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Abstract. We consider random walks on the support of a random purely atomic measure on Rd with random jump probability rates.
The jump range can be unbounded. The purely atomic measure is reversible for the random walk and stationary for the action of the
group G=Rd or G= Zd . By combining two-scale convergence and Palm theory for G-stationary random measures and by developing
a cut-off procedure, under suitable second moment conditions we prove for almost all environments the homogenization for the massive
Poisson equation of the associated Markov generator. In addition, we obtain the quenched convergence of the L2-Markov semigroup
and resolvent of the diffusively rescaled random walk to the corresponding ones of the Brownian motion with covariance matrix 2D. For
symmetric jump rates, the above convergence plays a crucial role in the derivation of hydrodynamic limits when considering multiple
random walks with site-exclusion or zero range interaction. We do not require any ellipticity assumption, neither non-degeneracy of the
homogenized matrix D. Our results cover a large family of models, including e.g. random conductance models on Zd and on general
lattices (possibly with long conductances), Mott variable range hopping, simple random walks on Delaunay triangulations, simple
random walks on supercritical percolation clusters.

Résumé. Nous considérons des marches aléatoires sur le support d’une mesure aléatoire purement atomique sur Rd avec taux de
sauts aléatoires. Les sauts peuvent être arbitrairement longs. La mesure purement atomique est réversible pour la marche aléatoire et
stationnaire pour l’action du groupe G = Rd ou G = Zd . En combinant la convergence à deux échelles et la théorie de Palm pour
les mesures aléatoires G-stationnaires et en développant une procédure de troncation, sous des conditions de moment d’ordre deux
appropriées, nous prouvons pour presque tous les environnements l’homogénéisation pour l’équation de Poisson massive du générateur
de Markov associé. De plus, nous obtenons la convergence du semi-groupe de Markov L2 et de la résolvante de la marche aléatoire,
après renormalisation diffusive, vers leur équivalent pour le mouvement brownien de matrice de covariance 2D. Pour des taux de
sauts symétriques, cette convergence joue un rôle crucial dans l’obtention de la limite hydrodynamique pour des modèles de marches
multiples avec exclusion ou à portée nulle. Aucune hypothèse d’ellipticité, ou de non-dégénérescence de la matrice homogénéisée D,
n’est nécessaire. Nos résultats couvrent une large classe de modèles, qui inclue notamment les modèles de conductances aléatoires sur
Zd et sur réseaux généraux (éventuellement à conductances longues), les modèles de sauts à distance variable de Mott, les marches
aléatoires simples sur les triangulations de Delaunay et les marches aléatoires simples sur des amas de percolation surcritiques.
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1. Introduction

Stochastic homogenization of random walks in random environment is a rich research field initiated in the Western
school by Varadhan, Papanicolaou and coauthors and in the Russian school by Kozlov (cf. e.g. [2,4,14,23,24,30–36,38,
39] and references therein). Hence, before describing our results, we illustrate some questions motivating the present
work, thus providing a reading key to this article. A first question concerns hydrodynamic limits (HL’s) of interacting
particle systems in random environment. In [15,16] we proved the quenched HL for the simple exclusion process and
the zero range process, respectively, on the supercritical percolation cluster with random conductances. The proof relies
(between other) on a weak form of quenched convergence of the Markov semigroup and resolvent for a single random
walk towards their counterparts for the Brownian motion. This convergence was obtained from the homogenization of
the massive Poisson equation in [15]. It is then natural to ask if these results hold for a much larger class of models.
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A second question motivating the present work concerns Mott’s law, which predicts the anomalous conductivity decay
at low temperature in amorphous solids with electron transport given by Mott variable range hopping [40]. A mean-field
model is given by Mott random walk on a marked simple1 point process in Rd [21]. By invoking Einstein’s relation,
Mott’s law can be stated in terms of the dependence of the effective diffusion matrix D(β) on the temperature β−1. In
[7,8] we proved a quenched invariance principle for Mott random walk under suitable conditions on the point process with
a homogenization-type characterization of D(β), while in [20,21] we proved bounds on D(β) in agreement with Mott’s
law. As Mott’s law has a large class of universality, it is natural to ask if a weak form of quenched CLT with the same
matrix D(β) holds for a much larger (compared to [7,8]) class of point processes. In the present work (cf. Theorems 4.1
and 4.4) we give a positive answer to the above questions. In our companion work [18] we then derive the quenched HL
for simple exclusion processes in symmetric random environments. The zero range process will be treated in a future
work.

Let us briefly describe our results. We consider here general random walks with state space given by the support of a
given random purely atomic measure on Rd , possibly contained in Zd or a generic d-dimensional discrete lattice as e.g.
the hexagonal one. Also the jump probability rates can be random. The above randomness of the environment is supposed
to be stationary with respect to the action of the group G= Rd or G= Zd . We assume some second moment conditions
and that the above random purely atomic measure is reversible for the random walk. Our first main result is then given by
the quenched homogenization of the massive Poisson equation associated to the diffusively rescaled random walk, leading
to an effective diffusive equation and a variational characterization of the homogenized matrix D (see Theorem 4.1). Our
second main result concerns a quenched convergence of the Markov semigroup and resolvent of the diffusively rescaled
random walk to their counterparts for the Brownian motion with covariance matrix 2D (see Theorem 4.4). This form of
convergence includes a spatial “average” on the initial point of the random walk, and it is the proper form relevant to get
the above quenched HL’s. It can also be thought of as a weak form of quenched CLT. We point out that we do not require
any ellipticity assumption and our results cover the case of degenerate homogenized matrix as well.

Our results cover a broad class of models. Just to list some examples: the random conductance models on Zd and on
general lattices (possibly with long conductances), Mott variable range hopping, simple random walks on Delaunay trian-
gulations, simple random walks on supercritical percolation clusters with random conductances. To gain such a generality
we have used the theory of G-stationary random measures [26,27,29], thus allowing to have a common language for all
models and to formulate the 2-scale ergodic properties of the environment in terms of Palm distributions. We have also
used the method of 2-scale convergence ([1,2,37,44] and references therein).

Our proof of Theorem 4.1 is inspired by the strategy developed in [44], dealing with random differential operators on
singular structures, but key technical obstructions due to possible arbitrarily long jumps (and therefore not present in [44])
have emerged. One main technical effort here has been to deal with 2-scale convergence using only L2-concepts. Let us
explain this issue. First, we observe that the standard gradient has to be replaced by an amorphous gradient, keeping
knowledge of the variation of a function along all possible jumps. While the gradient of a regular function ϕ on Rd

with compact support maintains the same properties, the amorphous gradient of ϕ is an irregular object, which cannot be
bounded in uniform norm. Hence, the 2-scale method developed for random differential operators does not work properly,
since several limits become now illegal. We have been able to overcome this difficulty by enhancing the standard method
with suitable cut-off procedures (cf. Sections 15 and 17). Another main difference with [44] is the following. In order
to prove that for almost any environment homogenization holds for all massive Poisson equations, we need to restrict
to countable dense families of testing objects in the definitions of 2-scale convergence and not always, in our context
and differently from [44], one can reduce for free to continuous objects when depending on the environment, as for the
space of solenoidal forms (cf. Section 8). To overcome this obstruction, we have been able to deal only with countable
families of L2 environment-dependent testing objects. This has also the advantage to avoid topological assumptions on
the probability space with exception of the separability of L2(P0), P0 being the Palm distribution of the random purely
atomic measure. On the other hand, a special care has been necessary in defining the right class of testing objects (cf.
Section 12).

We now give some comments on reference [24] containing results on spectral homogenization for the discrete Lapla-
cian on Zd with random conductances and unbounded length range. The conditions assumed in [24] are more complex,
implying both Poincaré and Sobolev inequalities (on the other hand, the authors face with a different problem). Note
that for the model in [24] the assumptions of our Theorem 4.1 and Theorem 4.4 reduce to Assumption 1.1-(a), (b) in
[24]. In particular, we avoid the more sophisticated Assumptions 1.1-(c) and 1.2 in [24]. The conditions in [24] guarantee
the uniform boundedness in L∞-norm of the solution of the Poisson equation with Dirichlet boundary conditions there
(cf. [24, Proposition 3.4]). As a consequence, the derivation of the structure result stated in Lemma 5.15 (and some-
how corresponding to [44, Lemma 5.4] and to Proposition 18.1 here) is much simplified by the L∞-boundedness of the

1We follow the terminology of [9–11], hence simple just means that points have unit multiplicity.
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solutions and the obstruction mentioned above (solved by the cut-off procedure) does not emerge in [24]. Similarily,
homogenization results for random walks on Delaunay triangulations have been obtained also in [28] under the condition
that the diameters of the Voronoi cells are uniformly bounded both from below and from above (see Condition 1.2 in
[28]). Our analysis does not need such uniform bounds. We also point out that some stronger assumptions in [24] imply
the non-degeneracy of the homogenized matrix, and this property enters in their proof of the structure result given by
[24, Lemma 5.15]. Finally, we remark that, when working with Zd as in [24], the form of the Palm distribution is much
simpler (compare (12) with (9) and (11)) and therefore several manipulations concerning square integrable forms become
simple, differently from the general case (see e.g. Lemma 7.3).

Knowing the non-degeneracy of the diffusion matrix D gives important information on the effective homogenized
equation. As possible techniques to prove the non-degeneracy we mention the use of lower Gaussian kernel bounds and
the sublinearity of the corrector (cf. e.g. [4], [3, Section 6.1], [13, Prop. 2.5], [36]). Alternatively, one can use electrostatic
arguments by combining the results of [19] for resistor networks on point processes with Remark 3.7 below (see [19,
Section 3] and also [12] for a special case with a more complex construction of the resistor network). Further details are
given in Section 5.

We conclude with some remarks on the quenched invariance principle of random walks on point processes. The results
contained in this work, and in particular Proposition 18.1, allow to extend the analysis of the corrector in [36] to our
general class of random walks on point processes, for the part concerning 2-scale convergence. Mainly the proof of
tightness would then require a further analysis. We also mention [5,7,8,41] where the quenched invariance principle of
random walks with long-range jumps is proved.

Outline of the paper. In Section 2 we describe our setting and main assumptions. In Section 3 we introduce the massive
Poisson equation, the homogenized equation and discuss convergence types. In Section 4 we present our main results. In
Section 5 we discuss some examples. In Section 6 we show that it is enough to consider the case G= Rd . In Section 7
we derive some key properties of the Palm distribution. In Sections 8, 9, 10 and 11 we study square integrable forms. In
Section 12 we describe the set �typ of typical environments appearing in Theorems 4.1 and 4.4. In Section 13 we discuss
2-scale convergence in our setting. In Section 14 we provide a roadmap for the proof of Theorem 4.1. In Sections 15 and
17 we develop the basis of our cut-off procedure. In Sections 16 and 18 we study bounded families of functions in the
Hilbert space H 1

ω,ε (cf. Definition 3.2). Having developed all the necessary machinery, in Sections 19 and 20 we prove
respectively Theorems 4.1 and 4.4. Finally, several technical facts have been collected in Appendixes A, B, C, D, E, F.

2. Setting

In this section we introduce the basic concepts in our modelisation: the group G (G= Rd or G= Zd ) acting on a given
probability space (�,F,P) and on the space Rd ; the random G-stationary purely atomic measure μω on Rd and the
family of transition rates rx,y(ω). We also list our main assumptions, given by (A1), . . . , (A8) below. In Section 4 we will
introduce assumption (A9) for Theorem 4.4.

First we fix some basic notation. We denote by e1, . . . , ed the canonical basis of Rd . We denote by �(A) the Lebesgue
measure of the Borel set A ⊂ Rd . The standard scalar product of a, b ∈ Rd is denoted by a · b. Given a measure ν, we
denote by 〈·, ·〉ν the scalar product in L2(ν). Given a topological space W , without further mention, W will be thought of
as measurable space endowed with the σ -algebra B(W) of its Borel subsets.

2.1. Actions of the group G

G will be the abelian group Rd or Zd , which are endowed with the standard Euclidean topology and the discrete topology,
respectively.
• Action of G on (�,F,P). The action of G on (�,F,P) is given by a family of measurable maps (θg)g∈G with

θg :�→� such that

(P1) θ0 = 1,
(P2) θg ◦ θg′ = θg+g′ for all g,g′ ∈G,
(P3) the map G×� 
 (g,ω) �→ θgω ∈� is measurable,
(P4) P is left invariant by the G-action, i.e. P ◦ θ−1

g =P for all g ∈G.

The last property (P4) corresponds to the so-called G-stationarity of P . A subset A⊂� is called translation invariant if
θgA=A for all g ∈G.
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• Action of G on Rd . The action (τg)g∈G of G on Rd is given by translations. More precisely, we assume that, for a
basis v1, . . . , vd in Rd ,

(1) τgx = x + g1v1 + · · · + gdvd ∀x ∈Rd, g = (g1, . . . , gd) ∈G.

Equivalently, by thinking of g as a column vector, we can write

(2) τgx = x + Vg, V := [v1|v2| . . . |vd ]

(V is the d × d-matrix with columns v1, v2, . . . , vd ).
• Orbits and representatives. We set

(3) � := {t1v1 + · · · + tdvd : (t1, . . . , td) ∈ [0,1)d
}
.

Given x ∈Rd , the orbit of x is set {τgx : g ∈G}.
If G=Rd , then the orbit of the origin of Rd equals Rd and we set

(4) g(x) := g if x = τg0.

When V = I (as in many applications), we have τgx = x + g and g(x)= x.
If G = Zd , � is a set of orbit representatives for the action (τg)g∈G. We introduce the functions β : Rd → � and

g :Rd →G as follows:

(5) x = τga and a ∈� =⇒ β(x) := a, g(x) := g.

• Induced action of G on M. We denote by M the metric space of locally finite nonnegative measures on Rd [10,
App. A2.6]. The action of G on Rd naturally induces an action of G on M, which (with some abuse of notation) we still
denote by (τg)g∈G. In particular, τg :M→M is given by

(6) τgm(A) :=m(τgA), ∀A ∈ B
(
Rd
)
.

Setting m[f ] := ∫ f dm for all m ∈M, we get τgm[f ] =
∫

f (τ−gx) dm(x).

2.2. G-Stationary random measure μω

We suppose now to have a random locally finite nonnegative measure μω on Rd , i.e. a measurable map � 
 ω �→ μω ∈M.
We assume that μω is a purely atomic (i.e. pure point) measure with locally finite support for any ω ∈�. In particular,
we have

(7) μω =
∑
x∈ω̂

nx(ω)δx, nx(ω) := μω

({x}), ω̂ := {x ∈Rd : nx(ω) > 0
}

and ω̂ is a locally finite set. The map ω �→ ω̂ then defines a simple point process. The fundamental relation between
the above two actions of G and the random measure μω is given by the assumption that μω is G-stationary (cf. [26,
Section 2.4.2], [27, Eq. (21)]): μθgω = τgμω for P-a.a. ω ∈� and for all g ∈G.

2.3. Palm distribution

We introduce the Palm distribution P0 by distinguishing between two main cases and a special subcase. We will write
E[·] and E0[·] for the expectation w.r.t. P and P0, respectively.2

• Case G=Rd . The intensity of the random measure μω is defined as

(8) m := E
[
μω

([0,1)d
)]

.

2With some abuse, when f has a complex form, we will write E[f (ω)] instead of E[f ], and similarly for E0[f (ω)].
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As stated below, m is assumed to be finite and positive. By the G-stationarity of P we have m�(U) = E[μω(U)] for
any U ∈ B(Rd). Then (see e.g. [11,26,29] and Appendixes B, C) the Palm distribution P0 is the probability measure on
(�,F) such that, for any U ∈ B(Rd) with 0 < �(U) <∞,

(9) P0(A) := 1

m�(U)

∫
�

dP(ω)

∫
U

dμω(x)1A(θg(x)ω), ∀A ∈F .

P0 has support inside the set �0 := {ω ∈� : n0(ω) > 0} (see Remark 2.1).
• Case G= Zd . The intensity of the random measure μω is defined as

(10) m := E
[
μω(�)

]
/�(�).

By the G-stationarity of P , m�(A) = E[μω(A)] for any A ∈ B(Rd) which is an overlap of translated cells τg� with
g ∈G. As stated below, m is assumed to be finite and positive. Then (see Appendixes B, C) the Palm distribution P0 is
the probability measure on (�×�,F ⊗B(�)) such that

(11) P0(A) := 1

m�(�)

∫
�

dP(ω)

∫
�

dμω(x)1A(ω,x), ∀A ∈F ⊗B(�).

P0 has support inside �0 := {(ω, x) ∈�×� : nx(ω) > 0} (see Remark 2.1).
• Special discrete case: G = Zd , V = I and ω̂ ⊂ Zd ∀ω ∈ �. This is a subcase of the case G = Zd and in what

follows we will call it simply special discrete case. As this case is very frequent in discrete probability, we discuss
it apart pointing out some simplifications. As � = [0,1)d intersects Zd only at the origin, P0 (see case G = Zd ) is
concentrated on {ω ∈� : n0(ω) > 0} × {0}. Hence we can think of P0 as a probability measure concentrated on the set
�0 := {ω ∈� : n0(ω) > 0}. Formulas (10) and (11) then read

(12) m := E[n0], P0(A) := E[n0 1A]/E[n0] ∀A ∈F .

In what follows, when treating the special discrete case, we will use the above identifications without explicit mention.

2.4. Rate jumps and assumptions

All objects introduced so far concern the environment and not the particle dynamics. The latter is encoded in the measur-
able function

(13) r :�×Rd ×Rd 
 (ω, x, y) �→ rx,y(ω) ∈ [0,+∞).

As it will be clear below, only the value of rx,y(ω) with x �= y in ω̂ will be relevant. Hence, without loss of generality, we
take

(14) rx,x(ω)≡ 0, rx,y(ω)≡ 0 ∀{x, y} �⊂ ω̂.

By identifying the support ω̂ of μω with the measure
∑

x∈ω̂ δx , we define the function λk : �0 → [0,+∞] (for k ∈
[0,∞)) as follows:

(15)

⎧⎨⎩λk(ω) :=
∫
Rd

dω̂(x)r0,x(ω)|x|k

�0 =
{
ω ∈� : n0(ω) > 0

} Case G=Rd and
special discrete case,⎧⎨⎩λk(ω,a) :=

∫
Rd

dω̂(x)ra,x(ω)|x − a|k

�0 :=
{
(ω, x) ∈�×� : nx(ω) > 0

} Case G= Zd .

We list our assumptions (including the ones introduced above).

Assumptions. We make the following assumptions where �∗ is some translation invariant measurable subset of � with
P(�∗)= 1:

(A1) P is stationary and ergodic w.r.t. the action (θg)g∈G of the group G;
(A2) the P-intensity m of the random measure μω is finite and positive;
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(A3) for all ω ∈�∗ and for all g �= g′ in G, it holds θgω �= θg′ω;
(A4) for all ω ∈�∗, for all g ∈G and x, y ∈Rd , it holds

μθgω = τgμω,(16)

rx,y(θgω)= rτgx,τgy(ω);(17)

(A5) for all ω ∈�∗ and for all x, y ∈ ω̂, it holds

(18) cx,y(ω) := nx(ω)rx,y(ω)= ny(ω)ry,x(ω);
(A6) for all ω ∈ �∗ and for all x, y ∈ ω̂, there exists a path x = x0, x1, . . . , xn−1, xn = y such that xi ∈ ω̂ and

rxi ,xi+1(ω) > 0 for all i = 0,1, . . . , n− 1;
(A7) λ0, λ2 ∈ L1(P0);
(A8) L2(P0) is separable.

We conclude this section with some comments on the above assumptions. We observe that, by Zero-Infinity Dichotomy
(see [11, Proposition 12.1.VI]) and Assumptions (A1), (A2), for P-a.a. ω the support ω̂ of μω is an infinite set.

For k = 3,4,5,6 we call �k the set of environments ω satisfying the properties stated in Assumption (Ak) (for example
�3 := {ω ∈� : θgω �= θg′ω ∀g �= g′ in G}). All �k’s are always translation invariant. If G= Zd , they are also measurable.

Therefore, for G= Zd , we can simply take �∗ :=⋂6
k=3 �k , which is automatically a measurable and translation invariant

set. When G=Rd and, as common in applications, �4 =�5 =�6 =�, we can prove that �3 is measurable. Therefore,
in the above case, we can simply take �∗ :=�3, which is automatically a measurable and translation invariant set. The
above proof and the discussion of further cases are provided in Appendix A.

We point out that (A3) is usually a rather superfluous assumption. Indeed, by free one can add some randomness
enlarging � to assure (A3) (similarly to [12, Remark 4.2-(i)]). For example, if (�,F,P) describes a random simple
point process on Rd obtained by periodizing a random simple point process on [0,1]d , then to gain (A3) it would be
enough to mark points by i.i.d. random variables with non-degenerate distribution.

Considering the random walk Xω
t introduced in Section 3.3 below, (A5) and (A6) correspond to reversibility of the

measure μω and to irreducibility for all ω ∈�∗.
We observe that (A7) implies

(19) E0[λ1] ≤ E0[λ0] +E0[λ2]<+∞.

We point out that, by [6, Theorem 4.13], (A8) is fulfilled if (�0,F0,P0) is a separable measure space where F0 :=
{A∩�0 :A ∈F} (i.e. there is a countable family G ⊂F0 such that the σ -algebra F0 is generated by G). For example, if
�0 is a separable metric space and F0 = B(�0) (which is valid if � is a separable metric space and F = B(�)) then (cf.
[6, p. 98]) (�0,F0,P0) is a separable measure space and (A8) is valid.

Remark 2.1. We report some useful identities restricting to the ω’s which fulfill the properties in (A4) and (A5) (i.e.
ω ∈ �4 ∩ �5 with the above notation). For all a, b ∈ Rd it holds τg(a)b = a + b. For all x ∈ Rd and g ∈ G it holds
nx(θgω) = nτgx(ω). Given a, b ∈ ω̂ we have na(ω) = n0(θg(a)ω), ra,b(ω) = r0,b−a(θg(a)ω), ca,b(ω) = c0,b−a(θg(a)ω)

and θ̂g(a)ω= ω̂− a.

3. Massive Poisson equation, random walk, homogenized matrix, homogenized equation, convergence in L2(με
ω),

L2(νε
ω)

Recall that we identify the support ω̂ of μω with the measure
∑

x∈ω̂ δx .

3.1. Measures με
ω and νε

ω

Given ε > 0 and ω ∈�, we define με
ω as the measure on Rd (cf. (7))

(20) με
ω :=

∑
x∈ω̂

εdnx(ω)δεx.

We write 〈·, ·〉με
ω

for the scalar product in L2(με
ω). By ergodicity, for P-a.a. ω the measure με

ω converges vaguely to mdx,
where m is the intensity of μω. The above convergence is a special case of the following stronger ergodicity result, where
the interplay between the microscale and macroscale emerges:
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Proposition 3.1. Let f :�0 →R be a measurable function with ‖f ‖L1(P0)
<∞. Then there exists a translation invariant

measurable subset A[f ] ⊂� such that P(A[f ])= 1 and such that, for any ω ∈A[f ] and any ϕ ∈Cc(R
d), it holds

(21) lim
ε↓0

∫
dμε

ω(x)ϕ(x)f (θg(x/ε)ω)=
∫

dx mϕ(x) ·E0[f ].

Note that in (21) x/ε and x are respectively at the microscopic and macroscopic scale. The proof of Proposition 3.1
can be obtained by standard arguments from [42] (see also [17, App. B]).

We define νε
ω as the measure on Rd ×Rd given by (cf. Remark 2.1)

(22) νε
ω := εd

∫
dω̂(a)

∫
dω̂(b)ca,b(ω)δ(εa,b−a) =

∫
dμε

ω(x)

∫
d( ̂θg(x/ε)ω)(z)r0,z(θg(x/ε)ω)δ(x,z).

We write 〈·, ·〉νε
ω

for the scalar product in L2(νε
ω).

3.2. Microscopic gradient and space H 1
ω,ε

Given ω ∈� and a real function v whose domain contains εω̂, we define the microscopic gradient ∇εv as the function

(23) ∇εv(x, z)= v(x + εz)− v(x)

ε
, x and x + εz ∈ εω̂.

By Remark 2.1, given x ∈ εω̂, x + εz ∈ εω̂ if and only if z ∈ ̂θg(x/ε)ω.

Definition 3.2. We say that v ∈ H 1
ω,ε if v ∈ L2(με

ω) and ∇εv ∈ L2(νε
ω). Moreover, we endow the space H 1

ω,ε with the
scalar product 〈v,w〉H 1

ω,ε
:= 〈v,w〉με

ω
+ 〈∇v,∇w〉νε

ω
and write ‖ · ‖H 1

ω,ε
for the norm in H 1

ω,ε .

It is simple to check that H 1
ω,ε is a Hilbert space.

3.3. Space H 1,f
ω,ε , massive Poisson equation, self-adjoint operator Lε

ω, random walks Xω
t and εXω

ε−2t

We introduce the set

(24) �1 :=
{
ω ∈� : rx(ω) :=

∑
y∈ω̂

rx,y(ω) <∞ ∀x ∈ ω̂, cx,y(ω)= cy,x(ω) ∀x, y ∈ ω̂

}
.

Then the set �1 ⊂ � is translation invariant and it holds P(�1 = 1) as can be checked at cost to reduce to the case
G=Rd by the method outlined in Section 6 and applying Corollary 7.2 below together with the bound E0[λ0]<∞. We
restrict to ω ∈�1. We call C(εω̂) the set of real functions on εω̂ which are zero outside a finite set. Then C(εω̂)⊂H 1

ω,ε .
Indeed, by symmetry of cx,y(ω), for any v : εω̂→R it holds

(25) ε2
∫

dνε
ω(x, z)∇εv(x, z)2 ≤ 2εd

∫
dω̂(x)

∫
dω̂(y)cx,y(ω)

[
v(εx)2 + v(εy)2]= 4εd

∫
dμω(x)rx(ω)v(εx)2.

When v ∈ C(εω̂), the last term is a finite sum (as ω̂ is locally finite and ω ∈�1).

Definition 3.3. Given ω ∈�1, the Hilbert space H 1,f
ω,ε is defined as the closure of C(εω̂) inside the Hilbert space H 1

ω,ε .

The index f in H 1,f
ω,ε refers to finite support, as the functions in C(εω̂) are the ones with finite support on εω̂. The

symmetric form (f,h) �→ 1
2 〈∇εf,∇εh〉νε

ω
with domain H 1,f

ω,ε ⊂ L2(με
ω) is a regular Dirichlet form with core C(εω̂)

(consider [25, Example 1.2.5] with E, qx,y , kx , m0, m there defined as E := εω̂, qx,y := ε−2rx/ε,y/ε for x �= y in εω̂,
qx,x := −∑y:y �=x qx,y , kx := 0, m0

x := εdnx/ε(ω), m :=m0). In particular, there exists a unique nonpositive definite self-

adjoint operator Lε
ω in L2(με

ω) such that H 1,f
ω,ε equals the domain of

√−Lε
ω and 1

2 〈∇εf,∇εf 〉νε
ω
= ‖√−Lε

ωf ‖2
L2(με

ω)
for

any f ∈H 1,f
ω,ε (see [25, Theorem 1.3.1]). Note that, if h ∈D(Lε

ω)⊂D(
√−Lε

ω)=H 1,f
ω,ε and f ∈H 1,f

ω,ε , we have

(26)
〈
f,−Lε

ωh
〉
με

ω
= εd−2

2

∫
dω̂(x)

∫
dω̂(y)cx,y(ω)

(
f (εy)− f (εx)

)(
h(εy)− h(εx)

)= 1

2
〈∇εf,∇εh〉νε

ω
.
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Identity (26) suggests a weak formulation of the equation −Lε
ωu+ λu= f :

Definition 3.4. Let ω ∈�1. Given f ∈ L2(με
ω) and λ > 0, a weak solution u of the equation

(27) −Lε
ωu+ λu= f

is a function u ∈H 1,f
ω,ε such that

(28)
1

2
〈∇εv,∇εu〉νε

ω
+ λ〈v,u〉με

ω
= 〈v,f 〉με

ω
∀v ∈H 1,f

ω,ε.

By the Lax–Milgram theorem [6], given f ∈ L2(με
ω) the weak solution u of (27) exists and is unique. As any λ > 0

belongs to the resolvent set of the nonpositive self-adjoint operator Lε
ω, equation (27) is equivalent to u= (−Lε

ω+λ)−1f .
We point out that (cf. [25, Lemma 1.3.2 and Exercise 4.4.1]) the self-adjoint operator Lε

ω is the infinitesimal generator
of the strongly continuous Markov semigroup in L2(με

ω) associated to the diffusively rescaled random walk (εXω
ε−2t

)t≥0,
Xω

t being the random walk on ω̂ with probability rate rx,y(ω) for a jump from x to y in ω̂ (possibly with explosion). We
can indeed show (cf. Appendix D) that, for P-a.a. ω, explosion does not take place (one needs weaker assumptions for
this result):

Lemma 3.5. Assume (A1), . . . , (A6), λ0 ∈ L1(P0) (for some translation invariant measurable set �∗ with P(�∗)= 1).
Then there exists a translation invariant measurable set A ⊂ � with P(A) = 1 such that, for all ω ∈ A, (i) rx(ω) :=∑

y∈ω̂ rx,y(ω) ∈ (0,+∞) ∀x ∈ ω̂, (ii) the continuous-time Markov chain on ω̂ starting at any x0 ∈ ω̂, with waiting time
parameter rx(ω) at x ∈ ω̂ and with probability rx,y(ω)/rx(ω) for a jump from x to y, is non-explosive.

3.4. Homogenized matrix D and homogenized equation

Definition 3.6. We define the homogenized matrix D as the unique d × d symmetric matrix such that:

• Case G=Rd and special discrete case3

(29) a ·Da = inf
f∈L∞(P0)

1

2

∫
�0

dP0(ω)

∫
Rd

dω̂(x)r0,x(ω)
(
a · x −∇f (ω,x)

)2
,

for any a ∈Rd , where ∇f (ω,x) := f (θg(x)ω)− f (ω).
• Case G= Zd

(30) a ·Da = inf
f∈L∞(P0)

1

2

∫
�×�

dP0(ω, x)

∫
Rd

dω̂(y)rx,y(ω)
(
a · (y − x)−∇f (ω,x, y − x)

)2
,

for any a ∈Rd , where ∇f (ω,x, y − x) := f (θg(y)ω,β(y))− f (ω,x).

Since λ2 ∈ L1(P0) by (A7), a ·Da is indeed finite for any a ∈Rd .

Remark 3.7. Consider the new random measure μ̃ω := ω̂ and the new rates r̃x,y(ω) := cx,y(ω), under the assumption
that the intensity m̃ of μ̃ω is finite and positive. One can then check that Assumptions (A1), . . . , (A8) imply the analogous
assumptions in the new setting with μ̃ω and r̃x,y(ω). Moreover, writing P̃0 and D̃ for the Palm distribution and the
effective homogenized matrix in the new setting respectively, one easily gets that mdP0(ω)= m̃n0(ω)dP̃0(ω) for G=
Rd and in the special discrete case, mdP0(ω, x)= m̃nx(ω)dP̃0(ω, x) for G= Zd and mD = m̃D̃. As a consequence we
get that m/m̃= Ẽ0[n0], Ẽ0[·] being the expectation w.r.t. P̃0.

Definition 3.8. We fix an orthonormal basis e1,. . . , ed of eigenvectors of D (which is symmetric) and we let γi be
the eigenvalue of ei . At cost of a relabelling, γ1, . . . , γd∗ are all positive and γd∗+1, . . . , γd are all zero. In particular,
d∗ ∈ {0,1, . . . , d} and, if D is strictly positive, it holds d∗ = d . Given a unit vector v, we write ∂vf for the weak derivative
of f along the direction v (if v = ei , then ∂vf is simply the standard weak derivative ∂if ).

3In the special discrete case,
∫
Rd dω̂(x) can be replaced by a sum among x ∈ Zd .
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Definition 3.9. We introduce the space H 1∗ (mdx) given by the functions f ∈ L2(mdx) such that the weak derivative ∂ei
f

belongs to L2(mdx) ∀i ∈ {1, . . . , d∗}. We endow H 1∗ (mdx) with the scalar product 〈f,h〉H 1∗ (mdx) := 〈f,h〉L2(mdx) +∑d∗
i=1〈∂ei

f, ∂ei
h〉L2(mdx). Moreover, given f ∈H 1∗ (mdx), we set

(31) ∇∗f :=
d∗∑

i=1

(∂ei
f )ei ∈L2(mdx)d .

We stress that, if ei = ei for all i = 1, . . . , d∗ (as in many applications), then

(32) ∇∗f := (∂1f, . . . , ∂d∗f,0, . . . ,0) ∈L2(mdx)d .

We point out that H 1∗ (mdx) is an Hilbert space (adapt the standard proof for H 1(dx)). Moreover, C∞
c (Rd) is dense in

H 1∗ (mdx) (adapt the arguments in the proof of [6, Thm. 9.2]).
We now move to the effective homogenized equation, where D denotes the homogenized matrix introduced in Defini-

tion 3.6.

Definition 3.10. Given f ∈L2(mdx) and λ > 0, a weak solution u of the equation

(33) −∇∗ ·D∇∗u+ λu= f

is a function u ∈H 1∗ (mdx) such that

(34)
∫

D∇∗v(x) · ∇∗u(x)dx + λ

∫
v(x)u(x) dx =

∫
v(x)f (x) dx, ∀v ∈H 1∗ (mdx).

Again, by the Lax–Milgram theorem, given f ∈ L2(mdx) the weak solution u of (27) exists and is unique.

3.5. Weak and strong convergence for L2(με
ω) and L2(νε

ω)

Definition 3.11. Fix ω ∈� and a family of ε-parametrized functions vε ∈ L2(με
ω). We say that the family {vε} converges

weakly to the function v ∈L2(mdx), and write vε ⇀ v, if

(35) lim sup
ε↓0

‖vε‖L2(με
ω) <+∞

and

(36) lim
ε↓0

∫
dμε

ω(x)vε(x)ϕ(x)=
∫

dx mv(x)ϕ(x)

for all ϕ ∈ Cc(Rd). We say that the family {vε} converges strongly to v ∈ L2(mdx), and write vε → v, if in addition to
(35) it holds

(37) lim
ε↓0

∫
dμε

ω(x)vε(x)gε(x)=
∫

dx mv(x)g(x),

for any family of functions gε ∈L2(με
ω) weakly converging to g ∈L2(mdx).

In general, when (35) is satisfied, one simply says that the family {vε} is bounded.

Remark 3.12. One can prove (cf. [43, Prop. 1.1]) that vε → v if and only if vε ⇀ v and limε↓0
∫
Rd vε(x)2 dμε

ω(x) =∫
Rd v(x)2mdx.

We introduce now a special form of convergence of microscopic gradients (note that the testing objects are gradients
as well).
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Definition 3.13. Fix ω ∈� and a family of ε-parametrized functions vε ∈ L2(με
ω). We say that the family {∇εvε} con-

verges weakly to the vector-valued function w belonging to the product space L2(mdx)d and with values in Rd , and write
∇εvε ⇀ w, if

(38) lim sup
ε↓0

‖∇εvε‖L2(νε
ω) <+∞

and

(39) lim
ε↓0

1

2

∫
dνε

ω(x, z)∇εvε(x, z)∇εϕ(x, z)=
∫

dx mDw(x) · ∇∗ϕ(x)

for all ϕ ∈ C1
c (Rd). We say that family {∇εvε} converges strongly to w as above, and write ∇εvε → w, if in addition to

(38) it holds

(40) lim
ε↓0

1

2

∫
dνε

ω(x, z)∇εvε(x, z)∇εgε(x, z)=
∫

dx mDw(x) · ∇∗g(x)

for any family of functions gε ∈ L2(με
ω) with gε ⇀ g ∈L2(mdx) such that gε ∈H 1,f

ω,ε and g ∈H 1∗ (mdx).

Remark 3.14. Denoting by ϕε the restriction of ϕ to εω̂, for all ω ∈ �1 any ϕ ∈ Cc(R
d) has the property that ϕε ∈

C(εω̂)⊂H 1,f
ω,ε , as ω̂ is locally finite. Moreover, given ω ∈A[1] (cf. Proposition 3.1), by Remark 3.12 we get that L2(με

ω) 

ϕε → ϕ ∈ L2(mdx). In particular, for environments ω ∈ �1 ∩A[1] (as the ones in �typ appearing in Theorem 4.1), if
∇εvε →w then ∇εvε ⇀ w.

4. Main results

We can now state our first main result (recall the definition of �1 at the beginning of Section 3.3):

Theorem 4.1. Let Assumptions (A1), . . . , (A8) be satisfied. Then there exists a measurable subset �typ ⊂�1 ∩�∗ ⊂�,
of so called typical environments, fulfilling the following properties. �typ is translation invariant and P(�typ)= 1. More-
over, given ω ∈�typ, λ > 0, fε ∈ L2(με

ω) and f ∈ L2(mdx), let uε and u be defined as the weak solutions, respectively
in H 1,f

ω,ε and H 1∗ (mdx), of the equations

−Lε
ωuε + λuε = fε,(41)

−∇∗ ·D∇∗u+ λu= f.(42)

Then we have:

(i) Convergence of solutions (cf. Definition 3.11):

fε ⇀ f =⇒ uε ⇀ u,(43)

fε → f =⇒ uε → u.(44)

(ii) Convergence of flows (cf. Definition 3.13):

fε ⇀ f =⇒ ∇εuε ⇀∇∗u,(45)

fε → f =⇒ ∇εuε →∇∗u.(46)

(iii) Convergence of energies:

(47) fε → f =⇒ 1

2
〈∇εuε,∇εuε〉νε

ω
→
∫

dx m∇∗u(x) ·D∇∗u(x).

Remark 4.2. Let ω ∈�typ. Then, as �typ ⊂A[1] (cf. Section 12), by Remark 3.14 for any f ∈ Cc(R
d) it holds L2(με

ω) 

f → f ∈ L2(mdx). By taking fε := f and using (44), we get that uε → u, where uε and u are defined as the weak
solutions of (41) and (42), respectively.
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We write (P ε
ω,t )t≥0 for the L2(με

ω)-Markov semigroup associated to the random walk (εXω
ε−2t

)t≥0 on εω̂. In particular,
P ε

ω,t = etLε
ω . Similarly we write (Pt )t≥0 for the Markov semigroup on L2(mdx) associated to the (possibly degenerate)

Brownian motion on Rd with diffusion matrix 2D given in Definition 3.6. Note that this Brownian motion is not degen-
erate when projected on span(e1, . . . , ed∗), while no motion is present along span(ed∗+1, . . . , ed). In particular, in the case
ei = ei , writing pt (·, ·) for the probability transition kernel of the Brownian motion on Rd∗ with non-degenerate diffusion
matrix (2Di,j )1≤i,j≤d∗ , it holds

(48) Ptf
(
x′, x′′

)= ∫
Rd∗

pt

(
x′, y
)
f
(
y, x′′

)
dy,

(
x′, x′′

) ∈Rd∗ ×Rd−d∗ =Rd .

Given λ > 0 we write Rε
ω,λ : L2(με

ω) → L2(με
ω) for the λ-resolvent associated to the random walk εXω

ε−2t
, i.e.

Rε
ω,λ := (λ−Lε

ω)−1 = ∫∞0 e−λsP ε
ω,s ds. We write Rλ :L2(mdx)→ L2(mdx) for the λ-resolvent associated to the above

Brownian motion on Rd with diffusion matrix 2D. Note that (41) and (42) can be rewritten as uε =Rε
ω,λfε and u=Rλf ,

respectively.
We now show several forms of semigroup and resolvent convergence, whose derivation uses Theorem 4.1 (they play a

fundamental role in [18]). To this aim we introduce a new Assumption (recall definition (3) of �):

Assumption (A9). At least one of the following properties is fulfilled:

(i) For P-a.a. ω ∃C(ω) > 0 such that μω(τk�)≤ C(ω) for all k ∈ Zd .
(ii) Setting Nk(ω) := μω(τk�) for k ∈ Zd , for some C0 ≥ 0 it holds E[N2

0 ]<∞ and

(49)
∣∣Cov(Nk,Nk′)

∣∣≤ C0
∣∣k − k′

∣∣−1

for any k �= k′ in Zd . More generally, we assume that, at cost to enlarge the probability space, one can define random
variables (Nk)k∈Zd with μω(τk�)≤Nk , such that E[Nk], E[N2

k ] are bounded uniformly in k and such that (49) holds
for all k �= k′.

Remark 4.3. As follows from the proof of Theorem 4.4 below, when G=Rd one can replace τk� by k+[0,1)d as well.
In general, for G=Rd , one can replace the cells {τk�}k∈Zd by the cells of any lattice partition of Rd .

Theorem 4.4. Let Assumptions (A1), . . . , (A8) be satisfied. Take ω ∈ �typ and f ∈ Cc(R
d). Then for any t ≥ 0 and

λ > 0, it holds

L2(με
ω

) 
 P ε
ω,tf → Ptf ∈L2(mdx),(50)

L2(με
ω

) 
Rε
ω,λf →Rλf ∈L2(mdx).(51)

Suppose in addition that Assumption (A9) holds. Then there exists a translation invariant measurable set �� ⊂ � with
P(��)= 1 such that for any ω ∈�� ∩�typ, any f ∈Cc(R

d), λ > 0, t ≥ 0 it holds:

lim
ε↓0

∫ ∣∣P ε
ω,tf (x)− Ptf (x)

∣∣2 dμε
ω(x)= 0,(52)

lim
ε↓0

∫ ∣∣P ε
ω,tf (x)− Ptf (x)

∣∣dμε
ω(x)= 0,(53)

lim
ε↓0

∫ ∣∣Rε
ω,λf (x)−Rλf (x)

∣∣2 dμε
ω(x)= 0,(54)

lim
ε↓0

∫ ∣∣Rε
ω,λf (x)−Rλf (x)

∣∣dμε
ω(x)= 0.(55)

The proof of Theorem 4.4 is given in Section 20.

Remark 4.5. Assumption (A9) is used only to derive Lemma 20.1 in Section 20, which is applied in the proof of
Theorem 4.4 only with ψ(r) := 1/(1+ rd+1).
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5. Some examples

The class of reversible random walks in random environment is very large. We discuss just some popular examples.
Below, when we state that assumptions (A3), . . . , (A6) are satisfied, we understand that this holds with ω in a suitable
translation invariant measurable set �∗ ⊂� with P(�∗)= 1.

5.1. Nearest-neighbor random conductance model on Zd

We take G := Zd and V := I. Let Ed := {{x, y} : x, y ∈ Zd , |x − y| = 1}. We take � := (0,+∞)E
d

endowed with
the product topology. We write ω = (ωb : b ∈ Ed) for a generic element of � and we write ωx,y instead of ω{x,y}.
Note that ωx,y = ωy,x . The action (θx)x∈Zd is the standard one: θx shifts the environment along the vector −x. We set
μω :=∑x∈Zd δx and rx,y(ω) := ωx,y if {x, y} ∈ Ed and rx,y(ω) := 0 otherwise. Then, given the environment ω, the
random walk Xω

t has state space Zd and jumps from x to y, with |x − y| = 1, with rate ωx,y . Assumptions (A1), . . . ,
(A9) are satisfied whenever P is stationary and ergodic, it satisfies (A3) and E[ωx,y]<+∞ for all |x − y| = 1 (i.e., by
stationarity, E[ω0,ei

] < +∞ for i = 1, . . . , d). Due to [4, Prop. 4.1], if in addition E[1/ω0,ei
] < +∞ for i = 1, . . . , d ,

then the matrix D is non-degenerate.
If one wants the version with waiting times of parameter 1, then one has to set nx(ω) :=∑y:|x−y|=1 ωx,y , μω :=∑
x∈Zd nx(ω)δx and rx,y(ω) := ωx,y/nx(ω). Then Assumptions (A1), . . . , (A8) are satisfied whenever P is stationary

and ergodic, it satisfies (A3) and E[ωx,y] < +∞ for all |x − y| = 1 (use (12)). As in the previous case, D is non-
degenerate if E[1/ω0,ei

]<+∞ for i = 1, . . . , d (see Remark 3.7). To satisfy Assumption (A9) it is enough e.g. that the
conductances ωx,y are uniformly bounded or that the covariance between ωx,y and ωx′,y′ decays at least as the inverse of
the distance between {x, y} and {x′, y′}.

5.2. Random conductance model on Zd with long conductances

We take G := Zd and V := I. We set Bd := {{x, y} : x, y ∈ Zd , x �= y} and take � := (0,+∞)B
d

endowed with the
product topology. We set ωx,y := ω{x,y}. The action (θx)x∈Zd is the standard one. We take μω :=∑x∈Zd δx , rx,y(ω) :=
ωx,y if {x, y} ∈ Bd and rx,y(ω) := 0 otherwise. Then, given the environment ω, the random walk Xω

t has state space Zd

and jumps from x to y with probability rate ωx,y . Assumptions (A1), . . . , (A9) are satisfied whenever P is stationary and
ergodic, it satisfies (A3) and it satisfies E[∑z∈Zd ω0,z|z|2]<+∞ (which implies E[∑z∈Zd ω0,z]<+∞). Reasoning as
in the proof of [4, Prop. 4.1], for all a ∈Rd one can lower bound the scalar product a ·Da by C

∑
x∈Zd (a ·x)2/E[1/ω0,x]

with C > 0. Hence, D is non-degenerate if the set {x ∈ Zd : E[1/ω0,x]<+∞} is not contained in a subspace of Rd with
dimension smaller than d .

5.3. Random walk with random conductances on infinite clusters

We take G := Zd and V := I. Let Ed be as in Example 5.1. We take � := [0,+∞)E
d

with the product topology. The
action (θx)x∈Zd is the standard one. Let P be a probability measure on � stationary, ergodic and fulfilling (A3) for the
above action. We assume that for P-a.a. ω there exists a unique infinite connected component C(ω) ⊂ Zd in the graph
given by the edges {x, y} in Ed with positive conductivity ωx,y .

We set μω :=∑x∈C(ω) δx , rx,y(ω) := ωx,y if {x, y} ∈ Ed and rx,y(ω) := 0 otherwise. Note that nx(ω)= 1(x ∈ C(ω)).
Then the random walk Xω

t has state space C(ω) and jumps from x to y in C(ω) (where |x − y| = 1) with probability rate
ωx,y . Note that dP0(ω) = 1(0 ∈ C(ω)) dP(ω)/P(0 ∈ C(ω)). If, in addition, P satisfies E[ωx,y] < +∞ for all {x, y} ∈
Ed , then all Assumptions (A1), . . . , (A9) are satisfied (note that we need neither bounded conductances nor the non-
degeneracy of the diffusion matrix, differently from [15]). This holds for example if P is the Bernoulli product probability
on � such that P(ωx,y > 0) > pc, pc being the bond percolation critical probability on Zd , and E[ωx,y] < +∞ for all
{x, y} ∈ Ed .

If interested to the modified version with waiting times of parameter 1, then we set nx(ω) :=∑y:{x,y}∈Ed ωx,y1(x ∈
C(ω)), μω :=∑x∈C(ω) nx(ω)δx and rx,y(ω) := ωx,y/nx(ω) if {x, y} ∈ Ed and x, y ∈ C(ω), otherwise we set rx,y(ω) := 0.
All assumptions (A1), . . . , (A8) are satisfied whenever E[ωx,y] < +∞ for {x, y} ∈ Ed . For (A9) one can argue as in
Example 5.1.

We refer e.g. to [3,13,36] for additional assumptions assuring the non-degeneracy of D.
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5.4. Mott random walk

Mott random walk (see e.g. [7,8,20,21]) is a mean-field model for Mott variable range hopping in amorphous solids
[40]. We take G := Rd and V := I. � is given by the space of marked simple counting measures with marks in R. By
identifying ω with its support, we have ω= {(xi,Ei)} where Ei ∈R and the set {xi} is locally finite. � is a metric space,
being a subset of the metric space N of counting measures μ =∑i kiδ(xi ,Ei), where ki ∈ N and {(xi,Ei)} is a locally
finite subset of Rd ×R. See [9, Eq. (A2.6.1) in App. A2.6] for the metric d associated to N . One can prove that (N , d) is
a Polish space having � as Borel subset [9, Cor. 7.1.IV, App. A2.6]. The action θx on � is given by θxω := {(xi − x,Ei)}
if ω= {(xi,Ei)}.

Given the environment ω= {(xi,Ei)}, to get Mott random walk we take μω :=∑i δxi
(hence ω̂ := {xi} and nxi

(ω) :=
1) and

(56) rxi ,xj
(ω) := exp

{−|xi − xj | − |Exi
| − |Exj

| − |Exi
−Exj

|}, xi �= xj .

Hence, Xω
t walks on {xi} with jump probability rates given by (56). Note that the properties in (A4), (A5), (A6) are

automatically satisfied by all ω ∈� (i.e. �4 =�5 =�6 =� with the notation of Section 2.4). Suppose that P satisfies
(A1), (A2) and P(θgω �= θg′ω ∀g �= g′ in G) = 1 (as discussed in Section 2.4 the set {ω : θgω �= θg′ω ∀g �= g′ in G}
is measurable). Then (A3) is satisfied by taking �∗ = �3 and requiring P(�∗) = 1. P0 is simply the standard Palm
distribution associated to the marked simple point process with law P [11]. As the above space N is Polish and �0 :=
{ω : 0 ∈ ω̂} is a Borel subset of N , �0 is separable and therefore (A8) is satisfied (see the comment on (A8) in Section 2.4).

We claim that the bound E[|ω̂ ∩ [0,1]d |2]<∞ implies (A7). To prove our claim we observe that, by [21, Lemma 2],
given a positive integer k it holds λ0 ∈ Lk(P0) if and only if E[|ω̂ ∩ [0,1]d |k+1]<∞. The proof provided there remains
true when substituting λ0 by any function f such that |f (ω)| ≤ C

∫
dω̂(x)e−c|x| with C,c > 0. Hence we can take

f = λ2. Then the above bound on the second moment of ω̂ ∩ [0,1]d implies that λ0, λ2 ∈ L1(P0).
For (A9) we observe that μω(k + [0,1)d) equals the number of points xi in k + [0,1)d . Hence, there are plenty of

simple point processes satisfying (A9).
We refer to [7,8,21] for additional assumptions assuring the non-degeneracy of D.

5.5. Simple random walk on Delaunay triangulation

We take G := Rd and V := I. � is given by the space of simple counting measures on Rd . We set μω := ω. We take
rx,y(ω) = 1(x

ω∼ y), where x
ω∼ y means that x, y are adjacent in the ω-Delaunay triangulation. Then, given ω, the

random walk Xω
t is the simple random walk on the ω-Delaunay triangulation. By taking P stationary with finite intensity,

P0 becomes the standard Palm distribution associated to the stationary simple point process on Rd with law P [11]. If for
example P is a homogeneous Poisson point process, using the results in [41] it is simple to conclude that all Assumptions
(A1), . . . , (A9) are satisfied (for (A8) reason as for Mott random walk) and that D is non-degenerate.

More general cases, also with random conductances, will be discussed in [22].

5.6. Nearest-neighbor random conductance models on lattices

To have a concrete example let us consider the nearest-neighbor random conductance model on the hexagonal lattice
L= (V,E), partially drawn in Figure 1 (hexagons have edges of length one).

Let v1, v2 be the vectors v1 = (2 cos π
6 ,0), v2 = (2 cos π

6 cos π
3 ,2 cos π

6 sin π
3 ). We take � := (0,+∞)E endowed with

the product topology and set ωx,y := ω{x,y}. Let G := Zd and let V be the matrix with columns v1, v2 respectively. The

Fig. 1. Hexagonal lattice, fundamental cell �, basis {v1, v2}.
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action of (θz)z∈Zd and (τz)z∈Zd of Zd on � and Rd , respectively, are given by

θzω :=
(
ωx−V z,y−V z : {x, y} ∈ E

)
if ω= (ωx,y : {x, y} ∈ E

)
, z ∈ Zd ,

τzx := x + V z for x ∈Rd, z ∈ Zd .

Moreover, for any ω ∈�, we set μω :=∑x∈V δx . The fundamental cell � is given by �= {t1v1 + t2v2 : 0≤ t1, t2 < 1}.
Note that the set �0 introduced after (11) equals �×{0, a} and that, by (10), m�(�)= 2. Hence (see (11)) P0(dω,dx)=
P(dω)⊗Avu∈{0,a}δu(dx). Setting rx,y := ωx,y if {x, y} ∈ E and rx,y := 0 otherwise, the random walk Xω

t has state space
V and jumps from x to a nearest-neighbor site y with probability rate ωx,y . If, for example, P is given by a Bernoulli
product probability measure with E[ωx,y]<+∞ for all {x, y} ∈ E , then all assumptions (A1), . . . , (A9) are satisfied.

6. From Zd -actions to Rd -actions

Suppose G = Zd and call S[1] the setting described by G, (�,F,P), (θg)g∈G, (τg)g∈G, μω, rx,y(ω), �∗. We now
introduce a new setting S[2] described by new objects Ḡ=Rd , (�̄, F̄, P̄), (θ̄g)g∈Ḡ, (τ̄g)g∈Ḡ, μω̄, r̄x,y(ω̄), �̄∗ such that
if S[1] satisfies the main assumptions (A1), . . . , (A8), then the same holds for S[2], and if the conclusion of Theorem 4.1
holds for S[2], then the same holds for S[1]. As a consequence, to prove Theorem 4.1 it is enough to consider the case
G=Rd . Many identities pointed out below will be proved in Appendix E.

We consider the extended probability space (�̄, F̄, P̄) defined as

�̄ :=�×�, P̄ := �(�)−1P ⊗ �, F̄ :=F ⊗B(�).

We define the action (θ̄x)x∈Ḡ of Ḡ=Rd on �̄ as

(57) θ̄x(ω, a)= (θg(x+a)ω,β(x + a)
)
.

One can easily check that (θ̄x)x∈Rd satisfies the properties analogous to (P1), . . . , (P4) in Section 2, when replacing G
by Ḡ (for the validity of (P4) concerning the Ḡ-stationary of P̄ see Lemma E.1 in Appendix E). Moreover, P̄ is ergodic
w.r.t. the action of (θ̄x)x∈Ḡ (cf. Lemma E.2). Hence, (A1) is fulfilled by S[2].

We define

(58) �̄ 
 ω̄ �→ μω̄ ∈M, μ(ω,a)(·) := μω(· + a).

The intensity m̄ and m of the random measure μω̄ and μω, respectively, coincide (cf. Lemma E.3). Hence, (A2) is fulfilled
by S[2].

We set �̄∗ :=�∗ ×�. It is simple to check that �̄∗ is a translation invariant measurable set with P̄(�̄∗)= 1 and that
(A3) is fulfilled by S[2] for any ω̄ ∈ �̄∗. The action (τ̄x)x∈Ḡ on Rd is given by

(59) τ̄xz := z+ x.

By writing nx(ω̄)= μω̄({x}) for x ∈Rd , the above definition (58) implies that

(60) ω̄= (ω, a) =⇒ ˆ̄ω= ω̂− a, nx(ω̄)= nx+a(ω).

Then we have (cf. Lemma E.4)

(61) μθ̄xω̄(·)= μω̄(τ̄x ·) ∀ω̄ ∈ �̄∗, x ∈ Ḡ.

We define the measurable function

(62) r̄ : �̄×Rd ×Rd 
 (ω̄, x, y) �→ r̄x,y(ω̄) ∈ [0,+∞)

as

(63) r̄x,y(ω, a) := rx+a,y+a(ω).

The analogous of (17) still holds for ω̄ ∈ �̄∗ (cf. Lemma E.5). Note that, by (60) and (63), we have c̄x,y(ω, a) =
cx+a,y+a(ω). Hence, (A4) and (A5) are fulfilled by S[2] for all ω̄ ∈ �̄∗.
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The Palm distributions P0, P̄0 associated respectively to P , P̄ coincide (cf. Lemma E.6). Hence, (A8) is trivially
satisfied by S[2]. Note moreover that �̄0 = {(ω, x) ∈ �̄ : n0(ω, x) > 0} = {(ω, x) ∈�×� : nx(ω) > 0} =�0.

Recall (15). We write λk and λ̄k for the function corresponding to (15) in setting S[1] and S[2], respectively. Note that
λk , λ̄k are defined on the same set �̄0. Given ω̄= (ω, a) ∈ �̄0 =�0, we have (using (60) and (63))

(64) λ̄k(ω̄)=
∫
Rd

d ˆ̄ω(x)r̄0,x(ω̄)|x|k =
∫
Rd

dω̂(y)r̄0,y−a(ω̄)|y − a|k =
∫
Rd

dω̂(y)ra,y(ω)|y − a|k = λk(ω̄).

In particular (A7) implies that λ̄0, λ̄2 ∈ L1(P̄0). In conclusion we have: If (A1), . . . , (A8) are satisfied by S[1], then
(A1), . . . , (A8) are satisfied by S[2]. Finally, as the integral in the r.h.s. of (30) equals

1

2

∫
�̄

dP̄0(ω̄)

∫
Rd

d ˆ̄ω(z)r̄0,z(ω̄)
(
a · z− [f (θ̄zω̄)− f (ω̄)

])2
,

one can easily check that Theorem 4.1 for S[2] implies Theorem 4.1 for S[1].

Warning 6.1. Due to the above discussion it is enough to prove Theorem 4.1 only for G= Rd . Due to its relevance in
discrete probability, we will also treat simultaneously the special discrete case. Moreover, to slightly simplify the notation,
we will take V = I, thus implying that g(x) = x. The reader interested to formulas with generic matrix V has only to
replace θx by θg(x) in what follows. Indeed, the manipulations behind our formulas rely on Remark 2.1, which holds in the
general case. In conclusion, from now on (with exception of Section 20 and the appendixes) and without further mention,
we restrict to the case G = Rd and to the special discrete case, we take V = I and we understand that Assumptions
(A1), . . . , (A8) are satisfied.

7. Some key properties of the Palm distribution P0

For the results of this section it would be enough to require (A1) and (A2) and, for Lemma 7.3, E0[λ0] <∞. Given a
measurable set A⊂�, we define

(65) Ã := {ω ∈� : θxω ∈A ∀x ∈ ω̂}.
Note that Ã is translation invariant and measurable.

Lemma 7.1. Given A⊂� measurable, the following facts are equivalent: (i) P0(A)= 1; (ii) P(Ã)= 1; (iii) P0(Ã)= 1.
Given a translation invariant measurable set A⊂�, it holds P(A)= 1 if and only if P0(A)= 1 and it holds P(A)= 0 if
and only if P0(A)= 0.

Proof. We first prove the equivalence between (i), (ii) and (iii). By (9) for G=Rd and (12) for the special discrete case,
(ii) implies (i). If (i) holds, then we get (ii) by (8) and (12) and Campbell’s identities (178) and (181) with f (x,ω) :=
(2�)−d1[−�,�]d (x)1A(ω) and � ∈ N+. Note that ˜̃

A= Ã. Hence, by applying the equivalence between (i) and (ii) with A

replaced by Ã, we get the equivalence between (ii) and (iii).
Now let A be translation invariant. To prove that P(A)= 1 if and only if P0(A)= 1, it is enough to observe that Ã=A

and to apply the above equivalence between (ii) and (iii). To prove that P(A)= 0 if and only if P0(A)= 0, it is enough
to take the complement. �

As an immediate consequence of Lemma 7.1 we get:

Corollary 7.2. Let f ∈ L1(P0). Let B := {ω ∈� : |f (θxω)|<+∞ ∀x ∈ ω̂}. Then B is translation invariant, P(B)= 1
and P0(B)= 1.

The following result generalizes [21, Lemma 1-(i)]:

Lemma 7.3. Let f : �0 × �0 → R be a measurable function. Suppose that (i) at least one of the functions ω �→∫
dω̂(x)r0,x(ω)|f (ω, θxω)| and ω �→ ∫ dω̂(x)r0,x(ω)|f (θxω,ω)| is in L1(P0), or (ii) f ≥ 0. Then it holds

(66) E0

[∫
Rd

dω̂(x)r0,x(ω)f (ω, θxω)

]
= E0

[∫
Rd

dω̂(x)r0,x(ω)f (θxω,ω)

]
.
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We note that, by (12), in the special discrete case (66) reads

(67)
∑
x∈Zd

E
[
c0,x(ω)f (ω, θxω)

]=∑
x∈Zd

E
[
c0,x(ω)f (θxω,ω)

]
.

Proof of Lemma 7.3. We first sketch the proof in the special discrete case, which is trivial. Given ω ∈ �0, due to
Remark 2.1 and (A5), c0,x(ω) = c0,−x(θxω) P-a.s. By the translation invariance of P we get E[c0,x(ω)|f |(ω, θxω)] =
E[c0,−x(ω)|f |(θ−xω,ω)], and the same then must hold in Case (i) with f instead of |f |. This allows to conclude the
proof of (67).

We move to the setting G=Rd . We start with Case (i) supposing first that both functions there are in L1(P0). We set
B(n) := [−n,n]d . Due to (9) and using also (A5) for (69) we get

l.h.s. of (66)= 1

m(2n)d
E

[ ∑
x∈ω̂∩B(n)

∑
z∈ω̂

cx,z(ω)f (θxω, θzω)

]
,(68)

r.h.s. of (66)= 1

m(2n)d
E

[∑
x∈ω̂

∑
z∈ω̂∩B(n)

cx,z(ω)f (θxω, θzω)

]
.(69)

To prove that (68) equals (69) it is enough to show that

(70) lim
n→∞

1

m(2n)d
E

[ ∑
x∈ω̂∩B(n)

∑
z∈ω̂\B(n)

cx,z(ω)|f |(θxω, θzω)

]
= 0

and that the same limit holds when summing among x ∈ ω̂ \ B(n) and z ∈ ω̂ ∩ B(n). We prove (70), the other limit can
be treated similarly. By (9)

(71)

1

m(2n)d
E

[ ∑
x∈ω̂∩B(n)

∑
z∈ω̂\B(n+√n)

cx,z(ω)|f |(θxω, θzω)

]

≤ 1

m(2n)d
E

[ ∑
x∈ω̂∩B(n)

∑
z∈ω̂:|z−x|∞≥√n

cx,z(ω)|f |(θxω, θzω)

]

= E0

[∫
Rd

dω̂(x)r0,x(ω)|f |(ω, θxω)1
(|x|∞ ≥√n

)]
.

Due to our L1-hypothesis and dominated convergence, the last member goes to zero as n →∞. Hence, it remains to
prove (70) with “z ∈ ω̂ \ B(n)” replaced by “z ∈ ω̂ ∩ U(n)” where U(n) := B(n+√n) \ B(n). To this aim, by (9) and
(A5), we get

(72) E0

[∫
Rd

dω̂(x)r0,x(ω)|f |(θxω,ω)

]
= 1

m�(U(n))
E

[∑
x∈ω̂

∑
z∈ω̂∩U(n)

cx,z(ω)|f |(θxω, θzω)

]
.

By hypothesis, the above l.h.s. is finite. Hence (70) with “z ∈ ω̂∩U(n)” follows by using (72) and that �(U(n))/nd → 0.
This concludes the proof of (66) when both functions in Case (i) are in L1(P0). We interrupt with Case (i) and move
to Case (ii) with f ≥ 0. By the above result and since E0[λ0]<+∞, identity (66) holds with f replaced by f ∧ n. By
taking the limit n→∞ and using monotone convergence, we get (66) for a generic f ≥ 0. Let us come back to Case (i).
Since (by Case (ii)) (66) holds with f replaced by |f |, we get that in Case (i) both functions there belong to L1(P0) as
soon as at least one does. The conclusion then follows from our first result. �

8. Space of square integrable forms

We define ν as the Radon measure on �0 ×G such that

(73)
∫

dν(ω, z)g(ω, z)=
∫

dP0(ω)

∫
dω̂(z)r0,z(ω)g(ω, z)

for any nonnegative measurable function g(ω, z).
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Remark 8.1. When considering the special discrete case in the r.h.s. of (73) one can replace the integral
∫

dω̂(z) with the
series

∑
z∈Zd (recall that rx,x(ω)= 0 and rx,y(ω)= 0 if {x, y} �⊂ ω̂). A similar rewriting holds in the formulas presented

in the rest of the paper.

We point out that, by Assumption (A7), ν has finite total mass: ν(�× Rd)= E0[λ0]<+∞. Elements of L2(ν) are
called square integrable forms.

Given a function u :�0 →R we define the function ∇u :�0 ×G→R as

(74) ∇u(ω, z) := u(θzω)− u(ω).

Note that, by Lemma 7.1 with A := {ω ∈�0 : u(ω)= f (ω)}, if u,f :�0 →R are such that u= f P0-a.s., then∇u=∇f

ν-a.s. In particular, if u is defined P0-a.s., then ∇u is well defined ν-a.s.
If u is bounded and measurable, then ∇u ∈L2(ν). The subspace of potential forms L2

pot(ν) is defined as the following

closure in L2(ν):

L2
pot(ν) := {∇u : u is bounded and measurable}.

The subspace of solenoidal forms L2
sol(ν) is defined as the orthogonal complement of L2

pot(ν) in L2(ν).

8.1. The subspace H 1
env

We define

(75) H 1
env :=

{
u ∈ L2(P0) : ∇u ∈ L2(ν)

}
.

We endow H 1
env with the norm ‖u‖H 1

env
:= ‖u‖L2(P0)

+ ‖∇u‖L2(ν). It is simple to check that H 1
env is a Hilbert space.

8.2. Divergence

Definition 8.2. Given a square integrable form v ∈L2(ν) we define its divergence divv ∈L1(P0) as

(76) divv(ω)=
∫

dω̂(z)r0,z(ω)
(
v(ω, z)− v(θzω,−z)

)
.

By applying Lemma 7.3 with f such that f (ω, θzω)= |v(ω, z)| for P0-a.a. ω (such a function f exists by (A3) and
Lemma 7.1) and by Schwarz inequality, one gets for any v ∈ L2(ν) that

(77)
∫

dP0(ω)

∫
dω̂(z)r0,z(ω)

(∣∣v(ω, z)
∣∣+ ∣∣v(θzω,−z)

∣∣)= 2‖v‖L1(ν) ≤ 2E0[λ0]1/2‖v‖L2(ν) <+∞.

In particular, the definition of divergence is well posed and the map L2(ν) 
 v �→ divv ∈L1(P0) is continuous.

Lemma 8.3. For any v ∈ L2(ν) and any bounded and measurable function u :�0 →R, it holds

(78)
∫

dP0(ω)divv(ω)u(ω)=−
∫

dν(ω, z)v(ω, z)∇u(ω, z).

Proof. If is enough to apply Lemma 7.3 to f (ω,ω′) such that f (ω, θzω)= v(ω, z)u(θzω) for P0-a.a. ω (such a function
f exists by (A3) and Lemma 7.1) and observe that f (θzω,ω)= v(θzω,−z)u(ω). �

Trivially, the above result implies the following:

Corollary 8.4. Given a square integrable form v ∈ L2(ν), we have that v ∈L2
sol(ν) if and only if divv = 0 P0-a.s.

Lemma 8.5. If ∇u= 0 ν-a.e., then u= constant P0-a.s.
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Proof. We define A := {ω ∈�0 : u(θzω)= u(ω) ∀z ∈ ω̂ with r0,z(ω) > 0}. Hence (recall (65)) Ã= {ω ∈� : u(θyω)=
u(θzω) ∀y, z ∈ ω̂ with rz,y(ω) > 0}. The property that ∇u= 0 ν-a.e. is equivalent to P0(A)= 1. By Lemma 7.1 we get
that P(Ã) = 1. Recall that the property in (A6) holds for ω ∈ �∗, �∗ is translation invariant (as Ã) and P(�∗) = 1.
Moreover, given ω ∈ Ã∩�∗, there exists a constant c(ω) such that u(θyω)= c(ω) for all y ∈ ω̂. Then we define v(ω) :=
c(ω) if ω ∈ Ã ∩�∗ and v(ω) := 0 if ω /∈ Ã ∩�∗. As v is translation invariant and P is ergodic, there exists c ∈ R such
that P(v = c)= 1. By Lemma 7.1 we get P0(v = c)= 1. �

The proof of the following lemma is similar to the proof of [44, Lemma 2.5] (see also [17, App. B]). Recall (75).

Lemma 8.6. Let ζ ∈ L2(P0) be orthogonal to all functions g ∈ L2(P0) with g = div(∇u) for some u ∈ H 1
env. Then

ζ ∈H 1
env and ∇ζ = 0 in L2(ν).

By combining Lemma 8.5 and Lemma 8.6 we get:

Lemma 8.7. The functions g ∈L2(P0) of the form g = divv with v ∈L2(ν) are dense in {w ∈L2(P0) : E0[w] = 0}.

Proof. Lemma 8.3 implies that E0[g] = 0 if g = divv, v ∈ L2(ν). Suppose that the claimed density fails. Then there
exists ζ ∈ L2(P0) different from zero with E0[ζ ] = 0 and such that E0[ζg] = 0 for any g ∈L2(P0) of the form g = divv

with v ∈ L2(ν). By Lemma 8.6, we know that ζ ∈H 1
env and ∇ζ = 0 ν-a.s. By Lemma 8.5 we get that ζ is constant P0-a.s.

Since E0[ζ ] = 0 it must be ζ = 0 P0-a.s., which is absurd. �

9. The diffusion matrix D and the quadratic form q

Since λ2 ∈ L1(P0) (see Assumption (A7)), given a ∈Rd the form

(79) ua(ω, z) := a · z
is square integrable, i.e. it belongs to L2(ν). We note that the symmetric diffusion matrix D defined in (29) satisfies, for
any a ∈Rd ,

(80) q(a) := a ·Da = inf
v∈L2

pot(ν)

1

2

∫
dν(ω,x)

(
ua(x)+ v(ω,x)

)2 = inf
v∈L2

pot(ν)

1

2
‖ua + v‖2

L2(ν)
= 1

2

∥∥ua + va
∥∥2

L2(ν)
,

where va =−�ua and � : L2(ν)→ L2
pot(ν) denotes the orthogonal projection of L2(ν) on L2

pot(ν). As a consequence,

the map Rd 
 a �→ va ∈ L2
pot(ν) is linear. Moreover, va is characterized by the property

(81) va ∈L2
pot(ν), va + ua ∈ L2

sol(ν).

Hence we can write a ·Da = 1
2‖ua + va‖2

L2(ν)
= 1

2 〈ua,ua + va〉ν . As the two symmetric bilinear forms (a, b) �→ a ·Db

and (a, b) �→ 1
2

∫
dν(ω, z)a · z(b · z+ vb(ω, z))= 1

2

∫
dν(ua + va)(ub + vb) coincide on diagonal terms, we get

(82) Da = 1

2

∫
dν(ω, z)z

(
a · z+ va(ω, z)

) ∀a ∈Rd .

Let us come back to the quadratic form q on Rd defined in (80). By (80) its kernel Ker(q) is given by

(83) Ker(q) := {a ∈Rd : q(a)= 0
}= {a ∈Rd : ua ∈L2

pot(ν)
}
.

Lemma 9.1. It holds

(84) Ker(q)⊥ =
{∫

dν(ω, z)b(ω, z)z : b ∈ L2
sol(ν)

}
.

Note that, since λ2 ∈ L1(P0) by (A7), the integral in the r.h.s. of (84) is well defined. The above lemma corresponds
to [44, Prop. 5.1].
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Proof of Lemma 9.1. Let b ∈ L2
sol(ν) and ηb :=

∫
dν(ω, z)b(ω, z)z. Then, given a ∈ Rd , a · ηb = 〈ua, b〉ν . By (83),

a ∈Ker(q) if and only if ua ∈ L2
pot(ν)= L2

sol(ν)⊥. Therefore a ∈Ker(q) if and only if a · ηb = 0 for any b ∈ L2
sol(ν). �

Due to Lemma 9.1 and Definition 3.8 we have:

Corollary 9.2. Span{e1, . . . , ed∗} = {
∫

dν(ω, z)b(ω, z)z : b ∈ L2
sol(ν)}.

10. The contraction b(ω,z) �→ b̂(ω) and the set A1[b]

Definition 10.1. Let b :�0×G→R be a measurable function with ‖b‖L1(ν) <+∞. We define the measurable function
rb :�0 →[0,+∞] as

(85) rb(ω) :=
∫

dω̂(z)r0,z(ω)
∣∣b(ω, z)

∣∣,
the measurable function b̂ :�0 →R as

(86) b̂(ω) :=
⎧⎨⎩
∫

dω̂(z)r0,z(ω)b(ω, z) if rb(ω) <+∞,

0 if rb(ω)=+∞,

and the measurable set A1[b] := {ω ∈�∗ : rb(θzω) <+∞ ∀z ∈ ω̂}.

Lemma 10.2. Let b :�0 ×G→R be a measurable function with ‖b‖L1(ν) <+∞. Then

(i) ‖b̂‖L1(P0)
≤ ‖b‖L1(ν) = ‖rb‖L1(P0)

and E0[b̂] = ν[b];
(ii) given ω ∈A1[b] and ϕ ∈ Cc(R

d), it holds

(87)
∫

dμε
ω(x)ϕ(x)b̂(θx/εω)=

∫
dνε

ω(x, z)ϕ(x)b(θx/εω, z)

(the series in the l.h.s. and in the r.h.s. are absolutely convergent);
(iii) P(A1[b])=P0(A1[b])= 1 and A1[b] is translation invariant.

Proof. It is trivial to check Item (i) and Item (ii). We move to Item (iii). We have E0[rb] = ‖b‖L1(ν) <∞. This implies
that P0({ω : rb(ω) < +∞}) = 1 and therefore P(A1[b]) = P0(A1[b]) = 1 by Lemma 7.1. The last property of A1[b]
follows immediately from the definition. �

We point out that, since ν has finite mass, L2(ν) ⊂ L1(ν) and therefore Lemma 10.2 can be applied to b with
‖b‖L2(ν) <+∞.

11. The transformation b(ω,z) �→ b̃(ω, z)

Definition 11.1. Given a measurable function b :�0 ×G→R we define b̃ :�0 ×G→R as

(88) b̃(ω, z) :=
{

b(θzω,−z) if z ∈ ω̂,

0 otherwise.

Lemma 11.2. Given a measurable function b : �0 × G→ R, it holds ˜̃b(ω, z) = b(ω, z) and ‖b‖Lp(ν) = ‖b̃‖Lp(ν) for
any p. If b ∈ L2(ν), then div b̃=−divb.

Proof. To get that ‖b‖Lp(ν) = ‖b̃‖Lp(ν) it is enough to apply Lemma 7.3 with f such that f (ω, θzω) = |b(ω, z)|p for
P0-a.a. ω (to define f use (A3)). The other identities are trivial. �

Recall Definition 10.1.
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Lemma 11.3. (i) Let b :�0×G→[0,+∞] and ϕ,ψ :Rd →[0,+∞] be measurable functions. Then, for each ω ∈�∗,
it holds

(89)
∫

dνε
ω(x, z)ϕ(x)ψ(x + εz)b(θx/εω, z)=

∫
dνε

ω(x, z)ψ(x)ϕ(x + εz)b̃(θx/εω, z).

(ii) Let b :�0 ×G→R be a measurable function and take ω ∈A1[b] ∩A1[b̃]. Given functions ϕ,ψ :Rd →R such that
at least one between ϕ, ψ has compact support and the other is bounded, identity (89) is still valid. Given now ϕ with
compact support and ψ bounded, it holds

(90)
∫

dνε
ω(x, z)∇εϕ(x, z)ψ(x + εz)b(θx/εω, z)=−

∫
dνε

ω(x, z)∇εϕ(x, z)ψ(x)b̃(θx/εω, z).

Moreover, the above integrals in (89), (90) (under the hypothesis of this Item (ii)) correspond to absolutely convergent
series and are therefore well defined.

Proof. We check (89) in Item (i). Since ca,a′(ω) = ca′,a(ω) and b(θaω,a′ − a) = b̃(θa′ω,a − a′) for all a, a′ ∈ ω̂ (as
ω ∈�∗), we can write

l.h.s. of (89)= εd
∑
a∈ω̂

∑
a′∈ω̂

ca,a′(ω)ϕ(εa)ψ
(
εa′
)
b
(
θaω,a′ − a

)
= εd

∑
a′∈ω̂

∑
a∈ω̂

ca′,a(ω)ψ
(
εa′
)
ϕ(εa)b̃

(
θa′ω,a − a′

)= r.h.s. of (89).

The above identities hold also in Item (ii) since one deals indeed with absolutely convergent sum. For example, when ϕ

has compact support and ψ is bounded, it is enough to observe that (as ω ∈A1[b])

(91)
∫

dνε
ω(x, z)

∣∣ϕ(x)
∣∣∣∣b(θx/εω, z)

∣∣≤ ∫ dμε
ω(x)
∣∣ϕ(x)

∣∣rb(θx/εω) <+∞.

We now prove (90). We have

l.h.s. of (90) = εd
∑
a∈ω̂

∑
a′∈ω̂

ca,a′(ω)
ϕ(εa′)− ϕ(εa)

ε
ψ
(
εa′
)
b
(
θaω,a′ − a

)
= −εd

∑
a′∈ω̂

∑
a∈ω̂

ca′,a(ω)
ϕ(εa)− ϕ(εa′)

ε
ψ
(
εa′
)
b̃
(
θa′ω,a − a′

)= r.h.s. of (90).

The above arrangements are indeed legal as one can easily prove that the above series are absolutely convergent. �

Definition 11.4. Let b :�0 ×G→R be a measurable function. If ω ∈A1[b] ∩A1[b̃] ∩�0, we set div∗ b(ω) := b̂(ω)−
ˆ̃
b(ω) ∈R.

Lemma 11.5. Let b : �0 ×G→ R be a measurable function with ‖b‖L2(ν) < +∞. Then P0(A1[b] ∩A1[b̃]) = 1 and
div∗ b= divb in L1(P0).

Proof. By Lemma 11.2 we have ‖b̃‖L2(ν) <∞. Hence, both b and b̃ are ν-integrable. By Lemma 10.2-(iii) we get that

P0(A1[b] ∩A1[b̃])= 1. The identity div∗ b= divb in L1(P0) is trivial. �

Lemma 11.6. Let b :�0 ×G→R be a measurable function with ‖b‖L2(ν) <+∞ and such that its class of equivalence
in L2(ν) belongs to L2

sol(ν). Let

(92) Ad [b] :=
{
ω ∈A1[b] ∩A1[b̃] : div∗ b(θzω)= 0 ∀z ∈ ω̂

}
.

Then P(Ad [b])= 1 and Ad [b] is translation invariant.
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Proof. By Corollary 8.4 and Lemma 11.5 we have P0(A) = 1 where A := {ω ∈ A1[b] ∩A1[b̃] ∩�0 : div∗ b(ω) = 0}.
By Lemma 7.1 and (65), P(Ã) = 1. To get that P(Ad [b]) = 1 it is enough to observe that Ã = Ad [b]. The translation
invariance is trivial. �

Lemma 11.7. Suppose that b : �0 ×G→ R is a measurable function with ‖b‖L2(ν) < +∞. Take ω ∈A1[b] ∩A1[b̃].
Then for any ε > 0 and any u :Rd →R with compact support it holds

(93)
∫

dμε
ω(x)u(x)div∗ b(θx/εω)=−ε

∫
dνε

ω(x, z)∇εu(x, z)b(θx/εω, z).

Proof. Note that θx/εω in the l.h.s. of (93) belongs to A1[b] ∩A1[b̃] ∩�0. Hence, by Definition 11.4, we can write the
l.h.s. of (93) as

(94)
∫

dνε
ω(x, z)u(x)b(θx/εω, z)−

∫
dνε

ω(x, z)u(x)b̃(θx/εω, z).

Due to our assumptions we are dealing with absolutely convergent series, hence the above rearrangements are free. By
applying (89) to the r.h.s. of (94) (see Item (ii) of Lemma 11.3), we can rewrite (94) as

∫
dνε

ω(x, z)b(θx/εω, z)[u(x)−
u(x + εz)] and this allows to conclude. �

12. Typical environments

We can now describe the set �typ of typical environments appearing in Theorem 4.1 and Theorem 4.4. We first fix some
basic notation and observations, frequently used below. Given M > 0 and a ∈R, we define [a]M as

(95) [a]M =M1{a>M} + a1{|a|≤M} −M1{a<−M}.

Given a ≥ b, it holds a − b ≥ [a]M − [b]M ≥ 0. Hence, for any a, b ∈R, it holds∣∣[a]M − [b]M
∣∣≤ |a − b|,(96) ∣∣[a − b] − [[a]M − [b]M
]∣∣≤ |a − b|.(97)

Recall that, due to Assumption (A8), the space L2(P0) is separable.

Lemma 12.1. The space L2(ν) is separable.

Proof. By the separability of L2(P0) there exists a countable dense set {fj } in L2(P0). At cost to approximate, in L2(P0),
fj by [fj ]M as M →∞ (cf. (95)), we can suppose that fj is bounded. Let {Bk} be the countable family of closed balls
in Rd with rational radius and with center in Qd . It is then trivial to check that the zero function is the only function in
L2(ν) orthogonal to all functions fj (ω)1Bk

(z) (which belong indeed to L2(ν)). �

In the construction of the functional sets presented below, we will use the separability of L2(P0) and L2(ν) without
further mention. The definition of these functional sets and the typical environments (cf. Definition 12.3) consists of a
list of technical assumptions, which are necessary to justify several steps in the next sections (there, we will indicate
explicitly which technical assumption we are using).

Recall the sets A1[b] and Ad [b] introduced respectively in Definition 10.1 and (92). Recall Definition 11.1 of b̃. Recall
(65). Recall the set A[f ] in Proposition 3.1 for a measurable function f :�0 →R with ‖f ‖L1(P0)

<+∞.

Definition 12.2. Given a function f : �0 → [0,+∞] such that ‖f ‖L1(P0)
< +∞, we define A[f ] as A[f0], where

f0 :�0 →R is defined as f on {f <+∞} and as 0 on {f =+∞}.
� The functional sets G1, H1. We fix a countable set H1 of measurable functions b :�0 ×G→ R such that ‖b‖L2(ν) <

+∞ for any b ∈H1 and such that {div b : b ∈H1} is a dense subset of {w ∈ L2(P0) : E0[w] = 0} when thought of as set
of L2-functions (recall Lemma 8.7). For each b ∈H1 we define the measurable function gb :�0 →R as

(98) gb(ω) :=
{

div∗ b(ω) if ω ∈A1[b] ∩A1[b̃],
0 otherwise.

Note that by Lemma 11.5 gb = divb P0-a.s. We set G1 := {gb : b ∈H1}.



Stochastic homogenization of random walks on point processes 683

� The functional sets G2, H2, H3. We fix a countable set G2 of bounded measurable functions g :�0 →R such that the
set {∇g : g ∈ G2}, thought in L2(ν), is dense in L2

pot(ν) (this is possible by the definition of L2
pot(ν)). We define H2 as the

set of measurable functions h :�0 ×G→ R such that h= ∇g for some g ∈ G2. We define H3 as the set of measurable
functions h : �0 × G→ R such that h(ω, z) = g(θzω)zi for some g ∈ G2 and some direction i = 1, . . . , d . Note that,
since E0[λ2]<+∞ by (A7) and since g is bounded, ‖h‖L2(ν) <+∞ for all h ∈H3.

� The functional set W . We fix a countable set W of measurable functions b : �0 × G→ R such that, thought of as
subset of L2(ν), W is dense in L2

sol(ν). By Corollary 8.4 and Lemma 11.2, b̃ ∈L2
sol(ν) for any b ∈L2

sol(ν). Hence, at cost
to enlarge W , we assume that b̃ ∈W for any b ∈W .

� The functional set G. We fix a countable set G of measurable functions g :�0 →R such that:

• ‖g‖L2(P0)
<+∞ for any g ∈ G and G is dense in L2(P0) when thought of as a subset of L2(P0);

• 1 ∈ G, G1 ⊂ G, G2 ⊂ G;
• λ0 ∧

√
M ∈ G for any M ∈N;

• for each b ∈W , M ∈N, i ∈ {1, . . . , d} and � ∈N, the function [f ]� :�0 →R where (cf. (95))

(99) f (ω) :=
⎧⎨⎩
∫

dω̂(z)r0,z(ω)zi1{|z|≤�}[b]M(ω, z) if
∫

dω̂(z)r0,z(ω)|zi |<+∞,

0 otherwise

belongs to G;
• at cost to enlarge G we assume that [g]M ∈ G for any g ∈ G and M ∈N.

� The functional set H. We fix a countable set of measurable functions b :�0 ×G→R such that

• ‖b‖L2(ν) <+∞ for any b ∈H and H is dense in L2(ν) when thought of as a subset of L2(ν);
• H1 ∪H2 ∪H3 ∪W ⊂H and 1 ∈H;
• ∀i = 1, . . . , d the map (ω, z) �→ zi is in H (recall: λ2 ∈ L1(P0) by (A7));
• at cost to enlarge H we assume that [b]M ∈H and that b̃ ∈H for any b ∈H and M ∈N (b̃ ∈L2(ν) by Lemma 11.2).

Definition 12.3. We define �typ as the intersection of the following sets:

• A[gg′] for all g,g′ ∈ G (recall that 1 ∈ G);
• A1[bb′] ∩A[b̂b′] for all b, b′ ∈H (recall that 1 ∈H, b̃ ∈H ∀b ∈H and recall Lemma 10.2);
• Ã∩A[λi] where A := {λi <+∞} and i = 0,1,2 (recall (A7) and (65));
• Ã∩A[λ01{λ0>

√
M}] with A= {λ0 <+∞} and M ∈N (recall (A7));

• Ad [b] for all b ∈W (recall (92));
• A[h�] where � ∈N and h�(ω) := ∫ dω̂(z)r0,z(ω)|z|21{|z|≥�};
• A[f − [f ]�] where f varies among the functions (99) with b ∈W , M ∈N, i ∈ {1, . . . , d} and � ∈N.

Remark 12.4. �typ ⊂�∗ ∩�1 (see our Assumptions and (24) for the definition of �∗ and �1).

Proposition 12.5. The above set �typ is a translation invariant measurable subset of � such that P(�typ)= 1.

Proof. The claim follows from Proposition 3.1 for all sets of the form A[·], from Lemma 10.2 for all sets of the form
A1[·], from Lemma 11.6 for all sets of the form Ad [·] and from Corollary 7.2 for all sets of the form Ã. �

13. 2-Scale convergence of vε ∈ L2(με
ω̃
) and of wε ∈ L2(νε

ω̃
)

In this section we recall the notion of 2-scale convergence in our context.

Definition 13.1. Fix ω̃ ∈�typ, an ε-parametrized family vε ∈L2(με
ω̃
) and a function v ∈ L2(mdx ×P0).

• We say that vε is weakly 2-scale convergent to v, and write vε
2
⇀ v, if the family {vε} is bounded, i.e.

lim supε↓0 ‖vε‖L2(με
ω̃
) <+∞, and

(100) lim
ε↓0

∫
dμε

ω̃(x)vε(x)ϕ(x)g(θx/εω̃)=
∫

dP0(ω)

∫
dx mv(x,ω)ϕ(x)g(ω),

for any ϕ ∈ Cc(R
d) and any g ∈ G.
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• We say that vε is strongly 2-scale convergent to v, and write vε
2→ v, if the family {vε} is bounded and

(101) lim
ε↓0

∫
dμε

ω̃(x)vε(x)uε(x)=
∫

dP0(ω)

∫
dx mv(x,ω)u(x,ω)

whenever uε
2
⇀ u.

Lemma 13.2. Let ω̃ ∈�typ. Then, for any ϕ ∈Cc(Rd) and g ∈ G, setting vε(x) := ϕ(x)g(θx/εω̃) it holds L2(με
ω̃
) 
 vε

2
⇀

ϕ(x)g(ω) ∈ L2(mdx ×P0).

Proof. Since ω̃ ∈�typ ⊂A[g], we get limε↓0 ‖vε‖2
L2(με

ω̃
)
= ∫ dx mϕ(x)2E0[g2], hence {vε} is bounded in L2(με

ω̃
). Since

g ∈ G ⊂ L2(P0), we have ϕ(x)g(ω) ∈ L2(mdx ×P0). Take ϕ1 ∈ Cc(R
d) and g1 ∈ G. Since ω̃ ∈�typ ⊂A[gg1], it holds∫

dμε
ω̃
(x)vε(x)ϕ1(x)g1(θx/εω̃)→ ∫ dx mϕ(x)ϕ1(x)E0[gg1]. �

Lemma 13.3. Given ω̃ ∈�typ, if vε
2
⇀ v then

(102) lim
ε↓0

∫
dμε

ω̃(x)vε(x)2 ≥
∫

dP0(ω)

∫
dx mv(x,ω)2.

The proof is similar to the proof of [43, Item (iii), p. 984] and therefore omitted: replace � in [43] with a linear
combination of functions ϕ(x)g(ω) with ϕ ∈ Cc(R

d) and g ∈ G, use the density of G in L2(P0) and the property that
�typ ⊂A[gg′] for all g,g′ ∈ G (cf. [17, Lemma 10.5]).

Using Lemmas 13.2 and 13.3 one gets the following characterization:

Lemma 13.4. Given ω̃ ∈�typ, vε
2→ v if and only if vε

2
⇀ v and

(103) lim
ε↓0

∫
Rd

dμε
ω̃(x)vε(x)2 =

∫
�

dP0(ω)

∫
Rd

dx mv(x,ω)2.

Proof. If vε → v, then vε
2
⇀ v by Lemma 13.2. By then applying (101) with uε := vε , we get (103). The opposite impli-

cation corresponds to [43, Item (iv), p. 984] and the proof there can be easily adapted to our setting due to Lemma 13.3.
(cf. [17, Lemma 10.4]). �

Lemma 13.5. Let ω̃ ∈�typ. Then, given a bounded family of functions vε ∈ L2(με
ω̃
), there exists a sequence εk ↓ 0 such

that vεk

2
⇀ v for some v ∈L2(mdx ×P0) with ‖v‖L2(mdx×P0)

≤ lim supε↓0 ‖vε‖L2(με
ω̃
).

The proof of the above lemma is similar to the proof of [43, Prop. 2.2], but in [43] some density in uniform norm is
used. Since that density is absent here, we provide the proof in Appendix F to explain how to fill the gap.

Definition 13.6. Given ω̃ ∈ �typ, a family wε ∈ L2(νε
ω̃
) and a function w ∈ L2(mdx × dν), we say that wε is weakly

2-scale convergent to w, and write wε
2
⇀ w, if {wε} is bounded in L2(νε

ω̃
), i.e. limε↓0 ‖wε‖L2(νε

ω̃
) <+∞, and

(104) lim
ε↓0

∫
dνε

ω̃(x, z)wε(x, z)ϕ(x)b(θx/εω̃, z)=
∫

dx m

∫
dν(ω, z)w(x,ω, z)ϕ(x)b(ω, z),

for any ϕ ∈ Cc(R
d) and any b ∈H.

Lemma 13.7. Let ω̃ ∈�typ. Then, given a bounded family of functions wε ∈ L2(νε
ω̃
), there exists a sequence εk ↓ 0 such

that wεk

2
⇀ w for some w ∈ L2(mdx × ν) with ‖w‖L2(mdx×ν) ≤ lim supε↓0 ‖wε‖L2(νε

ω̃
).

We postpone a sketch of the proof of Lemma 13.7 to Appendix F.
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14. Roadmap of the proof of Theorem 4.1

The main strategy to prove Theorem 4.1 is the same e.g. of the one in [44] to prove Theorem 6.1 there. Below we provide
a list of the main steps to arrive to some key structure results concerning the solutions uε of (41) and allowing then to
easily conclude the proof. The details are provided in the next sections.

We fix a typical environment ω̃ ∈�typ. The first step is to prove the following structure result: given a bounded family
of functions uε in H 1

ω̃,ε
, along a subsequence εk it holds

L2(με
ω̃

) 
 uε
2
⇀ u ∈ L2(mdx ×P0),

L2(νε
ω̃

) 
 ∇uε(x, z)
2
⇀ w(x,ω, z) := ∇∗u(x) · z+ u1(x,ω, z) ∈L2(mdx × ν),

for suitable functions u, u1 with u= u(x) ∈H 1∗ (mdx), u1 ∈ L2(Rd,L2
pot(ν)). We devote Sections 15, 16, 17 and 18 to

the above result.
Suppose now that {fε} is a bounded family in L2(με

ω̃
). Let uε ∈H

1,f
ω̃,ε

be the weak solution of (41), i.e.

(105)
1

2
〈∇εv,∇εuε〉νε

ω̃
+ 〈v,uε〉με

ω̃
= 〈v,fε〉με

ω̃
, ∀v ∈H

1,f
ω̃,ε

.

It is then standard to get from (105) that the family {uε} is bounded in H 1
ω̃,ε

. Hence we can apply the above structure
result.

The next step is to prove that, for dx-a.e. x, the map (ω, z) �→w(x,ω, z) belong to L2
sol(ν) (this is the first part of the

proof of Claim 19.3 in Section 19 and relies on a suitable choice of v in (105)).
As w(x,ω, z) := ∇∗u(x) · z+ u1(x,ω, z), w(x, ·, ·) ∈ L2

sol(ν) and u1(x, ·, ·) ∈ L2
pot(ν) for dx-a.e. x, from (81) we get

that u1(x, ·, ·) = va(·, ·) with a = ∇∗u(x) for dx-a.e. x (i.e. u1(x, ·, ·) is the orthogonal projection onto L2
pot(ν) of the

form (ω, z) �→ −∇∗u(x) · z). As a byproduct with (82) we then get that
∫

dν(ω, z)w(x,ω, z)z= 2D∇∗u(x) for dx-a.e. x

(see Claim 19.3). The effective homogenized matrix D has finally emerged.
From this point the conclusion of the proof of Theorem 4.1 becomes relatively simple and is detailed in Section 19

after the proof of Claim 19.3.

15. Cut-off for functions vε ∈ L2(με
ω̃
)

N+ denotes the set of positive integers. Recall (95).

Lemma 15.1. Let ω̃ ∈�typ and let {vε} be a family of functions such that vε ∈L2(με
ω̃
) and lim supε↓0 ‖vε‖L2(με

ω̃
) <+∞.

Then there exist functions v, vM ∈L2(mdx ×P0) with M varying in N+ such that

(i) vε
2
⇀ v and [vε]M 2

⇀ vM for all M ∈N+, along a sequence εk ↓ 0;
(ii) for any ϕ ∈ Cc(R

d) and u ∈ G it holds

(106) lim
M→∞

∫
dx m

∫
dP0(ω)vM(x,ω)ϕ(x)u(ω)=

∫
dx m

∫
dP0(ω)v(x,ω)ϕ(x)u(ω).

Proof. Without loss, we assume that ‖vε‖L2(με
ω̃
) ≤ C0 < +∞ for all ε. We set vε

M := [vε]M . Since ‖vε
M‖L2(με

ω̃
) ≤

‖vε‖L2(με
ω̃
) ≤C0, Item (i) follows from Lemma 13.5 and a diagonal procedure.

Below the convergence ε ↓ 0 is understood along the sequence {εk}. Let us define F(v̄, ϕ̄, ū) := ∫ dx m
∫
P0(dω)v̄(x,

ω)ϕ̄(x)ū(ω). Then Item (ii) corresponds to the limit

(107) lim
M→∞F(vM,ϕ,u)= F(v,ϕ,u) ∀ϕ ∈Cc

(
Rd
)
,∀u ∈ G.

We fix functions ϕ, u as in (107) and set uk := [u]k for all k ∈ N+. By definition of G, we have uk ∈ G for all k (see
Section 12).

Claim 15.2. For each k,M ∈N+ it holds∣∣F(v,ϕ,u)− F(v,ϕ,uk)
∣∣≤ C0‖ϕ‖L2(mdx)‖u− uk‖L2(P0)

,(108) ∣∣F(vM,ϕ,u)− F(vM,ϕ,uk)
∣∣≤ C0‖ϕ‖L2(mdx)‖u− uk‖L2(P0)

.(109)
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Proof of Claim 15.2. By Schwarz inequality∣∣F(v,ϕ,u)− F(v,ϕ,uk)
∣∣≤ ‖v‖L2(mdx×P0)

∥∥ϕ(u− uk)
∥∥

L2(mdx×P0)
.

To get (108) it is then enough to apply Lemma 13.3 (or Lemma 13.5) to bound ‖v‖L2(mdx×P0)
by C0. The proof of (109)

is identical. �

Claim 15.3. For each k,M ∈N+ it holds

(110)
∣∣F(v,ϕ,uk)− F(vM,ϕ,uk)

∣∣≤ (k/M)‖ϕ‖∞C2
0 .

Proof of Claim 15.3. We note that (vε − vε
M)(x)= 0 if |vε(x)| ≤M . Hence we can bound

(111)
∣∣vε − vε

M

∣∣(x)= ∣∣vε − vε
M

∣∣(x)1{|vε(x)|>M} ≤
∣∣vε − vε

M

∣∣(x)
|vε(x)|

M
≤ vε(x)2

M
.

We observe that F(v,ϕ,uk)= limε↓0
∫

dμε
ω̃
(x)vε(x)ϕ(x)uk(θx/εω̃), since uk ∈ G and vε

2
⇀ v. A similar representation

holds for F(vM,ϕ,uk). As a consequence, and using (111), we get∣∣F(v,ϕ,uk)− F(vM,ϕ,uk)
∣∣≤ lim

ε↓0

∫
dμε

ω̃(x)
∣∣(vε − vε

M

)
(x)ϕ(x)uk(θx/εω̃)

∣∣
≤ (k/M)‖ϕ‖∞ lim

ε↓0

∫
dμε

ω̃(x)vε(x)2 ≤ (k/M)‖ϕ‖∞C2
0 . �

We can finally conclude the proof of (107). Given ϕ ∈ Cc(Rd) and u ∈ G, by applying Claims 15.2 and 15.3, we can
bound

(112)

∣∣F(vM,ϕ,u)− F(v,ϕ,u)
∣∣≤ ∣∣F(vM,ϕ,u)− F(vM,ϕ,uk)

∣∣
+ ∣∣F(vM,ϕ,uk)− F(v,ϕ,uk)

∣∣+ ∣∣F(v,ϕ,uk)− F(v,ϕ,u)
∣∣

≤ 2C0‖ϕ‖L2(mdx)‖u− uk‖L2(P0)
+ (k/M)‖ϕ‖∞C2

0 .

(107) then follows by taking first the limit M →∞ and afterwards the limit k →∞, and using that limk→∞‖u −
uk‖L2(P0)

= 0. �

16. Structure of the 2-scale weak limit of a bounded family in H 1
ω̃,ε

: Part I

It is simple to check the following Leibniz rule for the microscopic gradient:

(113) ∇ε(fg)(x, z)=∇εf (x, z)g(x)+ f (x + εz)∇εg(x, z),

where f,g : εω̂→R.
The following Proposition 16.1 is related to [44, Lemma 5.3]. In the proof we will use a cut-off procedure based on

Lemma 15.1 (see Remark 16.2 below).

Proposition 16.1. Let ω̃ ∈�typ. Let {vε} be a family of functions vε ∈H 1
ω̃,ε

satisfying

(114) lim sup
ε↓0

‖vε‖L2(με
ω̃
) <+∞, lim sup

ε↓0
‖∇εvε‖L2(νε

ω̃
) <+∞.

Then, along a sequence εk ↓ 0, we have that vε
2
⇀ v, where v ∈ L2(mdx × P0) does not depend on ω, i.e. for dx-a.e.

x ∈Rd the function ω �→ v(x,ω) is constant P0-a.s.

Proof. Due to Lemma 13.5 we have that vε
2
⇀ v ∈ L2(mdx ×P0) along a sequence εk ↓ 0. Recall the definition of the

functional sets G1, H1 given in Section 12. We claim that ∀ϕ ∈C1
c (Rd) and ∀ψ ∈ G1 it holds

(115)
∫

dx m

∫
dP0(ω)v(x,ω)ϕ(x)ψ(ω)= 0.
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Before proving our claim, let us explain how it leads to the thesis. Since ϕ varies among C1
c (Rd) while ψ varies in a

countable set, (115) implies that, dx-a.e.,
∫

dP0(ω)v(x,ω)ψ(ω)= 0 for any ψ ∈ G1. We conclude that, dx-a.e., v(x, ·)
is orthogonal in L2(P0) to {w ∈ L2(P0) : E0[w] = 0} (due to the density of G1), which is equivalent to the fact that
v(x,ω)= E0[v(x, ·)] for P0-a.a. ω.

It now remains to prove (115). Since ω̃ ∈�typ and due to (114), at cost to refine the sequence {εk}, Items (i) and (ii)
of Lemma 15.1 hold (we keep the same notation of Lemma 15.1). Hence, in oder to prove (115), it is enough to prove for
any M that, given ϕ ∈ C1

c (Rd) and ψ ∈ G1,

(116)
∫

dx m

∫
dP0(ω)vM(x,ω)ϕ(x)ψ(ω)= 0.

We write vε
M := [vε]M . Since |∇εv

ε
M | ≤ |∇εvε| (cf. (96)), by Lemma 13.7 (using (114)) and a diagonal procedure, at

cost to refine the sequence {εk} we have for any M that ∇εv
ε
M

2
⇀ wM ∈ L2(mdx × ν), along the sequence {εk}. In

what follows, we understand that the parameter ε varies in {εk}. Note in particular that, by (100) and since ω̃ ∈�typ and
ψ ∈ G1 ⊂ G,

(117) l.h.s. of (116)= lim
ε↓0

∫
dμε

ω̃(x)vε
M(x)ϕ(x)ψ(θx/εω̃).

Let us write ψ = gb with b ∈H1 (recall (98)). By Lemma 11.7, since ω̃ ∈�typ ⊂A1[b]∩A1[b̃], the r.h.s. of (117) equals
the limit as ε ↓ 0 of

(118) −ε

∫
dνε

ω̃(x, z)∇ε

(
vε
Mϕ
)
(x, z)b(θx/εω̃, z)=−εC1(ε)− εC2(ε),

where (due to (113))

C1(ε) :=
∫

dνε
ω̃(x, z)∇εv

ε
M(x, z)ϕ(εx)b(θx/εω̃, z),

C2(ε) :=
∫

dνε
ω̃(x, z)vε

M(x + εz)∇εϕ(x, z)b(θx/εω̃, z).

Due to (117) and (118), to get (116) we only need to show that limε↓0 εC1(ε) = 0 and limε↓0 εC2(ε) = 0. Since

∇εv
ε
M

2
⇀ wM and b ∈H1, by (104) we have that

(119) lim
ε↓0

C1(ε)=
∫

dx m

∫
dν(ω, z)wM(x,ω, z)ϕ(x)b(ω, z),

which is finite, thus implying that limε↓0 εC1(ε)= 0.
We move to C2(ε). Let � be such that ϕ(x)= 0 if |x| ≥ �. Fix φ ∈ Cc(R

d) with values in [0,1], such that φ(x) = 1
for |x| ≤ � and φ(x)= 0 for |x| ≥ �+ 1. Since ∇εϕ(x, z)= 0 if |x| ≥ � and |x + εz| ≥ �, by the mean value theorem we
conclude that

(120)
∣∣∇εϕ(x, z)

∣∣≤ ‖∇ϕ‖∞|z|
(
φ(x)+ φ(x + εz)

)
.

We apply the above bound and Schwarz inequality to C2(ε) getting

(121)
∣∣C2(ε)

∣∣≤M‖∇ϕ‖∞
∫

dνε
ω̃(x, z)|z| ∣∣b(θx/εω̃, z)

∣∣(φ(x)+ φ(x + εz)
)≤M‖∇ϕ‖∞A1(ε)

1/2A2(ε)
1/2,

where (see below for explanations)

A1(ε) :=
∫

νε
ω̃(x, z)|z|2(φ(x)+ φ(x + εz)

)= 2
∫

νε
ω̃(x, z)|z|2φ(x)2,

A2(ε) :=
∫

νε
ω̃(x, z)b(θx/εω̃, z)2(φ(x)+ φ(x + εz)

)= 2
∫

νε
ω̃(x, z)

(
b2 + b̃2)(θx/εω̃, z)φ(x)2.

To get the second identities in the above formulas for A1(ε) and A2(ε) we have applied Lemma 11.3-(i) to the forms
(ω, z) �→ |z|2 and (ω, z) �→ b2(ω, z).
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We now write

A1(ε)= 2
∫

dμε
ω̃(x)λ2(θx/εω̃)φ(x)2, A2(ε)= 2

∫
dμε

ω̃(x)
(̂̃
b2 + b̂2

)
(θx/εω̃)φ(x)2.

For the second identity above we used that ω̃ ∈�typ ∈A1[b̃2] ∩A1[b2]. By using respectively that ω ∈�typ ⊂ Ã∩A[λ2]
with A := {λ2 <+∞} (recall Definition 12.2) and that ω ∈�typ ⊂A[̂̃b2] ∩A[b̂2] ∩A1[b̃2] ∩A1[b2], we conclude that
A1(ε) and A2(ε) have finite limits as ε ↓ 0, thus implying (cf. (121)) that limε↓0 εC2(ε)= 0. This concludes the proof of
(116). �

Remark 16.2. We stress that the cut-off method developed in Lemma 15.1 has been essential to get (121) and go on. If
one tries to prove (116) with v instead of vM , then one would be stopped when trying to control C2(ε) as ε ↓ 0.

17. Cut-off for gradients ∇εvε

Lemma 17.1. Let ω̃ ∈�typ and let {vε} be a family of functions with vε ∈H 1
ω̃,ε

, satisfying (114). Then there exist functions

w,wM ∈L2(mdx × ν), with M varying in N+, such that

(i) ∇εvε
2
⇀ w and ∇ε[vε]M 2

⇀ wM for all M ∈N+, along a sequence εk ↓ 0;
(ii) for any ϕ ∈ C1

c (Rd) and b ∈H it holds

(122) lim
M→∞

∫
dx m

∫
dν(ω, z)wM(x,ω, z)ϕ(x)b(ω, z)=

∫
dx m

∫
dν(ω, z)w(x,ω, z)ϕ(x)b(ω, z).

Proof. At cost to restrict to ε small enough, we can assume that ‖vε‖L2(με
ω̃
) ≤ C0 and ‖∇εvε‖L2(νε

ω̃
) ≤ C0 for some

C0 <+∞ and all ε > 0. Due to (96), the same holds respectively for vε
M and ∇εv

ε
M , for all M ∈ N+, where we have set

vε
M := [vε]M . In particular, by a diagonal procedure, due to Lemmas 13.5 and 13.7 along a sequence {εk} we have that

vε
M

2
⇀ vM , vε

2
⇀ v, ∇εv

ε
M

2
⇀ wM and ∇εvε

2
⇀ w, where vM,v ∈ L2(mdx×P0), wM,w ∈L2(mdx×ν), simultaneously

for all M ∈ N+. This proves in particular Item (i). We point out that we are not claiming that vM = [v]M , wM = [w]M .
Moreover, from now on we restrict to ε belonging to the above special sequence without further mention.

We prove Item (ii). By extending the diagonal procedure we can assume that along the sequence {εk} it holds

|vε| 2
⇀ ṽ, as ‖ |vε| ‖L2(με

ω̃
) = ‖vε‖L2(με

ω̃
) ≤ C0. We set H(w̄, ϕ̄, b̄) := ∫ dx m

∫
dν(ω, z)w̄(x,ω, z)ϕ̄(x)b̄(ω, z). Then

(122) corresponds to the limit limM→∞H(wM,ϕ,b) = H(w,ϕ,b). Here and below b ∈ H and ϕ ∈ C1
c (Rd). Recall

that bk := [b]k ∈H for any k ∈N+ (see Section 12).

Claim 17.2. For each k,M ∈N+ it holds∣∣H(w,ϕ,b)−H(w,ϕ,bk)
∣∣≤C0‖ϕ‖L2(mdx)‖b− bk‖L2(ν),(123) ∣∣H(wM,ϕ,b)−H(wM,ϕ,bk)
∣∣≤C0‖ϕ‖L2(mdx)‖b− bk‖L2(ν).(124)

We omit the proof of the above claim since it can be obtained by reasoning exactly as in the proof of Claim 15.2.

Claim 17.3. For any k ∈N+, it holds

(125) lim
M↑∞

∣∣H(w,ϕ,bk)−H(wM,ϕ,bk)
∣∣≤ kC∗

(
M−1/2 +E0[λ01{λ0≥

√
M}]
)1/2

,

where C∗ is a constant depending only on C0 and ϕ.

Proof of Claim 17.3. We note that ∇εvε(x, z)= ∇εv
ε
M(x, z) if |vε(x)| ≤M and |vε(x + εz)| ≤M . Moreover, by (97),

we have |∇εvε −∇εv
ε
M | ≤ |∇εvε|. Hence we can bound

(126)
∣∣∇εvε −∇εv

ε
M

∣∣(x, z)≤ |∇εvε|(x, z)(1{|vε(x)|≥M} + 1{|vε(x+εz)|≥M}).
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Due to the above bound we can estimate

(127)

∣∣H(w,ϕ,bk)−H(wM,ϕ,bk)
∣∣= ∣∣∣∣lim

ε↓0

∫
dνε

ω̃(x, z)
(∇εvε −∇εv

ε
M

)
(x, z)ϕ(x)bk(θx/εω̃, z)

∣∣∣∣
≤ k lim

ε↓0

∫
dνε

ω̃(x, z)|∇εvε|(x, z)(1{|vε(x)|≥M} + 1{|vε(x+εz)|≥M})
∣∣ϕ(x)

∣∣.
Note that the identity in (127) follows from (104) since bk ∈ H (recall that ω̃ ∈ �typ, ∇εv

ε
M

2
⇀ wM , ∇εvε

2
⇀ w). By

Schwarz inequality we have

(128)
∫

dνε
ω̃(x, z)|∇εvε|(x, z)1{|vε(x)|≥M}

∣∣ϕ(x)
∣∣≤C0A(ε)1/2,

where

A(ε) :=
∫

dνε
ω̃(x, z)1{|vε(x)|≥M}ϕ(x)2 =

∫
dμε

ω̃(x)1{|vε(x)|≥M}ϕ(x)2λ0(θx/εω̃).

As 1{|vε(x)|≥M} ≤ |vε(x)|/M we can bound A(ε)≤A1(ε)+A2(ε) where

A1(ε) := 1

M

∫
dμε

ω̃(x)
∣∣vε(x)

∣∣ϕ(x)2(λ0 ∧
√

M)(θx/εω̃), A2(ε) :=
∫

dμε
ω̃(x)ϕ(x)2(λ01{λ0>

√
M})(θx/εω̃).

As λ0 ∧
√

M ∈ G and |vε| 2
⇀ ṽ ∈ L2(mdx ⊗ P0), we have limε↓0 A1(ε) = M−1

∫
dx m

∫
dP0(ω)ṽ(x,ω)ϕ(x)2(λ0 ∧√

M)(ω). We recall (see Lemma 13.5) that ‖ṽ‖L2(mdx⊗P0)
≤ C0. Hence by Schwarz inequality we have

(129)

∣∣∣∣∫ dx m

∫
dP0(ω)ṽ(x,ω)ϕ(x)2(λ0 ∧

√
M)(ω)

∣∣∣∣≤C0M
1/2
∥∥ϕ2
∥∥

L2(mdx)
.

As a consequence we have limε↓0 A1(ε)≤ (C0/M
1/2)‖ϕ2‖L2(mdx). As ω̃ ∈�typ ⊂A[λ01{λ0>

√
M}] ∩ Ã with A= {λ0 <

+∞}, we have limε↓0 A2(ε)=
∫

dx mϕ(x)2E0[λ01{λ0>
√

M}]. Since A(ε)≤A1(ε)+A2(ε), we then get

(130) lim sup
ε↓0

A(ε)≤ (C0/M
1/2)∥∥ϕ2

∥∥
L2(mdx)

+
∫

dx mϕ(x)2E0[λ01{λ0>
√

M}].

Reasoning as above we have

(131)
∫

dνε
ω̃(x, z)|∇εvε|(x, z)1{|vε(x+εz)|≥M}

∣∣ϕ(x)
∣∣≤ C0B(ε)1/2,

where (applying also (89) to the form (ω, z) �→ 1)

B(ε) :=
∫

dνε
ω̃(x, z)1{|vε(x+εz)|≥M}ϕ(x)2 =

∫
dνε

ω̃(x, z)1{|vε(x)|≥M}ϕ(x + εz)2.

We want to replace in the last expression the term ϕ(x + εz)2 with ϕ(x)2 (note that this replacement would produce
A(ε)). To estimate the error we observe that by (120) (we use the same notation here) we can bound

(132)
∣∣ϕ(x + εz)2 − ϕ(x)2

∣∣≤Cε|z|(φ(x)+ φ(x + εz)
)
,

where C = C(ϕ). Hence we have B(ε)≤A(ε)+CεB1(ε)+CεB2(ε), where

B1(ε) :=
∫

dνε
ω̃(x, z)1{|vε(x)|≥M}φ(x)|z| ≤

∫
dμε

ω̃(x)φ(x)λ1(θx/εω̃),

B2(ε) :=
∫

dνε
ω̃(x, z)1{|vε(x)|≥M}|z|φ(x + εz)≤

∫
dνε

ω̃(x, z)|z|φ(x + εz).

Note that by (89) we have∫
dνε

ω̃(x, z)|z|φ(x + εz)=
∫

dνε
ω̃(x, z)|z|φ(x)=

∫
dμε

ω̃(x)φ(x)λ1(θx/εω̃).
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Hence B1(ε)+ B2(ε) ≤ 2
∫

dμε
ω̃
(x)φ(x)λ1(θx/εω̃). As φ ∈ Cc(R

d) and ω̃ ∈ �typ ⊂A[λ1] ∩ Ã with A := {λ1 < +∞},
we conclude that lim supε↓0(B1(ε) + B2(ε)) < +∞. By using that B(ε) ≤ A(ε) + CεB1(ε) + CεB2(ε), we get that
lim supε↓0 B(ε) ≤ lim supε↓0 A(ε) and the latter has been estimated in (130). At this point, using also (127), (128) and
(131), we get the claim. �

We can finally derive (122), i.e. that limM→∞H(wM,ϕ,b)=H(w,ϕ,b). By using Claims 17.2 and 17.3 we have∣∣H(wM,ϕ,b)−H(w,ϕ,b)
∣∣≤ ∣∣H(wM,ϕ,b)−H(wM,ϕ,bk)

∣∣+ ∣∣H(wM,ϕ,bk)−H(w,ϕ,bk)
∣∣

+ ∣∣H(w,ϕ,bk)−H(w,ϕ,b)
∣∣

≤ C0C(ϕ)‖b− bk‖L2(ν) + kC∗
(
M−1/2 +E0[λ01{λ0≥

√
M}]
)1/2

.

At this point it is enough to take first the limit M →∞ and afterwards the limit k →∞ and to use that limk→∞‖b −
bk‖L2(ν) = 0. �

18. Structure of the 2-scale weak limit of a bounded family in H 1
ω̃,ε

: Part II

We point out that the next result is the analogous of [44, Lemma 5.4]. The proof relies also on a cut-off procedure based
on Lemma 15.1 and Lemma 17.1 (see also Remark 18.2 below). Recall Definition 3.9.

Proposition 18.1. Let ω̃ ∈�typ and let {vε} be a family of functions vε ∈H 1
ω̃,ε

satisfying (114). Then, along a sequence
εk ↓ 0, we have:

(i) L2(με
ω̃
) 
 vε

2
⇀ v ∈ L2(mdx × P0), where v does not depend on ω. Writing v simply as v(x) we have that v ∈

H 1∗ (mdx);

(ii) L2(νε
ω̃
) 
 ∇vε(x, z)

2
⇀∇∗v(x) · z+ v1(x,ω, z) ∈ L2(mdx × ν), where v1 ∈L2(Rd ,L2

pot(ν)).

The property v1 ∈ L2(Rd ,L2
pot(ν)) means that for dx-almost every x in Rd the map (ω, z) �→ v1(x,ω, z) is a potential

form, hence in L2
pot(ν), moreover the map Rd 
 x → v1(x, ·, ·) ∈L2

pot(ν) is measurable and

(133)
∫

dx
∥∥v1(x, ·, ·)∥∥2

L2(ν)
=
∫

dx

∫
ν(ω, z)v1(x,ω, z)2 <+∞.

Proof of Proposition 18.1. At cost to restrict to ε small enough, we can assume that ‖vε‖L2(με
ω̃
) ≤C0 and ‖∇εvε‖L2(νε

ω̃
) ≤

C0 for some C0 <+∞ and all ε > 0. We can assume the same bounds for vε
M := [vε]M . Along a sequence εk ↓ 0 the 2-

scale convergences in Item (i) of Lemma 15.1 and in Item (i) of Lemma 17.1 take place. We keep here the same notation.

In particular, vε
2
⇀ v, vε

M

2
⇀ vM , ∇εvε

2
⇀ w and ∇εv

ε
M

2
⇀ wM . By Lemmas 13.5 and 13.7 the norms ‖vM‖L2(mdx×P0)

,
‖v‖L2(mdx×P0)

, ‖wM‖L2(mdx×ν) and ‖w‖L2(mdx×ν) are upper bounded by C0.
Due to Proposition 16.1 v = v(x) and vM = vM(x). We claim that for each solenoidal form b ∈ L2

sol(ν) and each
function ϕ ∈ C2

c (Rd), it holds

(134)
∫

dxϕ(x)

∫
dν(ω, z)w(x,ω, z)b(ω, z)=−

∫
dxv(x)∇ϕ(x) · ηb,

where ηb :=
∫

dν(ω, z)zb(ω, z). Note that ηb is well defined since both b and the map (ω, z) �→ z are in L2(ν). Moreover,
by applying Lemma 7.3 with f such that f (ω, θzω)= zb(ω, z) ∀z ∈ ω̂ for P0-a.a. ω (use (A3) to define f ), we get that
ηb =−η

b̃
(cf. Definition 11.1).

Before proving (134) we show how to conclude the proof of Proposition 18.1 starting with Item (i). Due to Corol-
lary 9.2 for each i = 1, . . . , d∗ there exists bi ∈ L2

sol(ν) such that ηbi
= ei . Consider the measurable function

(135) gi(x) :=
∫

dν(ω, z)w(x,ω, z)bi(ω, z), 1≤ i ≤ d∗.

We have that gi ∈ L2(dx) since, by Schwarz inequality,

(136)
∫

gi(x)2 dx =
∫

dx

[∫
dν(ω, z)w(x,ω, z)bi(ω, z)

]2

≤ ‖bi‖2
L2(ν)

∫
dx

∫
dν(ω, z)w(x,ω, z)2 <∞.
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Moreover, by (134) we have that
∫

dxϕ(x)gi(x)=− ∫ dx v(x)∂ei
ϕ(x) for 1≤ i ≤ d∗. This proves that v(x) ∈H 1∗ (mdx)

and ∂ei
v(x)= gi(x) for 1≤ i ≤ d∗. This concludes the proof of Item (i).

We move to Item (ii) (always assuming (134)). By Item (i) and Corollary 9.2 implying that ηb ∈ span{e1, . . . , ed∗} for
all b ∈L2

sol(ν), we can replace the r.h.s. of (134) by
∫

dx(∇∗v(x) · ηb)ϕ(x). Hence (134) can be rewritten as

(137)
∫

dxϕ(x)

∫
dν(ω, z)

[
w(x,ω, z)−∇∗v(x) · z]b(ω, z)= 0.

By the arbitrariness of ϕ we conclude that dx-a.s.

(138)
∫

dν(ω, z)
[
w(x,ω, z)−∇∗v(x) · z]b(ω, z)= 0, ∀b ∈L2

sol(ν).

Let us now show that the map w(x,ω, z)−∇∗v(x) · z belongs to L2(dx,L2(ν)). Indeed, we have
∫

dx‖w(x, ·, ·)‖2
L2(ν)

=
‖w‖2

L2(mdx×dν)
<+∞ and also

(139)
∫

dx
∥∥∇∗v(x) · z∥∥2

L2(ν)
≤
∫

dx
∣∣∇∗v(x)

∣∣2 ∫ dν(ω, z)|z|2 <∞,

by Schwarz inequality and since ∇∗v ∈ L2(dx) and E0[λ2]<∞.
As the map w(x,ω, z)−∇∗v(x) ·z belongs to L2(dx,L2(ν)), for dx-a.e. x we have that the map (ω, z) �→w(x,ω, z)−

∇∗v(x) · z belongs to L2(ν) and therefore, by (138), to L2
pot(ν). This concludes the proof of Item (ii).

It remains to prove (134). Here is a roadmap: (i) we reduce (134) to (140); (ii) we prove (144); (iii) by (144) we reduce
(140) to (146); (iv) we prove (147); (v) by (147) we reduce (146) to (150); (vi) we prove (150).

Since both sides of (134) are continuous as functions of b ∈ L2
sol(ν), it is enough to prove it for b ∈W (see Section 12).

We apply Lemma 17.1-(ii) (recall that b ∈W ⊂H) to approximate the l.h.s. of (134) and Lemma 15.1-(ii) with u := 1 ∈ G
to approximate the r.h.s. of (134). Then to prove (134) it is enough to show that

(140)
∫

dx mϕ(x)

∫
dν(ω, z)wM(x,ω, z)b(ω, z)=−

∫
dx mvM(x)∇ϕ(x) · ηb,

for any ϕ ∈ C2
c (Rd), b ∈W and M ∈N+. From now on M is fixed.

Since ω̃ ∈�typ, ∇εv
ε
M

2
⇀ wM and b ∈W ⊂H we can write (cf. (104))

(141) l.h.s. of (140)= lim
ε↓0

∫
dνε

ω̃(x, z)∇εv
ε
M(x, z)ϕ(x)b(θx/εω̃, z).

Since b ∈ L2
sol(ν) and ω̃ ∈�typ ⊂Ad [b] (cf. Lemmata 11.6 and 11.7), we get∫

dνε
ω̃(x, z)∇ε

(
vε
Mϕ
)
(x, z)b(θx/εω̃, z)= 0.

Using the above identity, (113) and finally (90) in Lemma 11.3 as ω̃ ∈�typ ⊂A1[b] ∩A1[b̃], we conclude that

(142)

∫
dνε

ω̃(x, z)∇εv
ε
M(x, z)ϕ(x)b(θx/εω̃, z)=−

∫
dνε

ω̃(x, z)vε
M(x + εz)∇εϕ(x, z)b(θx/εω̃, z)

=
∫

dνε
ω̃(x, z)vε

M(x)∇εϕ(x, z)b̃(θx/εω̃, z).

Up to now we have obtained that

(143) l.h.s. of (140)= lim
ε↓0

∫
dνε

ω̃(x, z)vε
M(x)∇εϕ(x, z)b̃(θx/εω̃, z).

We now set bk := [b]k , b̃k := [ b̃ ]k = [̃b]k = b̃k . We want to prove that

(144) lim
k↑∞ lim

ε↓0

∣∣∣∣∫ dνε
ω̃(x, z)vε

M(x)∇εϕ(x, z)(b̃− b̃k)(θx/εω̃, z)

∣∣∣∣= 0.
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To this aim let � be such that ϕ(x)= 0 if |x| ≥ �. Fix φ ∈ Cc(R
d) with values in [0,1], such that φ(x)= 1 for |x| ≤ � and

φ(x)= 0 for |x| ≥ �+ 1. Using (120) and Schwarz inequality we can bound

(145)

∣∣∣∣∫ dνε
ω̃(x, z)vε

M(x)∇εϕ(x, z)(b̃− b̃k)(θx/εω̃, z)

∣∣∣∣
≤M‖∇ϕ‖∞

∫
dνε

ω̃(x, z)|z|(φ(x)+ φ(x + εz)
)|b̃− b̃k|(θx/εω̃, z)

≤M‖∇ϕ‖∞
[
2A(ε)

]1/2[
B(ε, k)+C(ε, k)

]1/2
,

where (using (89) in Lemma 11.3 for A(ε) and C(ε))

A(ε) :=
∫

dνε
ω̃(x, z)|z|2φ(x)=

∫
dνε

ω̃(x, z)|z|2φ(x + εz),

B(ε, k) :=
∫

dνε
ω̃(x, z)(b̃− b̃k)

2(θx/εω̃, z)φ(x),

C(ε, k) :=
∫

dνε
ω̃(x, z)(b̃− b̃k)

2(θx/εω̃, z)φ(x + εz)=
∫

dνε
ω̃(x, z)(b− bk)

2(θx/εω̃, z)φ(x).

As �typ ⊂ Ã ∩ A[λ2] with A := {λ2 < +∞} (cf. Definition 12.2), A(ε) = ∫ dμε
ω̃
(x)φ(x)λ2(θx/εω̃) has finite limit

as ε ↓ 0. Hence to get (144) we only need to show that limk↑∞,ε↓0 B(ε, k) = limk↑∞,ε↓0 C(ε, k) = 0. Setting d :=
|b̃ − b̃k| we can write B(ε, k) = ∫ dμε

ω̃
(x)φ(x)d̂2(θx/εω̃) as ω ∈ �typ ⊂ A1[d2] (recall that b̃, b̃k ∈H). As in addition

ω ∈�typ ⊂A[d̂2], we conclude that limε↓0 B(ε, k)= ∫ dx mφ(x)‖b̃ − b̃k‖2
L2(ν)

. Similarly we get that limε↓0 C(ε, k)=∫
dx mφ(x)‖b− bk‖2

L2(ν)
. As the above limits go to zero as k→∞, we get (144).

Due to (143), (144) and since, by Schwarz inequality, limk→∞ η
b̃k
= η

b̃
=−ηb , to prove (140) we only need to show,

for fixed M , k, that

(146) lim
ε↓0

∫
dνε

ω̃(x, z)vε
M(x)∇εϕ(x, z)b̃k(θx/εω̃, z)=

∫
dx mvM(x)∇ϕ(x) · η

b̃k
.

To prove (146) we first show that

(147) lim
ε↓0

∣∣∣∣∫ dνε
ω̃(x, z)vε

M(x)
[∇εϕ(x, z)−∇ϕ(x) · z]b̃k(θx/εω̃, z)

∣∣∣∣= 0.

Since ‖vε
M‖∞ ≤M and ‖b̃k‖∞ ≤ k, it is enough to show that

(148) lim
ε↓0

∫
dνε

ω̃(x, z)
∣∣∇εϕ(x, z)−∇ϕ(x) · z∣∣= 0.

Since ϕ ∈ C2
c (Rd), by Taylor expansion we have ∇εϕ(x, z)−∇ϕ(x) · z= 1

2

∑
i,j ∂2

ij ϕ( ζε(x, z) )zizj ε, where ζε(x, z) is
a point between x and x + εz. Moreover we note that ∇εϕ(x, z)− ∇ϕ(x) · z = 0 if |x| ≥ � and |x + εz| ≥ �. All these
observations imply that

(149)
∣∣∇εϕ(x, z)−∇ϕ(x) · z∣∣≤ εC(ϕ)|z|2(φ(x)+ φ(x + εz)

)
.

Due to (89) we can write∫
dνε

ω̃(x, z)|z|2φ(x + εz)=
∫

dνε
ω̃(x, z)|z|2φ(x)=

∫
dμε

ω̃(x)φ(x)λ2(θx/εω̃).

As ω ∈ �typ ⊂ Ã ∩A[λ2] with A := {λ2 < +∞}, we conclude that the above r.h.s. has a finite limit as ε ↓ 0. Due to
(149), we get (148) and hence (147).

Having (147), to get (146) it is enough to show that

(150) lim
ε↓0

∫
dνε

ω̃(x, z)vε
M(x)∇ϕ(x) · zb̃k(θx/εω̃, z)=

∫
dx mvM(x)∇ϕ(x) · η

b̃k
.
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To this aim we observe that

(151)
∫

dνε
ω̃(x, z)vε

M(x)∂iϕ(x)zi b̃k(θx/εω̃, z)=
∫

dμε
ω̃(x)vε

M(x)∂iϕ(x)uk(θx/εω̃),

where uk(ω) := ∫ dω̂(z)r0,z(ω)zi b̃k(ω, z). Note that uk ∈ L1(P0) as λ1 ∈ L1(P0) by (19). Given � ∈ N we consider
uk − [uk]� (cf. (95)). As ω̃ ∈�typ ⊂ Ã∩A[|uk − [uk]�|] where A := {λ1 <+∞}, we have

(152)

∣∣∣∣∫ dμε
ω̃(x)vε

M(x)∂iϕ(x)
(
uk − [uk]�

)
(θx/εω̃)

∣∣∣∣≤M

∫
dμε

ω̃(x)
∣∣∂iϕ(x)

∣∣ ∣∣uk − [uk]�
∣∣(θx/εω̃)

ε↓0→ M

∫
dx m

∣∣∂iϕ(x)
∣∣E0
[∣∣uk − [uk]�

∣∣].
Note that the last expectation goes to zero when � ↑∞ by dominated convergence as λ1 ∈ L1(P0) by (19). Since ω̃ ∈�typ,

vε
M

2
⇀ vM and [uk]� ∈ G (cf. (99) and recall that b̃ ∈W ∀b ∈W), by (100) we conclude that

lim
ε↓0

∫
dμε

ω̃(x)vε
M(x)∂iϕ(x)uk(θx/εω̃)

= lim
�↑∞ lim

ε↓0

∫
dμε

ω̃(x)vε
M(x)∂iϕ(x)[uk]�(θx/εω̃)= lim

�↑∞

∫
dx mvM(x)∂iϕ(x)E0

[[uk]�
]

=
∫

dx mvM(x)∂iϕ(x)E0[uk] =
∫

dx mvM(x)∂iϕ(x)(η
b̃k
· ei).

Our target (150) then follows from the above equation and (151). �

Remark 18.2. We stress that, without the cut-off trick allowing to move from (134) to (140), one would be blocked when
trying to study the limit in the r.h.s. of (143) with vε

M replaced by vε .

19. Proof of Theorem 4.1

Without loss of generality, we prove Theorem 4.1 with λ= 1 to simplify the notation. Due to Proposition 12.5 we only
need to prove Items (i), (ii) and (iii). Some arguments below are taken from [44], others are intrinsic to the possible
presence of long jumps. We start with two results (Lemmas 19.1 and 19.2) concerning the microscopic gradient ∇εϕ for
ϕ ∈ Cc(R

d).

Lemma 19.1. Let ω ∈�typ. Then limε↓0 ‖∇εϕ‖L2(νε
ω) <∞ for any ϕ ∈ C1

c (Rd).

Proof. Let φ be as in (120). By (120) and since ω ∈�typ (apply (89) with b(ω, z) := |z|2), we get

‖∇εϕ‖2
L2(νε

ω)
≤C(ϕ)

∫
dνε

ω(x, z)|z|2(φ(x)+ φ(x + εz)
)

= 2C(ϕ)

∫
dνε

ω(x, z)|z|2φ(x)= 2C(ϕ)

∫
dμε

ω(x)φ(x)λ2(θx/εω).

The thesis then follows from Proposition 3.1 as ω ∈�typ ⊂ Ã∩A[λ2] with A := {λ2 <+∞} (recall Definition 12.2). �

Lemma 19.2. Given ω ∈�typ and ϕ ∈C2
c (Rd) it holds

(153) lim
ε↓0

∫
dνε

ω(x, z)
[∇εϕ(x, z)−∇ϕ(x) · z]2 = 0.

Proof. Let � be such that ϕ(x) = 0 if |x| ≥ �. Let φ ∈ Cc(R
d) be as in (120). The upper bound given by (120) with

∇εϕ(x, z) replaced by ∇ϕ(x) · z is also true. We will apply the above bounds for |z| ≥ �. On the other hand, we apply
(149) for |z|< �. As a result, we can bound

(154)
∫

dνε
ω(x, z)

[∇εϕ(x, z)−∇ϕ(x) · z]2 ≤ C(ϕ)
[
A(ε, �)+B(ε, �)

]
,
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where (cf. (89) and the Definition 12.3 for h�)

A(ε, �) :=
∫

dνε
ω(x, z)|z|2(φ(x)+ φ(x + εz)

)
1{|z|≥�} = 2

∫
dνε

ω(x, z)|z|2φ(x)1{|z|≥�} = 2
∫

dμε
ω(x)φ(x)h�(θx/εω),

B(ε, �) := ε2�4
∫

dνε
ω(x, z)

(
φ(x)+ φ(x + εz)

)= 2ε2�4
∫

dνε
ω(x, z)φ(x)= 2ε2�4

∫
dμε

ω(x)φ(x)λ0(θx/εω).

Since ω ∈ �typ ⊂ (
⋂

�∈NA[h�]) ∩ Ã with A := {λ2 < +∞} (recall Definition 12.2), it holds limε↓0
∫

dμε
ω(x)φ(x)×

h�(θx/εω) = ∫ dx mφ(x)E0[h�]. By dominated convergence and (A7) we then get that lim�↑∞,ε↓0 A(ε, �) = 0. As ω ∈
�typ ⊂ Ã∩A[λ0] with A= {λ0 <+∞}, the integral

∫
dμε

ω(x)φ(x)λ0(θx/εω) converges to
∫

dx mφ(x)E0[λ0] as ε ↓ 0.
As a consequence, limε↓0 B(ε, �)= 0. Coming back to (154) we finally get (153). �

From now on we denote by ω̃ the environment in �typ for which we want to prove Items (i), (ii) and (iii) of Theo-
rem 4.1.

• Convergence of solutions. We start by proving Item (i).

We consider (43). We recall that the weak solution uε ∈H
1,f
ω̃,ε

satisfies (cf. (28))

(155)
1

2
〈∇εv,∇εuε〉νε

ω̃
+ 〈v,uε〉με

ω̃
= 〈v,fε〉με

ω̃
∀v ∈H

1,f
ω̃,ε

.

Due to (155) with v := uε we get that ‖uε‖2
L2(με

ω̃
)
≤ 〈uε,fε〉με

ω̃
and therefore ‖uε‖L2(με

ω̃
) ≤ ‖fε‖L2(με

ω̃
) by Schwarz

inequality. Hence, by (155) it holds 1
2‖∇εuε‖2

L2(νε
ω̃
)
≤ ‖fε‖2

L2(με
ω̃
)
. Since fε ⇀ f , the family {fε} is bounded and therefore

there exists C > 0 such that, for ε small enough as we assume below,

(156) ‖uε‖L2(με
ω̃
) ≤ C, ‖∇εuε‖L2(νε

ω̃
) ≤ C.

Due to (156) and by Proposition 18.1, along a sequence εk ↓ 0 we have:

(i) uε
2
⇀ u, where u is of the form u= u(x) and u ∈H 1∗ (mdx);

(ii) ∇εuε(x, z)
2
⇀ w(x,ω, z) := ∇∗u(x) · z+ u1(x,ω, z), u1 ∈ L2(Rd,L2

pot(ν)).

Below, convergence for ε ↓ 0 is understood along the sequence {εk}.

Claim 19.3. For dx-a.e. x ∈Rd it holds

(157)
∫

dν(ω, z)w(x,ω, z)z= 2D∇∗u(x).

Proof of Claim 19.3. We apply (155) to the test function v(x) := εϕ(x)g(θx/εω̃), where ϕ ∈ C2
c (Rd) and g ∈ G2 (cf.

Section 12). Recall that G2 is given by bounded functions. Note that v ∈ C(ε̂̃ω)⊂H
1,f
ω̃,ε

.
Due to (113) we have

(158) ∇εv(x, z)= ε∇εϕ(x, z)g(θz+x/εω̃)+ ϕ(x)∇g(θx/εω̃, z).

In the above formula, the gradient ∇g is the one defined in (74). Note that both the expressions in the r.h.s. belongs to
L2(νε

ω̃
) (as this holds for the l.h.s., it is enough to check it for the first expression by using (25)). Due to (158), (155) can

be rewritten as

(159)

ε

2

∫
dνε

ω̃(x, z)∇εϕ(x, z)g(θz+x/εω̃)∇εuε(x, z)+ 1

2

∫
dνε

ω̃(x, z)ϕ(x)∇g(θx/εω̃, z)∇εuε(x, z)

+ ε

∫
dμε

ω̃(x)ϕ(x)g(θx/εω̃)uε(x)= ε

∫
dμε

ω̃(x)ϕ(x)g(θx/εω̃)fε(x).

Since the families of functions {uε(x)}, {fε(x)}, {ϕ(x)g(θx/εω̃)} are bounded families in L2(με
ω̃
), the expressions in the

third line of (159) go to zero as ε ↓ 0.
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We now claim that

(160) lim
ε↓0

∫
dνε

ω̃(x, z)∇εuε(x, z)
[∇εϕ(x, z)−∇ϕ(x) · z]g(θz+x/εω̃)= 0.

This follows by using that ‖g‖∞ < +∞, applying Schwarz inequality and afterwards Lemma 19.2 (recall that

‖∇εuε‖L2(νε
ω̃
) ≤ C for ε small). The above limit (160), the 2-scale convergence ∇εuε

2
⇀ w and the fact that (104) holds

for all functions in H3 ⊂H (cf. Section 12), imply that

(161)

lim
ε↓0

∫
dνε

ω̃(x, z)∇εuε(x, z)∇εϕ(x, z)g(θz+x/εω̃)= lim
ε↓0

∫
dνε

ω̃(x, z)∇εuε(x, z)∇ϕ(x) · zg(θz+x/εω̃)

=
∫

dx m

∫
dν(ω, z)w(x,ω, z)∇ϕ(x) · zg(θzω).

Due to (161) also the expression in the first line of (159) goes to zero as ε ↓ 0. We conclude therefore that also the
expression in the second line of (159) goes to zero as ε ↓ 0. Hence

lim
ε↓0

∫
dνε

ω̃(x, z)∇εuε(x, z)ϕ(x)∇g(θx/εω̃, z)= 0.

Due to the 2-scale convergence ∇εuε
2
⇀ w and since (104) holds for all gradients ∇g, g ∈ G2 (since H2 ⊂ H), we

conclude that ∫
dx mϕ(x)

∫
dν(ω, z)w(x,ω, z)∇g(ω, z)= 0.

Since {∇g : g ∈ G2} is dense in L2
pot(ν), the above identity implies that, for dx-a.e. x, the map (ω, z) �→ w(x,ω, z)

belongs to L2
sol(ν). On the other hand, we know that w(x,ω, z)=∇∗u(x) · z+ u1(x,ω, z), where u1 ∈ L2(Rd,L2

pot(ν)).
Hence, by (81), for dx-a.e. x we have that

u1(x, ·, ·)= va(·, ·), a := ∇∗u(x).

As a consequence (using also (82)), for dx-a.e. x, we have∫
dν(ω, z)w(x,ω, z)z=

∫
dν(ω, z)z

[∇∗u(x) · z+ v∇∗u(x)(ω, z)
]= 2D∇∗u(x).

This concludes the proof of Claim 19.3. �

We now reapply (155) but with v(x) := ϕ(x) ∈ C2
c (Rd) (note that v ∈ C(ε̂̃ω)⊂H

1,f
ω̃,ε

). We get

(162)
1

2

∫
dνε

ω̃(x, z)∇εϕ(x, z)∇εuε(x, z)+
∫

dμε
ω̃(x)ϕ(x)uε(x)=

∫
dμε

ω̃(x)ϕ(x)fε(x).

Let us analyze the first term in (162). By (160) which holds also with g ≡ 1, the expression
∫

dνε
ω̃
(x, z)∇εϕ(x, z)∇εuε(x,

z) equals
∫

dνε
ω̃
(x, z)∇εuε(x, z)∇ϕ(x) · z+ o(1) as ε ↓ 0. Since the function (ω, z) �→ zi is in H and since ω̃ ∈�typ, by

the 2-scale convergence ∇εuε
2
⇀ w we obtain that

lim
ε↓0

∫
dνε

ω̃(x, z)∇εϕ(x, z)∇εuε(x, z)=
∫

dx m

∫
dν(ω, z)w(x,ω, z)∇ϕ(x) · z.

Since uε
2
⇀ u with u= u(x), 1 ∈ G and fε⇀f , by taking the limit ε ↓ 0 in (162) we get

(163)
1

2

∫
dx m∇ϕ(x) ·

∫
dν(ω, z)w(x,ω, z)z+

∫
dx mϕ(x)u(x)=

∫
dx mϕ(x)f (x).

Due to (157) the above identity reads

(164)
∫

dx∇ϕ(x) ·D∇∗u(x)+
∫

dx ϕ(x)u(x)=
∫

dx ϕ(x)f (x),
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i.e. u is a weak solution of (42) (recall that C∞
c (Rd) is dense in H 1∗ (mdx) and note that ∇ϕ in (164) can be replaced by

∇∗ϕ due to Definitions 3.8, 3.9). This concludes the proof of limit (43) as ε ↓ 0 along the sequence {εk}. Since for each
sequence {εn} converging to zero we can extract a subsequence {εnk

} for which Items (i) and (ii) stated after (156) hold
and for which the limit (43) holds along {εnk

}, we get (43) as ε ↓ 0.
It remains to prove (44). It is enough to apply the same arguments of [44, Proof of Thm. 6.1]. Since fε → f we have

fε ⇀ f and therefore, by (43), we have uε ⇀ u. This implies that vε ⇀ v (again by (43)), where vε and v are respectively
the weak solution in H

1,f
ω̃,ε

and H 1∗ (mdx) of −Lε
ω̃
vε + vε = uε and −∇∗ ·D∇∗v + v = u. By taking the scalar product

in the weak version of (41) with vε (as in (28)), the scalar product in the weak version of (42) with v (as in (34)), the
scalar product in the weak version of −Lε

ω̃
vε + vε = uε with uε ∈ H

1,f
ω̃,ε

and the scalar product in the weak version of
−∇∗ ·D∇∗v + v = u with u and comparing the resulting expressions, we get

(165) 〈uε,uε〉με
ω
= 〈vε, fε〉με

ω
,

∫
u(x)2 dx =

∫
f (x)v(x) dx.

Since fε → f and vε ⇀ v we get that 〈vε, fε〉με
ω
→ ∫ v(x)f (x)mdx. Hence, by (165), we conclude that limε↓0〈uε,

uε〉με
ω
= ∫ u(x)2mdx. The last limit and the weak convergence uε ⇀ u imply the strong convergence uε → u by Re-

mark 3.12. This concludes the proof of (44) and therefore of Theorem 4.1-(i).

• Convergence of flows. We now prove (45) in Item (ii), i.e. ∇εuε ⇀ ∇∗u. By (156) the analogous of bound (38) with
∇εuε is satisfied. Suppose that fε ⇀ f . Take ϕ ∈C1

c (Rd), then 〈ϕ,fε〉με
ω̃
→〈ϕ,f 〉mdx . By Item (i) we know that uε ⇀ u

and therefore 〈ϕ,uε〉με
ω̃
→ 〈ϕ,u〉mdx . The above convergences and (155) with v given by ϕ restricted to ε̂̃ω (note that

v ∈ C(ε̂̃ω)⊂H
1,f
ω̃,ε

), we conclude that

lim
ε↓0

1

2
〈∇εϕ,∇εuε〉νε

ω̃
= lim

ε↓0

[〈ϕ,fε〉με
ω̃
− 〈ϕ,uε〉με

ω̃

]= 〈ϕ,f − u〉mdx.

Due to (42) and (34), the r.h.s. equals
∫

dx mD(x)∇∗ϕ(x) · ∇∗u(x). This proves the analogous of (39) and therefore (45).

Take now fε → f . Then, by (44), uε → u. Reasoning as above we get that, given gε ∈H
1,f
ω̃,ε

and g ∈H 1∗ (mdx) with

L2(με
ω̃
) 
 gε ⇀ g ∈ L2(mdx), it holds

lim
ε↓0

1

2
〈∇εgε,∇εuε〉νε

ω̃
= lim

ε↓0

[〈gε, fε〉με
ω̃
− 〈gε,uε〉με

ω̃

]= 〈g,f − u〉mdx.

Since g ∈H 1∗ (mdx), due to (42), the r.h.s. equals
∫

dx mD(x)∇∗g(x) · ∇∗u(x). This proves (46).

• Convergence of energies. We prove Item (iii). Since fε → f , we have uε → u by (44) and ∇εuε →∇∗u by (46). It is
enough to apply (40) with vε replaced by uε , w replaced by ∇∗u, gε := uε and g := u and one gets (47).

20. Proof of Theorem 4.4

Limit (51) corresponds to Remark 4.2. Limit (50) follows from (51) and [44, Thm. 9.2]. To treat (52), (53), (54), (55)
we claim that it is enough to prove them for a fixed f and for all t ≥ 0, λ > 0 as ω varies in a translation invariant set
of full P-probability. To prove this claim, given n ∈ N we set Bn := {x ∈ Rd : |x| ≤ n} and we restrict to ω ∈A[1] (cf.
Proposition 3.1), thus implying that limε↓0 με

ω(Bn) = m�(Bn) (recall that A[1] is translation invariant and measurable
and that P(A[1])= 1). Then, given f ∈Cc(R

d) with support in Bn, we have (since με
ω is reversible for P ε

ω,t )

(166)
∥∥P ε

ω,tf
∥∥2

L2(με
ω)
=
∫

dμε
ω(x)
(
P ε

ω,tf
)2

(x)≤
∫

dμε
ω(x)P ε

ω,tf
2(x)= με

ω

(
f 2)≤ ‖f ‖2∞με

ω(Bn).

Hence ‖P ε
ω,tf ‖L2(με

ω) ≤ ‖f ‖∞με
ω(Bn)

1/2. Similarly, ‖P ε
ω,tf ‖L1(με

ω) ≤ ‖f ‖∞με
ω(Bn). As Rε

ω,λ =
∫∞

0 e−λsP ε
ω,s ds, we

also have ‖Rε
ω,λf ‖L2(με

ω) ≤ λ−1‖f ‖∞με
ω(Bn)

1/2 and ‖Rε
ω,λf ‖L1(με

ω) ≤ λ−1‖f ‖∞με
ω(Bn). The same bounds hold for

the Brownian motion with diffusion matrix 2D and for the measure mdx. Hence, by a density argument with functions
in Cc(R

d), one gets our claim.
To prove (52), . . . , (55) for fixed f we need the following fact (proved at the end of the section):
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Lemma 20.1. Suppose that Assumption (A9) is satisfied. Fix a weakly decreasing function ψ : [0,+∞)→[0,+∞) such
that Rd 
 x �→ψ(|x|) ∈ [0,∞) is Riemann integrable. Then P-a.s. it holds

(167) lim
�↑∞ lim

ε↓0

∫
dμε

ω(x)ψ
(|x|)1{|x|≥�} = 0.

We will apply the above lemma only with ψ(r) := 1/(1+ rd+1). By this choice it is then simple to check that (167)
holds for ω varying in a translation invariant set, as

∫
dμε

θgω(x)f (x)= ∫ dμε
ω(x)f (τ−gx) for all g ∈G and ω ∈�∗.

By the same arguments used to prove [15, Lemma 6.1], the above lemma implies the following for ω varying in
a translation invariant set with full P-probability: given h ∈ C(Rd) with |h(x)| ≤ C/(1 + |x|d+1) for all x ∈ Rd and
given L2(με

ω) 
 hε
ω → h ∈ L2(mdx), it holds limε↓0

∫
Rd |hε

ω(x) − h(x)|2 dμε
ω(x) = 0. Then, as Ptf and Rλf decay

exponentially fast, (50) and (51) imply, respectively, (52) and (54) by Lemma 20.1. It remains to derive (53) from (52)
and to derive (55) from (54). We use some manipulations as in the proof of [15, Corollary 2.5]. We show the derivation
of (55) (which is absent in [15]), since the derivation of (53) is similar. To this aim, without loss of generality, we restrict
to f ≥ 0. For any n ∈N we can bound

(168)
∥∥Rε

ω,λf −Rλf
∥∥

L1(με
ω)
≤ ∥∥(Rε

ω,λf
)
1Bc

n

∥∥
L1(με

ω)
+ ∥∥(Rλf )1Bc

n

∥∥
L1(με

ω)
+με

ω(Bn)
1
2
∥∥Rε

ω,λf −Rλf
∥∥

L2(με
ω)

.

We restrict to ω ∈ A[1] (A[1] is a translation invariant measurable set with P(A[1]) = 1) and ω satisfying (167) with
ψ(r) := 1/(1+ rd+1). Hence it holds limε↓0 με

ω(Bn)=m�(Bn). Then, by (54), the last addendum in the r.h.s. of (168)
goes to zero as ε ↓ 0. Let us move to the second addendum in the r.h.s. of (168). As Rλf decays exponentially (hence
Rλf ≤ Cψ ), by Lemma 20.1 it holds limn↑∞ limε↓0 ‖(Rλf )1Bc

n
‖L1(με

ω) = 0.
Let us finally move to the first addendum in the r.h.s. of (168). Since Rε

ω,λf ≥ 0 we can write

(169)
∥∥(Rε

ω,λf
)
1Bc

n

∥∥
L1(με

ω)
= ∥∥Rε

ω,λf
∥∥

L1(με
ω)
− ∥∥(Rε

ω,λf
)
1Bn

∥∥
L1(με

ω)
.

We claim that

(170) lim
ε↓0

∥∥Rε
ω,λf
∥∥

L1(με
ω)
= ‖Rλf ‖L1(mdx).

To prove our claim we observe that, as Rε
ω,λ =

∫∞
0 e−λsP ε

ω,s ds and f ≥ 0, it holds Rε
ω,λf ≥ 0 and therefore

∥∥Rε
ω,λf
∥∥

L1(με
ω)
=
∫ ∞

0
ds e−λs

∫
dμε

ω(x)P ε
ω,sf (x)=

∫ ∞

0
ds e−λsμε

ω(f )= με
ω(f )

λ
.

As ω ∈ A[1] we have με
ω(f ) → ∫

dx mf (x). On the other hand, arguing as above, we get ‖Rλf ‖L1(mdx) =
λ−1
∫

dx mf (x). By combining the above observations we get (170).
Now we claim that

(171) lim
ε↓0

∥∥(Rε
ω,λf
)
1Bn

∥∥
L1(με

ω)
= ∥∥(Rλf )1Bn

∥∥
L1(mdx)

.

Indeed, by Schwarz inequality, (54) and since ω ∈ A[1], ‖(Rε
ω,λf )1Bn‖L1(με

ω) − ‖(Rλf )1Bn‖L1(με
ω) = 〈Rε

ω,λf −
Rλf,1Bn〉L2(με

ω) goes to 0 as ε ↓ 0. On the other hand, as ω ∈A[1] and by upper and lower bounding (Rλf )1Bn with non-

negative functions ϕ ∈ Cc(R
d), we get that ‖(Rλf )1Bn‖L1(με

ω) →‖(Rλf )1Bn‖L1(mdx) as ε ↓ 0, thus allowing to prove
our claim (171).

By combining (169), (170) and (171) we get that ‖(Rε
ω,λf )1Bc

n
‖L1(με

ω) goes to ‖(Rλf )1Bc
n
‖L1(mdx) as ε ↓ 0. By taking

then the limit n ↑∞ we get that limn↑∞ limε↓0 ‖(Rε
ω,λf )1Bc

n
‖L1(με

ω) = 0.

Proof of Lemma 20.1. To simplify the notation, we take V = I in (2), thus implying that τk�= k+[0,1)d (the arguments
below can be easily adapted to the general case). Always to simplify the notation, we prove a slightly different version of
(167), the method can be easily adapted to (167). In particular, we now prove that P-a.s. it holds

(172) lim
�↑∞ lim

ε↓0
Xε,� = 0 where Xε,�(ω) := εd

∑
k∈Zd :|k|≥�/ε

ψ
(|εk|)Nk.
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Trivially Item (i) in Assumption (A9) implies (172). Let us suppose that Item (ii) is satisfied (we restrict to the first case
in Item (ii), the second more general case can be treated similarly). Given ε ∈ (0,1) let r = r(ε) be the positive integer of
the form 2a , a ∈N, such that r−1 ≤ ε < 2r−1. Then, since ψ is weakly decreasing,

(173) Xε,�(ω)≤ 2dYr,�(ω) where Yr,�(ω) := r−d
∑

k∈Zd :|k|≥r�/2

ψ
(|k/r|)Nk.

In particular, to get (172) it is enough to show that, P-a.s, lim�↑∞ limr↑∞ Yr,� = 0, where r varies in � := {20,21,22, . . . }.
From now on we understand that r ∈ �. Since E[Nk] =m and since ψ(|x|) is Riemann integrable, we have

(174) lim
r↑∞E[Yr,�] = z� :=m

∫
ψ
(|x|)1{|x|≥�/2} dx <∞.

We now estimate the variance of Yr,�. Due to the stationarity of P and since E[N2
0 ]<+∞, it holds supk∈Zd Var(Nk) <

+∞. By Condition (ii) we have, for some fixed constant C1 > 0,

Var(Yr,�)≤C1r
−2d

∑
k∈Zd :|k|≥r�/2

∑
k′∈Zd :
|k′|≥r�/2

[∣∣k− k′
∣∣−11k �=k′ + 1k=k′

]
ψ
(|k/r|)ψ(∣∣k′/r

∣∣)=: I0(r, �)+ I1(r, �)+ I2(r, �),

where I0(r, �), I1(r, �) and I2(r, �) denote the contribution from addenda as above respectively with (a) k = k′, (b)
|k − k′| ≥ r and (c) 1≤ |k − k′|< r . Then we have

lim
r↑∞ rdI0(r, �)= C1

∫
|x|≥�/2

ψ
(|x|)2 dx <+∞,(175)

lim
r↑∞ rI1(r, �)= C1

∫
|x|≥�/2

dx

∫
|y|≥�/2

dy
1{|x−y|≥1}
|x − y| ψ

(|x|)ψ(|y|)<+∞.(176)

To control I2(r, �) we observe that, for r ≥ 2,

∑
v∈Zd :

1≤‖v‖∞≤cr

‖v‖−1∞ ≤C′
cr∑

n=1

nd−2 ≤
{

C′′rd−1 if d ≥ 2,

C′′ ln r if d = 1.

The above bound implies for r large that

(177) I2(r, �)≤ C1‖ψ‖∞r−2d
∑

k∈Zd :|k|≥r�/2

ψ
(|k/r|) ∑

k′∈Zd :
1≤|k−k′|≤r

∣∣k− k′
∣∣−1 ≤ C2r

−1 ln r

∫
|x|≥�/2

ψ
(|x|)dx.

Due to (175), (176) and (177), Var(Yr,�) ≤ C3(�)r
−1 ln r for r ≥ C4(�). Now we write explicitly r = 2j . By Markov’s

inequality, we have for j ≥C5(�) that

P
(∣∣Y2j ,� −E[Y2j ,�]

∣∣≥ 1/j
)≤ j2 Var(Y2j ,�)≤ C3(�)j

2 ln
(
2j
)
2−j .

Since the last term is summable among j , by Borel–Cantelli lemma we conclude that, for P-a.a. ω, |Y2j ,�(ω)−E[Y2j ,�]| ≤
1/j for all �≥ 1 and j ≥ C6(�,ω). This proves that, P-a.s., limr↑∞,r∈� Yr,� = z� (cf. (174)). Since lim�↑∞ z� = 0, we get
that lim�↑∞ limr↑∞,r∈� Yr,� = 0, P-a.s. �

Appendix A: Further comments on assumptions (A3), . . . , (A6)

In this appendix we extend our comments concerning the choice of the set �∗ in our main assumptions when G = Rd .
We recall that all sets �k are translation invariant.

We first point out that �5 and �6 are always measurable. Indeed the points of the simple point process ω̂ can be
enumerated as x1(ω̂), x2(ω̂), . . . in a measurable way by ordering the points according to their distance from the origin
and, in case of more points at the same distance, ordering these points in lexicographic order (see [9, p. 480] for details).
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By using the above measurable functions x1(ω̂), x2(ω̂), . . . , one can easily express �5 and �6 as countable intersection of
measurable sets, thus leading to the measurability of �5 and �6. As a consequence, in (A5) and (A6), one could replace
“∀ω ∈�∗” by “for P-a.a. ω”.

We now claim that �3 is measurable if (16) holds for all ω ∈ � and g ∈ G. To prove our claim we observe that
θgω= θg′ω for some g �= g′ in G if and only if θgω= ω for some g ∈G \ {0}. The last property implies that μθgω = μω

for some g ∈ G \ {0} and therefore, by (16), that τgμω = μω for some g ∈ G \ {0}. If τgμω = μω, then τ−gω̂ = ω̂ and
therefore g = V −1(x − y) for some x, y ∈ ω̂. Hence, when (16) holds for all ω ∈�, then �3 is given by the measurable
set
⋂

m �=n{ω ∈� : θV−1(xm(ω̂)−xn(ω̂))ω �= ω} = {ω ∈� : θV−1xω �= θV−1yω ∀x �= y in ω̂}. This concludes the proof of our
claim. As a consequence, if (16) holds for all ω ∈� and g ∈G, in (A3) we can replace “∀ω ∈�∗” by “for P-a.a. ω”.

Appendix B: Campbell’s identity

In this appendix we consider the general context (instead of the context of Warning 6.1) and we recall Campell’s identity
for the Palm distribution P0. For what follows, it is enough to require only (A1) and (A2). Recall definition (3) of � and
that �0 := {ω ∈� : n0(ω) > 0} when G=Rd and in the special discrete case, and that �0 := {(ω, x) ∈�×� : nx(ω) >

0} when G= Zd .
• Case G=Rd . For any measurable function f :Rd ×�0 →[0,+∞) it holds

(178)
∫
Rd

dx

∫
�0

dP0(ω)f (x,ω)= 1

m�(�)

∫
�

dP(ω)

∫
Rd

dμω(x)f
(
g(x), θg(x)ω

)
(cf. [26, Eq. (4.11)] together with Appendix C below, cf. [11, Thm. 13.2.III]). As g(x) = V −1x by (4), by taking
f (x,ω) := 1V−1U(x)1A(ω) Campbell’s identity (178) reduces to (9). Moreover, note that, when V = I, from (178) we
recover the more common Campbell’s formula

(179)
∫
Rd

dx

∫
�0

dP0(ω)f (x,ω)= 1

m

∫
�

dP(ω)

∫
Rd

dμω(x)f (x, θxω) if V = I.

• Case G= Zd . For any measurable function f : Zd ×�0 →[0,+∞) it holds

(180)

∑
g∈G

∫
�0

dP0(ω, x)f (g,ω,x)= 1

m�(�)

∫
�

dP(ω)

∫
Rd

dμω(x)f
(
g(x), θg(x)ω,β(x)

)
= 1

m�(�)

∑
g∈G

∫
�

dP(ω)

∫
τg�

dμω(x)f (g, θgω, τ−gx)

(cf. [26, Eq. (4.11)] together with Appendix C below). Note that, Campbell’s identity (180) with f (g,ω,x) :=
δ0,g1A(ω,x) reduces to (11).
• Special discrete case. As discussed in Section 2.3 we think of P0 as a probability measure on �0 = {ω ∈� : n0(ω) >

0}. Then, due to (180),

(181)
∑
g∈Zd

∫
�0

dP0(ω)f (g,ω)= 1

E[n0]
∑
g∈G

∫
�

dP(ω)ng(ω)f (g, θgω),

for any measurable function f : Zd ×�0 →[0,+∞).

Appendix C: Sign choices and cumulative Palm measure

In this appendix we consider the general context (instead of the context of Warning 6.1) and explain how to derive our
formulas concerning the Palm distribution P0 from the present literature. Our main reference is given by [26]. When the
probability space (�,F,P) is such that � is a Borel space and F = B(�), then one can refer as well to the theory of
Palm pairs to get our formulas (cf. [26, Theorem 4.10], [27,29]). For what follows, it is enough to require (A1) and (A2).

Our action (θg)g∈G on � is related to the action (θGe
g )g∈G on � in [26] by the identity θGe

g = θ−g for all g ∈G (we
have added here the supfix “Ge” in order to distinguish the two actions). As a consequence, when applying some formulas
from [26] sign changes are necessary. By setting τgm(A) :=m(τgA) in (6), we have followed the convention used in [11,
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Section 12.1] and [44, p. 23]. By setting μθgω = τgμω in (16), we have followed the convention of [44, p. 23]. We stress
that in e.g. [26,27], τgm(A) is defined as m(τ−gA). On the other hand, the fundamental relation (16) is valid also in [26]
(see Eq. (2.27) in [26]). Indeed, as already observed, θGe

g = θ−g .
The Palm distribution P0 introduced in Section 2.3 is the normalized version of the cumulative Palm measure Q

[26, Thm. 4.1, Def. 4.2]. We clarify the notation there. As Haar measure λ of G we take the Lebesgue measure dx if
G = Rd and the counting measure on G if G = Zd . As a set of orbit representatives O for the action of G on Rd , we
take O = {0} if G = Rd and O =� if G = Zd (cf. (3)). Given x ∈ Rd , we define β(x) := a and g(x) := g if x = τga

with a ∈ O. Note that this definition incorporates both (4) and (5) and that β(x) ≡ 0 when G = Rd . Given x ∈ Rd , as
in [26] we define πx : G→ Rd as πx(g) := τgx (cf. [26, Section 2.2.2]) and we introduce the measure μx on Rd as
μx := λ ◦ π−1

x (cf. [26, Section 2.2.3]). In particular, μx(dy) = �(�)−1 dy if G = Rd , and μx is the counting measure
on {τgx : g ∈ Zd} if G = Zd . Given x, y ∈ Rd , we define the measure κx,y on G as follows: if y does not belong to
the G-orbit of x, then κx,y is the zero measure; if y belongs to the G-orbit of x, then κx,y is the Dirac atomic measure
δg , g being the unique element of G such that τgx = y, i.e. g = V −1(y − x). Given a measurable set A ⊂ G, the map
Rd ×Rd 
 (x, y) �→ κx,y(A)= 1(V −1(y−x) ∈A) ∈ {0,1} is measurable. Hence κx,y is a kernel from Rd ×Rd to G (cf.
[26, Section 2.1.2]). Note moreover that for any measurable function f :Rd ×G→[0,+∞) and for any x ∈Rd it holds

(182)
∫
G

f (τgx, g)dλ(g)=
∫
Rd

dμx(y)

∫
G

dκx,y(g)f (y, g).

The above identity is equivalent to [26, Eq. (3.1)] with the notation there (take S :=Rd and gx := τgx there). Due to these
observations, it is simple to check that the kernel κx,y satisfies the properties listed in [26, Thm. 3.1] (note that the map
θg appearing in Item (i) of [26, Thm. 3.1] refers to the action of G on G itself, hence it is the map G 
 g′ �→ g+ g′ ∈G).
Hence, κx,y is the kernel entering in [26, Thm. 4.1]. To apply now [26, Eq. (4.4)] we observe that κβ(x),x = δg(x) for all
x ∈Rd . It remains to fix the function w :Rd →[0,+∞) appearing there. Defining w := 1�, due to the above description
of μx and O we have that μx(w)= 1 for any x ∈O. We can finally reformulate [26, Eq. (4.4)] in our context: for each
measurable B ⊂�×O the measure Q is given by

(183) Q(B)=
∫

�

dP(ω)

∫
Rd

μω(dx)

∫
G

κβ(x),x(dg)1B

(
θgω,β(x)

)
w(x),

which reads

(184) Q(B)=
∫

�

dP(ω)

∫
�

μω(dx)1B

(
θg(x)ω,β(x)

)
.

Since Q(�×O)= E[μω(�)] =m�(�), we get that P0 :=Q(�×O)−1Q= (m�(�))−1Q. When G= Rd , as O = {0}
we identify �×O with �. Using the stationarity of P and that β(x)= 0, (184) becomes (9) for U =�. When G= Zd ,
as O =� we have β(x)= x and g(x)= 0 for any x ∈�, hence (184) becomes (11).

Appendix D: Proof of Lemma 3.5

In this appendix we consider the general context (instead of the context of Warning 6.1). Due to the discussion in Section 6,
to prove Lemma 3.5 when G= Zd it is enough to prove the analogous claim for the random walk X̄t with rates (63) in
the setting S[2] introduced in Section 6. As a consequence, from now on we restrict to the case G = Rd and to the
special discrete case. Moreover, to simplify the notation we take V = I (in the general case it would be enough to use
Remark 2.1). Recall the notation introduced in (65).

We set A1 := {ω ∈ �0 : 0 < λ0(ω) < ∞} and define Ã1 according to (65). We point out that P0(λ0 > 0) = 1 due
(A6) and the property that |ω̂| = ∞ for P-a.a. ω and therefore for P0-a.a. ω by Lemma 7.1 (see the comments on the
main assumptions before Remark 2.1). Using that E0[λ0]<∞, as done for Corollary 7.2, we get that P0(Ã1)= 1. Since
rx(ω)= λ0(θxω), for each ω ∈ Ã1 it holds rx(ω) ∈ (0,+∞) for all x ∈ ω̂.

Consider now the translation invariant measurable set �∗. By assumption P(�∗)= 1 and θxω �= θyω for all x �= y in
G and ω ∈�∗. By Lemma 7.1, we get P0(�∗)= 1. Note that, given ω,ω′ ∈�∗ ∩�0, if ω′ = θxω for some x ∈G, then
x is unique and in this case we define r(ω,ω′) := r0,x(ω), otherwise we define r(ω,ω′) := 0.

We set A2 := Ã1 ∩ �∗ ∩ �0. Due to the above properties, we have P0(A2) = 1. Moreover, given ω∗ ∈ A2 we can
introduce the discrete time Markov chain (ωn)n∈N with state space A2, initial configuration ω∗ and jump probabilities
p(ω,ω′) := r(ω,ω′)/λ0(ω). We write Pω∗ for its law and Eω∗ for the associated expectation. Pω∗ is a probability measure
on AN

2 .
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We now introduce the distribution dQ0(ω) := E0[λ0]−1λ0(ω)dP0(ω) on A2. We claim that Q0 is reversible (hence
stationary) and ergodic for the discrete-time Markov chain (ωn)n≥0. To get reversibility we observe that, by Lemma 7.3
and since E0[λ0]<∞,

E0

[∫
Rd

dω̂(x)r(ω, θxω)f (ω)h(θxω)

]
= E0

[∫
Rd

dω̂(x)r(ω, θxω)h(ω)f (θxω)

]
,

for any bounded measurable functions f,h :�0 → R. Let us now prove the ergodicity of Q0. To this aim let B ⊂A2 be
a set left invariant by the Markov chain. Due to (A6) we get B =�0 ∩ B̃ (cf. (65)). Since B̃ is translation invariant and P
is ergodic by (A1), we get that P(B̃) ∈ {0,1}. By Lemma 7.1 we conclude that P0(B)=P0(B̃ ∩�0)=P0(B̃)=P(B̃) ∈
{0,1}.

By the ergodicity of Q0 and since
∫
A2

dQ0(ω)λ−1
0 (ω)= E0[λ0]−1, we have

(185)
∫

A2

dQ0(ω)Pω

(
lim

n→∞
1

n

n∑
k=0

1

λ0(ωn)
= 1

E0[λ0]

)
= 1.

Let A3 := {ω ∈ A2 : limn→∞
∑n

k=0
1

λ0(ωn)
= +∞Pω-a.s.}. By (185) and since E0[λ0] < ∞, we have Q0(A3) = 1. As

λ0 > 0 P0-a.s., P0 and Q0 are mutually absolutely continuous, hence we conclude that P0(A3)= 1.
Then for any ω∗ ∈ A3 we can define the continuous-time Markov chain (ωt )t≥0 starting at ω∗ obtained by a random

time-change from the Markov chain (ωn)n∈N starting at ω∗, imposing that the waiting time at ω is an exponential random
variable with parameter λ0(ω). Note in particular that ωt is defined for all t ≥ 0. Given ω ∈ Ã3 and x0 ∈ ω̂ let (ωt )t≥0 be
the above continuous-time Markov chain starting now at θx0ω. For t ≥ 0 we set Xω

t := x0 +∑s∈[0,t]:ωs−�=ωs
F (ωs−,ωs) ,

where F(ω,ω′) := x if ω′ = θxω. Then Xω
t coincides with the random walk described in Lemma 3.5. Setting A := Ã3

and using Lemma 7.1, the above construction implies the content of Lemma 3.5.

Appendix E: Technical facts concerning Section 6

In this appendix we consider the general context (instead of the context of Warning 6.1). Below Ē[·] denotes the expecta-
tion w.r.t. P̄ .

Lemma E.1. P̄ is Ḡ-stationary.

Proof. Let f : �̄→[0,+∞) be a measurable function and let x ∈Rd . Then we get (see below for some comments)

�(�)Ē[f ◦ θ̄x] = E

[∫
�

da f
(
θ̄x(ω, a)

)]= E

[∫
�

da f
(
θg(x+a)ω,β(x + a)

)]= E

[∫
�+x

da f
(
θg(a)ω,β(a)

)]
=
∑
g∈G

∫
(�+x)∩τg�

daE
[
f (θgω,a − Vg)

]=∑
g∈G

∫
(�+x)∩τg�

daE
[
f (ω,a − Vg)

]
=
∑
g∈G

∫
(τ−g(�+x))∩�

duE
[
f (ω,u)

]= ∫
�

duE
[
f (ω,u)

]= �(�)Ē[f ].

For the forth identity, we point out that if a = τgy = y + Vg with y ∈ �, then β(a) = y = a − Vg. The firth identity
follows from the G-stationarity of P . For the seventh identity observe that Rd =⊔g∈G(τ−g(�+ x)). �

Lemma E.2. P̄ is ergodic w.r.t. the action (θ̄g)g∈Ḡ.

Proof. Let f : �̄→ R be a measurable function such that f (θ̄xω̄) = f (ω̄) for any x ∈ Ḡ and any ω̄ ∈ �̄. We need to
prove that f is constant P̄-a.s. By (57) the invariance of f reads f (θg(x+a)ω,β(x + a)) = f (ω,a) for all (ω, a) ∈ �̄

and all x ∈ Rd . Fixed (ω, a) ∈ �̄, given a′ ∈ � we take x := a′ − a. As x + a = a′ ∈ � we have β(x + a) = a′ and
g(x + a) = 0. In particular, the invariance of f implies that f (ω,a′) = f (ω,a) for any ω ∈ � and a, a′ ∈ �. When
x = Vg for some g ∈ G and a ∈ �, we have g(x + a) = g and β(x + a) = a. The invariance of f then implies that
f (θgω,a)= f (ω,a) for all g ∈G, ω ∈� and a ∈�. As P is ergodic w.r.t. the action (θg)g∈G, given a ∈� we conclude
that ∃c ∈ R such that for f (ω,a)= c for P-a.a. ω. By combining this identity with the fact that f (ω,a′)= f (ω,a) for
any ω ∈� and a, a′ ∈�, we conclude that f ≡ c P̄-a.s. �
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Lemma E.3. The intensities m̄ and m of the random measure μω̄ and μω, respectively, coincide.

Proof. We have (see comments below)

m̄ �(�)2 = Ē
[
μω̄(�)

]
�(�)= E

[∫
�

da μω(�+ a)

]
=
∑
g∈G

∫
�

daE
[
μω

(
(�+ a)∩ τg�

)]=∑
g∈G

∫
�

daE
[
μθ−gω

(
(�+ a)∩ τg�

)]
=
∑
g∈G

∫
�

daE
[
μω

(
τ−g(�+ a)∩�

)]= ∫
�

daE
[
μω(�)

]=m�(�)2.

In the third identity we used that Rd =⊔g∈G τg�. In the forth identity we used the G-stationarity of P . In the fifth

identity we used (16). In the sixth identity we used that Rd =⊔g∈G τ−g(�+ a). �

Lemma E.4. For all ω̄ ∈ �̄∗ it holds μθ̄xω̄(·)= μω̄(τ̄x ·) for any x ∈ Ḡ.

Proof. Let ω̄ = (ω, a) and A ∈ B(Rd). We have (16). We apply (in order) (57), (58), (16), (2) to get: μθ̄xω̄(A) =
μ(θg(x+a)ω,β(x+a))(A)= μθg(x+a)ω(A+ β(x + a))= μω(τg(x+a)(A+ β(x + a))= μω(A+ β(x + a)+Vg(x + a)). Since
∀u ∈Rd we have u= β(u)+Vg(u), μω(A+β(x+a)+Vg(x+a)) equals μω(A+x+a)= μ(ω,a)(A+x)= μω̄(A+x).
(59) then allows to conclude. �

Lemma E.5. For all ω̄ ∈ �̄∗ it holds r̄x,y(θ̄zω̄)= r̄τ̄zx,τ̄zy(ω̄) for any x, y ∈Rd , z ∈ Ḡ.

Proof. Let ω̄= (ω, a). We have (17). By (57) and (63), we have

r̄x,y(θ̄zω̄)= r̄x,y

(
θg(z+a)ω,β(z+ a)

)= rx+β(z+a),y+β(z+a)(θg(z+a)ω).

Note that, for any u ∈Rd , τg(z+a)(u+β(z+a))= u+β(z+a)+Vg(z+a)= u+ z+a. As a byproduct of this observa-
tion and (17), rx+β(z+a),y+β(z+a)(θg(z+a)ω) can be rewritten as rx+z+a,y+z+a(ω). Hence, r̄x,y(θ̄zω̄)= rx+z+a,y+z+a(ω).
On the other hand, by (59) and (63), r̄τ̄zx,τ̄zy(ω̄)= r̄τ̄zx,τ̄zy(ω, a)= rτ̄zx+a,τ̄zy+a(ω)= rx+z+a,y+z+a(ω). �

Lemma E.6. The Palm distributions P0 and P̄0 associated respectively to P and P̄ coincide.

Proof. Let A ∈ F̄ . Due to (59) the function ḡ analogous to (4) for S[2] is the identity map. Hence, by (9) and since
m̄=m, we have

(186)

P̄0(A)= 1

m�(�)2
E

[∫
�

da

∫
�

dμ(ω,a)(x)1A

(
θg(x+a)ω,β(x + a)

)]
= 1

m�(�)2
E

[∫
�

da

∫
�+a

dμω(x)1A

(
θg(x)ω,β(x)

)]
= 1

m�(�)2

∑
g∈G

∫
�

daE

[∫
�+a

dμω(x)1{g(x)=g}1A

(
θgω,β(x)

)]

= 1

m�(�)2

∑
g∈G

∫
�

daE

[∫
�+a

dμθ−gω(x)1{g(x)=g}1A

(
ω,β(x)

)]
.

Note that in the last identity we have used the G-stationarity of P . For all ω ∈�∗ we can write (see comments below)

(187)

∫
�+a

dμθ−gω(x)1{g(x)=g}1A

(
ω,β(x)

)= ∫
�+a

d(τ−gμω)(x)1{g(x)=g}1A

(
ω,β(x)

)
=
∫

τ−g(�+a)

dμω(x)1{x∈�}1A

(
ω,β(τgx)

)
=
∫

(�+a−Vg)∩�

dμω(x)1A(ω,x).
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Above, for the first identity we used (16). For the second one we used that τ−gm[f ] =
∫

f (τgx) dm(x) observing that
g(τgx) = g if and only x ∈�. For the third one, we used that β(τgx) = x for any x ∈�. As a byproduct of (186) and
(187) we get (see comments below)

(188)

P̄0(A)= 1

m�(�)2

∑
g∈G

∫
�

daE

[∫
(�+a−Vg)∩�

dμω(x)1A(ω,x)

]

= 1

m�(�)2

∫
�

daE

[∫
�

dμω(x)1A(ω,x)

]
= 1

m�(�)
E

[∫
�

dμω(x)1A(ω,x)

]
=P0(A).

Above, in the second identity we have used that Rd =⊔g∈G(�+ a − Vg), while the last identity follows from (11). �

Appendix F: Proof of Lemma 13.5 and 13.7

F.1. Proof of Lemma 13.5

Since {vε} is bounded in L2(με
ω̃
), there exist C, ε0 such that ‖vε‖L2(με

ω̃
) ≤C for ε ≤ ε0. We fix a countable set V ⊂ Cc(R

d)

such that V is dense in L2(mdx). We call L the family of functions � of the form �(x,ω)=∑r
i=1 aiϕi(x)gi(ω), where

r ∈N+, gi ∈ G, ϕi ∈ V and ai ∈Q. L is a dense subset of L2(mdx×P0) as G is dense in L2(P0). By Schwarz inequality
we have

(189)

∣∣∣∣∫ dμε
ω̃(x)vε(x)�(x, θx/εω̃)

∣∣∣∣≤ C

[∫
dμε

ω̃(x)�(x, θx/εω̃)2
]1/2

.

Since ω̃ ∈�typ ⊂A[gg′] for all g,g′ ∈ G, we have

(190) lim
ε↓0

∫
dμε

ω̃(x)�(x, θx/εω̃)2 =
∑

i

∑
j

aiaj

∫
dx mϕi(x)ϕj (x)E0[gigj ] = ‖�‖2

L2(mdx×P0)
.

Due to (190) we get that the integral in l.h.s. of (189) admits a convergent subsequence. Since L is countable, by a diago-
nal procedure we can extract a subsequence εk ↓ 0 such that the limit F(�) := limk→∞

∫
dμ

εk

ω̃
(x)vεk

(x)�(x, θx/εk
ω̃)

exists for any � ∈ L and it satisfies |F(�)| ≤ C‖�‖L2(mdx×P0)
by (189) and (190). Since L is a dense subset

of L2(mdx × P0), by Riesz’s representation theorem there exists a unique v ∈ L2(mdx × P0) such that F(�) =∫
dP0(ω)

∫
dx m�(x,ω)v(x,ω) for any � ∈ L. We also get ‖v‖L2(mdx×P0)

≤ C. As �(x,ω) := ϕ(x)g(ω) – with ϕ ∈ V
and b ∈ G – belongs to L, we get that (100) is satisfied along the subsequence {εk} for any ϕ ∈ V , b ∈ G. It remains to
show that we can indeed take ϕ ∈ Cc(R

d). To this aim we observe that we can take V fulfilling the following properties:
(i) for each N ∈ N+ V contains a function φN ∈ Cc(R

d) with values in [0,1] and equal to 1 on [−N,N ]d ; (ii) each
ϕ ∈ Cc(R

d) can be approximated in uniform norm by functions ψn ∈ V such that ψn has support inside [−N,N ]d , where
N =N(ϕ) is the minimal integer for which ϕ has support inside [−N,N ]d . By Schwarz inequality and the boundedness
of {vε} we can bound | ∫ dμε

ω̃
(x)vε(x)[ϕ(x)− ψn]g(θx/εω̃)|2 by ≤ C2‖ϕ − ψn(x)‖2∞

∫
dμε

ω̃
(x)φN(x)g(θx/εω̃)2. Since

ω̃ ∈�typ ⊂A[g2] for all g ∈ G, the last integral converges as ε ↓ 0 to (C′)2 := ∫ dx mφN(x)E0[g2]. In particular, using
also that ψn ∈ V , along the subsequence {εk} we have

(191)

lim
ε↓0

∫
dμε

ω̃(x)vε(x)ϕ(x)g(θx/εω̃)≤ CC′‖ϕ −ψn‖∞ + lim
ε↓0

∫
dμε

ω̃(x)vε(x)ψn(x)g(θx/εω̃)

= CC′‖ϕ −ψn‖∞ +
∫

dP0(ω)

∫
dx mv(x,ω)ψn(x)g(ω).

We now take the limit n→∞. By dominated convergence we conclude that, along the subsequence {εk},

(192) lim
ε↓0

∫
dμε

ω̃(x)vε(x)ϕ(x)g(θx/εω̃)≤
∫

dP0(ω)

∫
dx mv(x,ω)ϕ(x)g(ω).

A similar result holds with the liminf, thus implying that (100) holds along the subsequence {εk} for any ϕ ∈Cc(R
d) and

g ∈ G.
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F.2. Proof of Lemma 13.7

The proof of Lemma 13.7 is similar to the proof of Lemma 13.5. We only give some comments on some new steps.
One has to replace L2(mdx × P0) with L2(mdx × ν). Now L is the family of functions � of the form �(x,ω, z) =∑r

i=1 aiϕi(x)bi(ω, z), where r ∈N+, bi ∈H, ϕ ∈ V and ai ∈Q (V is as in the proof of Lemma 13.5). Due to Lemma 10.2
and since ω̃ ∈�typ ⊂A1[bb′] for all b, b′ ∈H, we can write

(193)

∫
dνε

ω̃(x, z)�(x, θx/εω̃, z)2 =
∑

i

∑
j

aiaj

∫
dνε

ω̃(x, z)ϕi(x)ϕj (x)bi(θx/εω̃, z)bj (θx/εω̃, z)

=
∑

i

∑
j

aiaj

∫
dμε

ω̃(x)ϕi(x)ϕj (x)b̂ibj (θx/εω̃).

Since ω̃ ∈ �typ ⊂ A[b̂b′] for all b, b′ ∈ H, as ε ↓ 0 the above r.h.s. converges to
∑

i

∑
j aiaj

∫
Rd dx mϕi(x)ϕj (x)×

E0[b̂ibj ] = ‖�‖2
L2(mdx×ν)

. At this point we can proceed as in the proof of Lemma 13.5 (recalling that H is dense in

L2(ν)).
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