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Abstract— In this paper we study the leader following
consensus problem for linear multi-agent systems and a
class of nonlinear ones with bounded disturbances and
non-uniform and arbitrarily large communication delays on
both directed and undirected graphs. In the linear case
we solve for the first time the leader-following consensus
problems in presence of arbitrarily large, non-uniform and
time-varying communications delay on generic connected
graphs. The approach is fully distributed and it is based on
a suitable weighting modification of the network links and
on an output feedback chain of predictors.

Index Terms— leader-following consensus; delay sys-
tems; nonlinear systems.

I. INTRODUCTION

This work addresses the leader-following control problem
of linear agents and a class of nonlinear agents over static
networks in the presence of norm bounded additive distur-
bances and communication delays, possibly heterogeneous and
time-varying. The problem is solved by means of a stabilizing
distributed predictor-based control law.

The cooperative control of a group of agents has been
gaining great attention in the last years due to its high
potential in many applications in particular in robotics and
sensor networks such as vehicle formation [1], autonomous
vehicles [2], robotic systems [3], sensor networks [4], target
tracking [5], and synchronization [6]. The main objective can
be summarized in designing a distributed network protocol,
which takes into account the interactions between neighbors,
that drives the group of agents to agree on certain variables
of interest as time increases

For linear agents in both the cases of fixed and switching
topologies, the leader-following problem has been addressed
and solved in [7]–[13]. Consensus based on output feedback
was instead considered in [14]–[16], while in [17]–[22] mea-
surement noises were introduced. More recently the consensus
problem with agents described by nonlinear dynamics was
investigated in [23]–[26], while hybrid consensus for multi-
agent systems with data-driven jumps, multi-consensus and
clustering partitions have been investigated in [27]–[29].
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In this distributed context, when communication delays are
considered, the problem is further involved.

Whereas the problems of additive noise [17], [22], [30]–
[32] and input delay [33]–[36] are relatively simple to address
by extending approaches used in the single agent case, the
problem of communications delays (see [37]–[51] and the
references therein) is much more challenging, since the delay
may undermine the stability of the consensus dynamics across
the network. Most of the mentioned works refer to special
systems such as scalar systems, or integrators, in some cases
in presence of switching topology [12] or time-varying delays.
Only a few methods are available for the case of general
linear systems, either deterministic or stochastic. In detail,
[39] solves the mean square consensus problem of single-
integrator systems with measurement noise and communica-
tion delays under strongly connected and balanced digraphs,
[43] considers first-order integrators under switching topology
and communication delay, [44] solves the consensus problem
for a tracking problem on integrators, [48] considers stochastic
single integrators with delay, [51] considers a network of
integrators with communication delays and additive as well
as multiplicative noise and [50] provides an approach for
second-order systems with multiple and time-varying delays.
For general linear systems, [47] solves the problem of delay
through a predictor with an integral term. Since this approach
results in significant complexity of the implementation, which
is particularly critical for agents without large computing
resources, [49] proposes a truncated predictor approach for
the case of deterministic agents, that however requires that
the open-loop dynamics is not exponentially unstable. The
approach in [46] addresses general linear systems in the de-
terministic framework with possibly nonlinear disturbance and
constant and uniform communications delay. This approach is
based on a novel extended state predictor, and the solution is
found by means of LMIs. Finally, more recently [52] resorts
to a new approach based on the scalar Lambert equation
and obtaining constructive design, while [37] solves an event-
triggered consensus problem for heterogeneous deterministic
multi-agent systems with nonuniform delays with a LMI-based
approach.

In this paper we follow a different approach that exploits one
fundamental feature of the leader-following problem, namely
the fact that the flow of information is oriented from the
leader to the followers. Since the leader-following problem
boils down to estimating locally the disagreement with the
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leader, we aim at reducing the problem to a local estimation
problem with time-varying delays in the measurements. We
observe that the main obstacle to this end is the fact that for
generic networks the information is routed through the cycles
of the graph. In presence of delays on the individual edges,
each node will receive both recent and outdated information
about the leader’s state, thus complicating the task of the
estimation algorithm. In particular, this prevents the use of
centralized predictor designs that have been proposed in the
literature for the state estimation of linear or nonlinear systems
in presence of measurement delays. Based on this observation,
we claim that the difficulties disappear if each node runs an
algorithm to determine the relative position of the neighbors
with respect to the leader, in such a way that only the most
recent information is used to estimate the leader’s state. We
show that this approach allows to recover the solutions used
in the cases of single systems with measurement delay, and
in particular that simple and robust designs are possible even
in presence of heterogeneous and time-varying delays on the
links of the communication network. This approach has been
first proposed in [53], in the context of linear stochastic agents
with uniform constant delay, and here it is further developed
to the case of nonlinear agents with heterogeneous and arbi-
trarily large time-varying delays. In practice, the improvement
with respect to existing proposals is that the hypotheses are
less restrictive, as we admit heterogeneous and time-varying
delays, the design is simple and it yields a computationally
cheap controller that does not involve distributed terms and a
non conservative delay bound.

The paper is organized as follows. In Section II we recall
some notions on directed and undirected graphs that are
used to characterize the network. We then formally define
the leader following problem with linear agents. In Section
III we propose a distributed algorithm to associate to the
given network a directed acyclic graph (DAG) rooted in the
leader. In Section IV the solution to the leader following
problem is derived first by considering small delays and then
by generalizing it to the case of large delays. In Section
V the same problem is solved for nonlinear systems with
disturbances on each agent dynamics and measurements, thus
generalizing the results obtained in the previous section. An
example adapted from [46] is discussed in Section VI. The
proposed methodology is tested by comparing the performance
with the results presented in [46].

Notation: µ(M) denotes the spectral abscissa of the
matrix M . If µ(M) < 0 M is said to be Hurwitz. ‖.‖ is
the Euclidean norm unless otherwise specified.

II. PRELIMINARIES AND PROBLEM STATEMENT

To the leader and the N homogeneous agents we asso-
ciate an unweighted simple graph G = (V, E), where V =
{0, 1, 2, . . . , N} is the set of vertices representing the agents
and E ⊂ V × V is the set of edges of the graph. The node
0 represents the leader. Edge (i, j) indicates that agent j can
send information to agent i. In this case j is a neighbor of
i. The set of neighbors of node j is denoted by N j . The
connections graph is represented through the adjacency matrix

A = [aij ] ∈ {0, 1}(N+1)×(N+1), where aij = 1 if (i, j) ∈ E
while it is 0 if (i, j) /∈ E .

The N + 1 agents are initially considered linear and de-
scribed, for k = 0, . . . , N , by

Ẋk(t) = AXk(t) +BUk(t) (1)
Yk(t) = CXk(t), (2)

where Xk(t) ∈ Rn denotes the state of the k-th agent and
Yk(t) ∈ Rq is the associated output. For the leader following
problem it is assumed that the leader behavior is not influenced
by other agents (i.e. the leader disregards any information from
other nodes even when N 0 6= ∅) and the leader’s control input
is zero [9], [24], [54], i.e. U0 ≡ 0. Depending on whether or
not the graph G is oriented we have two cases.

Undirected graphs: in this case A is symmetric, aij =
aji. The number of connections of each node is represented
through the degree matrix D which is a diagonal matrix with
Dii = |N i|. The Laplacian L = [`ij ] ∈ R(N+1)×(N+1) is
defined as L = D − A. G is connected if there is a path
(e.g. a sequence of connected edges) between every pair of
vertices. An undirected graph G is connected if and only if
L has a simple 0 eigenvalue [55], [43], [12], [26]. In case of
undirected graphs we make the following assumption.

Assumption 1: The undirected graph G is connected.
Directed graphs: The graph is said to be directed if (i, j) ∈

E does not necessarily imply (j, i) ∈ E . A directed graph G
is strongly connected if between any pair of distinct nodes i
and j in G, there exists a directed path from i to j, i, j ∈ N .
A directed graph G contains a directed spanning tree if there
exists a root node that has directed paths to all other nodes.
The Laplacian L ∈ R(N+1)×(N+1) is defined as L := [`i,j ] =
M−A where the i-th diagonal entry of the diagonal matrix
M is given by mi =

∑N
j=0 ai,j . By construction L has a zero

eigenvalue with an associated eigenvector 1N+1 (i.e. such that
L1N+1 = 0) and if the graph is strongly connected all the
other eigenvalues lie in the open right-half complex plane. In
the case of directed graphs, the following assumption will be
considered.

Assumption 2: A directed spanning tree is contained in G
with the leader as the root node.
Notice that for undirected graphs, Assumption 1 implies the
existence of a spanning tree with the leader as the root node.

Definition 1: Leader Following Problem (LFP): Given a
graph topology G associated to (1), find Uk(t) for each agent
k so that X0(t)−Xk(t) is asymptotically stable.
The presence of time-varying communications delays is mod-
eled by the set {δjk : R+ → [0, δ̄jk]} for (j, k) ∈ E , that
indicates that at time t the communication from agent k to
agent j is affected by the delay δjk(t) ∈ [0, δ̄jk].

Definition 2: Leader Following Problem with Non-uniform
Communication Delays (LFPND): Given a graph topology G
associated to (1), and the communications delays {δjk} among
the nodes, find Uk(t) for each agent k so that X0(t)−Xk(t)
is asymptotically stable.
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III. CHANGING THE WEIGHT OF THE COMMUNICATION
LINKS

The essential idea is to restrict the communications to a
DAG rooted in the leader. This avoids unnecessary communi-
cations, simplifies the stability analysis and allows for non-
uniform delays. The communication can be restricted to a
DAG rooted in the leader by replacing the links represented
by `kj with the new weights ¯̀

kj defined by Algorithm 1.
The essential idea is to set to 0 the weight of all the

neighbors whose distance from the leader, measured by the
number of edges of the shortest path, is larger or equal to
the distance of the node itself. Algorithm 1 achieves this in
a distributed and iterative way. At each iteration a node sets
its own distance fk as the minimum distance of its neighbors
plus 1. When an incoming link originates from a node farther
away from the leader, the corresponding weight is set to 0. At
steady state, Algorithm 1 ensures that information arriving at
each node k originates from nodes j that are closer than k to
the leader. Thus, N 0 = ∅ for the leader, N j = {0} for all the
nodes j initially having the leader as neighbor, etc.

Algorithm 1 Distributed algorithm for node k to restrict the
communications to a DAG rooted in the leader
Ensure: A DAG rooted in the leader with Laplacian matrix

entries ¯̀
kj

if k = 0 then
fk ← 0

else
fk ←∞

end if
loop . forever

send fk to the neighbors
if minj∈Nk{fj} <∞ then

fk = minj∈Nk{fj}+ 1
for j ∈ N k do

if fj < fk then
¯̀
kj ← `kj

else
¯̀
kj ← 0

end if
end for

end if
¯̀
kk ← −

∑
j∈N i

¯̀
kj

end loop

The idea behind the Algorithm 1 is illustrated in Fig. 1
that shows the original (top) and resulting (bottom) graphs.
The edge (1, 4) suppressed in the modified topology actually
does not convey any useful information to node 1, since the
relevant information for the leader-following task comes from
the leader 0. Actually, the incoming information from node
4 is a disturbance for node 1. Whereas in the delay-less case
the communications are instantaneous and the dynamics of this
disturbance is dissipative, in presence of delays the stability of
the consensus error can no longer be guaranteed. This is the
reason why there is no known method to compensate large
delays over arbitrary graphs, and even the case of bounded
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Fig. 1. Communication topology for the example in Section VI (top). The
graph resulting from weighting the edges according to the algorithm of
Section III (bottom).

delays is difficult to manage: the delay builds up at each edge
as the information spreads through the network, thus an agent
may receive information with arbitrarily long delay even if the
delay across the individual edges is small.

In the sequel, we assume that the links in the communication
graph has been changed according to the above algorithm
and we show that in this case it is possible to compensate
arbitrarily long delays on individual links.

IV. LINEAR AGENTS WITH NON-UNIFORM
COMMUNICATION DELAYS

We recall two simple sufficient conditions to solve the leader
following problem with linear agents in absence of delay.

Lemma 1: If (A,B) is a stabilizable pair, and Fk, k =
1, . . . , N , is such that A + BFk is Hurwitz stable, then the
control

Uk(t) = Fk(Xk(t)−X0(t)), k = 1, . . . , N (3)

solves the LFP.
Proof. Let ηk(t) = Xk(t)−X0(t), k = 1, . . . , N . We have

η̇k(t) = (A+BFk)ηk(t) (4)

Since A + BFk is Hurwitz stable, it follows that ηk(t) is
exponentially stable and therefore (3) solves the LFP. ηk is
the disagreement of the agent k with respect to the leader,
and clearly η0 ≡ 0. �

Lemma 2: If (A,B) is a stabilizable pair, and Fk, k =
1, . . . , N , is such that A + BFk is Hurwitz stable, while
X̂0,k(t) is an estimate of X0(t) available at agent k such that
‖X0(t)− X̂0,k(t)‖ → 0, then the control

Uk(t) = Fk(Xk(t)− X̂0,k(t)), k = 1, . . . , N, (5)

solves the LFP.
Proof. The disagreement ηk = Xk(t)−X0(t) obeys to

η̇k(t) = (A+BFk)ηk(t) +BFkεk(t), (6)

where εk(t) = X0(t)− X̂0,k(t) is the estimation error. Since
A + BFk is Hurwitz stable and X̂0,k(t) → X0(t), it follows
that ηk(t)→ 0 and (3) solves the LFP. �
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A. LFPND with small delays

The LFPND can be solved by the control (5) with an
estimate such that X̂0,k(t)→ X0(t) exponentially.

Assumption 3: The functions {δkj : R+ → [0, δ̄kj ]} are
differentiable with δ̇kj(t) < 1 almost everywhere. At each t
the values δkj(t), δ̇kj(t), j ∈ N k are known at the agents k.

Assumption 3 is not too demanding since, for instance,
we may assume that some form of clock synchronization is
present in the network and a timestamp is associated to the
messages from j to k. Moreover, the derivatives of δjk can be
computed with precision in any digital implementation based
on small integration steps, since it reduces to the difference
between the delay value across the integration step.

Theorem 1: If:
1) Assumption 1 or 2 hold together with Assumption 3.
2) The connection topology is modified according to Al-

gorithm 1.
3) (A,B) is controllable and the gains Fk are such that

A+BFk, k = 1, . . . , N , is Hurwitz stable.
4) (A,C) is an observable pair and at each node k the gains

Lkj are chosen such that with, Lk =
∑
j∈Nk

¯̀
kjLkj ,

Ak = A − LkC, k = 1, . . . , N , is Hurwitz stable, i.e.
µ(Ak) < 0.

5) For all k and for some α > 0 such that |µ(Ak)| > α
the bounds on the communications delay {δ̄kj} satisfy

∑
j∈Nk

∫ δ̄kj

0

∥∥∥Ce(Ak+αIn)θLkj

∥∥∥ dθ < 1, (7)

where k = 1, . . . , N , then the solution for t ≥ 0 of

˙̂
X0,k(t) =AX̂0,k(t)−

∑
j∈Nk

(1− δ̇kj(t))¯̀
kje

AkδkjLkj

·
(
CX̂0,k(t− δkj(t))− Yj(t− δkj(t))

)
(8)

with X̂0,k(τ) = ϕk(τ) for τ ≤ 0, ‖ϕk‖∞ < ∞, is an
exponential estimate of X0(t) and the control (5) with X̂0,k

given by (8) solves the LFPND.
Remark 1: The predictor (8) depends on the communi-

cations delays, and condition (7) provides a bound for the
delays {δkj}. The parameter α represents the desired rate of
convergence of X̂0,k to X0. In general, a larger α will yield
a smaller set of tolerable delays {δkj}.

Proof. Let εk(t) = X0(t)− X̂0,k(t) be the estimation error
at node k. By adding and subtracting in each term of the
summation on the right side of (8) the term CX0(t− δkj(t)),
we obtain, k = 1, . . . , N ,

ε̇k(t) =Aεk(t)−
∑
j∈Nk

(1− δ̇kj(t))¯̀
kje

Akδkj(t)

· LkjC (εk(t− δkj(t)) + ηj(t− δkj(t))) . (9)

We now proceed inductively. Since η0 ≡ 0, for the nodes k
such that N k = {0}, (9) becomes

ε̇k(t) = Aεk(t)− (1− δ̇k0(t))eAkδk0(t)LkCεk(t− δk0(t)).
(10)

In order to prove that (10) is exponentially stable, let εαk (t) =
eαtεk(t) for t ≥ 0, thus

ε̇αk (t) = (A+ αIn)εαk (t)− (1− δ̇k0(t))e(Ak+αIn)δk0(t)

· LkCεαk (t− δk0(t)). (11)

Notice that Ak + αIn is Hurwitz since, by hypothesis, α +
µ(Ak) < 0. Equation (11) admits the integral representation

εαk (t) =

∫ t

t−δk0(t)

e(Ak+αIn)(t−τ)LkCε
α
k (τ) dτ + ak, (12)

where ak depends on the initial condition ϕk of X̂0,k in
[−δ̄k0, 0]. It is immediate to verify that differentiating (12) one
gets (11). Pre-multiplying the LHS of (12) by C and taking
norms,

‖Cεαk (t)‖ ≤
∫ δ̄k0

0

∥∥∥Ce(Ak+αIn)θLk

∥∥∥ dθ · sup
τ∈[t−δ̄k0,t]

‖Cεαk (τ)‖

+ ‖Cak‖, (13)

The condition (7) implies that ‖Cεαk (t)‖ is uniformly bounded,
that is, ‖Cεk(t)‖ → 0 exponentially. Since (A,C) is ob-
servable, then ‖εk(t)‖ → 0 exponentially and ηk → 0
exponentially with rate α in view of Lemma 2. We now
consider the generic node k with the inductive hypothesis that
‖ηj(t)‖ → 0 for the agents j that are closer than k to the
leader. Since in (9) the terms ηj(t) are therefore exponentially
vanishing, the dynamics of εk tends asymptotically to

ε̇k(t) =Aεk(t)−
∑
j∈Nk

(1− δ̇kj(t))¯̀
kje

Akδkj(t)

· LkjCεk(t− δkj(t)). (14)

We can introduce εαk (t) = eαktεk(t) for t ≥ 0, with αk <
αj < α. Notice that αk, that can be arbitrarily close to α,
is not a design parameter but it is used only to prove the
convergence. Moreover, if the inequality (7) is satisfied by
α then it is satisfied by any αk < α. Proceeding as in the
previous case we arrive at (notice that |`kj | = 1)

‖Cεαk (t)‖ ≤
∑
j∈Nk

∫ δ̄kj

0

∥∥∥Ce(Ak+αkIn)θLk

∥∥∥ dθ

· sup
τ∈[t−δ̄kj ,t]

‖Cεαk (τ)‖+ ‖Cak‖, (15)

and as above we conclude that (14) is exponentially stable
thanks to (7) and ηk → 0 exponentially with rate αk. �

Theorem 1 yields the distributed design procedure for the
gains Fk and Lk shown in Algorithm 2. Here we suppose that
the desired rate α of convergence to 0 of the leader’s state
estimation error at each node k is a design parameter. This
value determines also the rate of convergence to the leader’s
state of Xk when the control (5) is used. Algorithm 2 sets
α+µ(A−LkC) = 0, but the hypothesis α+µ(A−LkC) < 0
of Theorem 1 is satisfied by any value less than α, thus the
algorithm determines the largest α that satisfies (7), and it may
fail if this is not possible. We notice that this may happen only
when A is not Hurwitz, because otherwise the choice Lk = 0
and α = −µ(A) + εα with arbitrarily small 0 < εα < −µ(A)
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Algorithm 2 Distributed control design algorithm at each node
k with non-uniform small communications delays
Require: Assumption 1 or 2, and Assumption 3
Require: Systems matrices A, B, C
Require: delay bounds δ̄kj for j ∈ Nk
Require: desired exponential rate α > 0 of convergence to 0

of the leader’s state estimation error
Require: adaptation step 0 < δα < α.
Ensure: controller gain Fk, observer gain Lk that solve

LFPND and attainable rate αk or fail.
compute Fk such that µ(A+BFk) = −α
compute Lk such that µ(A− LkC) = −α
αk ← α
while αk > 0 & (7) not satisfied do

αk ← αk − δα
compute Lk such that µ(A− LkC) = −αk

end while
if αk > 0 then

success
else

fail
end if

always satisfies (7). We are therefore left with the problem to
cope with large delays when the matrix A is simply stable or
exponentially unstable, which is the topic of the next section.

Remark 2: The convergence analysis of Theorem 1 is based
on the exact knowledge of δkj(t) and its derivative. We
notice that a small systematic bias on δkj(t) has no effect
on δ̇kj(t). A noisy measurement of δkj(t) reflects on δ̇kj(t)
and it introduces a multiplicative state noise in the equation
of the estimation error. When there is a significant noise on
δ̇kj(t) it is possible to drop it in the observer/predictor, i.e.
to replace (1− δ̇kj(t)) with 1 in (8). In this way one obtains
the observer/predictor described in [56], which, in the case of
constant delays, has the same delay bound.

B. LFPND with large delays

The design of chains of predictors is a consolidated tech-
nique for single systems (see for instance the more recent [57])
but its application to networks of multi-agent systems has so
far proven elusive. By taking advantage of the DAG structure
of the communication network provided by Algorithm 1 the
solution is easy to find. With the aim of adapting the observer
design of Theorem 1 to cope with large delays we adopt a
slightly different philosophy: the last element of the chain is
an observer that estimates X0(t− δ̄k) from the measurement
of the neighbors that refer to t − δ̄k, and the remaining
elements are predictors over a fraction of δ̄k that eventually
yield an estimate of X0(t). Consequently, the chain includes
at least two elements and the communications delays can be
arbitrarily large. Since the observer and the predictors are fed
with information from the neighbors having constant delay
the delay derivatives are no longer needed. Finally, the delay
bound for the individual elements of the chain is in general less
restrictive than (7). On the negative side, an array of at least

two predictors is needed, as well as a buffer to align temporally
the information coming from the neighbors. Assumption 3 is
replaced by the following milder version.

Assumption 4: The functions {δkj : R+ → [0, δ̄kj ]} are
continuous and the values δkj(t), j ∈ N k, are known at the
agents k.

At the agent k a chain of mk+1 predictors is made up by the
estimators X̂i,k, i = 0, . . . ,mk. The chain length is the small-
est integer mk > 0 such that, with δ̄k = maxj∈Nk{δ̄kj}/mk,∫ δ̄k

0

∥∥∥Ce(Ak+αIn)θLk

∥∥∥ dθ < 1, (16)

for Lk =
∑
j∈Nk

¯̀
kjLkj and arbitrary α such that α +

µ(Ak) < 0. The estimator X̂i,k(t) aims at estimating X0(t−
iδ̄k), thus X̂0,k estimates X0(t) and X̂mk,k estimates X0(t−
mk δ̄k). The last estimator, with index i = mk, is an observer
with equation, for t ≥ 0,

˙̂
Xmk,k(t) = AX̂mk,k(t)

−
∑
j∈Nk

¯̀
kjLkj

(
CX̂mk,k(t)− yj(t−mk δ̄k)

)
.

(17)

Notice that (17) doesn’t use the most recent value of yj but,
since δjk is continuous, the value yj(t−mk δ̄k) is available, for
example by buffering the past output values of the neighbors
in [t−mk δ̄k, t]. The i-th predictor, 0 ≤ i < mk, has equation

˙̂
Xi,k(t) = AX̂i,k(t)−eAk δ̄kLkC

(
X̂i,k(t− δ̄k)− X̂i+1,k(t)

)
.

(18)
All the estimators are initialized to an arbitrary norm-bounded
function at negative times. As before, the controls are designed
as a feedback from the estimate X̂0,k(t), that is,

Uk(t) = Fk(Xk(t)− X̂0,k(t)), k = 1, . . . , N, (19)

Theorem 2: In the hypothesis of Theorem 1, with Assump-
tion 3 replaced by Assumption 4, assume that, for each k, mk

satisfies (16) for some α > 0 such that α+ µ(Ak) < 0. Then
the control (19) with X̂0,k solution of (18) solves the LFPND.
Proof. The estimation errors are εi,k = X0(t− iδ̄k)− X̂i,k(t).
For i = mk, that is, the last predictor, the error satisfies, t ≥ 0,

ε̇mk,k(t) = (A−LkC)εmk,k(t)−
∑
j∈Nk

¯̀
kjLkjCηj(t−mk δ̄k),

(20)
and, in the inductive hypothesis ηj → 0, εmk,k is exponentially
stable. For i < mk the error equation satisfies

ε̇i,k(t) = Aεi,k(t)− eAk δ̄kLkC
(
εi,k(t− δ̄k) + εi+1,k(t)

)
,

(21)
and since εi+1,k(t) → 0, by proceeding as in Theorem 1 the
delay condition (16) is sufficient to prove εj,k(t) → 0 and
X̂0,k(t)→ X0(t). �.

Remark 3: The prediction could also be obtained with only
mk, rather than mk + 1, predictors, see for example [57], but
the structure in (17)–(18) is simpler. Notice that condition (16)
is in general less restrictive than (7). For example, a chain of
two estimators (i.e. m = 1) would yield a less conservative
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Algorithm 3 Distributed control design algorithm at each node
k for arbitrarily large non-uniform communications delays
Require: Assumption 1 or 2, and Assumption 4
Require: Systems matrices A, B, C
Require: delay bounds δ̄kj for j ∈ Nk
Require: desired exponential rate α > 0 and margin εα > 0

of convergence to 0 of the leader’s state estimation error
Ensure: controller gain Fk, observer gain Lk, chain length
mk + 1 that solve LFPND.
compute Fk such that µ(A+BFk) = −α
compute Lk such that µ(A− LkC) = −α− εα
compute the largest δ̄k that satisfies (16) for given A, C,
Lk, α
mk ← d

max
j∈Nk{ δ̄kj}
δ̄k

e

delay bound than the single observer (8) when there is more
than one neighbor.

Theorem 2 yields the distributed design procedure shown
in Algorithm 3 to compute at each agent k the gains Fk,
Lk and the chain length mk + 1. The gains Fk, Lk are
computed by each agent through Algorithm 3 and they are
used to implement the local observers (17), (18) and the local
controller (19). Also in this case we suppose that the desired
rate α convergence to 0 of the leader’s state estimation error
at each node k is a design parameter. The main difference
with respect to Algorithm 2 is that in this case α can be
freely chosen, and the convergence to 0 of the leader’s state
estimation error is ensured for any delay and any location of
the eigenvalues of A. Clearly, larger µ(A) and larger delays
yield a larger value of the chain length mk + 1 and a larger
number of chained observers at each agent.

V. NONLINEAR AGENTS WITH NON-UNIFORM
COMMUNICATION DELAYS AND DISTURBANCES

We can extend the results of Theorem 1 to the case of
nonlinear systems with additive disturbances. To this aim,
consider the agents’ structure, k = 0, . . . , N ,

Ẋk(t) = AXk(t) +BUk(t) + ψ(Xk(t)) + wk(t) (22)
Yk(t) = CXk(t) + vk(t), (23)

where, as usual U0 ≡ 0, wk ∈ Rn and vk ∈ R are
disturbances, ψ : Rn → Rn is smooth and the following
assumptions hold.

Assumption 5:
• The disturbances are norm bounded, ‖wi‖∞ = w̄ < ∞,
‖vi‖∞ = v̄ <∞, i = 0, 1, . . . , N .

• γ := supX∈Rn ‖ ∂ψ∂X (X)‖ < ∞ (i.e. ψ is globally
Lipschitz).

Moreover, we introduce an assumption for stabilizing
through the input Uk the disagreement Xk −X0.

Assumption 6: There exist positive definite P,Q ∈ Rn×n
and R ∈ Rm×m such that for all X ∈ Rn

P

(
A+

∂ψ

∂X
(X)

)
+

(
A+

∂ψ

∂X
(X)

)>
P

− PBR−1B>P +Q ≤ 0 (24)

When (A,B) is in Brunowski form and ψ(X) ≡ Bφ(X)
(i.e. input matching condition), it is possible to construct the
matrices P , R and Q satisfying (24) (see Lemma 6 in the
Appendix). Boundedness of ‖ ∂ψ∂X (X)‖ (Assumption 5) is to a
certain extent necessary for the existence of constant matrices
P,Q and R satisfying (24).

Definition 3: Leader Following Problem with Non-uniform
Communication Delays and Disturbances (LFPNDD): Given a
graph topology G associated to (22), and the communications
delays {δkj} among the nodes, find Uk(t) for each agent k so
that ‖X0(t)−Xk(t)‖ is uniformly bounded.

First of all, we propose a simple control law which sta-
bilizes the disagreement ηk := Xk − X0 and guarantees its
boundedness under bounded input and disturbance in absence
of delay.

Lemma 3: Under Assumption 6, the control input

Uk(t) = −R−1B>P (Xk(t)−X0(t)) (25)

solves the LFP. Moreover, for each k = 1, . . . , N the system

η̇k(t) = (A−R−1B>P )ηk(t) +B∆Uk(t) + wk(t)

+ ψ(ηk(t) +X0(t))− ψ(X0(t)) + ∆wk(t) (26)

Ẋ0(t) = AX0(t) + ψ(X0(t)) + w0(t) (27)

has bounded state ηk(t) under arbitrary but bounded signals
∆Uk(t) and ∆wk(t). Moreover, ηk(t) → 0 as ∆Uk(t),
∆wk(t), wk(t)→ 0.
The proof easily follows from Assumption 6 and it is omitted.
With the help of Lemma 3 we can give the following solution
to the LFPNDD (the proof is reported in the Appendix).

Theorem 3: If:
1) Assumption 1 or Assumption 2 hold together with

Assumptions 3, 5 and 6.
2) The connection topology is modified according to Al-

gorithm 1.
3) The pair (C,A) is observable and at each node k

the gains Lkj are chosen such that, with Lk =∑
j∈Nk

¯̀
kjLkj , the matrix Ak = A − LkC is Hurwitz

stable.
4) For all k the bounds {δ̄kj} on the communications delay

are such that∑
j∈Nk

∫ δ̄kj

0

‖eAkθLkjC‖ dθ +

∫ ∞
0

γ‖eAkτ‖ dτ < 1,

(28)
where k = 1, . . . , N , then the control input Uk

Uk(t) = −R−1B>P (Xk(t)− X̂0,k(t)) (29)

where X̂0,k(t) is the solution for t ≥ 0 of

˙̂
X0,k(t) = AX̂0,k(t) +Bψ(X̂0,k(t))−

∑
j∈Nk

(1− δ̇kj(t))

· ¯̀kjeAkδkj(t)Lkj

·
(
CX̂0,k(t− δkj(t))− yj(t− δkj(t))

)
(30)

solves the LFPNDD.
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It is possible to provide conditions that ensure that the delay
condition (28) is satisfied by a suitable choice of Lk. For exam-
ple, when ψ(s) satisfies the input matching condition and the
agents’ matrices (A,B,C) are a Brunowski triple (Ab, Bb, Cb)
there always exists a suitable gain Lk and sufficiently small
positive delay bounds δ̄kj such that condition (28) is satisfied.
To show this we recall two known technical results.

Lemma 4: Let AL = Ab − LCb and σ(AL) =
λ̄ = {λ1, . . . , λn} be a set of n distinct negative reals.
V (λ̄) denotes the Vandermonde matrix whose i-th row is
[λn−1
i · · · λi 1]. Then, the change of coordinates represented

by V (λ̄) makes AL diagonal, i.e. AL = V −1(λ̄)ΛV (λ̄) with
Λ = diagi(λi). Moreover, if λi = −wi, w > 0, i = 1, . . . , n,
then

lim
w→∞

‖V −1(λ̄)‖ = 1. (31)
Proof: See Lemma 2.2 in [58].

Lemma 5: For any ε > 0 there exists L such that, with
AL = Ab − LCb, ∫ ∞

0

∥∥eALsBb
∥∥ ds < ε. (32)

Proof: Choose λi = −wi, w > 0. Since ‖V (λ̄)Bb‖ =
‖colni=1(1)‖ =

√
n,

lim
t→∞

∫ t

0

∥∥eALsBb
∥∥ ds ≤ lim

t→∞

∥∥V −1(λ̄)
∥∥∫ t

0

e−ws
√
n ds

=

∥∥V −1(λ̄)
∥∥√n

w
(33)

and in view of Lemma 4 it is always possible to choose w
such that

∥∥V −1(λ̄)
∥∥√n/w < ε.

Remark 4: The trade-off between the Lipschitz constant of
the non-linearities and the maximum communication delays
is clearly visible in the structure of condition (28). In order
to make the second term in the left side of (28) less than
1 it is necessary that the eigenvalues of Ak are sufficiently
negative which is possible if Lk is sufficiently large. A large
Lk increases the norm in the first integral, making δ̄kj smaller.

When there are only additive norm bounded disturbances,
i.e. ψ(X,U) ≡ 0, we recover the delay bound (7).

Corollary 4: In the hypotheses of Theorem 3, if ψ(X,U) ≡
0 and the bounds {δ̄kj} on the communications delays satisfy
(7) then the controls (29) solve LFPNDD.

Theorem 3 yields the distributed design procedure shown in
Algorithm 4 to compute at each agent k the gains −R−1B>P
and Lk that are used to implement the local observer (30)
and the local controller (29). The design parameters are the
matrices R and Q of (24) and the desired spectral abscissa α
of the closed-loop estimation error dynamical matrix A−LkC.
The algorithm determines the largest αk that satisfies (28).

Finally, when disturbances vanish in the origin we recover
asymptotic consensus.

Corollary 5: In the hypotheses of Theorem 3, if w̄ = v̄ =
0 and ψ(0, 0) = 0, if Lkj and the bounds {δ̄kj} on the
communications delays satisfy, for any α > 0,∑
j∈Nk

∫ δ̄kj

0

∥∥∥e(Ak+αIn)θLkjC
∥∥∥ dθ + γ

∫ ∞
0

∥∥∥e(Ak+αIn)τ
∥∥∥ dτ

< 1, (34)

Algorithm 4 Distributed control design algorithm for nonlin-
ear agents at each node k with non-uniform small communi-
cations delays
Require: Assumptions 1, 2, 3, 5, 6
Require: systems matrices A, B, C
Require: delay bounds δ̄kj for j ∈ Nk
Require: gain parameters Q, R−1

Require: Lipschitz constant γ
Require: desired spectral abscissa −α of the closed-loop

estimation error dynamics, adaptation step 0 < δα < α.
Ensure: controller gain −R−1B>P , observer gain Lk that

solve LFPNDD or fail.
compute P by solving the Riccati equation (24)
compute Lk such that µ(A− LkC) = −α
αk ← α
while αk > 0 & (28) not satisfied do

αk ← αk − δα
compute Lk such that µ(A− LkC) = −αk

end while
if αk > 0 then

success
else

fail
end if

then the controls (29) solve the LFPNDD, i.e. X0(t) −
Xk(t)→ 0.

VI. EXAMPLE

We consider an example adapted from [46] with heteroge-
neous constant delays. A network of unmanned aerials vehicles
(UAVs) is composed by one leader and 4 followers with state
X(t) ∈ R2, input Uk(t) ∈ R2, and dynamics, k = 0, . . . , 4,

Ẋk(t) = AXk(t) +BUk(t) + ψ(Xk(t)), (35)
Yk(t) = CXk(t), (36)

A =

(
0 −1
1 0

)
, B =

(
1 0.5

0.5 1

)
, C =

(
1 0

)
ψ(X) = β

(
sin(X1)
sin(X2)

)
. (37)

Since ‖ψ(X)‖ in (35) is uniformly bounded and
supX ‖

∂ψ
∂X ‖ < 2β, Assumption 5 and Assumption 6 hold true

and we use the representation (22) with wk(t) = vk(t) ≡ 0.
Condition (34) of Corollary 5 provides a delay bound for
asymptotic consensus.

The network topology is shown in Figure 1 (top). The agents
are strongly connected, but by using the communication links
according to the algorithm of Section III the connection is
restricted to the DAG in Figure 1 (bottom). Notice that, by
disregarding the link from node 4, the estimation task of node
1 becomes simpler and node 4 is not affected.

We set β = 3 · 10−2 as in [46]. The control gain Fk =
−R−1B>P is the same for all the agents ans it is obtained
by solving PA + A>P − PBR−1B>P + Q = 0 with Q =
I2 and R = 1. It is readily verified that this choice satisfies
(24) of Assumption 6 and σ(A + BFk) = {−1.06 ± 0.94j}.
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Fig. 2. Logarithm of the norm of the consensus error of the agents for
the original network (top) and the modified network (bottom).

The observer gain Lk = Lkj is also uniform and it assigns
the eigenvalues {−0.6 ± j} to A − LkC (that is, α = 0.6).
In this configuration the communications delay bound (34) is
δ̄kj = 0.508 for all the links. In the simulations we set the
communications delays δ10 = 0.50, δ21 = 0.45, δ32 = 0.35,
δ43 = 0.40, δ14 = 0.20. Fig. 2 (bottom) plots the log-norm of
the consensus error of the 4 agents with the network topology
of Fig. 1 (bottom), that shows exponential convergence to 0
of the consensus error. In contrast, when using the original
topology of Fig. 1 (top) the consensus error convergence is
much slower, as shown in Fig. 2 (top), even if the delay of
the extra link 4→ 1 is small.

Notice that all the followers converge to the leader’s tra-
jectory with the same exponential rates (the slope of the
coloured lines in Fig. 2, bottom), however the instantaneous
disagreement values are different because nodes closer to the
leader start converging earlier due to communications delays.
However, all trajectories eventually become identical when
‖Xk−X0‖ ' 0. The plateau at 10−16 is the limit of numerical
precision.

These results, although limited to the consensus algorithm
described in this paper, illustrate the de-stabilizing effect of
network cycles in presence of delays and support our claim
that a suitable weighting of the network connections is the
most effective way of dealing with delays in the Leader-
Follower context. Finally, we remark that these results com-
pare favourably with those reported in [46], where the total
delay, which in that case includes input delay, is δ = 0.1
and practical consensus is reached for t > 150s. In our case,

practical consensus is reached for t > 25s with a much larger
delay. Although the comparison is only partial because the
scheme in [46] includes additional modeled disturbances, the
proposed method displays better performance in dealing with
delays.

VII. CONCLUSIONS

In this paper we have provided some evidence for the claim
that the presence of delays on networks can be more effectively
handled by modifying the network topology. In particular,
we have provided the first solution of the leader-following
consensus problem of linear systems in presence of arbitrarily
large and time-varying communications delay. It should be
remarked that this is possible in the leader-following context
thanks to the fact that information flows from the leader to
the followers, whereas it is less obvious how this approach
can be adapted to the case of consensus among agents. When
the network topology is modified by following this approach,
the convergence of the estimators to the leader’s state can be
proven locally, thus any other estimator/predictor from delayed
measurement can replace the one we have used here. It is
therefore simple to extend these results to the case of stochastic
or heterogeneous systems.

APPENDIX

Proof of Theorem 3. Let ηk = Xk − X0, εk = X0 −
X̂0,k and F = −R−1B>P . With the control input (25) the
dynamics of ηk is

η̇k(t) =(A+BF )ηk(t) +B∆Uk(t) + ψ(ηk(t) +X0(t))

− ψ(X0(t)) + wk(t) + ∆wk(t),

with ∆Uk = Fεk and ∆wk = −w0. Moreover, if ‖εk(t)‖
is uniformly bounded then ‖∆Uk(t)‖ is uniformly bounded.
By Lemma 3 and since ‖∆wk‖∞ ≤ w̄ < ∞, if ‖εk(t)‖
is uniformly bounded then ‖ηk(t)‖ is uniformly bounded.
In order to prove that ‖εk(t)‖ is uniformly bounded, by
subtracting (30) from (22) we obtain, t ≥ 0,

ε̇k(t) =Aεk(t) + ψ̃(X0(t), εk(t)) + w0(t)

−
∑
j∈Nk

(1− δ̇kj(t))¯̀
kje

A
0
kδkj(t)Lkj (Cεk(t− δkj(t))

−Cηj(t− δkj(t)) + vj(t− δkj(t))) ,

where, for the sake of concision, ψ̃(X0, εk) = ψ(X0) −
ψ(X0 − εk) and εk(τ) = X0(τ) − X̂0,k(τ) for τ ∈ [−δ̄, 0].
Thanks to the graph structure produced by the algorithm of
Section III we can adopt the same inductive procedure as in
Theorem 1. We first suppose that the disagreements ηj ≡ 0,
that holds for the immediate followers of the leader. In this
case we have the following integral representation for εk(t),
valid for t ≥ 0,

εk(t) =
∑
j∈Nk

∫ t

t−δkj(t)

eAk(t−τ) ¯̀
kjLkj (Cεk(τ) + vj(τ)) dτ

+

∫ t

0

eAk(t−τ)
(
ψ̃(X0(τ), εk(τ))− vj(τ) + w0(τ)

)
dτ + bk.

(38)
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The value of bk depends on the pre-shape functions and it can
be chosen to make εk continuous in t = 0. Let us define,

m1 =

∫ ∞
0

∥∥∥eAks
∥∥∥ ds < ∞,

m2 =
∑
j∈Nk

∫ δ̄kj

0

∥∥∥eAkτLkjC
∥∥∥ dτ,

m3 =
∑
j∈Nk

∫ δ̄kj

0

∥∥∥eAksLkj

∥∥∥ ds < ∞.

By taking norms in (38) we get, t > 0,

‖εk(t)‖ ≤(γm1 +m2) sup
τ∈[0,t]

‖εk(τ)‖+ ‖bk‖+m1w̄

+ (m1 +m3)v̄

Since (28) implies that γm1 +m2 < 1, by taking the sup in
[0, t] we obtain the bound

sup
τ∈[0,t]

‖εk(τ)‖ ≤ ‖bk‖+m1w̄ + (m1 +m3)v̄

1− γm1 −m2
< ∞.

This implies that ‖εk(t)‖ is uniformly bounded in time, and
so it is ‖ηk(t)‖, as shown above. The inductive step is
proved as above by considering the additional presence of
the disagreements ηj , that are however uniformly bounded in
norm. �

Lemma 6: Assume that (A,B) is in Brunowski form, i.e.

A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 , B =


0
0
...
0
1

 ,

and let ψ : Rn → R be such that supX∈Rn ‖ ∂ψ∂X (X)‖ < +∞.
There exist positive definite P,Q ∈ Rn×n and R ∈ Rm×m
such that for all X ∈ Rn

P

(
A+B

∂ψ

∂X
(X)

)
+

(
A+B

∂ψ

∂X
(X)

)>
P

− PBR−1B>P +Q ≤ 0. (39)
Proof. Let In denote the n × n identity matrix. By [59] and
since (A,B) is controllable and (In, A) is observable, we have
the existence of Π ∈ Rn×n such that

ΠA+A>Π−ΠBB>Π + 2In = 0. (40)

Define

P (ε) := Γ−1(ε)ΠΓ−1(ε),Γ(ε) := diag{ε−1, · · · , ε−n},
Q(ε) := ε−1Γ−2(ε), R(ε) := ε−2n+1In

where ε > 0 is a parameter to be selected, and consider the
matrix

P (ε)

(
A+B

∂ψ

∂X
(X)

)
+

(
A+B

∂ψ

∂X
(X)

)>
P (ε)

− P (ε)BR−1(ε)B>P (ε) +Q(ε). (41)

By multiplying both sides of (41) by Γ(ε) and since (A,B)
is in Brunowski form, we obtain the matrix

ε−1
{

Π

(
A+ εB

∂ψ

∂X
(X)S(ε)

)
+

(
A+ εB

∂ψ

∂X
(X)S(ε)

)>
Π−ΠBB>Π + In

}
where S(ε) := diag{εn−1, · · · , ε, 1}. By eq. (40), we have

ε−1
{

Π

(
A+ εB

∂ψ

∂X
(X)S(ε)

)
+

(
A+ εB

∂ψ

∂X
(X)S(ε)

)>
Π−ΠBB>Π + In

}
≤ ΠB

∂ψ

∂X
(X)S(ε) +

(
B
∂ψ

∂X
(X)S(ε)

)>
Π− ε−1In.

Finally, for the boundedness assumption on ‖ ∂ψ∂X (X)‖, pick
ε > 0 such that for all X ∈ Rn

ε

(
ΠB

∂ψ

∂X
(X)S(ε) +

(
B
∂ψ

∂X
(X)S(ε)

)>
Π

)
≤ In,

then (41) is negative semi-definite and this proves the claim
of the lemma with P = P (ε), Q = Q(ε) and R = R(ε). �
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