
 

 

 

 

 

 

PhD Thesis 

 

An intelligent management of integrated 

biomedical data for digital health via Network 

Medicine and its application to different human 

diseases 

 

Department of Translational and Precision Medicine 

PhD course in Innovative Biomedical Technologies in Clinical 
Medicine 

 

 

 

 

 

Candidate   Advisor 

Pasquale Sibilio  Prof. Paola Paci 

 

Cycle XXXV 

  



 

 

 

 

 

 2 

Acknowledgments  

I would like to thank my mentor, professor Paola Paci, that gave me the possibility to spend 

my PhD training in her laboratory and to make me improve as scientist and as a person. I would 

like to thank my colleagues Federica Conte and Giulia Fiscon that gave me precious help during 

all these three years. Moreover, I want to thank Professor Lorenzo Farina for our collaborations 

and for communicating with me his brilliant view about science. I’m so grateful to Professor 

Edwin Silverman and Professor Dawn DeMeo that hosted me during my visiting at the 

Channing division of Network Medicine Division at Brigham and Women’s Hospital, it was 

an outstanding experience to work with them. Markedly, I would like to thank professor 

Giuseppe Giannini, professor Sebastiano Filetti, and professor Cosimo Durante that gave me 

the possibility to work with them. Further, I’m grateful for the fruitful collaboration with 

Doctor Antonella Verrienti, Doctor Francesca Belardinilli, and Doctor Valerio Licursi. Then, 

I want to thank the PhD coordinator professor Marcello Arca, the PhD committee and the 

Department of Translational and Precision Medicine for their precious work over these three 

years to organize the PhD.  

  



 

 

 

 

 

 3 

Abstract 

Personalized medicine aims to tailor the health care to each person’s unique signature leading 

to better distinguish an individual patient from the others with similar clinical manifestation. 

Many different biomedical data types contribute to define this patient’s unique signature, such 

as omics data produced trough next generation sequencing technologies. The integration of 

single-omics data, in a sequential or simultaneous manner, could help to understand the 

interplay of the different molecules thus helping to bridge the gap between genotype and 

phenotype. To this end, Network Medicine offers a promising formalism for multi-omics data 

integration by providing a holistic approach that look at the whole system at once rather than 

focusing on the single entities. This thesis regards the integration of various omics data 

following two different procedures within the framework of Network Medicine: A procedural 

multi-omics data integration, where a single omics was first selected to perform the main 

analysis, and then the other omics were used in cascade to molecularly characterize the results 

obtained in the main analysis. A parallel multi-omics data integration, where the result was 

given by the intersection of the results of each single-omics. The procedural multi-omics data 

integration was leveraged to study Colorectal and Breast Cancer.  In the Colorectal Cancer case 

study, we defined the molecular signatures of a new subgroup of Colorectal Cancer possibly 

eligible for immune-checkpoint inhibitors therapy. Moreover, in the Breast Cancer case study 

we defined 11 prognostic biomarkers specific for the Basal-like subtype of Breast Cancer. 

Instead, the parallel multi-omics data integration was exploited to study COVID-19 and 

Chronic Obstructive Pulmonary Disease. In the COVID-19 case study, we defined a pool of 

drugs potentially repurposable for COVID-19. Whereas, in the Chronic Obstructive Pulmonary 

Disease case study, we discovered a group of differentially expressed and methylated genes 

that have a considerable biological specificity and could be related to the inflammatory 

pathological mechanism of Chronic Obstructive Pulmonary Disease. 
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Introduction 

The application of digital technologies for improving public health remains a largely 

unexplored territory yet, making the discovery of novel digital health solutions a mandatory 

task. A big challenge in this perspective is the personalization of medicine that should be aimed 

to improve the patients’ clinical outcomes and to reduce the drugs’ side effects by using a 

“bench-to-bedside” approach [1]. This new practice of medicine should tailor the health care 

to each person’s unique signature leading to better distinguish an individual patient from the 

others with similar clinical manifestation. Many different biomedical data types contribute to 

define this patient’s unique signature, including, but not limited to genomics, transcriptomics, 

proteomics, and metabolomics data. The integration of these individual omics data, in a 

sequential or simultaneous manner, could help to understand the interplay of the different 

molecules thus helping to bridge the gap between genotype and phenotype. Despite their power 

and promise, a variety of challenges must be considered in the successful design and execution 

of a multi-omics study, including the complexity of the biological systems as well as the ever-

increasing amount of the biological data available from the quickly maturing field of the next 

generation sequencing (NGS) technologies. By providing an holistic approach that look at the 

whole system at once rather than focusing on the single entities, network theory offers a 

promising formalism for multi-omics data integration [2]. 

Network Medicine is a quickly maturing discipline that studies holistic relationships between 

various biological components by combining network theory and systems biology. The basic 

premise of this exercise is that no gene or gene product exerts its effect on phenotype in 

isolation. Investigating the molecular context (i.e., the network of the functional and molecular 

interactions within a cell) is essential for understanding the true bases for phenotype and 

pathophenotype [3]. 

This thesis regards the integration of various omics data following two different procedures 

within the framework of Network Medicine:  
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• a sequential approach (called procedural multi-omics data integration), where a single-

omics was first selected to perform the main analysis, and then the other omics were 

used in cascade to molecularly characterize the results obtained in the main analysis;  

• a simultaneous approach (called parallel multi-omics data integration), where the 

single-omics were analyzed in parallel, and the result was given by the intersection of 

the results of each single-omics. 

For what concerns the procedural multi-omics data integration, we applied the analysis on two 

different human diseases: 

• Colorectal Cancer (CRC), where we started from Copy Number Variations (CNVs) and 

Tumor Mutational Burden (TMB) data available on The Cancer Genome Atlas (TCGA) 

[4] and we applied an unsupervised learning technique to better classify CRC patients. 

Afterwards, we exploited DNA methylation, Single Nucleotide Variation (SNVs), and 

transcriptomic data from TCGA to define the molecular signatures of CRC subgroups 

possibly eligible for immune-checkpoint inhibitors therapy. 

• Breast Cancer (BC), where we started from the survival data available on TCGA and 

we applied a Kaplan-Meier survival analysis to narrow the list of the predicted Basal-

like specific biomarkers obtained from [5], to those that showed a statistically 

significant prognostic value. Eventually, we exploited the CNVs, DNA methylation, 

and transcriptional regulatory data to investigate whether variations in the expression 

of identified prognostic genes could be related to genetic (CNVs), epigenetic (DNA 

methylation differences), and transcription factor activities.  

For what concerns the parallel multi-omics data integration, we applied the analysis on two 

different human diseases: 

• COVID-19, where we used transcriptomics and interactomics data, and we applied a 

network-based drug repurposing analysis to identify novel uses for existing drugs that 
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can be repurposed outside the scope of their original medical indication for treating 

COVID-19 [6]. Transcriptomics data were obtained from GEO repository [7] and 

interactomics data from the supplementary material of [8]. 

• Chronic Obstructive Pulmonary Disease (COPD), where we used transcriptomics and 

DNA methylation data, and we applied a network-based integration analysis to build a 

consensus network of genes that are differentially modulated both in their expression 

and methylation profile. Data were retrieved from a lung tissue cohort of the Lung 

Tissue Research Consortium at the Channing division of Network Medicine Division 

at Brigham and Women’s Hospital.  

This thesis is structured in the following chapters:  

• Chapter 1: Multi-omics data integration. This chapter describes the state of art of 

methods that perform multi-omics data integration. 

• Chapter 2: Network Medicine: a new paradigm for personalized medicine. This chapter 

summarizes the main hypotheses, the biological networks, and the tools widely used in 

Network Medicine field.  

• Chapter 3: Procedural multi-omics data integration for studying Colorectal Cancer. 

This chapter details the computational analysis developed to discover a novel molecular 

subset of CRC patients possibly eligible for immune checkpoint immunotherapy.  

• Chapter 4: Procedural multi-omics data integration for studying Breast Cancer. This 

chapter details the computational analysis developed to discover new putative 

prognostic biomarkers for the Basal-like subtype of BC. 

• Chapter 5: Parallel multi-omics integration to identify repurposable drugs for COVID-

19. This chapter details the network-based drug repurposing analysis implemented to 

discover a pool of drugs potentially repurposable for COVID-19. 
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• Chapter 6: Parallel multi-omics data integration for studying COPD. This chapter 

details the network-based integration analysis developed to gain insights about the 

pathobiological mechanism of the disease.  
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Chapter1: Multi-omics data integration 

1.1. Introduction 

The comprehension of molecular mechanisms of human diseases requires the study of the 

biomolecular complexity at multiple levels such as genome, epigenome, transcriptome, 

proteome, and metabolome. The advent of NGS high-throughput technologies made biology 

more quantitative and strongly dependent on data generated at these levels, which together is 

called “multi-omics” data. Nowadays, the integration of these multi-omics data seems to be an 

unavoidable step to a better understanding of the molecular mechanisms underlying the 

diseases that can eventually aid in better treatment and prevention. The largest publicly 

available database providing multi-omics data is The Cancer Genome Atlas (TCGA), a 

landmark cancer genomics program, molecularly characterized over 20,000 primary cancers 

and matched normal samples spanning 33 cancer types [4]. The high-throughput data stored in 

TCGA include RNA-seq, DNA-seq, miRNA-seq, single-nucleotide variant (SNV), copy 

number variation (CNV), DNA methylation arrays, and reverse phase protein array (RPPA) 

data. Further, it contains also clinical and histological data, which enlarge the possibility to 

integrate omics and clinical information. 

 

1.2. Methodologies for multi-omics data integration 

In a recent study [2], different methods that allow integration of multi-omics data are discussed 

and organized based on their ability to address biological question of interest, broadly 

categorized into three main case studies: 

• Disease subtyping and classification based on multi-omics profiles  

Complex diseases are characterized by heterogeneity in the etiology, disease 

progression, and therapeutic response in affected individuals. Additionally, 
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environment and life factors can be an important contribution to disease heterogeneity. 

Hence, it is crucial to improve disease classification, identifying novel subtypes or 

improving the samples classification into known subgroups, to offer different 

therapeutic strategies for patients belonging to different subtypes, moving toward a 

more personalized medicine. There exist diverse methodologies to identify disease 

subtypes or classify patients into subgroups based on their multi-omics profiles. For 

instance, Multiple co-inertia analysis (MCIA) [9], which employs a multivariate 

approach. MCIA performs a covariance optimization criterion to transform diverse 

omics datasets onto the same scale, projecting them into the same dimensional space. 

Employing graphical representations of the sample space is possible to identify disease 

subtypes, meanwhile studying the features space graph is possible to select features that 

are relevant for samples cluster. However, after MCIA analysis is needed additional 

molecular characterization employing integrative multi-omics analysis to define the 

molecular properties of the subgroups identified. In chapter 3 of this thesis, an 

integrative multi-omics approach based on unsupervised hierarchical clustering 

methodology is described to stratify colorectal cancer patients based on their genomics, 

epigenomics and transcriptomics profiles. The results of this study can pave the way 

for an expansion of immunotherapy therapeutic strategies to a novel identified subgroup 

of colorectal cancer. 

• Prediction of biomarkers for various applications including diagnostics and 

driver genes for diseases 

Biomarkers are molecular footprints that help to define a specific condition in human 

diseases. In a systemic view, biomarkers can be interpreted as important actors in 

crucial biological pathways affected in disease conditions, thus revealing the underlying 

pathobiology, and helping to guide new therapeutic strategies. Multi-variates and non-

parametric statistics are statistical methods widely used to define biomarkers [2]. For 

example, Multi-Omics Factor Analysis (MOFA) [10], is a multivariate approach for 

integrating multi-omics data of the same or partially overlapping samples in an 



 

 

 

 

 

 12 

unsupervised fashion. As first step, MOFA infers an interpretable low-dimensional data 

representation in terms of (hidden) factors, which can be viewed as generalization of 

principal component analysis (PCA) to multi-omics data. The hidden factors capture 

major sources of variation across data modalities, which can help the identification of 

continuous molecular gradient or discrete subgroup of samples. In the downstream 

analysis MOFA implements the analysis of the absolute loading of the top features of 

the different omics data on each factor to define the biomarkers of the disease. However, 

MOFA doesn’t exploit survival data to define biomarkers. In chapter 4 of this thesis, a 

Kaplan-Meier estimator is used to infer prognostic biomarkers of basal-like subtype of 

breast cancer. Kaplan-Meier is a univariate non-parametric statistical method that allow 

to calculate how long a studied event (e.g., death, disease progression, etc.) occurred 

after starting a particular treatment in subjects that not experience the event before the 

end of the study [11]. 

• Deriving insights into disease biology 

The comprehension of the mechanism of the disease is crucial for developing new 

diagnostic and therapeutic strategies. One of the main challenges in determining the 

mechanisms of the disease is to infer the regulatory relationship or the coordination 

between the elements of different omics. Correlation-based approach has been 

extensively used to address this issue, and a promising tool belonging to this category 

is CNAmet [12]. The authors have developed a method that integrates Copy Number 

Variations (CNVs), DNA methylation and mRNA expression data. The primary goal 

of the tool is to identify genes that are amplified, hypomethylated and upregulated or 

deleted, hypermethylated and downregulated. The CNAmet algorithm consists of three 

major steps: 1) the weight calculation step in which expression values are linked to copy 

number and methylation aberrations; 2) the score calculation step, in which the weight 

values are combined to a score that indicates genes whose expression alterations are 

due to changes in DNA methylation and copy number levels; 3) the significance 

evaluation step, in which corrected p-values of the scores are calculated with a 
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permutation test [12]. In chapter 6 of this thesis, we designed a network-based approach 

that builds the correlation networks for each biological layers considered (e.g., DNA-

methylation and RNA-seq layer) for the disease of interest. Then, the networks are 

merged to build a “consensus network”, where nodes are gene products that are both 

differentially methylated and expressed in the pathological condition and highly 

positive or negative correlated in both layers. The consensus network allows to study 

the coordination of genes across different biological layers. In chapter 6 of this thesis, 

we designed a network-based approach that builds the correlation networks for each 

biological layers considered (e.g., DNA-methylation and RNA-seq layer) for the 

disease of interest. Then, the networks are merged to build a “consensus network”, 

where nodes are gene products that are both differentially methylated and expressed in 

the pathological condition and highly positive or negative correlated in both layers. The 

consensus network allows to study the coordination of genes across different biological 

layers which could help to define a new mechanism of regulation. 
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Chapter 2: Network medicine: a new paradigm for 

personalized medicine 

2.1. Network medicine hypotheses and organizing principles 

Network Medicine is considered as a promise formalism able to depict the complexity of 

biological systems and to manage big volume of biological data. It is a discipline that studies 

holistic relationships between molecular components by combining elements of graph theory, 

systems biology, and statistical analyses. The main purpose of Network Medicine is to 

understand the true bases phenotype and pathophenotype of diseases based on the principle 

that a disease is rarely a consequence of an abnormality in a single gene but reflects the 

perturbations of the complex intra-cellular and inter-cellular network that links tissue and organ 

systems [3]. Further, the network-based approaches to human disease can lead to a better 

understanding of the effects of cellular interconnectedness on disease progression that may 

lead to the identification of molecular determinant of disease (disease genes) and disease 

pathways, which, in turn, may offer better targets for drug development. Disease genes refer to 

genes with mutations that are known to have a phenotypic impact, e.g., sequence alterations 

that are causal for Mendelian diseases or variants that increase the susceptibility to complex 

diseases or cancer. As broadly established [3, 13], disease genes have unique, quantifiable 

characteristics that distinguish them from other genes. From a network perspective, this 

observation translates into the verification that disease genes are not randomly scattered in the 

interactome, but, rather, co-localize in specific subnetworks (disease modules). This concept 

lead to a series of widely used hypotheses and organizing principles that link network structure 

to biological function and disease [14] that can be summarized as follows:  

• The local hypothesis, according to which proteins involved in the same disease have 

and increased tendency to interact with each other. 
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• The disease module hypothesis, according to which proteins involved in the same 

disease show a tendency to cluster in connected subnetworks (of connected 

components), within which one of them is often much larger than the others (largest 

connected component). 

• The functional coherence hypothesis, according to which genes in a disease module 

show a tendency to be involved in closely disease – related cellular functions or casual 

molecular pathways. 

• The shared components hypothesis, according to which related diseases are in the same 

interactome neighborhood from which unrelated diseases are separated. 

In this new conceptualization of medicine, the human interactome is viewed as a map and a 

disease is a local perturbation of this map.  

 

2.2. Biological networks and interaction resources 

Cells can be considered as a complex network of macromolecular interactions, whose 

understanding requires appropriate network selection and analysis. The biological networks 

and interaction resources broadly used in my studies are: 

• Human interactome 

The protein-protein interactions (PPIs) network, also known as interactome, is a 

network where nodes are the proteins, and the links represent the physical molecular 

interaction occurring between them. This data type is called interactomics. The 

interactions can be obtained from yeast-2-hybrid assays [15], co-immunoprecipitation 

[16], literature text-mining [17], 3D structure [18], sequence homology [19] and other 

sources.  
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• Gene Co-expression Networks (GCNs) 

GCNs are networks where nodes are genes and an edge between two genes is drawn 

based on the calculation of pairwise correlation coefficients between the transcriptomic 

profile of the two genes (usually Pearson or Spearman coefficients). Usually, a 

threshold on the correlation is set to highlight highly correlated gene pairs, following 

two procedures, called hard and soft thresholding approach, respectively. Hard 

thresholding is used to build an unweighted networks, where the correlations coefficient 

between nodes below the threshold are suppressed (edge values set to 0), and the 

correlations coefficient above the threshold are considered (edges values set to 1). This 

approach encodes gene co-expression using binary information (connected=1, 

unconnected=0). On the contrary, the soft thresholding approach weighs each 

connection by a number in [0,1] and thus it is more suitable for building weighted 

networks. 

• Gene regulatory networks (GRNs) 

GRNs involve the complex interplay of multiple regulatory molecules including 

Transcription Factors (TFs), miRNA, epigenetic modifiers that model the 

transcriptional process of encoding genes. In these kinds of networks, nodes are usually 

both the regulators and their targets, and the links are the interactions occurring between 

them. Many databases exist that collect experimental evidences or computational 

predictions about the regulators-target interactions. 

• Drug-Targets interaction networks (DTNs) 

DTNs are bipartite networks where nodes are both drugs and protein targets, and a link 

occurs between two nodes if the corresponding drug-target interaction has been 

experimental validated or computational predicted. Many databases exist that collects 

these kind of informations. 
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• Drug-Disease Interaction networks (DDIs) 

DDIs are bipartite networks where nodes are both drugs and diseases, and a link is 

placed between two nodes based on some association properties that can be 

computationally predicted and/or experimentally validated. 

 

2.3. Network-based tools 

The main network-based approaches exploited in the studies presented in this thesis are 

summarized as follows: 

• Weighted Gene Co-expression Network Analysis (WGCNA)  

Weighted gene co-expression network analysis (WGCNA) is one of the most 

commonly employed tool to construct gene co-expression networks across gene 

expression data, exploring the association between gene networks and 

phenotypic/clinical traits of interest [20, 21]. It defines co-expression networks as 

undirected, weighted gene networks, using a soft thresholding approach. To properly 

define the values of the parameters needed to build the correlation network, a 

reasonable choice is to select  those that guarantees an approximately scale-free 

network topology, which is the typical topological structure of most biological 

networks [22, 23]. A scale-free network is a graph characterizing by many low-degree 

nodes (peripheral nodes) and few high-degree nodes (hub nodes), where the degree has 

generally been extended to the sum of weights when analyzing weighted networks. 

Then, WGCNA identifies modules of highly interconnected, or co-expressed, genes 

within the weighted network by grouping together the most similar nodes. The 

similarity measure between two nodes is expressed in terms of their direct connection 

strength as well as connection strengths “mediated” by shared neighbors. The 

relationship between modules can be studied by correlating the corresponding module 

eigengenes (MEs). The ME is defined as the first principal component of a given 
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module and can be considered a representative of the gene expression profiles in that 

module. For each gene, a measure called module membership (MM) is defined by 

correlating its gene expression profile with the module eigengene of a given module 

and can be computed for all input genes (irrespective of their original module 

membership). If MM of a given gene with respect to a given module is close to 0, that 

gene is not part of that module. On the other hand, if MM is close to 1 or -1, the gene 

is highly connected to the genes of that module. The sign of MM encodes whether the 

gene has a positive or a negative relationship with the module eigengene. Finally, to 

incorporate external information into the co-expression network, WGCNA makes use 

of gene significance (GS) measures computed as the correlations between gene 

expressions and external sample traits. Abstractly speaking, the higher the absolute 

value of GS of a given gene, the more biologically significant is that gene. The gene 

significance of 0 indicates that the gene is not significant regarding the biological 

question of interest. The gene significance can take on positive or negative values. 

• SWIM 

SWIM (SWItch Miner) is a freely downloadable network‐based tool, developed both 

in MATLAB [24] and in R language [25], which predicts important (switch) genes that 

are strongly associated with drastic changes in cell phenotype. SWIM first computes 

the differentially expressed genes (DEGs) between two conditions of interest (e.g., 

normal state versus tumor state) and then builds a GCN by calculating correlations 

(positive and negative) between the expression profiles of each gene pair. Specifically, 

SWIM implements a hard thresholding approach to build a GCN where nodes are 

DEGs, and a link occurs if their expression profiles are highly correlated or anti-

correlated (according to a defined threshold). Then, SWIM classifies each network hub 

(i.e., nodes with degree at least equal to 5 [22]) as date, party, or fight-club on the basis 

of the Average Pearson Correlation Coefficient (APCC) between its expression profile 

and that of its first nearest neighbors. Date hubs show a positive and mild APCC value; 

party hubs show a positive and high APCC value; fight-clubs hubs show a negative 
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APCC value. To date, the left tail (i.e., negative correlation between gene pairs) of the 

correlation distribution, and the interpretation of negative edges within a complex 

network representation of functional connectivity has largely been ignored, apart from 

the SWIM methodology. To assign a role to each node in the GCN, SWIM firstly 

searches for clusters (or modules) using the k-means algorithm and evaluates the quality 

of clusters by minimizing the Sum of the Squared Error (SSE), depending on the 

distance of each object to its closest centroid. The choice of the number of clusters to 

be selected can be done referring to the SSE plot (scree plot) computed as a function of 

the number of clusters. Particularly, a reasonable choice of the number of clusters is 

suggested by the position of an elbow in the scree plot. Then, SWIM draws the heat 

cartography map by evaluating two coordinates related to their intra- and inter-modular 

connections: the clusterphobic coefficient, which measures the links of each node to 

nodes outside its own cluster; the within-module degree, which measures how “well-

connected” each node is within its own cluster. Nodes having much more external than 

internal links present high values of the clusterphobic coefficient and are called 

connectors, whereas high values of the within-module degree denote nodes that are 

hubs within their community and are called local hubs. Switch genes are defined as a 

subset of fight-club nodes with the following features: 

• they are network connectors that mainly interact outside their own cluster  

• they are not local hubs 

• they are mainly anti-correlated with their interaction partners  

Up to now, SWIM has sparked a widespread interest within the scientific community 

thanks to the promising results obtained through its application in a broad range of 

phenotype-specific scenarios, spanning from complex diseases [26–31] to grapevine 

berry maturation [32]. 
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• SAveRUNNER 

SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk) is a freely downloadable 

network‐based tool, developed in R language [33, 34], which generates predictions of 

drugs that can be used outside their original medical indication for a disease of interest 

(Drug repurposing) and for optimizing the efficacy of putative validation experiments. 

The hypothesis underlying SAveRUNNER’s methodology is that for a drug to be 

effective against a disease, its associated targets (drug module) and disease‐associated 

genes (disease module) should be topologically close to each other in the human 

interactome [8]. SAveRUNNER takes as inputs the human interactome network, the 

list of disease‐associated genes and drug–target interactions, and predicts drug–disease 

associations by quantifying the interplay between the drug targets and disease-

associated proteins in the human interactome via a novel network-based similarity 

measure (denoted adjusted similarity), which rewards associations between drugs and 

diseases located in the same network neighborhood. The idea behind is based on the 

assumption that if a drug and a disease group together it is more likely that the drug can 

be effectively repurposed for that disease [33, 34]. SAveRUNNER provides a list of 

predicted/prioritized associations among drugs and diseases in the form of a weighted 

bipartite drug–disease network, where one set of nodes represents drugs and the other 

represents diseases. A link between a drug and a disease is made if the corresponding 

drug targets and disease genes are closer in the interactome than is expected by chance, 

with an interaction weight based on the adjusted similarity value [33].  

Up to now, SAveRUNNER was successfully applied to predict candidate repurposable 

drugs for COVID-19 [6, 33], Alzheimer’s Disease (AD) [35], Amyotrophic Lateral 

Sclerosis (ALS) [36], Multiple Sclerosis (MS) [37], and BC subtypes [38].  
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Chapter 3: Procedural multi-omics data integration 

for studying Colorectal Cancer 

An integrative in-silico analysis discloses a novel molecular subset of Colorectal Cancer 

possibly eligible for immune checkpoint immunotherapy 

3.1. Introduction 

Colorectal Cancer (CRC) is a major cause of cancer related death worldwide, accounting for 

approximately 8% of all annually diagnosed cancers [39]. Historically, the molecular 

classification of CRC was based on the global genomic status, which identified three major 

groups: tumors with microsatellite instability (MSI; ~ 15% of all CRCs), tumors with 

chromosomal instability (CIN; ~ 85% of all CRCs) and tumors with a CpG island methylator 

phenotype (CIMP; ~ 20% of all CRCs) [40]. In MSI tumors, defects of the mismatch repair 

(MMR) pathway are the leading cause of genetic instability. It can be due to inactivating 

mutations or to epigenetic silencing by promoter hypermethylation of DNA MMR genes [40], 

a condition frequently associated to high levels of CpG island methylation and referred to as 

CIMP-High (CIMP-H, ~ 70–85% of MSI CRCs). Defective DNA MMR (dMMR) leads to 

reduced restoration of replication errors resulting in the introduction of a high rate of 

mismatches in microsatellites. The consequent changes in microsatellite lengths may be 

monitored to classify different phenotypes as microsatellite stable (MSS) or unstable (MSI), 

which can be further subdivided MSIHigh (MSI-H) or MSI-Low (MSI-L) [40, 41]. Tumors 

with MSI-H typically display a high rate of point mutations [42, 43], a state referred to as 

hypermutation (HM). Besides dMMR, the HM phenotype is also related to somatic or germline 

mutations of POLE and POLD1 genes encoding DNA polymerase epsilon and delta, 

respectively [41]. CIN tumors instead bear high frequency of copy number variations (CNVs). 

In almost all cases they are MSS or MSI-L, usually share low mutation rate, and null or low 

level of CIMP (non-CIMP or CIMP-L) [40, 44]. Over the years, additional molecular 

classifications beyond CIN, MSI and CIMP were proposed with the aim to dissect the 
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heterogeneity of CRC for prognostic and predictive intents [45–49]. In example, the Consensus 

Molecular Subtypes (CMS) Consortium, analyzing CRC expression profiling data from 

multiple studies, converged on the definition of four main CMSs [48]. Although CMSs have 

prognostic and therapeutic implications, they have not been translated into clinical routine, yet. 

With the introduction of immune checkpoint inhibitors (ICIs) for the treatment of metastatic 

CRC (mCRC), MSI/CIN classification regained momentum as the dMMR/MSI-H condition 

(~ 2–4% of mCRCs) predicted sensitivity to ICIs in clinical trials, possibly due to both high 

rate of tumor mutational burden (TMB-H) and high levels of infiltrating lymphocytes typically 

present in these tumors [41, 50, 51]. Conversely, pMMR-MSS/MSI-L a group, appears 

resistant to ICIs therapies.  

Here, we performed a procedural multi-omics data integration of genomic, epigenomic and 

transcriptomic data of 520 CRC samples downloaded from The Cancer Genome Atlas (TCGA) 

data portal. Our analysis provided a step forward toward a better understanding of the 

differences between MSI/ CIN status by discovering a novel CRC subgroup of patients relevant 

for therapeutic decisions. They are non-CIN, non-MSI and CIMP-L, and are characterized by 

KRAS-high/TP53-low mutation rate, distinct mutational signatures, and an inflamed tumor 

microenvironment.  

 

3.2. Materials and Methods 

Data collection and processing 

We downloaded genomic, transcriptomic and epigenomic data from TCGA-COAD and READ 

projects stored on TCGA data portal (https://portal.gdc.cancer.gov/), accessed in November 

2020. We performed meta-analysis on 520 TCGA-COAD and READ patients of which copy 

number variations (CNVs), whole exome sequencing (WES), transcriptomic (RNA-seq), DNA 

methylation and MSI status data were available. We developed a computational pipeline that 

includes molecular integrative analysis at genomic, epigenomic and transcriptomic level to 
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better classify patients affected by CRC. The pipeline is subdivided in steps, described in Fig. 

3.1. 

Step1: molecular‑based CRC subgroups stratification  

Tumor mutational burden (TMB) Analysis: Tumor mutational burden (TMB) was calculated 

dividing the total number of nonsynonymous mutations of every patient per 30 Megabase, 

which is the average size of the exome. Numbers of nonsynonymous mutations are derived 

from MAF files retrieved from TCGA resulting from variant analysis of WES experiments on 

520 TCGA-COAD and READ patients. According to [43] patients with a TMB higher and 

lower than 20 per Megabase were classified as HM or non-HM, respectively. 

CNV calling and analysis: We performed CNVs calling from segmented mean data employing 

GISTIC 2.0 which identifies genomic regions that are significantly gained or lost across the 

520 TCGA-COAD and READ tumors [52]. The R package copynumber [53] was used to 

visualize the frequency of gain/loss in the chromosome regions among the CRC’s subgroups 

identified. The association between frequency of CNVs events in the chromosome regions and 

the CRC’s subgroups identified was evaluated using Fisher’s exact test. 

Step 2: molecular characterization of the subgroups identified  

Single Nucleotide Variations (SNVs) data analysis:  

The R package maftools [54], which contains functions to perform most used analyses in 

cancer genomics and to create feature rich customizable visualizations, were used to analyze 

MAF files of the 520 TCGA-COAD and READ tumors and to address the mutational 

signatures. We studied top frequently mutated genes discovered in our cohort plus recurrently 

mutated genes defined in the COSMIC database [55]. The association between different 

mutational rates in the genes analyzed and HM, HM-like and non-HM groups was evaluated 

using Fisher’s exact test. Further, we performed the analysis of the non-silent mutations 

existing in POLE exonuclease domain from exon 9–14 in the three subgroups. Other algorithms 

implemented in the maftools package allowed the extraction of mutational signatures from 
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MAF files and to compare them with the validated signature present in the COSMIC curated 

database.  

DNA methylation analysis  

Data containing β-values from the Illumina Infinium HumanMethylation450 Array were 

available for 382/520 of the patients enrolled in the study. In pre-processing steps, we filtered 

out probes containing Single Nucleotide Polymorphisms (SNPs) and designed on X and Y 

chromosomes. To determine CpG Island Methylator Phenotype (CIMP) status, we first 

identified the 1000 differentially methylated CpGs between the three groups (ANOVA-like 

test using limma package) [56]. Afterwards, we computed an unsupervised hierarchical 

clustering that identified 3 clusters and considered the methylome patterns of the clusters we 

could assign to cluster 1 to CIMP-Low (CIMP-L), cluster 2 to CIMP-High (CIMP-H) and 

cluster 3 to non-CIMP (Fig. 3.3). The hierarchical clustering analysis was performed by using 

“maximum” as clustering distance and “ward.D2” as clustering method. 

Step 3: tumor microenvironment inflammation assessment  

The RNA-seq data of the 520 CRC patients was leveraged to perform a Weighted gene co-

expression network analysis (WGCNA) by using the R package WGCNA [57, 58], and a 

deconvolution analysis of the quality and quantity of immune infiltrate in the tumoral 

environment by using the R package ImSig, [59]. ImSig incorporated immune/ inflammatory 

cells in 7 major classes (B cells, Interferon, Macrophages, Monocytes, Neutrophils, NK cells, 

T cells) plus 3 additional signatures (Plasma cells, Proliferation and Translation). A correlation 

cut-off of 0.8 was used, to remove genes that did not exhibit a strong correlation with the ImSig 

signatures. Furthermore, to assess the statistical significance of the difference of the mean 

expression of each immune signature in the multiple comparison of the three groups the 

Tukey’s test was used, which is a post-hoc test after ANOVA analysis. In addition, we studied 

the expression of 79 Immune Checkpoint Genes (ICGs) curated by [60], in our cohort. A 

differentially expression analysis was performed using the multiple comparison of the three 

subgroups using Wald test and p-value was adjusted according to the Benjamini–Hochberg 
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method. Thresholds for FDR < 0.1 and Log2 Fold Change > 0.4 were used to select significant 

differentially expressed genes.  

 

 
Figure 3.1 Computational pipeline flowchart 

 

3.3. Results 

Classification of the CRC samples according to TMB and CNVs 

We subjected 520 CRC tumor samples of COAD/READ projects to TMB analysis. 78/520 

(15%) samples were classified as hypermutated (HM: TMB > 20 per 106 bases) with a median 

value of 44.9 mutations per 106 bases (range: 26–347 per 106 bases), while 442/520 (85%) 

samples were classified as non-HM with a median value of 3.5 mutations per 106 bases (range: 

0.1–24 per 106 bases). The CNV calling analysis resulted in 29 amplified and 41 deleted focal 

regions significantly altered through all sets of tumor samples. We then subjected the 520 

tumor samples to an unsupervised hierarchical clustering analysis of the CNVs which identified 

two main clusters (Fig. 3.2): Cluster A (ClA) characterized by few CNV events and Cluster B 

(ClB) with a high number of CNVs events. ClA was enriched in HM samples (n = 76/117; 

65%; Fig. 3.2, yellow bars), while ClB mostly contained non-HM samples (n = 401/403; 

99.5%; Fig. 3.2, blue bars). Within ClA, we noted a group of 41 samples with low CNV profile 
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and very low TMB (median value of 3.9 mutations per 106 bases, range: 0.1–23 mutations per 

106 bases). Based on their clinical-pathological similarities with HM CRCs (as described 

below) this subset will be referred to as HM-like (Fig. 3.2) and accounted for 7.8% of the entire 

dataset.  
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Figure 3.2. Unsupervised hierarchical clustering analysis based on CNVs data of the 520 CRC patients 

selected from TCGA-COAD and READ projects. The lines in the heatmap represent significant focal 

alteration. The columns correspond to the 520 patients. HM and non-HM samples are indicated in yellow and 

blue colors, respectively. This analysis identified two main clusters: cluster a (ClA) and cluster b (ClB). ClA 

(117/520; 22.5%) is characterized by a few events of CNVs along the chromosome regions and was enriched in 

HM samples (n = 76/117; 63.9%). ClB contains samples with a high number of CNVs events and it mostly consists 

of non-HM samples (n = 401/403; 99%). Among ClA, we identified a sub-group of tumors (called HM-like; n = 

41/520; 7.8%) with a similar CNV profile of ClA, also characterized by a low TMB. To the right-hand side of the 

figure, a scale indicates the color code relative to the log2 segment mean value of CNVs (ranging from − 1 up to 

3) 

 

The profiles of CNVs amount and distribution among chromosomes were clearly distinct 

between the three subgroups. Overall, the HM-like group was characterized by a CNV profile 

more similar to the HM group than to the non-HM group (Fig. 3.3). However, these tumors 

also showed recurrence of gains (chromosomes 7, 9p and 19q) and losses (chromosome 8p, 10, 

11, 15q, 17p and 18) more typical of non-HM samples (Fig. 3.3). As expected, most HM tumors 

were classified as MSI-H (n = 61/78; 78.2%), while non-HM and HM-like patients were much 
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more frequently MSS stable (n = 377/401; 94.0% and n= 34/41; 82.9%, respectively; Table 

3.1). Consistent with the results of population studies [43], POLE exonuclease domain 

mutation rate was 2.9% (15/520) in our cohort, and all mutations fell in HM-group (15/78; 

19.2%), while non-HM and HM-like patients showed no POLE alteration (Table 3.1). Overall, 

this analysis suggests that non-HM and HM subsets largely comprise CRCs associated with 

typical CIN and MSI/hypermutated phenotypes, respectively, while HM-like tumors appear as 

a distinct entity, with rather low CNVs and mutation rates. 

 
 

Figure 3.3 Frequency of CNV events along the genome identified in HM, HM-like and non-HM samples. 

Frequency of CNV events along the genome identified in HM, HM-like and non-HM samples. Frequencies 

(vertical axis, 0–100%) are plotted as a function of the chromosome location. Copy number gains and losses are 

highlighted in red and blue, respectively. 
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Clinical‑pathological features and gene mutation rates in HM, HM‑like and non‑HM 

samples  

Clinical-pathological features of HM, HM-like and nonHM samples are reported in Table 3.1. 

No significant associations were found with age or gender. As expected, HM patients were 

significantly enriched in early stages and in ascending colon localization compared to non-HM 

patients, which were more associated with stage 4 and in descending colon localization [49, 

61]. Intriguingly, HM-like patients shared with HM subset a similar enrichment in early stages, 

with only 2.4% (1/41) and 3.8% (3/78) of the patients with HM-like and HM profiles in stage 

4, against a rate of 18.0% (72/401) for non-HM patients (P < 0.0001, Fisher’s exact test). 

Moreover, HM-like tumors were more frequently associated with ascending colon location 

(21/41; 51.2%) similar to HM (50/78; 64.1%), in contrast to non-HM tumors which were 

associated with descending colon location (253/401; 63.1%) (P < 0.0001, Fisher’s exact test). 

To further compare the overall molecular features of HM-like versus HM and non-HM subsets 

we examined SNV data. As expected from the literature and according to their CIN profile [62] 

non-HM tumors had higher mutation rate in APC (84%), TP53 (69%) and KRAS (41%) 

compared to HM tumors (Table 3.2). In contrast, HM tumors had high mutation rates in genes 

of the WNT signaling, TGF-β, PI3K-AKT and MAPK/ERK pathways as well as in ATM, 

KMT2D and LRP1D [63]. Interestingly, HM-like tumors had the highest frequency in KRAS 

(59%) and SOX9 (27%) gene mutations compared to the other groups. Also, they showed the 

lowest TP53 mutation rate (15%) and a rate of APC mutations similar to HM samples and 

significantly lower than nonHM samples (Table 3.2). The pattern of mutational targets and 

rates support the hypothesis that HM-like tumors may represent a distinct subgroup of CRCs, 

which may develop and progress through a different sequence of genetic events compared to 

the well-known MSI/hypermutated and MSS/ CIN subsets, while sharing prevalence of early 

stages and ascending colon localization with the HM subset. 
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Table 3.1. Clinical-Pathological features of HM, HM-like and non-HM groups 

 

  

    HM 

(n=78) 

HM-like 

(n=41) 

Non-HM 

(n=401) 

P-value 

Stage I 

II 
III 

IV 

14 (17.9%) 

45 (57.7%) 
14 (17.9%) 

3 (3.8%) 

10 (24.4%) 

16 (39.0%) 
13 (31.7%) 

1 (2.4%) 

62 (15.5%) 

123 (30.9%)  
125 (31.2%) 

72 (18.0%) 

NS 

*** 
* 

*** 

Location Ascending 

Transverse 

Descending 
No Data 

50 (64.1%) 

10 (12.8%) 

12 (15.4%) 
6 (7.7%) 

21 (51.2%) 

8 (19.5%) 

11 (26.8%) 
1 (2.4%) 

115 (28.7%) 

16 (4.0%) 

253 (63.1%) 
17 (4.2%) 

*** 

*** 

*** 
  

Mutational 

Burden 
Median of 
mutations/Megab

ase 

44.9 3.9 3.5   

MSI-status MSI-H 

MSS/MSI-L 

Indeterminate 

61 (78.2%) 

11 (14.1%) 

6 (7.7%) 

6 (14.6%) 

34 (82.9%) 

1 (2.4%) 

3 (0.7%) 

377 (94.0%) 

21 (5.2%) 

*** 

***  

Pol-ε exonuclease 

domain mutation 
  15 (19.2%) 0 0     - 
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Table 3.2. Mutational rate of most frequently altered genes in CRC in HM, HM-like and non-HM group 

 
Genes Pathway HM HM-like Non-HM P-value 

APC WNT signaling 49% 59% 84% *** 

AMER1 WNT signaling 27% 15% 9% *** 

CTNNB1 WNT signaling 24% 12% 3% *** 

TCF7L2 WNT signaling 24% 0% 7% *** 

FBXW7 WNT signaling 40% 32% 11% *** 

ARID1A WNT signaling 45% 5% 6% *** 

SOX9 WNT signaling 15% 27% 11% * 

TGFBR2 TGF-β signaling 12% 7% 1% NS 

ACVR2A TGF-β signaling 37% 15% 1% ** 

SMAD4 TGF-β signaling 15% 17% 12% NS 

PIK3CA PIK3 signaling 40% 41% 21% *** 

PTEN PIK3 signaling 22% 10% 3% ** 

FAT4 Hippo signaling pathway 76% 24% 15% *** 

ERBB2 MAPK signaling 15% 5% 2% *** 

ERBB3 MAPK signaling 22% 5% 2% *** 

KRAS MAPK signaling 26% 59% 41% *** 

NRAS MAPK signaling 4% 7% 7% NS 

BRAF MAPK signaling 62% 12% 3% *** 

ATM DNA damage response 50% 10% 7% *** 

TP53 DNA damage response 29% 15% 69% *** 

LRP1B Membrane trafficking  53% 5% 13% *** 

KMT2D Histone methyl transferase 64% 15% 3% *** 
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Fingerprints of base substitutions in HM, HM‑like and non‑HM groups reveals unique 

mutational signature for each group  

To further question whether HM-like CRCs are distinct from MSI/hypermutated and MSS/CIN 

subsets, we searched for the emergence of specific mutational signatures in the three 

subgroups. Indeed, different mutational processes generate unique combinations of base 

changes, termed “Mutational Signatures” which can be used as a readout of the biological 

history of a cancer [64]. To define the mutational signatures associated with HM, HM-like and 

non-HM groups we performed a classification of base substitutions to include the 3′ and 5′ 

flanking bases at the mutated site [54]. Thus, we extracted 3 mutational signatures from each 

group and compared them to COSMIC Single Base Substitution (SBS) Signatures database, a 

catalog of known mutational signatures identified from > 12,000 samples derived from 40 types 

of human cancer in which additional information for each signature were also provided. The 

top three signatures extracted from the HM group were the most similar to COSMIC SBS6, 

SBS10b and SBS44 signatures (Table 3.3) and that is consistent with the “hypermutated” 

phenotype defining the HM group, since SBS10b signature is associated with POLE mutations, 

which outbreaks in a high mutational rate, and COSMIC SBS6 and SBS44 are typically 

associated with dMMR. The three signatures extracted from non-HM samples had the highest 

similarity with COSMIC SBS1, SBS6 and SBS40 signatures (Table 3.3). SBS1, which was 

also noted in the other subgroups, is related to the spontaneous or enzymatic deamination of 5-

methylcytosine to thymine and is widespread in many tumors. SBS40 signature is not clearly 

associated with a specific etiology, but like SBS1 it is widespread in most cancers and shows 

some relationships with the age of patients [65]. The three signatures extracted from HM-like 

samples showed high similarities with SBS1, SBS6 and SBS30. Similarity to SBS30 represents 

a feature unique to HM-like samples (Table 3.3). This signature was recently associated with 

deficiency in the base excision repair and with inactivation of the NTHL1 gene [66]. Despite 

some similarities in the mutational signatures were shared by two or even all three subgroups 

(i.e., SBS1, SBS6 and SBS15), this analysis further evidenced distinct mutational profiles 

between the HM, HM-like and non-HM subgroups. 
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Table 3.3. Records of the cosine similarity between the three mutational signatures extracted from each 

group from the MAF files and the three most similar COSMIC mutational signatures. 

In the table are reported the best matches between the three mutational signatures extracted from the three groups 

and the COSMIC SBS Signatures database 

 

 

Different CpG methylation patterns occur in the three CRC subgroups  

Next, we performed an unsupervised hierarchical clustering analysis for 382 of the TCGA-

COAD/READ samples for which CpGs methylation data were available. The hierarchical 

clustering dendrogram defined three distinct tumor groups: CIMP-H (n = 57/382; 14.9%) with 

a high rate of CpGs probes methylated; CIMP-L (n = 107/382; 28.0%) with low rate of CpGs 

probes methylated and non-CIMP (n = 218/382; 57.1%) characterized by the absence of CpGs 

methylated probes (Fig. 3.4). As expected, most of the HM patients belong to the CIMP-H 

cluster (41/57; 71.9%) and most non-HM tumors belong to the non-CIMP cluster (214/294; 

72.8%), while a small number of HM and nonHM tumors clustered in the CIMP-L group. 

Interestingly, we revealed that the HM-like samples were mainly associated with CIMP-L 

phenotype (24/31; 77.4%) (Fig. 3.4). These results highlighted a different methylome pattern 

of HM-like tumors compared HM and non-HM. 

  

   SBS Best match Aetiology 
Cosine 

similarity 

HM Signature 1 SBS44 Defective DNA mismatch repair 0.81 

 Signature 2 SBS10b Polymerase epsilon exonuclease domain mutations 0.78 

 Signature 3 SBS6 Defective DNA mismatch repair 0.90 

HM-like Signature 1 SBS1 
Spontaneous or enzymatic deamination of 5-

methylcytosine 
0.94 

 Signature 2 SBS30 
Deficiency in base excision repair due to inactivating 

mutations in NTHL1 
0.83 

 Signature 3 SBS6 Defective DNA mismatch repair 0.93 

Non-HM Signature 1 SBS1 
Spontaneous or enzymatic deamination of 5-

methylcytosine 
0.96 

 Signature 2 SBS40 Unknown 0.89 

 Signature 3 SBS6 Defective DNA mismatch repair 0.77 
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Figure 3.4 Unsupervised hierarchical clustering analysis based on CpGs methylation data of the 382 

patients selected from TCGA-COAD and READ projects. The lines on the heatmap represent the 1000 most 

differentially methylated CpGs probes between HM, HM-like and non-HM groups. The columns correspond to 

the 382 patients. Inside the cells of the heatmap are reported the β-values which represent the methylation rate of 

the probes. The HM patients are reported in yellow; the HM-like patients in red while the non-HM patients in 

blue. The hierarchical clustering dendrogram supported three distinct tumor groups: CIMP-H (n = 57) defined by 

an high rate of CpGs probes methylated; CIMP-L (n = 107) with low rate of CpGs probes methylated and non-

CIMP (n = 218) characterized by the absence of CpGs probes methylated 

 

WGCNA analysis supports HM, HM‑like and non‑HM tumors as three distinct CRC 

subgroups 

We performed the WGCNA network-based methodology on the transcriptomic data of 520 

TCGA-COAD/ READ patients. This analysis revealed 12 highly correlated modules within the 

gene correlation network, which encompassed genes that were more correlated among each 

other than with other nodes in the network. For each module, through the WGCNA analysis, 
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we computed the module eigengene defined as the first principal component of that module. 

By considering as external clinical traits the HM, HM-like, and non-HM status, we then 

computed the Pearson correlation coefficient between the module eigengene of each module 

and these external traits (Fig. 3.5a). We found (1) three modules with statistically significant 

positive correlations with the HM status, meaning that genes belonging to these three modules 

were highly expressed in HM patients; (2) two modules with statistically significant positive 

correlations with the HM-like status, whose genes were highly expressed in HM-like patients; 

(3) one module with a statistically significant positive correlation with the non-HM status, 

whose genes were highly expressed in non-HM patients. All these modules did not overlap 

among the patient status (i.e., HM, HM-like, non-HM), suggesting that these three classes of 

CRC patients were different also with respect to the gene expression data. In order to identify 

specific gene signatures of the three subgroups, for each gene we computed the module 

membership (MM) as the correlation between its gene expression profile and the module 

eigengene and sorted genes within their own modules according to the MM. Yet, we considered 

as representative genes of a given module the ones whose MM was greater than 0.7. Then, for 

each patient status, we grouped together the representative genes of the modules with the 

highest correlation and performed a functional enrichment analysis. Via this process, we 

associated putative biomarkers and functional pathways to each status (i.e., HM, HM-like, non-

HM). Also, this analysis confirmed relevant differences among the three subgroups. In detail, 

the HM status was characterized by high expression of genes mainly involved in the 

inflammatory bowel disease, Toll-like receptor signaling pathway, PI3K-Akt signaling 

pathway and JAK-STAT signaling pathways (Fig. 3.5b). The HM-like status was characterized 

by high expression of genes mainly involved in estrogen signaling and pathways related to the 

immune/inflammatory response (Fig. 3.5c). The non-HM status was characterized by high 

expression of genes mainly involved in RNA processing, DNA repair and VEGF signaling 

pathway (Fig. 3.5d). 
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Figure 3.5. WGCNA analysis. (a) Heatmap of module-trait associations. In the heatmap, each row corresponds 

to a module eigengene and each column to a trait. Each cell contains the corresponding correlation and P value. 

The table is color-coded by correlation according to the color legend. The traits along the columns were 

numerically encoded as follows: HM status (no = 1, yes = 2); HM-like status (no = 1, yes = 2); non-HM status 

(no = 1, yes = 2). The color labels of modules with at least one statistically significant correlation were highlighted. 

b, c KEGG pathways. Results of KEGG pathways enrichment analysis for the most representative genes (module 

membership > 0.9) falling within the modules statistically significant correlated with the HM status (b), HM-like 

status (c), and non-HM status (d). The names of genes annotated for the enriched KEGG pathways were reported. 

 

Rate of immune infiltrate in tumoral microenvironment of the three CRC subgroups  

dMMR CRC, largely clustering in the HM subgroups, are typically associated with immune 

infiltration and good response to ICB therapy [41]. WCGNA analysis indicated activation of 

inflammatory/immune response genes in HM and HM-like tumors. Therefore, we set out to 

determine the rate of immune/inflammatory infiltration more specifically in the three subsets 

by a computational analysis of tumor transcriptomic data, using the R package ImSig [59]. By 

this mean, 10 signatures describing the relative abundance and statistical analysis of 7 

inflammatory/immune cells plus 3 additional signatures were analyzed. Concerning T and NK 

lymphocytes, as expected, we observed the highest signature representation in the HM group, 

while non-HM have a significantly lower degree of immune cell infiltration (P < 0.01) (Fig. 
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3.6). Interestingly, HM-like tumors showed T and NK cell signatures similar to HM samples 

and significantly different than non-HM group (P < 0.01). On the other side, HM-like tumors 

had proliferation, macrophage, and interferon signatures more similar to non-HM than HM 

tumors. However, some genes belonging to interferon signatures and involved in 

inflammatory/immune responses shared a similar expression between HM-like and HM 

tumors, while being different from non-HM tumors .Next, we performed a differential 

expression analysis of the 79 ICGs described by [60] expressed in the series. The comparison 

between HM and non-HM samples revealed that 46 ICGs were differentially expressed and as 

expected, most of these (29/46; 63.0%) were more expressed in HM group than non-HM. These 

included KIR and HLA genes, possibly suggestive of NK and antigen presenting cells 

infiltration, as well as multiple genes directly involved in immune checkpoint regulation, 

including the well-known PD-L1, PD1, CTLA4, LAG3, TIM3 and TIGIT (Fig. 3.7). 

Interestingly, 17 genes were significantly less expressed in HM compared to non-HM samples. 

HM-like tumors profoundly differed from HM and non-HM samples. They showed 13 ICGs 

significantly more expressed compared to non-HM tumors. KIR genes, TIGIT, PD1 and 

CTLA4 show a similar trend compared to HM samples. Differences in the expression of HLA 

genes did not reach statistical significance, while CD96 appears even more differentially 

expressed in this subgroup than in HM tumors, comparing with non-HM subset. Remarkably, 

we noticed that 4 genes whose role in immune checkpoint regulation is emerging (VTCN1, 

BTNL9, BTLA and CD28) were specifically more expressed in HM-like group compared to 

non-HM samples (Fig. 3.7). Also, in this comparison we found repressed genes (i.e., SIRPA, 

BTN2A1 and PVR), some of which followed the same trend of HM tumors, while others where 

rather specific for this subset (i.e., CD70, CD40). Conversely, IDO1, TDO2, and CD40LG 

expression trends were completely opposite in HM versus HM-like subgroups. 
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Figure 3.6. Results of immune signatures analysis performed by ImSig. The boxplots (A and B) show the 

gene expression of T and NK signature genes (estimated relative abundance) across the HM, non-HM and HM-

like groups. Statistical analysis of data was performed using analysis of variance (ANOVA) followed by multiple 

comparison Tukey’s test. **P < .01, *P < .05 
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Figure 3.7. Example of ICGs differentially expressed in HM, non-HM and HM-like groups. The Box Plots 

show A ICGs more expressed in HM group versus non-HM, which may (KIR genes) or may not (HLA genes) be 

significantly more expressed in HM-like vs non-HM tumors; B gene sharing a similar trend of expression between 

HM and HM-like; C gene specifically more expressed in HM-like group (VTCN1 and BTNL9) or with an opposite 

trend of expression in HM versus HM-like (CD40LG). The analysis was performed using the multiple comparison 

of the three subgroups using Wald test and P value was adjusted according to the Benjamini–Hochberg method. 

Thresholds for FDR < 0.1 and Log2 Fold Change> 0.4 were used to select significant differentially expressed 

genes 

 

3.4. Discussion 

The comprehension of the biological processes underlying cancer evolution and the molecular 

stratification of tumors is extremely relevant for prognostic and therapeutic purposes. For what 

concerns ICI therapy, tumor with high mutation load may lead to generation of a high number 

of immunogenic neoantigens [67], which in turn can facilitate immune responses against 
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cancer cells. In this therapeutic framework, CIN (non-HM) CRCs usually bear low TMB and 

are mostly resistant to ICIs, meanwhile HM CRCs bear high TMB and are prone to ICIs 

therapy. By performing hierarchical clustering analysis of CNVs versus hypermutation status 

exploiting TCGA CRC datasets, we identified a third cluster of CRCs (7.8%) characterized by 

low CNVs and low TMB, distinct from the HM and non-HM subsets, which largely matched 

the MSI and CIN groups, respectively. Since this new cluster shared clinical-pathological 

features with HM CRCs, it was named HM-like subset. Interestingly, HM-like tumors also 

showed a distinct mutational profile compared with HM and non-HM tumors, for which we 

highlighted profiles essentially in line with the literature [49, 68]. In example, the rate of APC 

mutations in HM-like tumors was similar to HM samples and significantly lower than non-HM 

samples, while mutations in alternative targets of the WNT and TGF-beta pathways were much 

lower than those occurring in HM samples, suggesting that this tumor subset is probably less 

dependent from WNT activation than the other groups. Most importantly, HM-like tumors 

were characterized by the highest rate of KRAS mutation, a feature that was previously noted 

in CIMP-L CRCs [69]. This is a CRC subset with a yet poorly defined clinical relevance, often 

grouped with the non-CIMP tumors in various studies [70] and sharing the majority of 

methylation targets with CIMP-H tumors [71]. By methylation analysis, we found that HM-

like tumors had mainly a CIMP-L phenotype, at variance with HM and non-HM tumors, which 

were mostly associated with CIMP-H and non-CIMP phenotype, respectively [49]. Therefore, 

our data confirm a particularly high recurrence of KRAS mutations in a specific subset of 

CRCs, associated with CIMP-L phenotype. While the molecular background for this 

association is not understood yet, recent studies seem to indicate that the strong association 

between BRAF mutations and CIMP-H phenotype might be due to the need to suppress a 

senescence-inducing gene expression program promoted by mutant BRAF [72]. Oncogenic 

RAS molecules are also known to activate senescence in untransformed cells [73, 74]. It is 

tempting to speculate that also the relevant overlap between KRAS mutation and the CIMP-L 

phenotype in the HM-like subgroup could be related to the repression of a similar senescence-

inducing gene expression program. Further efforts will be required to formally prove this 

hypothesis. HM-like CRCs also showed the highest frequency of SOX9 gene mutations and 
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the lowest rate of TP53 mutations. This association was previously recognized, but its 

functional significance remains ununderstood [75]. Overall, the genetic marks of HM-like 

supports the hypothesis that may represent a distinct subgroup of CRCs, which may arise and 

progress through a different sequence of genetic events compared to the well-known 

MSI/hypermutated and MSS/CIN subsets. This is further supported by the analysis of 

mutational signatures, which indicate their unique similarity to the SBS30 pattern. This was 

recently associated with deficiency in the base excision repair and with inactivation of the 

NTHL1 gene [66]. Biallelic NTHL1 mutations are responsible for the NTHL1-tumor 

syndrome, a cancer-predisposing disease characterized by the occurrence of adenomatous 

polyposis and cancer at different sites, in addition to CRC [76]. This specific genetic fingerprint 

indicates that also the pathogenic mechanisms and the etiology underlying HM-like CRCs 

might be distinct from those leading to HM and non-HM CRCs. So far, we were unable to pull 

out genomic or transcriptomic alterations in the NTHL1 gene specifically occurring in the HM-

like group, suggesting that functional inactivation of its pathway perhaps associated to the 

specific CIMP-L pattern might be involved in this respect. Additional studies should be 

implemented to highlight possible genetic/epigenetic hits or alternative/parallel pathways to 

NTHL1 inactivation, which might end up in eliciting the same molecular fingerprints. The 

existence of a small group of pMMR/MSS CRCs (~ 10%) responsive to ICIs therapies was 

inferred in several clinical studies [77–79]. Pagès and collaborators observed a high 

immunoscore in 21% of MSS compared to 45% of MSI [80]. Similar findings were reported 

by Kikuchi et al. which identified a subset of MSI‐L/MSS CRCs within the TCGA 

COAD/READ dataset showing upregulation of the IFN‐γ and CD8 T effector gene signatures 

[81]. They also confirmed the presence of a small fraction (~ 12%) of pMMR CRCs positive 

for PDL1 and p‐STAT1 showing increasing grades of infiltrating CD4(+) or CD8(+) TILs on 

a population of 219 CRC samples. Our work raised the question whether the HM-like group 

identifies the same CRC subset. Indeed, not only WCGNA analysis of the transcriptome 

evidenced relevant differences among the three groups, but also indicated that the HM-like 

tumors bore high expression of genes associated with immune/inflammatory response. To 

better investigate this latter aspect, we defined the immune/inflammatory infiltration signature 
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in the three subsets, according to [59]. Intriguingly, we confirmed that HM-like tumors showed 

T and NK cells signatures similar to HM samples which, as widely known, are inflamed tumors 

well responsive to ICI therapies. In contrast, proliferation, macrophage and interferon 

signatures in HM-like tumors were on average more similar to the non-HM than to HM group. 

Data on the differential expressions of the ICGs curated by [60] further confirmed the 

outstanding differences among the three groups. Coherently with the immune infiltration 

analysis, HM samples showed a high expression of multiple ICGs, confirming the presence of 

an immune/inflammatory infiltrate (KIR and HLA genes) and differential expression of 

immune response modulators, including those targeted by established ICI therapies. KIR genes 

and ICGs (i.e., PD1, CTLA4, CD96 and TIGIT) for which specific targeting therapies were 

introduced in the clinical practice [41, 82] also showed a higher expression in HM-like tumors 

compared to non-HM samples, supporting their immune/inflammatory infiltration. Moreover, 

our analysis highlighted ICGs exclusively expressed in HM-like, e.g., VTCN1, PCDCD1, 

CD96, BTNL9 and BTLA, encoding for important immune regulators of both stimulatory and 

inhibitory pathways, some of which are emerging as new promising targets for immunotherapy 

[83, 84]. While these data confirm the presence of an immune/inflammatory infiltrate in HM-

like tumors showing modulation of established and potentially new immune checkpoint targets 

to consider for ICI therapies, remarkable differences emerged between HM-like and HM group. 

Among them, the relatively lower expression of HLA genes in HM-like samples is in line with 

the poor macrophage signature observed in this subgroup compared to HM samples. The 

significance of a potentially lower infiltration by antigen presenting/ dendritic cells and the 

relevant differences in the pattern of immunomodulating molecules expressed in HM and HM-

like tumors cannot be easily interpreted at the time being and requires further investigations. 

These differences, however, do not contrast with our hypothesis that HM-like CRCs might be 

responsive to ICI. Of relevance, the strong negative regulation of IDO and TDO2 in HM-like 

compared to both HM and non-HM tumors suggest that the formers are possibly characterized 

by a less immunosuppressive microenvironment caused by the release of tryptophan 

metabolites. Perhaps this condition might also be related to the more frequent association of 

HM-like tumors with early stages CRC and may eventually make them more prone to immune 
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reactivation. Unfortunately, a major limitation of this study is represented by the lack of a 

univocal specific molecular biomarker/s facilitating the identification of HM-like CRC, in 

clinical settings. To this end, the possibility to use CIMP-L phenotype needs to be explored. 
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Chapter 4: Procedural multi-omics data integration 

for studying Breast Cancer 

In silico recognition of a prognostic signature in basal-like breast cancer patients 

4.1. Introduction 

Breast Cancer (BC) is the most common female cancer and despite important advances in early 

detection and research development, it continues to be the second leading cause of death in 

women worldwide [85]. BC is a heterogeneous pathology as witnessed by the existence of 

different subtypes with distinct morphologies and clinical implications [86]. These subtypes 

are usually defined by using immunohistochemical (IHC) [87] and genetic (PAM50) [88, 89] 

classifications. According to the IHC classification, the different BC subtypes are: Luminal A, 

Luminal B, Her2 positive and Triple negative. According to the PAM50 classification, the 

different BC subtypes are: Luminal A, Luminal B, Her2 positive and Basal-like. The most 

aggressive BC pathophenotypes are the triple-negative BC (TNBC) and the Basal-like, 

respectively. Triple-negative BC (TNBC) accounts for a minority of all diagnosed BCs (15–

20%) [5]. It is a subtype with a heterogeneous nature, defined by the low or absent expression 

of estrogen (ER), progesterone (PR) receptors and the lack of expression of the human 

epidermal growth factor (EGF) receptor-2 (HER2) receptors [90]. These cancers differ from 

other BC subtypes in that they grow and spread faster, have limited treatment options (typically 

treated with chemotherapy) and their metastatic pattern spread with a higher likelihood of brain 

and lung involvement and less frequently with bone lesions. Relapse is common in TNBC, 

usually in the first 5years, leading to the poorest survival outcomes between all BC subtypes 

[91]. Currently, there are not available widely accepted prognostic markers to predict outcomes 

in TNBC patients. TNBC is often used as a surrogate for identifying the aggressive basal-like 

BC subtype. Although the two patterns share many similarities, biologically they are not the 

same, but both are associated with poor clinical outcomes. Therefore, the development of new 

prognostic indicators for basal-like subtype represents an unmet clinical challenge that might 
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be of benefit to the clinical management of this disease. In a recent study [5], the SWIM 

methodology was applied to the transcriptomic profile of a total of 505 BC patients stratified 

according to PAM50 subtypes classification to identify switch genes shared among four 

subtypes and specific for each subtype. In this study, the authors focused on the common switch 

genes and performed several in silico analysis and in vitro and ex vivo experiments to highlight 

molecular signatures shared among all BC subtypes.  

Here, we performed a procedural multi-omics data integration of TCGA-BC transcriptomic, 

genomic, epigenomic and clinical data for the basal-like specific switch genes identified in [5], 

in order to identify a basal-like prognostic gene signature. Our study showed that 11 basal-like 

specific switch genes were overexpressed in BC tissues compared to normal counterpart and 

associated with BC patient’s prognosis acting as unfavorable prognostic markers. Also, their 

highest expression was found in the basal-like subtype and this overexpression could be 

putatively related to genetic and epigenetic alterations as well as the action of important 

transcription factors. These 11 basal-like specific switch genes can constitute a gene signature 

to evaluate the prognosis of basal-like BC patients independently from the therapeutic 

intervention.  
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4.2. Materials and Methods 

Data collection and processing 

We exploited TCGA to obtain transcriptomic and clinicopathological data of the entire cohort 

of 1049 BC samples, and Copy Number Variations (CNVs) data of 317 TCGA-BC patients 

(92 basal-like and 225 luminal A). DNA methylation data of 152 TCGA-BC patients (37 basal-

like and 152 luminal A) were retrieved from the Firehorse TCGA GDAC browser 

(https://gdac.broadinstitute.org/). The BC patients considered are female not subjected to a 

neoadjuvant treatment. Moreover, the Human Protein Atlas website 

(https://www.proteinatlas.org) was leveraged to identify tumor-type specific proteins 

expression patterns and to perform immunohistochemistry image a direct comparison of the 

protein expression of selected prognostic indicators between normal and tumor breast tissues.  

SWIM software  

An explanation of SWIM software is given in the Chapter 2 section 3 of this thesis. 

Kaplan-Meier survival analysis  

To analyze the correlation between the expression level of the 108 basal-like specific switch 

genes and patient overall survival (OS) and therefore to evaluate their prognostic value, we 

used the RNA-sequencing data from TCGA to split the entire cohort of BC patients (1049 

samples) into two groups (called low-expression and high-expression group) according to the 

upper and lower expression quartile. Low- and high-expression groups refer to patients with 

expression levels of the given switch gene lower and greater than the 50th percentile (i.e., 

median), respectively. For each patient cohort, the cumulative survival rates were computed 

for each switch gene according to the Kaplan-Meier (KM) method [11] on the clinical metadata 

provided by TCGA. For each switch gene, the survival outcomes of the two patients’ groups 

were compared by the log-rank test. Switch genes with log-rank p-values less than 0.05 were 

suggested as candidate prognostic biomarkers. In particular, the lower the p-value, the better 

the separation between the two prognosis groups. If the group of patients with high expression 
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of the selected prognostic gene has a higher observed event than expected event (worst 

prognosis), it is defined as an unfavorable prognostic gene; otherwise, if its high expression is 

associated with the best prognosis, it is a favorable prognostic gene. To confirm the prognostic 

value of the basal-like specific switch genes points out from the KM survival analysis on the 

TCGA Breast Cancer patients, we performed the KM analysis on different BC dataset. To do 

this, we exploited the Kaplan-Meier plotter website (http://kmplot.com/analysis/), which 

integrates gene expression data and OS information downloaded from GEO, EGA and TCGA 

for several types of cancer [92]. We ran KaplanMeier plotter by considering the entire BC 

database including 7,830 unique samples from 55 independent affymetrix datasets [93] and by 

dividing patients into high and low expression group based on the auto selected best cutoff 

computed between the lower and upper quartiles of switch genes expression. 

Statistical methods  

The one-way analysis of variance (ANOVA) is an extension of independent two-samples t-test 

for comparing means in a situation where there are more than two groups. In one-way ANOVA, 

the data is organized into several groups based on one single grouping variable (also called 

factor variable). In this study, the one-way ANOVA test was used to compare the means of 

selected genes in patients grouped based on the PAM50 BC subtypes. A p-value ≤ 0.05 

indicated that at least two groups significantly differ from each other and multiple pairwise-

comparisons exploiting the t-test method were performed to identify which ones.  

Gene regulatory network 

The gene regulatory network of the selected switch genes was constructed by integrating 

information from Pscan [94], TRRUST [95] and the human interactome (i.e., that is the 

network of all physical interactions within a cell, from protein-protein to regulatory protein–

DNA and metabolic interactions [13]). Pscan is a web tool designed to computationally predict 

TF-target regulatory relationships [94]. It scans the sequence of the promoter regions from an 

input gene list with motifs describing the binding specificity of known transcription factors and 

assesses which motifs are significantly over-or under-represented, suggesting which 
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transcription factors could be common regulators of the input genes. In this study, the promoter 

regions were identified as the genomic regions spanning from -450 to +50 nucleotides to 

transcription start sites and the TF binding profiles were retrieved from JASPAR 2018 database 

[96] .TRRUST is a freely available and manually curated database containing 8,444 TF-target 

regulatory relationships of 800 human transcription factors. These relationships were derived 

from PubMed articles describing small-scale experimental studies of transcriptional 

regulations by using a sentence-based text mining approach [95]. The human interactome, also 

called protein-protein interaction (PPI) network, was downloaded from Cheng and coauthors 

[8], where the authors assembled their in-house systematic human interactome with 15 

commonly used databases with several types of experimental evidence (e.g., binary PPIs from 

three-dimensional protein structures; literature-curated PPIs identified by affinity purification 

followed by mass spectrometry, Y2H, and/or literature derived low-throughput experiments; 

signaling networks from literature-derived low throughput experiments; kinase-substrate 

interactions from literature-derived low-throughput and high-throughput experiments). This 

version of the interactome is composed of 217,160 protein-protein interactions connecting 

15,970 unique proteins. 

 Copy Number Variations (CNVs) data analysis  

Copy Number Variations (CNVs) data reported contiguous chromosome regions with log2 

ratio segment means in a tab-delimited format. To obtain segment means values of CNVs of 

the selected genes for the enrolled patients, we employed GISTIC 2.0 software [52]. Gistic’s 

parameters used in this study are the following: 

-b path_file;  

-seg  filename;  

-refgene refgenefiles/hg19.UCSC.add_miR.140312.refgene.mat;  

-mk genome.info.6.0_hg19.na31_minus_frequent_nan_probes_sorted_2.1.txt;  

-maxspace 2000;  

-ta0.3;  

-td0.3;  

-js4; 

-qvt 0.01;  

-conf 0.99;  

-genegistic 1; 
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-armpeel 1;  

-savegene 1  

The hierarchical clustering analysis was performed by using “Canberra” as clustering distance 

and “ward.D2” as clustering method. The association between the CNVs status of the selected 

genes and the BC subtypes was evaluated using Fisher’s exact test.  

DNA methylation data analysis  

The level of DNA methylation for more than 450 000 CpG sites in the human genome was 

represented as beta value To make available and pre-process methylation data in R 

environment, we used minfi package [97]. Pre-processing was performed using an in-house R 

script that eliminated probes with no methylation level detectable, removed all known single-

nucleotide polymorphism (SNP)-associated CpG sites, associated CpG sites with known genes 

and matched patients and genes selected in our study. The hierarchical clustering analysis was 

performed by using “Euclidean” as clustering distance and “ward.D2” as clustering method. 

 

4.3. Results 

Study design  

In a recent paper by Grimaldi and colleagues [5], a total of 505 BC subjects (229 Luminal A, 

120 Luminal B, 58 HER2-enriched, and 98 Basal-like) were analyzed and 108 switch genes 

were identified as specific for the most aggressive BC subtype, i.e., the basal-like subtype [92–

94]. In the present study, we aim to predict important prognostic biomarkers among these basal-

like specific switch genes. A schematic for our study design is depicted in Fig. 4.1. 
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Figure 4 1. Study design. The figure depicts the schematic of the methodology applied in this study. 
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Prognostic value of basal-like specific switch genes  

To study the clinical relevance of the basal-like specific switch genes with respect to the 

patients’ survival, we exploited their expression profiles to perform the Kaplan-Meier analysis. 

We used the RNA-sequencing data available on the TCGA to stratify BC patients in two groups 

according to the expression levels of the 108 basal-like specific switch genes. Thus, for each 

switch genes, low (high)-expression groups refer to patients with the expression level of that 

gene lower (greater) than the median of its expression values across all BC patients. Then, a 

log-rank test was performed to assess a statistical significance (p-value) to each gene: the lower 

the p-value, the better the separation between the two prognosis groups. Switch genes with log-

rank p-values less than 0.05 were candidate as potential biomarkers for predicting the survival 

rate of BC patients. We found a total of 15 basal-like specific switch genes that were 

significantly associated (p-values < 0.05) with BC patients’ prognosis. Among them, 11 switch 

genes (i.e., CENPN, LRP8, DSCC1, CTPS, RCOR2, GINS4, TUBA1C, PRAME, SLC7A11, 

CDCA7, GSDMC) appeared to be an unfavorable prognostic gene (Fig. 4.2), suggesting that 

their higher expression could be associated with poorer BC patients’ overall survival (OS). The 

other four switch genes (i.e., NXNL2, PHGR1, LOC389033, C10orf79) appeared as a 

favorable prognostic gene since their high expression correlated with a better clinical outcome. 

Hereafter, we focused only on the 11 basal-like specific switch genes whose activation 

appeared to be associated with the worst prognosis. Their clinical relevance was also confirmed 

using other BC datasets collected in the Kaplan-Meier plotter website [98] (Table 4.1, RNA 

level). 
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Figure 4.2. Switch genes with an unfavorable prognostic value from the survival analysis on TCGA data. 

Kaplan-Meier analyzes to evaluate the correlations between the expression of the basal-like specific switch genes 

and the OS in TCGA BC patients. Low- and high expression groups refer to patients with expression levels lower 

and greater than the 50th percentile, respectively. 
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Table 4.1. Summary of the properties of the basal-like prognostic biomarkers. Abbreviations: TFs, 

Transcription Factors; CNVs, Copy Number Variations; KM, Kaplan-Meier; IHC, Immunohistochemistry; PPI, 

protein-protein interactions; TCGA, The Cancer Genome Atlas; HPA, Human Protein Atlas; BC, Breast Cancer; 

BL, Basal-like; LumA, Luminal A; amp, amplified; del, deleted; hypo, hypomethylated. Asterisk (*) was used to 

highlight values not satisfying the chosen thresholds as well as not available data. 

 

 

DNA RNA Protein 

TFs CNVs Methylation SWIM 
KM analysis (log 

rank p-value)  

model fitting 

(index R
2

) 
IHC staining 

TRRUST/Pscan/PPI TCGA TCGA TCGA TCGA 
other 

datasets 
subtype stage HPA 

CENPN NRF1 
amp in BL/del in 

LumA 
hypo in BL 

switch 

genes 
0.02 4.9E-6 0.99 0.96 not available* 

LRP8 HIC1 
amp in BL/del in 

LumA 
- 

switch 

genes 
0.01 2.4E-4 0.98 0.63* 

more expressed in 

BC 

DSCC1 HMBOX1 amp in BL - 
switch 

genes 
0.05 3.5E-8 0.95 0.78 

more expressed in 

BC 

CTPS 
MYC, TWIST1-2, 

NRF1 

amp in BL/del in 

LumA 
hypo in BL 

switch 

genes 
0.01 8.2E-5 0.94 0.72 

more expressed in 

BC 

RCOR2 - - - 
switch 

genes 
0.05 4.3E-3 0.93 0.47* 

more expressed in 

BC 

GINS4 - - - 
switch 

genes 
0.04 6.4E-3 0.90 0.68 

more expressed in 

BC 

TUBA1C TP53, NFKB1 del in BL - 
switch 

genes 
0.01 1.3E-6 0.89 0.76 

more expressed in 

BC 

PRAME NRF1, SOX9, RARA 
amp in BL/del in 

LumA 
hypo in BL 

switch 

genes 
0.03 9.9E-6 0.83 0.76 not available* 

SLC7A11 - - - 
switch 

genes 
0.04 0.03 0.80 0.46* not available* 

CDCA7 MYC, E2F1 amp in BL - 
switch 

genes 
0.01 1.3E-4 0.73 0.32* not available* 

GSDMC - amp in BL hypo in BL 
switch 

genes 
0.01 4.9E-4 0.64* 0.05* not available* 

 

Overexpression of the basal-like prognostic biomarkers  

A differential expression analysis showed that the 11 basal-like specific switch genes, whose 

unfavorable prognostic value was statistically significant from the previous survival analysis, 

were all up-regulated in the basal-like cancer condition compared to the normal condition. Yet, 

by performing an ANOVA test and multiple pairwise-comparisons among all the BC subtypes, 

we found that each comparison was statistically significant and the expression value of the 11 

basal-like specific switch genes was greater in the basal-like versus the others BC subtypes and 

always greater than the median used in the KM survival analysis, leading to an association 

between worst prognosis patients (high-expression groups in the KM plots) and basal-like 
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affected subjects (Fig. 4.3). Taken all together, these findings prompted us to identify these 11 

switch genes as potential prognostic biomarkers for basal-like subtype. To statistically quantify 

the increasing trend of the median expression values of these 11 switch genes as the phenotype 

varies from physiological to pathological condition passing across the different BC subtypes, 

we exploited a linear regression model, where the index R squared estimates the goodness-of-

fit. We found that all but one showed a very strong straight-line relationship (R-squared ≥ 0.7) 

between their median expression and the tumor subtypes (Table 4.1, RNA level), with the 

CENPN as the first on the list (R-squared = 0.99). These results were mostly confirmed by 

performing the same analysis using the pathological staging of the BC patients affected by 

PAM50 subtypes (Table 4.1, RNA level). Indeed, we observed that 6basal-like specific switch 

genes (i.e., CENPN, DSCC1, CTPS, GINS4, TUBA1C, PRAME) reached an R-squared 

(rounded to one decimal place) ≥ 0.7 also with respect to the staging (Table 4.1, RNA level). 

The increasing trend of the top-ranked switch genes (highest R-squared) both with respect to 

the subtypes and the staging is depicted in Fig. 4.4a and 11b, respectively. To explore the 

expression patterns of the proteins encoded by the 11 prognostic switch genes, we queried the 

Human Protein Atlas (HPA) that provided representative immunohistochemistry images in BC 

tissues and normal breast tissues. As expected, we found that six of these proteins were 

overexpressed in BC tissues compared to normal breast tissues (Fig. 4.5 and Table 4.1, Protein 

level). For the remaining ones, there are pending cancer and normal tissue analysis on the HPA 

and the immunohistochemistry images are not currently available (Table 4.1, Protein level). 
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Figure 4.3. Switch genes with an unfavorable prognostic value in PAM50 BC subtypes. Gene expression 

levels of the 11 basal-like specific switch genes point out from the Kaplan-Meier survival analysis. The black 

dashed line reported in each plot indicates the median value used in the Kaplan-Meier survival analysis to split 

the low-expression and high-expression group. One-way ANOVA test was used to compare the means of the 

selected genes among the patients’ groups. T-test was used to perform multiple pairwise comparisons and 

statistical significance was indicated by the star symbols (i.e., ns: p > 0.05, *:p ≤ 0.05, ** :p ** 0.01, *** :p ≤ 

0.001, *** : p ≤ 0.0001). 
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Figure 4.4. Linear regression model fitting. The median expression of the basal-like prognostic biomarkers is 

plotted against the phenotype varying from physiological to pathological condition (a) and against the pathological 

staging (b). Solid lines represent how the linear model fits the data. The results corresponding to the highest values 

of the model fitting index R-squared ≥ 0.9 for the subtype (a) and ≥ 0.7 for the staging (b) are shown. 

 

 

 
Figure 4.5. Immunohistochemistry results from the Human Protein Atlas. Representative 

immunohistochemistry images of the indicated switch genes in BC tissues and normal breast tissues obtained 

from the Human Protein Atlas. 

 



 

 

 

 

 

 57 

Gene regulatory network of the basal-like prognostic biomarkers  

To provide some hints on which transcription factors (TFs) could regulate the expression of 

the 11 switch genes proposed as prognostic biomarkers for basal-like subtype, we built a gene 

regulatory network by combining information on both computationally predicted and 

experimentally validated TF-target relationships. We firstly exploited Pscan web tool [94] to 

predict TFs putatively able to bind the promoter regions of the selected switch genes. Then, we 

filtered the Pscan predictions keeping only the TFs known to physically interact with at least 

one switch genes in the human interactome [8]. These TF-target relationships were finally 

complemented with those experimentally validated from TRRUST database [95]. The final 

gene regulatory network was composed of seven switch genes and twelve TFs, including well-

known TFs that, if deregulated, contribute to neoplastic transformation as MYC, TP53 and 

NFKB1 (Fig. 4.6a and Table 4.1, DNA level). Interestingly, among the detected TFs, we also 

found four TFs (i.e., TP63, TWIST2, HIC1 and RARA) whose high expression appeared to be 

associated with the best prognosis for BC patients (Fig. 4.6b). In accordance with this result, 

we observed that these four favorable TFs reached their highest value in the patients affected 

by the less aggressive BC subtype, i.e., luminal A (Fig. 4.6c). It is worth noting that the other 

TFs of the gene regulatory network, in general, did not show a relevant increasing/decreasing 

trend across the different BC subtypes (Fig. 4.6c), indicating that the overexpression of their 

target basal-like specific switch genes maybe not ascribed to their transcriptomic variations but 

rather to other genetic and/or epigenetic alterations. 



 

 

 

 

 

 58 

 

 
Figure 4.6. Gene regulatory network of the basal-like prognostic biomarkers. a) Network of the regulatory 

interactions among the identified switch genes and the known transcription factors (TFs). Light blue nodes 

represent switch genes; grey nodes represent transcription factors. b) TFs with a statistically significant prognostic 

value according to the Kaplan-Meier survival analysis. Kaplan-Meier analyzes to evaluate the correlations 

between the expression of the TFs and the OS in TCGA BC patients. Low- and high-expression groups refer to 

patients with expression levels lower and greater than the 50th percentile, respectively. c) Expression of the TFs 

in the gene regulatory network across the PAM50 BC subtypes. The black dashed line reported in each plot 

indicates the median value used in the Kaplan-Meier survival analysis to split the low-expression and high-

expression group. One-way ANOVA test was used to compare the means of the selected genes among the patients’ 

groups. T-test was used to perform multiple pairwise-comparisons and statistical significance was indicated by 

the star symbols (i.e., ns: p > 0.05, *:p ≤ 0.05, ** :p ** 0.01, *** :p ≤ 0.001, *** : p ≤ 0.0001). 

 

Genomic and epigenomic alterations of the basal-like prognostic biomarkers  

Next, we investigated if the overexpression of the 11 basal-like prognostic biomarkers may 

depend on basal-like specific genomic alterations, such as Copy Number Variations (CNVs) 

and/or epigenomic alteration such as DNA methylation changes. We compared the CNVs and 

DNA methylation status of these 11 genes in basal-like subtype with respect to the less 
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aggressive BC subtype, i.e., luminal A. The CNVs analysis was performed on a total of 317 

TCGA-BRCA patients (92 basal-like and 225 luminal A) for which CNVs data were available. 

Hierarchical clustering analysis on this data identified three main clusters and showed a 

different pattern of amplification and deletion in the selected genes between basal-like and 

luminal A patients (Fig. 4.7a). Interestingly, Cluster 1 appeared to be enriched in basal-like 

samples (64/67, 96%), whereas Cluster 2 (151/ 177, 85%) and Cluster 3 (71/73, 97%) were 

enriched in luminal A samples. Specifically, most of the basal-like patients belong to Cluster 

1(64/92, 70%; highlighted in dark blue in Fig. 4.7a) and almost all luminal A belong to Cluster 

2and Cluster 3(222/225, 99%; highlighted in green in Fig. 4.7a). Cluster 1 features were mostly 

related to DSCC1, GSDMC amplifications (> 1copy amplification per gene) along with 

TUBA1C deletion (>1 copy deletion per gene). Aberrant DNA methylation is another 

epigenetic alteration that plays a fundamental role in precipitating the development of a large 

and diverse number of human cancers [99]. For this reason, we investigated a potential 

correlation between DNA methylation patterns and mRNA expression profiles of the 11 basal-

like prognostic biomarkers in basal-like and luminal A patients. The DNA methylation data 

analysis was performed on a total of 152 TCGA-BRCA patients (37 basal-like and 152 luminal 

A) for which DNA methylation data were available. Hierarchical clustering analysis on this 

data identified two main clusters and showed a different DNA methylation status of the selected 

genes between basal-like and luminal A patients (Fig. 4.7b). Cluster 1 was enriched in basal-

like patients (25/37, 68%, highlighted in dark blue in Fig. 4.7b) and could be associated with a 

low methylation level especially for CENPN, PRAME, GSDMC and CTPS genes (Table 4.1, 

DNA level). On the other hand, Cluster 2isenriched in luminal A patients (98/115, 85%, 

highlighted in green in Fig. 4.7b). We compared the frequency of amplification and deletion 

events between basal-like and luminal A, using Fisher’s exact test and we assessed the levels 

of methylation of the 11 basal-like prognostic biomarkers in the two groups (Fig. 4.6c). We 

observed different scenarios of CNV alteration along with DNA methylation status of the 11 

basal-like prognostic biomarkers. CTPS, CENPN and PRAME had a higher frequency of 

amplification events (> 1 copy amplification per gene) in basal-like, higher frequency of 

deletion events in luminal A group (p < 0.05, Fisher exact test) and they hypomethylated in 
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basal-like patients (Fig. 4.7c). This first scenario showed the highest concordance between 

CNV alteration, DNA methylation levels and mRNA overexpression of these three genes in 

the basal-like group. Then, GSDMC was characterized by a higher frequency of amplification 

events in the basal-like group (p < 0.05, Fisher exact test) and was hypomethylated in basal-

like patients (Fig. 4.7c), probably overlapping with its mRNA overexpression in the basal-like 

group. LRP8 was more amplified in the basal-like group and more deleted in luminal A patients 

(p < 0.05, Fisher exact test), supporting a putative correlation with its mRNA overexpression 

in the basal-like group. DSCC1 and CDCA7 had a higher frequency of amplification in basal-

like patients (p < 0.05, Fisher exact test), which could be correlated with their mRNA 

overexpression in that group. Difficult to place was the result of TUBA1C, as we found that 

this gene has a higher frequency of deletion events in basal-like compared to luminal A group. 
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Figure 4.7. Genomic and epigenomic alterations of the basal-like prognostic biomarkers. a) Heatmap with 

dendrogram representing the unsupervised hierarchical clustering analysis based on CNVs data of TCGA-BRCA 

patients. The rows in the heatmap represent the 11 basal-like prognostic biomarkers. The columns correspond to 

basal-like and luminal ATCGA-B RCA patients: basal-like are indicated in dark blue and luminal Ain green. The 

cells of the heatmap represent the log2 segment mean value of CNVs (ranging from -1 up to 3.5), for which color 

code is indicated in the scale on the right-hand side of the figure. b) Heatmap with dendrogram representing the 

unsupervised hierarchical clustering analysis based on DNA methylation data of TCGA-BRCA patients. The rows 

in the heatmap represent the 11 basal-like prognostic biomarkers. The columns correspond to basal-like and 

luminal ATCGA-BRCA patients: basal-like are indicated in dark blue and luminal Ain green. The cells of the 

heatmap represent beta-value (ranging from 0to 1) extracted from Illumina 450k normalized data, for which color 

code is indicated in the scale on the right-hand side of the figure. c) Distribution plot of beta-value of CENPN, 

GSDMC, PRAME and CTPS genes in basal-like and luminal A patients. Dashed lines represent the mean of beta-

values for each patients’ group. 

 

4.4. Discussion 

In a recent study [5], the authors identified 108 switch genes specific for the basal-like subtype. 

The present analysis allowed to identify among them 11 basal-like specific switch genes with 

an unfavorable prognostic value (i.e., CTPS, CDCA7, GSDMC, LRP8, TUBA1C, CENPN, 

PRAME, SLC7A11, GINS4, DSCC1, RCOR2). We found that these 11 switch genes showed 

their highest mRNA overexpression in the basal-like compared to the other BC subtypes, and 
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this data further strengthens the hypothesis that these switch genes could be poor prognostic 

biomarkers in basal-like subtype affected patients (Fig. 4.3). After that, by a linear regression 

model, we found a straight-line relationship (from 0.7 up to 0.99) among CENPN, LRP8, 

DSCC1, CTPS, RCOR2, GINSS4, TUBA1C and PRAME with tumor subtypes and staging, 

while SLC7A11 and CDCA7 correlated only with subtypes. No correlation between GSDMC 

with subtypes and staging were found. The protein levels of these 11 switches in BC specimens 

were evaluated by querying the Human Protein Atlas. IHC results were examined confirming 

that 6(CTPS, LRP8, TUBA1C, DSCC1, GINS4, RCOR2) of the 11 proteins were 

overexpressed in BC tissues compared to normal ones. For the remaining proteins, IHC results 

were not yet available in the Human Protein Atlas (CDCA7, GSDMC, SLC7A11, PRAME and 

CENPN), nevertheless, the above citations confirmed us that all these switch proteins were 

overexpressed both in BC cell lines and tissues. These results led us to suspect their role in the 

neoplastic transformation. In fact, data from the literature, follow detailed, give to these 

molecules a tumorigenic characteristic being found deregulated in different human cancers 

including TNBC subtype, to make more robust our findings. CTPS1 (CTP synthase 1) gene, 

encodes an enzyme responsible for the catalytic conversion of UTP (uridine triphosphate) to 

CTP (cytidine triphosphate). This reaction is an important step in the biosynthesis of 

phospholipids and nucleic acids. Increased levels of the protein were linked to several 

mammalian cancer types such as sarcoma [100], hepatoma [101, 102] and leukemia [102], 

where the activity of this enzyme is both transformations- and progression linked, marking out 

this enzyme as an important target in the design of chemotherapy. More important, invitro 

experiments performed on BC cell lines demonstrated that CTP depletion results in a 

senescence-like growth arrest through activation of p53, whereas cells with mutated p53 

undergo differentiation or apoptotic cell death [103]. LRP8 (LDL receptor-related protein 8) 

gene, encodes a member of the low-density lipoprotein receptor (LDLR) family. A recent study 

demonstrated that LRP8 was more strongly expressed in BC without hormone receptor 

expression (TNBC and HER2 positive) than in luminal tumors (Luminal A and Luminal B) 

[104]. Authors found that LRP8 depletion promoted apoptosis, impaired cell proliferation and 

colony formation suggesting that LRP8 has tumorigenic properties. These findings were further 
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confirmed by experiments showing that LRP8 depletion slowed tumor growth in an in vivo 

xenograft model. Moreover, inhibition of LRP8 was found to attenuate Wnt/β-catenin signaling 

to suppress BC stem cells (BCSCs) enriched in TNBC and responsible for chemoresistance 

and metastasis [104, 105]. Tubulin alpha-1C chain is a protein that in humans is encoded by 

the TUBA1C gene. TUBA1C is a member of the tubulin families and several studies 

demonstrated that its upregulation promotes oncogenesis and predicts poor prognosis in 

different tumor types [106, 107]. TUBA1C, TUBA1B and the β-tubulin isoform TUBB were 

found as isoforms with the highest expression levels compared to other isoforms in BC cell 

lines, and TUBA1C and TUBB were overexpressed in BC tumors compared to the normal 

breast tissues [108]. Also, the prognostic role of TUBA1C as a marker linked to the progression 

of BC was highlighted by [109], it was associated with lower OS in BC patients [110], and 

GTSE1 and TUBA1C combined predicted 100% probability of developing TNBC in whites 

[111]. Recently, overexpression of DSCC1 (DNA replication and sister chromatid cohesion 1) 

was found to increase proliferation, invasion and migration of BC cells, as well as its 

knockdown showed opposite outcomes [112, 113]. Besides, the authors found that DSCC1 

could promote BC progression by activating the Wnt/β-catenin signaling and inhibiting p53 

protein. PRAME nuclear receptor transcriptional regulator gene encodes an antigen that is 

preferentially expressed in human melanomas. The approved mutual link between BC and 

melanoma conditions emphasized the idea of utilizing this marker for targeting BC progression 

as well. Indeed, this protein was found to be involved in BC growth and metastasis and promote 

epithelial-to-mesenchymal transition in TNBC [114–116], suggesting that PRAME could serve 

as a prognostic biomarker and/or therapeutic target in TNBC. Cancer cell requires excess 

nutrients to meet their biosynthetic and bioenergetics needs and to maintain appropriate redox 

balance. Glucose and glutamine are important nutrients supporting cancer cell survival. 

SLC7A11 (solute carrier family 7member 11) gene encodes a member of a heteromeric, 

sodium-independent, anionic amino acid transport system that is highly specific for cysteine 

and glutamate; imports extracellular cystine coupled to the efflux of intracellular glutamate. 

SLC7A11 expression can be induced under various stress conditions, likely as an adaptive 

response to enable cells to restore redox homeostasis and maintain survival under stress 
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conditions [117]. The upregulation of SLC7A11 was found correlated with a poor response to 

treatment in different cancers including breast [118]. Recent evidence support that cancer cells 

upregulate SLC7A11 expression through diverse mechanisms to enhance their antioxidant 

defense and to suppress ferroptosis, a key tumor suppression mechanism [119]. The gasdermin 

(GSDM) superfamily consist of several molecules involved in cell pyroptosis. Recently, 

various studies have revealed the dysfunction and abnormal expression of the GSDM family 

in multiple human cancers, implying the potential roles in tumorigenesis. GSDMC (gasdermin 

C), a member of GSDM superfamily was found to promote cell proliferation in Colorectal 

Cancer [120], and high expression of GSDMC in BC [121] and lung adenocarcinoma [122] 

correlates with poor survival. CDCA7 (cell division cycle associated 7), was found to be 

elevated in various types of human cancer, including colon, lung, prostate and BCs [123], 

suggesting that this protein might play an important role in the development of cancer. 

Interestingly, CDCA7 isa DNA-binding protein and regulates the gene expression of the tumor-

promoting effect of cMyc and E2F1. Recently the role of CDCA7 in TNBC subtype was 

partially clarified and authors found that high expression of CDCA7 was associated with 

metastatic relapse status and predicted poorer disease-free survival in patients with TNBC via 

transcriptionally upregulating the expression of EZH2 [124]. Centromere proteins (CENPs), 

which comprise 18 subtypes, are related dynamically to association and dissociation during 

mitosis with microtubule regulation. Among the CNPs, the protein encoded by CENPN 

(centromere protein N) gene, binds directly to the centromere-targeting domain of CENP-A. 

CENP-N depletion causes down-regulation of several CENPs and is considered essential for 

making anew centromere. Other functions of CENP-N, including its deregulation in BC are 

unclear, except the study that associated elevated expression of this protein with significantly 

increased mortality and risk of recurrence in BC smokers in contrast with non-smokers BC 

subjects [125]. RCOR2 (REST corepressor 2) is a protein-coding gene. Gene Ontology (GO) 

annotations related to this gene include DNA-binding transcription factor activity and 

transcription corepressor activity. To date, its involvement in the growth and progression of 

BC has not been investigated, yet. GINS4 is a subunit of the GINS complex (GINS1, GINS2, 

GINS3, and GINS4 subunits) involved in the initiation and progression of DNA replication 
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[126]. GINS4 was found highly expressed in lung, bladder and Colorectal Cancers, and its 

downregulation in the bladder and Colorectal Cancers inhibits growth and cell cycle and 

accelerate cell apoptosis progression in vitro as well as inhibits tumorigenesis in vivo [127, 

128]. As for RCOR2 protein, GINS4 involvement in the growth and progression of BC has not 

been investigated, yet. Based on these findings, we felt compelled to understand which 

regulatory events might be responsible for their upregulation in basal-like subtype. So, we 

investigated whether the deregulated expression of the selected switch genes could be related 

to the activity of known transcription factors, copy number variation and DNA methylation. 

The construction of a gene regulatory network showed how these switch genes interact with 

several TFs known to be altered in cancer condition (MYC, TP53 and NFKB1), including in 

TNBC [129–131]. Nevertheless, we did not expect, but we were not surprised, that some of the 

identified TFs (TP63, TWIST2, HIC1 and RARA) were overexpressed in luminal A rather than 

in basal-like patients. So, being found also linked to a better prognosis, these results bring us 

to the hypothesis that these TFs could not be involved in the basal-like switch genes activation. 

Interestingly, we found that for most of the 11 switch genes their overexpression seems to be 

ascribed to genetic and/or epigenetic alterations. Indeed, we found that CTPS, CENPN, 

PRAME and GSDMC were found both hypomethylated and amplified in basal-like subtype as 

well as, except for GSDMC, also deleted in luminal A subtype; together these results are 

strongly in line with their expression data alterations found in the basal-like subtype. In the 

same way, also DSCC1 and CDCA7 were found amplified in basal-like, and CNVs profiles 

analysis demonstrated that the copy number amplification of two switch genes, DSCC1 and 

GSDMC, clustered for basal-like patients. Results on TUBA1C were somewhat controversial 

as this gene was found to be amplified in luminal A subtype and no genetic or epigenetic 

changes were found in basal-like subtype; for this switch gene seems that neither amplification 

nor methylation status is responsible for its overexpression in the basal-like subtype. Taken 

together these data can enrich the putative pathophysiological and prognostic role of these 

genes in BC basal-like subtype. 
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Chapter 5: Parallel multi-omics integration to 

identify repurposable drugs for COVID-19 

In silico drug repurposing in COVID-19: A network-based analysis 

5.1. Introduction 

Drug repurposing consists of the use of an existing active pharmaceutical ingredient already 

on the market for a different indication [132]. This approach offers several advantages 

compared with the development of a new drug, including a faster and cheaper process due to 

consolidated knowledge regarding the drug ’s safety and toxicity and higher success rates in 

introducing the drug to the market since it has already been tested in clinical trials [132]. The 

pharmacological base of drug repurposing relies on the fact that some diseases share common 

biological targets and that one drug may have several targets and thus may be able to treat 

different diseases [132]. In this framework, network-based approaches that leverage the 

Network Medicine principles could offer valuable help in identifying potential candidates for 

systematic drug repurposing [3, 133–136]. According to the Network Medicine construct, 

proteins associated to a specific disease tend to clusterize in the same network neighborhood 

of the human interactome and form disease modules that overlap for diseases showing 

significant molecular similarity, elevated co-expression, similar symptoms, and high 

comorbidity, whereas are well-separated for diseases that lack any detectable pathobiological 

relationships [3, 137]. As a consequence, if two disease modules overlap or are in the 

immediate vicinity within the interactome, local perturbations causing one disease can disrupt 

pathways of the other disease module as well, resulting in common clinical and pathobiological 

characteristics [137]. 

This hypothesis can be used to uncover new uses for existing drugs by identifying the disease 

modules located in the vicinity of drug therapeutic targets [33], or by identifying overlapping 

disease modules in the human interactome. [5, 24, 138–145].  
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Here, we performed a parallel multi-omics data integration of transcriptomics and interatomic 

data to study COVID-19 and other related inflammatory diseases. In the last three years, many 

computational tools for drug repurposing in COVID-19 patients were developed and most are 

based on three-dimensional analysis of the drug structure in relation to the viral and/or host 

targets and their binding affinities and interactions [146]. Among identified repurposable 

drugs, some target viral proteins, including antiviral drugs that inhibit viral RNA polymerase 

(e.g., favipiravir, remdesivir) or viral protease (e.g., lopinavir, prulifloxacin, tegobuvir, 

bictegravir, nelfinavir, and darunavir) [146]. Other drugs act on human cells and can block 

virus entry by several mechanisms, including inhibiting TMPRSS2 and other cell-surface 

proteases involved in SARS‑CoV-2 activation (e.g., camostat mesylate and bromhexine), 

blocking clathrin-mediated endocytosis (e.g., chlorpromazine, baricitinib, and ruxolitinib), or 

preventing endocytosis by increasing endosomal pH (e.g., chloroquine and 

hydroxychloroquine). Although in vitro studies showed controversial results, these drugs have 

advanced to clinical trials either alone or in combination [147]. In parallel with targeting virus 

replication and cell entry, it is becoming evident that the host immune response plays a pivotal 

role in disease evolution. It was reported that patients with severe COVID19 disease present, 

in the early phases, hyperactivation of the innate immune response with cytokine storm 

resulting in a massive inflammatory response that later turns toward massive chronic basal 

inflammation characterized by a refractory immune state [148]. However, inappropriate 

adaptive immune response seems to play a crucial role in the late phase of the disease [149, 

150], which is probably linked to immune checkpoint activation and immune system 

exhaustion [149]. This massive immune response has paved the way for testing several 

immunomodulatory agents in parallel with antiviral drugs [148, 151]. Several 

immunomodulatory and anti-inflammatory agents were tested to control cytokine storm. 

Tocilizumab, a monoclonal antibody against IL-6 receptors normally used for the treatment of 

diseases such as rheumatoid arthritis, was promising at first, though subsequent clinical trials 

did not provide unequivocal results on the benefit of tocilizumab in COVID-19 patients [152]. 

Corticosteroids appear to be effective in the treatment of COVID-19 patients, and many trials 

have confirmed that dexamethasone may be used for hospitalized subjects with severe SARS-
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CoV-2 infection. Other drugs able to control inflammation, such as baricitinib, ruxolitinib, and 

eculizumab, are currently under clinical evaluation. Some anticoagulant and antiplatelet drugs 

have also been suggested to be effective in the treatment of COVID-19 patients. Heparin was 

found to limit hypercoagulability in COVID-19 patients, exert anti-inflammatory effects, and 

reduce mortality in hospitalized patients. Several clinical trials are currently evaluating heparin 

treatment efficacy in hospitalized patients with COVID-19 [153]. Despite these findings, 

robust clinical evidence is currently only available for a very limited number of drugs. Here, 

three different in-silico analyses were exploited. In fact, a single study might not be enough to 

cover the multiform clinical frame of the disease. We used transcriptomic data from whole 

blood cells, including all innate and adaptive immune system cells, of patients with COVID-

19 and other inflammatory conditions, infections, or conditions with some clinical features in 

common with COVID-19. For each disease, we identified the genes that were most deregulated 

compared with healthy subjects. We then selected functionally related genes and verified that 

they were co-localized in the human interactome, thus generating a functional coherent disease 

module. This allowed us to identify drugs targeting proteins that were within or in proximity 

to the COVID19 module. Moreover, we also identified drugs that could be potentially 

repositioned for COVID-19 among those with an original medical indication for a disease 

whose module was in the COVID-19 neighborhood. Our in-silico analysis provided new 

pharmacological hypotheses to be explored and experimentally validated. 

 

5.2. Material and Methods 

Data collection and processing 

Whole blood transcriptomic data for COVID-19 and 21 other diseases, including bacterial and 

viral infections, inflammatory diseases, immunodeficiency, primary lung, and coagulation 

disorders [7], were selected from the Gene Expression Omnibus (GEO) database. All datasets 

also included transcriptomic data of healthy controls.  
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Notably, the COVID-19 dataset was only recently deposited and is the first available 

concerning whole-genome gene expression data on whole blood cells. All patients were 

hospitalized for community- acquired lower respiratory tract infection with SARS-CoV-2 

within the first 24 h of hospital admission. The human interactome was downloaded from 

Cheng et al. [8]. This version of the interactome is composed of 217, 160 protein–protein 

interactions connecting 15,970 unique proteins. Drug-target interactions were downloaded 

from DrugBank [154], which contains 13,563 drug entries, including 2627 approved small 

molecule drugs, 1373 approved biologics, 131 nutraceuticals, and over 6370 experimental 

drugs (released 22–04–2020) [154]. The target Uniprot IDs provided by DrugBank were 

mapped to Entrez gene IDs using the BioMart – Ensembl tool [155]. For our analysis, we 

selected a total of 1873 Food and Drug Administration (FDA)-approved drugs with at least one 

annotated target. 
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Disease-modulated genes and their localization in the human interactome  

In order to identify genes that were most modulated by the disease, we computed differentially 

expressed genes between pathological and healthy conditions for every dataset using the 

following R packages: limma [56], to analyze microarray data, and Deseq2 [156], to analyze 

RNA-seq data. We mapped a list of the disease’s modulated genes on the human interactome 

to identify the ones in the same connected subnetwork (i.e., the largest connected component), 

and thus functionally related. To test whether this subnetwork forms a statistically significant 

disease module, for each analyzed disease we randomly selected groups of proteins in the 

human interactome with the same size and degree distribution as the original list of disease 

deregulated genes and the following three metrics were computed: 1) the size of the largest 

connected component (LCC); 2) the number of interactions in the LCC; and 3) the total number 

of interactions. The three metrics were then z-score normalized by applying a degree-

preserving randomization procedure, expecting a p value ≤ 0.05 for genes forming a 

statistically significant disease module [14]. Log2FC thresholds were chosen to guarantee the 

topological organization of disease deregulated genes in statistically significant modules.  

SAveRUNNER 

A detailed explanation of SAveRUNNER software is reported in Chapter 2 section 3 of this 

thesis 

Network-based disease similarity  

To measure the vicinity between the COVID-19 module and the other disease modules in the 

human interactome network, we used the non-Euclidean separation distance [137] defined in 

Eq. (5.1):  

                                    s(A, B) = pAB −
pAA + pBB

2
                                    (5.1) 

where p(A,B) is the network proximity defined in Eq. (5.2):  
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                   p(A, B) =
1

|A| + |B|
[∑ d(a, b) + ∑ d(b, a)

bϵBaϵA

]                  (5.2) 

and d(a,b) is the shortest distance between the element a of module A and the element b of 

module B. A negative value for the separation measure indicates that two disease modules are 

in the same neighborhood of the human interactome, and thus they overlap; whereas a positive 

value for the separation measure indicates that two disease modules are topologically well 

separated. To evaluate the significance of module separation across two disease-specific 

modules (A, B), we built a reference distance distribution corresponding to the expected 

distance between two randomly selected groups of proteins with the same size and degree 

distribution as the original two disease-specific modules (A, B). The random selection was 

repeated 1000 times to build the reference distance distribution. The module separation 

measure was z-score normalized by using the mean and standard deviation of the reference 

distribution. Subsequently, the p value for the given z statistic was calculated. A p value ≤ 0.05 

indicated that the separation between two disease-specific modules in the human interactome 

was more (or less) than that expected by chance.  

Random Walk with Restart  

The Random Walk with Restart (RWR) algorithm is another network- based approach to 

measure the closeness between the COVID-19 module and the other 19 disease modules in the 

human interactome network. RWR is an algorithm based on an intuitive concept that revolves 

around random walks. Given a random walker starting from a given node x, there are two 

different options at each iteration: either moving to one of its neighboring nodes or returning 

to x with a certain probability. Formally, the RWR algorithm can be described by Eq. (5.3):  

                               Rt =  γWRt−1 + (1 − γ)E                                   (5.3) 

where W is the network adjacency matrix, representing the matrix of transitions between nodes, 

whose element W[i,j] denotes the transition probability of going from node j to node i; E is the 

starting point vector, whose element E[i] is equal to 1 if i is a starting node, 0 otherwise; R t is 

a probabilities vector, whose element Rt[i] denotes the probability of being at node i at iteration 
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t; γ is a number ranging in (0,1), and (1− γ) expresses the probability of “restarting” from the 

starting point node at each iteration. At iteration t = 0, the value of R t− 1 is equal to E. The 

probabilities vector Rt will be iteratively calculated until the point of converge is reached (i.e., 

Rt = Rt− 1, or the difference between the probability to stay and the probability to move is lower 

than a given threshold). Eventually, the RWR returns the vector R of the steady-state 

probabilities for each node in the network as output.  

We ran RWR by considering the adjacency matrix Wmxm, built from the human interactome as 

a transition matrix, and the genes in the COVID-19 module as elements of the vector E. For 

each disease module, we averaged RWR steady-state probabilities corresponding with each 

module element and obtained a mean probability for each disease, i.e., the probability to reach 

it starting from COVID-19. This disease probability was then normalized by using the modified 

z-score defined in Eq. (5.4):  

                                                zmod = c ∙
x − x̂

MAD
                                     (5.4) 

where x is the disease probability, x̂ is the median value of distribution of all disease 

probabilities, MAD is the median absolute deviation defined as the median of the absolute 

difference of the observation from the sample median (i.e., median(|x − x̂|), and c is a scale 

factor equal to 0.6745, such that for normal distribution, zmod is equal to the standard z-score 

[157]. We termed this normalized disease probability COVID-19 closeness. Values of COVID-

19 closeness that were outside the overall distribution pattern of the normalized disease 

probabilities were defined as outliers. A commonly used rule is to define a data point as an 

outlier if it is more than 1.5∙IQR above the third quartile or below the first quartile. This means 

that low outliers are below 25th − 1.5∙IQR (i.e., the farthest diseases from COVID-19) and high 

outliers are above 75th + 1.5∙IQR (i.e., the closest diseases to COVID-19). Values of COVID-

19 closeness that are outside the upper and lower quartiles are usually indicated as upper and 

lower whiskers, respectively. Diseases corresponding to high outliers as well as upper whiskers 

are more likely to be reached by the random walker starting from COVID-19. 
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5.3. Results  

Functionally related and co-localized disease-related genes in the human interactome  

In this study, we first compared the gene expression profile of COVID-19 and 21 diseases in 

which inflammatory and immune processes are involved with the profile of healthy controls to 

identify the highest modulated genes under pathological conditions. We mapped these genes 

on the human interactome, which is a network of proteins (nodes) in which the edges are the 

physical and functional interactions occurring between them, to evaluate whether they had the 

propensity to aggregate in local, disease specific neighborhoods of the human interactome, thus 

making them functionally related genes.  
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Table 5.1. Module search results for the analyzed datasets. LCC = largest connected component. 

 

Disease name 

Number of LCC 

nodes 

 
Number of LCC 

edges 

 
Number of total 

interactions 

observation p-value 
 

observation p-value 
 

observation p-value 

Ankylosing spondylitis 216 0.6  825 0.005  827 0.008 

Crohn’s disease 399 2E-13  1120 3E-39  1147 2E-43 

Chronic obstructive pulmonary 

disease (COPD) 
163 0.0002 

 
409 0.0002 

 
418 0.0003 

Chronic spontaneous urticaria 183 0.5  444 0.1  476 0.02 

Community-acquired 

pneumonia 
421 0.01 

 
1347 1E-11 

 
1359 2E-11 

Common variable 

immunodeficiency 
25 0.02 

 
24 0.03 

 
30 0.01 

COVID-19 314 0.00001  441 3E-9  514 5E-17 

Dermatomyositis 11 2E-11  23 2E-25  24 5E-17 

H3N2 flu  170 0.03  270 0.001  282 6E-4 

H1N1 flu 278 0.01  1309 2E-25  1331 5E-27 

Inflammatory bowel disease 412 5E-16  1139 9E-38  1161 7E-42 

Inclusion body myositis 3 0.01  4 0.01  5 0.007 

Infective endocarditis 202 0.05  359 0.003  373 0.001 

Primary lung cancer 333 0.0006  1185 2E-24  1192 2E-24 

Polymyositis 12 0.004  14 0.00004  16 0.0002 

Rheumatoid arthritis 178 0.03  321 1E-5  343 2E-7 

Sarcoidosis 476 0.04  1731 4E-22  1745 3E-22 

SARS 33 0.04  62 2E-6  65 3E-6 

Septic shock 363 0.001  1202 1E-13  1223 6E-15 

Tuberculosis 469 0.006  1829 8E-22  1843 7E-22 

Ulcerative colitis 329 0.05  488 0.04  508 0.05 

Venous thromboembolism 513 0.04  2975 0.00002  2977 0.00003 

 

For each disease, we extracted the largest connected component from the subnetwork 

composed of genes that were modulated in that specific disease condition and verified whether 

these genes presented a statistically significant ability to generate a disease module. For 

subsequent analyses, we selected only the diseases that satisfied this module hypothesis, in 
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accordance with the organizing principles of network medicine [3, 14, 137]. Notably, we found 

that for all diseases analyzed (except for ankylosing spondylitis and chronic spontaneous 

urticaria), the deregulated genes formed statistically significant modules (Table 5.1). Thus, we 

considered 20 diseases, including COVID-19, for subsequent analyses. 

 

Drug-disease module vicinity  

To discover novel repurposable drugs and evaluate the magnitude to which a given drug can 

be repositioned for COVID-19, we exploited the recently developed SAveRUNNER algorithm 

[33]. The rationale behind SAveRUNNER builds on the hypothesis that for a drug to be 

effective against a specific disease, its associated targets (drug module) and the disease-specific 

associated genes (disease module) should be located nearby in the human interactome [8] (Fig. 

5.1A). Using SAveRUNNER, we computed the similarity between each drug module and the 

COVID-19 module together with the corresponding statistical significance obtained through a 

degree-preserving randomization procedure. We obtained a weighted bipartite drug-disease 

network, where the link between a drug and a disease was appreciated if the corresponding 

drug targets and disease genes are located nearby in the interactome to a greater extent than 

what would be expected by chance (Fig. 5.1B). The weight of their interaction corresponds 

with the similarity measure between the corresponding drug and disease module. In our study, 

SAveRUNNER identified 399 repurposable drugs for COVID-19. Focusing on the top-ranked 

predicted drugs (similarity greater than 0.8), we observed molecules involved in the modulation 

of the coagulation system (e.g., heparin and tranexamic acid), antihistaminic drugs, mast cell 

stabilizers (e.g., chlorzoxazone and chlorpheniramine), anti-proliferative drugs including 

tyrosine kinase (TRK) inhibitors and antibiotics (e.g., larotrectinib and ciprofloxacin), alpha-

adrenergic receptor agents (e.g., clonidine and prazosin); drugs affecting the central nervous 

system (e.g., perfenazine and droperidol), and inhibitors of the sodium voltage-gated channel 

alpha subunit 5 (SCN5A), which is involved in cardiac rhythm control (e.g., propafenone and 

prilocaine), among others (Table 5.2 and Fig. 5.1B). 
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Figure 5.1. SAveRUNNER. A) The network-based algorithm used to identify off-label drug indications against 

COVID-19 [40]. B) The SAveRUNNER outcome network showing the high-confidence predicted drug-disease 

associations (p-value ≤ 0.05) connecting COVID-19 with 399 FDA-approved non-COVID-19 drugs. Drugs are 

colored according to the targeted pathways reported in the legend. 
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Table 5.2. Potential Drug Repurposing for COVID-19. SAveRUNNER-identified repurposable drugs for 

SARS-CoV-2 showing a similarity greater than 0.8. *Indicates drugs under investigation in clinical trials. 

Approved Terapeutic 

Use 
Drugs 

Potential application in 

COVID-19 

Antiplatelet/anticoagul

ant 
Heparin*    Reduce the risk of 

thrombosis 
Fibrinolytics Streptokinase    

Pro-coagulants Tranexamic acid* 
Aminocaproic 

Acid 
  

Limit viral entry 

Polysulphates 
Pentosan 

polysulphate 

Chondroitin 

sulphate 
  

Histamine H1 - 

receptors antagonists 
Diphenylpyraline 

Chlorphenirami

ne 
  

Limit cytokine storm 

Mast cells stabilizers Chlorzoxazone    

Tropomyosin receptor 
kinase B inhibitors 

Entrectinib Larotrectinib   

Reduce immune cells 

proliferation 
Other 

Antiproliferatives 
d-Serine Podofillotoxin   

Fluoroquinolones Ofloxacin Ciprofloxacin   

α1-adrenergic 
receptors blockers 

Nicergoline Dapiprazole Moxisylyte Prazosin* 

Limit cytokine storm 

Silodosin Tamsulosin Alfuzosin Phenoxybenzamine 

Phentolamine    

α2-adrenergic 

receptors agonists 

Apraclonidine Guanabenz Guanfacine Levonordefrin 

Brimonidine Clonidine*   

α1-agonists 

Ergometrine Metaraminol Tetryzoline Methoxamine 
Sustain blood pressure in 

case of septic shock 
Midodrine Oxymetazoline Phenylephrine Phenylpropanolamine 

Xylometazoline Epinephrine Naphazoline  

Phenothiazines and 

Antipsychotics 

Perphenazine Thioridazine Thiothixene Periciazine 

Limit cytokine storm 

through modulation of 

Dopaminergic, 
Adrenergic and/or 

Serotoninergic receptors 

Pipotiazine 
Prochlorperazin

e 
Flupentixol  

Serotonin-
norepinephrine 

reuptake Inhibitors 

(SNRI) 

Duloxetine Sibutramine Venlafaxine  

    

Serotonin antagonist 
and reuptake inhibitors 

(SARI) 

Nefazodone Lorpiprazole   

    

Dopaminergics 
Armodafinil Diethylpropion Modafinil Solriamfetol 

Benzphetamine Fenoldopam   

Antidopaminergics Droperidol 
Methylergometr

ine 

Acetophenazi

ne 
Lumateperone 

Anti-epileptics Fosphenytoin Ethotoin Mephenytoin  

Limit macrophages 

acrivation 
Antiarrhythmic agents 

Ajmaline Encainide Indecainide Moricizine 

Tocainide Propafenone Vernakalant  

Local anaesthetics Benzonatate Prilocaine   
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Disease-disease module vicinity  

To find similarities between COVID-19 and the other 19 considered diseases, we implemented 

two network-based approaches: (1) network module separation, which quantified the 

topological distance between a disease module and the COVID-19 module in the human 

interactome network (Fig. 5.2A); (2) the RWR algorithm, which calculated the probability of 

a random walker reaching a disease module starting from the COVID-19 module (Fig. 5.3A). 

We observed that every separation value was statistically significant (see Materials and 

Methods), and we considered diseases whose separation values were less than the 15th 

percentile of the distribution of all separation values. We found H1N1 flu, Crohn’s disease, 

inflammatory bowel disease, and septic shock to be the closest diseases to COVID-19 (Fig. 

5.3B). From the RWR algorithm, we selected only those diseases that ranked within the outliers 

or upper whiskers, i.e., diseases that were more likely to be reached by the random walker 

starting from COVID-19 (see Materials and Methods). These diseases included 

dermatomyositis, polymyositis, and inclusion body myositis in the outlier category, whereas 

SARS, H1N1, and H3N2 flu appeared as upper whiskers (Fig. 5.3B). Interestingly, the RWR 

approach confirmed the results obtained with network module separation, in which H1N1 flu 

resulted as one of the closest diseases to COVID-19 in the interactome, with respect to the 

other analyzed diseases. 
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Figure 5.2. Network module separation. A) Schematic representation of disease-related gene modules and their 

topological distances in the human interactome. B) Radial plot reporting the network module separation 

measure(s) between COVID-19 and the other 19 diseases. Each disease is represented as a circle whose radius 

reflects the number of disease-related genes associated with it. The farther a disease is from the center, the more 

distant its module is from the COVID-19 module in the human interactome. 
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Figure 5.3. Random Walk with Restart (RWR). A) Sketch of the RWR algorithm applied on the human 

interactome. Red nodes represent the starting point nodes, light blue nodes represent all visited nodes at the end 

of the algorithm run, and black nodes represent the nodes of the human interactome that were not visited. B) 

Distribution of modified z-score-normalized probabilities (COVID-19 closeness) of nodes that were visited by 

the RWR algorithm starting from nodes belonging to the COVID-19 module. Diseases that are high outliers and 

upper whiskers are highlighted in the figure. 

 

5.4. Discussion 

To analyze the multiform clinical frame of SARS-CoV-2 from different scenarios, we used 

three different network medicine approaches to select drugs commonly used for the treatment 

of other conditions that could be repurposed for use in COVID-19 patients. It should be bear 

in mind that computational approaches are useful to generate new pharmacological hypotheses 

that need to be tested and validated experimentally. The potential use of the identified drugs 

for COVID-19 treatment will have to be carefully evaluated taking into account their possible 

side effects that can be found at DrugBank database website (https://go.drugbank.com/) [154]. 

Being aware of this important limitation we discussed the different identified drug classes 

considering the available information from literature focusing on their possible effects on the 

immune response modulation and infection natural history in COVID-19 patients.  

 

https://go.drugbank.com/
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SAveRUNNER drugs predictions  

SAveRUNNER algorithm was used to identify repurposable drugs from DrugBank that could 

target the COVID-19 module or its neighborhood. Results show that drugs involved in the 

modulation of the coagulation system, histamine receptors, mast cell stability, immune cell 

proliferation, adrenergic receptors, serotonin receptors, or sodium channel SCN5A (sodium 

voltage-gated channel alpha subunit 5) function may have a great impact on immune system 

response in COVID-19 patients. SAveRUNNER identified drugs acting on COVID-19-related 

genes, regardless of their specific effects. Consequently, some drugs identified may be 

beneficial while others might be detrimental, and a critical and clinical evaluation that also 

considers the stage of SARS-CoV-2 infection is always essential [149]. Below we briefly 

discuss drug classes with a similarity greater than 0.8 (Table 5.2).  

• Drugs active on the coagulation system  

SAveRUNNER analysis found different compounds with a mechanism of action involving 

the modulation of the coagulation system that could be repurposed for COVID-19. This 

observation positively correlates with SARS-CoV-2 infection, where a severe impairment 

in the coagulation system leading to thrombosis is frequently observed [158]. Indeed, 

heparin was tested as a prophylactic treatment and was demonstrated to improve disease-

specific mortality [159]. Heparin clearly emerged in our analysis, supporting the potential 

and accuracy of SAveRUNNER software in identifying repurposable drugs. Several 

clinical trials testing the effect of different heparin formulations in COVID-19 are ongoing, 

including NEBUHEPA (NCT04530578), which is evaluating the effect of nebulized 

heparin in patients with COVID-19-related acute respiratory distress syndrome (ARDS). 

The SAveRUNNER analysis identified chondroitin sulphate and pentosan polysulphate, 

which showed a lower activity compared to heparin in inhibiting platelet aggregation 

inhibition and was also shown to interact with spike proteins, thus reducing virion 

internalization and blocking inflammation and the cytokine storm associated with antigenic 

epitope exposition [160]. Another drug that has emerged is streptokinase, a fibrinolytic 

drug used in severe acute thrombosis. A case series report showed that streptokinase is 
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effective in COVID-19 patients [161]. Intriguingly, the analysis also identified tranexamic 

acid, which is normally used as a pro-coagulant agent during bleeding due to its ability to 

inhibit circulating plasminogen and other proteases, leading to thrombus stabilization 

[162]. Since plasminogen is one of the proteases necessary for spike-protein cleavage, thus 

allowing virion interaction with angiotensin-converting enzyme 2 (ACE2)-expressing cells 

[162], the possibility of using tranexamic acid in COVID-19 patients is currently being 

tested in clinical trials (NCT04338126). 

• H1-inhibitors and mast cell stabilizers 

Histamine is a proinflammatory molecule produced by mast cells that mediates type I 

hypersensitivity reactions. Mast cell abundance in human airways supports the potential 

relevance of this mediator in SARS-CoV-2 infection. Short-term effects of mast cell 

degranulation and histamine release include increased vascular permeability, vasodilation, 

immune cell recruitment, and platelet activation [163, 164]. Moreover, histamine release 

induces interleukin 6 (IL-6), leukotrienes, and the production of other inflammatory 

prostaglandins, thus triggering the activation of innate response [164]. Mast cell 

stabilization and blocking histamine signaling might be fundamental in controlling the 

cytokine storm, which is typical of the early stages of SARS-CoV-2 infection [164]. Indeed, 

our analysis highlighted a potential repurposing of chlorzoxazone, a mast cell stabilizer that 

blocks calcium channels and inhibits degranulation as well as leukotriene and cytokine 

production [165]. Similarly, diphenylpyraline and chlorpheniramine, which are commonly 

used antihistaminic drugs, could potentially block the early phase of cytokine storm during 

SARS-CoV-2 infection [164]. Of note, emerging evidence currently supports a direct 

antiviral effect of targeting the histamine pathway in SARS-CoV-2 in vitro [166]. 

• Antiproliferative drugs and antibiotics with antiproliferative activity  

This category includes both tyrosine kinase inhibitors (TRK inhibitors) [Entrectinib, 

Larotrectinib] and drugs inhibiting the activity of human topoisomerase II, such as 

fluoroquinolones (ofloxacin, ciprofloxacin) [167, 168]. We can reasonably expect that their 
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inhibition of cell proliferation might be useful to limit the immune cell proliferation and 

consequent cytokine storm during SARS-CoV-2 infection [149, 169, 170]. Of note, the 

potential relevance of TRK inhibitor repurposing was confirmed by other drug repurposing 

studies [171]. In addition, fluoroquinolones were found to have antiviral activity in vitro, 

thus supporting a potential benefit in COVID-19 patients in limiting bacterial 

superinfection [172]. 

• α-adrenergic receptor agents  

SAveRUNNER analysis found that α1-antagonists and α2-agonists could be repurposed 

for COVID-19. Indeed, data suggest that α1 adrenergic receptor activation may induce pro-

inflammatory cytokine secretion in innate cells, thus suggesting the possibility that 

blocking α1 adrenergic receptors might limit the cytokine storm that characterizes severe 

COVID-19 patients [173]. Rose et al. found that men with a confirmed or suspected 

COVID-19 diagnosis who were on treatment with α1 adrenergic receptor antagonists prior 

to hospitalization had reduced in-hospital mortality (OR: 36%) compared to those who 

were not taking α1 adrenergic receptor antagonist medications [174]. As such, blocking 

alpha-adrenergic signaling in the immune system might be successful, particularly in early-

stage infection, and indeed prazosin (α1-antagonist) is now being tested in a clinical trial 

(NCT04365257). Similarly, α2-agonists such as clonidine could be repurposed during 

COVID-19 to limit ARDS and inflammatory response [175]. Intriguingly, α1-agonism 

could stimulate immune system response and could be considered in COVID-19 patients 

in case of septic shock [176]. 

• Drugs active in the central nervous system  

Several drugs active in the central nervous system were identified as repurposable for 

COVID-19 following SAveRUNNER analysis, particularly tricyclic compounds, drugs 

active in serotonin signaling (i.e., SNRI and SARI), and dopaminergic and dopamine 

antagonists. Interestingly, Hoertel et al. [177] suggested a possible role of both SSRI and 

non-SSRI antidepressants in reducing the risk of death and intubation in patients 
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hospitalized for SARS-CoV-2 infection. Recent evidence highlighted that these drugs may 

influence both innate and adaptive immunity:  

o Phenotyazine and antipsychotic drugs have known effects on α-adrenergic 

and histaminergic receptors and could therefore act as possible immune 

system modulators [164, 178]. Moreover, different drugs belonging to this 

class were shown to possess antiviral properties, suggesting potential 

repurposing for COVID-19 [179].  

o SNRI and SARI might also have a modulatory effect on the immune system, 

particularly on lymphocytes, which express serotonin receptor 5-

hydroxytriptamine 2 (5-HT2). In rat and mouse models, fluoxetine 

treatment produced a significant reduction in TNFα and IFNγ production. 

In SARS-CoV-2 infection, drugs modulating the serotonin signaling might 

be repurposed as cytokine storm regulators [180]. 

o Dopamine receptors are expressed in different immune cell subtypes and 

their effect on immune response modulation is still debated. Dopaminergic 

stimulation reduces TNF-α and ROS production in neutrophils, though it 

stimulates mast cell degranulation and monocyte chemotaxis. In addition, 

dopamine stimulation appeared to be protective in a mouse model of 

peritonitis [181]. In this scenario, targeting the dopaminergic pathway 

emerged as a potential strategy to limit cytokine storm during COVID-19. 

However, a clear role of dopaminergic system activation in the context of 

immune response is debated, and more research is necessary to better define 

the role of dopamine in immune system modulation [181, 182]. 

• Drugs acting on SCN5A sodium channels  

SCN5A sodium channels are commonly expressed in excitable tissue, particularly 

neurons and myocytes. Most identified SCN5A inhibitors are anti-arrhythmic drugs, 
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local anesthetics, or anti-epileptics. Recent evidence highlighted that the 

SCN5Achannel is involved in macrophage activation and plays a pivotal role in host 

antiviral response by inducing the phosphorylation and nuclear translocation of the 

transcription factor ATF2 [183]. Moreover, in LPS-activated macrophages, SCN5A 

regulates endosomal acidification and stimulates phagocytosis. Although this process 

protects the host during acute infections, it may also promote tissue injury [184]. 

Interestingly, endosomal and lysosomal acidification allow viral cellular entrance 

[149]. In this context, SCN5A inhibitors may contribute to controlling both systemic 

inflammation and viral infection. Other studies reported that macrophages present an 

anti-inflammatory phenotype in mice expressing human SCN5A [185]. Consistent with 

these observations, propafenone, a SCN5A inhibitor used for its anti-arrhythmic 

properties, was suggested as a possible inhibitor of spike protein cleavage and SARS-

CoV-2 cellular penetration [186]. However, SCN5A inhibitors present a series of 

limitations that need to be considered, including arrhythmia. Among other drugs, 

SAveRUNNER also identified baclofen, a GABA-B agonist commonly used in 

neurodegenerative diseases as an antispastic. A recent computational analysis identified 

it as a TNF α inhibitor [187]. Since TNFα is one of the main inflammatory signals of 

innate immunity, baclofen might be repurposed as a mitigator of cytokine storm in 

SARS-CoV-2 infection [149]. Studies in mouse models found that FXR activation 

reduces the levels of circulating NF-KB and other proinflammatory cytokines, such as 

MCP-1. Obeticholic acid, an FXR agonist mainly indicated for the treatment of 

biliostasis, was shown to exert anti-inflammatory activities observed in the reduction 

of liver inflammation [188] and was identified by a computational study and proven in 

vitro to inhibit SARS-CoV-2 ligation to human ACE2 [189]. 

Network module separation drugs predictions 

Network module separation was used to find diseases with a module close to that of COVID-

19. Our hypothesis is that drugs used to treat these diseases may also be beneficial in COVID-

19 patients. We found that septic shock, Crohn’s disease, inflammatory bowel disease (IBD), 
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and H1N1 flu modules were very close to the COVID-19 module. Consistently, it was observed 

that COVID-19 patients with increased immune system activation present an elevated 

incidence of sepsis [149]. Moreover, the significative proximity between the COVID-19, IBD, 

and Crohn’s disease modules is not surprising since literature data support that COVID-19 and 

IBD immune system activation share several similarities and that some drugs used for IBD 

appear to also be effective for COVID-19 patients [190]. Of the drugs reported in the DrugBank 

database for septic shock treatment, both epinephrine and norepinephrine were also identified 

by the SAveRUNNER algorithm, suggesting that SARS-CoV-2 infection and septic shock 

share common epinephrine or norepinephrine targets. Naloxone is another drug used to treat 

septic shock and is currently under investigation in COVID-19 patients. Mesalazine and 

sulfasalazine, two anti-inflammatory drugs, are used for Crohn’s disease treatment and have 

also been identified by the SAveRUNNER algorithm. Two monoclonal anti-tumor necrosis 

factor alpha antibodies (adalimumab and infliximab) and many corticosteroid drugs 

(budesonide, methotrexate, prednisolone, prednisone, and hydrocortisone) used for Crohn’s 

disease are currently being tested in COVID-19 in several clinical trials. This is not surprising 

since the role of corticosteroids as anti-inflammatory drugs is well known. Of note, the 

RECOVERY randomized clinical trial showed that the use of dexamethasone resulted in lower 

28day mortality in those receiving either invasive mechanical ventilation or oxygen alone 

[191]. In addition, an increase in TNF α, a strong pro-inflammatory cytokine, was observed in 

patients affected by COVID-19 [151]. Some evidence suggests that TNFα inhibition may 

downregulate ACE2 expression and shedding, thus reducing viral entry into cells [151]. 

Several drugs, including an antiviral drug (oseltamivir), anti-inflammatory drugs (naproxen 

and acetylsalicylic acid), a beta-2 adrenergic receptor agonist (salbutamol), and an 

analgesic/antipyretic drug (acetaminophen), are used for flu treatment and are currently in 

clinical trials. However, several antiviral drugs, including oseltamivir, do not seem to exert a 

robust effect against the SARS-CoV-2 virus [147]. The immune system and the sympathetic 

nervous system are highly connected through post-ganglionic sympathetic nerve fibers, which 

secrete norepinephrine that innervates both primary and secondary lymphoid tissues. Both 

innate and adaptive immune system cells express adrenergic receptors, mainly β2. There is 
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evidence that glucocorticoids and other β2-receptor agonists suppress macrophage secretion of 

TNFα and other inflammatory cytokines in response to lipopolysaccharide, reducing 

inflammatory damage. It was shown that norepinephrine drives alternative M2 macrophage 

development, characterized by an anti-inflammatory phenotype [173], and that β2 adrenergic 

receptors modulate the activation of several innate immune cells and consequently modulate T 

and B cell response. However, the role of β2 receptors on the immune system is still debated 

and some authors have reported a pro-inflammatory role [192].  

RWR approach drugs predictions 

The RWR algorithm was used to search for diseases whose drugs may also perturb the COVID-

19 module. We identified H1N1 and H3N2 flu, SARS-CoV-1 infection, dermatomyositis, 

polymyositis, and inclusion body myositis. These findings support the documented similarity 

between SARS-CoV-2 and SARS-CoV-1 infections [149]. Interestingly, both the network 

module separation approach and the RWR highlighted the disease modules of H1N1 flu and 

SARS-CoV-2 infection. Several corticosteroids used for dermatomyositis and polymyositis 

(prednisolone, prednisone, hydrocortisone, methylprednisolone, betamethasone, and 

methylprednisolone hemisuccinate) and corticotropin are currently in clinical trials for 

COVID-19. Notably, triamcinolone is a corticosteroid drug that is used for diseases identified 

by both the network module separation approach and RWR (Table 5.3). In conclusion, we used 

a network medicine approach to generate new pharmacological hypotheses for the COVID-19 

treatment. While some of the in-silico identified drugs are already under evaluation in clinical 

trials, others were proposed by expert opinion or other computational studies to be potentially 

effective in COVID-19 patients. SAveRUNNER analysis also identified novel drug categories, 

including drugs known to be active in the central nervous system and sodium channel blockers, 

that could be repurposed in COVID-19 patients. The in-silico methodology has many 

limitations, including the need to test and validate the identified drugs. Indeed, the potential 

benefits as well as the risks of possible adverse reactions, mainly due to the multitarget action 

of many compounds, must be carefully evaluated and proved. Moreover, an efficient 
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translation should also consider pharmacokinetic aspects that could impact the clinical 

applicability of repurposed drugs. 

Table 5.3. Drugs used for the diseases identified by the network module separation approach and RWR. 

*indicates drugs identified by SAveRUNNER. Drugs currently under investigation in clinical trials, as reported 

in DrugBank, are highlighted in bold. 

 

 

  

Network module separation Random Walk with Restart 

Septic shock Crohn’s disease H1N1 flu Dermatomyositis Polymyositis 

Epinephrine* Mesalazine* Acetaminophen* 
 

Corticotropin 

Norepinephrine* Sulfasalazine* Cetirizine* 
 

Methylprednisolone 

Naloxone Adalimumab Chlorpheniramine* Betamethasone  

 
Budesonide Phenylephrine* Bupivacaine  

 
Infliximab Pseudoephedrine* 

Methylprednisolone 

hemisuccinate  

  
Naproxen 

  

  
Oseltamivir 

  

  
Salbutamol 

  

  
Acetylsalicylic acid 

  

  
Ascorbic acid 

  

 
Methotrexate 

 
Methotrexate  

 
Triamcinolone 

 
Triamcinolone  

 
Prednisolone 

 
Prednisolone 

 

 
Prednisone 

 
Prednisone 

 

 
Hydrocortisone 

 
Hydrocortisone 
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Chapter 6: Parallel multi-omics data integration for 

studying COPD 

Network-based integration of gene expression and methylation data to build a consensus 

network for COPD 

6.1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a heterogeneous, chronic inflammatory 

process airways often involving destruction of adjacent alveoli and vasculature. Symptoms 

range from the chronic productive cough to debilitating dyspnea. COPD is determined by both 

genetic and environmental factors and is the third leading cause of death worldwide. Cigarette 

smoking is a major environmental risk factor for COPD, however only a minority of smokers 

develop COPD and there is significant variability in lung function across smokers with similar 

cigarette exposure histories [193]. Among the primary difficulties in treating COPD patients is 

the clinical heterogeneity of the disease that is likely a result of genetic variation, and the 

disease progression that can vary from stability to exacerbation. Various contributors to COPD 

pathogenesis were also suggested, including protease-antiprotease imbalance, oxidant-

antioxidant imbalance, cellular senescence, autoimmunity, chronic inflammation, deficient 

lung growth and development, and ineffective lung repair. However, the pathobiological 

mechanisms for COPD remain incompletely understood [194].  

Approaches aiming to gain key insights into the genes driving the underlying disease molecular 

machinery are mainly based on single-omics data analysis. Among them, SWIM was recently 

applied to transcriptomic data from lung tissues of two well-characterized COPD case-control 

populations to study the differences between lung samples from normal subjects (represented 

by smokers with normal spirometry) and COPD cases [142].  
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Due to the important regulatory function of the gene expression, the DNA methylation of CpG 

sites is another important source of variability between diseased and normal cells [195]. Indeed, 

methylation at the CpG sites in the gene promoter can resulted in silencing of the gene 

expression [196]. Environmental exposure such as cigarette smoke can influence the DNA 

methylation of the genes [197, 198]. Recently, DNA methylation array analysis were used to 

identify genes potentially involved in COPD [199]. 

Despite the successful progresses obtained by using single omics data analysis, approaches 

aimed to integrate the different multi-omics data are needed to study the flow of information 

between different biomolecular layers helping to gain insights into the molecular mechanisms 

of the disease. Here, we performed a parallel multi-omics data integration by applying SWIM 

on the transcriptomic and DNA methylation data of a cohort of 823 former-smoking COPD 

cases and controls derived from a lung tissue cohort of the Lung Tissue Research Consortium 

at the Channing division of Network Medicine Division at Brigham and Women’s Hospital. 

We started by selecting from the entire COPD cohort genes that are in common between RNA-

seq and DNA methylation data, and then we applied SWIM on the two datasets, separately. 

The resulting correlation networks were then integrated by using the differential gene 

correlation analysis (DGCA) [200] that allowed us to define a consensus network, where nodes 

are genes both differentially expressed and differentially methylated in COPD cases. A link 

occurs between two nodes if they were interacting in both RNA-seq- and DNA methylation-

based correlation networks (Fig. 6.1). 
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Figure 6.1. Study design. We selected from the entire COPD cohort those genes that are in common between 

RNA-seq and DNA methylation data and we applied SWIM tool on the two datasets, separately. Then, we 

integrated the two correlation networks through the differential gene correlation analysis. This analysis led to 

define a consensus network, where nodes are genes that are both differentially expressed and differentially 

methylated in COPD cases with respect to controls. A link occurs between two nodes if they were interacting in 

both RNA-seq- and DNA methylation-based correlation networks. 
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6.2. Materials and Methods 

Data collection and processing 

We considered 452 former-smoking COPD cases and 371 controls (823 in total) derived from 

a lung tissue cohort of the Lung Tissue Research Consortium from the Channing division of 

Network Medicine Division at Brigham and Women’s Hospital, for which RNA-seq and DNA 

methylation data were available.  

RNA-seq data preprocessing and normalization 

The RNA-seq matrix was retrieved as raw count matrix for which Batch correction and 

normalization pre-processing were performed. The raw counts were corrected for Batch effects 

related to the batch plate used during the sequencing experiment using ComBat-seq algorithm 

[201]. Afterwards, a normalized matrix was produced by using EDASeq R package which 

provide within-lane normalization and between-lane normalization procedures that also 

consider the GC-content effect on the gene counts detected in the sequencing experiment. 

DNA methylation data preprocessing and normalization 

The DNA methylation matrix was retrieved as normalized matrix for which Batch plate 

correction and gene-level summarization processes were performed. The DNA methylation 

matrix were corrected for Batch plate effects related to the array experiment using Combat 

[202]. We were interested in studying a gene-level DNA methylation of the promoter region, 

which is related in many case to the repression of transcription [203]. To this aim, we identified 

the probes that fall 1500 bp upstream to the Transcription Starting Site (TSS1500) of each gene 

and averaged the values. 

SWIM application on RNA-seq and DNA methylation data 

An explanation of SWIM software is given in the Chapter 2 section 3, of this thesis 
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6.3. Results 

We exploited the SWIM network-based analysis to build and analyze the RNA-seq and DNA 

methylation-based correlation network associated to COPD disease. Starting from the 19928 

genes selected, SWIM proceeded calculating the differentially expressed genes (DEGs) and 

differentially methylated genes (DMGs). We obtained 2258 significantly differential expressed 

genes (DEGs) at 5% false discovery rate (FDR), of which 1180 (52.6%) upregulated in COPD 

cases and 1078 (47.4%) downregulated. Concerning DNA methylation data, we discovered 

1002 DMGs at 5% false discovery rate (FDR), of which 283 DMGs (28,3%) hypermethylated 

and 718 DMGs (71,7%) hypomethylated in COPD cases. 

SWIM used DEGs and DMGs data to build the correlation network based on the Pearson 

correlation coefficient. A correlation threshold equal to 0.45 (i.e., 95th percentile of the entire 

correlation distribution) and to 0.57 (i.e., 87th percentile of the entire correlation distribution) 

was set for the RNA-seq data and for the DNA methylation data, respectively. 

The RNA-seq-based correlation network of COPD status contained 1907 nodes and 169358 

edges, including 1182 date hubs, 415 party hubs, and 142 fight-club hubs. The DNA 

methylation-based correlation network specific for COPD contained 915 nodes, including 311 

dates, 467 party, and 87 fight club hubs. SWIM found 131 switch genes in the RNA-seq 

specific correlation network (Fig. 6.2a), most of them resulted as downregulated in COPD 

cases (n 110/131, 84.0%). Meanwhile, SWIM found 66 switch genes in the DNA methylation-

based correlation network and all of them were hypermethylated in COPD cases (Fig. 6.2b). 
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Figure 6.2. SWIM analysis on RNA-seq (a) and DNA methylation data (b). In each panel, from left to right, 

the following graphs are reported: i) the APCC distribution where the peak fight-club hubs are highlighted; ii) the 

heat cartography map where the switch genes are indicated; iii) the dendrogram and heat map of the RNA 

expression (a) or DNA methylation (b) levels of the identified switch genes. 

 

The SWIM clustering analysis performed on the RNA-seq based correlation network end-up 

with 4 clusters with variable size (1040 nodes in cluster 1, 229 nodes in cluster 2, 298 nodes in 

cluster 3 and 340 nodes in cluster 4; Fig. 6.3a left). Most of switch genes fell in one cluster 

(cluster 3), resulting all downregulated in COPD cases; whereas their negative nearest 

neighbors mostly fell in another cluster (cluster 4), resulting all upregulated in COPD cases 
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(Fig. 6.3a right). In a recent paper [31], the authors demonstrated that the switch genes of a 

specific disease constituted a subnetwork of co-localized and functionally-related nodes with 

a coherent pattern of molecular co-abundance, thus satisfying all the hypotheses of the network 

medicine in the same way as disease genes themselves do. In view of these findings, we focused 

on the 84 downregulated switch genes (out of 111) falling in cluster 3 of the RNA-seq based 

correlation network (Fig. 6.3a right). By performing a functional enrichment analysis, we found 

that the 84 switch genes were enriched in transcription factor pathways, meanwhile their 

negative nearest neighbors were enriched in inflammatory signaling pathway such as TNF, 

IL17 NF-K B, JAK-STAT and MAPK signaling pathway. These results suggested a possible 

regulatory mechanism where the downregulation of switch genes could be correlated to an 

overexpression of inflammatory and immune components which is known to be crucial for 

COPD [204]. 

The SWIM clustering analysis performed on the DNA methylation-based correlation network 

defined 3 clusters (111 nodes in cluster 1, 500 nodes in cluster 2 and 304 nodes in cluster 3; 

Fig. 6.3b left). In this case, almost all of switch genes populated one cluster (cluster 1), resulting 

all hypermethylated in COPD patients; whereas their negative nearest neighbors fall in another 

cluster (cluster 3), resulting all hypomethylated in COPD patients (Fig. 6.3b right). As before, 

we focused on the switch genes falling in a same cluster and having a coherent pattern of co-

abundance, i.e., the 64 hypermethylated switch genes (out of 66) falling in cluster 1 of the DNA 

methylation-based correlation network (Fig. 6.3b right). These 64 switch genes were found to 

be involved in interleukin-1 and interleukin 11 pathways, meanwhile their nearest negative 

neighbors were enriched in T-cell receptor, Cytokines and inflammatory response, Vitamin D, 

and STING pathway. 



 

 

 

 

 

 96 

 

 
Figure 6.3. SWIM-based correlation network and cluster definition of RNA-seq (a) and DNA methylation 

(b) data. a) The left panel shows the structure of the RNA-seq-based correlation network, where the clusters that 

include most of the switch genes (cluster 3), and their negative nearest neighbors (cluster 4), are highlighted. The 

right panel shows the number of network nodes, switch genes, and negative nearest neighbors of the switch genes 

in each cluster. Red boxes indicate the switch genes in cluster 3 and their negative nearest neighbors considered 

in the analysis. b) The left panel shows the structure of the DNA methylation-based correlation network, where 

the clusters that include most of the switch genes (cluster 1), and their negative nearest neighbors (cluster 3), are 

highlighted. The right panel shows the number of network nodes, switch genes, and negative nearest neighbors of 

the switch genes in each cluster. Red boxes indicate the switch genes in cluster 1 and their negative nearest 

neighbors considered in the analysis. 
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To integrate the results of the RNA-seq and DNA-methylation based correlation networks, we 

exploited DGCA that allowed us to build a consensus network, in which we preserved the 

nodes and the edges in common between the two specific GCNs omics. In the consensus 

network, nodes are genes both differentially expressed and differentially methylated in COPD 

cases compared to controls, and a link occurs between two genes if a correlation exists between 

their expression and methylation profiles, simultaneously. 

The obtained consensus network encompassed 63 nodes and 216 edges categorized into four 

classes (+/+, -/-, +/-, -/+) based on the changes in the gene pair correlation between the two 

single-omics networks. The first class (+/+) is characterized by a positive Pearson correlation 

value in both the RNA-seq and DNA methylation-based correlation networks (Fig. 6.4, red 

edges). The second class (-/-) is characterized by a negative Pearson correlation value in both 

the RNA-seq and DNA methylation-based correlation networks (Fig.5.4, blue edges). The third 

(+/-) and fourth (-/+) classes are characterized by a change of sign in the Pearson correlation 

coefficient between the RNA-seq and DNA methylation-based correlation networks (Fig. 6.4, 

yellow and green edges).  
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Figure 6.4. Consensus network derived from the integration of the two omics data. Nodes size is proportional 

to their degree. The edges are divided in 4 classes: The (+/+) class (red edges) is characterized by a positive 

Pearson correlation value in both the RNA-seq and DNA methylation-based correlation networks. The (-/-) class 

(blue edges) is characterized by a negative Pearson correlation value in both the RNA-seq and DNA methylation-

based correlation networks. The (+/-) class (yellow edges) is characterized by a positive Pearson correlation value 

in the RNA-seq-based correlation network and a negative Pearson correlation value in the DNA methylation-

based correlation networks. The (-/+) class (green edges) is characterized by a negative Pearson correlation value 

in the RNA-seq-based correlation network and a positive Pearson correlation value in the DNA methylation-based 

correlation network. 

 

6.4. Discussion 

By analyzing the consensus network, we found three switch genes (i.e., ZNF503-AS1, GPER1 

and TEK) for the DNA methylation data and two switch genes (KLHL38 and HOXA5) for 

both RNA-seq and DNA methylation-based data, mainly connected through edges belonging 

to -/- class. We observed a statistically significant downregulation and a hypermethylation of 

GPER1 and TEK/TIE2 in COPD cases compared to controls. GPER1 was associated to an anti-

inflammatory function in diverse studies [205, 206]. Moreover, angiopoietin receptor 
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TEK/TIE2 had an anti-inflammatory effects by preventing the leakage of pro-inflammatory 

plasma proteins and leukocytes from blood vessels [207, 208]. Therefore, reactivating the anti-

inflammatory action of GPER1 and TEK/TIE2, that appears to be switched off in COPD cases, 

could be important to counteract the chronic inflammation in COPD context. No biologically 

insights could be drawn from literature for ZNF503-AS1 gene. 

We observed a statistically significant downregulation and hypermethylation of HOXA5 in 

COPD cases with respect to controls. The authors of [209] discovered that the loss of function 

of HOXA5 in lung tissues led to an emphysema-like morphology because of impaired 

alveogenesis in murine model. The hereditability of a hypermethylated promoter of HOXA5, 

or environmental exposure that drives this epigenetic modification, is likely to be associated 

with a downregulation of HOXA5, which may result in a non-functional alveoli development. 

We observed a statistically significant downregulation and hypermethylation of KLHL38 in 

COPD cases with respect to controls. The role of this gene seemed to be controversial, indeed 

the authors of [210] identified KLHL38 as downregulated in human lung tissue due to GPR126 

overexpression. However, in another study [211] KLHL38 was observed as overexpressed in 

non-small cells lung cancer, suggesting an activator role of Akt-signaling pathway leading to 

cell proliferation, migration, and invasion. 

We performed a functional enrichment analysis of the nodes of the consensus network, and we 

compared the results with respect to those ones obtained by executing the same analysis on 

nodes of RNA-seq and DNA methylation networks, separately (Fig. 6.5). We found 15 

pathways that were specific for the consensus network, including NOD-like receptor, T cell 

receptors signaling pathways and Th17 cell differentiation, which were consistent with an 

inflammatory condition observed in COPD cases (Fig. 6.5a). Moreover, we observed 20 

pathways that were specific for the RNA-seq-based-correlation network, including IL-17, 

TNF, PI3K-Akt, NF-kappa β, and MAPK signaling pathway, which were consistent with the 

chronic inflammatory state underlying the COPD disease (Fig. 6.5a). No enriched pathways 

were found for the DNA methylation-based correlation network (Fig. 6.5a). While being poorer 
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in terms of nodes with respect to the RNA-seq and DNA methylation-based correlation 

networks, the consensus network resulted richer in terms of functional characterization. In fact, 

it appears to be functionally related to the innate immune response mediated by the NOD-like 

receptors and adaptive immune response mediated by T-cells, lacking in the single-omics 

analysis. 

 
 
Figure 6.5. Venn Diagram. Enrichment analysis of the genes of the consensus network, RNA-seq and DNA-

methylation-based correlation network in KEGG pathways (a) and GWAS genes (b). 

 

By performing a GWAS enrichment analysis, we observed that the nodes of the consensus 

network were statistically significant associated to 9 diseases, including Rheumatoid arthritis, 

inflammatory bowel disease, autoimmune thyroid disease and chronic inflammatory disease 

(Fig. 6.5b). These diseases can share some common molecular mechanism with COPD, 

especially in relation with the prevalence of a chronic and autoimmune inflammatory condition 
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common to all these diseases (Fig. 6.5b). Meanwhile, no disease association was found by 

performing the same analysis on the single-omics-based correlation networks (Fig. 6.5b). 

Altogether, these findings suggest that we have defined a group of differentially expressed and 

methylated genes that have a considerable biological specificity and could be related to the 

inflammatory pathological mechanism of COPD.  
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