push-out extension

Bao K

frer: 0_>K_>{(m,—f(m))|meM}_>A_>0'
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Definition 2.2.5. An obstruction theory (V,v.) for F' is called complete if the converse of
Lemma 2.2.4 holds; i.e., the lifting exists if and only if the obstruction vanishes.

Thus, a functor of Artin rings F' is smooth if and only if the trivial obstruction theory (0,0)
is complete; complete obstruction theories play an essential role when we want to check the
smoothness of a natural transformation.

An obstruction theory (O, o0b.) for F' is called universal if, for every obstruction theory
(V,ve), there exists a unique morphism of obstruction theories (Op, 0b.) — (V, ve).

It is clear that if the universal obstruction theory (Op,obe) exists then it is unique up to
isomorphism and it is uniquely determined by the functor F'; the vector space Op is called the
obstruction space of F.

Theorem 2.2.6. Let ' be a deformation functor, then:
1. there exists a universal obstruction theory (Op,0b.) for F' that is complete;

2. every element of the obstruction space Op is of the form ob.(a), for some principal extension
e: 0-K—>B—>A-0

and some a € F(A).

For the proof, we refer to [59, 3.6.7].

2.3 Simple obstructions

There exist some special classes of small extensions for which it is easier to compute the
corresponding obstruction maps, and which can be enough to give some information on the
smoothness of a deformation functor. Of particular relevance for the following chapters will be
the simple extensions and obstructions.

Let F' be a deformation functor and let C be a class of small extensions in Artg, and denote
by Op the universal obstruction space of Theorem 2.2.6. The obstructions arising from C are
defined as the obstructions f(ob.(x)) € O = Op ® K, with

e: 0=-M-—-+A—-B—0
a small extension in C, z € F(B) and f: M — K a linear map.

Definition 2.3.1. A curvilinear extension is a small extension in Artg that is isomorphic to

o K[t K]
0—>K— ) )

— 0

for some n > 2. The curvilinear obstructions of a deformation functor are the obstructions
arising from the curvilinear extensions.

Theorem 2.3.2 ([22]). Let F': Artx — Set be a deformation functor. Then F' is smooth if and
only if for every integer n > 2 the natural map

F(éﬂ))%fﬁ(ﬁ?)

is surjective. In other words, a deformation functor is smooth if and only if every curvilinear
obstruction vanishes.

Proof. For the proof, we refer to [22]. O
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For a deformation functor F, let O% denote the vector subspace of O generated by curvilinear
obstructions. Notice that the above theorem says that Or = 0 if and only if O% = 0, but does
not imply in general that O = O%..

Associated to every small extension 0 — M — A — B — 0 is the second fundamental
sequence of Kéhler differentials (see [61, Theorem 58]):

M # QA/K®AB E— QB/K E— 0,

where d(z) = d/k(7) ® 1 for x € M.

Definition 2.3.3. A small extension is simple if the natural map d: M — Q4 ®a B is
injective. Simple obstructions are the ones arising from simple extensions.

Over a field of characteristic 0 every curvilinear extension is simple.

For every A € Artk and every A-module M we denote by A @ M the trivial extension, with
multiplication rule (a,m)(b,n) = (ab,an + bm). Notice that A & M € Artk if and only if M is
finitely generated as an A-module.

Definition 2.3.4. A small extension in Artyg is called semitrivial if it is isomorphic to
0K =AM -5 AN —0

for some A € Artk and some short exact sequence 0 - K — M PN 0 of finitely generated
A-modules with m4 K = 0; the morphism « is the trivial extension of 3, i.e., a(a, m) = (a, B(m)).
A semitrivial obstruction is an obstruction arising from a semitrivial extension.

Example 2.3.5. For every n > 1 the small extension

z"y K[.Z',y] N K[I‘,y]

0—-K
(:L.n+l’ yZ) ([Bn+l7 1’”?/, yZ)

-0

is semitrivial and isomorphic to
Klz]
(an+h)

x™ A
0—>K—y>A@Ay—>A@my—>O, where A=
X

Lemma 2.3.6. Every semitrivial small extension is simple.

Proof. In the setup of Definition 2.3.4, the projection 7: A ® M — M is a derivation and then
there exists a morphism of A @& M-modules ¢: Q4 yk — M such that ¢(adb) = an(b) for
every a,b € A® M. Since KM = 0 we have ¢(KQ4 rmyk) = 0 and then ¢ factors through

Ao M  Qarmk
K KQirmyx

Qarmyk @armA® N = Q4 gy @4t

The proof follows by observing that the composition ¢d: K — M is the inclusion of K into
M. O

Denoting by O3 and O3 ' the obstructions arising from from the semitrivial and simple

extensions respectively, from Lemma 2.3.6 it follows that O™ C O%™P le,

Proposition 2.3.7. Let F' be a deformation functor, then every obstruction of F' arising from a
simple small extension is semitrivial.

Proof. Given a simple small extension 0 — J — A 4, B - 0 we have a morphism of small
extensions

0 1y /A B 1o
. h

0—1J—IB& (Qax®aB)—IB& Qg —0

where g(a) = (f(a),da) and h(b) = (b,db). The bottom row is a semitrivial extension and the
conclusion follows by the base change of obstructions maps. O
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Putting together Lemma 2.3.6 and Proposition 2.3.7, we obtain that O™ = O;fmple C Op.

Theorem 2.3.8 (T-lifting trick). Let K be a field of characteristic 0 and F: Artx — Set a
deformation functor. Then F' is smooth if and only if for every n > 2 the map

F(in) = P (G )

Proof. Apply Theorem 2.3.2 and base change to the morphisms of small extensions:

is surjective.

0 Ik o K[t /K I
(t"+1) (")
n tB x+y to z+y
0 Ik ety Kz, y] ; Kz, y] I
(mn’ yZ) (xn’ xn—1y7 yZ) ’
where the bottom small extension is semitrival, as seen in Example 2.3.5. Ul

Corollary 2.3.9 (Abstract T-lifting theorem). Over a field K of characteristic 0, a deformation
functor is smooth if and only if every semitrivial obstruction vanishes.

Proof. For every n > 1 the small extension

Klz, y] R Kz, y]
(an*l,y2)  (an*L any,y?)

‘,E?’L

0 K 2Y

-0 (2.3.1)

is semitrivial and isomorphic to

Klz]
AN

0—>Kmn—y>A®Ay—>A@(i)y—>O, where A=
x

Therefore, if all semitrivial obstructions vanish, so do obstructions coming from small
extensions of the form (2.3.1), and the Corollary follows from Theorem 2.3.8. O

Remark 2.3.10. From Corollary 2.3.9 and from the fact that O™ = O3 it follows that in
characteristic zero the vanishing of simple obstructions is enough to ensure the smoothness of
the deformation functor.

2.4 Maurer—Cartan and deformation functors associated to a
DG-Lie algebra

In this section we describe the Maurer—Cartan equation of a differential graded Lie algebra L,
which is used to define the Maurer—Cartan elements of L and to construct the Maurer—Cartan
functor MCp: Artx — Set. The deformation functor Def; is obtained as the quotient of
the Maurer—Cartan functor MCy modulo the gauge action. The tangent spaces and natural
obstruction theory of these functors are also described.

Definition 2.4.1. Given a differential graded Lie algebra (L, d,[—, —]), the Maurer—Cartan
equation is given by
1
dx + 5[:c,x] =0.

An element x € L' which satisfies the Maurer—Cartan equation is called a Maurer—Cartan
element. The set of Maurer—Cartan elements is denoted by

MC(L) = {x e L' |dx+ %[mw] = O}.
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Definition 2.4.2. Let L be a DG-Lie algebra. The Maurer—Cartan functor associated to L
is the functor MCyp,: Artk — Set,

MCp(A) = MC(L! @ ma) = {x €' ®my

1
dx + <[z, z] = O} .
2
Notice that the DG-Lie algebra structure on L ® m4 is induced by the one on L, as in
Example 1.1.10.

Definition 2.4.3. Let L be a DG-Lie algebra and A € Artk. Two elements =,y in L' ® m4 are
gauge equivalent if there exists a € L° ® my4 such that

y=esxzx ==z —1—7; ([Z,—l—_]l)!([a’ z] — da).

b

The operator * is called the gauge action of the group exp(L2®my): in fact e®* (e?xx) = e xu,

where e is the Baker—Campbell-Hausdorff product.

Notice that the gauge action is a perturbation of the adjoint action: if the differential d is
trivial, it reduces to the adjoint action.
The gauge action preserves Maurer—Cartan elements: for a proof we refer to [59, 6.3.4].

Definition 2.4.4. The deformation functor associated to a DG-Lie algebra L is

Def,: Artx — Set

Def (A) B MC(L1®mA) _ {.’IJ S Ll®mA ‘ dx + %[.’E,JJ] = O}
B exp(L0 @ my) gauge action )

It is clear that for any DG-Lie algebra L, the functors MCy, and Defy, are functors of Artin
rings, as in Definition 2.1.1. Moreover, the functors MCy, and Def;, are deformation functors, as
in Definition 2.1.3; for a proof of this fact we refer to [59, Chapter 6].

Example 2.4.5. Consider a DG-Lie algebra L and A in Artk such that the DG-Lie algebra
L ® my is abelian. Then one has that

Defr(A) = HY(L) @ my;

in fact, when the DG-Lie algebra is abelian the Maurer—Cartan equation reduces to dr = 0 and
then MCp(A) = ZY(L)®@my. Ifa € L°®@my and = € L' @ my we have

a ad(a)”
e *x:x—kzzjo(nii)!([a,x]—da):x—da

ZYHL) ®my 1
and then DefL(A) = m =H (L) ®mA
From this follows the fact that the tangent space to the deformation functor Defy is given
by
T Defy, := Def(K[e]) = HY(L) @ Ke, €2 =0, (2.4.1)

and the useful fact:

Lemma 2.4.6. If L is an abelian DG-Lie algebra, the associated deformation functor Def, is
smooth.

Proof. As seen in Example 2.4.5, Def (A) & HY(L) ® ma, and for every surjection B — A in
Arty, the map HY(L) @ mp — HY(L) ® my is surjective. O
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Proposition 2.4.7. Let L be a di[erkntial graded Lie algebra. The deformation functor MCp,
carries a natural complete obstruction theory with values in the vector space H?(L).

Moreover, this complete obstruction theory is also a complete obstruction theory for the
functor Defy,.

Proof. Consider a small extension

e: 0—-M—->B—>A—>0,

1
and take z € MCp(A), i.e. # € L' ®m4 such that dz + §[m,x] = 0. We can lift z to ¥ € L' @ mp,
and define )
h=di+ ;7,7 L?® M.
Then 1
dh = d*(Z) + [dF, 3] = [h, 7] - S[[7, 7], 7],
and by the fact that [L? ® M, L' ® mp] = 0 and by the Jacobi identity we obtain dh = 0. We
define ve(x) = [h] € H?(L ® M) = H?(L) ® M; this does not depend on the choice of the lifting,
because if we take y another lifting of x, we have that y =Z + z, z € L' ® M, and
1

dy + §[y,y] =h+dz.
Then (H?(L),v.) is a complete obstruction theory for the functor MCyp.

Given a surjective morphism «: A — B in the category Artg, an element x € MCp(B) can
be lifted to MCp,(A) if and only if its equivalence class [z] € Defr,(B) can be lifted to Def,(A). In
fact, if x € MCp(B) lifts to some y € MCr(A), it is plain that [y] € Defr,(A) lifts [z] € Def(B).
Vice versa, if [z] lifts to Defr(A) then there exists y € MCz(A) and b € L® ® mp such that
a(y) = e® x 2. Then one can lift b to an element a € L® ® m4 and then zg = e~ % y is a lifting
of z.

O

Every morphism f: L — M of differential graded Lie algebras induces a natural trans-
formation of the associated Maurer—Cartan functors, which is compatible with the gauge
action, and therefore induces a natural transformation of the associated deformation functors
f: DefL — DefM
Remark 2.4.8. Let f: L — M be a morphism of DG-Lie algebras, and let f: H*(L) — H*(M)
be the maps induced in cohomology by f, and consider in particular f: H?(L) — H?(M). This
map commutes with obstructions, and hence if Def,; is smooth, f annihilates all obstructions
to DefL.

In particular, if M is an abelian DG-Lie algebra, by Lemma 2.4.6 the functor Defj; is smooth
and the map f annihilates all obstructions to Def.

Proposition 2.4.9. Let L — N be a quasi-isomorphism of di Cerbntial graded Lie algebras.
Then the induced morphism Def;, — Def  is an isomorphism.

This follows from the Standard smoothness criterion of [22].
Finally, to work in the homotopy category of DG-Lie algebras, we need the following result:

Theorem 2.4.10. Every Lo, morphism between DG-Lie algebras f: L M induces a natural
transformation of functors

MCf: MCr — MCyy, xHZ%fn(a:LTﬁl,

that factors to a natural transformation
Def;: Defy, — Defy; .

If fis a weak equivalence of L. -algebras as in Definition 1.3.15, then Def;: Def; — Defj/ is
an isomorphism of functors.

Proof. See [59, Section 13.1]. O
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2.4.1 Deformation functors associated to semicosimplicial Lie algebras

Let b be semicosimplicial Lie algebra over K, as in Definition 1.4.2

h: bo —= b1 —di = hp —/— -
5 5 o

One can associate to b two functors of Artin rings Z%, H hl: Artx — Set, which here are described
in brief; for more details see [27, 59]. The functor of non-abelian 1-cocycles Z& is defined as

Zhl(A) = {e” € exp(h1 @ my) | 1P = 2@ @)Y

For every A € Artk there is a left action of exp(ho ® my4) on Z&(A)

exp(ho ® ma) x Zg(A) = ZF(A), (e e") s e @eTe™(@),
The functor th: Artkg — Set is then defined as
Zi (A
HE(A) = AW

exp(ho ® ma)

A corollary of Hinich’s theorem on descent of Deligne groupoids [36] relates the Thom—

Whitney totalisation of Section 1.4 and the functor Hg1 .

Proposition 2.4.11 (Hinich). For every semicosimplicial Lie algebra g there exists a natural
isomorphism of functors Hg1 = Defror(g):

For the proof we refer to [36] or [59].

2.5 Deformations of coherent sheaves

Let F be a coherent sheaf on a smooth separated scheme X of finite type over a field K
of characteristic zero. This sections concerns the deformation theory of coherent sheaves: in
particular, three DG-Lie algebras controlling this deformation problem are given, under different
hypotheses on F and on X.

Definition 2.5.1. A deformation of F over A € Artk is a pair (F4, a) where F4 is a coherent
sheaf of Ox ® A-modules, flat over A, and a: F4 — F is morphism of Ox ® A-modules inducing
an isomorphism F4 ® 4 K =2 7.

Two deformations (F4,a) and (Ff a5 are isomorphic if there exists an isomorphism of
Ox ® A-modules f: Fa — 5‘;'13 commuting with the maps to ¥, i.e. such that a'f = .

This defines a functor of Artin rings:
Defy: Artk — Set, Defy(A) = {isomorphism classes of deformations of & over A}.

For a proof of the fact that Defy is a deformation functor as in Definition 2.1.3, we refer e.g. to
[35, 3.19].
2.5.1 DG-Lie representatives of R Home, (¥, %)

By an injective resolution of a coherent sheaf F we mean an injective quasi-isomorphism
F — 95 with g '?'dg) a complex of injective ©x-modules concentrated in positive degree.

Definition 2.5.2. Define RHomgo, (#,) as the quasi-isomorphism class of Hom(lgz;( (9595l
for ¥ — 9Sny injective resolution of the coherent sheaf F.
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The definition is well-posed, because the quasi-isomorphism class of the DG-Lie algebra
Hom(lgz)'( (9595 is independent from the choice of the injective resolution of F. In fact, given
two injective resolutions ¥ — 9hnd F — ¢ it is well known that there exists a morphism of
complexes f: 9™+ ¢Slunique up to homotopy, lifting the identity on F. Then it is possible to
conclude that the DG-Lie algebras Hom(lg:)'( (9595 and Hom('%'( (959 Hare quasi-isomorphic
using the following lemma;:

Lemma 2.5.3. Let f: 95 ¢tbe a quasi-isomorphism of bounded below complexes of injective
Ox-modules, then the associative DG-algebras Homg (9595 and Homg; (¢ 5 5 are quasi-
isomorphic.

Proof. Recall that the mapping cone C™E cone(f) of f is defined by € = d"*1 @ ", de(z,y) =
(—dz, f(z)+dy). The map f is a quasi-isomorphism between bounded below complexes of injective
objects, therefore its mapping cone is a bounded below, acyclic complex of injective objects and
by applying Lemma A.3.1 to its identity map we can see it is contractible.

Consider first the case where moreover f is degreewise split injective and its cokernel
KL Coker(f) is contractible. In this case, we can identify I 3vith the image f(95'c ¢5land
consider the associative DG-algebra

L = {a € Homg, (§595| a(95'c 95}

which fits inside the short exact sequence
0= L5 Hom(lgz)l( (g?‘g'%'% Hom(lgz)l{(gl;b{"?% 0,

where ¢ a morphism of DG-algebras. Since f is degreewise split injective, there exists a surjective
morphism of DG-algebras

p: L — Hom(lg:)'((gl;'g"—)‘! g — p(g) = glgn
which fits inside the short exact sequence
0— Homg)l{(g{l?g"_}'% LY Hom(lg:)!(gl?gl“_}‘% 0.

Since the complex K s contractible, so are Homclg:)'( (K59 S and Hom@z)]( (95K 5] therefore
the maps p, i are quasi-isomorphisms of DG-algebras.

In the general case, consider the mapping cylinder # ™= cyl(f), defined by #™ = "** @
g @ g, dy(z,y,2) = (—dz,dy — z, f(x) + dz). There are two natural inclusions -+ # 5!
¢ #Swhich are quasi-isomorphisms of bounded below complexes of injective objects and
are also degreewise split injective. Therefore, we can apply the first part to obtain a zigzag of
quasi-isomorphisms of DG-algebras:

. . O
Hom5! (959 5& L % Hom5? (¢ S5 L9 Homb) (959

O

If there exists a finite locally free resolution 84+ F of the coherent sheaf F, it can be used
to construct a particularly useful DG-Lie algebra model for RHomgo, (#,F): the resolution
&M F gives a sheaf of DG-Lie algebras %om@')——): (858 on X, and taking the Thom-Whitney
totalisation of Definition 1.4.3 with respect to an affine open cover U one obtains a DG-Lie
algebra Tot(U, %om('g:)'( (&85,

In the next proposition, we prove that it is in fact a DG-Lie model for the derived endomor-
phisms of F.

Proposition 2.5.4. Let 8=+ F be a finite locally free resolution of the coherent sheaf #, and
let ¥ — 95be a resolution of injective ©x-modules. There is a quasi-isomorphism of DG-Lie
algebras between Tot (1L, #omg] (6€565) and Homg (959!
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Proof. Let U = {U;} be an affine open cover of X. It is well known (or it can be deduced
by applying Lemma A.3.1) that the complexes %omé@:)'( (9595 and %omé):)'( (F, 9% are quasi-
isomorphic. Therefore, considering the semicosimplicial DG-vector spaces

50

%om@(g‘?ﬂ%u) : H?ﬁom@x (99 Bluy) 5 4> H?ﬁom@x QDL(]'—_}{U” 51%
i<j 62
and
)
ézt’om(lgz)l((?,g"_ﬂU): H&’t’om@X F g"—ﬂU T> H%’om@X F g'—_)-tUZ] 51§ .
i<j P

for every n > 0 there is a quasi-isomorphism of DG-vector spaces
Homg, (959HNW), — #omg, (F,9HU),

By a corollary of Whitney’s integration theorem, see [59, 7.4.6], this gives a quasi-isomorphism
of DG-vector spaces

Tot(U, Fom§) (9595 L Tot (U, #omG) (F,95).

Consider now the double complex

2070 T #omS ) (F, 90 U,) — -, (25.1)

1<J

OAHom(Ig:)I((G,gEflﬁ H%om(lg_—)l((g,gl‘_)‘tU

which is acyclic in the horizontal direction, i.e., for every n the complex

2= [ o (F,99U;) —

1<J

0 — Homp, (F, 95— [[ #omi, (F,95U;) 222

is acyclic. This follows by the fact that #omo, (G, Q) is flasque for any injective ©y-module Q,
see [32, Ch. II, 7.3.2] and by Leray’s theorem on acyclic covers. This double complex is contained
in the first quadrant, because %oméi (F, 9= dome, (F,97%) =0 for all k > 0.

Consider the total complex associated to the double complex of (2.5.1), as in Definition 1.1.4
(as seen in Remark 1.1.5, for a first quadrant double complex the sum and product total complexes
coincide). Since the double complex of (2.5.1) is contained in the first quadrant, the acyclicity
in the horizontal direction implies that the associated total complex is acyclic. This implies that
there is a quasi-isomorphism of complexes

Homg; (#, 95— CHU, Fomg (F,95),

where CYl, —) denotes the Cech hypercomplex of Definition 1.4.4. Since the complex of
sheaves # om(igz)'( (F,9%is bounded below, we can apply the Whitney integration theorem of
Example 1.4.5 to obtain a quasi-isomorphism of complexes

Homg, (F, 955 Yot (U, #om] (F,95),

induced by the restriction maps Homg ) (7, 95— %om@ Qf IHUy).
Likewise, the restriction maps Homg (¢ LB % om(9 (959 5{U;) induce a map

Homg; (9595 = Tot(U, Fomg, (9595,

which is a morphism of DG-Lie algebras. We then obtain a commutative diagram

Homg; (9595 —— Tot(U, FHomg] (9595)

P [=

Homg ) (7, 95— Tot(U, Ftomf]) (F,95),
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where the first vertical map is a quasi-isomorphism by Lemma A.3.1, and hence the map
Hom(lgz)'( (9595 = Tot(U, # om('Q:)'( (9595 is a quasi-isomorphism of DG-Lie algebras.

Therefore, to obtain the main claim, it is now enough to prove that there is a quasi-
isomorphism of DG-Lie algebras between Tot (U, c?fom(‘g:)'( (9595 and Tot (U, c?fom('o:)'( (&5€H).

Let U = Spec R be an affine open set, with R a commutative unitary K-algebra. To prove
the proposition, it is enough to prove that for an R-module M equipped with a finite projective
resolution p: P+ M and an injective resolution i: M — I5the DG-Lie algebras HomE(‘P ';'PL—}]
and HomRQI L% are quasi-isomorphic.

Consider the short exact sequence

0 — Kerp P M 0, (2.5.2)

where the complex Ker p is acyclic because p is a surjective quasi-isomorphism. Applying the
functor Homz{—, I5'to the exact sequence (2.5.2), we obtain the exact sequence

0 —— Hom%(‘M,I?‘ﬁ Hom}%—('P';'Iq—'% HomgKerp,I@% 0,

which is exact on the right because I™s a bounded below complex of injective modules. By
Lemma A.3.1 any morphism of complexes from an acyclic complex to a bounded below complex
formed by injective elements is homotopic to the zero morphism, and therefore the complex
HomE('Ker p, I'%'is acyclic. This implies that the map p™is a quasi-isomorphism of complexes.

Similarly, we can apply the functor Hom={P-) to the exact sequence (2.5.2) to obtain the
exact sequence

0 —— Homk(P"Kerp) —— HomL({PSPY 2= HomE{PS M) —— 0,

which is exact on the right because P™s a bounded complex of projective R-modules. By
Lemma A.3.1 the complex HoquP C¥er p) is acyclic and the map pis a quasi-isomorphism.
Consider now the short exact sequence of bounded below complexes

0 M — - Cokeri —— 0, (2.5.3)

where Cokeri is acyclic because 4 is an injective quasi-isomorphism. As above, one can ap-
ply the functors Hom}‘i—('—,l 5 and Hom}‘g—(‘P C1) to the sequence (2.5.3), and obtain, using
Lemma A.3.1 again, that i Hom%‘[ e Homllg—('M , IDis a surjective quasi-isomorphism
and that 7 Homllg_(‘P Chv ) — Hom}%_('P L q—'is an injective quasi-isomorphism.

Denote by f the composition f = ip: P™+ M — I It follows from the above that the
maps

feaHom 5PEPY = Hom{PETY!  f5 Hom 5151 — Hom xPSTH (2.5.4)

are quasi-isomorphisms of complexes, and therefore cone(frhand cone(fH'are acyclic complexes.

Let C™¥enote the cone of the map f: P I Jand let N denote the DG-Lie algebra of
endomorphisms of the cone, N := Hom fcone(f), cone(f)) = Homz{COT! As a graded vector
space, C~L= PY] @ I 'and the differential is given by

_( dpy O
dC_(f[l] d]>’

so the differential of N is given by [d¢, —]. Elements of N can be represented by matrices of the

form
a b a € Hom(P], PT]), b€ Homix{I5PH)),
c e ¢ € Hom&(P], 15! e € Homk (515!
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Following the proof of [70, Lemma 4.4], it is easy to see that the subspace L C N of matrices of
the form

C

( “ 2 ) a € Hom5(PH], PH)), ¢ € Hom5PH], 1Y e € Hom 15T

is a sub-DG-Lie-algebra of N. One can check that the projections

m: L — Hom5PSPY m ( CCL 2 ) = (—1)%,

m2: L — Hom5I5TH! ﬂg(a 0>:€

are surjective morphisms of DG-Lie algebras.

We claim that Kerm; and Kermp are acyclic, which implies that 71 and 7 are quasi-
isomorphisms, so that the proof of the proposition is complete. In particular, we will prove that
up to a shift Ker 7y is isomorphic to cone(f5'and Ker 7, to cone(frh where f™nd frare the
quasi-isomorphisms of (2.5.4). We only prove the statement for Ker 7, as the proof for Ker
is analogous.

The kernel of 71 is given by matrices of the form

( 0 2 > c € HomL{PH], 15! e € HomE{r5TH!

C

and the differential is [do, —], inherited from Homz{C'5CH! The cone of f&! Hom 51575 —
Hom (P57 s the complex K™= cone(f5'= Hom (I 5T5]1]@Hom 5 P57 H'with differential

dHom LI 53 511 0
drg = Ry .
K ( f L_H] dHoml‘g_(‘P m IR

We claim that the map

0 0

v (Kermy, [de, —]) — (K?—l],—d;{), ( e e ) — (e, —c)

is an isomorphism. It is clear it is an isomorphism of graded vector spaces, since as as a graded
vector space

Ker m 2 Homg(PH], I'Y® Hom 51515~ Hom {1515 e Hom H{PETH]-1].

We need only to prove that the map ¢ commutes with the differentials. Consider an element

()

of degree j in Kermi, so that ¢ € Homfé(P?ﬂ,I'—_}'% Homgl(PF'I'—_)' and e € Homﬁ([?‘]@.
The differential of this element is given by

0 0
drc — (=1 edppy — (—=1)7ef[1] dre — (=1)ed; )’

and then

¥ ([da ( 00 )D = (dre — (=1)edy, —dre + (=1)Tedpyy + (=1)7ef[1]).
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On the other hand, the differential of (e, —c) is given by
[ denat@ o 0 e\ _ —(dre — (1) ed;)
FH] dom (P 3ry —c fH](e) = dre+ (1) tedp

dje—(— )jed[ A
—f(e) + dre+ (=1) cdp,

and we have the claim by the fact that dppj = —dp and fH](e) = (—1)7ef[1]. O

In the case where F is a coherent sheaf on a complex manifold X admitting a finite locally free
resolution 6+ F, there is another representative for R Home, (F,F) given by the Dolbeault

model
(A% %fomox &S89, [—, 1,0 + [de, —)).
This DG-Lie algebra is obtained as the global sections of the sheaf of DG-Lie algebras

A Hom] (8585) = A% "o, Hom§] (858!

Here, ﬂ%q denotes the sheaf of forms of type (0,q) on X, the degree of an element of
Ag&q(&” omg, (6 €53 is ¢ 4+ n, and 0 denotes the Dolbeault differential.
The bracket in Jlg(’ I%&‘60771('9:)'( (8585 and Ag&%fom@z)l((é"?é'—_}b is given by:

- fon-g] = (- Nn-g) = (~)EDTDGp g)(w- ) = (<) Tw An) - [f. ],
Yw,née ﬂg(’l?l f,g€ c?fom(lc):)!(é’l?(%"‘_}!
Proposition 2.5.5. The DG-Lie algebra
(AR Fomb, (66D), [, 1.0 + [ds, —))
is quasi isomorphic to Tot(U, #omg, (65ED).

Proof. Let U be a Stein open cover, and consider the semicosimplicial DG-Lie algebras

b Hénd@ EH) 4’H8nd@ (ENUi) =5 Hénd@ (ENHUij)
7.]7

J I l

g [1Ay (Endy (65) = Ay (endg (65) = T1 Ay (endiy( (6N =
7 2y

7'7]7

M

where for every n > 0, the inclusion b, — g, is a quasi-isomorphism. By a corollary of Whitney’s
integration theorem, see [59, 7.4.6], there is then a quasi-isomorphism of DG-Lie algebras

Tot(U, &ndg,) (€5 — Tot (U, A% (E€ndS) (€5)).

By Leray’s theorem on acyclic covers, the Cech hypercomplex of ﬂ%’%nd@')——): (€YY is quasi-
isomorphic to Agé%nd(b:}'( (&9 via the restriction map

A End5) (85) —— HA HEndb) (85) =

il HA Cenab) (8 — -

By Whitney’s integration theorem the restriction maps induce a quasi-isomorphism of DG-
Lie algebras Ag&%nd&'{ (&9 — Tot(U, Ag&%nd&'{ (€9Y), and therefore we have a zigzag of
quasi-isomorphisms of DG-Lie algebras

A% €nd5 (€5) — Tot (U, A% (End5] (85) + Tot(U, &nds] (85,
O
Therefore, via Theorem 2.5.4, A%%om(g)'{ (6585 is a DG-Lie model for R Home, (F, F).



2.5 Deformations of coherent sheaves 29

2.5.2 The DG-Lie models for R Home, (¥,5) control the deformations of F

Let & be a coherent sheaf on a smooth separated scheme X of finite type over a field K of
characteristic zero, and let F — J=be an injective resolution of ©x-modules. In the following,
we prove that the DG-Lie algebra Hom&'{ (9595 controls the deformations of F.

Definition 2.5.6. Let (954g) be a complex of injective sheaves of ©x-modules, a deformation
of (95Hg) over A € Artk is the datum of a complex of sheaves (95& A,d4) such that da
reduces to dg modulo m4. An isomorphism of deformations (J5& A, d4) and (95 A,dY) is
an isomorphism of complexes of sheaves f: (9-& A, da) — (95 A, dY) which reduces to the
identity modulo my4.

Proposition 2.5.7. Let (951g) be an injective resolution of the coherent sheaf #. For every
deformation (9% A, d4) of (95Hy) over A, #3 (9% A) is a deformation of F over A.

Vice versa, for every deformation (F4, a) of F over A, there exists a deformation (45 A, d )
of (95Hy) such that #3 (9% A) = F4.

Proof. Notice that 9¥® A is flat over A for every k, because the functor TP A4 — =2 Ik @r —
is exact. By upper semicontinuity of the cohomology and by the fact that is reduces to (95Hy)
modulo my, the complex (& A, d4) is exact except in level zero, so that the following sequence
is exact:

do dl
0 —— Ker(d)) —— 9904 25 @A 45 0204 — - .

By Corollary A.2.8, Ker(d%) is flat over A. The map Ker(d%) — F is induced by the isomorphism
Ker(d%) ®4 K — F.

Vice versa, let (#4, ) be a deformation of & over A € Artk. We proceed by induction on
the length [(A) of the Artin ring, see Definition A.2.1. For [(A) = 1, A = K and there is nothing
to prove. Let

0-K—=+A—-B-=0

be a small extension. The sheaf Fp := F4 ® 4 B is a deformation of F over B, and by inductive
hypothesis there exists a differential dg on 95 B such that 5‘6’3}3 (9%& B) = Fp. Then there
exists a diagram of the form

0 F Fa B 0
sj EAi \[EB
0 g0 P94 —9°9B ——0

where the first row is obtained by applying 54 ® 4 — to the small extension, which is an exact
functor because F4 is flat over A.

The claim is that there exists a map € 4: F4 — 9°® A making the above diagram commutative.
Notice that if €4 exists, it is injective by the Five Lemma. There is an exact sequence

Homg, rx{Fa,9° ® A) —— Homo,, r=fF4,9° ® B) —— Ext%gx ratFa, 9°).

We would like to say that Ext(lgx ratFa, 9%) = 0 by Corollary A.2.10, however the argument used
relies on the existence of projective resolutions. We must then proceed locally; let U = Spec R C X
be any affine open set, then by Corollary A.2.10 Ext]R bt F A Uxspec A, gO\stpec A4) = 0 and by [34,
I11.6.2], we have that éxthspecA(QfA, 99) = 0. There is an isomorphism #omoe, ra(Fa,9°) =
it omo, (F,9°), where i denotes the inclusion X — X x Spec A. By [32, Ch. II, 7.3.2], the
sheaf #ome, (F,9°) is flasque because 90 is injective, and by [34, 11.1.16], i Homo, (F,9°)
is also flasque. Then HY(X x Spec A, #omo, raf§F4,9°)) = 0, and by the local to global ext
spectral sequence, we finally obtain Ext(lgx cahFa, 9°) = 0.
This means that there exists £4: F4 — 9% ® A, which reduces to ¢ modulo m4.
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We can iterate this procedure, by considering Coker e 4 in the place of F4; notice that it is
flat over A by Corollary A.2.6.
O

Proposition 2.5.8. Let (95H) be an injective resolution of &, then the isomorphism classes of
deformations of F over A € Artg are in bijective correspondence with the isomorphism classes
of deformations of (J54y) over A.

Proof. It is clear that isomorphic deformations of (95Hg) give isomorphic deformations of F.
Vice versa, let (9% A, d,) and (95 A, dY) be deformations of (95Hy) over A such that

there exists an isomorphism
Fa = 33, (95H A) L #3970 4) = 77

We claim that this isomorphism f can be lifted to an isomorphism of complexes (9~ A, d4) —
(95& A, dY), which reduces to the identity modulo m4.

We proceed by induction on I(A); let 0 - K — A — B — 0 be a small extension, and let
Fp:=F41 @4 B and 9’5 = S‘E®A B. By inductive hypothesis, there exists an isomorphism F'z

0 go P9A—9°9B ——0
| R
0 g0 PA —539%9B —— 0

which reduces to the identity modulo mp and such that the following diagram commutes:

0 Fp —25 92 B
/ I:ymBi lFB (2.5.5)
0 Fg s 9°® B.

Since 9° ® A is flat over A, with the same argument used in the proof of Proposition 2.5.7,
relying on Corollary A.2.10, we can lift Fp to Fu: 99® A — 9% ® A, which is an isomorphism
by the Five Lemma and which reduces to the identity modulo m4.

However, it is not in general true that F4 makes the following diagram commutative:

0 Fy —A 5 %2 A
| e

O 0
0 F§ = 9O A.

We have instead that (Faes — {:‘Ef) ®4 Idp = 0, because of (2.5.5). Then Fye — &?Ef factors
through 9°, and via the isomorphism Homp, rxfFa, 9°) = Homo, (F ,9%) we obtain a map
x: F — 99 such that Faey — sgf =iz

gO

/ \\\ Yy

xT

e

9°® A,

Faea—cQf

Since 90 is injective, there exists a map y such that ye = x, so that

yea = Faep — 591]".
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Let m: 99 ® A — 9°, and define y4 := yr. Let Fy:=Fy4— iy?, then
I?;;eA = Fpeq — iyAsA = Fpep —iymes = Facq —iyea = Faeq — Faey +5Ef = 55]“,

so that Fy is the desired lifting.
To iterate this procedure, we consider the map Fg: 9 ® B — 91 ® B obtained by inductive
hypothesis. O

Theorem 2.5.9. Let F be a coherent sheaf and let ¥ — ¢ bhe an injective resolution, then the
DG-Lie algebra Homg; (9595 controls the deformations of &.

Proof. By Propositions 2.5.7 and 2.5.8, there is an isomorphism of functors Defs = Def(gry,).
It is then easy to see that deformations of (95 Hy) are controlled by the DG-Lie algebra
Homég:)'( (9595 In fact, given A € Artk, the datum (9% A,d4) is a deformation of (95 Hy)
if and only if d4 reduces to dg modulo m4 and d124 = 0. This is equivalent to saying that
da = dg ® Id+€, with £ € Homg, (959 5@ my and

0=d4 = (dg ®@1d+£)? = d¢ + %[&é’] =0,

where d = [dg, —] denotes the differential of Homég:)]( (959 5%m 4. Then a deformation corresponds
to a Maurer—Cartan element of Hom(%l{ (59 Y 2 my.

Two deformations (95 A,da = dg ®1d +£) and (95 A, d = dg ®1d +£Y are isomorphic if
and only if there exists an isomorphism of complexes ¢: (9" A, d4) — ("D A, dE) which reduces
to the identity modulo m 4. Then ¢ is of the form ¢ = Id +n, with n € Hom%x (5952 m 4, and
since we are in characteristic zero, ¢ = e, with a € Hom%x (9595® m4. The commutativity
of ¢ with differentials translates to the equation

die® =evdy <<= dg+E=e%(dg+ e == P=exg,

so that the deformations are isomorphic if and only if the corresponding Maurer—Cartan elements
are gauge equivalent.
O

Corollary 2.5.10. The tangent space to the functor Def is given by Ext% (F,F) and obstruc-
tions are contained in Ext% (¥, 7).

Proof. This follows from the description of the tangent space in (2.4.1), from Proposition 2.4.7,
and from the well-known fact that the cohomology of the complex Homg (9595 computes
Ext'AF, F). O

In the next part, we discuss the fact that the DG-Lie algebra Tot(U, # omb:)'( (8 L '——}} controls
the deformations of a coherent sheaf F equipped with a finite locally free resolution &=+ .
Notice that this follows automatically from Theorem 2.5.9 and Propositions 2.4.9 and 2.5.4, but
we want to give here an idea of how the isomorphism

DefTot(’l,l,%om(%'( ¢80y — Defx

works, based on the description contained in [24].

The first step for the Thom—Whitney model Tot(U, Efom(lg:)'( (8585 is to show that locally
on an affine open set U = Spec(R), the deformations of F i are controlled by the DG-Lie algebra
Homg('P ';'Pq'of graded endomorphisms of a projective resolution P+ M, where F lu = M.

Let R be a commutative unitary algebra over a field K of characteristic zero, and let M be
an R-module.
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Definition 2.5.11. An infinitesimal deformation of M over A € Artg is a pair (My, ), where
My is a R® A-module, flat over A, and a: M4 — M is a morphism of R ® A-modules inducing
an isomorphism M4 ®4 K — M.

Two deformations (M4, ) and (MY, Y are isomorphic if there exists an isomorphism of
R ® A-modules f: M4 — MY such that the following diagram commutes:

My ! MT
x AI
M.

The map « is a morphism of R ® A-modules, where M is considered as an R ® A-module by
restriction of scalars via the ring map : R® A - R® K= R induced by 7: A - A/my = K.
The isomorphism M4 ® 4 K — M is induced by « via the isomorphism

Hom g rafMa, M) = Homp(Ma ® g e, M) = Homp(Ma ®4 K, M), (2.5.6)

induced by the ring map 6 above.

The definition is functorial in A, and one can define the functor Defy;: Artx — Set, which
associates to every A € Artk the isomorphism classes of deformations of M over A.

Let now (P5D) be a complex of projective R-modules.

Definition 2.5.12. An infinitesimal deformation of (P59) over A € Artk is a complex of
R® A-modules (Pt A, d4) which reduces to (P%0) modulo m 4. Two infinitesimal deformations
(P % A,0,4) and (P& A, 9Y) are isomorphic if there exists an isomorphism of complexes of
R ® A-modules which reduces to the identity modulo m 4.

Theorem 2.5.13. Let (P5H) % M be a projective resolution of the R-module M. Then the
isomorphism classes of deformations of M as an R-module are in bijective correspondence with
the isomorphism classes of deformations of the complex (P5D).

Proof. We begin by proving that for every deformation (P& A,04) of (P50) over A € Art,
the module HgA(P% A) is a deformation of M over A € Artg.

By upper semicontinuity of the cohomology and by the fact that the complex (P& A,d,)
reduces to the resolution P™ M modulo my4, the complex is exact except at the zero level,
hence there is an exact sequence:

s P29 A% plg %A pPog A Coker(94) — 0.

Each P' ® A is flat over A, because we have that P' @ A ®4 — = P’ ® —, which is an exact
functor. Then we can apply Corollary A.2.8 to obtain that Coker(d4) is flat over A. The map
Coker(04) — M is induced by the isomorphism Coker(94) ®4 K= M, as in (2.5.6).

Vice versa, let (M4, «) be a deformation of M over A. Notice that the map a: M4 — M is
surjective: in fact, by (2.5.6), « is the composition of the isomorphism M4 ® 4 K — M with the
canonical surjective map M4 — M4 ®4 K induced by A — A/m4 = K. Then, by the projectivity
of PP ® A, see Lemma A.1.2, there exists a map ¢4 of R ® A-modules

pa T l
/// «

PO A M,

where 7 denotes the map 7: P° ® A — P9, This map reduces to ¢: P® — M when tensoring by
— ®4 K, so it is surjective, by Lemma A.2.5.
The sequence

0 —— Ker(pyg) —— PP A 2245 My —— 0
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is exact: by Corollary A.2.6 Ker(yp4) is flat over A and the map Ker(p4)®4K = P'@ A® 4K = PP
is injective. Hence there is an isomorphism Ker(¢p4) ®4 K = Ker(y) which defines a surjective
morphism Ker(¢p4) — Ker(p). We can iterate the above construction with this map and the
surjective morphism P~* ® A — Ker(y). In this way, we obtain a differential 94 on P"® A such
that H) (P~b A) = M.

Next, we need to show that if (M, a) and (MY, oY are isomorphic deformations of M, and
04, 0Y are differentials on P& A such that HgA (Pt A) = M4 and HgE(P% A) = MY, then
(PY% A,04) and (P%% A, ) are isomorphic deformations of P™?

Let f: M4 — ME be an isomorphism such that a'f = a; we need to construct a lifting of
f which is an isomorphism of complexes of R ® A-modules and which reduces to the identity
modulo m4. Consider the pullback

PO xy MY —— MY

| Joe

P’ ———— M.

By the universal property of the pullback, there exist maps u, v making the following diagrams
comimute:

P2 A

P M P ——— M.

We claim that the map v is surjective. Take (z,%) in P° x ME, ie.zePlandy € ME such
that ¢(x) = a'{y). Both the maps 7 and <PE are surjective, so there exist z,¢ € PO ® A such that
7(2) = z and p(t) = y. Then o' P (2) = ¢7(2) = ¢(z) and aPY(t) = alfy), so that Y5 (t — 2)
belongs to the kernel of o) which is ME ®4 my. The morphism

cpEll: PO XA mgy —>ME®AmA

is surjective, so there exists w in P°® 4m 4 such that ¢ (w) = ¢ (t—2), and then v(z—w) = (z,y).
Since v is surjective, by the projectivity of P°® A there exists a map F such that the diagram
commutes:

P2 A

F 7 l
ot v

PP A POPw)y MY.

It is immediate to check that the map F' is such that fp4 = @EF , and that it reduces to the
identity when tensored by — ® 4 K. It is also an isomorphism, by Lemma A.2.5. The construction
can be iterated by considering the isomorphism of R ® A-modules Ker(p4) — Ker(p3) given by
F.

O

Proposition 2.5.14. Deformations of a complex of projective R-modules (P5 D) are controlled
by the DG-Lie algebra L = Homp{P5PG] i.e., there is an isomorphism Def (pcay = Def ;.

Proof. A deformation of the complex (P50) over A € Artk is the datum of a degree one
map 04: Pt% A — P& A which squares to zero and which reduces to @ modulo m4. The



2.5 Deformations of coherent sheaves 34

last condition means that 94 is of the form 94 = 0 ® Idy +¢, with £: Ptb A — P my.
Equivalently, & belongs to Homk(P5P5® m 4. Since 94 has to square to zero,

0=04=0®Ids+£6)? = (0 1da)? + 2 +[0@1dy,£] =2 + [0 @ 1da, €] = d(€) + %[5,5},

so that ¢ is a Maurer—Cartan element of Hom (PS5 PH® m 4.

Two deformations (P~& A,04) and (P& A, 0Y) of the complex (P5H) are isomorphic if
there exists an isomorphism of complexes ¢: (PY% A,04) — (P%& A, 0Y) which reduces to the
identity modulo m 4. This means that ¢ is of the form ¢ = Id +n, with n € Hom%(P P my.
Since the DG-Lie algebra L ® my is nilpotent, and the characteristic is zero, ¢ is of the form
¢ = e® with a € Hom%(P EPS'% m 4. The commutativity of ¢ with differentials is given by the
equation

OGe® = ey = O =e%04e7" = (= (0@Id+)e T —0®]1d,
which is exactly £F= e? x £, where * denotes the gauge action of Definition 2.4.3. O

Corollary 2.5.15. Deformations of an R-module M are controlled by the DG-Lie algebra
L = Hom5¢{P5IPS) where P2 M is projective resolution.

Remark 2.5.16. The quasi-isomorphism class of the DG-Lie algebra HoquP LIPS does not
depend on the choice of a projective resolution P-bf M; for a proof see [70, Lemma 4.4].

We pass now on to the global case: let & be a coherent sheaf on a smooth separated scheme X
of finite type over a field K of characteristic zero, admitting a finite locally free resolution &+ F.
Let U = {U;} be an affine open cover of X and let R; be K-algebras such that Spec(R;) =U
for every 4. Since the sheaves F, &’ |y, are coherent, on every U; they are of the form F|y, = M;

&y, = EZJ for Elj projective R;-modules.

For every open set Uj,..;, one has that 8'?@0,_,% — 5|Ui0---ik is a projective resolution.
Following [24], we can use the results above to deform the sheaf F locally and then glue together
the local deformations.

By Theorem 2.5.13 and Proposition 2.5.14, a deformation of F|y, over A € Artk is
equivalent to a deformation of the complex 8'?@, hence it corresponds to an element I; €
MC(énd('Q:)'( (EH{U;) ® m4) modulo the gauge action.

Denote by d the differential [dg, —], and let | = {I;} € [[; &nd*(EHU;) ® ma be such that
dl; + %[li, l;] = 0 for all i € I, so that I; defines a deformation of the complex (§4;,,dg) for
every i. We need these deformations to glue, hence we need isomorphisms between the deformed
complexes on the double intersections U;;. These isomorphisms must reduce to the identity
modulo m4, and so are of the form

eMij - (GI‘T“UM ® A, dg + lj) — ((SL_H]” ® A,dg + li), mg; € H 5Tld?9X (8'%[]1]) ®my.
1<j

The condition of compatibility with the differentials translates to (dg + li|v;;)e™ = ™ (dg +
ljlv,;), which can be rewritten as l;|y,; = €™ |y, for all i < j.

The delicate part is that it is not necessary to glue the deformed complexes (647, ® A, dg +1;),
but their cohomology sheaves. Therefore the isomorphisms {e”#} do not have to satisfy the
cocycle condition, but rather the cocycle condition up to homotopy. Taking the logarithm and
denoting by e the Baker—Campbell-Hausdorff product, this condition can be expressed as

Mk ® =ikl ® Mijlug, = [de + Uluyg,, nijr] = dnigr + [Lilo nigr]

for some n = {nr} € [1;cj<k énd(;i(g NUijk) ® ma.

The above data (I, m) ensures that the the sheaves Fa y, := #° (64, ® A, dg + 1;) glue to
give a deformation F4 of F over A, and every deformation of & can be obtained in this way; we
refer again to [24] for details of this correspondence.
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The next step is understanding how isomorphisms of deformations of & translate to this
data. Let F4 and F be isomorphic deformations of F, with isomorphism f: F4 — & and
corresponding to the data (I,m) and (I5mY respectively. The map f restricts to isomorphisms
Fa(U;) — FL(U;) for every 4, which can be lifted to isomorphisms to the resolutions f;: (647, ®
A,dg + ;) — (8 LT_'Ui ® A,dg + lﬁ. Since every f; reduces to the identity modulo my4, these
isomorphisms must be of the form

e (8, @ A ds + 1) — (6, ® A, ds + 1), a={a;} € [[nd® (DN U;) ® ma.

Since they have to be compatible with differentials, the condition e x [; = liDhas to be satisfied
for all 4.

Lastly, the isomorphisms {e%} have to commute with the isomorphisms {e™ }, {emg} in
cohomology. This means that for every ¢ < j the composition e™™ijie~%¢™ie% is homotopic to
the identity, therefore, taking the logarithm:

—mij ® —ailu,; e m;j @ ajlu,; = [ds + Lilu,,, bij] = dbi; + [L]u,; , big)

for some b = {b;;} € [];; (‘Snd(:))l( (EH{U;) @ ma.
Denoting by [ the semicosimplicial DG-Lie algebra associated to é’nd(lg——)'( &y

d

do _ % -
[+ [1éndg) (ENU) —= [16nds] (ENUy) =63 T nds (ENUiyk) — -+ .
i 0 iy 8y | ..k —
the deformation data can be summarised as follows
dl+ 3[1,1] =0,
(ILbm)e (BaB)@my 611 = €™ x &yl

dom e —d1m e dom = dn + [(5250[, n] dn € [2_1 QXmy.

This data defines a functor Z.(exp[): Artk — Set. One can then define an equivalence relation
on ZL (expI)(A): two elements (I,m) and (I5mY are equivalent if and only if there exists elements
a€lB®myu, bt ®my such that

e x1=17 —me—3raem-edya=db+ [00l, b].

We refer again to [24] for a proof of the fact that this is an equivalence relation.
This defines a functor

_ Zhfep)(4)

~

H! (expl): Artx — Set, HZ (expl)(A):

Notice if the semicosimplicial DG-Lie algebra [ is concentrated in degree zero, i.e., it is a
semicosimplicial Lie algebra, these functors reduce to the functors of Subsection 2.4.1.
When U is an affine open cover, the above considerations can be rephrased as an isomorphism
of functors
Defy = HE (exp é’nd@'):)'( &9H.

Theorem 2.5.17 ([24, Theorem 7.6]). Let [ be a semicosimplicial DG-Lie algebra such that
HI(l;) =0 for all i > 0 and j < 0. Then there is a natural isomorphism of functors

Defrorqy 2 Hy.(expl).

In particular the tangent space to HZ (exp!) is H*(Tot(l)) and obstructions are contained in
H?(Tot(1)).
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Since negative Ext groups between coherent sheaves are always trivial, as a corollary of the
above theorem one obtains that the DG-Lie algebra Tot(U, éndég:)'( (&9 controls the deformations
of the sheaf 7.

Let X be now a complex manifold, F a coherent sheaf and €™+ F a finite locally free
resolution.

Proposition 2.5.18. The Dolbeault model (A% (Ftom§! (65653, [, ~],8 + [ds, —]) controls
the deformations of the coherent sheaf &.

Proof. By Propositions 2.5.4 and 2.5.5, there is a quasi-isomorphism of DG-Lie algebras between

Agg%fom(lgz)'( (85853 and Hom(lg——)'( (9595 By Theorem 2.5.9 there is an isomorphism of functors

of Artin rings Defyom FIgray— Def#, and finally by Proposition 2.4.9 two quasi-isomorphic
X

DG-Lie algebras give isomorphic deformation functors. O

Following [24] again, the isomorphism between the deformation functor associated to the
Dolbeault DG-Lie algebra Agg%fomg)'( (8585 and the functor of deformations of F can
be described concretely. Let A be in Artk, and consider a Maurer-Cartan element & €
MC(A%%fomE{(S?@% ® my). The element &£ belongs to (Ag&%ﬁ’om(‘g:)'( (E5E5) @ my,

so, via the isomorphism

AXHomE) (E5ET) @ my = ;eom%ﬂ%'%'g),ﬂ%%)) ®@ma
= WOW%%E%%) 2 A, ARKE) @ma),

the element & belongs to Homiqgé %ﬂ%%) ® A, ﬂ%%) ®my4), so it induces a degree one

map &: ﬂgg%) RA— ﬂ%%) ® A with image contained in ﬂg(’ “€) @ m4. Therefore &+ dg + &
is a degree one map from /79(’%) ® A to itself which reduces to d + dg modulo my, and it
squares to zero precisely because £ satisfies the Maurer-Cartan equation. Then the isomorphism
of functors is given as follows:

¢ € MC(AY HomG) (858 @ ma) o HO(AXEY® A, 9 + dg +€).
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Chapter 3
Semiregularity maps

This chapter concerns the semiregularity maps studied by Severi, Kodaira and Spencer,
Bloch, and Buchweitz and Flenner, and their relevance in the deformation theory of subvarieties
and coherent sheaves. In the first two sections, a brief history of the semiregularity maps of
Severi, Kodaira—Spencer and Bloch is outlined. The Atiyah class of a coherent sheaf is described
in Section 3.3, and some representatives of it for locally free sheaves are given. Finally, the
Buchweitz—Flenner semiregularity map is described in Section 3.4, and the annihilation of
obstructions is discussed in Section 3.5.

3.1 The semiregularity maps of Severi and Kodaira—Spencer

The notion of semiregularity was introduced in 1944 by Severi [71], who defined a curve C
on a surface S to be semiregular if the canonical linear system of the surface cuts out a complete
linear system on C. This can be rephrased in the following way: denoting by wg the canonical
sheaf of the surface S, a curve C on S is semiregular if the restriction map

T HO<S, ws) — HO(C, wg\(;)
is surjective. By Serre duality, this is equivalent to asking for the map
0s: HY(C,00(C)) = HY(C.Neys) — HA(S, Os),

the Severi semiregularity map, to be injective.

In 1959 Kodaira and Spencer [46] generalised Severi’s definition to compact submanifolds of
codimension 1 of a complex manifold. They defined a submanifold Z of X of codimension 1 to
be semiregular if the map

v: HY(X,0x(2)) — HY(Z,02(2)) = HY(Z, Ny x)

induced by the restriction Ox(Z) — Oz(Z) has zero image. In the above, 1z x denotes the
normal bundle of Z in X.
Consider the short exact sequence

obtained by tensoring the ideal sheaf sequence of Z C X with the invertible sheaf Ox(Z). From
the resulting long exact sequence in cohomology

- —— HYX,0x(2)) —— HY(Z,Nyx) 255, H*(X,0x) — -

one can see that the map v has image zero if and only if the Kodaira—Spencer semiregularity
map
oxs: HY(Z,Nyx) — H*(X,Ox)
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is injective.

The property of semiregularity was considered by Severi, Kodaira and Spencer in the context
of completeness of characteristic systems, for which we follow the notation of [43].

Let D be an effective locally principal divisor on a complete variety X over an algebraically
closed field K, and let @ be a flat family of deformations of D, i.e. the data of a variety W, a
point w € W and an effective divisor on X xg W, flat over W, whose fibre over w is equal to D.

Definition 3.1.1. The characteristic map of @ is the linear map
p: Ou(W) = HO(D, Npix)

and its characteristic system is the linear system on D cut out by the image of p.
The characteristic system is said to be complete if the map p is surjective.

For a rigorous definition of the characteristic map we refer to [46] or to [65, Lecture 22];
intuitively it is obtained in the following way: to every v € ©,,(WW) it is associated a canonical
map f: SpecKle]/(e2) — W, which induces a family of divisors D C X xk SpecK][e]/(¢?)
extending D, i.e., an element of HO(D,nD|X).

The connection between completeness of the characteristic system and smoothness of the
functor of embedded deformations of D C X is discussed for instance in [43, p. 305]. In particular,
when the parameter space W is smooth at w and the characteristic map p is surjective, the
functor of embedded deformations is smooth.

The main result of Severi’s work [71] was the proof of the theorem of completeness of
characteristic systems of complete continuous systems for semiregular curves on algebraic
surfaces, which therefore implies:

Theorem 3.1.2 (Severi). Every semiregular curve C' C S has unobstructed embedded deforma-
tions.

Kodaira and Spencer proved the theorem of completeness of characteristic systems of complete
continuous systems for semiregular submanifolds of codimension 1 of higher dimensional manifolds,
which states the existence of a flat family of deformations of a codimension 1 submanifold Z
whose characteristic system is complete and whose parameter space is smooth at the point
representing a semiregular Z. As before, from this follows the result:

Theorem 3.1.3 (Kodaira—Spencer). Every semiregular hypersurface has unobstructed embedded
deformations.

From Kodaira and Spencer’s proof of the above theorem, the following more general result,
not stated explicitly in [46], can be deduced; see in particular [46, proof of Theorem 1, p. 488]:

Theorem 3.1.4 (Kodaira—Spencer, implicit). The Kodaira—Spencer semiregularity map
oxs: HY(Z,Nyx) - H*(X,Ox)

annihilates every obstruction to embedded deformations.

3.2 The Bloch semiregularity map

In 1972 Bloch [12] constructed a semiregularity map for locally complete intersection sub-
schemes of a smooth complex projective variety, which reduces to Kodaira and Spencer’s
semiregularity map when the codimension is 1.

Let X be a smooth projective variety over C, let Z C X be a locally complete intersection of
codimension ¢, and denote by 17 x the normal bundle of Z in X. The Bloch semiregularity
map

op: HY(Z,Nyx) — H™HX,Q4),
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is constructed as follows, as described in [12, 16]. Let m := dim Z, so that dim X = m + ¢, and
denote by wx and wz be the canonical sheaves of X and Z respectively. Denote by J the ideal
sheaf of Z in X, and let d: 9/9? = 7’1%’( — Q%( ® Oz be the map induced by the second exact
sequence of Kéahler differentials, see [61, Theorem 58]. Then there is a natural pairing

- Id<A9~1g —
Qe x A9 17’1}%'( =S amtt < 0f oo, — 2 wy @0y,

or equivalently there exists a map
Q%ﬂ-l — Aq_an|X R wx.

By the adjunction formula wz = det 17 x ®wx and by the fact that Aq_an|X = n%'( ®@det Nz x,
this gives a map
Q§+l — n%'( X wy.

In cohomology we obtain
H™ Y X, Q™) — H" N2, N g5 @ wz),
and by Serre duality this gives a map
op: HY(Z,Nyx) — H™HX,Q4),

which is exactly the Bloch semiregularity map.
Like Severi and Kodaira—Spencer, Bloch defines Z C X to be semiregular if the semiregularity
map for Z is injective. His main result is:

Theorem 3.2.1 (Bloch). Every semiregular locally complete intersection subvariety has unob-
structed embedded deformations.

Theorem 3.2.2 (Bloch, implicit). The semiregularity map op annihilates every simple obstruc-
tion to embedded deformations of Z C X.

As in the case of Theorem 3.1.4, by implicit we mean that the above result is not stated
explicitly in [12], but can be inferred from the proof of Theorem 3.2.1.

As discussed in Section 2.3, simple obstructions do not in general generate the whole
obstruction space, but in characteristic zero their vanishing is enough to ensure smoothness,
see e.g. [58, 59]. Bloch’s proof is based on Hodge theory and the Gauss—Manin connection. The
restriction to simple obstructions is then natural in this context, as these tools can be used only
for smooth proper families of manifolds over certain bases, for instance smooth bases.

It is worth mentioning that Bloch’s semiregularity map has an application to the variational
Hodge conjecture. In fact, Bloch proved the variational Hodge conjecture for cycle classes of the
form [Z], for a semiregular locally complete intersection Z C X.

Theorem 3.2.3 (Bloch). Let f: X — S be a smooth projective morphism with S smooth,
connected of finite type over C. Let 0 € S and let z € T'(S, RZPfiﬂX/S)) be a horizontal section

of the de Rham cohomology. Suppose zp = z|x, € HépR(Xo, C) is algebraic, representing a local
complete intersection Zy C X which is semiregular in Xy. Then z; = z|x, is algebraic for all
seSs.

3.3 The Atiyah class

The Atiyah class of a coherent sheaf of ©x-modules was introduced by Atiyah in 1957 [3]
and is defined as follows. Let F be a coherent sheaf on a smooth projective variety X over C,
and consider the Atiyah sequence

0 —— F0k — JX(F) — F —— 0, (3.3.1)
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where the sheaf J)1< (F) of 1-jets or principal parts of F is defined as a sheaf of C-modules as
JY(F)=F & F @ Ok, with Ox-action given by

f-(s,0)=(fs,fo+s@df) fE€Ox, s€F, ccF 0.

The map F ® QY — J%(F) is given by the inclusion iz(c) = (0, 0), while the map J%(F) = F
is given by pi(s,o) = s.

Definition 3.3.1. The Atiyah class At(F) € Exty (F,F @ Q%) of the coherent sheaf F is the
extension class of the short exact sequence (3.3.1).

Denote by d the universal derivation d: Ox — Qﬁ(

Definition 3.3.2. A global algebraic connection on a coherent sheaf & is a C-linear map of
sheaves
V:F - Fo0k%

satisfying
V(fe)=exdf + fV(e), Vfe€Ox,ecH.

One can easily see that the Atiyah sequence splits if and only if there exists a global algebraic
connection on a &. In fact, the sequence splits if and only if there exists a morphism of sheaves
t: F — JYF) such that pit = Idy. Then ¢ is of the form Idy +u, with Idy: F — F and
u:F = F20%,

(1dy +u)(fs) = (fs,u(fs)) = f - (s,u(s)) = (fs, fu(s) + s @ df), VfeOx, se,

and u is exactly an algebraic connection on F. Hence the Atiyah class of F is the obstruction to
the existence of a global algebraic connection on F.

The Atiyah class can be constructed more generally for any object E in the bounded derived
category of coherent sheaves D(X). Denoting by J the ideal sheaf of the diagonal A: X — X x X
the ideal sheaf short exact sequence

0 — 9 —— Oxxx — Af@x —— 0
induces the short exact sequence

e: 0 —— 9/92 —— Oxxx/9? —— A@Qx —— 0, (3.3.2)

where there is an isomorphism 4 /J 2 A@%(. Denoting by p,q: X x X — X the two projections
and by ®x(FE) = Rp(fK @b ¢"F) the Fourier-Mukai transform with kernel X € D(X x X), the
Atiyah class of E is given by

At(E) = [®.(F)] = [Rpcfe @ ¢"B)] € Extk (B, E ® 0%). (3.3.3)
When E = ¥ is a coherent sheaf, the exact sequence (3.3.2) gives rise to an exact sequence
D (F): 0 ——= Ppgr (F) — Poyny/o2(F) — Pagy(F) — 0,

and using the derived projection formula for the map A: X — X x X and the fact that As
an exact functor,

bpqr (F) = RoctA 9% @ ¢'F) = RoBAHNY @ LAY'S) = 0k 0 7,
and analogously ®a g, (F) = F, so that

D (F): 0 —— FOOy —— Py, /2(F) — F —— 0.
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Equivalently, following [60], since the terms of the sequence (3.3.2) are supported on the
diagonal one may consider it as a sequence of sheaves of Ox — Ox-bimodules on X; the two
Ox-module structures coincide on /9% and AfQx but not on Oxxx/J2. The Atiyah class of
F can be thought as obtained by tensoring F with the exact sequence (3.3.2) using the left
O©x-module structure and considering it via the right ©x-module structure.

For a locally free sheaf of ©x-modules & on a complex manifold X the Atiyah class At(&)
HY(X, #omo, (6,8) ® Q%) is the obstruction to the existence of a holomorphic connection and
it is represented by cohomology class of the (1,1) component of the curvature of any connection
of type (1,0) on &.

Denote by AR? the sheaf of differential forms of type (p, ¢), by A%9(&) the sheaf of differential
forms of type (p, ¢) with coefficients in &, and by AK? and A%?(8) their respective global sections.
Denote by d: A )lfj—> A )I(E'l the de Rham differential and by 0 both the Dolbeault differential
0: ﬁ?—) ﬂ)l(jEll and the operator 9: ﬂ%) — ﬂ)?El(é’).

Definition 3.3.3. Let & be a locally free sheaf of ©x-modules on a complex manifold X.

1. A holomorphic connection on & is a C-linear map of sheaves V: § — Q% ® & such that

V(fs)=fV(s)+df ®s, Vse€ég, feOx.

2. A connection of type (1,0) on &, also called a connection compatible with the holomorphic
structure, is a C-linear sheaf homomorphism

D: A%() = A%(8) = AY°(8) & AR (€)
such that the Leibniz rule
D(fs)=d(f)s+ [D(s), f€A%, s€AX(E)
holds and such that
D=D"+3, DW. %) — a3°©), 9:.a%°8) = A% ).

Notice that a holomorphic connection on & is the same as an algebraic connection on &
(Definition 3.3.2), the name just changes depending on the complex or algebraic situation.
Therefore holomorphic connections exist if and only if the Atiyah sequence of (3.3.1) splits. On
the other hand, by a partitions of unity argument it is easy to see that connections of type (1,0)
always exist.

Lemma 3.3.4. A representative of the Atiyah class for a locally free sheaf of ©x-modules on a
complex manifold is given by the cohomology class of the component of type (1,1) of the curvature
of a connection of type (1,0).

Proof. Let D be a connection of type (1,0) on &, then D — 9 = D19 restricts to a holomorphic
connection & — Q%( ® & if and only if it sends holomorphic sections to holomorphic sections, i.e.,
if and only if [0, D — 0] = [0, D] = 0. The component of type (1,1) of the curvature

R=D?>=((D-9)+08)?%=(D—-08)?2+[0,D -] € A3°(#omo, (8,8)) & A (#Home, (&, 8))

is [0, D — 3] = [0, D]. This is trivial in the cohomology of the complex (Aﬁgl?o"fom(gx (§,8)),0)
if and only if there exists ¢ € A%éo(é‘ﬁom@x (&,8) such that [0,D — ¢] = 0, so that D0 — ¢
restricts to a holomorphic connection on &.
Vice versa, if there exists a holomorphic connection V: & — Q%( ® &, it can be extended to a
connection of type (1,0)
V+0: 2%8) — a% &),

which is such that [0,V + 9] = [0, 0] = 0, because V sends holomorphic sections to holomorphic
sections. ]
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The Chern connection is an example of connection of type (1,0) and its curvature is only
of type (1, 1), so the cohomology class of the curvature of the Chern connection represents the
Atiyah class, see e.g. [38, 4.3.10].

The above construction can be generalised to a finite complex of locally free sheaves by
defining connections of type (1,0) for finite complexes of locally free sheaves; this a key ingredient
of Chapter 4.

It is possible to give a representative of At(&) in Cech cohomology, for a locally free sheaf &
on a smooth separated scheme X of finite type over the field K.

Lemma 3.3.5. A representative of the Atiyah class of a locally free sheaf is given by the Cech
cocycle {ciyi, = Viglu,;, — Viilu,,:, }» Where V; are local algebraic connections.

Proof. Let U = {U;} be a an affine open cover of X such that the restriction of the Atiyah
sequence

splits for every i, and let V;: 8|y, = E® Q%\Ul be local algebraic connections. In the Cech
complex

v,

(CHU, Fome, (€, 6 @ O)),d)
one can define the cocycle
o€ Cl(u’ Homoy (6, 6® Q%())a Qigiy = Vig |Ui0i1 - Vi |Ui07,‘1‘

Its cohomology class is trivial if and only if there exists a global algebraic connection on &: in
fact, « = dp if and only if {V; — 3;} glue to a global algebraic connection. O

It is possible to generalise this construction to a finite complex of locally free sheaves; this
is done in [39, Section 10] and will be used in Lemma 4.5.4 to prove the equivalence with our
definition of Atiyah class.

When X is smooth, every coherent sheaf & has locally finite projective dimension and there
exist trace maps
TrP: Exth (F,F @ Q%) — HP(X,Q%), Vp,q>0.

Combining the Yoneda product with the exterior product on Q)'(:'one obtains products
< Extd(F,F @ 0%) x Ext§(F,F @ 0%) = ExtE(F, F @ Q%9),
which allow to construct powers of the Atiyah class
AtP(F) € Exth (F,F @ Q)
and then the exponential of the Atiyah class, which is called the Atiyah—Chern character
AU =% w e [[ Extk (7,5 @ O%).
p=0 P p=0

Theorem 3.3.6 (Atiyah [3], Illusie [42]). For the Chern character of a coherent sheaf &

ch(F) = Tr(e” A7) e T] HP (X, 0%).

p=0
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3.4 The Buchweitz—Flenner semiregularity map
The third generalisation of the semiregularity map is due to Buchweitz and Flenner in 1999
[15, 16], and it is defined not for a subvariety but more generally for a coherent sheaf.

Definition 3.4.1. Let F be a coherent sheaf on a smooth projective variety X, the Buchweitz—
Flenner semiregularity map of F is defined as

o Ext3(F,F) —» [[ H2(X.Q%), o(c) = Te(e A% = o),

p=0

It can be convenient to write the map as the sum of its components:

o= Zap: Ext3 (F,%) — H HPY2(X,0%), o, Exti(F,F) — HP3(X,0%),

p=0 p=0

o =1 (AP ")

It is not immediate to see how the Buchweitz—Flenner semiregularity map generalises the
Bloch semiregularity map op; if Z C X has codimension ¢, Buchweitz and Flenner proved that
op is the composition of the (¢ — 1)st component of the semiregularity map for the sheaf Oy,

Og—1" EXt%{(@Z, Oz) — Hq+1(X7 Qg(_l)’

and the natural map H'(Z, Mz x) — Ext3 (O, Oy).
The map HY(Z,Nzx) — Ext3 (Oz,©z) can be obtained by considering the extension
defined by the first fundamental neighbourhood of Z in X

z® . 0 9/92 Ox /92 Oz 0,

where J denotes the ideal sheaf of Z C X. This induces a map Ext% (9/9%,Qz) — Ext%(Qz, Oy)
which can be composed with the forgetful map Ext}(9/9%, Q) — Ext(9/92, Oy).

The map HY(Z, Nz x) — Ext3(Ogz,©z) also has an interpretation in deformation theory,
as the obstruction map associated to the forgetful natural transformation from the functor of
embedded deformations of Z inside X to the functor of deformations of @z as an Ox-module.
As recalled before, see e.g. [35], the tangent space of the functor of embedded deformations
of Z inside X is isomorphic to H(Z, N 71x), and there exists a complete obstruction theory
with values in H(Z, N 7x ). For the functor of deformations of a coherent sheaf of ©x-modules
F, the tangent space is given by Ext%( (F,5F) and there exists a complete obstruction theory
with values in Ext% (F, %), see Corollary 2.5.10. The map H(Z, Ngix) — Ext% (Qz,Oy) is the

obstruction map of the morphism of deformation theories Hilb)Z( — Defo,,.

Buchweitz and Flenner’s main result in deformation theory is the following;:

Theorem 3.4.2 ([16]). The semiregularity map of a coherent sheaf & on a smooth projective
variety X
o: BExt3(F,F) — H HP*2(X,Q8.), o(c) = Tr(e” AU = ¢)
p=0
annihilates all simple obstructions to deformations of F. In particular if o is injective, then F
has unobstructed deformations.

As remarked above, in characteristic zero the vanishing of the simple obstructions is enough
to ensure smoothness, see Remark 2.3.10.

Like Bloch’s, Buchweitz—Flenner’s semiregularity map has an application to the variational
Hodge conjecture. Buchweitz and Flenner call a coherent sheaf F k-semiregular if the component
o of the semiregularity map is injective. They proved the variational Hodge conjecture for cycles
that are representable as the (k + 1)st component of the Chern character of a k-semiregular
sheaf 7.
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3.5 Annihilation of all obstructions

Buchweitz and Flenner left unanswered the question of whether their semiregularity map
annihilates all obstructions to deformations of a coherent sheaf. The strategy they suggested in
[16] to prove this is to realise each component of the semiregularity map as the obstruction map
of a morphism of deformation theories, the target one unobstructed, which would automatically
imply the annihilation of all obstructions:

“Ideally, the semiregularity map, say, for a module & should correspond to a morphism
between two deformation theories so that it maps the obstruction space Ext% (%, %)
into the obstruction space of some other deformation theory. It seems quite clear that
this second deformation theory should be given in terms of the intermediate Jacobians,
or, more naturally, by Deligne cohomology.”

This strategy can be employed for the Oth component of the semiregularity map, which is
simply the trace map, recovering a result by Artamkin [2] and Mukai [64]:

Theorem 3.5.1 (Artamkin). Let & be a coherent sheaf on a complex projective manifold X.
Then the Oth semiregularity map (=trace) oo = Tr?: Ext?(F,¥) — H?(X,Ox) annihilates all
obstructions to deformations of 5.

This map og has a natural interpretation from the point of view of deformation theory [41].
Let F be a coherent sheaf on a smooth projective variety X over an algebraically closed field of
characteristic 0, so that in particular & admits a finite locally free resolution. Consider the trace
map Tr: #omo, (F,F) — Oy, and the induced maps in hypercohomology

Tr': Extiy(F,F) — H(X,Ox), i>0,

see e.g. [2, 44]. A deformation of the sheaf F naturally induces a deformation of the determinant
line bundle det F, hence there exists a morphism of deformation functors Defy — Defget 5. The
tangent and obstructions spaces to Defy are Exty (¥, F) and Ext3 (¥, F) respectively, while
the tangent and obstruction spaces to Defget 5 are H(X, Ox) and H?(X, Ox) respectively. The
maps Tr! and Tr? have an interpretation in deformation theory: they are induced on tangent
and obstructions spaces by the morphism Defy — Defget#. In characteristic zero, the functor
Defget 7 is smooth (see e.g. [65, Lecture 25]) and hence by the argument outlined in Remark 2.4.8
the trace map Tr: Ext?(¥,7) — H?(X,Ox) annihilates all obstructions, and one recovers
Theorem 3.5.1.

When trying to prove that each higher component o of the semiregularity map is the
obstruction map of a morphism of deformation theories with unobstructed target, it is necessary
to identify such an unobstructed target. In the quoted text above, Buchweitz and Flenner suggest
that this should be an intermediate Jacobian or given by Deligne cohomology. This last strategy
is used by Pridham in [68] in the setting of derived algebraic geometry, where using as target an
analogue of Deligne cohomology defined in terms of cyclic homology, he proves the following;:

Theorem 3.5.2 (Pridham). For every coherent sheaf # on a complex projective manifold, the
semiregularity map o annihilates all obstructions.

On the other hand, Fiorenza and Manetti proved that the Abel-Jacobi map is the tangent
map of a morphism of deformation theories, where the target is an intermediate Jacobian
[26], and Tacono and Manetti proved that the Bloch semiregularity map for a locally complete
intersection subvariety with extendable normal bundle is the obstruction map of a morphism
of deformation theories with target an intermediate Jacobian, and hence that it annihilates all
obstructions to embedded deformations [40], see also [57].
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Denoting by Q)S(p ~! the truncated de Rham complex, the tangent space and obstruction

space to the p-th intermediate Jacobian JP(X) are given by the vector spaces
HPPH(X, Ox 205 - S0 O = WX, QR 2(p — 1))

and
H2(X, O 2an, ... dan, o=ty o H2(x, 03P [2(p — 1))

respectively. Since the k-th component of the Buchweitz—Flenner semiregularity has target
HM*2(X, 0k ) = H2(X, Q% [k]), it makes sense to compose it with the map induced in hyperco-
homology by the inclusion of complexes 1 : Q% [k] — Q)S(k[%:]:

e H2(X, Q% k) — H3(X, Q57 [2K)).

Notice that when the Hodge-de Rham spectral sequence of X degenerates as E7 (for instance
when X is a complex projective manifold) this map is injective, and hence o} and ;o) have the
same kernel. It is convenient to call ¢, the k-th component of the modified Buchweitz—Flenner
semiregularity map:

wog: BExt3(F, ) 25 H2(X, 0% ) = H2(X, Q% [k]) 25 H2(X, QFF[2k]).

Choosing the approach to deformation theory via DG-Lie algebras and Leo-morphisms,
as described in Section 2.4, to show that each component of the modified Buchweitz—Flenner
semiregularity map is the obstruction map of a morphism of deformation theories, we need to
show that there exists an Loo morphism between DG-Lie algebras that induces each component
of the modified semiregularity map in cohomology. If the DG-Lie algebra that is the target of
this Lo, morphism is abelian, i.e. it has trivial bracket, then its associated deformation functor
is unobstructed and we obtain automatically that each component of the semiregularity map
annihilates all obstructions to deformations of a coherent sheaf. This is the strategy that will be
employed in the next chapter.
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Chapter 4
Lo liftings of semiregularity maps

This chapter, based on the paper [4], describes the construction of Leo liftings of each
component of the Buchweitz—Flenner semiregularity map for coherent sheaves on complex
manifolds. This is done by introducing the notion of Chern—Simons classes for curved DG-pairs,
and by proving that a particular case of this general construction, where the curved DG-pair
is provided by a connection of type (1,0) on a finite complex of locally free sheaves, provides
canonical Leo liftings of the components of the Buchweitz—Flenner semiregularity map. In view
of the discussion in Section 3.5, this implies the fact that the Buchweitz—Flenner semiregularity
map annihilates all obstructions to deformations of a coherent sheaf.

In Section 4.1 curved DG-pairs and their associated Atiyah classes and semiregularity maps
are described. Chern—Simons classes of curved DG-algebras are introduced in Section 4.2, while
the proof of the main result is contained in Section 4.3. Section 4.4 contains explicit formulas for
the components of the Lo, morphisms in the case the curved DG-pair is split. The geometric
application is contained in Section 4.5, where a notion of connection of type (1,0) on a finite
complex of locally free sheaves is introduced. This gives rise to a curved DG-pair, whose associated
Atiyah class is the usual Atiyah class of Section 3.3. This particular case of the construction
allows to construct Leo liftings of the components of the Buchweitz—Flenner semiregularity map,
and finally Section 4.5 contains our main result regarding deformation theory.

Finally, in Section 4.6, which is based on [50], we give an alternative way of lifting the first
component of the semiregularity map, based on the properties of cyclic forms.

4.1 Atiyah classes and semiregularity maps for curved DG-pairs

Let A be a graded associative algebra, as in Definition 1.1.8. For every vector subspace
E C A we shall denote by E®)| k > 1, the linear span of all the products e; - - - e, with e¢; € E
for every i, and by EA the linear span of all the products ea, with e € E and a € A.

Definition 4.1.1. A curved DG-algebra is the datum (A4,d, -, R) of a graded associative
algebra (A4,-) together with a degree one derivation d: A™+ A™! and a degree two element
R € A2, called curvature, such that

d(R) =0, d?(z)=[R,2]=R-z—z-R VYzecA

For notational simplicity we shall write (A, d, R) in place of (4, d, -, R) when the product - is
clear from the context. We denote by [A, A] C A the linear span of all the graded commutators
[a,b] = ab — (—1)%ba. Following [30] we call A/[A, A] the cyclic space of A and we denote by

tr: A — A/[A, A]

the quotient map. Notice that [A, A] is a homogeneous Lie ideal and then the cyclic space inherits
a natural structure of DG-Lie algebra with trivial bracket.
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Definition 4.1.2. Let A = (A,d, R) be a curved DG-algebra. A curved Lie ideal in A is a
homogeneous Lie ideal I C A such that d(I) C I and R € I.

A curved DG-pair is the data (A, I) of a curved DG-algebra A equipped with a curved
Lie ideal I.

In particular, for every curved DG-pair (A, I), the quotient A/I is a (non-curved) DG-Lie
algebra and, for every k > 1, the subset I A is an associative bilateral ideal of A.

Example 4.1.3. It is useful to briefly anticipate from Section 4.5 the following paradigmatic
geometric example of curved DG-pair. Let & be a holomorphic vector bundle on a complex
manifold X equipped with a connection of type (1,0) as in Definition 3.3.3, and denote by
R e A%gl (Endo, (8)) ® A%éO(GHd(QX (8)) the curvature. Denoting by d the induced connection
on the associated bundle &ndo, (&), we have that (A)I%‘]Pénd(gx(é)),d, R) is a curved DG-
algebra and I = A;o’ %nd(gx (8)) is a curved Lie ideal. In this case the DG-Lie algebra
A/l = Ag&%nd@x (&€)) is the Dolbeault resolution of ndo, (€) and controls the deformations
of the vector bundle &, see Proposition 2.5.18 or [28]. Notice that I is also an associative ideal
and I® A = 1) = A)E(k’ I%“S?”Lcl@)x((%’)) for every k > 0.

The classical theory of Atiyah classes and the above example suggest the introduction of the
following objects associated to a curved DG-pair.

Definition 4.1.4. Let A = (A,d, R) be a curved DG-algebra and I C A a curved Lie ideal.

I+194A
The Atiyah cocycle of the pair (A, ) is the class of R in the DG-vector space }_(Zi)A The
Atiyah class of the pair (A, I) is the cohomology class of the Atiyah cocycle:
I+1®A
_ 2
At(A,I)=[R] € H (I(Z)A

Definition 4.1.5. Let A = (A,d, R) be a curved DG-algebra and I C A a curved Lie ideal. For
every integer k > 0, we introduce the morphism of complexes of vector spaces

. 1 k
OV T 7 A A g 2R or(e) = ().

Notice that alf depends only on the Atiyah cocycle of the pair (A, I), while the induced map
in cohomology

A A 1
k. 2k+ k _ k
oy ch I) — H Ef[ EwIGaY ) Ul(x)f—k! tr(At(A4,I)"z),

depends only on the Atiyah class.
The semiregularity map of the curved DG-pair (A, I) is defined as the degree 2 component

A A 1
k. 2 2k+2 k _ k
ot H <I> — H <[A’ A +J(k+1>A>’ ot (z) = o tr(At(A, I)"z),

of the above map.

Remark 4.1.6. The name semiregularity map is clearly motivated by the analogous definition by
Buchweitz and Flenner [16], see Definition 3.4.1. More precisely, every morphism o} factors as
the composition of two morphisms of differential graded vector spaces

A 7 IMAL A A A f 1

R k
I [A, A] + I*+D) A — (A4 A 1 [6+D 47 m(x) = 0 tr(RFz),

and the direct generalisation of Buchweitz—Flenner’s semiregularity maps should be the maps
induced by 7§ in the group H 2(A/I), up to signs. However, several geometric considerations
about Abel-Jacobi maps, see Section 3.5 and the introduction of [40], strongly suggest that,

from the point of view of deformation theory, the right objects to consider are the maps Ulf.
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Remark 4.1.7. For every o € A' one can consider the twisted derivation d, = d + [z, —] and an
easy computation shows that A, := (4,d,, R,) remains a curved DG-algebra with curvature
R, = R+ d(z) + 3[z,]. In particular, if € I then I is a curved Lie ideal also for A,, the
derivations d, d,, induce the same differential in A/I and A/[A, A], the difference R, — R is exact
in A/[A, A] and therefore the semiregularity maps of the pairs (A, I) and (4., ) induce the
same map in cohomology.

A
Since [A, A]+I**D A is a Lie ideal, the space

[A, A] + TG+ A
of DG-Lie algebra with trivial bracket and it is obvious that ¢{ is a morphism of DG-Lie algebras.
It is easy to see that in general U]f is not a morphism of DG-Lie algebras for &k > 0. It is therefore
natural to ask whether O':If is the linear component of an Lo, morphism.

In Section 4.3 we prove the following result:

Theorem 4.1.8 (=Corollary 4.3.10). Let I be a curved Lie ideal of a curved DG-algebra (A, d, R)
and denote by 7: A — A/I the projection. Then to every k£ > 0 and every morphism of graded
vector spaces s: A/I — A such that ws = Id; it is canonically associated an Lo morphism

L A A
g . —
T [A A +1G+D4

[2K] inherits from A a structure

[2F]

with linear component the map o¥.

The proof of the above theorem is constructive and an explicit description of the higher
components of o¥ is possible but rather cumbersome for general sections s. In Section 4.4
we study the higher components of the Lo morphism of Theorem 4.1.8 under the additional
assumption that s is a morphism of graded Lie algebras. This hypothesis is satisfied in most of
the applications and has the effect of a dramatic simplification of the algebraic and combinatorial
aspects.

Definition 4.1.9 ([69]). A trace map on a curved DG-algebra (A, d, R) is the data of a complex of
vector spaces (C,9) and a morphism of graded vector spaces Tr: A — C such that Trod = §j o Tr
and Tr([A4, A]) = 0.

Thus every trace map Tr: A — C factors to a morphism of abelian DG-Lie algebras
A/[A, A] — C and we have the following immediate consequence of the above theorem.

Corollary 4.1.10. Let [ be a curved Lie ideal of a curved DG-algebra (A, d, R) and let Tr: A — C
be a trace map. Then for every k > 0 there exists an Lo, morphism
koA ¢

— 2
T Ty 2h

n

with linear component
A . C
T T e a)
We then have a clear application of the above results to deformation theory. In the situation
of Corollary 4.1.10, denote for simplicity by Cj the quotient complex Cy := C/ Tr(I**D A), and

suppose that a given deformation problem is controlled by the DG-Lie algebra A/I. Then the
Leo morphism 7n* induces a morphism of deformation functors

24, nk(e) = o Te(RN)

nk: DefA/I — DefC’k[Zk]
that at the level of tangent and obstruction spaces gives the maps
A . 1
HU(A/I) = H?**(Cy),  z— gTr(At(A,I)kx), i=1,2.

Since C[2k]| is abelian, the deformation functor Defe, oy is unobstructed and therefore the
above map H2(A/I) — H?**2(C},) annihilates the obstructions, see Remark 2.4.8.
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4.2 Curved DG-algebras and Chern—Simons classes

The general theory of Chern—Simons classes for differential graded associative algebras [69]
extends naturally to the curved case.

Let (A, d, R) be a curved DG-algebra. Then for every x € A! we have the twisted curved
DG-algebra A, := (A, dy, R;), where

dy(a) = d(a) + [v,a], Ry =R+d(z) +2° = R+d(xz) + S[v,].
Let t be a central indeterminate of degree 0, and consider the family of polynomials
k k
P =3 Ri'aRy =D (R+td(z) +t°2°) z(R + td(z) + t22®)F " € A[Y],
i=1 =1

with k > 0 an integer and x € Al

Lemma 4.2.1. In the above notation, for every & > 0 and every = € A we have

=d (/()1P(t)§dt> + {x/ol tP(t)’;dt] .

Proof. In the graded algebra A[t] consider the derivations d; = % and diy = d + [tz, —]. Since
RF — Rk = fol Or(RE,)dt it is sufficient to prove that

O(RE,) = d(P(t)5) + [2,tP(t);] = da(P(1)7) - (4.2.1)
Since d?(z) = [R, 7], d(2?) = 3d[z, 2] = [d(z), ], [#%, 2] = 0, we have
diz(Riz) = d(R + td(z) + t22%) + [tz, R + td(x) + t?2?] = td*(x) + t?d(2?) — t[R + td(z),z] = 0

and
O1(Riz) = Op(R + td(x) + t22?) = d(x) + 2ta? = dy, ().
By the Leibniz formula, for every k > 0 we have

dyo (P de (Riz*=RET) = ZR Ll (z)RET = ZR 19y(Rig)R¥ = 9,(RF).

O

Denote by tr: A — A/[A, A] the projection; this is the universal trace of A in the sense
that every trace map A — C is induced from tr by a unique morphism of DG-vector spaces

A/[A, A] — C. For notational simplicity we denote by a Y b the fact that tr(a) = tr(d).
Following the theory of Chern classes, we can define the (universal) Chern character

A
ch(A) = k;ch(A)k, ch(A)y € H? <[A,A]) ,

1
where ch(A), is the cohomology class of o tr(R*).

Similarly, following Chern—Simons’ théory [18, 30, 69], it also makes sense to define the
(universal) Chern—Simons class

Ccs = Z CS2k—1, CS2k—1": Al — (A/[A, A])Zk_l,
k>0

A \2k-1
csok—1(x) _1 tr/R :cdt€<[AA}) , kZL:z:eAl?

where as before Ry, := R + td(z) + t?2% t € K, z € A, denotes the curvature of the twisted
curved DG-algebra Ay, := (A, diy, Riz)-
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Lemma 4.2.2. The Chern character is invariant under twisting: more precisely for every z € Al
and every k > 1 we have

d(cspr—1(z)) = %tr (RF — RF).

Proof. Immediate consequence of Lemma 4.2.1 since
Rk‘ l Z R’L 1 Rk‘ 7

and therefore
CS2k— 1 ftr / P
O

For the explicit computations in the following Section 4.4, it will be useful to introduce the
elements

1 1 1t
W(z)k+t = E/ RE xdt = E/ (R +td(z) + t?2®)*xdt € A% zec Al k>0, (4.2.2)
- J0O - JO

as a representative set of liftings to A of Chern—Simons classes.

4.3 Convolution algebras and L, liftings of o}

Our next step is to prove that curved DG-algebras are preserved by taking convolution with
the bar construction of a DG-Lie algebra.

For a graded vector space V' we shall denote by V1] the same vector space with the degrees
shifted by —1. More precisely, if v € V' is homogenous of degree v, then the degree of v in V1]
is 7 — 1. Unless otherwise specified, for any v € V[1] we shall denote by T the degree of v as an
element of V.

In the following we adopt the following sign convention for the décalage isomorphisms: given
a pair of graded vector spaces V, W, for every i > 0, k € Z we consider the isomorphisms:

déc: Homp (VW) — Hom’€+Z YV ),

i _ 4.3.1
déc(f)(v1,...,v;) = (—1)k+’_l+zs=1(z_s)(”‘*_l)f(vl, Ce V). ( )

In particular, for ¢ = 1 and k = 0 the décalage isomorphism is the identity.

Let (L,d,[—, —]) be a DG-Lie algebra. Then there exists a counital DG-coalgebra structure
on the symmetric coalgebra S(L[1]), where the differential Q: S(L[1]) — S(L[1]) is given in
Taylor coefficients ¢;: L[1] %3+ L[1] by

q(z) = —0(z), q(z,y) = (—1)§[x,y], ¢ =0 for i #1,2,

where T denotes the degree of x in L, see also Definition 1.2.13. In other words ¢; and ¢, are the
images of @ and [—, —] under the décalage isomorphisms (4.3.1).

More precisely, see e.g. [48, 59], @ decomposes as Q = Qo + Q1, where Qo, Q1 : S(L[1]) —
S(L[1]) are the coderivations defined by Qo(1) = @1(1) =0 and

n

Qo(z1® O xy) =Y (-1 Ty 0 0 0(2) @ O T,
i=1

Quz10--0xp) = Y e(M)(=1)" D[y Tr2)] © Tr(z) O O Ty,
7 [8(2,n—2)
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for every x1,...,z, € L[1], n > 1, where we denote by S(i,n — i) the set of (i,n — i)-shuffles
(Definition 1.2.9), i.e., permutations 7 € S,, such that 7(1) < --- < 7(i) and 7(i+1) < --- < 7(n),
and by e(7) the symmetric Koszul sign defined by the identity z,(1y©- - -Ox,(,y = (7) 210 - - Oz,
in the symmetric power L[1]™'see Definition 1.2.8.

In particular, for every x,y € L[1] we have

Qx) = -0(z), Qzoy)=-3r)oy— (=)o d(y)+ (-1)7[z,y].
Notice also that Q1(L[1]) = 0, Qo(L[1]"'c L[1]%4nd Q1(L[1]"'c L[1] %= for every i.
Given a curved DG algebra (A, d, R), we shall denote by
C(L, A); := Home(L[1]4),  C(L, 4) = @ C(L, A); C Homi{S(L[1]), A).
=0

The unshuffle coproduct A: S(L[1]) — S(L[1]) ®hnd the algebra product m: A1 A induce
an associative product f x g :=m(f ® g)A on the space C(L, A), called the convolution product.
More explicitly, if f € C(L, A); and g € C(L, A)j, then f g € C(L, A)i+; is defined by
(fxg)(x1,. .. @itj)
= > (M) EOTTIGOI f (arqy, r) 9 [Tty T
S0, 5) (4.3.2)

e\t GET+ T —i
= Z Z'('j|)(_1)g(x7—(l>+ MO f(xr(1)7 B xT(i))g(xT(i+l)a cee ax'r(i+j))'
TS
In particular, for a,b € A = HomKE(L[l] ED;'A) and f € HomKE(L[l] D:,'A) we have

axb= ab, ax f=af, la, flu(z) = [a, f(x)],

where [—, —], is the graded commutator of x.
On the algebra C(L, A) we can define the degree one derivations

80, 01,6 € Hom (C(L, A), C(L, A))

induced by the derivation d on A and by the coderivations Qq, Q1,@ on S(L[1]) respectively.
Namely, given f € C(L, A), we put
do(f) =df = (=1 fQo,  1(f) = (DI fQ1,  6(f) = bo(f) +01(f) = df — (1) fQ.
Notice that do(C(L, A);) C C(L, A); and 61(C(L, A);) C C(L, A);+1 for every i.

Defining a weight gradation in C(L, A) by setting the elements in C(L, A); of weight i we
have that § = dp + d1 is precisely the weight decomposition of the derivation J.

More explicitly, given f € C(L,A);, then do(f) € C(L,A); and 61(f) € C(L, A);+1 are
defined by:

(50(f)($1, N ,l’i) = df(xl, ceey xz)
+ (_1)?1?(51‘1’ s 7xi) +ooet (_1)?+H+m+m+i_lf(xlv s >5xi)a

S1(f) (@1, mie) = (D)7 ST (@) (=D)TO f([2ray: Tr@))s Tr@)s - - Trry)-
7 [8(2,i—1)

Finally, we continue to denote by R € C(L, A)g the degree two element corresponding to the
curvature R € A under the isomorphism

C(L, A)o := Homyc{ L[1]*4) = Homic(K, 4) = A.

(in other words, R(1) = R and R(x1,...,x;) = 0 whenever i > 0).
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Proposition 4.3.1. In the above situation, the data (C(L, A),d, x, R) is a curved DG-algebra.

Proof. Using the fact that d is an algebra derivation and Qg, @1, Q) are coalgebra coderivations,
it is easy to check that &g, d1, 0 are algebra derivations with respect to the convolution product
*. For instance, given f € C(L,A); and g € C(L, A); we have

5(f * 9) = dm(f © )& = (1) *Tm(f © 9)AQ
=m(d@ld+Id@d)(f ® g)A — (—1)*Im(f ® g)(Q ® Id+1d ®Q)A
=m(df @ g+ (1) f @ dg)A — (=1 Tm((-1)7fQ @ g + f ® gQ)A
=m(0(f) ® g+ (1)) f @ 3(9)A = 3(f) x g+ (~1)! f % 6(g).
Moreover, using the fact that d?> = [R, —] and Q3§ = Q% = Q? = 0, one readily checks that
§(R) = do(R) =0, 62 =3001+0100=0, 62 =(5)?=[R, s
O

Definition 4.3.2. In the above notation, we shall call (C(L, A),d,x, R) the convolution
(curved DG) algebra associated with the curved DG-algebra A and the DG-Lie algebra L.

Definition 4.3.3. A morphism of curved DG-algebras is a morphism of graded algebras that
commutes with the derivations and and curvatures:

fi(Ax,di, R1) — (Az,dz, Rp), fdi=dof, f(R1)= R>.

Remark 4.3.4. If f: A1 — Ay is a morphism of curved DG-algebras then the induced map
C(L,A;) — C(L, Ay) is a morphism of curved DG-algebras. Similarly, if M — L is a morphism
of DG-Lie algebras (or, more in general, an Lo morphism), then the induced map C(L, A) —
C(M, A) is a morphism of curved DG-algebras.

Remark 4.3.5. Given a degree one element x € L' = L[1]°, there is an associated morphism of
graded associative algebras

evy: C(L,A) — A,
feCL,A); — evy(f):==f(z,...,x).

In fact, if f € C(L, A); and g € C(L, A);, then

1 _ b (it
evy (fxg) = (Z,_i_j)!(f*g)(x,...,x)f (i—i—j)!( ; )f(x,...,x)g(m,...,m)
:;!f(m,...,m);!g(x,...,x):ev$(f)evz(g)_

It is also clear that ev, sends the curvature R € C(L, A)p to the curvature R € A2.
In general ev, is not a morphism of curved DG algebras, but it is so when 2z € MC(L). In
fact if 9z + [x,2]/2 = 0, then for every f € C(L, A); we have:

eve (6(1)) = 00z, . 7) + j)w)(a:,...,x)

(z
7

= )+

=devy(f).

For every graded subspace E C A, we denote by C(L, E) = @, Homc{L[1] ) C C(L, A).
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Lemma 4.3.6. If I is a curved Lie ideal of A, then C(L,I) is a curved Lie ideal of C(L, A).
Moreover C(L, 1)) C(L, A) c C(L,I%® A) for every k, and [C(L, A), C(L, A)] c C(L, [A, A]).

Proof. Immediate from the definitions and from the fact that, since the unshuffle coproduct A
is graded cocommutative, given f,g € C(L, A), every element in the image of [f,¢g] is a linear
combination of elements of type

m(f®©g—(~1)79g® f)z@y+ (~1)T DTy g 4)
= (=17 D[f(2), g(y)] + (1) FT DT D [£(y), g(2)].
O

Let (A, d, R) be a curved DG-algebra with a curved Lie ideal I C A and denote by m: A — A/I
the projection.

Given a DG-Lie algebra L = (L, 9, [—, —|) together with a morphism of graded vector spaces
s: L — A, the latter can be seen as an element of degree +1 in C(L, A); = Hom(L[1], A), and
then it gives a sequence of Chern—Simons forms

1
W(s)k+t = ;‘/0 (R+15(s) +t?°sxs)F xsdt € C(L, A)**** = HomZ**1(S(L[1]),4), k>0.

Notice that

2k+1

k
W(s)F*t = 3" W(s)F™,  with W(s)F** € HomZ™(L[1] " 4) and W (s);*! = Rs
i=1

SR
(4.3.3)

Lemma 4.3.7. In the above situation, let s: L — A be a morphism of graded vector spaces such
that the composition 7s: L — A/I is a morphism of DG-Lie algebras. Then §(s) +sxs € C(L,I)
and

W (s)k*t e [C(L, A), C(L, A)] + C(L, )Y vk > 0.

Moreover, 6(s) + s+ s € C(L,I); if and only if s is a morphism of graded Lie algebras.
Proof. By Lemma 4.2.2

1
(k+1)!

Since R € C(L,I), it is sufficient to show that d(s) + s+ s belongs to C(L, I).
Since do(s) € C(L, A)1 and 1(s),s xs € C(L, A)2, the condition §(s) +s*s € C(L,I) is
equivalent to:

S(W(s)F+1) & (R + 6(s) + s % s)F*1 — RF+1Y.

moos(b1) =0, mo15(b1,b2) + m(s*s)(b1,b2) =0, Vby,bp € L.
By definition, dos(b1) = ds(b1) — s(9b1), so that
7d0s(by) = mds(by) — ws(Oby) = dms(by) — wsdby = 0.
On the other hand,
(5% 8) (b1, bp) = m(s ® 8)(by @ by + (—1)@ " DE"Dp, & p,)
(=) s(ba)s(b2) + (1) TDETIT s (1) s(by)
(—1)P 7 s(by), 5(b2)-
Since ms and 7 are morphisms of graded Lie algebras we have
wos(b,ba) = (=1)"*ms([ba, ba]) = (~1)" fs(ba). ms(ba)] = (~ 1) w[s(by), s(b2)]

The same computation shows that d1s + s x s = 0 if and only if s is a morphism of graded Lie
algebras. 0
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Remark 4.3.8. In fact, the above computations also prove the converse of the first part of
Lemma 4.3.7: namely, that for a morphism of graded vector spaces s: L — A we have §(s)+s*s €
C(L,I) if and only if the composition 7s is a morphism of DG-Lie algebras.

By Lemma 4.3.6 we have a natural morphism of differential graded vector spaces

C(L,A) A
[C(L. A), C(L. A)] + C(L, DL, 4) ~ Homk S(LI), (4, A] + 1(k+1>A)

0

and then, for every s € C(L, A)! and every k > 0, it is defined the element

6u(W (5)**1) € HomZ™ (S(L[l]), v +A1<k+1>,4)

that we can view as

A
[A, A] + IG+D A

0, (W (5)"*1) € Hom% (S(L[l]), 2k + 1]) .

Theorem 4.3.9. In the above situation, suppose that ws: L — A/I is a morphism of DG-Lie
algebras. Then 6, (W (s)**1) is the corestriction of an Lo, morphism

A

WG

with linear Taylor coe Lcieht Ulfﬂ's, where a’f is the morphism from Definition 4.1.5, and all
Taylor coe [ciehts L[1] %

AT I(k+1)A[2k + 1] of degree ¢ > 2k + 2 vanishing.
Proof. Recall that an Leo morphism f : L M between two DG-Lie algebras is the same
as a morphism of DG coalgebras F' : S(L[1]) — S(M][1]) between their bar constructions, see
Section 1.3. By cofreeness of S(M][1]), the correspondence sending F' to its corestriction f = pF,
where we denote by p: S(M[1]) — M[1] the natural projection, establishes a bijection between
the set of morphisms of graded coalgebras F' : S(L[1]) — S(M][1]) and the set of morphism of
graded vector spaces f : S(L[1]) — M][1]: in general, compatibility with the bar differentials
translates into a countable sequence of algebraic equations in f, see e.g. Section 1.3, [6, 59].
However, in the particular situation we are concerned with, that is, when the bracket on M
is trivial, the situation simplifies considerably, and we have that f € Hom%(S(L[1]), M[1]) is
the corestriction of an Leo morphism F': S(L[1]) — S(M]1]) if and only if 1 f = f(Q, where we
denote by 71 the shifted differential r1(m) = —das(m) on M[1] and by @ the bar differential on
S(L[1]). In other words, when M has trivial bracket the Lo, morphisms L~ M are in bijective
correspondence with the set of 0-cocycles in the complex Hom{S(L[1]), M[1]).

On the other hand, by Lemma 4.3.7 the image of W (s)¥** onto [C(L,A),C(L,A)(]ji%?L),I)<’€+1)C(L,A)
is a degree (2k + 1) cocycle. Therefore, in order to conclude it is sufficient to define the desired
Loo morphism as the image of 6, (W (s)¥*1) under the natural isomorphism of differential graded
vector spaces

A
[A, A] + IG+D A

A

HOmK S(L[l])v [A,A] +I(k+l)A

) (2% + 1] = Hom| S(L[1]), 2k + 1]) .

Finally, the last two statements about the Taylor coefficients follow immediately from the
definitions and (4.3.3). O

Corollary 4.3.10. Let I be a curved Lie ideal of a curved DG-algebra A and denote by
B := A/I. For every morphism of graded vector spaces s: B — A such that 7s = Idg, the image
of W(s)**1 € HomZ*(S(B[1]), A) onto

A
[A, A] + IG+D A

A
[A, A] + IG+D A

Homit** (5(B11), ) = Hon (s(21), 2k +1)).
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is an Lo, morphism

A
(A, A] + I¢+D) 4

k k _k k .
g :(0’1,0’2,...,0’2]{:4_170,0,...).B

[2K]

with linear Taylor coe [Cieht o and all Taylor coe [Ciehts of degree > 2k + 2 vanishing.

Remark 4.3.11. It follows by Remark 4.3.5 that the induced push-forward on Maurer—Cartan
elements

A . A

MC(o%): MC(B) - MC <[ F (e A[2k]> T ([A,A] - 1<k+1>A> |
2k+1

MC(c®)(z) := > %O’f(l‘, coo,x) =tr (evx (Wk+1(s))) =tr (Wkﬂ(s(m))),
=1 "

sends the Maurer—Cartan element z € B? to the residue modulo tr (I UHl)A) of the Chern—Simons
class cspr+1 (s(z)) € A/[A, A].

For general s an explicit combinatorial description of the higher Taylor coefficients Uf,
although possible, is quite complicated. In the next section we study these components under
the additional assumption that s: B — A is a morphism of graded Lie algebras, or equivalently,
by Lemma 4.3.7, that §(s) + s s € C(B, I);. This is often satisfied in concrete examples: for
instance, in the geometric example that we shall consider in the following Section 4.5.

4.4 Explicit formulas in the split case.

Let K{(Zy, Z1, Z2) be the associative algebra of noncommutative polynomials in Zy, Z1, Z».
Following [30], we denote by X[Z5, Z1, Z5] € K(Zo, Z1, Z2), p,q,r € N, the symmetric functions:
by definition X[Z§, Z{, Z5] is the sum of all the words in Zg, Z1, Z, having p factors Zp, q factors
7y and r factors Zp. For instance, X[28, 29, Z9] = 1 and X[Z3, Z2, Z9] = ZoZ? + Z1 2071 + Z3 Zy.

For every k > 0 we define homogeneous polynomials V*(Zy, Z1, Z>) € K(Zo, Z1, Z2) by the
formula

1 1
VE(Zo, 74, Z2) = H/0 (Zo+1Z1 + (2 — 1) Z)* dt .

Notice that for every curved DG-algebra (A,d, R) and every = € Al we have
W (2)** = VE(R, d(x) + 2%, 2%)z . (4.4.1)

It is also useful to assign to each variable Z; the weight i, and denote by V¥ = Zz‘zio Vzk the
associated isobaric decomposition. Notice that every monomial in Zy, Z1, Z» of weight ¢ with r
occurrences of the variable Z» (hence i — 2r > 0 occurrences of the variable Z;) appears in Vz'k
with coefficient

T o A [t BN e CA N
E/ot (t—1)dt= k(i +1)! _k!(i-i-l)(r) .

Therefore, for every 0 <17 < 2k

vi= X

prqtrr=k
q+2r=i

(=)l (i — r)!
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For instance, one checks that for 0 < i < 2k < 6 the above formula for Vzk gives:

1 1
w=1 Vo=2% Vi=g5Z, Vi=-:2,

1 1
2071+ ZhZo),  VE =727 - 3 (%0Z2 + ZaZ0),

1 1
Vi=:2§, Vi=-

1

1
VE = —ﬂ(lez + Z274), VE = ZZ,

60

1 1
V03 _ 623’ Vf’ = E(Z(%Zl + ZoZ1Zo + ZlZg)a

1 1
V3= —8(2to + Z1ZoZy + Z2 Zo) — %(Zng + Z0Z2Z0 + Z225),

V= 2421 - 7(202122 + Z0Z2Z1 + Z1Z0Zo + Z1Z2Zo + ZaZoZh + Z2Z120),

V43 = —1720(Z1 Zo+ Z1 ZoZ1 + ZzZl) 180 (ZOZZ + ZaZoZ2 + ZZZO)
1 1
Ve = — (D175 + Z2Z1Zo + 757 Ve = >
5 360(12Jr 22122 + Z3 71), 6 = g2

Definition 4.4.1. A split curved DG-algebra is the datum of a curved DG-algebra A =
(A,d, R) equipped with a direct sum decomposition

A=Ba®I,
where B C A is a graded Lie subalgebra and I C A is a curved Lie ideal.

We shall denote by 2: B — A the inclusion and by P: A — B the projection with kernel I
(in particular, s, P are morphisms of graded Lie algebras) and by P=L idy —P: A — I. We
shall also denote by
d:=Pd:B—B, V:=PB-1I.

Notice in particular that since Ker(P) = I is d-closed, then the identity Pd = PdP holds, and
in particular

9° = (Pd)? = Pd? = P|R,—] = 0,

since [ is a Lie ideal and R € I. Thus (B, d,[—, —]) is a DG-Lie algebra and the natural map
(B,0) — (A/I,d) is an isomorphism of DG-Lie algebras. Moreover,

dV +Vo=[R,~]:B —1, (4.4.2)
since for every b € B we have
[R,b] = d?(b) = dV(b) + dB(b) = dV (b) + VA(b) + dA(b).

Lemma 4.4.2. Let A = B® 1 be a split curved DG-algebra and consider the inclusion :: B — A
as an element of C(B, A);. Then for every x,y € B we have

141 € Hom¥ (B[l] EZ;'A) = C(B, A)3, vx(z,y) = (=17 Yz, 9],
6(1) + 1241 =V € Hom% (B[l],f) c C(B,1)?, (0(2) +2x12)(z) = V(a),
R € C(B,I).

In particular W (2)*** = 2281 17 ()F*1 with

Wt e C(B,A);, WO =VE (R, V,1%1) %1,

1
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Proof. We have already proved that v x(z,y) = (—1)® [z, %] in the proof of Lemma 4.3.7. It
remains to show that (§(2) + ¢+ 2)(z) = V(z). Again by Lemma 4.3.7 we have 6(z) + 1 %1 =
do(2) € C(B,I)1 and then for every x € B

(0(2) +2x2)(z) = do(2)(x) = (dv —20)(x) = V(z).

The last claim follows from Equation (4.4.1). O
Corollary 4.4.3. Let A = B® 1 be a split curved DG-algebra with inclusion morphism 2: B < A.
For every 4, k with 1 <4 < 2k+ 1 denote by o € Hom% (B[l] U,jm 2k + 1]) the image
of V¥ (R, V,2%1) %1 under the trace map
A
2k+1 1T, il

C(B, A2+ 1, Hom <B[1] A o 1]) .
Then n

ok = (o},05,...,05.41,0,0,...): B [2K]

[A, A] + I+ A
is an Lo, morphism with linear component o¥.

Example 4.4.4. More explicitly, the Taylor coefficients

ok . B[1]H4s [2k + 1]

A
[A, Al + TF+1A
are given on the diagonal, i.e., when all the arguments equal a certain « € B!, by the formula

1 2
St 0) = tr (VEA (R, V(@),0%)z),
and in general is given by the above formula via graded polarization.
For instance, using the previous explicit formulas for the non-commutative polynomials Vik_l
(together with the cyclic invariance of the trace), we see that for k¥ < 3 the Leo morphism from

Corollary 4.4.3 is given explicitly as follows. For k = 0, we have the DG-Lie algebra morphism

= A
0. —_ —_ —_— 0 pu—
o :(B,0,[—, ])%([A,AH—IA’d’O)’ o°(x) = tr(z).
For k =1 we have the Lo, morphism

— A
L= (o},0d,03,0,0,...): (B,3, [, - (2 )
o (0170270270707 ) ( aav[ ) ]) [A,A]—i—I(Z)A[ ]7d70

given by:

(T
3 (w1, 22) N tr ( T(l))xf(2)>7 (4.4.3)

=3 -
759

o3(z1,72,73) = ) (7 (7(1)%(2)537(3))
7[5

where we denote by £(7) the symmetric Koszul sign, defined by the identity z,1) © - © 2,y =
e(T) 11 ® -+ ®x; in the symmetric power B[1] ™ Hence we recover, in a more general framework,
the formulas of [50] with the curvature in place of the Atiyah cocycle, see Remark 4.4.5 below.

For k = 2 we have the Lo morphism

A

(s ra40)

0% = (O’%,...,O’%,0,0,...): (B,0]—, )
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given by:
1
of(z) = B tr (Rza:),
e(r
o5 (21, 22) = 4) tr (Rv(xT(l))xT(z) + V(xT(l))wa(z)),
7[Sd
e(r —
O'%(Sl?la T2, .173) = (6) tr ((—1)IT(1)+1V(JL‘T(1))V(J,‘T(2))357(3) — R:ET(l)JJT(z).%‘T(g)),
7L[S3
e(r
Uz(x1,$2,$3,$4) = _52) tr (V(xr(l))wf(z)xT(S)xfm)),
T[54
e(r
05 (w1, x2, 23, 04, 75) = 60> tr (%(1)mf(z):z:f(a)xrm)m(s)).
T[53

Finally, for k = 3 we have the Lo morphism

A

3
<[A, A+ I®A

o3 = (03,...,02,0,0,..): (B,,[-,—]) [6],d,()>

given by

where:

1
Pi(1) = 6R3x1,

1

P(r) =33

(R?V(2r0)) + RV (2,0 R + V(271 R2) 712
1 1
P3(r) = 18 Rz yrr2)%r(3) — 36 Rar)@r(2) Bo7(3)

1 _
+ 15 CUTIH RV (2,0)V (7)) + V(@70 BV (@r2) + V(@0 V(@) R)2ra),

Pa(r) = o (=17 @V (2,00)) V (2-2)) V(2 (3) )22
— 2 (V(iﬁr(l))RiUT(z)ﬂfT(s)%(zt) + RV(iUT(l))$T(2)$T(3)$T(4))

— = ()T R4y 2,0) V(23T a) + V(200) Tr) T2 @) REr(a)),

1
Ps(7) = 155 (V(azf(l))967(2)967(3)%(4)907(5)967(6)),

1

P?(T) = —%

(zr0 @t @@ 6T T0)-



4.5 Connections of type (1,0) and curved DG-pairs 59

Remark 4.4.5. In the above setup, suppose that I is a bilateral associative ideal. Then the
morphism af depends only on the class of R in I/ @) if and only if either i < 2 or ¢ > 2k. This
partially explains the unsuccessful attempts of the last two authors to extend the formulas of
[50], described in the following Section 4.6, involving the Atiyah form instead of the curvature,
to the case k > 1.

4.5 Connections of type (1,0) and curved DG-pairs

Let X be a complex manifold and let
N N < e NN L SN} p<qez, d:=0,

be a fixed finite complex of locally free sheaves of ©x-modules. We denote by # om('(%'( &Ly
the graded sheaf of Ox-linear endomorphisms of &

Fom§) (66 = @ #omiy (6565} domi,, (656N =[] #ome, (67,67).
‘ j

Then # om&'{ (858 HYis a sheaf of locally free DG-Lie algebras over Ox, with the bracket equal
to the graded commutator

[f.9] = fg— (1) 9gf
and the differential given by
s [ds, /] = dsf — (=1)f fds.

For every a, b, r denote by ﬂg(’b(é’r) ~ ﬂg(’b ®oy 6" the sheaf of differential forms of type
(a,b) with coefficients in ", and by 0: ﬂg(’b(é’r) — ﬂg(’bﬂ(é””) the Dolbeault differential.

We consider
A EY = P ay’eEn)
a,b,r

as a graded sheaf of A )?D modules, where the elements of ﬂg(’b(é”) have degree a + b+ r. It is
useful to use the dot symbol - to denote the natural left multiplication map

Ak AT e 5 ey,

The differential dg extends naturally to a differential
dg: A%P(ET) — ALPE™Y),  dg(gp-e) = (-1)?¢-ds(e), e A%, ecé.

We have that 9° = d2 =0 and [0, dg] = Odg +dgd = 0, so that +dg is a differential in ﬂ%@
Therefore the space of C-linear morphisms of sheaves

Homgﬂ)%l‘_)‘!ﬂ)%l‘_ﬂ

carries a natural structure of differential graded associative algebra: the product is given by
composition and the differential is the graded commutator with 0 + dg.
Denoting by Ag&b( —) the global sections of ﬂggb(—) we have two differential graded subalgebras

A HomS] (85€5) ¢ AF Homs] (€585 ¢ HomEEa ¢85 A ¢"E€h),

where for
w,n € Ay f € Hombl (858 eecgH
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one has that _
(- Hn-e)=(=DIwnrn) - fle),
so that the elements of AY (96’0771(9 (€585 have degree a + b+ n.

For every a € Am%fom() ':él——ﬁ we have
Oda = [0, d] (4.5.1)
where the bracket on the right is intended in the DG-Lie algebra Hom&€A )%L—}' A )%'% In
fact, for w,n € ﬂX e <7€0m@ (6585 and e € §5ve have:
Bowo- f101-€) =31 A f() = (~1)*T (e £)(Fn) - )
(~1)TT(w) A - £() + (=1 Zw A D) - £(e) = (=17 T A D) - f(e)
= (0(w) - f)n-e).

The composition product in A%%ﬁom({%’( (585) and A)l%u(_‘?fom(%'< (8585 works in the
following way:

w,n € ﬂ)l}_*u,j f,g€ %om(gz)'{(é";'é?'jf'
- fn-g) = (=) wAn) - fg,

and the commutator is

W fin-g) = (- £)n-g) = (~)EDTD (. ) f) = (=1)TT(wAn) - [f,g].

The above commutator and the differential [dg + 0, —] = [dg, —] + O give Agé%fom('g——)'((é%'——ﬂ
and A%ﬁ’om&'{ (85853 a structure of DG-Lie algebra.

We now define an obvious generalisation of the notion of connection of type (1,0) to complexes
of locally free sheaves.

Definition 4.5.1. Let (§5tg) be a finite complex of locally free sheaves on X.

1. A connection on §s a C-linear morphism of graded sheaves of degree +1

L, 7Lty

such that V(fe) = dyr(f)-e+ f-V(e) for every f € Ox, e € §-'Here dyr denotes the de
Rham differential.

2. A connection V as above is called of type (1,0) if V(e) — d(e) € @kﬂ)l(’k(éi_k) for every
i and every e € &.

Thus, a connection V is of type (1,0) if and only if V = 9+ 3, VIF, with VI+: & — ﬂ)l(’k(é’i_k)
for every i.

Notice that V1* is Ox-linear for every k > 0, and that, denoting by 9 = dgr — 0: ﬂ)l‘(_”uj—>
7 )I(I-Il, I

ViO(fe) = a(f)-e+ f-Vio(e), VfeOx, ecg™’
As in the nongraded case (see e.g. [45]), every connection V extends uniquely to a C-linear
morphism of graded sheaves of total degree +1

V: AN - ey

such that V(¢ -w) = dgr(¢) -w + (=1)%¢ - V(w), for every ¢ € ﬂ)l‘(_*u,jw € ﬂ)%ql

It is clear that giving a connection V of type (1,0) with V1*¥ = 0 for every k > 0 is the same
as giving a classical connection of type (1,0) on every &' as in Definition 3.3.3. In particular,
connections of type (1,0) always exist.

Denote by A = Am%?fom@ (6585 the graded associative algebra of global differential
forms with values in the graded sheaf #omg, &5 €N Every element of A may be naturally
interpreted as an endomorphism of the sheaf ﬂﬁj]Pé'—_)r'
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Lemma 4.5.2. For any connection V of type (1,0) the adjoint operator

d= [V +dg,—]: AX%om(%(SI?(SL_ﬂ — Ax%eom@(gc,'g'%

is a well-defined derivation.
Moreover R = (V +dg)? = %[V +dg, V + dg] belongs to A)?%fom@(éc,'é'jﬂ, and the triple
(A%omg(é‘,jé'——}b,d, R) is a curved DG-algebra.

Proof. It is clear that [dg, —] is a well-defined derivation of A = A%om&'{(é’%%. Since V
is a connection of type (1,0), it can be written as

V=0+V04+> vk
k=1

with V1* that is Ox-linear for every k # 0. Therefore for every k # 0, VY* belongs to
Aﬁék (# oméi (8585, which implies that [V1* —] is an inner derivation of A for every k # 0. It
then suffices to show that [0 + V19, —] is a derivation of A. For brevity, denote D := 9 + V0.
Since every &’ is locally free, we can describe A%om('g——)'( (€585 as the set of morphisms
of graded sheaves h: ﬂ)%@% ﬂ)%'—_)]that are ﬂ)?]—:finear, ie., h(f-s) = (=" f-h(s),
LI
feAy ,seﬂX; (&
Thus, for every f € ﬂ)lgujand s € ﬂ)% Nwe have

~

ID,H(f - 5) = ()" D(f - h(s)) — (~1)"h(darf - s + (~1)! f - D(s))
= (=" (danf - h(s) + (~1) f - D(h(s))) — (=)D f - h(s)+
— (~1)" f L R(D(s))
— (=1)®*DI (D, h)(s),

=1

which proves that [D,h] € A)L;*u(_"&fom(%'( (8585, For h € Ag&q(%ongx(é'?é’% according to
(4.5.1) we have B '
[V10,h] = [D,h] — 3(a) € AR (Fomp, (8565 (4.5.2)

For the second part, notice that

1 ik 1.k 3 1,5
R:Q[V+dg,V+dg]:2[a+dg+ZV D1rde+ YV J} _

k=0 j=0
_ 1 .
— [a +dg, » Vl’k} +3 [ dovhEN vld} =: R1 + Ry.
k=0 k=0 j=0

We begin by showing that Ry = [0 + dg, Y =0 V*] belongs to Aﬁé%ﬁomg): (585, In fact,
Ry can be be written as

Ry = {8 + dg, Z Vl’k] = [5 + dg, Vl’o] + {8 + dg, Z Vl’k] ,
k=0 k=1

and since V¥ belongs to A%&%ﬂ’om@z)! (858D for every k # 0, it is clear that the second part
belongs to Ak%ﬂ’om&'{ (&5€H).

It then remains to show that u := [0 + dg, V0] also belongs to A;%om&(é%% The
element u: A )l(j](—‘g N )% Bis a morphism of graded sheaves of even degree and we need
to show that it is ﬂ)lg_”u—:finear. By (4.5.2) we have [dg, V1] € A%}O(%om(lgx (€585 and we only
need to prove that [0, V0] is A Eﬁinear.
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For f € ﬂ)l(j],js € ﬂ%@we have:
0. 90)(fs) = 80 - s + (<) f - V*0(s)) + VIO(0F - s + (~1)/ f - Ds)
—DOf) - s+ (~1)/*0f - Ds + (~1)]Ff - VVO(s) + [ - A(VHO(s))
+00f) s+ (~1)I13f - VH(s) + (~1)f0f - Ds + £ - VHO@(s))
= f10, V*%|(s).
Therefore [0, V9] belongs to A%él(%’om%x (&5€H).
Now, we show that %> belongs to Ai%fomg (585): we can write it as

[Zvlk’ Zvl,jjl — vlo vl 0] |:V1,0,Zvl7j:| +% Z [vl,k/"vl,j]'

k=0 j=0 j=1 jk=1

The last term is clearly in AXU(!?(omO 8':'8'——}5 because V1 belongs to AL k((%om&k (&58H

for k # 0. The middle term is also in A3 I%}’é’omg (8585, by the first part of the claim. For
the first term and f € ﬂX ;S € ﬂ% q'we have that

g[v“’, VL (fs) = (VEO2(fs) = VRO(Of - s + (~1)f - V10(s)) =
O f -5+ (~1)I*0f - TH(s) + (1) 0f - THO(s) + F(VHOP(s) = F(VHO)2(s),

and we have the claim. O

To every connection V = 0 + 3, V1E: ﬂ)% B ﬂ)% Blof type (1,0) it is associated a
curved DG-pair (A, I) as in Definition 4.1.2, according to the following construction. Denote by
A= Am@"fomo & ':E'jf) the graded associative algebra of global differential forms with values
in the graded sheaf H om(9 (585! By Lemma 4.5.2 the adjoint operator

1
is a well defined derivation and R = (V + dg)? = E[V + dg, V + dg] belongs to A, so that the
triple (A, d, R) is a curved DG-algebra.
Writing V = 0 + 3, VIE, since (0 + dg)? = 0 we have
R=Ri+Ry, R;c A (Homg] (€58D).

In particular, R belongs to the ideal I = A;O’%fom(%'{ (8585, Moreover, Ry = [0+dg, 3", V1]
and then the connection V is such that [dg + 0, V] = 0 if and only if Ry = 0.

Lemma 4.5.3. The Atiyah class
At(A, 1) € H2(AYHomS] (85€5) = Exty(650Y @ 85

of the curved DG-pair (A4, 1) A':'%‘fomox 5€N, d, R), A %{Omox g5ED) is trivial
if and only if §=Admits a connection V of type (1,0) such that [dg + 8, V] = 0.

Proof. Since I*) = 1M A = A)ch’l%%om(lg:' (8585 the Atiyah class At(A, I) of the curved DG-
X j—

pair is precisely the cohomology class of R1 in the complex ( ﬁé%}fomox 5:5'% 0+ dg,—]);

notice that this complex is the Dolbeault resolution of the complex # om(9 (& :Ql ® &H'and

therefore

At(A,T) € H2(AYHomS] (85€9) = Exth (850Y 0 89

Since two connections of type (1,0) differ by a degree 1 element of A%&%ﬁom&'{ (8585, the
Atiyah class is independent from the choice of the connection. Conversely, for every degree 1
element ¢ € A&%ﬂom@(é?@'—_ﬂ the map V = V + ¢ is again a connection of type (1,0) with
1-component of the curvature Ry = Ry + [dg + 8, ¢]: it follows that At(A, I) = 0 if and only if
&“Admits a a connection V of type (1,0) such that [dg + 9, V] = 0. O
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Lemma 4.5.4. The class At(A,I) is the same as the usual Atiyah class of the complex &-&s
an object in the derived category of X.

Proof. We show that our definition is equivalent to the one of [39, Section 10.1], where a
representative of the Atiyah class is given via Cech cohomology.

First, we recall the definition of the complex of 1-jets of §%and of two variants. For &
finite complex of locally free sheaves, a representative of the Atiyah class of (3.3.3) is given by
the class of the short exact sequence

0 — &Lk — JieH 2 X 0 (4.5.3)

where J1(&5is the complex of 1-jets of & defined as (65 5 Q% (dg, dg ® 1d)) as a complex
of sheaves of C-modules, with Ox-action given by:

f(e,o)=(fe,fo+e®dsrf) feOx, ec&Yoec& b0k,

Denoting by CY1L, §5'the sheafified version of the Cech complex, recalled in Definition 1.4.4,
and by i the inclusions i: §= €U, §Hland i: €% QL — MU, 5% OL), we can define the
complex JH(U, 8= (8 U, €%k QL), (de,d + dg)) a a complex of sheaves of C-modules,
with Ox-action given by

f-(e,0) = (fe,fo+ile®darf)) f€Ox, ec&Toecctl,e"b0k).

The quasi-isomorphism i: & e, 65 induces a quasi-isomorphism J1(§5'— Jt (u,&ey!
The complex J(U, &Y fits into the short exact sequence

0 —— e, et k) —— JHu, 8N 2 g™ 0, (4.5.4)

which also represents the Atiyah class of & 4s an object in the derived category, because of the
commutative diagram

0 — 8ol —— Jigy & 0
0 —— e, e k) —— JHu, &y g 0.

Similarly, denoting by j the inclusions j: &~ ﬂ%%q‘and j: 0L — ﬂ)l(%'——}! we can
define the complex ﬂ?(’ L ED) = (65 ﬂ?g%% %), (dg, 0 + dg)) as a complex of sheaves
of C-modules, with Ox-action given by:

f-(e,0) = (fe,fo+jle@darf)) f€Ox, ecé&Foecal e hak).

This complex is quasi-isomorphic to J(85 via the map j and it sits inside the short exact
sequence

0 — Ay (&Y —— A IHEH) 2o gH 0, (4.5.5)

which also represents the Atiyah class, in view of the commutative diagram

0 —— 8 0L —— Ji(ey gH 0
0 — Ay Y —— A% & 0.
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The representative in Cech cohomology of the Atiyah class given in [39] is constructed as
follows, as a generalisation of the construction in Lemma 3.3.5. Choose an affine open cover
U = {U;} of X such that the restriction of the short exact sequence (4.5.3)

0 — &Fo 0l —— Ji(gF) 2 &k 0

splits on U; for every 4, k, and denote by Df: é’k|Ui — & ® Q%(|UZ a set of local holomorphic
connections. Defining

ae cr(u, #omd (8585 0%)), o, =Di|

_ q
1001 Dil ‘Ui

Al 01’

ale O, #om}, (65850 0X)), o = deD! — DI dg,

one can see that o = a4+ aMis a cocycle in the Cech hypercomplex
(CHU, Ftom§ (85EH QX)) d + [ds, ),

and it is a representative of the Atiyah class At(&%'according to [39].

The cocycle « is trivial in cohomology if and only if there exists 5 € (C S, ¢ om(l(i'{ &Lk
Q%()))O such that d(D—8)+|de, D—f] = 0 in the complex (C U, #HomE(ESEBOL)), d+[dg, ).
Notice that 3 = Y420 8%, with g% € C*(U, Fomg" (6565 X)), with 5 in general not trivial
for k > 1. There is an isomorphism of complexes of vector spaces

(CHU, FomEe T8 O4)), d + [ds, —]) = (HomE(e 50U, 655 Q%)), d + [de, —])

and then DY:= D — 3 is exactly a C-linear morphism of complexes of sheaves of degree zero
DY &4 e, §5such that the Leibniz identity

DYfe) = fDYe) +i(e @ darf), Vf € Ox, ec &Y

holds. In fact, the cohomology class of « is trivial if and only if there exists such a map D" From
DBwe can construct a morphism of complexes of sheaves

Idg DY &= JH (U, &Y

and the existence of the map DUis equivalent to the existence of a morphism of complexes of
sheaves 1: 841 jl(u,él——)'such that p1v = Idg, i.e., a splitting of the short exact sequence
(4.5.4).

The argument for our definition of Atiyah class is completely analogous. Let V be a connection
of type (1,0) on €™4nd consider its Atiyah class, i.e., the cohomology class of Ry = [0 + dg, V]
in the complex Ak%‘%om&'{ (8585). As seen in Lemma 4.5.3, this class is trivial if and only
if there exists a connection Vof type (1,0) on & $uch that [0 + dg, V] = 0. In view of the
isomorphism of complexes

(AL (HomECE TN, 0 + [de, —]) = (HomE(6 A (€D, 0 + [de, )

the existence of such V5is equivalent to the existence of a C-linear map of complexes of sheaves
vH et ﬂ)l(’%'——)r'such that the Leibniz rule

Vife) = fVle) + e @ darf), Vf € Ox, ec &Y

is satisfied. This is equivalent to the existence of a map of complexes of sheaves ¢: §——
ﬂg(’ '%‘Jl(él—_}b such that p1¢ = Idg, i.e., a splitting of the short exact sequence (4.5.5).
O]
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Remark 4.5.5. For every x € A we have that

[Ry,z] = [a+ de, [Zvlvk,m” + [Zvlv’“, [0+ dg, z]|.
k k

If x € A is such that [0 + dg,z] = 0, then [Ry,z] = [0 + dg, [>, V¥, 2]] and this immediately
implies that the Atiyah class is a central element in the cohomology of the differential graded

T7(F)
algebra Gry(A) = @km, cf. [16, Prop. 3.12].

Lemma 4.5.6. The A}™linear extension of the usual trace map

Tr: AY(Hom5) (8585 — A" Te(o- f) = ¢ Tx(f),

is a trace map in the sense of Definition 4.1.9. In fact, for every h € A%om&'{(é?'&;% we
have
Tr(dh) = Te([V + dg, h]) = Te([V, h]) = dar Te(h).

Proof. Let V =0 4 Y120 V>* be a connection of type (1,0) on §5'and denote D = 9 + V10,
Since V¥ is Ox-linear for all k # 0, Tr([VYF, h]) = [Tr(VY#), Tr(h)] = 0 for all k # 0 and
Tr([V, h]) = Tr([D, h)).

By linearity it is sufficient to consider the case h = n-g, with n € A )?]:almd g € #Homg (&5Eh!
It is clear that it is enough to consider g of degree 0, and by linearity we may assume g concentrated
in one degree, i.e., g = g;: & — &' Let ey, ..., em be a local basis of holomorphic sections for &,

and let
(€i) = Z&ijej, D(e;) = sz’jep Tr(g) = (1) Zan’-
J J i
Then _
dar Tr(n - 9) = dar(nTr(g)) = darn Tr(g) + (—=1)"ndar Tr(g),
[D n- g ez = Znazjej ﬁ 7] g Zwmeg
j
= dar(n)aije; +Z )"0 A dar(aij)e; + Y (=1)"ai; A D(ej) — (=1)7> 0 Awijg(e;)
] J J
= Z dar(n)arer + Z )™ A dar(air)ex + Z Y nai; A wiker — (—1)ﬁz N A wijajge .
J:k J.k
Therefore

Tr([D,n - g)) = (—1)" Z (ddR"?az'z‘ + (—1)"dar (i) + Z(—l)n(n N wjitiz — 1 A wij%‘z’))
7 J

(=" (danmasi + (~1)™ndan(as) ) = darn Tr(g) + (~1)ndar Tr(g).

%

Assume now that the complex & s a resolution of a coherent sheaf F. Then At(A,I) is
equal to the Atiyah class At(F) of F and the DG-Lie algebra

A
7= A HomS] (85€5)

is precisely Dolbeault’s model of the DG-Lie algebra controlling deformations of &, see Proposi-
tion 2.5.18 and [24, Section 8].
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Consider the trace map Tr: A — A)?]::'for every k > 0 we have Tr(J¢*+DA) = A;k’l?land
then the map o} from Definition 4.1.5 becomes

1
e Agélj(}?fom(lg:)l( &-eh) — A)S(k’l‘—f"ék], ok (z) = i Tr(Rfz).

Therefore, at the cohomology level o induces the composition of

Extd?, 7)o HP(X0%), v LT (M) ),

with the natural map j: H™¥(X, Q%) — HZ* %‘Aik;‘

By Corollary 4.1.10 the map of is the linear component of an Le, morphism, and since the
deformation functor associated to the abelian DG-Lie algebra A)S(k%k:] has trivial obstructions
(see Lemma 2.4.6) we immediately obtain the following result.

Corollary 4.5.7. Let F be a coherent sheaf on a complex manifold X admitting a locally free
resolution. Then for every k£ > 0 the semiregularity map

< 1
Ext%k (F,7) = 24PN oo o Tr(At(F)* - 2),

annihilates obstructions to deformations of F.

Proof. Since X is assumed smooth, by Hilbert’s syzygy theorem, if F admits a locally free
resolution, then it also admits a finite locally free resolution, see e.g. [44, V.3.11]. O

Corollary 4.5.8. Let F be a coherent sheaf on a complex projective manifold X. Then for every
k > 0 the semiregularity map

1
Ext? (F,F) — H**2(X, %), 2w o Tr(At(F)F - ),

annihilates obstructions to deformations of F.

Proof. Since & is projective every coherent sheaf admits a locally free resolution. Moreover,
the Hodge to de Rham spectral sequence degenerates at E1 and therefore the natural map
HM*2(X, 0k ) — H2k+2(A§k’L_T|is injective. O

4.6 Cyclic forms and an alternative way of lifting o}

This section contains the results from [50], where we constructed a lifting of the first
component of Buchweitz—Flenner semiregularity map with direct computations.

As in the previous section, let

d, dg dg
gH! 0— & 28y gp*l 26, 0 S g1 4

be a fixed finite complex of locally free sheaves on a complex manifold X and let V be a
connection of type (1,0) on &% las in Definition 4.5.1.

Lemma 4.6.1. In the above setup, for every a € A} (#om{] (6585 we have:

[[V,d],a] = [V,da] + ]V, a] .

Proof. By (4.5.1), we have that [[V,d],a] = [V, [0, a]] + [0, [V, a]] = [V, da] + IV, a]. O
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Definition 4.6.2. By a cyclic (bilinear) form on the sheaf of DG-Lie algebras %’om(‘g:)'( (g5
we mean a graded symmetric Ox-bilinear product of degree 0
O o] oo B
Fomg, (658 x #omg, (656H —— Ok,

such that
(filg,hl) = ([f,gl,h) ¥V f,g.h.

Equivalently, for every f, g, h we have

(I, 9], h) + (=1)T9(g, [, 1)) = 0,
i.e., (—, —) is invariant under the adjoint action. In particular
([dg, g], h) + (—=1)%(g, [dg, h]) = 0. (4.6.1)

Notice that (4.6.1) is equivalent to the fact that the bilinear form (—, —) is closed in the dual of
# om('g:)'( (e5EHZ]
Every cyclic form on %om@ (8585 has a natural extension to

A tom) (68 TS AT (61,49) = (1) Yo Aw(f, g),

and it is immediate to check that, for f,g € A%om}%’{ (&58H)

a(f,g) = (@f.g) + (~1)/ (£, Dg), (4.6.2)

and then (—, —) is d + [dg, —| closed. Cyclic forms have received a lot of attention in several
recent papers; for instance cyclic forms that are nondegenerate in cohomology play a central
role in the proof of the formality conjecture for polystable sheaves on projective surfaces with
torsion canonical bundles, given in [7].

Definition 4.6.3. We shall say that a connection V of type (1,0) on &™s compatible with the
cyclic form (—, —) if ~
(V. fl.9) + (=D/{£,[V.g)) = darlf.9)
or equivalently if B
(IV=0.f1.9) + (=1D)(f.[V = 0.9)) = 0(f.9),

for every f,g € A%om@(é?&%.
Example 4.6.4. According to Lemma 4.5.6, for every a,b € C the form

(f,9) = aTr(fg) +bTr(f) Tr(g)

is a cyclic form of degree 0 compatible with every connection of type (1,0).

A
In the following we consider the shifted quotient 1 X 12| of the de Rham complex by the

=2,

X
2nd subcomplex of the Hodge filtration as a DG-Lie algebra with trivial bracket. We denote
u=[D—0,0+dg] =[D,0+dg] € Aﬁg%ﬁom@ (6585 the Atiyah cocycle.

Theorem 4.6.5. Let &™be a finite complex of locally free sheaves on a complex manifold X and
let (—, —) be a cyclic form of degree 0 on #Hom (6 & which is compatible with a connection
D of type (1,0). Then there is an L., morphism between DG-Lie algebras over the field C

g: Agéljd?fom('g:)l( &€

AL
Aﬁﬁﬂ
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with components

gS(fvgah) <f7 g? %

and g, = 0 for every n > 3.

Notice that the definition of g only involves the DG-Lie structure of Ag&%ﬁom&'{ (8585
and not the associative composition product.

Proof. Since the theorem gives explicit formulas for the components g,, the proof reduces to a
straightforward computation. Since g, = 0 for every n > 4 we need to check the conditions C),
of Definition 1.3.13 for n = 1, 2, 3,4. For C'; we have to prove that

dg1(a) = g1([ds, a] + Da).

This follows from the fact that [dg,u] + du = 0 and that on the subcomplex Al k_ we
A>2 )
_ X
have d = 0:

91([ds, a] + 0a) = (u, [ds, a] + Oa) = —([dg, u],a) + I(u, a) — (Ou,a)
—([dg,u] + du,a) + I (u,a) = Hu,a) = dgi(a).
The condition C5 is
92([dg, a1] + Bay, az) + (—1)" g2(a1, [dg, az] + daz) = g1([a1, az]) — dga(as, az).
On the left hand side we have

92(|de, aa] + Dax, az) + (—1) g2(ax, [ds, az] + Daz)

_ %(qv — B, [de, axll, az) + ([V — 8, Basl, az) — (—1)T (Y — B, 5], [de, ax))

~ (C)T FE(Y B, 0g],Don)) + 5 (-7 ((IV - B, [de, az)) + (IV 3, 1), D)

— (=1)® @Y7 — ], [dg, az]], a1) — (—1)% 2V — 9, Day), a1>>

1) ®2%92([7 — 9, ap], dar )+
Y[V -9, a1],

Qv\
l\)
~
T
—
~—
N
—~
<
|
Q
U
&
S
D
~—
<
=
~

|
—~ ~—~~ o~~~ /N
| |
— —
SN—
S
— [
e 8
< %
| 5
93\%
<
2
= 2
o S
~ N
e T
[SE
~— QL
6n
+ &
/\E
=
\_/ |
&
—~~

g1(la1,az]) — dg2(a1,a2) = ([V — 0,dg] + [V — 0, 9], [a1, az]) — %((5[V —0,a1],a2)
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— (~)™(V = J,a1], daz) — (~1)" P @[V = 3, a2],a1) + (~1)7 PV ~ 3, az], Daz))

+{[V = 0,0a1), az) — (~1) [V ~ 0,az), ar)),
and this proves C. For C3 we need to check that
dgs(ai,az,a3) = g3([dg, a1] + Oaz, az,az) — (—1)™ “gs([dg, az] + daz, a1, a3)
+ (1) B gy([ds, az) + Daz, a1, az) — ga([a1, az), az) + (1) @ga([a1, az), az)
_ (—1)71(@+@)gz([a2,a3],al).

Using the compatibility of the connection and the cyclic form, the terms involving g» can be
expanded as:

a1, az], a3) + (—1)™ gy ([a1, as), az) — (—1)" @+ gy ([az, as], a1)

—~

— 92

(<[V - 57 [a17 az“, a3> - (_1)@(ﬁ+@)<[v - 87 a3]7 [a17a2]>)

(_1)a2 3(<[V - 5» [a17a3]]> a2> - (_D@((Tﬁ-%)qv - av a2]7 [alva:ﬂ))

+
[ Nl = N = N

(~)TEFD((V — 8, [az, ag]], az) — (=) @SNV — 8, ax], [az, as]))

(<HV -0, al]v az], CL3> + (—1)a<[a1, [V - 57 az]], a3> - (_l)ﬁ(a-.-ﬁ)([v -0, a3]7 [G'l? a2]>

—1)®2 B([[V — 9, a1], as], az) — (—1)® ¥*%([aq, [V — 0, az)], az)

—1)™ ®(|V — 9, az], [a1, ag]) + (—1)" @BV — 9, ag], ag], a1)

_|_
—~ o~ N

[P 1
+ (—1)TE@FEE (g, [V — 0, ag]), a1) — ([V — 9, aa], [az»%])) = —§3<a1, laz, as]).
On the other hand,
93([dg, a1] + Day, az, az) — (—1)™ 2 g3([dg, az] + daz, a1, az)+
+ (—1)B@*®) g4 (e, ag] + Dag, a1, az)

- _7<<[d57 al]v [az,a;g]) =+ (_1)H<a1’ [[d87 a2]’ a3]> + (_1)a+@<a17 [a27 [dé’v a3“>+

+ (Day, [az, a3]) + (—1)" (a1, [Baz, az]) + (—1)" %2 (ay, [az, Dag])) = —%5(% laz, a3])

DN | =

so that we obtain

1—

dgs(ay, [az, az]) = —%dml, a2, as]) = 3B, a, as]) - %aml, laz, as)).
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Lastly, the condition Cjy is

ga([a1, az), az, ag) — (—1)@ Bg3([ay, as], az, as) + (—1)" @2+ g3([ag, ag), az, az)
+ (=)@ @) g ([ap, ag), ag, ag) — (—1)% TFa @HA T (g, 4], a1,a3)

+ (_1)((Tl+@)(@+ﬂ)g3([a37 a4],a1,a2) —0.

We have that

5 o, a2). s, aa]) = (—1)7 3 {fas, ag], [az, ag)) + (~1)F D (a3, ), [az, o]

.1 R ——
+ (—1)a1(a2+a3)§<[a2,a3]7 la1, ag]) — (—1)% @+a azra a4§<[a2’a4]7 la1, a3])

SE— |
+ (- )R ([0, aa], a1, az])

= (la1, a2}, [a3, as]) — (—=1)™ ®([as, as], [az, as]) + (—1)™ ¥ ([, a4), [a2, as))
= (a1, [az, [a3, as]]) — (—1)™ ™ (aq, [a3, [a2, aa]]) + (—1)™ %) (ay [as, [az, az]])

= <a’17 [a27 [CL3,CL4H - (_1)® E[a& [a2)a4“ - [[a27a3]7a4]> =0.

S

s}

O

Remark 4.6.6. If in Theorem 4.6.5 we use the cyclic form (f, g) = Tr(fg) we obtain the following

Loo morphism

A
X

]

I

g: Aggljd?fom('g:)l( &€
with components
g1(f) = Tr(uf) € A3

w(f.9) = 5 T (19 =3, flg — (-1 = 3,4l7) € A4

95(f>9,h) = 5 Te(flo, h]) € A%,

and g, = 0 for every n > 3, which can be seen to be the same as the Loo morphism in (4.4.3).

Remark 4.6.7. The homotopy class of the Lo morphism g depends on the choice of the connection.
This also holds for holomorphic connections, that is for connections where the Atiyah cocycle
vanishes u = 0 and therefore g1 = 0. This implies that g» factors to a bilinear graded skew-
symmetric map in cohomology

. . o A
g2 Ext’ (8585 % Ext) (6585 — Hi**1 (53

=2,
Ax

that depends only on the homotopy class of g.

In order to see that the above maps depend on the connection it is sufficient to consider the
example of a trivial bundle of rank 2 over an elliptic curve X. In this case, since Q%( is trivial,
every holomorphic connection is of type D = d + 6, where 6 is a 2 X 2 matrix with values in
H°(X,0%) and then V = 9 + [0, —]. Similarly Ext% (§585is identified with the Lie algebra
M>2(C) of 2 x 2 matrices with constant coefficients and therefore

92(a,b) = —%([9, alb — [0, bla) € HO(Q%) = HY < A)?g '

I
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If dz is a generator of H(X,QY) and § = Cdz, with C € M, 3(C), the conclusion follows by
observing that the rank of the bilinear map

M;5(C) x Ma2(C) = C, (A, B) %Tr([C, A|B — [C, B]A) = Tr(C|A, B)),

is equal to 0 when C is a multiple of the identity and is 2 otherwise.

Let F be a coherent sheaf on a complex manifold X equipped with a finite locally free
resolution & -'Then, via Theorem 4.6.5 and Remark 4.6.6, every connection of type (1,0) on the
resolution &“%ives a lifting of

mn: Ext i, F) - HEX, Q5H2)

to an Leo morphism
0 (o] Ax
g: Ak%ﬁom@){(é’ €5 tripl -

Ax

Corollary 4.6.8. Let F be a coherent sheaf on a complex manifold X admitting a locally free
resolution. Then every obstruction to the deformations of & belongs to the kernel of the map

m: BExtd (F,F) — H3(X, Q5[2).

If the Hodge to de Rham spectral sequence of X degenerates at E, then every obstruction to the
deformations of F belongs to the kernel of the map

o1 Ext%(F,F) = H3(X,0%),  o1(a) = — Tr(At(F) 0 a).

Proof. By the syzygy theorem it is not restrictive to assume that & admits a finite locally free
resolution & ~The map 7 lifts to an Leo morphism

g: A Hom§] (8585

G
Ay o]
422
X
and we have that the linear component g3 commutes with obstruction maps of the associated

A
deformation functors. By construction the DG-Lie algebra AT)éli?] has trivial bracket and hence

X
every obstruction of the associated deformation functor is trivial, as seen in Lemma 2.4.6.
If the Hodge to de gﬂ%am spectral sequence of X degenerates at F7 then the inclusion of

A
complexes Aﬁfl‘—f“é] - AT)gl__EZ] is injective in cohomology
X
H3(X,0%) — HA(X, 0% '2])

and the maps o, 7 have the same kernel. O
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Chapter 5

Cyclic forms on DG-Lie algebroids
and semiregularity

This chapter is based on the paper [49]; the initial objective was to carry out in the algebraic
case a construction analogous the one done for the complex case in [50], Section 4.6.

More in general, given a transitive DG-Lie algebroid (A, p) over a smooth separated scheme
X of finite type over a field K of characteristic 0 it is possible to define a simplicial notion
of connection V: RI'(X, Kerp) — RI'(X, Q% [~1] ® Kerp) and to construct an Le morphism
between DG-Lie algebras f: RT'(X,Kerp) RI(X, Q)s(l[Q]) associated to a connection and to a
cyclic form on the DG-Lie algebroid.

In a particular case of this construction, we obtain a lifting of the first component of the
modified Buchweitz—Flenner semiregularity map in the algebraic context, which implies that this
map annihilates all obstructions to deformations of coherent sheaves on X admitting a finite
locally free resolution. In Section 5.3, another application is given, to the deformation theory of
(Zariski) principal bundles on X.

5.1 DG-Lie algebroids, connections and extension cocycles
The goal of this section is to define K-linear operators
V: Tot(U, L) — Tot(U, Q% [~1] @ L)

called connections on the kernel .£* of the anchor map of a transitive DG-Lie algebroid. In order
to construct a connection, we introduce the notion of simplicial lifting of the identity. The section
ends with the definition of the extension cocycle associated to a simplicial lifting of the identity,
which generalises the notion of Atiyah cocycle. Different notions of Atiyah classes for DG-Lie
algebroids have been considered elsewhere in the literature, see e.g. [9, 13, 63].

Let X be a smooth separated scheme of finite type over a field K of characteristic zero, and
let Oy, 0L = Q%( /K denote its tangent and cotangent sheaves respectively. Often it will be useful
to consider the cotangent sheaf as a trivial complex of sheaves concentrated in degree one, so
as to have an inclusion Q4 [—1] — Q5 where Q= ®,0% [—p] denotes the algebraic de Rham
complex.

Definition 5.1.1. A DG-Lie algebroid over X is a complex of sheaves of ©x-modules A
equipped with a K-bilinear bracket [—, —|: A x A — A, which defines a DG-Lie algebra structure
on the spaces of sections, and with a morphism of complexes of Ox-modules p: A — Ox, called
the anchor map, such that the induced map on the spaces of sections is a homomorphism of
DG-Lie algebras. Moreover for any sections a1,az of A and f of Ox, the following Leibniz
identity holds:

la1, faz] = fla1,a2] + p(a1)(f)az.
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Example 5.1.2. The sheaf Ox is a trivial example of a DG-Lie algebroid concentrated in
degree zero, with anchor map given by the identity. A DG-Lie algebroid over Spec K is exactly a
DG-Lie algebra over the field K. Every sheaf of DG-Lie algebras over Ox can be considered as a
DG-Lie algebroid over X with trivial anchor map.

Definition 5.1.3. Let (A, p) and (B, o) be DG-Lie algebroids over X. A morphism of DG-Lie
algebroids ¢: A — B is a morphism of complexes of sheaves which preserves brackets and
commutes with the anchor maps:

A i B
X /
Ox.

Let (A, p) be a DG-Lie algebroid over X and assume that £ = Ker p is a finite complex
of locally free sheaves. Notice that on £ there is a naturally induced graded Lie bracket: for
sections x,y of L

[z,y] == [i2), i(y)];

where i: L — A denotes the inclusion. This bracket is Ox-linear, in fact for any sections x,y of
L and f of ©Ox one has

[z, fy] == [i(z),i(fy)] = [i(z), fi(y)] = fli(2),i(y)] + p(i(x))()y
= fli(x), i(y)] = fl=,y],
so that £ is a sheaf of DG-Lie algebras over Ox.

Definition 5.1.4. [54, Chapter 3] A DG-Lie algebroid (A, p) over X is transitive if the anchor
map p: A — Ox is surjective.

Let now (A, p) be a transitive DG-Lie algebroid over X, consider the short exact sequence
of complexes of sheaves

0 L — A L ey 0
and tensor it with the shifted cotangent sheaf Q% [—1] to obtain the short exact sequence

0 —— Q4[] oL 450l —1]ea 25 0k -11e6x —— 0. (5.1.1)

Because of the isomorphism
Ok [-1] ® Ox = Homgy (U, Ak [-1]) = Homgy (U, ) [-1],
one can consider Idg: € I'(X, Q% [~1] ® ©x) as an element of degree one.

Definition 5.1.5. A lifting of the identity is a global section D in I'(X,Q%[~1] ® A) such
that (Id®p)(D) = Idg: € T'(X, Q% [-1] ® Ox).

Since the map Id ®p is not in general surjective on global sections, a lifting of the identity
does not always exist. However a germ of a lifting of the identity, i.e., a preimage of Idg: in
0% [~1] ® A, always exists.

Example 5.1.6. For particular DG-Lie algebroids, the notion of lifting of the identity can be
related to the more familiar notion of algebraic connection. Let (§56g) be a finite complex of
locally free sheaves. Following [41, Section 5], define the complex of derivations of pairs

DX, eH'= {(h,u) € Ox x Hom(8TEY | u(fe) = fule) + h(f)e, Vf € Ox, eeé'j}.
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The complex @YX, 85'is a finite complex of coherent sheaves and the natural map
a: DX, 85— 0x,  (hu) — h,
which is called the anchor map, is surjective, see [41]. The graded Lie bracket is defined as
[(h,u), (h5u5] = ([h, BT, [u, uT),

where the (graded) Lie brackets on © x and #om(€5EH are the (graded) commutators of the
composition products. For f € Ox we then have that

[(h ), f(RSu] = [(h,w), (15 ful)] = ([, fBT, [u, fu)
= (h(f )hD+ FhhE- fhfh Fuu™ h(fuP— (=1 ™ Fut)
= (h(f)h"+ fh, b5, h()uF flu, u)

= f([h, h? [u, uT) +h )(h5uh

= fl(h,u), (hTuT] + af hﬂOXth9u9

hence (DX, 651 a) is a transitive DG-Lie algebroid over X. Define an algebraic connection on
the complex of locally free sheaves & s the data for every i of an algebraic connection on &,
i.e., a K-linear map D: & — Q%( ® & such that for e € &, f € Ox

D(fe) = darf ®@ e+ fD(e),

where d g denotes the universal derivation dyp: Ox — Ql A global algebraic connection on &
need not exist. The kernel of the anchor map « is the sheaf of DG-Lie algebras # om@x (&5EH!
the graded sheaf of ©x-linear endomorphisms of & Swith bracket equal to the graded commutator

[f.9] = fg— (~1)Tg,

and differential given by B
g+ [0s,9] = dsg — (—1)7g6% .

The short exact sequence in (5.1.1) in this case is isomorphic to

0 — om5) (6504 [-1] @ 60D, gL WIBP, 4 tHoy, O [-1]) = 0,

where the complex gg‘ is defined as the subcomplex of
DergfOx, Q% [-1]) x Homfe % [-1] © &
of elements (3,v), with 8 € DerglOx, Q% [~1]) and v € HomLETNL[~1] ® §H'such that

v(fz) = fo(e) + B(f) @

for all z € §~hnd f € Ox. In this case a lifting of the identity is exactly a global algebraic
connection on the complex of sheaves &~via the isomorphism Q% [-1] ® DX, 652 ng a
lifting of the identity D corresponds to K-linear maps DY & — Ql L[~1] ® & for all i such that
DY fe) = fDYe) + dyr(f) ® e for all f € Ox and e € &'.

We now define connections on £ = Ker p, the kernel of the anchor map of a transitive DG-Lie
algebroid (A, p) over X. Assume that L is a finite complex of locally free sheaves and fix an
affine open cover U = {U;} of X. The short exact sequence

Id 1 'dlI'Ql[ 1]

00— QY[-1eL —=Q[-1|ea —5 ®O0x —— 0
gives a short exact sequence of the corresponding semicosimplicial complexes of Cech cochains.
Consider the Thom—Whitney totalisation functor Tot described in Section 1.4, which is exact

and hence gives an exact sequence
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0 — Tot(U, QL [~1] @ £) "5 TPot (U, Q4 [~ 1] ® ) ' T Tot (U, Q% [-1] ® Ox) — 0.

Denote by d the differential on A and £, which can be extended to Q%[—1] ® A and to
Q% [~1] ® L by setting B
dnez)=(-1)edr=—n®dz.

Denote by drot the differentials on all the above Tot complexes: for Tot(U, Q% [~1] ® L) and
Tot(U, Q% [—1] ® A) the differential drot is equal to da + d, while for Tot(U, Q% [~1] ® O x) one
has that dtot is just da, where d 4 is the differential of polynomial differential forms on the affine
simplex, see Definition 1.4.3.

Because of the natural inclusion of global sections in the totalisation, see Example 1.4.5,
Idg: belongs to Tot(U, Q% [~1] ® ©x), where it has degree one.

Definition 5.1.7. A simplicial lifting of the identity is an element D of Tot(U, Q% [-1]®.A)
such that (Id ®p)(D) = Idg: in Tot(U, QL [-1] ® Ox).

It is clear that a simplicial lifting of the identity always exists and that D has degree one in
Tot(U, Q% [-1] ® A).
Remark 5.1.8. Notice that via the isomorphism
Q% [-1] ® Ox = Q% [~1] ® Derk(Ox, Ox) = DerlOx, Ok [—1]),
we have that (Id ®p)(D) = dgg € Tot(U, DergfOx, Q% [~1])).
In order to define a connection on £, it is necessary to define a Lie bracket
[—, =]: Tot(U, Q% [-1] ® A) x Tot(U,L) — Tot(U, Q% [-1] ® L),
induced by the bracket of the following lemma.
Lemma 5.1.9. There exists a well defined K-bilinear bracket
[—, —]: (%[~ @A) x L = Q% [-1]®L.

Proof. Denote by i: L — A the inclusion, take n ® a with n € Q%[~1] and a € A, and define
for z € L
[n®a,z]:=n®a,i(z)].

Notice that the Leibniz identity in Definition 5.1.1 implies that
[fax, az] = flas, az] — (=1)" ®p(az)(f)az.

Hence the bracket [n ® a, z] is well defined: for any f € Ox

n® fa,z] =@ |[fa,2] = n& (fla,z] — (=1)* “p(z)(f)a) = n ® fla,z]
= f77® [a’vl‘] = [f77®aax]'

It is clear that [y ® a,z] belongs to Q% [—1] ® L:

(Id®@p)([n® a,z]) = 1d®p)(n @ [a,z]) = n @ [p(a), p(z)] = 0.

O
Since the functor Tot preserves products, the map
[— =] (%[ @A) x L = Ok [-1]® L
induces a K-bilinear map
[—, —]: Tot(U, Q% [-1] ® A) x Tot(U, L) — Tot(U, W [-1] ® L), (5.1.2)

which is defined component-wise as the restriction of
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[—-]
A @ [ [-1] @ A) (Uigiy) ¥ An @ [[ L Uigi) —— Ap @ [[(Q% [~ 1] ® L) (Ui, )
[ ® (igein)s G @ (Wigiy )] = N @ ([(—1)%7 Bointy i wigein]),
for np, dp in Ap, tig..q, in (% [~1] @ A)(Uig-i,,) and uig...i,, in oL Uiy, )-

Definition 5.1.10. A connection on [ is the adjoint operator of a simplicial lifting of the
identity D € Tot(U, Q% [-1] ® A)

V = [D,—]: Tot(U,L) — Tot(U, Q% [-1] ® L),

where [—, —]: Tot(U, QL [-1] ® A) x Tot(U,L) — Tot(U, QL [~1] @ L) is the bracket in (5.1.2).
It is a K-linear operator.

We will now examine the relationship between connections and particular representatives of
extension classes. The short exact sequence

0 L A L ey 0 (5.1.3)

gives an extension class [u,] € Ext% (Ox,L). Tt is possible to give a representative of [u,] in the
totalisation Tot(U, Q% [~1] ® L) with respect to an affine open cover U of X.

Definition 5.1.11. An extension cocycle u of the transitive DG-Lie algebroid A is the
differential of a simplicial lifting of the identity D in Tot(U, Q% [~1] ® A), u = dtotD.

Notice that u belongs to Tot(U, QL [-1] ® «L):
(Id®@p)u = (Id ®p)dtot(D) = drot(Id ®p) D = drotIdq1 =0,

where the last equality is a consequence of the fact that Idg: is a global section and Q% [-1]® O x
has trivial differential (see Example 1.4.5). Note that u has degree two in Tot(U, Q% [-1] ® L)
and that dyotu = d1otdTotD = 0.
Using the isomorphisms
Qx[~1] ® L = Fomg, (Ox[1],L) = Fomg, (Ox,L)[—1],
the cohomology class of u belongs to
H?(Tot(U, Q% [-1] ® L)) = H*(Tot(U, Fomg, (Ox,L)[~1])) = H3(X, Homg, (Ox,L)[—1])
~ HY(X, #omg, (Ox,L)) = Extk (O, L).
This cohomology class does not depend on the chosen simplicial lifting of the identity: if
D and DVare two simplicial liftings of the identity in Tot(U,Q%[-1] ® A), we have that
(Id ®p)(D — DY = Idg1 —Idg1 = 0, so D — Dbelongs to Tot(U, Q% [~1] ® L) and dotD and
dtor DPdiffer by the coboundary dTot(DD— D). Tt is easy to see that the cohomology class of u is
trivial if and only if the short exact sequence in (5.1.3) splits.

Lemma 5.1.12. Let V: Tot(U,L) — Tot(U, QL [~1] ® L) be a connection on £, associated to
the simplicial lifting of the identity D € Tot(U, Q% [~1]®.A). Let u = drotD be the corresponding
extension cocycle, then for every = in Tot(U, L) we have that

V(dtotx) = [u, ] — d1ot V().

Proof. Recall that d denotes the differential of A and £, which can be extended to Q% [—1] ® A
and to Q% [—1] ® L by setting d(n ® x) = (—1)n ® dz = —1 ® dx. It is easy to see that for the
K-bilinear map [—, —]: (Q4[-1] ® A) x L — Q% [~1] ® L of Lemma 5.1.9,

dln @ a,z] = [d(n @ a),z] + (=1)""[n ® a, d].
A straightforward calculation then shows that for 2 € Tot(U, Q% [~1] ® A) and w € Tot(U, L),
dTOt[Z7 w] — [dTotZa Q,U} + (_1)E[Za dTOtw]7

and the conclusion follows from the fact u = drotD. O
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5.2 Cyclic forms and L., morphisms

This section describes cyclic forms on DG-Lie algebroids and illustrates how DG-Lie algebroid
representations give rise to cyclic forms. We then discuss induced cyclic forms on the Thom-
Whitney totalisation and the property of dtgt-closure. The central result is the construction
of a Lo morphism associated to a connection and to a dygt-closed cyclic form for a transitive
DG-Lie algebroid. This allows us to state the results of Section 4.6, [50] for a coherent sheaf
admitting a finite locally free resolution on a smooth separated scheme of finite type over a field
K of characteristic zero.

Let A be a DG-Lie algebroid over a smooth separated scheme X of finite type over a field K
of characteristic zero, with anchor map p: A — ©x. Assume that the kernel of the anchor map
L is a finite complex of locally free sheaves. Notice that for any a € A and = € L, the bracket
[a, z] belongs to L:

p(la, z]) = [p(a), p(z)] = 0.
Definition 5.2.1. A cyclic bilinear form on a DG-Lie algebroid (A, p) is a graded symmetric
Ox-bilinear product of degree zero on L = Ker p

<—,—>: L x L — Ox
such that for all sections x,y of £ and a of A

([a, 2], y) + (=1)7 *(z, [a, y]) = pla)({z,y))- (5.2.1)
Notice that the definition implies that for all z,y,z € £
(z,[y, 2]) = ([z,9], 2). (5.2.2)

These two properties will be discussed after giving some examples.
In the following two examples, the cyclicity of the forms will follow from Lemma 5.2.5.

Example 5.2.2. An example of cyclic form on (A, p) is induced by the Killing form. Consider
the adjoint representation as a morphism of sheaves of DG-Lie algebras

ad: L —>c7€0m(|9:)'((£,£), a— la,—]

and consider the trace map Tr: c%’om('o:)'( (L,L) — Ox, which is morphism of sheaves of DG-Lie
algebras (when considering Ox as a trivial sheaf of DG-Lie algebras). Then one can define the
form

(—,=): L' XL = Ox, (z,y)— Tr(adzady).
Example 5.2.3. For the DG-Lie algebroid @YX, §5'of Example 5.1.6,

0 —— Homb) (E5EY —— DX, 6T —— Oy 0,

a natural bilinear form on # om(lgz)'( (858 Yis induced by the trace map Tr: # om@‘):)'( (58N = ox
as follows:
Homg, (8565 x #omg, (65EH'— Ox,  (f,9) == —Tr(f9).
Example 5.2.3 explains the definition of cyclic form: (§.2.2) reflects the cyclicity property of
the trace map Tr: %om&'{(é’?@'—_ﬂ% Ox, Tr(ab) = (—1)® Tr(ba), while (5.2.1) is related to the

properties of the extension of the trace map to @ (X, &Y] for which we refer to [41].
The Leibniz identity of Definition 5.1.1

la, fz] = fla,z] + p(a)(f)z Yae A, ze L, feOx

can be restated by noticing that for all a in A the operator (p(a), [a, —]) belongs to @YX, L)
of Example 5.1.6. Hence there is a morphism of DG-Lie algebroids

ad: A — DX, L0).

The morphism ad: A — DX, L) restricts to the morphism ad: £ — E?fom('gz)'( (L,L) of
Example 5.2.2; so that the following diagram commutes
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0 L U A P Ox 0
Jad Jad H
0 —— Homg (L,L) — DX, L) —— Ox 0.

This motivates the following definition:

Definition 5.2.4. A representation of a DG-Lie algebroid (A, p) over X is a morphism of
DG-Lie algebroids §: A — DX, 5] where §™s a finite complex of locally free sheaves over
X:

DHX, &)

\/

Every representation 6: A — @'T-‘X,é?'—_)'induces a form (—,—)g: L X L — Ox: for any
x € L we have that a0 6(z) = p(x) = 0, so that

Ol L — FHomg, (65E
and using the trace map Tr: # om(igz)'( (8585 — Ox we can define for z,y sections of £
(z,y)g = Tr(0(z)0(y)).
Forms obtained in this way are cyclic:

Lemma 5.2.5. For any DG-Lie algebroid representation 6: A — @YX, §5'the induced form
(—,—)g: L x L — Ox is cyclic.

Proof. For a € A and x,y € L

{la, 2], )0 + (—=1)" *(@, [a,y])o = Tr(0([a, 2)O(y) + (1) "0(2)0([a, 1))
= Tr([0(a), 0(2)]0(y) + (—1)" *0(x)[0(a), O(y)])
= Tr(0(a)8()8(y) — (—1)"“*D6(2)8(y)6(a))
= Tr([0(a), 0(x)0(y)])

Notice that if @ # 0 then a belongs to £, so that 6(a) belongs to c’%om(%'( (65€%Yand it is clear
that Tr([0(a), 8(z)0(y)]) = 0, by the properties of the trace map.

The only remaining non-trivial case is when @ = Z + 7 = 0. Let {e}} with i =1, ,ny be a
local basis of £L* and let

Ola)(e) = Afel, 0(2)0(y)(ef) =) Bliej, Al Bjj € Ox,
J J

then

(@)0(x)0(y)(ef) — 0(x)0(y)0(a)(eF)
<a><ZBZ eb) — 8(x)8(y ><ZAZ ef)

:ZBZH —I—Z (ao6)( ZAZB]’CSI;

—ZBZAfsei—FZp( Bk )€; _ZAZB;ZI;
J

D> D

The trace of [#(a),0(x)8(y)] is hence equal to

> (= ZBZA%Zp( ZA@B;% =" (~1)*p(a)(BE) =

k i ki
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p(@)(D_(=1)*B) = pla) Te(0(2)8(y)) = p(a)((z,y)o)-

ki
]

For every i > 0, let Q% [—i] denote the sheaf Q% seen as a trivial complex concentrated in
degree i. Any cyclic form (—, —): L X L — Ox can be extended to a collection of ©x-bilinear
forms

(= =) (O[] @ L) x (Qx[—jl o L) = Q7 [i—j], i,j >0,
according to the Koszul sign rule, by setting for z,y € L, w € Q% [—i], an n € Qg([—j}

It is immediate to see that this form is cyclic in the sense that

(1b,a],y) + (=1)"(z, [b,y]) = Id@p)(0)((z,y)) Wb € Ax[-1]®A, Va,ye L,

where the bracket is the one of Lemma 5.1.9, and the anchor map has been extended to
Q% [~1] ® A by setting (Id®p)(w @ a) := w @ p(a).

Definition 5.2.6. A cyclic form (—, —): L x L — Ox is d-closed if for all z,w € L
(dz,w) + (=1)*({z,dw) = 0.

Lemma 5.2.7. For any DG-Lie algebroid representation 0: A4 — @, §5'the induced cyclic
form (—, —)p: L x L — Ox is d-closed.

Proof. Since 6|,: L — # om('gz)'( (58His a morphism of DG-Lie algebroids it commutes with
differentials: for z € L,

0(dx) = dgomrran(t(z)) = [ds, 0(x)].

For x,y sections of

Tr(0(d)0(y) + (—1)70(2)0(dy))
= Tr([de, 0(x))0(y) + (—1)70(x)[de, O()])
)= (=

= Tr(dsf(x)0(y 1)79(2)0(y)ds) = Tr([ds, 0(2)0(y)]) = 0.

O

<d.%', y>9 + (—1)§<$, dy)@

It follows from the properties of the Thom-Whitney totalisation functor Tot that every
collection of cyclic forms (—, —): (U [—i] @ L) x (W [—j] @ L) = Q' [—i — 4], with 7,5 > 0,
induces a collection of K-bilinear forms

(—,=): Tot(U, Qi [—i] @ L) x Tot(U, Vs [—j] @ L) = Tot(U, V5 [—i — j]).
Recalling Definition 1.4.3, the required forms are induced component-wise by the restriction of

4,0 [T (% [-118L) (Uigwin) x An@ [T (4 [=410L) Uig--i) = An@ [T QX7 [—i=i)(Uig-i,),

i+ in i+ in i+ in

(n @ (igein)s Wi @ Yigrin)) 7= Man (=17 Cooimdzio i yig.ni, ),
With T, 10 Ap, i, 0 (Q[—1] @ L) (Uigi,) and gigens, i (e [] © L) (Ui,
Let (Q%'= @,0% [—p],d4r) denote the algebraic de Rham complex. In the following, when
working with Tot(U, Q) the differential is denoted by drot if Q= @,0% [—p] is considered as

complex with trivial differential, and by dtot + dgr if it is considered as a complex with the de
Rham differential.
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Lemma 5.2.8. The form induced on the totalisation by a cyclic form (—, —): £ x £ — Ox is
cyclic: for all b € Tot(U, Q% [-1] ® A) and z,w € Tot(U,L) one has that

([by 2], w) + (~1)7 (2, [b,w]) = (1 @p)(B) (2, w))-
Moreover if the form (=, —): L xL — Ox is d-closed (Definition 5.2.6), then for the induced
form, for z € Tot(U, V[~ @ L) and w € Tot(U, V% [—j] ® L) we have that
(drotz, w) + (—1)7 (2, drorw) = drot(z, w).
The above condition will be called dtot-closure.

Proof. For the first item, since everything is defined component-wise, it suffices to prove that for
every a € A, ® [[(Q4[-1] ® A)(Uiy..i,,) and every z,y € A, @ [[L(Usy..4,,)

([a, 2], y) + (=1)" *(@, [a,y]) = Id ®p)(a)((z,y))

for every n > 0 . By linearity let a = wy, ® 2, with w, € A, and z, € [[(Q%[-1] ® A)(Us,..4,,);
let © =n, ® x,, and y = ¢p, @ Yp, With 7y, ¢ in A, and zy,, yp, in []L(Uig.s,, ). Then
([a,2],y) + (=1)* (=, [a, y]) =
([lwn ® 2, N ® Tnl, ¢ ® Yn) + (=1) (M ® 2, [wn ® 2n, Pn @ Ynl) =
(=1)™ * {wnihn © [z, Tn], $n @ Yn)+
(1) F (0 ® T, (1) b © [z, ) =
(= 1) E T (2, @], )+
A+ (= 1)F P T b (T, (20, Yn])) =
— 1) G Z b ([, Bl ) + () T (@, [z, n]) =
(_1>¢7(Z+E)+nn W M (Id ®@p)(2n) ((Tn, yn)) = (Id®@p)(a)((z,y)).
For the second item, recall that dyot is the differential on Tot(U, QE when considering Q)'(j

as a complex with trivial differential. Again, since everything is defined component-wise, it is
sufficient to prove that

/—\

<dT0t(77n & xn)a Wn®yn> + (_1)ﬁ+n7<77n X T, dTOt(Wn & yn)> = dT0t<77n X Ty, wn ® yn>a
for N, wn € Ay, and x, € [[(Q[—i] ® L) (Uiy.i,,) and y, € [[(Y[—4] @ L) (Usy..i,,). Then

<dTot(77n ® xn)a Wn ® yn) + (_1)H+n7<77n X Ty, dTOt(wn & yn)> =

+ (=1)T <"7n ® Zn, da,Wn @ Yn + (1) wp ® dyn)

= (=1)%" P d g, (n)wn (T, yn) + (1) EF Dy, (dag, yn)+
+ (—=1)%* ”n+<wn+1>% da, (wWn) (&, yn)+
o+ (1) T o (2, dyn) =
(—=1)%" Fd g, (npwn ) (@, yn) + (= 1) T Dy 00 (dav, yn )+

)W
-1)* <xn7df‘/n>) = (= 1)@ HdA (Mnwn ) (Tn, Yn) =
<77 ®xn7wn®yn> = dT0t<77n®$n7wn®yn>

Q‘/‘\

where dy4, denotes the differential on A,, the differential graded algebra of polynomial differential

forms on the affine n-simplex.
O
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Corollary 5.2.9. Let D in Tot(U, QY [-1] ® A) be a simplicial lifting of the identity and let
V =[D,—,]: Tot(U,L) = Tot(U, Q% [-1] ® L)
be its associated connection, as in Definition 5.1.10. Then for any cyclic form
(—,—): Tot(U, Qi [—i] @ L) x Tot(U, Y [—j] @ L) — Tot(U, QI [—i — j]),
with 7,7 > 0, we have

(V(@),9) + (-=1)"(z, V(y)) = darz,y)
for z,y € Tot(U,L).

Proof. It follows from the cyclicity of the form and by Remark 5.1.8. O

The next part is dedicated to defining an Lo morphism associated to a connection and to a
drot-closed cyclic form on a transitive DG-Lie algebroid.
Recall that since the functor Tot sends semicosimplicial DG-Lie algebras to DG-Lie algebras,

the complex Tot(U, L) is a DG-Lie algebra. The complex of O x-modules Q)S(l = Oy dar, Qk can
be considered as a sheaf of abelian DG-Lie algebras, and hence it gives rise to a semicosimplicial
abelian DG-Lie algebra; therefore the complex Tot(U, 9)5(1[2]) is an abelian DG-Lie algebra.

Theorem 5.2.10. Let (A, p) be a transitive DG-Lie algebroid over a smooth separated scheme
X of finite type over a field K of characteristic zero. Let L' = Ker p be a finite complex of locally
free sheaves and let (—, —): Tot(U, V% [—i] @ L) x Tot(U, ¥ [—j] @ L) — Tot(U, Q57 [—i — j]),
i,j > 0, be a cyclic form which is drec-closed. For every simplicial lifting of the identity
D € Tot(U, Q% [-1] ® A) there exists a Lo morphism between DG-Lie algebras on the field K

f: Tot(U, L) Tot(U, QFH2])

with components

f3(-ﬁU,y,Z) = _%<x7 [ya Z]>7
Jn=0Vn =>4,

where V = [D, —]: Tot(U,L) — Tot(U, Q% [—1] ® L) denotes the connection associated to the
simplicial lifting of the identity D, and u = dtotD its extension cocycle.

Proof. The strategy of the proof it to check that the conditions C; of Definition 1.3.13 hold for
n =1,2,3,4. In fact, since f,, = 0 for n > 4, the conditions are automatically satisfied for n > 5.

Denote by dtot the differential on Tot(U,L), and by dyot + dgr the differential on
Tot(U, Q%' [2]). Condition Cy requires that

fi(dtotx) = (dTot + dar) f1(x);

notice however that since u belongs to Tot(U, Q% [~1] ® L), (dtot + dyr)fi = drotfr in
Tot(U, Q)g(l [2]). Then by the dyot-closure of the cyclic form and by the fact that u is closed:

fi(drotz) = (u, drorw) = (—1)"drot(u, x) — (—1)“(dTottt, ) = drot{u, )
= dtot f1().

For n = 2 the condition is

(C2): faldrotz, y) + (—1)" fo(x, drory) = f1([z,y]) — (drot + dar) f2(z, y).
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By definition of f, we have again that (dvot + dar)f> = dotf2, and then, using Lemma 5.1.12,
faldrorz, y) + (=1)% fa(x, dvory) =
(Vo). ) — (~)E DT ), droge) + (~1)7 (V). drors) +
— (=1)" YV (drory), 7)) =
(— {droc (@) ) + (o], ) — (~)E DIV ), o)
+ (C)7(V (@), drow) + (<) P (). 2) — (~1)7 ¥([up]. ) =
£ (G [ 0]) — (17 [y, a]) — droe(V (), ) + ()7 Prae( ) ) =
(o, [,9]) — ebror (9 ), 9) — (<17 TV (y), 2)) = fullo ) — droua(a, ).

Condition Cj is the following:

DN |

(drot + dar) f3(z, y,2) =
fa(drorr,y, z) = (=1)7 ¥ fa(dvory, z, ) + (=1)°D f3(drorz, z,y)+
= fo([z,9), 2) + (=1)7 Z o[, 2], y) = (=170 fa([y, 2], @),

and we begin by noting that by the dyot-closure

fa(drorz, y, 2) — (—1)% ¥ fa(droty, =, 2) + (—1)7@D f3(drorz, z,y) =

B %«dTOtl‘a [ya Z]> - (_1)E §<dTOty7 [CL‘, ZD + (_1)E(E+@) <dT0tZ’ [1:’ y]>) =

B %«dTotxa [y, 2]) = (=17 ¥(ldroty, 2], z) + (=1)"([2,y], drot2)) =

- %(<dmw, [y, 2]) + (=1)"([2, droty], 2) + (=1)"(@, [y, dror2])) =

— 5 (o, [, ) + (1), draely, =) = —roc(e, 9, 2]) =

dTOtf3(x7 Y, Z)'

On the other hand, by Corollary 5.2.9
—fz([w yl:2) + (=) * fa([z, 2], y) — (=1)7* fo([y, 2], ) =
(<V([x y)), 2) = (=1)7F(V(2), [, y]) — (=1)Y *(V([z, 2]), y)+
+ (D" UV(y), [z, 2]) + ()T ([y, 2)), 2) = (V(2), [y,2]) =
{([V(2),9],2) + (=12, V(1)], 2) = (=1)7ED(V(2), [z, y])+
) 1Y 7 [
)

(=17 *{[V(2),2l,y) = (1) 72, V(2)].y) + (1) "(V(y). [, 2])+
()" (y), 2], 2) + (17T D[y, V()] 2) — (V(2), [y, 2])) =

— ST 2D + ()P, DIy, 210) = — ydan(a [y, =) = dafale, v, 2).

| N
K
<

_l’_

Lastly, condition Cy is

f3(lax, az), az, ag) + (—1) @D f3([ag, ag), a1, a2)+
+ (1)) f3([a, ag], a1, aa) — (—1)™ @I f3([ap, ag), a1, a3)
— (—=1)™ % f3([a1, as), az, as) + (—=1)" %) f3([a1, aa], az, az) = 0
By the graded Jacobi identity we have that

1 _

— 5 ({le1, a2, [az, aa]) = (=1)™ " ({[as, a3, [az, aa])+
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+ (=1)™O) ([ay, g, [az, ag)) + (1) @D (a5, a4], a1, az]) +
— (—1) TS T (05, a], ay, ag]) + (=1)T =T ([az, ag], [a1, aa)))
~((la1, a2}, (a3, aa]) — (=1) " ([as, as], [az, aa])+
+ (1)) (a1, aa], [a2, a3))) = —((as, [az, [ag, aa]])+
— (=)™ ®(ay, [as, [az, aa]]) + (~1)" T (ay, [ag, [az, as]])) =

—{ay, [az, [ag, aa]] — (=1)™ *[ag, [az, as]] — [laz, ag], as]) = 0.

O

We can now state the results of Section 4.6 for a coherent sheaf admitting a finite locally

free resolution on a smooth separated scheme X of finite type on a field K of characteristic zero.

Remark 5.2.11. It is not very restrictive to require that a coherent sheaf on X has a finite
locally free resolution: in fact, by [34, III, Exercises 6.8, 6.9] every coherent sheaf on a smooth,
Noetherian, integral, separated scheme admits a finite locally free resolution.

Let (85Hg) be a finite complex of locally free sheaves. Consider the DG-Lie algebroid of
derivations of pairs @ X, §5of Example 5.1.6, [41], and the short exact sequence

0 — Homg, (858 —— DHX, H —— Ox 0;

it was noted in Example 5.1.6 that by tensoring with Q% [—1] one obtains

0 — Ftom5) (850 [~1] @ 60D, gL CDE5, g0 (Ox, QL [-1]) = 0,
Fixing an affine open cover U of X and applying the Tot functor, we get the short exact sequence
0 — Tot(U, %omg(é’;ﬁ&[—l] ® &Y) — Tot(U, §57) — Tot(U, Derk (Ox, Q% [-1])) — 0.

In Example 5.1.6 we have remarked that a lifting of the identity in gQ'? is equivalent to a global
algebraic connection on every component &; hence a lifting to Tot(, ggﬁ' of the universal
derivation dgr: Ox — Q%[—1] in Tot(U, Derk(Ox, Q% [~1])) can be termed a simplicial
connection on the complex of locally free sheaves € -'As seen in Example 5.2.3, a natural cyclic
form to consider is the one induced by

Homg, (65ESx #omg, (8585 = Ox, (a,b) — — Tr(abd),

where Tr: %omé):)'( (8‘;‘8@ — Ox is the usual trace map. Then the Lo, morphism of Theo-
rem 5.2.10 yields :

Corollary 5.2.12. Let &~be a finite complex of locally free sheaves on a smooth separated
scheme X of finite type over a field K of characteristic zero. For every simplicial connection
D e Tot(u,gQClb there exists an Lo, morphism between DG-Lie algebras on the field K

g: Tot(U, #omb]) (856D Tot(u,Q5(2))
with components
g1(x) = — Tr(ux),
0.y) = —5 Tr(V(x)y — (=17 T9(y)),

1
gg(fE,y,Z) = §TI'(LU, [yuz])v
gn = 0Vn > 4.
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Corollary 5.2.13. Let F be a coherent sheaf admitting a finite locally free resolution &~bn
a smooth separated scheme X of finite type over a field K of characteristic zero. Then every
simplicial connection on the resolution &=gives a lifting of the map

m: BExtidF, F) — HEX, 0F12)
to an Lo, morphism
g: Tot(U, #omb) (85ED)  Tot(U, QF[2)).

Corollary 5.2.14. Let & be a coherent sheaf admitting a finite locally free resolution on a
smooth separated scheme X of finite type over a field K of characteristic zero. Then every
obstruction to the deformations of F belongs to the kernel of the map

7 Ext3 (F,F) — HA(X, 0512)).

If the Hodge to de Rham spectral sequence of X degenerates at F1, then every obstruction to the
deformations of F belongs to the kernel of the map

o1: Ext3(F,5) — H3(X,0%), o1(a) = — Tr(At(F) o a).

Proof. If §™s a finite locally free resolution of F, the DG-Lie algebra Tot(U, # om('g:)'( (&58H)
controls the deformations of F, see Section 2.5, [24]. According to Corollary 5.2.13, the map

m: Extd (F,F) - H2(X, Q512)
lifts to an Lo morphism
g: Tot(U, #omb) (85E)  Tot(u, 05 2),

whose linear component g1 commutes with obstruction maps of the associated deformation
functors. By construction the DG-Lie algebra Tot(U, Q§1[2]) is abelian and therefore every
obstruction of the associated deformation functor is trivial.

If the Hodge to de Rham spectral sequence of X degenerates at Fy then the inclusion of
complexes Tot(U, Q% [1]) — Tot(U, Q§1[2]) is injective in cohomology, so that H3(X, Q%) —
H?(X, Q§1[2]) and the maps o and 7 have the same kernel. O

Remark 5.2.15. In the setting of Theorem 5.2.10, if the cyclic form is induced by a DG-Lie
algebroid representation 6: A — .CD'%'X , 8'—_)! the Loo morphism can be obtained up to a sign
from the the Loo morphism of Corollary 5.2.12 as follows. Let D € Tot(U, Q% [~1] ® A) denote a
simplicial lifting of the identity, and denote by Id ®8: Tot(U, Q% [-1] ® A) — Tot(U, Q% [-1] &
DX, ED) = Tot (U, ggﬁ the induced map on the totalisation. Denoting as usual by « the anchor
map of the transitive DG-Lie algebroid @YX, 5} it is clear that (Id ®6)(D) is a simplicial
lifting of the identity in Tot(U, Q% [~1] ® DX, &5):
(Id®@a)(Id®0)(D) =Id®@(a o 0)(D) = (Id ®p)(D)
= Idg: € Tot(U, Q% [-1] ® Ox).
Let u = dtotD € Tot(U, Q% [~1] ® L) denote the extension cocycle associated to D, then
(Id ®0)(u) = (Id ®0)(d1otD) = drot(Id ®0) (D).

Therefore the Lo morphism f: Tot(U,L)  Tot(U, Q§1[2]) associated to D and to (—, —)g is
the composition of the DG-Lie algebra morphism

6: Tot(U,L) — Tot(U, Fomg, (65ED)
and of the Lo morphism
—g: Tot(U,dtomg, (658D Tot(U, QF[2])
associated to the simplicial lifting of the identity (Id ®0)(D) and to the cyclic form (a,b) — Tr(ab).
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5.3 The L, morphism for the Atiyah Lie algebroid of a principal
bundle

Since Lie algebroids arise naturally in connection with principal bundles, we give an application
of the Lo morphism constructed in Theorem 5.2.10 to the deformation theory of principal
bundles.

Let X be a smooth separated scheme of finite type over an algebraically closed field K of
characteristic zero, let G be an affine algebraic group with Lie algebra g, and let P — X be a
principal G-bundle on X. By G-principal bundle we mean a G-fibration which is locally trivial
for the Zariski topology, see e.g. [73]. We begin by finding a DG-Lie algebra that controls the
deformations of P, using an argument similar to those in [11, 59, 74] . Let Artk be the category
of Artin local K-algebras with residue field K. For any A in Artk denote by my4 its maximal
ideal and by 0 the closed point in Spec A.

Definition 5.3.1. [11, 20] An infinitesimal deformation of P over A € Artg is the data of a
principal G-bundle P4 — X x Spec A and an isomorphism 6: i"(P4) = P.

P—— Py

| [

X 1y X x Spec A.

Two deformations (Py4,6) and (P4, 6Y are isomorphic if there exists an isomorphism of principal
G-bundles \: P4 — PY such that § = 60 i*()).

This defines a functor Defp: Artk — Set such that Defp(A) is the set of isomorphism
classes of deformations of P over A € Artk. For every A € Artg, the set Def p(A) contains the
trivial deformation P x Spec A — X X Spec A.

Fix an open cover U = {U;} of X such that P is trivial on every U;, and let {g;;: U;; — G}
denote the transition functions for P. Let g be the Lie algebra of G.

e Let ad P = P x© g denote the adjoint bundle of P, with transition functions {Ady,; }, and
let ad(P) denote the sheaf of sections of the vector bundle ad P.

o The group G acts on itself by conjugation; denote by Ad P = P x& G the associated bundle
corresponding to this action. Recall that I'(X, Ad(P)) = Gauge(P), where Gauge(P) is
the group of bundle automorphisms of P.

There is a one to one correspondence between first order deformations of P, i.e., deformations
over K[t]/(t?) € Artk, and HY(X,ad(P)), see e.g. [20, 74]. This implies that on every affine
open set the deformations of P are trivial.

Lemma 5.3.2. Let P x“ (g @ my) be the associated bundle induced by the action Ad®1d: G x
g®mu — g®myu. Then there is an isomorphism

I'(Px%(g@my)) 2T (ad(P)) @ma.
Proof. A section of P x“ (g ®my) is the data of
{wi: Ui > g@my | wi(p) = (Adgij(p) ®@Id)w;(p) Vp € Ui}

Let t1,--- ,t, be a basis of the finite dimensional vector space my4, then for every p € U; one
can write w;(p) = > 1, hi x(p) ® ty. Since the action of G on g ® my4 is defined as

g-(z®t)=Ady(z) ®t,

the maps h; j are such that h; ;(p) = Adgij(p) hj(p) for every p € Uy;.
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An element of I'(ad(P)) ® m4 is a finite sum Y, g ® t, with n; sections of ad P, so that
each 7 is the data of

(ks Ui = 0 | nii(p) = Adg,, ) k5 (p) VP € Uis}.

Then, setting (n;; ® tx)(p) = Nk,i(p) ® ty, for every p € U;, the data {ng,; @ ty: U; - g@ma} is
exactly a section of P x% (g @my).
O

Lemma 5.3.3. For every A € Artk there is an isomorphism of groups

exp(I'(ad(P)) @ my) = { automorphisms of the trivial }

deformation P x Spec A

Proof. Denote by G°(A) the group of morphisms f: Spec A — G such that f(0) = Idg, and
recall that there is an isomorphism of groups exp(g ® m4) = G°(A) (see e.g. [72, Section 10]).
The group structure on G°(A) is induced by the group structure on G, while exp(g @ my) is a
group with the Baker—-Campbell-Hausdorff product. By Lemma 5.3.2

L(ad(P)) ®@my ZT(P x% (g@my)),

so that we can work with exp(T'(P x% (g @ my))). Consider the associated bundle P x& G9(A),
induced by the adjoint action of G on G°(A); the isomorphism exp(g ® ma) = G°(A) induces
an isomorphism exp(T'(P x& (g ®@my))) 2 T(P x% G°(A)). In fact, a section of P x% (g @ my)
is the data of

{ni: Ui »> g@ma | ni(p) = (Ady,; ) ®Id)n;(p) Vp € Usj},

and composing with the exponential exp: g ®@ my4 — GO(A) we obtain

{expon;: Ui — G°(A) | exponi(p) = gi;(p) expon;(p)gi;(p) ™" Vp € Uy}

Notice that this data is equivalent to

{)\i: U; x SpecA — G Ai(p, 0)

Idg Vp e U;, }
Ai(p) = gij(p) ’

i(p)gij ()™t Vp € Uy

>

which is a section of the associated bundle Ad(P x Spec A) = (P x Spec A) x& G, where G acts
on itself by conjugation.

For any G-principal bundle @ the global sections of the associated bundle Ad(Q) = Q x& G
correspond to bundle automorphisms of ). Therefore the {\;} give an element F' € Gauge(P x
Spec A), and the condition \;(p,0) = Idg for all p € U; is equivalent to the fact that the
automorphism F' induces the identity when restricted to P, so that F' is an automorphism of
the trivial deformation. O

In the following, Zi 4(PYQ) and Ha1 4(PYQ) will denote the functors associated to the semi-
cosimplicial Lie algebra ad(P)(U), defined in Subsection 2.4.1.

Proposition 5.3.4. Let U = {U;} be an a [nelopen cover of X and let ad(P)(U) be the
semicosimplicial Lie algebra of Cech cochains:

[1; ad(P)(Ui) —= 1, ad(P)(Uij) ——= Ilijx ad(P)(Uijr) — -
4 7 2,] v] 1,5,k ijk <

There is a natural isomorphism of functors HiJ(P)(u) — Defp.
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Proof. Recall that all deformations of P on an affine open set are trivial, as mentioned above.
Fix A € Artk; by Lemma 5.3.3 an element f of Zalaz(P)(U)(A) is the data for every U;; of
isomorphisms f;;: Ply,; X Spec A — P|y,; x Spec A, which restrict to the identity P|y,, — Plu,,
and such that f;; = fijfj for all 4,7, k.

The last condition means that the { f;;} glue to obtain a principal G-bundle P4 — X x Spec A
and isomorphisms f;: Pa|y,xspeca — Plu, x Spec A such that f;; = f; fj_ 1. Such isomorphisms
coincide when restricted to f;: iq—'PA\UZ. xspecA) — P|y; and hence glue to an isomorphism of
principal bundles i (1) — P. This means that an element of Z* apyany(A) gives a locally trivial
deformation of P over A € Artg.

An element of exp([]; ad(P)(U;) ® mu) is again by Lemma 5.3.3 the data, for every Uj,
of automorphisms \;: P|y, X Spec A — P|y, x Spec A which restrict to the identity P|y, —
Ply,. Two elements f = {fi;j},h = {hi;} of Zi&(P)(u)(A) are equivalent under the action of

A € exp([]; ad(P)(U;) ® my) if and only if h;; = )\ifij)\j_l for all 4, j.

fi
PAly;<speca —— Py, x Spec A

| Js

O
Pilu,<spec A B P|y, x Spec A

This can be expressed as hi_l)\i fi = hj_l)\j fj, which means that the {\;} glue to a bundle
isomorphism A: P4 — P where Py is the deformation corresponding to {fi;}, and P to {h;;}.
Since each A; restricts to the identity on P|y;, A is an isomorphism of deformations. O

Corollary 5.3.5. If U = {U;} is an a [nelopen cover of X, there is an isomorphism

Defp = Defrotqu,aa(py)>
i.e., the DG-Lie algebra Tot(U,ad(P)) controls the deformations of P.
Proof. Consequence of Propositions 5.3.4 and 2.4.11 . O

We now specialise the Lo, morphism of Section 5.2 to the Atiyah Lie algebroid of the principal
G-bundle P.

A Lie algebroid is DG-Lie algebroid (Definition 5.1.1) concentrated in degree zero. Consider
the Atiyah Lie algebroid of the principal bundle P introduced in [3], which is a Lie algebroid
structure on the sheaf Q of sections of the vector bundle QQ = Op/G, the quotient of the tangent
bundle of the total space © p by the canonical induced G-action. There is a canonical short exact
sequence of locally free sheaves over X

0 —— ad(P) — Q —25 ©x —— 0, (5.3.1)

where ad(P) denotes the sheaf of sections of the adjoint bundle ad P = P x“ g and p: Q — Ox
is the anchor map. The vector bundle () is the bundle of invariant tangent vector fields on P,
and the Lie bracket on Q is induced by the Lie bracket of vector fields.

Definition 5.3.6. [3] A connection on the principal bundle P — X is a splitting of the exact
sequence in (5.3.1). The Atiyah class of P is the extension class Atx(P) € Exty (0x,ad(P)) =
HY(X, 0% ® ad(P)) of the short exact sequence (5.3.1).

Therefore the Atiyah class Atx (P) is trivial if and only if there exists a connection on P.

Let Q% denote the cotangent sheaf, and Q% [—1] the cotangent sheaf considered as a trivial
complex of sheaves concentrated in degree one. As in Section 5.1, one can tensor the short exact
sequence (5.3.1) with Q4 [~1] to obtain a short exact sequence of complexes of sheaves

0 —— Ok[~1]@ad(P) —— O[-1]®9 &0l [-1]eex — 0.

Fix an affine open cover U = {U;} of X; as in Section 5.1 the short exact sequence above
induces a short exact sequence of DG-vector spaces
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0 — Tot(U, Q% [~1] ® ad(P)) — Tot(U, QL [~1] ® Q)' Lot (U, Q% [-1] ® Ox) — 0,

and we denote by dtot the differentials of the above complexes.

It is easily seen that a lifting of the identity Idg: € T'(X, Q% [-1]®0x) to D € T(X, Q% [-1]®
Q) is equivalent to a splitting of the exact sequence in (5.3.1). Hence in the case of a principal
bundle P, a lifting of the identity can be identified with a connection on P. Therefore we call
a preimage of Idg:1 in Q%([—l] ® Q a germ of a connection on P, and we use the following
terminology:

Definition 5.3.7. A simplicial connection on the principal bundle P is a lifting D in
Tot(U, Q4 [~1] ® Q) of the identity Idg: in Tot(U, VL [-1] ® Ox).

Definition 5.3.8. The Atiyah cocycle of P is
u = drotD € Tot(U, V% [~1] @ ad(P)).

It is natural to use the name Atiyah cocycle instead of extension cocycle of Definition 5.1.11,
because its cohomology class is equal to the Atiyah class of Definition 5.3.6.

As in Definition 5.1.10, given a simplicial connection D € Tot(U, Q% [~1] ® Q) it is possible
to define an adjoint operator

V = [D, —]: Tot(U,ad(P)) — Tot(U, % [-1] ® ad(P)).

A cyclic form on the Atiyah Lie algebroid Q is a symmetric bilinear form (—, —): ad(P) x
ad(P) — Ox such that for all z,y € ad(P) and g € Q,

(lg. =], ) + (x, [, y]) = p(0) (=, ),
where p: Q — ©x is the anchor map of the Atiyah Lie algebroid Q.

Example 5.3.9. The cyclic form induced by the adjoint representation of a DG-Lie algebroid
of Example 5.2.2 in this case can be constructed in an equivalent way, starting from the Killing
form of the Lie algebra g of the group G:

K:gokg— K, K(g,h)=Tr(adgadh).

Take z,y in ad(P)(U) and let U = |J; U; with U; open sets trivialising the principal bundle P,
then
x=A{x;: Ui — g | xi(p) = Adgij(p) zj(p) Vp € Ui},

and analogously for y. Define (z,y) as {(z;,v;): U; — K}, where for p € U,

(i, yi) (p) = K(xi(p), yi(p))-

This is well defined because the Killing form is invariant under automorphisms of the Lie algebra
g, so that for p € Uj;

K(zi(p),yi(p)) = K(Ady,, ) zj(p), Ady,, ) yi(p)) = K(x;(p), y;(p))-

Recall that Tot preserves multiplicative structures, hence Tot(U, ad(P)) is a DG-Lie algebra.

In the sequel, Tot(U, Q)S(l [2]) = Tot(U, Ox[2] LILN Q% [1]) is considered as a DG-Lie algebra with
trivial bracket; its differential is denoted dot + dgr. Theorem 5.2.10 then yields the following.

Corollary 5.3.10. For every simplicial connection D on a principal bundle P on a smooth
separated scheme X of finite type over an algebraically closed field K of characteristic zero,
endowed with a drot-closed cyclic form (—, —): Tot(U, Q% [—i] ® ad(P)) x Tot(U, Wy [—j] ®
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ad(P)) — Tot(U, Q7 [~i — 4]), i,j > 0, there exists an Lo morphism of DG-Lie algebras on
the field K
f: Tot(U,ad(P))  Tot(U,Q52),

with components

fZ(xa y) =

fol,9,2) = =3, 2],

fn=0Vn>4.

As seen in Remark 1.3.14, the linear component f; of the Loo morphism induces a map of
graded Lie algebras

f1: H ot (U, ad(P))) — H"CTot(U, Q5 [2])),

which, since the open cover U is affine, becomes
fi: HYX, ad(P)) — HYX, 0F(2)).

Corollary 5.3.11. Let P be a principal bundle on a smooth separated scheme X of finite type
over an algebraically closed field K of characteristic zero and let

Tot(U, U [=i] ® ad(P)) x Tot(U, Wy [—j] @ ad(P)) —— Tot(U, 257 [—i — j]),

for i,57 > 0, be a drtot-closed cyclic form. Then every obstruction to the deformations of P belongs
to the kernel of the map

fi H(X,ad(P)) - H(X,QF'2)),  fa(x) = (At(P), ),
where At(P) denotes the Atiyah class of the principal bundle P.

Proof. The proof is analogous to the one of Corollary 5.2.14: the linear component of the Leo
morphism of DG-Lie algebras of Corollary 5.3.10 induces a morphism in cohomology which
commutes with obstruction maps of the associated deformation functors, and the deformation
functor associated to an abelian DG-Lie algebra has trivial obstructions. By Corollary 5.3.5,
if U = {U;} is an affine open cover of X, the DG-Lie algebra Tot(U,ad(P)) controls the
deformations of P and an obstruction space is H?(Tot(U,ad(P))) = H?(X,ad(P)). Since the
DG-Lie algebra Tot(U, Q)S(l [2]) is abelian, we obtain that f1 annihilates all obstructions.

O
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Chapter 6

Semiregularity maps and
deformations of modules over Lie
algebroids

This chapter is based on the paper [5], where we generalise the results of [4] to produce Leo
liftings of all the components of a semiregularity map associated to a locally free A-module and
a Lie pair (£, A) on a smooth separated scheme X of finite type over a field K of characteristic
0. For every flat inclusion of Lie algebroids A C oL we introduce semiregularity maps and prove
that they annihilate obstructions, provided that the Leray spectral sequence of the pair (£, A)
degenerates at Fq. We also determine a DG-Lie algebra controlling deformations of a locally
free module over a Lie algebroid A. The main results are described in detail in Section 6.1, after
giving the necessary definitions.

By considering the Lie pair (Ox,0), one obtains the classical Buchweitz—Flenner semiregu-
larity map and hence the results of Chapter 4 for a locally free sheaf in the algebraic setting.

6.1 Outline of the main results

The main goal is to extend the results of [4], Chapter 4 to locally free modules over a Lie
algebroid A on a smooth separated scheme X of finite type over a field K of characteristic
0, which is the data of (A, [—, —],a), where A is a locally free coherent sheaf of ©x-modules,
[—,—] is a K-linear Lie bracket on A, a: A — Ox is a morphism of sheaves of Ox-modules

commuting with the brackets and the Leibniz rule holds:
I fm) = a@)(fym + fllm],  Vim €A, f € Ox.
By definition, a locally free A-module is a pair (&,V), where & is a locally free Ox-module, and
V: A — Homk(8,8), 1+— V],
is a flat A-connection, i.e., an ©x-linear map such that:
Vi(fe)=a(l)(fle+ fVi(e), VIieA, f€Ox, ecé&

and such that its curvature V2(I,m) = [V}, Vy] — V[, vanishes identically.

When A = ©x with anchor map the identity, then the notion of 4 -connection reduces to
the usual definition of algebraic connection. As seen in Section 3.3, the Atiyah class of a locally
free sheaf can be defined as the obstruction to the existence of a global algebraic connection.
In other words, the Atiyah class of & can be defined as the obstruction to the lifting of the
(unique) O-connection on & to a ©-connection; in view of the generalisation we can also write

At(8) = Atg o(8).
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By a straightforward generalisation, we can replace © with A and define At 7/9(€) as the
obstruction to the existence of an A-connection on &; however, this generalisation does not lead
to anything new from the point of view of semiregularity maps and deformation theory.

Instead, we are interested here in the definition of a class At 7(&) in the following situation:

1. A C JL is an inclusion of Lie algebroids such that the quotient sheaf £/ A is locally free;
2. (8,V) is a locally free A-module.

In the above situation the quotient sheaf L'/ A carries a natural structure of A-module given
by the Bott connection VB: A — &ndy (L /A, L) A), VB(x) = [a,z] (mod A). Thus, for every
r > 0, the sheaf \"(L/A) 5@ #Homo, (€, 8) carries a natural structure of A-module.

Denoting by HY4; &) the Lie algebroid cohomology of A with coefficients in an A-module
(F,V), i.e., the hypercohomology of the complex (QYA7) ® F, V), where Q57) is the de Rham
algebra of A, we prove in particular that:

1. HY(A; #omo, (€, 8)) is the space of first order deformations of & as an A-module;

2. H?(A; #omoe, (6,8)) is a complete obstruction space for deformations of & as an A-
module;

3. the Atiyah class Aty 7(€) € HY(A; (L/A) 5@ #omo, (8,€)) is properly defined.

The first two items above are proved by showing that the DG-Lie algebra of derived sections
of the sheaf of DG-Lie algebras Q (4) ® #omo, (8,8) controls deformations of & as an A-
module. The Atiyah class At () is the primary obstruction to the extension of V to a
flat L-connection. More precisely, At 7(&) is the obstruction to the extension of V to an
£L-connection V= L — #omy (8, ) such that [VH VL) = VEG] for every | € L and a € A, cf.
[17].

By analogy with the classical case, we define the semiregularity maps

1

o Tr(Atr,7(8)Fz),

k
Tk H2(A; #omoy (6, 8)) — HZHF <ﬂ; N\ (L/A) '33 ()
and we use the main result of [4] in order to prove that every 7 annihilates obstructions, provided
that the Leray spectral sequence (Definition 6.5.2) of the pair (£, A) degenerates at Fj.

6.2 Semiregularity maps for curved DG-algebras

We introduce here a slight simplification of the notion of curved DG-pair of Chapter 4, in
which the ideal I is a bilateral associative ideal of the curved algebra, instead of a Lie ideal.
This property is satisfied in all the geometric applications considered and it has the advantage
of slightly simplifying notation and calculations.

Definition 6.2.1. Let A = (A,d,R) be a curved DG-algebra, as in Definition 4.1.1. An
(associative) curved ideal in A is homogeneous bilateral ideal I C A such that d(I) C I and
Rel

By an (associative) curved DG-pair we mean the data (A4, I) of a curved DG-algebra A
equipped with a curved ideal I.

In particular, for every curved DG-pair (A, I), the quotient A/ is a (non-curved) associative
DG-algebra, and therefore also a DG-Lie algebra. Writing I, k > 0, for the kth power of I, we
have that I®) is an associative bilateral ideal of A for every k. The differential graded algebra

T
Grr A = @B~ 10D is non-curved, since d(I) C I and d?(I) C I®, the derivation d factors

through differentials
7R 7R

. 2 _
d: J(k+1) — Jk+1)° d* = 0.
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The Atiyah cocycle and class of a curved associative DG-pair are defined analogously to
Definition 4.1.4:

Definition 6.2.2. Let A = (A,d, R) be a curved DG-algebra and I C A a curved ideal. The
I
Atiyah cocycle of the pair (A, I) is the class of R in the DG-vector space —=. The Atiyah

1@
class of the pair (A, I) is the cohomology class of the Atiyah cocycle:

At(A,I) = [R] € H? (I(Iz)> :

For every = € I of degree 1, we can consider the twisted derivation d, := d + [z, —] with

1
curvature R, = R+dx+ 3 [z, x]. Then I remains a curved ideal of the twisted curved DG-algebra
(A,dz, Rz).

Lemma 6.2.3. The Atiyah class of the pair (A,d,, R,,I) does not depend on the choice of
x € I. The Atiyah class At(A, I) is trivial if and only if there exists = € I of degree 1 such that
R, belongs to 1(®.

Proof. Firstly, notice that the differential on the algebra Gry A does not depend on the choice
of z € I: since x belongs to I the adjoint operator [z, —] sends I®) to T**+D) and so d = d, =

7(K)
d+ [.%', _] i

IHW.I

n @ one has that [z, z] = 0, so that

1
Rm—R:R—l—dac—i-i[ac,x]—R:dm,

I
@

1
Let now x € I be such that R, = R+ dx + i[w, z] belongs to I®. Then R + dz also belongs

and the cohomology classes of R and R, in H ‘_1'( ) coincide.

1 1
to I and R = —dz in @ so that the Atiyah class is trivial. Conversely, let R = dz in Jiok
1
then R — dz belongs to I®, and so does R—, = R — dx + §[$, x). O

Assume now there are given a curved DG-algebra (A,d, R), a curved ideal I and a trace
map Tr: A — C as in Definition 4.1.9. Consider the decreasing filtration C} = Tr(I(k)) of
subcomplexes of C. By basic homological algebra, the spectral sequence associated to this
filtration degenerates at Fj if and only if for every k the inclusion Cy/Cy+1 C C/Cisq is
injective in cohomology, see e.g. [59, Thm. C.6.6].

Definition 6.2.4. The semiregularity maps of the curved DG-pair (A, ) and trace map
Tr: A — C are defined as:

A 1
7 H? () — H**2k <Ck>, () = = Tr(At(A, Fz).
I Cr+1 k!

The composition of 7, with the natural morphism H?*?%(C},/Cha1) — HZ2#(C/Ch1) is
induced by the morphism of complexes

A C 1
1. 1 _ k
O T — G [2k], oj(z) = i Tr(R"z).

Considering C'/Cg+1 as a DG-Lie algebra with trivial bracket, we can immediately see that 0,% is
a morphism of DG-Lie algebras for k& = 0, while for £ > 0 the main result of [4], Corollary 4.1.10,
can be stated as follows:

Theorem 6.2.5. In the above situation, the map o7 is the linear component of an Le,-morphism
op: AJI  C/Cr+1[2K]. In particular, o1 annihilates obstructions for the deformation functor
associated to the DG-Lie algebra A/I.
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6.3 Lie algebroid connections

Let X be a smooth separated scheme of finite type over a field K of characteristic 0. We
denote by Oy its tangent sheaf and by Qlj(, k > 0, the sheaves of differential forms.

Unless otherwise specified we write ® for the tensor product over Oy, in particular for two
Ox-modules F,G we have ¥ ® ¢ = F ®o, G.

A Lie algebroid is a DG-Lie algebroid (Definition 5.1.1) concentrated in degree zero; however

in this chapter we also require every Lie algebroid to be locally free.
Definition 6.3.1. A Lie algebroid over X is the data of (£, [—, —],a) where:

)

e [ is a locally free coherent sheaf of ©x-modules;
o [—,—]is a K-linear Lie bracket on L’

e a:JL — Ox is a morphism of sheaves of ©x-modules, called the anchor map, commuting
with the brackets;

« finally, we require the Leibniz rule to hold

[, fm] = a(l)(f)m + f[l,m], Vi,me L, f e Ox.

Example 6.3.2. As seen in Example 5.1.2, the tangent sheaf £ = O, with anchor map equal
to the identity, is a Lie algebroid. The trivial sheaf £ = 0 is also a Lie algebroid. A Lie algebroid
over Spec K is exactly a Lie algebra over the field K. Every sheaf of Lie algebras with ©x-linear
bracket can be considered as a Lie algebroid over X with trivial anchor map.

Example 6.3.3 (see [41] and Example 5.1.6). Let & be a locally free © x-module, then the sheaf
of first order differential operators on & with principal symbol has a natural structure of Lie
algebroid. Since ©x is the sheaf of K-linear derivations of Ox, we can introduce the sheaf

P(Ox,€) ={(0,0) € Ox x &ndk(8) | ¢(fe) = fo(e) + 0(f)e, f € Ox, e € &}

Denoting by a: P(©x,8) — ©x the projection on the first factor, we have an exact sequence of
locally free ©x-modules

0— énd@X(S) — P(@X,g) i) @X —0

and it is immediate to check that P(Ox, &) is a Lie algebroid with anchor map a. Moreover,
the map P(Ox, &) = éndk(8), (8, ¢) — ¢, is injective and its image is the sheaf of first order
differential operators on & with principal symbol.

The de Rham algebra of .[ is defined as the sheaf of commutative graded algebras

rank
Q) = EDIQ’“(I% O (L) = Homgy (L]1] 7 Ox),
k=0

equipped with the convolution product. Notice that L[1] is just &£ considered as a graded sheaf
concentrated in degree —1, hence QNIL) is a locally free graded sheaf with QF(L£) in degree k.
By definition the convolution product is the dual of the coproduct A on the graded symmetric
algebra S(L[1]) = @, L]1] ¥ defined by

A(ll’ s ln) = Z Z 8(O-)(lo(l)7 ) lo(a)) ® (la(a+1)7 SRR lcr(n))a
a=0 ¢ [S{a,n—a)

where (o) is the Koszul sign (Definition 1.2.8) and S(a,n — a) is the subset of shuffles (Defini-
tion 1.2.9). More concretely, for w € QF(.L) and 1 € QJ(L) we have

(wn)(ll, R alk+j) Z (_1)‘7&}([0(1), - ,lg(k))n(lg(k+1), .. ,lg(k_,_j)).
o LS(k.5)
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Notice that the contraction product
Lx L) LML), (yw)(a, - k) = w(l - D),

is Ox-bilinear and satisfies the Koszul identity 1y (wn) = (lyw)n + (=1)%w(lyn).
More generally, if C™s a sheaf of graded associative Ox-algebras, the same holds for

Qe = ) @ e @ #omg, (L1] e
k=0

The de Rham differential of £, denoted by d: QF(L) — QF*1(L), is defined by the
formula (see e.g. [53]):

n

de(w)(loy- - k) = (=1 'a(li)(w(lo, - - liy .-, 11))

=0
3 D0l ) oy D L )

1<j

In particular for w € Q°(L) = Ox we have lyd(w) = dg(w)(l) = a(l)(w), for every [ € L.
By definition Q*(©x)[k] = Q% is the sheaf of k-differential forms on X and the global formula
for the exterior derivative implies that dg is the usual de Rham differential.

For every sheaf of Ox-modules F we denote QX, F) = QX)) ® F and by

Q) x QL F) S QL F) - - O ®e) =) nui®ei, i € QL) e € F,

LxQ,F) Lo, F) 0 iyQ )= lyni®e, peQXL), e €.

Definition 6.3.4. Given a sheaf of Ox-modules F, an JL-connection V on ¥ is a K-linear
morphism of graded sheaves of degree 1

V:F - 0L, F) =0 L) 0 F,

such that
V(fe):d,g(f)-e+fV(e), VfeOx, ecdH.

As in the usual case, every JL-connection V admits a unique extension to K-linear morphism
of graded sheaves of ©x-modules of degree 1

v: o, 7) - QYle, 7)
such that
V(f-e)=de(f) e+ (-1)If-V(e), ¥ feQL), ec L, ),

and the connection is called flat if V2 = 0.

Remark 6.3.5. Since the contraction product y: £ x Q'(L) — Ox is nondegenerate, every
K-linear morphism of sheaves V: F — Q(L,F) is completely determined by the morphism of
O©x-modules

L — Homp(F,F), 1—V;: Vi(e) =1lyV(e).

It is straightforward to verify that V is a connection if and only if
Vi(fe) = a(l)(fe+ fVi(e), VfeOx, lelL,ecH.
A simple computation shows that the curvature of V is given by the formula
V2(1,m)(e) = ViVi(e) = Vi Vi(e) = Vpmile), VimeL,eeF.

For instance, if & is locally free and £ = &ndo, (F) (with trivial anchor map), then the
natural inclusion £ — &ndk (F) is a flat connection.
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Since oL is locally free we have natural isomorphisms
QL Fomoy (F,F)) = Homg, (F, QL F)) = Homgray (AL, F), QUL , F))

and, therefore, a natural identification of QYL #Home, (F,F)) with the subset of morphisms
of graded sheaves f: QYIC, F) — QYL F) such that f(a - B) = (—1)/% - f(B) for every
ac QYD) B e QXle, 7).

The following lemma is a completely straightforward generalisation of well-known facts about
connections and curvature.

Lemma 6.3.6. Let V: QNI 7) — QI F) be a connection, then V2 € Q?(L, Homo, (F,F))
and [V, f] € QX #Homo, (F,F)) for every f € QYL FHomo, (F,F)).

In particular, (QY5L, #Homo, (F,F)),d = [V,~],V?) is a properly defined sheaf of curved
DG-algebras over X.

If in addition F admits a locally free resolution, then the trace map Tr: Home, (F,F) — Ox,
which is a morphism of sheaves of Lie algebras, is properly defined. By an analogous calculation
to that of Lemma 4.5.6, its extension

Tr: QYL Home (F,F)) — QHL), Tr(w- f) =w-Tr(f), w € QL), f € Homo, (F,F),
(6.3.1)
is a trace map in the sense of Definition 4.1.9.

Definition 6.3.7. An L-module is a pair (#,V) consisting of a sheaf of ©x-modules & and
a flat L-connection V on F. An L-module (¥,V) is said to be coherent (resp.: torsion free,
locally free) if F is coherent (resp.: torsion free, locally free) as an ©x-module.

Example 6.3.8. Every Ox-module has a unique structure of module over the trivial Lie
algebroid £ = 0.

Example 6.3.9. For every Lie algebroid £, the pair (Ox,ds) is an JL-module. More generally
every choice of a basis on a free Ox-module gives an JL-module structure.

Every L-connection V on a locally free ©x-module F naturally induces £-connections
on the associated sheaves ?%om(gx (F,5),F Hete.. If F is an L-module, then also F 57
Homoy (F,F), F Flete. are L-modules in a natural way.

Example 6.3.10. Let (X, 7) be a smooth Poisson variety, and denote by {—, —} the Poisson
bracket on the sheaf of functions ©x. The cotangent sheaf Q% of holomorphic differential 1-forms
on X has an induced structure of holomorphic Lie algebroid with the anchor a(df) := {f, —}
and the bracket [df,dg] := d{f, g} for all f,g € Ox (this defines a and [—, —] completely since
Q% is generated by exact forms as an Ox-module), see e.g. [25] for more details. An Q%-module
is the same as a coherent sheaf § together with a sheaf of Poisson modules structure on the
sections of &. Namely, continuing to denote by {—, —} the Poisson bracket on &, the associated
connection is defined by

V: Q% — #omi(6,8),  df = Vg,  Vage:={f,e} Vfc€Ox, ecé.
The fact that V is an Q%(—connection on & is equivalent to the Poisson identities

{f:9e} ={f gte+g{fie},  {fg.e} = fg,e} +9{f.e},

while the flatness of V is equivalent to the Jacobi identity

{{fag}’e} = {f7{gve}}_{ga{fve}}'
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Definition 6.3.11. Let L be a Lie algebroid over X. The hypercohomology of the complex
(QYL),dy) is called the Lie algebroid cohomology of £, and it is denoted by HY(),

For an L-module (F, V) the complex (2, F), V) is called the standard complex of (F, V)
and its hypercohomology, denoted by HY(; &), is called the Lie algebroid cohomology of
L with coefficients in 7.

Notice that HXX') = HX; Ox), where Ox carries the -L-module structure of Example 6.3.9.
The notion of standard complex is borrowed from [53], while for Lie algebroid cohomology we
follow the notation of [1, 14].

Example 6.3.12. The Lie algebroid cohomology of the tangent sheaf ©x is the de Rham
cohomology of X. The Lie algebroid cohomology of a Lie algebroid g over Spec K is the Chevalley—
Eilenberg cohomology of the Lie algebra g.

6.4 Infinitesimal deformations of locally free .L-modules

In this section we describe a DG-Lie algebra controlling the infinitesimal deformations of a
locally free JL-module, via the Thom—Whitney totalisation construction described in Section 1.4.

Let oL be a Lie algebroid over X and let (€, V) be an JL-module, with & locally free as an Ox-
module. Let B be an Artin local K-algebra with residue field K. We denote by Xp = X x Spec(B),
by px: X x Spec(B) — X the projection onto the first factor, and by 1x : X — X x Spec(B)
the inclusion induced by B — B/mp = K. Notice that the pull-back sheaf p%lf =L ®k B has
a natural structure of Lie algebroid over Xpg, with the Lie bracket extending B-bilinearly the
one on L. Moreover, it is easy to check that a p%'cf -module F on Xp restricts to an £-module
z)'(:"f on the central fibre X.

Definition 6.4.1. A deformation of the -L-module (&, V) over Spec(B) consists of the data
of a deformation &g of & over Xp and a p)'(—:'a[’ -module structure

Vp: &g — (kL  85) = QL) ®oy €5

such that the restriction z;‘%@B to X, with the naturally induced £-module structure, coincides
with (&, V). An isomorphism of deformations (6z,Vg) — (€5,V3) is an isomorphism of
deformations of sheaves ¢: Ep — 8%’ such that ¢Vp = V%gzb.

We want to describe a DG-Lie algebra controlling the infinitesimal deformations of (&, V).
Since the «L-connection V is flat, by Lemma 6.3.6 (25, #omo, (8,8)),d = [V, —]) is a sheaf
of locally free DG-algebras, which gives rise to a sheaf of locally free DG-Lie algebras

(Ql%lfv %Om@x (87 5))7 d= [V, _]’ [_> _])

Theorem 6.4.2. In the above situation, for every a [nebpen cover U = {U;}, the DG-Lie algebra
Tot(U, QYIL, Fome, (€, 6))) controls the infinitesimal deformations of (&, V). In particular
H(.L; #Homo, (6, 8)) is the space of first order deformations and H?(.L; #ome, (&, €)) is an
obstruction space.

Proof. This result is probably well known to experts, at least in the case £ = Oy, cf. [33, Thm.
6.8], and follows easily from Hinich’s theorem on descent of Deligne groupoids. According to [36],
it is sufficient to check that locally the Deligne groupoid of QY #ome, (€, 8)) is equivalent
to the groupoid of deformations of (&, V).

In order to check this, it is not restrictive to assume X affine. Given an Artin ring
B as above, up to isomorphism every deformation of & is trivial, i.e. g = 6 ®k B and
Wom@XB (Ep,Ep) = Homo, (€,8) Rk B. Denoting by Vg: g — Ql(p)'(:'cf, &p) = (L, 8)®k B
the natural B-linear extension of V, every deformation of V over B is of the form Vg + =, with
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r € I'(X, QL Homo, (8,8))) @ mp, and the flatness condition (Vo + x)2 = 0 is exactly the
Maurer-Cartan equation dz + 3[z,z] = 0.

To conclude the proof we only need to show that two solutions of the Maurer—Cartan
equation x,y are gauge equivalent if and only if there exists an isomorphism of deformations
$: &g — Ep such that ¢(Vo + )¢~ 1 = Vo + y. Every ¢ as above is of the form ¢ = e?, with
a € T(X,Home, (&,8)) ®mp, and then the condition ¢(Vo + z)¢p~ 1 = Vo + y is equlvalent to

]n

Vo+y=e(Vo+u)=V 97" (0,2) — da),
oty=e (Vo + x) o—l—a:+7;)(n+1)!([ax] a)

which is the same as y = e % x, where % denotes the gauge action. O

Remark 6.4.3. One can consider a different deformation problem, namely the deformation of
pairs (bundle, £-connection) without requiring the vanishing of the curvature. Then the same
argument as above shows that this deformation problem is controlled by the DG-Lie algebra
Tot(U, Q=Y(L, FHomo, (8,8))), while it is well known that Tot(U, Home, (&,8)) controls the
deformations of & [24].

6.5 Lie pairs

Definition 6.5.1. A Lie pair (£, A) of Lie algebroids over X is a pair consisting of a Lie
algebroid L' over X and a Lie subalgebroid A C £ such that the quotient sheaf £/ A is locally
free.

Let (L, A) be a Lie pair. Since L'/ A is assumed locally free we have a surjective restriction
map o: QYY) — QN7), which is a morphism of sheaves of commutative differential graded
algebras. The powers of its kernel give a finite decreasing filtration of differential graded ideal
sheaves

QYL) = GpD Gr L ker() D -+ G (ker()) D -+

If we forget the de Rham differential, we can immediately see that ngis the image of the
morphism of graded ©x-modules

N (L)) HEp) @ Q) — QN),

and we have natural isomorphisms of graded sheaves

Gy b
Erll = N\ (L) 2 Q). (6.5.1)

p+1

In particular, ¢ Jp # 0 only for pairs (¢, p) such that p < ¢ <rankJ.J and p < rank.Jl — rank A.
For instance, whenever i = 2 we have GZ = Q?(.L), G2 =0,

G = {6 € (L) | ¢(a,b) =0Va,b e A},
G2 ={pec L) pa,])=0Yae A, leL)

Recall that HYY) = HYX, Q%)) denotes the Lie algebroid cohomology of £, as in
Definition 6.3.11.

Definition 6.5.2. In the above notation, the filtration Q) = Gl ¢ - is called the
Leray filtration of the Lie pair (£, A). We shall call the associated spectral sequence in
hypercohomology

EP4 = H (X, G /G b)) = HPM (L)
the Leray spectral sequence of the Lie pair (£, A).
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The name Leray filtration is motivated by Example 6.5.4 below. Notice however that for the
Lie pair (©x,0) the Leray filtration coincides with the Hodge filtration on differential forms.

Given an A-module (&, V), we can also define a filtration G-€) = ¢-® & of the graded
sheaf QY1L, 8); equivalently, ¢{E) may be defined as the image of the multiplication map

crbaltde, ) — o, g).

If VUis an L-connection on & extending V, then by Leibniz rule the filtration ¢(&) is preserved
by VMand we can immediately see that the maps induced on the quotients G-()/G 5 (8) are
independent from V5and square-zero operators. Notice also that the curvature of V"belongs to
G2(6ndoy (8)) if and only if [V V] = V['%'ﬂ] for every l € L and a € A.

Since V always admits extensions locally (see Remark 6.7.3 below), for every r there is a
properly defined structure of differential graded sheaf on GX8)/G ().

It is interesting to point out that the groups E'? = H? (X gp%p+l[p]), and more generally
the hypercohomology groups of G8)/G 5} (8), are cohomology groups of A with coefficients
in suitable A-modules. In fact, there is a canonical A-module structure on the quotient sheaf
L /A given by the Bott connection: denoting by 7: L — £ /A the projection, the latter is
defined by the formula

Var(b) = 7([a,b]), Vae A, be L.

Therefore, there is a canonical A-module structure on A" (L /.7) “for every r.

Lemma 6.5.3. Let (£, A) be a Lie pair and let & be an A-module. Then for every r > 1,

the di Cerential graded sheaf CDQEZ») [r] is isomorphic to the standard complex of the “Z-module
Lr+1

N (L) A) L &. In particular, the Leray spectral sequence of the pair (L, A) is

EP = He (G N (L)

Proof. For every r > 1, consider the isomorphism of graded sheaves ¢: (ﬂ:r[ )= N (L))

Q) of (6.5.1). We begin by showing that this is an isomorphism of complexes where the
dlﬁerentlal on the left is induced by d, and the differential on the right is given by the dual
connection to the Bott connection.

Denote by VZ the Bott connection on £/A, and by VZ 5 Hhe induced connection on
A" (L)) Sbr every r > 0. We denote by ar and a_z the anchor maps of £ and 4 respectively.

. . . . (L :I_ 1 c . . £
Finally, denote by j the inclusion j: (ﬂ) 1] — Q*(L), and by 7 the projection 7: L — =,

1
so that for m € £ and n € (%) [-1] one has that myj(n) = (j(n))(m) = n(x(m)) = =(m)yn.
For every n € G-/G 2 [r], we prove that

e(drn) = VP ).

Consider w € GIAGH] = (L/2) 5 QY) of degree zero, so that w belongs to Gf/ QZ[ | =
Gi[l] = (£L/A)""Then dyw belongs to GZ[1], but we consider its projection to %12 1] =

2

(%) ® QY(A). Hence we calculate it on b € A and (1) € 7, obtaining

drw(b, (1)) = ar(b)(G(w)(1) — ar(l)(F(w) (b)) — 7(w)([b, 1)
b

=az(b)(w

= ax(b)(w

N = ,
since 7(b) = 0. The connection V5 Hbr w € (%) ,be A and 7(l) € % is given by

r()yVy 'w'= de(r(l)yw) () — (VEr(1)yw = ar(b)(r(1)yw) - (x([b,1]))yw
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= ax(b)(w(n (1)) — w(x([b,1])),

therefore d yw = VB !
Consider now 1 € F(D“[ | of degree k —r > 0, which we can assume to be of the form
+

N = wy--wg, with w; € Ql(cl’)[l] for i = 1,...,r such that o(w1) = --- = p(w,) = 0 and
wj € QL) for j =7 +1,...,k such that o(wy+1),...,0(wk) # 0.

el r (L 1 )
In the isomorphism ¢: Tr[r] = A (7) ® QYA), the form n = wy---wy is sent to
<r41
en) =w1- - wr @ o(wr+1) - - - 0(wg ). Then we have

VB’ % VB %1 Wy ® 0 wr+l) Q(Wk))

— Zwl...va%i)---wr®Q(wr+1)"-Q(wk)

+Z D™ wg - wy @ o(wpt) - da(o(wi) -+ o(wr)

i=r+1
=iwva%)---wT®@<wr+l>--~@<wk>
=1
k
Y )T e @ o) - olde (i) oler)
i=r+1

= A wl-"dl’(wi)"'wr®Q(wr+l)"'9(wk)

3 DT e @ ofeor) - olde(wn) - ofer)

= (Id®o) (Zwl Wkt Z YTy "d,L’(Wi)"'Wk)

i=r+1
= p(dr(wr---wg)) = p(de(n)).

For every r > 1, it follows by (6.5.1) and by the definition of ¢(§) that there is an
isomorphism of graded sheaves

o ®Idg: g%’)) [r] — f\(oﬂ/ﬂ)% o) ¢

7"+1(

Denote by V the flat A-connection on &, and by V5a local extension of V to an .£L-connection
on &, which is such that (¢ ® Id)V"= V and which induces a differential on QT%) /G (8)[r).
Take now 7 ® e € GHE)[r] = (Qr'% 8)[r], then Vi{n @ e) = drn®@e+ (—1)"n ® VHe), and
(p@1de)(Vin ®e)) = p(den) ® e+ (=1)7p(1) © (» @ Idg) V'He)
= VB Hb) @ e+ (=1)7p(n) @ (¢ © 1dg) Vi{e).

Since

(VEEE V)(p @ 1de)(n @ e)) = (VP12 V) (p(n) @ €) = VI Hb(n) @ e + (=1)7p(n) © V(e),
it remains only to show that (¢ ® Idg)Vie) = V(e) for every e € &, which follows by the
definition of ¢ and by the fact that (¢ ® Id)V"= V, since V'is a local extension of V. O

Example 6.5.4. Let f: X — Y be a smooth morphism of irreducible smooth schemes. Then a
Lie pair on X is given by (Ox,0y), where Oy = #Homo, (2x/y, Ox) is the subsheaf of relative
vector fields: since f is smooth there exists an exact sequence of sheaves

0— 07— O0x — fOy =0
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In this case QYY) = QL is the usual de Rham complex of X, while QYA) = Q)';/'Y is the
relative de Rham complex and the filtration ¢ s the algebraic analogue of the holomorphic
Leray filtration, see [75, 17.2], [77, 2.16].

Since the relative de Rham differential is f~1Oy-linear and ¢{ s the ideal sheaf generated
by f _19%,, for every r we have a natural isomorphism of differential graded sheaves

~ 1 -
7 =/ Yy @pi0, Qx)y

and therefore the first page of the Leray spectral sequence is

B = HHX, GG ) = (X, 7208 @10, 05y ) = HH(Y, O 00, RFQY), ).

It is an easy consequence of Deligne’s results on Hodge theory that if X and Y are complex
projective manifolds, then the Leray spectral sequence of the Lie pair (Ox,©¢) degenerates at
F4. In fact, by Hodge decomposition we have

Rf€)y = ®R [ )y[—d] ~ ®Oy ®c R'[§[—q),

and then Ef = ©,HYY, Q) ®c RIfG)[—p — q]. Since RIf(G is a local system with real
structure and Y is compact Kéhler, according to [77, 2.11] (see also [33, 8.5]), the cohomology
of O ®c R1f1G is a direct summand of the cohomology of R?f§. Since the (topological) Leray
spectral sequence of RfG degenerates at Ej [19, 2.6.2], we have that EY is a direct summand of

HYY, RfG) = HYX,C) = HYX, Q).
For every locally free sheaf & on Y its pull-back 8 = Oy ® f-10y f71& has a natural
structure of © ;-module with connection

Valg®e) =n(g) @e.

More generally, every © j-module can be interpreted, as in [10], as a locally free sheaf on X
which is endowed with a connection relative to f that is flat.

6.6 Reduced Atiyah classes
For every Lie algebroid £ and every Ox-module F we define the sheaf of ©x-modules
P(L,F)={(l,¢) € L x Homk(F,F) | o(fe) = fo(e) +a(l)(f)e, f € Ox, e € F}.

If F is coherent then also P(.L,F) is coherent. This has been proved in [41, Prop. 5.1] in the
case L = Ox (see also Example 5.1.6), while for the general case it is sufficient to observe that
P(L,F)=POx,5) xo, L.

Denoting by p: P(L,F) — oL the projection on the first factor, we have two exact sequences
of (graded) ©x-modules

0 — Homoy (F,F) = P(L,F) 5
0= QL) @ Homoy (F,F) = QL) @ P(L,F) B QHL) @ L = Homo, (L, L)[-1],
(6.6.1)

where the second sequence is obtained by applying the exact functor Q*(L) ® — to the first.
Now and in the sequel, we will consider Id s as a global section of #omo, (L,L)[—1], a graded
sheaf concentrated in degree 1.

Lemma 6.6.1. In the above setup, there exists a natural bijection between the set of /-
connections on F and global sections D € I'(X, QY (L) ® P(L,F)) such that p(D) = Id .
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Proof. Let Ig,...,l, be a local frame of £ with dual frame ¢1, ..., ¢, € Q(L). Every K-linear
morphism V: F — QY(L,F) can be written locally as V = Y1, ¢;-D;, with D; € #omy (F,F).
By definition, V is a connection if and only if for every f € Ox, e € &, and every ¢ we have

Di(fe) = LiyV(fe) = a(li)(f)e+ fDi(e)
and this is equivalent to the fact that S/ ¢; ® (I;, D;) € QY (L) @ P(L,F). O
Lemma 6.6.2. If 7 is a locally free sheaf, then the morphism p: P(L,%) — L is surjective.

Proof. We show this locally, with a proof similar to [41, Lemma 3.1]. Let R be a K-algebra, let
(L,[—,—],a) be a Lie algebroid over R with anchor map a: L — Derk(R, R), and let F' be a free
R-module with basis {e;}. We set

P(L,F)={(l,¢) € L x Homg(F, F) | ¢(re) = rp(e) +a(l)(r)e, Vr € R, e € F'},

and show that the projection p: P(L,F) — L is surjective. For every x € L, consider the
derivation a(z) € Derk (R, R), and set

w(z rie;) = Za(x)(ri)ei, ri € R.

i
Then the pair (z,w) belongs to P(L, F). O

Assume now that F is a locally free sheaf, so that the morphism p: P(.L,F) — L is surjective
and we have an exact sequence of locally free graded sheaves of ©x-modules

0 — QYL) @ Homo, (&, 8) = QHL) @ P(L,8) B FHomo, (L, L)[~1] — 0.

We can rewrite the above short exact sequence of graded sheaves concentrated in degree 1 as
a sequence of sheaves in degree 0:

0 — QYL)[1] ® Homo, (&,8) — QHL)[1] @ P(L,8) L Homoy (L,L) — 0.

By Lemma 6.6.1, there exists an £-connection on § if and only if the identity on L lifts to a
global section of Q(L)[1] ® P(L, &). Writing

Atr(8) = d(Idy) € HYX, QM L)[1] @ Homo, (€, 8)) = Extk (L @ &, 8),

where 0 is the connecting morphism in the cohomology long exact sequence, we have that
At (&) = 0 if and only if there exists an L-connection on &.
Equivalently, we can define At (&) as the extension class of the short exact sequence

0 — QYL) @ Homo, (&,8) — Q(L,8) B Ox[-1] = 0.

where, by definition, Q(L, &) = p~1(Ox[—1] - Id). More explicitly, in a local frame I1,...,1, of
L, with dual frame ¢1, ..., ¢, € QY(L), the elements of Q(L, &) are those of QY (L) @ P(L, &)
of the form Y i_; ¢; ® (fl;, D;) for some f € Ox.

Let now (£, .A) be a Lie pair on X. Given an A-connection V: & — Q(A, &) on & locally
free it makes sense to ask whether V lifts to an L-connection or not. We prove that the solution
to this problem is completely determined by an obstruction

d(V) € Extk (fz ® &, é’) = Ext} (é’ E® Qi[l]) .

It is possible to prove, by applying the results of [41, Section 3] to an injective resolution, that
the same holds also if & is not locally free; however we don’t need this result.
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The case A = 0 has been already considered. Suppose A # 0, then we have a commutative
diagram with exact rows

0 ——QNL) @ Homoy (8,8) —IQ(L, &) —L—Ox[-1] —0
a :
0 —I0Y(A) ® Homo, (8,8) —IQ(A,8) —L—Ox[-1] —0

where «, 8 are the natural restriction maps. In a local frame I1,...,[,. of L, with dual frame
#1,...,6, € QY(L) and such that Iy, ..., is a local frame for A, we have

T S T S
a(d i®g) =Y di@gi, BOi® (fli,Di)) = ¢ ® (fl;, Di).
i=1 i=1 i=1 i=1
Since « and 3 are surjective, by the snake lemma we have an exact sequence

0= G @ Fomo, (8,8) = Q(L,8) S Q(A,8) — 0, (6.6.2)

since 7 is by definition the kernel of the surjective map Q(L) — Q(A). For simplicity we
can rewrite the above short exact sequence of graded sheaves living in degree 1 as a short exact
sequence of sheaves in degree 0:

0~ GH1] @ Homoy (€,6) = QL. E)[1] & Q(A, 8)[1] - 0.
Then the -connection V is an element of H(Q(A,&)[1]) such that p(V) = 1 and the element
Aty a(8,V) = 0(V) € H (X, GI[1] @ Homoy (6,€)) = Extk (6,6 @ G1[1]),

is the obstruction to lifting V to an JL-connection. We will call this the reduced Atiyah class
of (8,V).

6.7 Simplicial JL-connections

In this section, similarly to Section 5.1, we define simplicial -£-connections for a Lie algebroid
<L, and simplicial extensions of an A-connection for a Lie pair (£, A ). We prove that the adjoint
operator of a simplicial ££-connection on a locally free sheaf & induces a curved DG-algebra
structure on Tot(U, QL) ® %om('g:)'( (&,8&)). In the case of a Lie pair (L, A) and of a simplicial
extension of a flat A-connection V on &, we obtain the data of a curved DG-pair. Simplicial
connections allow us to give representatives of the classes At (&) and At /2(6,V), and a
representative of the obstruction to extending a flat A-connection on & to a L-connection on &
with curvature in G5 ® #Homo, (&, 8).

Let £ be a Lie algebroid on X and & a locally free sheaf. We have seen that J'-connections
on & exist locally but in general it does not exist any globally defined connection. However we
can define a weaker notion of connection, which always exists and equally gives a significative
example of curved DG-algebra.

In the notation of Section 6.3, consider the short exact sequence

0 — QYL) ® Homo, (8,8) = QL)@ P(L,8) L (LYo L =0, (6.7.1)

and recall that by Lemma 6.6.1 an -£-connection on & is a global section D of QY(L) ® P(L, 8)
such that p(D) = Id,, where Id is considered as a global section of Q(L) ® «£. Fix an affine
open cover U = {U;} of X; by the exactness of the Thom—Whitney totalisation functor one
obtains a short exact sequence of DG-vector spaces
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0 — Tot(U, QH(L) ®@ Home, (&,8)) — Tot(U, (L) @ P(L,8)) X Tot(U, QL) @ L) — 0.

Because of the natural inclusion (1.4.2) of global sections in the totalisation, we can consider
Id, as an element of Tot(U, QY (L) ® L).

Definition 6.7.1. A simplicial L-connection on & is a lifting V in Tot(U, QY (L) ® P(L, &)) of
Id in Tot(U, QHL) @ L).

It is clear that a simplicial JL-connection on & always exists.

In the case of a Lie pair (£, ) and of an A-connection V7 on the locally free sheaf &, we
can define an analogous notion of simplicial -L-connection extending V. It is not restrictive to
assume A # 0; then the exact sequence of locally free graded sheaves (6.6.2)

0= G @ #omo, (6,8) = QL,8) D Q(A,8) =0
induces the short exact sequence of DG-vector spaces
0 Tot (U, G @ Homay (6,8)) — Tot(U, Q(<£,E)) By Tot(U, Q(A,8)) = 0. (6.7.2)

We have already observed that an A-connection V7 on & is a global section of Q(.1, &)
such that p(VA) = 1, where p: Q(A, ) — Ox[—1] is induced by the map p of (6.7.1). By the
inclusion of global sections in the totalisation, V belongs to Tot(U, Q(A, §)).

Definition 6.7.2. By a simplicial extension of an A-connection V' on & we mean a lifting V
in Tot(U, Q(L,E)) of V' in Tot(U,Q(A,8)).

Remark 6.7.3. Notice that the exact sequence (6.6.2) implies that a local extension of an
A-connection to an JL-connection always exists.

Since maps on the totalisation are induced locally, a similar argument to that of Lemma 6.5.3
shows that every simplicial extension V' of a flat A-connection V' on & induces a differential
on the complex Tot(U, GHE) /G5 (8)[r]). We then have that H XTot(U, GHE) /G (8)[r])) =
HY Y, ¢HE) /G (8)[r]) is isomorphic to the Lie algebroid cohomology of A with coefficients
in the A-module A" (L/A)"& &, again by Lemma 6.5.3.

Lemma 6.7.4. For a Lie algebroid £ and a simplicial -£-connection V on &, the cohomology
class of dtotV in Tot(U, QL) @ FHome, (&,8)) is the obstruction At (&) to the existence of
an J['-connection on &.

For a Lie pair (.£,.7) and a simplicial extension V of an 7-connection V* on &, the
cohomology class of drotV in Tot(U, G ® #Homo, (8,€)) is the obstruction At/ (&, V) to
the extension of V' to an .£-connection.

Proof. According to Example 1.4.5 we have natural isomorphisms

H%(Tot(U, 0YL) @ P(L,8))) =T(X,0L) @ P(L,8)),
HO(Tot(U, QY (L) @ Homo, (€,8))) = T(X, QL) @ Homo, (§,8)).

Consider first the case of a simplicial ££-connection V on &; notice that dt¢tV belongs to
Tot (U, QL) @ FHomo, (€,8)), because p(d1otV) = d1otp(V) = drot Idy = 0, since Id, is a
global section. If there exists an L-connection V-on & it belongs to Tot(U, QY (L) @ P(L,§))
by the inclusion of global sections in the totalisation, and one has that d1otV"= 0. Then for any
simplicial connection V, the difference V — V5belongs to Tot(U, Q1(L) ®@ #Home, (€, 8)) and
dtot(V—VY = d16tV, s0 that dot V is trivial in the cohomology of Tot(U, Q}(L)@FH ome, (&, 8)).
Conversely, if drotV = dtoty, with ¢ € Tot(U, Q1 (L) ® Fomo, (8,8)), then V — ¢ is a global
JL-connection on &.
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In the case of a Lie pair (£,.4) and a simplicial extension V of an 4-connection V¥ on
&, notice that drotV belongs to Tot (U, G ® #Home, (§,8)): in fact, B(d1etV) = d1otB(V) =
d1otV”" = 0, because V7 is a global section. If VA extends to an L-connection there exists
VUin T(X,Q(L, 8)) with (VY = VA, which is such that drotVE= 0 in Tot(U, Q(L,E)),
because it is a global section. Then for every simplicial connection V lifting V-, V — Vbelongs
to the kernel of 3, which is Tot(U, GI ® #omoy (§,8)), and dret(V — VY = dtotV, so that
dtotV is trivial in cohomology. Vice versa, if drotV = drot¢ is trivial in the cohomology of
Tot(U, GI @ Homo, (§,8)), it is easy to see that V — ¢ is a connection lifting V. O

A simplicial JL-connection on a locally free sheaf & induces a curved DG-algebra structure on
the DG-vector space Tot(U, QYL , #Home, (€, ))). To see this, the first step is the construction
of an adjoint operator for the simplicial connection, which is done via the following lemma.

Lemma 6.7.5. In the above situation, the Ox-bilinear map
[—, =] (L) ® P(L,8)) x Homoy (8,8) = QL) @ Homo, (&, E),
e Lv),gl=ne,g, neQNL), (I,v) € P(L,8), g€ Homoy(§,8).
is well defined.
Proof. This follows immediately from Lemma 5.1.9. O
The bracket defined in Lemma 6.7.5 induces a graded Lie bracket on the totalisation
[—, —]: Tot(U,QYL) @ P(L,8)) x Tot(U, Homo, (€,8)) — Tot(U, QL) @ Homo, (&, 8)),
which allows to define the adjoint operator to a simplicial -£-connection V on &:
di==F [V, —]: Tot(U,FHomo, (€, 8)) — Tot(U,Q (L) ® Homo, (&,8)). (6.7.3)

Recall that since QYL #omo, (€,6)) is a sheaf of graded algebras and the Tot functor
preserves multiplicative structures, Tot(U, QYL Home, (&, E))) is a differential graded algebra,
with differential denoted by dtot.

Lemma 6.7.6. The adjoint operator
dr= [V, —]: Tot(U,Home, (&,8)) — Tot(U, QL) @ Home, (&, 8))
extends for every i > 0 to a K-linear operator
d m—Tot(U, (L) @ FHomo, (&, 8)) — Tot(U, VL) © Home, (&, 8)).
Then (Tot(U, QYL Fomo,, (8, 8))), drot + d DS a curved DG-algebra with curvature
dtotV + C,

with d1otV € Tot(U, QL) @ Home, (€,8)) and C € Tot(U, Q?(L) @ Home, (&, 8)) such that
= C, -,

Proof. Consider first the case of a germ of an L-connection, i.e., an element Y of I'(V, Q}(L) ®
P(L,8)) such that p(Y) =1Id |y, for some open set V' C X. As usual, Y extends uniquely to a
K-linear morphism of degree 1

Y: QY &)y — Qe 8)|y

such that B
Y(noe)=dr(n)@e+ (—-1)m Y (e).
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for all n € QYY) |v, e € E|y. It is easy to see that the map Y? is Ox-linear, so it can be identified
with a section of Q?(.L, Homo, (8,8))|v.
One can define an adjoint operator

dy = [Y,—]: #omo, (&,8)|ly — QHL, Homo, (&,8))|v,
which can be extended for all ¢ > 0 to an operator
dy : QL Homo, (8,8))|y — QHL, Homoy (8,8))|v

by setting
dy(n® f):=de(n)® f+(-1)n 1Y, f], (6.7.4)

where [Y, f] denotes the Lie bracket of Lemma 6.7.5.
As in the classical case, one can see that

(e f)=Y?*ne f] (6.7.5)

for all n € QXL)|y and f € #Homo, (&, E)|v.

Let now V be a simplicial £-connection on &, namely an element of Tot(U, QY (L) ® P(L, &))
such that p(V) = Id, € Tot(U, Q1 (L) ® L). Then for every i > 0 the extension of the operator
dr= [V, —], defined in (6.7.3), to an operator

dr= [V, —]: Tot(U, QL) @ Homo, (&, 8)) — Tot(U, QL) @ Homo, (&, 8))

can be defined by using the map induced by (6.7.4) on the totalisation, and one obtains a degree
one operator

dr= [V, —]: Tot(U, QYL #Home, (8,8))) — Tot(U, QXL , Home, (&, 8))).

In detail, let V = (D,,) with D,, € A, ® Hi07...,in(Ql(°C) ®@ P(L,8))(Ui,....in) such that p(D,) =
1® (Ids [v;,, . ,,) for every n > 0. Since maps on the totalisation are defined componentwise, it
is enough to define the bracket

[DTU ¢n & (wio,...,in & fi07...,in)]7
for ¢n ® (Wig,...in ® fig,.in) M An @I, i (L) @ Homoy (8, 8)(Ui,....in)- Let

Dn = 1jn ® (tiorin)s  Mim € Ans Ljig,.in € (L) @ P(L,8))(Uig,...in);  (6.7.6)
j

then the bracket can be defined as
[Dn’ bn @ (wi07~-~7in ® iny--~7in)] = [Z Njn @ (tj7i07---,in)7 P ® (wi07-~-7in ® fi()v-nvin)] =
J

P(Dn)(dn ® (Wi,....in ® fio,....in))+
(= 1) 0in N " Gt @ (Wig,..oiin @ [jsiornsins fiossin]) =

,,,,,

J

where the bracket [t i, fio,....in) 15 induced by the one of Lemma 6.7.5.
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For every ¢ > 0 the simplicial £L-connection V also induces a map
V: Tot(U, (L) ® &) — Tot(U, QL) ® &)

which allows to define a degree one operator V: Tot(U, QYL &)) — Tot(U, QHL, §)). In fact, let
V = (D,,) asin (6.7.6), and consider ¢, @ (wi,.....i, @€ig.....in ) i An@1 Ly (Ql(i‘)@@)(UiOw’in).
Then the operator can be defined as

Di(¢n @ (Wig,...sin ® €ig,.oin)) = (O Mim @ (Ejioin)) (D © (Wig,...sin @ €ig,...iin))
j

.....

J

Since all the maps considered on the totalisation are induced by the ones defined locally on
the complexes of sheaves, for d =5 [V, —| one has that, by (6.7.5),

d3—=5[C,—], C € Tot(U, Q2 (L,Homo, (§,8))).
Then drot + d i3 a degree one derivation of Tot(U, QL) @ FHomoe, (&, E)), with square
(drot + d A= dFor + drot[V, =] + [V, dror—] + di-5 [drotV, =] + [C, =] = [drotV + O, ],

so the curvature is d1otV + C. We have already seen in Lemma 6.7.4 that dvotV belongs to
Tot(U, QL (L) ® FHomoy (§,8)).
The last thing to prove is that (dtot + d oH#lTotV + C) = 0. One has that

(drot + d DotV + C) = da0V + d rd0tV + d1otC + d r€1= d rdotV + drotC.
Then
1
dl‘i‘ﬂotv = [va dTotV] = _[dTotVa V] = _§dTot[v7 V] = _dTotC;

so that (dvot + d 10tV + C) = 0. d

In the case of a Lie pair (£, A) and a locally free sheaf &, the natural surjective restriction
maps

o: Q) —» ),  ow1d: QY Home, (8, 8)) — QY FHome, (€, 6)),
induce morphisms on the totalisation
o0: Tot(U, QL)) — Tot(U, QY7)),

o®1d: Tot(U, QYL Homo, (&,8))) — Tot(U, QY , Ftome, (§,8))),

whose kernels define bilateral ideals
Tot(U, G1)'= ker(o) C Tot(U, QX)),

Tot(U, GId FHomo, (&, 8)) = ker(o ® 1d) € Tot(U, QL Homo, (§,8))).
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Lemma 6.7.7. Let (&, V1) be a locally free 7-module, and let V be a simplicial extension of
V7 to an L-connection. Then I := Tot(U, GI—& Fome, (,8)) is a curved ideal of the curved
DG-algebra

(Tot(U, QXL Homo, (8,8))), dTot + d dmortV + C),

where C, the curvature of the simplicial connection V, belongs to Tot(U, G? ® #Homo, (&, §))
and dotV belongs to Tot (U, GI @ Fome, (€,8)).

Proof. It is clear that the ideal I = Tot(U, GI& FHomo, (,8)) is drot-closed. Let x be an
element of I, so that (¢ ® Id)(x) = 0, then

(e@1d)(drzh=d o ®1d)(z) =0,

so I is also d =cjosed. Since the A-connection V' is flat, the curvature C' of V belongs to
Tot(U, G? @ Homo, (8,8)) C I, which is the kernel of the surjective map

o®1d: Tot(U, Q% (L) @ Homo, (8,8)) — Tot(U, Q*(A) @ Home, (&, E)).

By Lemma 6.7.4, d1otV belongs to Tot (U, GI @ #Home, (8, 8)), therefore it belongs to the ideal
I O

For the ideal I = Tot(U, GI—& Homo, (€, 8)) we have that
1™ = Tot(U, G5 Homo, (&, 8)). (6.7.7)

In fact, the inclusion I C Tot(U, GL-& Home, (€, 8)) is clear. For the other one, it suffices to
notice that the multiplication map G ® --- ® G{=+ GHs surjective on all affine open sets.
—_———

According to Definition 4.1.4, the Atiygh cocycle of the curved DG-pair
(A = Tot(U, QXL, #Homo, (8,8))), I = Tot(U, G FHome, (§,8)))

is the class of the curvature R = d1otV + C in
I ¢
= Tot (u éid@ FHomo (8, 5)) .

Theorem 6.7.8. Given a Lie pair (£, .7) and a locally free .Z-module (&, V), the Atiyah
class At(A,I) of the curved DG-pair

(A = Tot (U, QYL, Homo, (&,8))), I = Tot(U, GI& Homo, (§,8)))

does not depend on the choice of the simplicial -£-connection extending V. Moreover, it
is the obstruction to the existence of a .L-connection on & extending V' with curvature in
G3 @ Homoy (8,8).

Proof. The difference of two simplicial extensions V and V" of the A-connection V¥ belongs to
the ideal I. In fact, considering the short exact sequence (6.7.2),

0= Tot (U, G @ Ftomey (8,6)) = Tot(U, Q(L, 8)) & Tot(U, Q(A, 8)) = 0,

we have that B(V — VY = V/ — V7 = 0 and therefore, writing ¢ := V — VY we have
¢ € Tot (U, G} ® FHome, (6,8)) C I. Then d = d r=+ [¢, —] and the first claim follows from
Lemma 6.2.3.

Next, we show that the Atiyah class At(A,I) of the curved DG-pair is the obstruction to
the existence of a L-connection on & extending V7, with curvature in sz ® Homo, (8, 8). By
Lemma 6.2.3, At(A, I) is the obstruction to existence of x € I = Tot(U, G{& Fomo, (&,8)) of
degree 1 such that R+ (dot + d o belongs to I® = Tot(U, §F& Home, (€, 8)). Assume that
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there exists such z, and notice that by degree reasons it belongs to Tot(U, G} ® #Home, (&, §)),
since GY = 0. Then, since ¢ = 0,

drotV + drorz € ID N'Tot (U, G © Homo, (8,8)) =0
C +drze I'D N Tot(U, G? @ Homo, (&,8)) = Tot(U, G2 @ Homo, (&, &)),

and by the first equation V + z is a global .L-connection on & extending V.
We denote by R, = dtot(V + z) + C, = C, the curvature of the curved DG-algebra
(A, dtot + d r=a). Then

1 1 1
R; =R+ (dyot + d i+ i[x,:v] = dtotV + C + dvotx + d cz 1+ 5[1}71‘] =C+dray i[x,:c],

so that the curvature of V + z is equal to C; = C + d rz 5[z, 7], which belongs to Tot(U, G2 ®
FHomo, (8, E)). Finally, since d (za(C;) = 0, one has that

0 = (dtot + dr=a)(Rz) = (dtot + d r=a)(Cz) = d1otCy,

and C, is a global section of G2 ® #Homo, (€, ).
The converse is clear. O

By the above, the Atiyah class At(A, I) of the curved DG-pair
(A = Tot(U, UL, Endoy (8))), I = Tot(U, GL® Endo, (€)))
is well-defined:
At(AT) € H2< dgognd@x( )>.
Definition 6.7.9. In the above situation, via the isomorphisms of Lemma 6.5.3, we call
Atr)7(8) = At(A,T) € HY (A; (L/A) "D Endoy (8)) -

the (L, A)-Atiyah class of &.
Remark 6.7.10. Recalling that ¢3 = 0, the morphism of graded sheaves #: gﬁ?ﬁ Gt with kernel

=2

G
w:,lnduces a morphism of DG-vector spaces

G

£ Tot (u e é’nd@X(é’)> s Tot(U, G} @ Endoy (&),

which sends the class of R = d1otV + C to d1otV. The reduced Atiyah class At /A (8, V) is
then the image of the Atiyah class At (&) of the curved DG-pair
(A = Tot (U, QYL, Endo, (8))), I = Tot(U, GL® Endo, (8)))

via the map induced by t in hypercohomology

t: HE(X, g?@ é’nd@X(é’)) — HYX, Gl ® &ndo, (8))

In particular if At s/ 7 (&) is trivial, then so is Atz 7 (8, V).
If we consider the Lie pair (£,0), both the obstructions At ;7 (8) and At (8, V7) reduce
to the obstruction At (&) to the existence of an JL-connection on &.

Corollary 6.7.11. Let (£, A) be a Lie pair on X such that there exists an Ox-linear projection
p: L — A which commutes with anchor maps and with adjoint Lie actions of 7. Then for
every A-module & the Atiyah class At (&) is trivial.
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Proof. The assumption that p: L — A commutes with adjoint Lie actions of A means that
p([z,y]) = [z, p(y)] for every x € A and y € L.

Let V: A — éndk(8) be a flat A-connection on &. The existence of an Ox-linear projection
p: L — A commuting with anchor maps ensures that the composition V= Vp: L — Endk(8)
is a connection. In fact, for [ € L, f € Ox and e € §,

Vi(fe) = Vo (fe) = ax(p)(fe+ fVpay(e) = ar()(fe+ fVile).
For every a € A and every [ € L we have
Va: Vil = [Va, Voyl = Viawm) = Vo) = Viaa:

and this implies that the curvature of V belongs to G2 ® &ndoy (€), so that by Theorem 6.7.8
the Atiyah class of & is trivial. O

Notice that Corollary 6.7.11 applies in particular in the case X = Spec(K) and A a semisimple
Lie algebra. On the other hand, the Examples 2.10 and 2.11 of [17] give explicit situations where
X is a single point and the Atiyah class does not vanish.

6.8 Semiregularity maps and obstructions

Let (£, A) be a Lie pair on a smooth separated scheme X of finite type over a field K of
characteristic 0. Given a locally free A-module (&, V) we introduced the Atiyah class

At 7(8) € HH(A; (L/A) =2 éndoy (€)),

which is the primary obstruction to the extension of the A-connection V to a flat £-connection;
more precisely the Atiyah class is a complete obstruction to the extension of V' to an £-
connection with curvature in G2 ® &ndo, (8).

Taking exterior cup products in A-cohomology it makes sense to consider the exterior powers

Aty a(8)F € H </’Z; /\k(cf/ﬂ) s &ndo,, (@))
together with the morphisms of graded vector spaces

HYA; éndo, (8)) — HE<J(; IR Snd@X(@)) k] — HE(J(; NL/2) Ef[k],

1
T TI‘(AtDC/ﬂ(é;)kl‘).

The following definition is a clear natural extension of the definition of semiregularity maps
for coherent sheaves of Section 3.4, [16].

Definition 6.8.1. In the above situation, for every k£ > 0 the map

To: H2 (T Endo,, (8)) — HEHE (ﬂ;/\k(of/ﬂ)if, relz) =

TR
is called the k-semiregularity map of the A-module (&, V'), with respect to the Lie pair
(L, A).

If ¢Hs the Leray filtration of the Lie pair (£, ) we have proved in Lemma 6.5.3 that there
exist canonical isomorphisms H?** (ﬂ ; /\k(I JA) 'jF% H2+2k (X ) gﬁgg‘l) and therefore there

exist natural maps

Tr(At,/7(8) ),

i HEYE <ﬂ; N/ '33—> H2 2k (X, Qg;,?) ,

which are injective whenever the Leray spectral sequence degenerates at Fj.
We are now ready to apply the abstract general results of [4] to our situation in order to
obtain the following result.
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Theorem 6.8.2. Let (L, 4) be a Lie pair on a smooth separated scheme X of finite type over a
field K of characteristic 0. Given a locally free .7-module (&, V), for every k > 0 the composite
map

QL
i H? (A; Endo, (8)) — HZT2F (X, @D )>
Gt
annihilates every obstruction to deformations of (&, V**) as an .7-module. In particular, if the
Leray spectral sequence of the Lie pair (£, A) degenerates at F1, then every semiregularity map
annihilates obstructions.

Proof. We take an affine cover U of X and we choose a simplicial connection V € Tot(U, Q (L) ®
P(L,8)) extending V. By Lemma 6.7.7, the ideal I := Tot(U, G{® &ndo, (€)) is a curved
ideal of the curved DG-algebra

A := (Tot(U, QX)) ® ndo, (8)), drot + d rdrortV + C),
so that the quotient
B := A/I = Tot(U, Q) ® ndo, (8))

is a non-curved DG-Lie algebra, with differential given by dyot + d =5 This is precisely the
DG-Lie algebra controlling deformations of & as an A-module of Theorem 6.4.2.
The trace morphism
Tr: QYL Endo, (8)) — QYL)

of (6.3.1) induces
Tr: Tot(U, QYL, Endo, (8))) — Tot(U, QL))

which is a trace map as in Definition 4.1.9. It is plain that
Tr(Tot(U, GLd Endo, (8))) C Tot(U, G

for every k > 0. Finally, according to (6.7.7) and the exactness properties of Tot, for every i < j
we have

IO Tot(U, G b éndo, (8)) -
m TOt(ll (ol% é’nd@X (8)) = Tot | U, @Iﬁ@ GTld@X (8) .

Now, by Theorem 6.2.5, there exists an Lo morphism between DG-Lie algebras

of: Tot(U, Q) @ Endo, (§))  Tot (u g%f [2k]>
k+1

whose linear component is given by

G k!

where R = dt1otV + C denotes the curvature of the DG-algebra A.
In cohomology the above maps of may be written as

ot : Tot(U, Q") ® &ndo, (8)) — Tot (u 2L [2k]> o (z) = —Tr(Rk ),

ok H3(A; 8ndo, (8)) — H*2 (X,QQEC)>, a’f(x)—]; Tr(Atr)7(8) ),
k+1

and then af = LTk
Then the theorem is a consequence of the fact that the DG-Lie algebra Tot (U SCY [2k])

is abelian and then, by Lemma 2.4.6 and Remark 2.4.8, every obstruction of the deformatlon
functor associated to the DG-Lie algebra B is annihilated by the maps o}.
O
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Remark 6.8.3. The induced map in hypercohomology of depends only on the A-module (&, V7)
and not on the choice of a simplicial £L-connection V extending V. In fact, of depends only
on the Atiyah class At/ 7 (&) of the curved DG-pair

(A = Tot(U, QYL Endo, (8))), I = Tot(U, G1 & Endoy (8))),

which we proved in Theorem 6.7.8 does not depend on the choice of V.
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Appendix A

Some commutative and homological
algebra

This appendix contains some useful results from commutative and homological algebra which
are used in Section 2.5. The first section contains two basic facts about change of rings, the
second section is about flat modules over Artin local rings, and the third contains a lemma
about complexes of injective or projective modules.

A.1 Change of rings

Lemma A.1.1. Let ¢: R — S be a homomorphism of rings such that S is a flat R-module.
Then every flat S-module NV is also flat as an R-module.

Proof [61, 3.B]. For any R-module M, M @ g N 2 M ®@p (S ®s N) = (M ®@r S) ®s N, so the
functor — ®pk N is the composition of two exact functors — ®g S and — ®g N, therefore it is
exact. O

Lemma A.1.2. Let p: R — S be a morphism of commutative rings. Then the functor — ®p S
sends projective R-modules to projective S-modules.

Proof. Let P be a projective R-module, then there exists an R-module () such that P® Q is free
over R. Then (P ®gr S) @ (Q ®r S) is a free S-module, so that P ®p S is projective over S. [

A.2 Flatness and relations

Let A be an Artin local K-algebra with residue field K.

Definition A.2.1. The length of an Artin local ring A with maximal ideal m and residue field
K is "
) m
Z(A) = Z dlmK W

n=0
Notice that if [(A) =1, then A = K.
Lemma A.2.2. Let M be an A-module, if M ®4 K =0 then M = 0.

Proof. By induction on [(A): if [(A) =1 then A = K and there is nothing to prove.
If [(A) > 1, there exists n € N such that m™ # 0 and m"*? = 0. Take t € m", ¢ # 0 and set
B := A/(t). There is a short exact sequence

0 K—15 4 B 0,

and tensoring with M we obtain
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0=K®s M M-S Me,B ——o0.

Since I(B) =1(A) — 1 and (M ®4 B) ®p K= M ®4 K = 0 by inductive hypothesis we obtain
M ®4 B = 0. Then by the above diagram M = 0. O

Lemma A.2.3. For every A-module M there exists a surjective morphism f: F — M such that
F' is a free module and the induced map FF ®4 K — M ®4 K is an isomorphism.

Proof. Since M — M ® 4 K is surjective it is sufficient to choose a subset S C M inducing
a basis of the K-vector space M ® 4 K and define F' as the free module generated by S. The
surjectivity of f comes from the exact sequence

FoaK— M®aK— Coker(f) @4 K—0
and by Lemma A.2.2. O
The following is a special case of the local flatness criterion [61, 20.C].
Lemma A.2.4. For an A-module M the following conditions are equivalent:
1. M is free.
2. M is flat.
3. Torj(M,K) = 0.

Proof. The only non-trivial assertion is 3) = 1). Assume Torj'(M,K) = 0 and let F be a
free module such there exists a surjective morphism «: F — M inducing an isomorphism
F,KZ2 M®yK, as in Lemma A.2.3. Denoting by K the kernel of «, from the Tor long exact
sequence of 0 — K — F — M — 0 we obtain K ®4 K = Tor{!(M,K) = 0, so that K = 0 by
Lemma A.2.2. O

Lemma A.2.5. Let h: P — L be a morphism of A-modules, A € Artk, and let h: P ®4 K —
L ® 4 K denote its reduction.

1. If h is surjective, then h is surjective.
2. If h is injective and P and L are flat, then A is injective.

Proof. For the first item, the proof is the same as the proof of Lemma A.2.3.
For the second item, let now h be injective, we prove that A in injective by induction on [(A).
If [(A) =1, then A = K and there is nothing to prove. If [(A) > 1 there is a short exact sequence

0 K A B 0

with {(B) < [(A). Since

Po K=(PosB) @KL LosK=(LosB)osK

is injective, by inductive hypothesis the map h: P®sB — L®4 B is also injective. Since P
and L are both flat, we obtain the following diagram, where the rows are exact:

0 — P4 K——P —— P4B ——0
gl J» 7
0 — LeogsK—— L —— L®yqB —— 0.

By the Five Lemma, h is injective. OJ

Corollary A.2.6. Let 0 -~ M — N — P — 0 be an exact sequence of A-modules with N flat.
Then:
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1. M®sK— N ®4 K injective — P flat.
2. Pflat — M flatand M ® 4 K - N ®4 K injective.

Proof. Take the associated long Torf‘ﬁ—, K) exact sequence:

. —— Tory(M,K) —— Tory' (N,K) = 0 —— Torg (P, K)

< T >

Tor{! (M, K) —— Tor{(N,K) = 0 —— Tor{\(P,K)

< >

MK —— NogK——— PR K— 0

and apply Lemma A.2.4. O

Corollary A.2.7. Let

I Ry SNy - N N ¥ 0 (A.2.1)
be a complex of A-modules such that:
1. P,Q,R are flat.
2. 0% R™ M = 0is exact.
3. P@AKLQ®AKE>R®AKE>M®AK—>O is exact.

Then M is flat and the sequence (A.2.1) is exact.

Proof. Denote by H = ker h = Im g and g = ¢n, where ¢: H — R is the inclusion and n: Q — H,;
by assumption we have an exact diagram

P®AKL/Q®AK g ’i’R@AK—h/M(@AK—/O.

N

It is easy to see that ¢ is injective: let z € H ®4 K such that ¢(x) = 0, by surjectivity of
7 there exists y € Q ®4 K such that 7(y) = z. Then g(y) = ¢7(y) = 0, so that there exists
z € P®4 K such that f(z) =y. Then x = #j(y) = 71f(2) = 0. According to Corollary A.2.6, H
and M are therefore flat A-modules.

Denoting L = ker g we have, again by Corollary A.2.6 and by the flatness of H and @, that
also L is flat and L ® 4 K — Q ® 4 K injective. This implies that P ® 4 K — L ® 4 K is surjective,
so that P — L is surjective, by Lemma A.2.5. O

Corollary A.2.8. Let A be an Artin local ring, n > 2, and let

pn 4o, p-l 4, po_d g 0

be an exact sequence of A-modules such that each P? is flat over A and tensoring by — ®4 K we
obtain an exact sequence. Then M and Im(d,) = Ker(d,+1) are flat over A.

Proof. Induction on n and Corollary A.2.7. O
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Lemma A.2.9. Let A € Artk and let R be a unitary commutative K-algebra. Let G be an
R ® A-module which is flat over A, and let ™ G be a projective resolution of R ® A-modules.
Then EFd 4 K — G ®4 K is a projective resolution of R-modules.

Proof. For every i, E' is projective over R ® A, so it is flat over R ® A. Consider the ring
homomorphism A — R® A, which makes R® A into a flat A-module, because RRA®4— = RQ—
is an exact functor. Therefore, by Lemma A.1.1, every E' is flat over A. Consider the short exact
sequence

0 —— Kerp E° 2, @ 0,

where both G and E° are flat over A. By Corollary A.2.6, Ker p is flat and the map Ker p@4 K —
E° ®4 K is injective, so that the sequence

0—>Kerp®AK*>EO®AK—>G®AK*>O

is exact. We can iterate this procedure, by considering the short exact sequence

0 —— Kergq S Kerp —— 0,
because both E™1 and Ker p are flat over A. In the end, we obtain an exact sequence
D F 29K — E'ouK — FO@u K — G K —— 0
where every E' ® 4 K is a projective R-module, by Lemma A.1.2. OJ

Corollary A.2.10. Let A € Artk and let R be a unitary commutative K-algebra. Let 7 be an
injective R-module and G' an R ® A-module which is flat over A. Then Ext¥, (G, I) = 0 for
every k > 1.

Proof. Let E™ G be a projective resolution of G' as an R® A-module, so that Ext¥, (G, I) =
H*(Hom 5{14E5T)). There is an isomorphism Hom 5{(E5T) = Hom5HE ™% 4 K, I), and by
Lemma A.2.9 EM% 4 K is a R-projective resolution of G ® 4 K. Then

Exth -G, I) = H*(Hom g1 EST)) = H*(Hom5{E %4 K, 1)) = Exth,(G @4 K, I) =0,

for all k > 1, because [ is R-injective. O

A.3 A result from homological algebra

The following useful result is taken from [29, IT1.5.24], where the lemma is proved in the
hypothesis that the acyclic complex is bounded below (respectively above). The proof is basically
the same in the unbounded case, which is the one needed in Section 2.5, and is reported here for
the sake of completeness.

Lemma A.3.1. Let s: A™ I™be a morphism of complexes of R-modules from an acyclic

complex to a bounded below complex of injective modules, then s is homotopic to the zero map.
Dually, let t: PY1+ B%be a morphism of complexes of R-modules from a bounded above

complex of projective modules to an acyclic complex, then ¢ is homotopic to the zero map.

Proof. The homotopy k between s and the zero morphism is constructed by induction starting
from k%: A' — I° and continuing to the right. It is clear that we can choose k% = 0 for all i < 0.
Consider the diagram

—1
d d%

A—l A AO Al
| e b
I\g ’ kO
0 1° It e
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since AHs acyclic, Im le = ker d%, so that d%: Coker d;l — Al is injective. Since sodzl =0,
s9: Coker d;l — I° and we can consider the diagram

—1 5 1
0 —— Cokerd,~ —— A

0 s
Js TR0

v
1°
where k9 exists because I° is an injective object.
Assume now we have constructed the homotopy up to k"1

n—1 n

d d
Sy AnTl A A" A,ogqn*tl L.

n—1 -7
Sn—ll k /snl kn//// ls’n#»l
K’

RENEENY | m mHl
& a7

By inductive hypothesis (s” — d7~*k""1)d’%~! = 0, which means that as above we can consider
the diagram

d’l’L
0 —— Cokerd? t —2- An*1

-
-

n_ gn—1l;n— -7
sh—=d} Tk 1l L,///kn

In
where d’: Coker dz_l — A" is injective because A™s acyclic, and then k™ exists by the
injectivity of I™.
The proof for the dual statement is analogous. O
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