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Abstract

Fog and Edge Computing are two models that reached maturity in the last decade. Today, they are two
solid concepts and plenty of literature tried to develop them. Also corroborated by the development of
technologies, like for example 5G, they can now be considered de facto standards when building low and
ultra-low latency applications, privacy-oriented solutions, industry 4.0 and smart city infrastructures.
The common trait of Fog and Edge computing environments regards their inherent distributed and
heterogeneous nature where the multiple (Fog or Edge) nodes are able to interact with each other with
the essential purpose of pre-processing data gathered by the uncountable number of sensors to which
they are connected to, even by running significant ML models and relying upon specific processors
(TPU). However, nodes are often placed in a geographic domain, like a smart city, and the dynamic of
the traffic during the day may cause some nodes to be overwhelmed by requests while others instead
may become completely idle. To achieve the optimal usage of the system and also to guarantee the best
possible QoS across all the users connected to the Fog or Edge nodes, the need to design load balancing
and scheduling algorithms arises. In particular, a reasonable solution is to enable nodes to cooperate.
This capability represents the main objective of this thesis, which is the design of fully distributed
algorithms and solutions whose purpose is the one of balancing the load across all the nodes, also by
following, if possible, QoS requirements in terms of latency or imposing constraints in terms of power
consumption when the nodes are powered by green energy sources. Unfortunately, when a central
orchestrator is missing, a crucial element which makes the design of such algorithms difficult is that
nodes need to know the state of the others in order to make the best possible scheduling decision.
However, it is not possible to retrieve the state without introducing further latency during the service of
the request. Furthermore, the retrieved information about the state is always old, and as a consequence,
the decision is always relying on imprecise data. In this thesis, the problem is circumvented in two
main ways. The first one considers randomised algorithms which avoid probing all of the neighbour
nodes in favour of at maximum two nodes picked at random. This is proven to bring an exponential
improvement in performance with respect to the probe of a single node. The second approach, instead,
considers Reinforcement Learning as a technique for inferring the state of the other nodes thanks to
the reward received by the agents when requests are forwarded.

Moreover, the thesis will also focus on the energy aspect of the Edge devices. In particular, will be
analysed a scenario of Green Edge Computing, where devices are powered only by Photovoltaic Panels
and a scenario of mobile offloading targeting ML image inference applications.

Lastly, a final glance will be given at a series of infrastructural studies, which will give the foundations
for implementing the proposed algorithms on real devices, in particular, Single Board Computers (SBCs).
There will be presented a structural scheme of a testbed of Raspberry Pi boards, and a fully-fledged
framework called “P2PFaaS” which allows the implementation of load balancing and scheduling
algorithms based on the Function-as-a-Service (FaaS) paradigm.

Keywords Fog Computing, Edge Computing, Load Balancing, Distributed Scheduling, Random-
ized Algorithms, Reinforcement Learning, offloading Strategies, Energy Footprint, Testbeds, Software
Frameworks
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Chapter 1

Introduction

Necessity is the mother of invention.

Proverb

OVING the computation among different machines is a technique that was born with the
birth of the first computer network. Indeed, the simple idea of connecting two computers
creates the possibility of making them work together to perform more computations in

the same period of time. The first attempt of remotely executing the computation is described in an
RFC dated back in 1971 with the term Remote Job Entry'. The purpose of the protocol was to forward
tasks to mainframe computers and retrieve the result in the machine that issued the request, and it was
usually used by IBM mainframes. Today, the idea of forwarding tasks to more powerful computers is
the general idea that is behind the well-known Cloud Computing concept, a term that was introduced
in the 1990s. From there, the beginning of the Millenium was dominated by the birth of the major Cloud
provider, such as AWS in 2002, Google Cloud in 2008, Microsoft Azure in 2010. The NIST standardised
the term “Cloud Computing”, presenting the well-known cloud services types (SaaS, PaaS and laaS)
in 2011 [1]. The flourishing of these services has certainly been promoted by three essential factors:
the progressive increase of the computational power of processors and machines, the increase in the
number of computers and, most of all, the spread of the internet connection.

During the years, in particular, in the last decade, the progress in the technology for hardware
manufacturing made computing devices smaller and smaller, and more powerful at the same time. The
first phenomenon to which we have assisted regards the data centres. Indeed, the major companies
increased the number of available physical locations for their servers and to which developers can

'https://www.rfc-editor.org/rfc/rfc1e5
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deploy the applications. We now wonder which is the core driver of this behaviour. The main reason is
that the QoS aspect of a web application is governed by different parameters: the uptime of the servers,
the bandwidth that the servers are able to manage and the latency that is required for a packet to reach
the server, also called round-trip time? (RTT). While the uptime and the bandwidth can be addressed
by improving redundancy or the hardware itself, the round-trip time can be reduced only in one way:
the server must change its physical location. This is because the RTT is determined by the so-called
network distance between the user and the server itself. The higher the number of hops that the packet
needs to be subjected to, the highest the latency. Indeed, for an application that must be used in Italy,
it would be counterproductive to deploy its code on a server that is placed on the west coast of the
USA. Providers indeed started, and also continue nowadays, to spread the distribution of their services
across the whole planet. Today, it is easy to book an AWS server in Milan and Rome for example, a
thing that would have been impossible a few years ago.

Communication latency is, therefore, a critical aspect of web applications. We have also to consider
that for the Cloud there is a lower bound on the RTT that is in the order of 20-30ms. However, some
delay-sensitive applications may require even lower values. We can think, for example, about shared
virtual or augmented reality experiences, industry 4.0 or even health-based applications. Offering a
remote-rendered virtual world requires at least 60fps, that is 13.3ms needed for rendering a frame.
In order to drastically reduce the latency, up to even 3ms or 4ms, we undoubtedly need to move the
servers. In particular, they have to be moved as near as possible to the user. This new paradigm of
computation gave birth to the Fog Computing [2] term, introduced by Cisco in 2012. Fog Computing
aims to place the servers near to the users, for example, in the same place where the company resides,
which also preserves the privacy of the data, or even in proximity or within the 4G or 5G antennas. In
this case, we also refer to Edge Computing, a term that was even known before the introduction of Fog
Computing. The methods and the algorithms shown in this thesis can be applied in both environments,
and for this reason, both terms will be used. However, we will use Fog Computing for targeting Smart
Cities and essentially scenarios in which location awareness and the geographic approach are more
evident. Instead, we will use the term Edge Computing when smaller devices can be involved, like for
example, Single Board Computers (SBCs) as the Raspberry Pi3.

Fog and Edge Computing Characteristics To have clear the contributions of the thesis, we need
to recap which are the main traits of Fog and Edge Computing. This will introduce the scenario for
which the proposed methods are designed and can be applied. Fog Computing (or Edge Computing) is
a computing model based on the distribution computation among nodes called Fog Nodes (or Edge
Nodes). According to NIST [2], the essential traits of the Fog Computing models are the following.

1. Contextual location awareness. The nodes in the system are aware of their contextual location,

in this way, they can reduce the processing latency.

2. Geographical Distribution. Nodes are usually spread in a geographic domain, for example, the

typical one is a smart city.

*This latency is the one that can be easily measured with the command ping.
*https://www.raspberrypi.org/
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3. Heterogeneity. Nodes involved in the computing model can have different characteristics in

terms of performance, moreover, they can collect and process data of multiple kinds and sources.

4. Interoperability and federation. Fog computing components, especially nodes, are able to
cooperate, even if from different providers. This is envisioned in order to offer support to low-

latency applications. In this way, the services must be federated.

5. Real-time interactions. The Fog computing interaction with the clients is real-time rather than

batch processing, which is instead typical of Cloud Computing.

6. Scalability and agility of federated, Fog node clusters. The nature of Fog computing is
typically adaptive and can scale according to the required or available resources.

All of these characteristics guided the design of the methods and algorithms proposed in this thesis.
As anticipated, for Edge Computing we assume that the same characteristics hold, but the devices

involved may also be small and increase in number.

The Cooperation The leitmotif of the thesis regards a peculiar capability of nodes involved in Fog
and Edge Computing environments: they can cooperate. Cooperation is based on the fact that each
node can benefit from the possibility of another node executing part of its assigned tasks. This strategy
fits particularly well with the environments due to the heterogeneity of the devices and the geographical
distribution of the nodes, a node may find itself overwhelmed by clients’ requests. Indeed, considering,
for example, a smart city, the people distribution in different areas of the city varies over the day. Some
areas can be characterised by heavy load conditions on the nodes, and these nodes could simply forward
part of their task to other nodes that instead are less loaded and even completely unloaded.

The Task Model The usual model that we address in this thesis and that is recurrent across all the
subsections is an online request model. As we have seen when discussing the Fog and Edge Computing
characteristics, the interaction model that clients have towards these computing layers is no more
batch processing. Batch processing indeed is a typical Cloud service model where a lot of data must be
processed by data centres, and the result is not strictly needed hic et nunc. But when these data centres
are small and can be spread across a geographic domain, then the clients (or generally, the users) can
request a service just to the nearest available node. This paradigm of usage is typically called stream
processing with respect to the batch, and in this thesis, that is the only focus. Indeed, we assume clients
that continuously generate requests of execution of a service to a given (Fog or Edge) node, then, for
each request, the node itself has to decide where the request has to be processed: if locally, namely
within the same node to which the request has been made, to another neighbour node or even to the

Cloud. In the last two cases, the request itself with its annexed payload, if any, will be forwarded.

The "State" Problem We can agree with the fact that enabling cooperation concretises with a
decision problem. Indeed, a node has to decide where to execute the tasks received by the clients. At
this point, we wonder how this decision can be taken and which conditions a node has to take into
account to make a good decision. The crucial information that comes into play is the state of the node.

At a very high level, a node can forward a request to another node if the state of the other node is better
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than its own. This is a key fact because, only by doing this, we are levelling the goodness of the state,
at least ideally. The state must be a parameter or a composition of parameters that reveal all what
we need to know about a node. In practice, in the works that are going to be presented in this thesis,
different strategies for modelling it have been followed: the state has been fixed as the number of tasks
that a node is executing in a given time ¢, or even better, it has been considered as the effective request
rate (in terms of requests per seconds - req/s) that a node has to execute. The modelling of the state
essentially follows the type of modelling approach that has been chosen, if probabilistic (Chapter 2),
Reinforcement Learning based (Chapter 4) or based on dynamical systems (Chapter 3). In general, we
can assume that a node, in order to make the correct scheduling decision, it needs to know the state of
the other nodes. This is the core problem that the thesis tries to solve. How can nodes make decisions
if they do not know the state of the others? The scenario in which these nodes live is fully distributed,
and therefore there is no central entity which holds the state of every node, but even in that case, the
copy of the state that this hypothetical node always has a delay to be updated. The general assumption
that we make in this thesis is the following. Suppose that node A requires the state of another node B

at time tg. Then node A will receive the answer from B at time t1, and we call
T=1t1 — 1o (1.1)

Assumption 1 (Lack of the state). In real systems, 7 > 0. In other words, no node can know the state of

another node without any delay.

Indeed, for any given node, requesting the state of another node introduces delay, and the informa-

tion is always “old” by 7 units of time.

Motivation The motivation is now clear. The objective is to find a way of scheduling tasks in a fully
distributed manner but taking into account that the state is very precious information which cannot be
known if not explicitly asked for. Moreover, the act of retrieving the state introduces a delay making
the same retrieved information always “old”. Unfortunately, the truth is that for making the optimal
decision, the state must be known, and therefore we can conclude that if Assumption 1 holds, then
every node will always base its scheduling decision on imprecise information. The principal focus of
this thesis is finding and studying methods and algorithms that are able to make decisions as much as
possible closer to the optimal ones that could only be taken if an oracle would able to tell us the exact
state of any other node with no delay. The main strategies studied in this thesis for designing this kind

of solution are the following (in order of available information):
+ not asking the state at all and forwarding tasks randomly and blindly;
« asking the state to random nodes and forward tasks only if a node with a better state is found;
« inferring the state of other nodes exploiting Reinforcement Learning strategies;

« asking the state to all the neighbour nodes and forward tasks only if a node with a better state is

found;

A general rule of thumb is that the more state information is retrieved, the more the introduced
latency and the more the information may be old. Even if the state probing is performed concurrently,
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a slight increase in the latency may depend on the network traffic, which is serialised by the network

adapter. Therefore, a good trade-off must be achieved in order to reach the best performance.

1.1 Research Contributions

We can summarise all the contributions that will be illustrated in this thesis. Each contribution will

refer to a particular section, and they can be divided into three different categories.

Distributed algorithms for load balancing (and task offloading) Research contributions in this
area regard the design of algorithms whose aim is managing the traffic in such a way the load across all

of the nodes is balanced. In this thesis, we only focused on fully distributed and cooperative algorithms.

« in Section 2.2 the power-of-n choices is adapted for load balancing in the Fog Computing envi-
ronment, in particular, the work (i) defines the LL(F,T), Least Loaded among F' nodes with
threshold T, a threshold-based load balancing algorithm, and then shows (ii) a mathematical
analysis of the same algorithm showing how LL(1, K — 2), i.e., probing just one node when
one or two servers out of the K are idle, reduces up to one order of magnitude the control
and delay overhead with respect to a vanilla randomised load balancing implementation of the
power-of-two random choices algorithm;

« in Section 2.3 the power-of-n choices is again exploited for (i) designing a multi-hop algorithm
suitable for scenarios characterised by independent providers and heterogeneous load conditions,
along with a variant based on a self-tuning mechanism, then (ii) a mathematical analysis and
experimental evaluation of the algorithms is done on a realistic scenario, showing evidence of
significant improvements compared to unbalanced nodes;

« in Section 2.4 a study of the impact of schedule lag, 1, on the performance of load-aware balancing
protocols based on randomisation is presented. The work studies how and to which extent
making a decision based on stale information concerning the load state of the nodes weakens
the effectiveness of the algorithm and how load balancing can be achieved when this delay in
communicating state information is unavoidable. The work finds that it exists a “critical” value
of n starting from which load information becomes meaningless, and a simpler blind forwarding
algorithm performs better;

« in Section 3.2 a latency-levelling algorithm specifically designed for Fog and Edge Computing
is designed, in particular, the section present: (i) a continuous-time model which describes the
dynamics of the system by using a system of differential equations that reaches the stability
when all the nodes experience the same service latency; (ii) a heuristic algorithm which tries to
find a solution to the problem in a real environment by continuously adapting the migration
ratios in rounds of fixed duration; (iii) simulation results of the proposed heuristic algorithm; (iv)
results of the implementation of the proposed algorithm in a testbed of Raspberry Pis which
shows the efficacy of the solution even in a real setting;

« Section 5.2 presents: (i( software libraries and methods for implementing mobile object recognition

task and for offloading it to a possible Edge device by using publicly available open-source

SecTioN 1.1 Research Contributions 7
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frameworks and tools; (ii) measurements and analysis of the energy impact of a mobile neural
network directly running in a mobile smartphone and the consumption gain that we can obtain
when the neural network recognition task is offloaded to an Edge device; (iii) quantifies the

beneficial effect of the task offloading.

« in Section 5.3 the load balancing problem is instead focused on energy consumption in a Green
Edge Computing environment; the section presents (i) a characterisation of an off-grid green
Edge computing model and (ii) an initial evaluation of the benefit of task green energy aware
task offloading.

Distributed algorithms for scheduling Research contributions in this area regard the design of
algorithms which are able to allocate clients’ requests to the correct node in order to follow defined
constraints. For example, tasks’ completion time has to meet a deadline. As in the previous point, we
only focus on fully distributed and cooperative algorithms.

« Section 4.2 presents (i) the design of a decentralised RL-based algorithm to be implemented in
every Fog node that is able to choose the best scheduling decision according to the current load
situation; then (ii) a study of a geographic setting which involves six Fog nodes deployed in the
city of New York and in which the algorithm can be deployed, and finally the (iii) simulation
results on a delay-based simulator prove the efficiency of the algorithm compared to the classic
power-of-n strategy, moreover are also shown (iv) results from a pseudo-real deployment with
the prototype framework “P2PFaaS” in a rack of 12 Raspberry Pis;

« Section 4.3 presents (i) an RL-based online scheduling algorithm for the computing continuum
that is able to cope with node inhomogeneity and to satisfy user-defined processing frame rate
requirement; then (ii) simulation results of the proposed algorithm in two main settings, one
cluster or more clusters in the Edge layer, within a simulator that is focused on replicating

fine-grained delays that a job may encounter during its execution path.

Testbeds and implementation design Research contributions in this area regard the study of
techniques and solutions whose purpose is the development and implementation of load balancing and

scheduling algorithms in real or pseudo-real environments.

« Section 6.2 illustrates (i) the definition of hardware and software requirements for a long-term,
unattended and remote controllable solution for implementing a Raspberry Pi cluster, then it
presents the (ii) design of a power supply board for using a desktop computer power supply (called
ATX) for powering up to eight Raspberry Pi boards; moreover, the Section shows the (iii) design of
a remote Ethernet switch system for remote controlling the power of the cluster to be associated
with the power supply board and (iv) propose a way to define the testbed configuration and an
experiment via JSON configuration files, towards a Testbed-as-a-Service paradigm; finally (v) the

results of the benchmark of a distributed scheduling algorithm installed in the cluster are shown;

« Section 6.3 shows the internal design and the purpose of the open-source “P2PFaaS” framework
that we started to develop during the MSc Thesis and that we continued to develop during the

PhD for practically implementing the load balancing and scheduling algorithms tested only in

SecTioN 1.1 Research Contributions 8
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simulations.

1.2 Thesis Qutline

The content outline of the thesis has been anticipated by the thesis contribution (Section 1.1). However,
the overall scheme of the thesis is the following. Chapter 2 studies load balancing approaches based
on a randomised approach. In particular, the power-of-n choices paradigm is exploited, a strategy
which is based on random probing of neighbour nodes. All the strategies presented in the Chapter
use probabilistic models of the system. Instead, Chapter 3 focuses on a solution which derives a
load balancing algorithm based on a non-probabilistic model. Indeed, the differential model used for
modelling the Fog or the Edge nodes is based on the dynamical systems theory. Chapter 4 shows a
series of works in which the scheduling decision is made with Reinforcement Learning. The solution
is applied both in a pure Fog environment and in a Edge/Fog-to-Cloud computing continuum with
nodes organised in clusters. Chapter 5 presents strategies which are instead oriented to Green Edge
Computed, and therefore they specifically target energy consumption, task offloading and solar energy
contribution. Finally, Chapter 6 focuses on the infrastructural side of algorithms. In particular, a
testbed for an Edge Computing solution will be shown with a final description of the open-source
framework “P2PFaaS™ that we started to develop during my MSc Thesis and that we continued to
improve during the PhD. The framework allows all the algorithms presented in theory and simulations
to be implemented in a real environment. In particular, it has been installed and tested within a testbed

of Raspberry Pi computers. Conclusions are finally drawn in Chapter 7.

1.3 Publications

A great part of the works presented in this thesis have been published in international conferences and
journals, and for each section, the relative publications will be referenced. What follows is the list of

the publications that | authored or co-authored during my PhD.

Publications accepted

(1) G. Proietti Mattia and R. Beraldi, “P2pfaas: A framework for faas peer-to-peer scheduling
and load balancing in fog and edge computing,” SoftwareX; vol. 21, p. 101 290, 2023, 1SSN: 2352-
7110. pol: https://doi.org/10.1016/j.softx.2022.101290. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352711022002084
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Chapter 2

Randomized strategies

Our universe is ruled by random whim,

inhabited by people who laugh at logic.

JEFF LINDSAY

HE decision of using randomness for making scheduling decisions may sound slightly controver-
sial. One may wonder how it is possible to obtain appreciable results if we choose, at random,
nodes to which tasks have to be scheduled. However, under certain conditions and when some

information about the state cannot be known, a random approach is proven to be preferable. Indeed,
when the state is unknown, it may be unfeasible to probe each neighbour node to retrieve their state
and then make the scheduling decision. Probing requires time, and a delay is added to the requests,
which cannot be scheduled until all the probing requests are completed. The work presented in this
chapter uses randomness for scheduling a task to a neighbour when the current node is not able to
execute it. Therefore, instead of directly rejecting the request, it can make sense to forward them
randomly.

There is a fundamental result from which the algorithms presented in this chapter are derived, and
it is called the “power-of-n choices”, which was extensively studied in literature [18] [19] and particularly
fits our assumptions. The solution is applied to the so-called supermarket model, where we hypothesise
that customers arrive and are served in a FIFO (First-In First-Out) protocol. Each customer must choose
d servers out n uniformly at random, and it chooses the less loaded. It is proven that when we pass from
d = 1to d = 2 the improvement in performances is exponential, while when d > 2 the improvement is
only by a constant factor. When applied to Fog and Edge Computing, we can actually map customers

to requests that arrive at the nodes. Then, when a node has to decide to forward the task at random, if
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it uses d = 2 and probes one node uniformly at random (the other node is the current one) then the
same power-of-n result holds. Variants of this scheme have been studied with their implications even in
a real Fog Computing environment, and they are presented in Section 2.2 and in Section 2.3.

Another important aspect that emerges during the random probing is the time delay that it implies.
As anticipated in the introduction, it is obviously not possible to retrieve the state information from
another node without a time delay. This means that when the scheduling decision is made and based
on that information, then it will always be made on old information since the state of the probed
node changed over time. From a merely qualitative and intuitive point of view, if the information
that we retrieve is too old, then its significance to us could become negligible, and it would have been
convenient to forward the task blindly without the probing. In Section 2.4, by using a probabilistic
model, a quantification of this convenience threshold is given.

Concluding, the rest of the Chapter is organised as follows. Section 2.1 presents related works,
Section 2.2 studies the implication of the power-of-n strategy when applied to a Fog Computing envi-
ronment, Section 2.3 studies two variants of the random-based approaches called Adaptive Forwarding
and Sequential Forwarding, finally, Section 2.4 focuses on the impact of the stale information when the
scheduling decision is made. The algorithms and the results presented in Sections 2.2, 2.3 and 2.4 have

been published respectively in [13], [15] and [8].

2.1 Related Work

Randomised approaches to load balancing The main randomised strategy used in the works
presented in this chapter is based on the “power-of-d choices” result [19]. Load balancing algorithms
based on this result adopt a unique scheduler that receives jobs to be dispatched to one of N equivalent
workers. Scheduling decisions are performed by sampling the state of d workers and selecting the most
convenient one according to their workloads. The main success of this strategy is that it avoids keeping
the state of all the workers while being remarkably effective, which is particularly useful when N is
high. A rich and sound literature has studied the property of these algorithms for N — co. In this limit,
[20] shows the asymptotic independence among queues, which allows for simplifying the analysis of
these systems. All of the analyses performed in this chapter consider this ansatz.

The studies that characterise this randomisation algorithm in the context of load balancing can
be divided into two bodies depending on the model of the workers that either cannot or can lose jobs.
The first set of results, e.g., [19], [21], [22] model workers as M/M/1 queues and the selection criteria
is to pick the Shortest among the d sampled Queues, SQ(d). The most relevant finding is that the
average job execution delay decay doubly exponentially in the limit as the number of servers goes to
infinity, which is a substantial improvement over a classical queue case, where the queue size decays
exponentially. A finer workload measurement is used in [23]. This extraordinary improvement has
motivated the research on a different worker model that can somehow better fit applications to cloud
computing, e.g., [24]. The second body of works, indeed, models the worker as a finite set of K servers,
e.g., an M/M/K queue, and a job that cannot be scheduled it is blocked, [22], [24]-[26]. The selection
criteria here is to pick the Least Loaded among d queues, LL(d), where the server load is the number
of busy servers. These works analyse the effect of randomisation on the blocking probability, which
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is the counterpart of average delay. However, all models assume a single centralised dispatcher, and
hence threshold-based control cannot be applied. The work in [27] is the most related to the strategies
presented in this chapter. In the protocols presented in this chapter, if a job execution request arrives at
an overloaded Fog node, the job is forwarded to a neighbouring node with some probability. Hence,
contrary to the proposed protocol by the authors in which no power-of-choice is used. In [28] the
power-of-d choices paradigm has been used to enable cooperation among different Fog providers. No
thresholds are used, and the protocol is limited to unitary fanout. In [29] random choices are used for
p2p load balancing protocols.

Load balancing for the Fog model has been studied in several papers. In [30] an algorithm called
Multi-tenant Load Distribution Algorithm for Fog Environments (MtLDF) has been proposed to optimise
load balancing in Fogs environments considering specific multi-tenancy requirements. However, the
proposed load balancing scheme adopts a centralised Fog management layer that receives all the
state information about the Fog nodes. In [31], the tasks that the nodes are called to complete are
characterised according to their computational nature and are subsequently allocated to the appropriate
host. Edge networks communicate through a brokering system with loT systems in an asynchronous
way via the Pub/Sub messaging pattern. However, a centralised workload balancer is used in the solution.
In [32] an approach is presented to periodically distributing incoming tasks in the Edge computing
network so that the number of tasks, which can be processed in the Edge computing network, is
increased, and the quality-of-service (QoS) requirements of the tasks completed in the Edge computing
network are satisfied. The model, however, assumes that a set of tasks to be assigned is available,
i.e., the tasks are not processed online. In [33], a mechanism for load balancing policy is presented
with a dynamic threshold, which is computed each time the scheduling is applied. In [34] and [35],
the load balancing algorithm is based on a BFS search by also addressing the problem of the secure
authentication between nodes. Other works are focused on the trade-off between energy consumption
and latencies [36]. Finally, Yousefpour et al. [37] propose a system similar to the presented Sequential
Forwarding algorithm (Section 2.3.1.1). However, the proposed solution still requires a centralised
repository to store the load state of each Fog node. A variant of the proposed system relies on a specific
communication pattern similar to a gossip protocol to send updates on the load state of each node.
However, some of the approaches presented and based on blind forwarding provide good performance
without complex coordination structures.

As a final remark, it is worth noting that almost all the referenced studies do not explicitly take into
account the heterogeneous nature of a Fog computing infrastructure, while the analyses presented in

this chapter explicitly focus on this aspect.

Management of Fog computing infrastructures The interest in managing Fog computing infras-
tructures has been addressed in literature in multiple ways. On the one hand, a corpus of literature
aims to address the problem of connecting end devices (e.g., sensors) to Fog nodes and Fog nodes to
cloud data centres. For example [38] proposes an optimisation model based on energy consumption to
map processing tasks over Fog nodes and cloud data centres. A different approach is introduced in [39]
where the focus is more oriented towards providing a good mapping between Fog nodes and sensors in

a heterogeneous environment. However, both these papers follow an approach where the incoming data
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flows and computing tasks are statically assigned over the infrastructure. The algorithms presented in
this chapter are, instead, completely dynamic and can easily adapt to workload conditions that change
over time. The experiments show that with, limited tuning, it is relatively easy to adapt to a wide range

of application scenarios.

Impact of delay on load balancing performance The negative impact of stale information due to
network-related delays on load balancing performance in distributed infrastructures was pointed out
several years ago in the area of Web systems [40] and in a distributed setting in the seminal work [41].
In this Chapter, the focus is to analyse the effect of network delays in the novel area of Edge computing.
In particular, the study presented in Section 2.4 focuses on load-aware probe-based approaches for
load balancing among Edge nodes, considering their potential issues. Furthermore, the analysis is
not limited to network delays. Indeed, the focus is on specific application requirements through the
parameter 7, which expresses the transfer-to-compute ratio. This allows understanding under which
circumstances the probe-based approach can be preferable to the load-blind approach of the sequential

forwarding algorithm.

Vertical Offloading vs Horizontal Load Balancing With the increasing heterogeneity of the
computational capabilities of mobile devices and sensors used in large distributed applications, both
the Edge and the cloud level can be exploited to share the load of the required data processing and
satisfy the application requirements. The (total or partial) transfer of computationally intensive jobs
from the local device/sensor to Edge and cloud nodes, called offloading, has been widely studied in the
context of mobile cloud computing [42], [43], where is used to transfer the computational load to the
resource-rich cloud infrastructure.

The cloud is often remotely located and far from end-users and sensors, so the data transfer delays
can be long and unpredictable. To reduce the perceived latency, mobile Edge computing (MEC) has
been proposed by several studies [44], [45] for offloading a part of the workload from mobile devices to
the intermediate level of Edge nodes with sufficient computational resources. However, these studies
typically do not consider horizontal cooperation strategies for load balancing among Edge nodes. Some
studies focus on the Edge server placement issue [46] or include dynamic service migration to deal

with erratic user mobility [47] but do not consider cooperation strategies at the Edge level.

Application Scenarios Many distributed applications, ranging from Industrial loT to smart city
contexts, rely on sensors and, in general, end devices to collect data that need to be processed for
extracting features and information needed to provide the required final service [48]. Such applications
may have very different requirements in terms of processing time and amount of data to be processed:
these elements have a direct impact respectively on T4 (time required to calculate the mapping
A between units of computations) and T (execution time) as defined in the introduction of this
section. In this study, the parameter 7 is introduced to take into account the transfer-to-compute ratio
characterising the application.

For example, a typical application that can take advantage of Edge computing support is video
processing: by extracting at the Edge level only a few video features to be sent to the cloud, network
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resources can be saved, and application latency decreased. The studies proposing Edge computing
solutions for image processing [49], [50] usually focus only on the high computational load required
(sometimes addressed by splitting among Edge nodes non-overlapping partitions of the video frames as
in [50]) but do not consider the network-related contributions. However, depending on the specific
characteristics of the application, it is not always correct to assume 1 < 1, meaning that the processing
time is higher than the network contributions. In the case of high-performance image processing and
high frame rate, the network latency and the jobs transfer time may become comparable or even higher
than the job execution time. On the other hand, large distributed applications may also involve thin
data to be transmitted and processed. This typically happens with crowdsensing applications based on
data collected by geographically distributed sensors [51], but it may also be the case of Industry 4.0 or
loT-Based Manufacturing scenarios [52]: in all these applications, the data size may be around a few
Kbytes (e.g., a small JSON file). However, thin data’s execution time may vary significantly depending
on the specific scenario. Indeed, for applications requiring simple computations of statistical indicators
on the time series of the collected data, the execution time may be short and comparable with the
network-related and transfer times, leading to a case characterised by a value of n = 1. On the other
hand, in applications where machine learning techniques are applied [52] (for example, for complex
forecasting, feature inference or patterns prediction), the execution time may significantly increase,
leading to a scenario with 7 < 1. An added value of this study with respect to the state of the art is to
consider which load balancing approach is preferable depending on specific scenarios and application

requirements.
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2.2 Specialising the “power-of-n choices” paradigm for Fog Computing

The ongoing advances in the ICT, from 5G to powerful open-source software libraries, e.g., open
Computer Vision and TensorFlow, are creating the prerequisites for software applications positioned in
the left upper corner of the latency bandwidth Cartesian product with use cases in different vertical
domains, e.g., ranging from loT, smart cities, AR/VR based applications with haptic interactions, as well
as Tactile Internet, [53]. Fog computing is widely considered the key enabler for such applications as
it makes backend capabilities physically close to the end-users and integrated with the usual cloud
services. Fog computing is seen as an integrated intermediate layer along the thing-to-cloud path [19],

[54]-[56]; readers may refer to [57] for an overview and tutorial on Fog computing.

5G CORE NETWORK (CONNECTION TO THE CLOUD)

gl ) 6

= g
v
=

& |

Figure 2.2.1: An illustration of the inter-node communication among 5G Fog nodes, that can support the load
balancing discussed in this study.

Fog-enabled applications are a composition of units of computation, e.g., adhering to the Function
as a Service (FaaS) delivery model, with the time-critical parts deployed on Fog nodes, [58]. OpenFog’s
Fog computing Reference Architecture [59], recently adopted as the IEEE-1934 standard, envisions Fog
nodes to form a mesh to provide load balancing and minimisation of cloud communication. In particular,
they may communicate laterally in a peer-to-peer fashion. For example, in the 5G architecture, a high
number of devices are networked by a capillary network, and nearby Radio Access Network, equipped
with Fog computing capabilities, (F-RAN) may communicate directly, through the so-called X2 or X2*
interfaces, [60], [61], see Figure 2.2.1. This inter-node communication carries both control and user
planes and allows for increasing the fraction of the service requirements that can be responded locally
without interacting with the cloud computing centre via the fronthaul links. For example, a computation
request generated from an End User (EU) connected to an F-RAN can be served by another nearby
F-RANS, even via a virtual multi-hop connection, where the number of hops is limited to some units.

Also, in the industrial standard ETSI’s Multi-access Edge Computing (MEC) reference architecture,
the envision orchestration leverages on code relocation and traffic steering to dynamically move

application code or data, [62].
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Motivated by the above scenarios, in this section, we study the problem of how load balancing jobs
among a set of Fog computation resources that provide the same computation service, for example, the
object detection service described in [63]. Load balancing in Fog computing is, in fact, an open issue
that may play an important role to enable Fog based applications, [57], [64]-[66].

In more detail, we focus on a Fog layer composed of N nearby Fog nodes, with K identical servers.
The Fog nodes are willing to share their resources with the goal of reducing the fraction of jobs forwarded
for execution to a distant cloud. Incentives to cooperate and the benefit of such sharing are discussed,
for example, in [67]. In addition, jobs have no information related to their deadlines, computation
requirements or priorities. It is worth noting that IV can potentially be high. For example, in the 5G
architecture, higher frequencies than 4G are not capable of travelling large distances. This requires
placing 5G RAN every few hundred meters in order to utilise such higher frequency bands.

The proposed algorithm is an adaptation of the LL(d) algorithm (Least Loaded among d random
nodes) to the above Fog model. A Fog node normally executes jobs received from its direct users without
any load balancing action. However, when its workload is higher than a threshold T', a node tries to
delegate the execution of a job to another less loaded node among F' randomly probed nodes '. We
refer to this algorithm as LL(F,T'). This threshold regulation is a simple yet effective mechanism that
reduces remote scheduling overhead remarkably, avoiding the inefficiency arising when autonomous
schedulers compete on sharing a common set of resources, [41], [68], [69].

The contribution presented in this section can be summarised as follows.

« Definition of LL(F,T), Least Loaded among F' nodes with threshold T, a new scheduling
algorithm the Fog computing model based on the power-of-random choices randomisation
principle.

« Mathematical analysis of the algorithm showing how LL(1, K — 2), i.e., probing just one node
when one or two servers out of the K are idle, reduces up to one order of magnitude the control
and delay overhead with respect to a vanilla randomized load balancing implementation of the
power-of-two random choices algorithm.

2.2.1 System Model

In this section, we describe the proposed solution to the load balancing problem for Fog computing. In
general terms, the load balancing problem consists in determining how to allocate jobs generated by
end-users to Fog nodes in an efficient way. More formally, we are given a set of N homogeneous Fog
nodes with limited resource capacity, where each one is receiving a continuous flow of computation
requests, or jobs. A job is blocked when it cannot be executed due to the lack of available resources. We
call pp the probability that this event occurs. A load balancing algorithm is a rule that assigns jobs to
servers in a way that pp is minimised. The efficiency of the rule is measured by the amount of control
overhead generated.

A power-of-d random choices load balancing algorithm is a rule executed by a dispatcher to decide

where the jobs received have to be forwarded and executed among a set of N equivalent workers. On

'We use a different symbol, F to indicate the number of probed nodes to make the difference with the original protocol
clearer.
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receiving a job, the dispatcher probes a small subset d of workers and then sends the job to the Least
Loaded among them with ties broken at random. The key characteristic of the algorithm is d < N
and even d = 2 has shown to be very effective compared to probing all nodes. The algorithm, referred
as LL(d), requires an overhead as small as d control messages per job and scalable as this overhead
doesn’t depend on N.

A general Fog computing deploy model is a hierarchical multi-tier architecture where communication
can also occur among nodes of the same tier, [59]. We focus on the first tier that provides access to
end-users via N nodes. The application of LL(d) as-is implies the existence of N dispatchers and N
workers, and this has two main drawbacks. The first one is that in general concurrent dispatchers tend
to be inefficient as their decisions are biased towards workers that appear lightly loaded, [41], [68]. In
some extreme cases, this implementation may even deteriorate the initial performance, e.g., see [69].
The second implication is that the dispatching operations introduce a delay overhead for any job, even
when nodes do not need to distribute the load, for example, because most of its current servers are idle,
as discussed later. For these reasons, we propose the following algorithm that keeps the load balancing
approach unchanged but allows reducing the aforementioned drawbacks. The design of the algorithm

is based on the following assumptions:

« A1: The communication latency among nodes, although not negligible, is small compared with
the job execution time. This assumption follows from the observation that for example, the time
required for image recognition is in the order of tens of ms, while an X2 or X2* interface that
connects Fog nodes - either directly or through a few relaying nodes, is likely to be not higher
than a few ms, see Figure 2.2.1.

« A2: Probing occurs only among N nodes in the same tier composed of nearby Fog nodes, where
N can be high. This assumption follows from the observation that the density of Fog nodes in a
geographical can be high. For example, F-RAN can cover just hundreds of meters. If a job cannot
be executed in the tier, the job is forwarded to the cloud. The protocol aims at reducing the
probability that these events occur. Nodes do not have a waiting queue for incoming jobs, i.e.,
the workload is measured as the number of running jobs.

+ A3: nodes are homogeneous, they have the same number of servers K and provide the same
service at the same speed. The generalisation to the non-homogenous case is easy and left as

future work. We will, however, report simulation results that cover this case.

2.2.1.1 LL(F,T): Least Loaded with fan-out F' and Threshold T

In this section, we describe the Least Loaded among F' random nodes with threshold 7" load balancing
protocol, referred to as LL(F,T). The value F is called the protocol fan-out. The algorithm works as
follows, see Figure 2.2.2.

When a node receives a job, if £ < T, then the node executes the job immediately, otherwise, it
probes the state of F' different random nodes and computes the minimum among the returned values,
say m. When k < K, if m > k, then the node executes the job locally; otherwise, it forwards the job to
the node reporting m, with ties broken at random. If the receiving node, as well as the probed nodes,

have no free servers, i.e., k, m = K, the job cannot be served by this Fog layer, and we count the job
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Number of nodes N
Number of servers K
Arrival rate per node A
Number of nodes running k jobs ng
Number of nodes running at most k jobs ng = Zle n;
Stationary state probability for the infinity model Tk
Tail of the stationary state probability Tk = Zfik s

Table 2.1: Main symbols used in the analysis.

as being blocked. A blocked node can trigger different actions, like sending the job to an upper Fog
layer (e.g., the cloud). We limit to consider this metric as an important performance measure of the
algorithm with higher blocking probability being associated eventually to worse end-user performance.

k=
current
workload

k2T

PROBE F NODES

m = LEAST LOADED

SERVE LOCALLY FORWARD JOB

| e

JOB SERVED LOCALLY JOB BLOCKED JOB SERVED REMOTELY

Figure 2.2.2: Least Loaded among F' probed nodes with Threshold 1" control flow. K is the total number of
servers available, k the number of busy servers at the receiving node. A job executed remotely means that the
serving Fog node is not the node that received the job.

2.2.1.2 Protocol analysis

We study the performance of the LL(F,T') protocol under a Poisson traffic with rate A jobs per unit of
time per node and exponential service time with mean one. Table 2.1 summarises the main symbols

used in this study.

Protocol analysis for N finite This model considers a system of N homogeneous Fog nodes with
K servers. The model is based on a standard Continuous Time Markov Chain (CTMC). The state of the
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system is expressed through the vector:

n = (ng,ni,...,NK) OSWSN,ZWZN
i

where n; is the number of nodes with 7 running jobs. This direct method can only be applied to small
values N, K, as the state space of the model explodes (see the [13] for a quantitative evaluation).
However, it is anticipated that the characteristics of the load balancing protocol appear even with small

values for N, K. The chain is solved numerically from its canonical formulation:
7Q =0, lr=1

To deal with the memory issues, we’ve avoided direct matrix inversion and used a power method
instead, as it allows for storing the spare matrix efficiently.
Let ek be a K + 1 sized vector of all 0s except 1 in position k. The entry ¢(n, n’) of the infinitesimal

transition matrix Q is expressed as:

Ai(n, F) n=n-—ex+ex
, i (1) n’ =n+ex ; — ey,
g(n,n’) = ,
= >, F) + pivi(n)] n=n
0 otherwise

where ;(n) = i x un; (n; is the i-th component of n). Let us define the function:

n! (N —F)!
(n—F)I'  N!

P
5Nn_

with the convention that 6§, = 0 if F < 0. This number represents the probability to extract form an
urn of N balls containing n balls of the same type, F' balls of such a type without replacement.

The birth rate is conveniently divided into the sum of two flows. The first flow:

1 k<T
Atk(n, F) = Any, 5 Lo
N—17j,—1 =
represents jobs that arrive directly to Fog nodes. For k > T a job is served only if the state of all the F’
probed nodes is at least k. Let iy, the number of jobs with at least &k jobs running. As the number of
these nodes excluding the node itself is n; — 1, this event occurs with probability given by (-) in the

above expression. The second contribution is given by:

~ R P
Aop(n, F) = X ”T(5N71ﬁk71 - 5N71ﬁk+171) k<T

~ F F
nk+1((5N—1ﬁk—1 - 6N—1ﬁk+1—1) k=T

where the term in the parenthesis is the probability that the minimum state of at least one probed node
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is k.

Performance metrics N finite The following performance metrics are defined in terms of the
stationary probabilities 7, of the CTMC process. As far as the delay is concerned, we approximate
its evaluation by assuming that each round trip time is a uniform Random Variable U = (0, 1] and
correlations exit among probings.

« Blocking probability, py. This value corresponds to the probability of the event that a job received
from a node cannot be executed, which occurs when the state of the receiving node, as well as all
the F' probed nodes, is K. As a job is blocked when the state of all the F' different probed nodes

is K, we have
_ Nk ng — F
= Y M ol
Tning >F+1

 Average delay per job, D.
This delay is the sum of the delay due to probing, job forwarding and result reply and it is given
by:
F 1 1
n:ng>T
where fwd is the fraction of received jobs that are forwarded to another node. The first term is
the mean of F" uniform RV and 5¥ is the probability that a job arrives to a node whose state is k.

The fraction of job forwarded is given by:

min{ng,F} .
ng e — 1
fud= 3> y{t= 1T J=|m

Tn:ng >0 i=1

which represents the probability that a job arrives to any of the NV nodes, sees the Fog node with
k servers busy, and the state of all the probed nodes is at least k.

« Overhead per job, ovh.
As probing is triggered when a job arrives to any of the ny out of N nodes whose state is k > T’

and the probability such a job arrival event occurs is 5%, we have:

Protocol analysis N infinite We now characterise the LL(F, T protocol in the limit of N — oo
Fog nodes. We make the conjecture that when N grows, the dynamics of a set of finite nodes tend to
become independent one from each other. While a formal proof of such asymptotic independence is
difficult, We remark that this approach has been taken in other works, e.g., [20], [24], [26] and it is
the basis of the widely used mean-field theory. What is proven is that the model, arising from this
assumption, considered per se has a single solution. If the conjecture is true, the model then provides

correct results. The presented numerical results have similar shapes compared to the model with finite
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N, thus making this conjecture reasonable.

Suppose then that queues describing the nodes are independent, and let us focus on a single tagged
node. The state of this tagged node boils down to the number of its busy servers and changes according
to a Birth-Death (BD) process with state-dependent birth transition rates, as defined next.

Let 7 the probability of the state being k, and 7, = Z]K:k m; the tail distribution of the state
variable. The BD process describing the state of a node should satisfy the following set of K equations:

N = (K +D)mpyr k=0...K—1 (2.1)

where >, m; = 1 and A\ = A\ + Aok

Figure 2.2.3: Traffic flows seen by a node A. A job is served by the node when (i) it is received directly from A
(left); (ii) it is probed by some other node B, that then forwarded to it.

The tagged node executes jobs generated directly from its users (left side in Figure 2.2.3), when
k <T,orT <k < K and the state of all the F" probed nodes is at least k. The birth rate associated to

these events is

1 k<T
A = A X (2.2)

™ k>T
Node A may also execute a job on behalf of another node, say B in the right side of Figure 2.2.3.
This occurs when B selects A and before that B probed other F' — 1 nodes. If the state of A is k, this
occurs when the state of B is higher than k, k is also the minimum state of other ¢ out of the F' — 1
other probed nodes, and B selected A among the i + 1 least loaded nodes. Since B probes other nodes

when the number of busy servers is at least 7', these transitions occur with rate
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where

Properties
Theorem 2.2.1 (Solution). Equations Equ. (2.1) have a single solution.

Lemma 2.2.1 (Upper bound). For given F, T, \ < K, let

kE—T-1
F+1 I

Tk

I (e — )P

then if |[\| < T when X in not an integer and A\ < T' otherwise, the following upper bound holds
Te<m k=T,....K

Proof. see [13].

Lemma 2.2.2 (Equivalence). LL(F,1) is equivalent to LL(d), whered = F + 1.

Proof. See [13].

(2.3)

O]

Performance metrics The counterpart of the performance metrics for this model is defined in terms

of the stationary probabilities 7, of the BD process describing the LL(F, T algorithm.

« Blocking probability, pp.

_ F+1
b = Ty

In fact, this value corresponds to the probability of the event that the state of the node receiving

a job as well as all the other F' probed nodes is K. Note that pp < ﬁiﬂ

« Average delay overhead per job, D.

o 1
D= 7TT+§fwd

where fwd is the fraction of received jobs that are forwarded to another node. As a node with

state k > T" forwards a received job if the state of at least a probed node is lower that k, and this

occurs 1 — %,f, it is:
K
fwd="> " m(1—7)

T=k
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« Average number of generated probing messages per received job, h. As F' messages are generated

when the state of the job’s receiving node is at least T, this value is hence given by:

ovh = Frp

2.2.2 Threshold limit on the power-of-n choices

It is known that the extraordinary efficacy of the power-of-d-choices algorithm is because the state
dynamics of a node under LL(d) is radically different from when the node works in isolation. The
LL(F,T) algorithm works between two extreme points. For ' = 1 the algorithm is equivalent to
LL(d) with d = F + 1, and hence it completely exploits the power of choices effect, whereas with
no cooperation, 7' = oo, each node works in isolation. It is then worth to better understand how
T determines the raising of this change, e.g., how and if it is smooth or not. We provide here some
numerical results concerning this aspect.

A formal way to measure how T affects the state distribution is to compute the difference among
the schemes as a distance:

1
2
dist(F,T) = (Z |7, — w;|2>
k

where 7y, (7.) is the state probability of LL(F,T) and LL(d) with d = F + 1, respectively.

Table 2 reports the distance dist(F, T') for different values F, T, and K = 30, A = 25. The difference
falls sharply as T' becomes lower than A. For example a distance of less than 0.005 is reached when
T = X = 25. Also, the fan-out F' makes this change even stronger.

T 30 28 26 25 22
F=1 | 2.7e-01 | 1.7e-01 | 2.4e-02 | 5.0e-03 | 2.9e-05
F=2 | 3.9e-01 | 3.0e-01 | 2.1e-02 | 2.0e-03 | 1.0e-06
F=4 | 4.9e-01 | 3.8e-01 | 1.4e-02 | 4.3e-04 | 1.1e-08

Table 2.2: Distance dist(F,T') for different fan-out I and thresholds T, K = 30, A = 25 (top), and A = 29
(bottom).

Though the previous distance provides an objective measurement, a better understanding can be
gained by analysing the whole state probability distribution function. As the highest deviation from
an isolated worker is registered with d = 2, [70], we focus on this case. Figure 2.2.4a shows the 7’s
pdf for K = 30, A\ = 25 and different T. The LL(1, 00) plot is the pdf of the M/M/K/K queue (no load
balancing).

From Figure 2.2.4a, we observe how for T' < K, the state probability after some k starts to decrease
fairly sharply, whereas this is not true for node working in isolation or 7' = K. Figure 2.2.4b shows the
exact and upper bound of 7, and confirms how the state probability falls sharply with K.
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Figure 2.2.4

2.2.3 Performance results

This section reports some representative performance results of the LL(F, T') protocol, using the infinite

and finite models.

2.2.3.1 Infinity model

Figure 2.2.5a shows the blocking probability as a function of the load for K = 50, F' = 1. The way
the blocking probability changes with the load varies remarkably when load balancing is introduced.
The performance can be seen under different angles. For example, suppose that job execution latency
is such that they cannot be executed in the cloud? and that jobs’ blocking probability, called target
probability hereafter, should be pp < 1073, Without load balancing, the node can serve up to a traffic
load of \ &~ 33 requests per unit of time (this value is not shown in the figure), whereas with load
balancing with T" = 1, which is equivalent to a classic Least Loaded policy, LL(2), this traffic raises to
N = 47, corresponding to a traffic intensity of p = % = (.74. To ensure the same pp the node should
increase the number of servers to K = 67. We can envision a scenario where the traffic temporarily
increases beyond X" and the node should elastically accommodate this peak. Even assuming a virtualised
environment that allows resource scaling, the node can benefit from load balancing during the start-up
time of the new 17 resources, which may be not negligible (clearly the traffic of the other nodes should
be less than \’). The plot shows how the same blocking probability can be achieved with 7' = 48.
Another interpretation of this result is the following. Suppose that jobs are never lost as a node can
delegate job execution to the cloud if congested. A node working in isolation can serve traffic at a rate
of 47 jobs per unit of time, but a fraction of them, corresponding to the blocking probability, roughly 10
% according to Figure 2.2.5a, is executed in the cloud, thus expediency a longer latency. If load balancing
is used, this fraction is reduced to just 0.1 %. Clearly, additional latency is to be considered that is due

to load balancing penalty. By using a threshold, this latency can however reduced, as discussed next.

*Typical values of the round trip time to hit a cloud service can be as high as 100 ms, whereas Fog-to-Fog latency is likely
to be as small as a few ms.
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Figure 2.2.5b shows the blocking probability when the fan-out is increased to F' = 3. Now it is
enough to set 7' = 49 to get the same fraction of blocked jobs.

107

107

o102 @102}
T=oo —+—
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T=1
103 . . 1073 . . .
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load load
(@ F=1 (b) F=3

Figure 2.2.5: Blocking probability vs load

Figure 2.2.6a shows the frequency of probing messages generated as a function of the traffic and
different T'. The advantage of using a threshold is measured by the reduction of probe messages.
For T' = 48 and A = 47, the messages rate decreases of a half with respect to an uncontrolled load
balancing activity, and much more for lower traffic. For example, for A\ = 40, the target pp is reached
with T = 50 at the cost of just a few probe messages. At this traffic, the node should still increase
its servers (to ' = 59) if working in isolation. Besides the obvious benefit of decreasing the control
overhead, this reduction also reduces the risk of race conditions that may weaken the effectiveness of
load balancing, as remarked in [68], [69].

Figure 2.2.6b shows the frequency of probing messages for I' = 3. Under the overhead point of
view, the best fan-out is a matter of the working conditions. For example, if the load is less than A = 46
and the target loss fraction is 1073, then F' = 1 or F' = 3 generate almost the same amount of control
messages of less than 20 messages per unit of time, i.e. less than a half if threshold is not used. If the
load is increased, F' = 3 may be required to meet the target blocking probability.

Figure 2.2.7a shows the average control delay penalty introduced by the protocol as a function
of the traffic. This delay also reduces remarkably using a threshold. For example, from 0.7 to 0.4 for
A =47 and to 0.05 for A = 40, i.e. of one order of magnitude. Note that for 7" = 1 the average delay is
not one, because a job is not always forwarded (the delay is the sum of the average probing message,
i.e., 0.5, plus the delay of job forwarding and reply, that occurs only when a job is forwarded.

The delay for /' = 3 is shown in Figure 2.2.7b. Even under high load A = 50 corresponding to
p = 1, using a threshold reduces the control delay. This result corroborates the claim that to achieve

the benefit of randomisation it not required to always probe other nodes.

2.2.3.2 Finite model

This section reports the main three metrics, obtained with N = 8, K = 14. Figure 2.2.8a shows the
blocking probability as a function of the traffic for F' = 1. Load balancing allows reducing the blocking
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probability considerably allowing to serve a traffic of up to approximately 10 requests per unit of time

for the hypothetical target pp, corresponding to a traffic intensity of 0.7. The same value is reached

with T' = 12.

The effect of increasing the fanout is visible in Figure 2.2.8b. Clearly, the margin for improvement is

now limited by the finite number of nodes. We can also see see that by setting I' = K — 2, the protocol

reaches the same performance of LL(d).
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Figure 2.2.8: Blocking probability vs traffic

Figure 2.2.9a and Figure 2.2.10.(a) show the benefit of threshold on the control overhead and delay.

As for the infinity model, this advantage is even higher for lower traffic.
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Figure 2.2.9: Probe message frequency vs traffic

Figure 2.2.9b and Figure 2.2.10.(b) shows the same performance index when F' = 2. Similarly to the

results obtained from the infinity model, increasing F' allows to further reduce the blocking probability,

though the improvement is limited by the finite number of nodes.
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2.2.4 Simulation
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Figure 2.2.10: Average control delay vs traffic, finite model

In this section, we report the results of a simulated model that considers additional details missed in

the mathematical study, concerning the effect of delay and heterogeneity among Fog nodes.

We’ve used a custom discrete-event simulator, written in Python. The system under observation is

composed of N; fast Fog nodes and N3 slower nodes that provide the same service to a set of end users

in a given restricted area. Globally, the traffic generated by users covered by the same Fog node is a

Poisson process, whereas the average execution of the provided service requires s; ms by fast nodes and

s9 by slow nodes®. The Poisson assumption can capture a realistic scenario of moving end users entering

and leaving areas covered by Fog nodes and requesting an application service, i.e., object recognition for

VR/AR applications, as described for example in [63]. The parameters used for simulations are reported

in the following Table:

Total Number of Nodes 32

K 14
Traffic rate \ [jobs/s] 35,105,210
Job duration, i [ms] 300,100,50
Traffic intensity per node p = I%ﬂ 0.75
Task duration on a fast server [ms] 90%
Job Length [MB] 1

Device-to-Fog Delay [ms]

Uniform [5,5.5]

Fog-to-Fog Delay [ms]

Uniform [5,10]

Device-to-Fog Bandwidth [Mbps]

100

Fog-to-Fog Bandwidth [Mbps]

54

Each simulation lasts until at least 3000 loss events are detected. The plots report the average

among 5 independent repetitions of a same simulation.

*Due to the insensitiveness to the service distribution of loss models, only the average matters.
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We have compared the proposed protocol with a centralised round-robin load balancing algorithm,
where all Fog nodes first send their jobs to the centralised scheduler (assumed with infinity capacity),
then that applies the Round-Robin rule (RR).

Figure 2.2.11 shows the blocking probability as a function of the threshold (left) and the delay for
the same traffic intensity p = 0.75 and different execution times of a task. When the service time of a
task is much higher than the latency of control messages, 300 ms corresponding to control delay of
about 3% of the service time, the blocking probability follows what has been predicted by the model:
as the threshold decreases, it falls sharply to its minimum value and remain unchanged. However,
as the execution time becomes comparable with the control delay, after the minimum, the blocking
probability increases again. This is especially evident for service time 50 ms that corresponds to control
delay 15%. The reason is that exactly because of the control message transmission delay, the state of
a remote node at probing time can differ from its state when a job is actually received. It may then
happen that the workload of a received Fog node may be higher than the workload of the sending
node, hence weakening the effectiveness of the load balancing mechanism. Also, we have noticed from
inspecting simulation traces that in some cases, when the state of a node is close to K a job is dropped
by the probed node because, differently from what it has reported, the node has no longer idle servers.
The left side of Figure 2.2.11 shows that the blocking probability of the RR balancer is higher than the
proposed protocol. With the optimal threshold the proposed protocol drops about 0.25% of message,
whereas under RR about 2.5%, i.e. one order of magnitude higher. The blocking probability of RR did
not changed with the service time (recall that the traffic intensity is kept fixed in the experiment to
0.75).

Figure 2.2.11 also shows the delay (on the right), measured as the time from when a job is generated
by an loT device until the device gets the reply. This value was found to be slightly higher for low
thresholds, which is due to the additional job transfer time and probing overheads. The delay of the RR
protocol is always higher than LL, hence we can obtain a net advantage since more jobs are served
without any delay penalty.
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Figure 2.2.11: Impact of the execution time on the blocking probability and delay.

The second set of experiments measured the effect of server heterogeneity. In this experiment half
of the nodes execute a job in 300ms (slow node) and the other half in 250 ms (fast node), i.e. half of the

nodes are approximately 20% faster. Users are connected to a slow or fast node. The load of a node is
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A = 35 req/s. Figure 2.2.12 reports the blocking probability as a function of the threshold seen by users
that send their job requests to a fast or slow node. The figure also shows the total job’s response time,
i.e. the time elapsed from when a device sends a job execution request until it gets the reply. We can
see that the effect of the threshold is still effective in case of server heterogeneity, namely a threshold
of T' = 12 provides similar results of the homogeneous case. Since the load balancing allocates jobs to
random servers, the response time for jobs coming from users connected to a fast node is higher than
250 ms, i.e., the execution time when executed on fast nodes, time because it may occur that a job is
executed on a slower server. The advantage lays in the higher number of served jobs. For the same
reason, the response time seen by users connected to a slow node becomes lower than when jobs are

not forwarded to any faster node.
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Figure 2.2.12: Performance for the heterogenous case.

2.2.5 Implementation

An experimental test of the proposed scheduling algorithm has been conducted on a framework, dubbed
P2PFaas, that we conceived and designed according to the findings described in the previous sections.
Each Fog node runs an instance of such a framework, see Figure 2.2.13. The framework relies on the
Function-as-a-Service model (FaaS), [71] according to which the service provided by a Fog node is
exposed as a stateless function. The exported functionality is an image detection service that is provided
by all the Fog nodes, 4. Function invocation takes an image as input and it returns the coordinate of
a rectangle containing a face in the passed image. The invocation of such a function is bounded to
a specific image and corresponds to the unit of execution, called job or task hereafter. Job transfer
corresponds to transferring the image to be processed to another Fog node.

The framework, that is completely written in Go, is composed by a discovery service, which allows
nodes to know each other, and a scheduler service in which the core of the scheduling policy resides. In
particular, the scheduler service can forward image detection requests to other nodes, do probing or
schedule the function execution to the current node. The framework implements only the scheduling

*The function that implements this face detection is the Pigo Face Detector (https://github.com/esimov/pigo/)
function and implements the Pixel Intensity Comparison-based Object detection that is a modification of the standard
Viola-Jones method
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logic since the actual function execution is delegated to OpenFaaS$ . Both OpenFaaS$ and the proposed
framework rely on Docker and Docker Swarm, for which every node represents a swarm/cluster with
only one node. This one-to-one mapping is done in order to avoid to use the Docker Swarm pre-built
scheduler, which always assigns a new job to the least loaded node among the cluster it manages. To
avoid conflicting decisions, OpenFaa$S auto-scaling is disabled and the maximum number of concurrent

functions is set to K = 10.

P2PFaaS

Scheduler Discovery
Em]m]
OPENFARAS
b8

@docker @ Swarm

Figure 2.2.13: P2PFaaS$ concept diagram, illustrating the complete stack of services

A client that needs to perform a face detection task, sends an HTTP request to a Fog node. When
the node receives the request, the scheduling policy is applied: the current number of running functions
is checked and if it is below the threshold 1" the request is immediately delegated to OpenFaaS, which
executes the face detection function. In the other case, when the current load is equal to or above the
threshold 7', the scheduler service picks F' node IDs at random and probes their load via parallel HTTP
requests. When all the replies have been collected, the scheduler decides where to schedule the request,
and if it is forwarded to another node, it performs another HTTP request. When this node completes
the execution the result is returned via HTTP response to the origin node which returns it to the client.
Again the client waits for the job completion and it executes only one HTTP request, all what happens
behind it is totally transparent to the client.

An important optimisation that has been introduced since the initial concept version of the frame-
work regards probing. Indeed, after some tests, it resulted that serialising a JSON for replying to a probe,
with node load information, is too demanding to be performed since it requires a considerable amount
of CPU time. For circumventing this problem, load information is now passed via HTTP headers and
this allowed to drop the average probing time from 40ms to 10ms.

https://openfaas.com
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Figure 2.2.14: Scheme of execution of a function in the P2PFaa$ framework

2.2.5.1 Results

We have conducted several tests by exploiting a cluster of two servers equipped with Intel Xeon @
2.80 GHz, which are used to instantiate 8 VMs with assigned 1 core, 3GB of RAM and with Debian
installed. Every machine has been equipped with Docker, OpenFaa$S and the proposed framework with
K =10, F =1, and they have been set up as master nodes of single-node Docker Swarms. Then a
ninth VM, the “benchmarker”, has been instantiated in order to generate the traffic of the requests and
collect all the data. All VMs are connected via fast ethernet within the same local network. A series
of Python scripts generates parallel traffic of image recognition requests to every machine, then they
collect the number of dropped requests, the average execution time of a function and a series of other
parameters that regard probing times, forwarding times, number of http errors and many others. The
average execution time of a single image recognition is 300ms. Each experiment consisted of sending
20.000 detection requests at rate A = 3.00, thus having p = 0.9.

The experiment has been repeated 7 times, due to its duration (= 24hrs), and in the following
figures, results are shown by using a confidence interval with e = 0.1 and with sample mean error of
+ t%’n,l\/% (where S? is the sample variance).

Figure 2.2.15a shows the estimated blocking probability (ratio of dropped requests to the total
number of requests generated). This experiment shows a minimum for 7' = 8. As predicted by the
theoretical model (see Figure 2.2.8a), the blocking probability drops sharply as T" decreases; however,
rather than remaining almost constant at that value it starts to increase when T is further reduced. The
reason is that when 7" is lowered, the workload due to job scheduling at each Fog node increases since
the number of probes per job increases. In the limit of 7" = 1, unless the Fog node is idle, every job
arrival triggers a probe-reply cycle. While the length of such control messages is overall negligible, their
processing is not and it has the net effect of reducing the CPU cycles allocated to the image detection
or, equivalently, to increase the duration job execution. This aspect is not captured by the model. The
reduced CPU execution speed clearly increases the average execution time of served job, as reported in
Figure 2.2.15b.

Finally Figure 2.2.16 reports the output of the RRDTool performance profiler used during the trials,
showing the CPU breakdown, total memory usage and control traffic of a Fog node. Each pause in the
trace corresponds to decreasing the threshold of one unit, starting from T' = 10. We can see how the
CPU usage slightly increases as T" decreases and is approximately 0.9, which is consistent with the
nominal generated traffic intensity, % Such an increase is due to an increase in the control message

processing, as outlined above. Neither the memory nor the network is saturated, although they both
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increase as the protocol becomes more proactive.
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2.3 Performance comparison between blind and random forwarding

approaches

The reference model for this study is provided in Fig. 2.3.1, with Fog nodes densely distributed in a
given geographic area that provides a service of data processing for a plethora of sensors, e.g., loT
sensors or image processing in a smart city application, using a 5G Fog Radio Access Network (F-RAN)
architecture [72]. See [73] and [63] for a more in-depth description of computer vision-based services
and smart cities infrastructures. It is worth to note that, even if in this study the reference scenario is
focused on a smart city application, the main findings of the proposed research have general validity

and can be applied to other application fields with similar characteristics.

Cloud
Layer

Sensor
Layer

Figure 2.3.1: A typical Fog computing deploy model.

Among the several challenges introduced by the Fog computing (see [74] for a general discussion),
in order to address the above upcoming scenario, we focus on a specific research topic currently under
investigation: the design of an algorithm for resource sharing among uncoordinated and heterogeneous
Fog nodes in order to improve the response time of smart cities applications. Although resource sharing
is a classical and well-studied topic in the computer science community, this model of Fog computing
does not fit all the assumptions of the studies available in the literature. In particular, the following
elements are new to the Fog deployment: (i) the heterogeneity among the elements of the infrastructure;
(i) the execution time of a job that is comparable to the time required to transfer the job from the node
of origin to another node; (iii) the absence of a centralised entity that acts as a load balance.

This study introduces two load balancing algorithms, namely sequential forwarding and adaptive
forwarding, designed to take these peculiarities into account. In particular, in this study we place a major
emphasis on the heterogeneity aspect of the problem, considering that Fog nodes are characterised by
different computing power and may receive different workload intensities. The workload consists of

jobs that are continuously generated from end devices (on-line load balancing). The basic idea of the
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proposed algorithms is the followingwe assume that the Fog computing layer provides an elementary
service to end-users, e.g., consisting in object detection inside a video frame [63]. As jobs reach the
Fog nodes, the nodes estimate the expected waiting time (based on the number of jobs already being
processed by the node). If the waiting time exceeds a threshold © (that may change depending on
the Fog node and may be self-tuning), the Fog node forwards blindly at random the job to another
Fog node, that executes the same decision algorithm. By this, we mean that the node doesn’t keep or
probe any information about the current state of the other nodes, but rather picks one of the nodes it is
aware of, uniformly at random. Decisions are memory-less, except for the number of forwarding (steps)
already done, which is carried in the message. The steps are upper bounded by a parameter M. At
the M-th forwarding, the receiving Fog node will process the job without further attempts, unless its
processing queue is full, in which case the job will be dropped.

Any of the two algorithms fit the three challenges of Fog computing because (i) it takes explicitly
into account uneven load distributions and heterogeneous node characteristics and configurations
parameters, e.g., lightly loaded nodes do not forward their jobs often (where the load is normalised to
the actual node execution speed) (ii) it places a significant effort in limiting the number of (potentially
expensive) transmissions between nodes by adapting ©, (iii) it is completely distributed since forwarding
decisions are local, uncorrelated and autonomous.

The contribution of this study can be summarised as follows:

« definition of a lightweight randomized on-line distributed load balancing algorithm suitable for
scenarios characterised by independent providers and heterogeneous load conditions, along with a
variant based on a self-tuning mechanism;

« mathematical analysis and experimental evaluation of the algorithms on a realistic scenario,
showing evidence of significant improvements compared to unbalanced nodes. Throughout the
sensitivity analysis, it is found that the loss rate of the proposed algorithms is in most cases 15 to
19 times lower than the case where no cooperation is used. In a similar way, the response time is
reduced by 19% to 11% in most scenarios. In the realistic setup the proposed algorithms provide
an even more impressive performance gain with a reduction in the loss rate from 13% to 0.2% and
a response time nearly halved;

« through the tests we point out how a self-tuning mechanism can provide robust performance
requiring limited tuning of the algorithms’ parameters and we provide some insight into how the

characteristics of a heterogeneous infrastructure impact on the algorithms’ parameters.

2.3.1 Sequential forwarding algorithms

We now discuss two proposed algorithms for load balancing, which are variants of the same central
idea. This key idea is to allow Fog nodes to make autonomous and uncoordinated decisions about
serving or offloading a job. This decision is promptly taken on a per-job basis without the need of any
coordination, e.g., a centralised entity or information about the state of other nodes. This is a distinctive
feature of the proposed design that in fits a general Fog computing model, where Fog nodes can be
heterogeneous and can undergo different local management rules. In order to explain the load balancing

algorithms, we refer to the architecture in Fig. 2.3.1, where a set of sensors send jobs to a layer of Fog
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nodes. Each sensor communicates with one Fog node. The sensor to Fog node mapping can be based on
geographic distance as in [38] or can exploit a more complex algorithm [39]. The workload of each Fog
node is typically heterogeneous, for the twofold reasons of time-dependent fluctuations in the workload
patterns or due to uneven distribution of sensors among the Fog nodes [75]. A similar heterogeneity
can occur also in the characteristics of the Fog nodes as the deployment of the infrastructure starts
with a small prototype implementation that is then expanded over time with more modern Fog nodes.
Furthermore, Fog nodes may belong to different providers that may adopt their own management rules
or technology, e.g., containerisation implementations based on Docker Swarm or Kubernetes from one
hand, or based on VMs on the other hand. For the sake of this proposed approach we assume that the
Fog nodes expose some standard high-level interface through which they may forward jobs, e.g., HTTP
endpoints, masking the actual network layer solution®. All nodes know the communication endpoints
of the other nodes.

The proposed contribution consists of two algorithms aiming to define when a job should be
forwarded to a neighbour, and to which neighbour the job should be forwarded. We start the presentation
with a Sequential Forwarding algorithm; nextly an evolution of this algorithm is described, namely
Adaptive Forwarding algorithm. Finally, we discuss a baseline algorithm, namely No LB, that is the case

where no load balancing occurs among the Fog nodes.

2.3.1.1 Sequential Forwarding algorithm

The Sequential Forwarding algorithm uses a threshold ©,, for each Fog node n to decide if an incoming
job should be forwarded to a random neighbour or not. The threshold operates on the system load,
which is the number of jobs queued in the Fog node (or being executed). The system load represents
an estimate of the waiting time for the incoming job. An additional parameter of the algorithm is the
maximum number of steps M to guarantee a limit on the delay associated with the load balancing

phase.

Algorithm 1 Sequential Forwarding Algorithm

Require: M, ©,, Job
if Job.Steps() < M then
if System.Load() < ©,, then
ProcessLocally(Job)
else
Neigh <— Random(System.neighbours())
Job.IncrementSteps()
Forward(Job, Neigh)
end if
else
ProcessLocally(Job)
end if

Algorithm 1 presents the proposed load balancing mechanism. When a job arrives, if the job has not

yet reached the M-th step, the system load (that is the number of jobs already scheduled for processing

®For example, the X2 interface allows direct communications among 5G nodes.
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in the Fog node) is considered. If the value does not exceed the threshold ©,,, the job is accepted and
scheduled for local processing. Otherwise, it is forwarded to a randomly-selected neighbourwe point
out two main features of the proposed algorithm that are (i) the blind and memoryless nature of the
algorithm so that no probing for the neighbour status nor reservation (to make sure that the job finds
the resource available [69]) is required; and (ii) the ability of the algorithm to adapt to heterogeneous
scenarios and to operate in a completely distributed way thanks to the per-node threshold ©,,. If the
job has already been forwarded M times, it is scheduled for local processing. This makes the algorithm
extremely simple to implement and facilitates its adoption among different providers.

We also detail the local processing of the job, as this task is also responsible for the drop of the job
if the queue is full, as pointed out in Algorithm 2. It is worth to note that dropping a job in the case
the queue becomes too long may be an extreme measure undesirable for some applications. In this
analysis we prefer to focus on a simplified scenario that is easy to model and to implement rather than
considering multiple queuing and dropping behavior depending on the application. Such evolution of
the algorithms can be an additional extension of the present research that is left as future work.

Algorithm 2 Local processing: ProcessLocally()

Require: Job
if System.Queue() < System.MaxQueue() then
Enqueue(Job)
else
Drop(Job)
end if

2.3.1.2 Adaptive Sequential Forwarding algorithm

The Sequential Forwarding proposed in Sec. 2.3.1.1 has two separate parameters, ©,, and M, that show
an inherent inter-dependence: indeed, if ©,, is low, we may have a high number of forwarding, so
M may play a pivotal role. This makes the algorithm tuning complex, especially in heterogeneous
scenarios, where the thresholds may be different across the infrastructure. To address this problem we
introduce an adaptive version of the algorithm.

The Adaptive Sequential Forwarding algorithm (Adaptive Forwarding for short), is an evolution of
the Sequential Forwarding proposed in Sec. 2.3.1.1 that introduces some self-tuning ability.

Algorithm 3 Adaptive Forwarding Algorithm

Require: M, Job
Q@ < System.MaxQueue()
© < [Job.Steps() * Q/M |
SequentialForwarding(M, ©, Job)

Algorithm 3 shows the behavior of the Adaptive Forwarding Algorithm. The threshold ©,, is
computed in the same way for every node and grows linearly with the number of steps. If a job has

never been forwarded (or has been forwarded just a few times), the job is not processed locally unless
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the local load is very low. On the other hand, if a job has already been forwarded several times we
assume a more relaxed attitude towards the search of a Fog node with a low load.

The algorithm starts requesting the maximum queue length of the Fog node; next the algorithm
computes the threshold ©,, that grows linearly with the number of times the job has been forwarded.
In particular, we tune the growth of the threshold in such a way that, after M steps, the threshold 0,
is equal to the maximum queue length of a Fog node, thus guaranteeing that the job will be accepted

unless this last visited node has no room in its queue.

2.3.1.3 Baseline algorithm

In the performance evaluation, we consider also the No LB algorithm, that is the case where no load
balancing occurs, as a baseline.

Considering the previously described algorithms, and given () as the maximum length of queue (as
in Algorithm 3), the behavior corresponds to the case where ©,, > () or to the case where M < 1we
expect this algorithm to suffer from a high loss rate (that is jobs dropped because the queue is full),
unbalanced load (especially in scenarios with heterogeneous load distribution among the Fog nodes)

and, generally, poor performance.

2.3.2 Model

We start studying the algorithm under an ideal deployment composed by an infinite number of nodes
and for M = 1. The case M > 1 can be incorporated in the proposed framework, but for the sake of
clarity, this extension is left as future work. To capture heterogeneity, we assume that two types of Fog
nodes exist, type A and type B.

We define as a (3) the probability that a class A node (class B node) forwards a job to a node of
the same class. Any Fog node is abstracted as a FIFO queue with the same bounded number of places
Q4 (@B), included the server. Class A (B) nodes get a nominal Poisson flow of jobs at rate As (Ap)
jobs/s from directly connected users, while the service time of a job is exponentially distributed with an
average processing rate of p4 ().

The system under investigation is composed of two tagged nodes a € A,b € B plus a set of Ny
class A nodes and a set of Ng = Ny = N class B nodes. We derive the main performance metric
of the load balancer in the limit of N — oo. The reason for this limiting study is that it assumes
independence among nodes, a desirable property that holds for simple homogeneous FIFO queues [76].
Let then assume that all the nodes of the system are independent from each other. The effect of the NV
nodes on a and b is equal to the probability of node a (b) being in a given state, since it represents the
fraction of the N4 (INp) nodes in the same state.

Without loss of generality, we now focus on node a. Due to the symmetry, the results for node b are
the same, except for the fact of swapping labels A with B and « with (3. In the following derivations,
we assume that a node is in a state ¢ when it has ¢ tasks in its queue.

Node a may receive jobs forwarded by other nodes of the same class or from the other class with

rate:
Ap, = adaTae, + (1 — B)ApTBo, (2.4)
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where 74; = Z?:A} mAi (TR = Z?:BZ 7R;) is the probability that a node of class A (B) is in a state
higher or equal than 7, indeed 74; (7 ;) is the steady state probability of a node of class A (B) to be in
state 4. In fact, due to independence among states, NoAa7 40, is the rate at which N4 class A nodes
forwards job. And one of this job hits a with probability ﬁ: the job selects nodes of the same class
with probability o and picks exactly a with probability ﬁ. For this reason, the first term in the
above expression represents the flow of jobs seen by a and coming from nodes of the same class, in the
limit of N — oo. The second term has a similar interpretation.

The transition rate from the state i to7 + 1 is:

Aa+ A ;1 < O
Agg = AT reoa (2.5)
)\FA i>@A

The steady state probability distribution satisfies the following standard linear set of equations:

QATFA = [07 SRR 1]T (26)
where:
—A4, pA 0 0
Ay —(Aay +pa) A 0
Qa= - (2.7)
0 Al —(Aa; +pa) pa .
1 1 1 1 1 1

The solution is found numerically as follows. The linear system is first solved using the matrix Q¥ with
A4i = A4. An analogous system of equations is solved using QY%, where A\g; = \g. These solutions
exist because they define two independent M /M /1/Q Markov Chains. From these solutions, Eq. (2.4)
(and the analogues for B) are used to compute the traffic flows for two new pair of matrix, say Q% and
Q1. The algorithm continues until maz{||Q% — Q" ||} < e and max{||Q% — Q5 ||} < e.

2.3.2.1 Metrics

In this section, we derive the main performance indicator of the algorithm. Due to the symmetry we

keep the node a point of view. Any metric concerning b is the a’s one where B, A and «, 3 are swapped.

Blocking probability The first metric of interest is the probability that a job is blocked pg, namely
the fraction of jobs that cannot be served by any Fog node. As these jobs are dropped by the Fog nodes,
this metric is also referred to as loss rate or drop rate. The value of this metric is given by:

_ PBy +pBB
g=-—4 "5

5 (2.8)

where the two contributions are the probability that a job received by a class A (class B) node is blocked,
which are given by:
PB,y = Talamag, + (1= B)mp,, | (2.9)
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Response Time The second relevant metric is the average response time, T', namely the time elapsed
from when a job is received by a node until the serving nod ends to execute the jobwe do not consider
the delay due to a possible reply to the originator of the job. This quantity is due to the queueing
waiting time (W), execution time (%), and job forwarding delay. Concerning the fist contribution, the

average queue length of the node a is:

Q

A

Qi = kT a, (2.10)
1

T

The net flow of jobs entering in a is the sum of jobs from:

« users connected to a, at rate Ay (1 — T40,)

+ class A nodes with state above © 4 selecting a, at rate ™40 , A (1 —7g,)

« class B nodes with state above O p selecting a, at rate 7pg , Ap(1 — 3)(1 — 7Q,).
Hence, applying the Little’s result the queue’s waiting time at class A nodes is:
Qa

Wi = _ _ _
AT (1 =m0 Aa(l = Tae,) + AaTtae,a + Apipe, (1 — B))

(2.11)

Since a not blocked job arriving to a class A node is served either by a class A node (hence experiencing
S4) or a class B node (hence experiencing Sp), the average response time of jobs received by class A

nodes is a weighed average of the two service delays plus the average time spent to forward a job:

. Ps,, (/%A + WA> + Ps,p (;%B + WB>
A =
Psys+ Psyp

+ 740,06 (2.12)

where Ps,, (Ps, ) is the probability that the job is served by a class A (class B) node, 740, the
probability a job is forwarded, and ¢ the average forwarding time. The probability Ps, , takes into
account that the fact that the job can be forwarded and served by another class A node or directly

served by a:
Ps,, =7ae,a(l —ma,, )+ (1 —7Fae,) (2.13)
while Pg, , is:
Ps,p =Tae,(1 —a)(1 —7p,,) (2.14)
Finally:
T = Tatlp _; 15 (2.15)

2.3.2.2 Result

In this section,we report some representative results obtained from the proposed model, when oo =
B = 0.5. Fig. 2.3.2 reports the blocking probability and the response time as a function of © 4 for the
homogeneous case, i.e., when nodes have the same speed. The optimal threshold that minimises the

blocking probability is when © 4 = ©p = 6 (as shown in Fig. 2.3.2a), i.e., roughly half of the total queue
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length, which is also an intuitive result: if the current length is too small, there is also a small chance

for the job of landing on a less loaded queue, whereas if the length is too high load balancing doesn’t

arise since the job cannot return to the original node. The lowest response time is however obtained for
the different threshold value © 4 = ©p = 3, as shown in Fig. 2.3.2b. The reason is that nodes now drop

more jobs and hence the queue length is shorter. Reducing the threshold further will also progressively

eliminate the load balancing effect and hence the average queue length increases again. Both figures

also show a representative case of thresholds tuned differently, in particular when © 5 = 5 while © 4 is

free to vary.
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Figure 2.3.2: Performance metrics vs © 4, same traffic and service times.
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Figure 2.3.3a shows the blocking probability for the full combination of thresholds for the homo-

geneous case and Figure 2.3.3b for when the speed of class B node is twice the A’s one. We can see

how there is still an advantage despite the heterogeneity among nodes, and that the best threshold

combination is now slightly different.
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To better explore the range of applicability of the proposed protocol, Tab. 2.3 reports the highest
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Ad | AB | pa | uB | pa | pB || ©% | OF DBy DB To | T
0.85 | 0.85 | 1.00 | 1.00 | 0.85 | 0.85 || 6 6 | 3.55e-02 | 5.12e-06 | 5.22 | 4.52
0.90 | 0.90 | 1.00 | 1.00 | 0.90 [ 0.90 || 6 6 | 5.08e-02 | 6.67e-05 | 5.65 | 4.96
0.95 | 0.95 | 1.00 | 1.00 | 095 [ 095 || 6 6 | 6.94e-02 | 1.18¢-03 | 6.08 | 5.65
0.99 [ 099 | 1.00 [ 1.00 | 0.99 | 0.99 || 7 7 | 8.64e-02 | 1.06e-02 | 6.42 | 7.02
0.85 [ 0.90 | 1.00 [ 1.00 | 0.85 [ 0.90 || 6 6 | 4.31e-02 | 1.85e-05 | 5.43 | 4.72
0.95 | 0.90 | 1.00 | 1.00 | 0.95 [ 0.90 || 6 6 | 6.01e-02 | 2.71e-04 | 5.86 | 5.25
0.99 | 090 | 1.00 | 1.00 | 0.99 [ 090 || 6 6 | 6.86e-02 | 9.05e-04 | 6.03 | 5.56
0.90 [ 0.90 [ 0.90 [ 1.00 [ 1.00 [ 0.90 || 6 7 [ 7.09e-02 | 1.12e-03 | 6.43 | 6.13
0.90 | 0.90 | 1.10 | 1.00 | 0.82 [ 0.90 || 6 6 | 3.91e-02 | 8.66e-06 | 5.07 | 4.38
0.90 | 090 | 1.20 | 1.00 | 0.75 [ 0.90 || 6 5 | 3.28e-02 | 1.74e-06 | 4.66 | 3.81
1.80 | 0.90 [ 2.00 [ 1.00 [ 0.90 [ 0.90 || 7 5 [ 5.08e-02 [ 1.12e-04 | 4.23 | 3.65
2.70 | 0.90 | 3.00 | 1.00 | 0.90 | 090 || 8 5 | 5.08e-02 | 2.61e-04 | 3.76 | 3.33
3.60 | 0.90 | 4.00 | 1.00 | 0.90 | 090 || 8 4 | 5.08e-02 | 497e-04 | 353 | 2.96

Table 2.3: Optimal thresholds that minimise the blocking probability.

possible reduction of the blocking probability under a variety of conditions, obtained by setting the
thresholds to the values ©%, ©% that minimise pp. The results are divided into four groups. In the
first one, the offered traffic changes for all nodes in the same way and nodes are also equal in terms
of execution speed. i.e., the system is homogeneous. The result confirms that the best threshold is
almost half of the queue length. Load balancing can reduce up to four orders of magnitude the blocking
probability for moderate traffic with respect to the case in which there is no cooperation, reported in
column pp,, and it allows reducing at the same time the average delay (see T and Ty) for all cases but
the high load case. As the load increases to 0.99 in fact, while there is still an improvement in terms of
pp the average response time is higher compared to no cooperation just because more jobs are queued.
Moreover, the table reports the result of three heterogeneous cases, where nodes are different because
type A nodes: (i) get a different traffic flow, (ii) have a different execution time, (iii) have different traffic
and execution time but their traffic intensity p = %t is constant. The changed parameter is given in
bold. For all scenarios, the algorithm is able to reduce the blocking probability of at most two orders of
magnitude. The response time 7™ is also always lower than the no cooperative case.

Once the analysis provided a generally positive assessment concerning the expected behavior of the

protocol, we are now ready to consider more realistic cases, with a finite number of nodes and higher
M.

2.3.3 Simulation Results

In the present section, we evaluate the performance of the proposed algorithms relying on a simulation
approach. Throughout these tests we will consider the Sequential Forwarding algorithm (Seq Fwd
described in Sec. 2.3.1.1), the Adaptive Forwarding alternative (Adapt Fwd, Sec. 2.3.1.2) and the case where
no load balancing occurs (No LB). We start providing a summary of the tests carried out, presenting the

reference experimental scenarios. Next, we consider a simplified scenario where we have two classes
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of Fog nodes, namely A and B, characterised by different configurations and, possibly, by different
computing power. In this scenario we first validate the simulation results against the numerical model
presented in Sec. 2.3.2 and, next, we discuss the main findings of the simulation-based performance
evaluation. After this preliminary study, we carry out a thorough sensitivity analysis with respect to
the main parameters that may determine a scenario heterogeneity, regarding different computational
power of the Fog nodes and different distribution of A and B Fog nodes populations. Finally, we focus
on a realistic geographic setup for a smart city and we evaluate in detail both the Sequential Forwarding

and the Adaptive Forwarding algorithms.

2.3.3.1 Scenarios definition

The first scenario used in the experiments is named simplified scenario. We model the Fog nodes as
M/M/1/Q queuing systems, with an exponential distribution of both incoming jobs from the sensors and
job service in the Fog nodeswe consider two populations of Fog nodes, namely A and B characterised
by a different processing power such that 4 > pup, with ugp = 1.0 jobs/sec. Let N4 be the number
of nodes of class A and Np be the number of node of type B. Concerning the workload, we consider
that every Fog node receives the same workload intensity Ay = Ap = A. To make sure that the
global load on the Fog infrastructure is p = 0.9, we consider that p = (N4 + Np)A/(Napa + Npup)
and we derive A from this formula. For each Fog node, maximum the queue length is set to @ = 10.
Additional parameters related to adaptive queue size or the possibility to drop only some classes of jobs
are not considered in the experiments. Indeed, taking into account all these options would result in
combinatorial explosion of the parameter space. This would make the analysis hard to perform and
present in the space of a single research paper. Every sensor sends jobs to just one Fog node, and the
sensor-to-Fog mapping is statically assigned. The delay experienced every time a job is forwarded
corresponds to the network latency between each pair of Fog nodes that is 6 = 0.9s (that is the network
delayod is comparable with the average service time 1/u). In this scenario the simulation considers
a set of 50 Fog nodes, that should be enough to capture the main characteristics of the algorithm
performance. Each simulation is repeated 5 times and the results are averaged over the runs.

The second scenario, called realistic scenario, is based on a smart city case study based in Modena,
a city in northern Italy with roughly 180’000 inhabitants. The Fog infrastructure aims to support a
smart city application that provides environmental sensing and vehicular traffic monitoring. Sensors
located along the main city streets collect data on air quality (e.g., atmospheric pollutants such as
suspended particulate) and vehicular traffic (e.g., number and speed of vehicles). The goal is to provide
in real time a detailed model on urban traffic and air pollution. The Fog layer is composed of Fog
nodes placed in facilities belonging to the municipality that exchange information with the sensors
and among themselves using long-range wireless links (such as IEEE 802.11ah/802.11af [77]). Each
sensor communicates with the nearest Fog node, as in [38], and we assume the delay among Fog nodes
to be proportional to the distance between them. Concerning the processing capability of the Fog
nodes, we developed a prototype software that counts the number of vehicles in a frame taken from a
camera connected to the sensor. Based on these experiments, we modeled the processing time using a
Gaussian probability distribution with an average 1/ = 10ms (and with a standard deviation of 1ms).

The network delay is proportional to the distance between nodes, but, throughout the infrastructure, is
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normalised to have an average delay of 6 = 10ms, that is comparable with the processing time. As in
the previous scenario, we also introduce a population of A nodes that are faster and are characterised by
a processing rate that is double compared to the standard B-class nodes (114 = 21). We select 10% of
the nodes as being of A-class, and the selected nodes are the ones receiving the highest amount of jobs
from the sensors. The process of producing images from the sensors is modeled using an exponential
distribution. The topology is generated from real geographic data using the PAFFI framework [75], with
100 sensors and 20 Fog nodes. The geographic placement of sensors, results in heterogeneous workload
distributions among the nodes, ranging from 250 jobs/sec to some Fog nodes that are almost idle. The
average load over the whole infrastructure is such that the average utilisation p = A/ = 0.9.

We summarise the main parameters of the realistic scenario in Fig. 2.3.4. Each Fog node is repre-
sented by means of two circles: the thin circle represents its incoming load, while the thick circle is the
processing power. If the thin circle is outside the thick one, the node is at risk of overload. Otherwise, if
the thin circle is inside the thick one, no overload should occur. Moreover, in this figure we represent A

and B Fog nodes classes using two different colors (purple and green, respectively).
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Figure 2.3.4: Realistic scenario - map representation

From a software tools point of view, the simulation is based on the Omnet++ framework’, with
additional modules developed ad-hoc to support the two proposed load balancing algorithms.

Throughout the performance evaluation, the main considered performance metrics are:

« Loss rate, that is the probability of a job being dropped because the queue of the selected Fog
node is full. This condition is described for the model in Sec. 2.3.2.1.

« Response time, that is the time occurring between the moment the job is received from the first
Fog node, to the moment the processing ends on the final Fog node. The response time model

is described in Sec. 2.3.2.1. In the experiments, we provide a breakdown of the response time

"https://omnetpp.org/
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components: that are service time (T’s;, the time spent being processed), balancer time (T'g,;, the
time spent being forwarded among the Fog nodes), and queuing time (1Tycve, the time spent in

the Fog node ready queue waiting to be processed).

Table 2.4: Parameters and metrics for the proposed experimental scenarios.

Scenario parameters

Na, Np Percentage of type A nodes (B) [%]

Aa, AB incoming job rate in type A nodes (B) [jobs/s]
WA, 4B processing rate of type A nodes (B) [jobs/s]
©4,08 Threshold on type A nodes (B)

M Maximum number of steps
Q Maximum queue length
Metrics
TResp Response time. Time elapsed between receiving a job from a sensor
and completing its processing. Tresp = TBai + TQueue + Tsrv [S]
TBal Time spent in the load balancing phase [s]
TQueue Time spent waiting in queue [s]
Tsrv Time spent being processed (= 1/u) [s]

Drop rate  Fraction of job dropped (values in range [0, 1])

As a reference for the reader we summarise symbols and metrics in Table 2.4, together with their

units of measure.

2.3.3.2 Simulation validation

The first step in the proposed analysis is a cross-validation between the results obtained with the
simulator and the results of the theoretical model described in Sec. 2.3.2. Specifically, we can compare
the performance of the sequential forwarding algorithm in the simplified scenario with restrictive
hypotheses that are: N4 = Np (that is we have the same amount of A-class and B-class nodes such
that the probabilities « and § are the same), us = g, © 4 = Op. Furthermore, due to the limitation
of the model, we set the maximum number of hops M = 1.

Fig. 2.3.5 compares the drop rate and the response times as a function of © 4 = © pwe show both
the sequential forwarding algorithm and the case where no load balancing occurs.

Focusing on Fig. 2.3.5a on the drop rate (that corresponds with the blocking probability in the
theoretical model of Sec. 2.3.2.1), we observe that the performance of the No LB case is poor, with a
loss rate close to 5%. For the proposed algorithm both the simulation and the model confirm a similar
behavior resulting in a U-shaped curve where the values of © 4 = ©p very high or very low provide
higher drop rates. Indeed, when the threshold is low, most jobs are forwarded to a random neighbour
that may be overloaded. In a similar way, when the threshold is high, the jobs are unlikely to be
forwarded and are processed locally even is the node is at risk of overload. Finally, comparing the results
of the model and the simulator, we observe that both approaches capture the main characteristics of
the algorithm. The discrepancy in the numeric value is likely due to the relatively low number of nodes

used in the simulation.
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Figure 2.3.5: Comparison with model (M = 1)

Fig. 2.3.5b shows the response time of a job using both the simulator and the model, compared with
the case where no load balancing occurs. Again, we observe that the simulator and the model present
a similar behavior, with a range of threshold values (O 4 = ©p < 7) where the proposed algorithm
outperforms the case where no load balancing occurs (please note that the relatively good performance
of the non-cooperative approach are due to the high loss rate that reduces the amount of jobs that are
served).

2.3.3.3 Evaluation in the simplified scenario

We now provide a more detailed analysis of the proposed algorithms carried out with the simulator.
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Figure 2.3.6: Breakdown of response time

Fig. 2.3.6 shows the response time for the same conditions considered in Sec. 2.3.3.2, focusing on
the sequential forwarding algorithm with M = 10 (as we are no longer comparing the results with the
model, we no longer need to limit the number of hops)we also provide a breakdown of the response
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time (T’gesp, purple line with empty squares) in its main component. As expected the service time (T,
yellow line with filled circles) corresponds to 1/p14 = 1/ and does not depend on the threshold.
The balancer time (T'g,;, green line with filled squares) decreases as the threshold grows to make the
load balancing less aggressive; however, as the load balancer becomes less aggressive, we accept to
process jobs on nodes with a longer queue, thus explaining the increase in the queuing time (Tgucue,
blue line with empty circles). The combination of these contributions determines a local minimum of
TResp for ©4 = Op = 3. It is worth to note the similarities among Fig. 2.3.6 and Fig. 2.3.2 of the model,
although M is different in the two cases. Comparing the Sequential Forward algorithm with the NoLB
alternative the results are clearly in favor of the proposed approach, with a response time reduced by
19% (3.77s vs. 4.64s) and a drop rate reduced by a factor of nearly 17 (0.3% vs. 5%)

Having discussed the behaviour of the sequential forwarding algorithm in this simple experimental

setup, we now introduce the impact of having parameters that differ for the two classes of Fog nodes.
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Figure 2.3.7: Response time and Drop rate, N4 = 50%, Ng = 50%, pa = 1.0, ug = 1.0

In Fig. 2.3.7 we still focus on a case where N4 = Np, 4 = pp to understand the impact of the
different threshold values © 4 and © g over the infrastructure. In particular, we consider the drop rate
and the response time as the main performance metrics.

Fig. 2.3.7a shows the response time as a function of © 4 and O p. If we cut the surface for © 4 = Op,
we obtain the curve in Fig. 2.3.6. Considering the whole space, we observe that, when a threshold (for
example © 4) is very low, we experience an increase of response time due to the higher number of hops
experienced by the jobs passing trough the node of that class (in the example, A). As the threshold
increases (again, let us consider the case where © 4 grows), we accept to process jobs on A-class nodes
with a higher load. This increases the queuing time, and, as a result, leads to higher response times.
The figure shows the presence of an optimal configuration for the response time when ©4 = ©p = 3.

Fig. 2.3.7b shows the drop rate. Again, we observe that, as © 4 = O we have the U-shaped curve
similar to the one in Fig. 2.3.5a. On the other hand, as we explore a parameter space where, for example
O4 < Op, the low threshold in the A-class nodes determines a higher load in the B-class nodes
(a similar behavior is shown for Fig. 2.3.2 in Sec. 2.3.2) resulting in a global increase of the drop rate.
The same effect occurs for Op > © 4. As for the results in Fig 2.3.7a, we observe a configuration
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(©4 = ©p = 6) that minimises the drop rate. The results are consistent with the findings of Tab. 2.3

obtained using the theoretical model.

2.3.3.4 Sensitivity to p 4

Having provided some insight on the behavior of the Sequential Forwarding algorithm, we now consider
how its performance is affected by a change in the processing power of the A-class nodes. For this
analysis, we consider a population with 50% A-class nodes and 50% B-class nodes. Throughout
the experiments up = 1.0 jobs/s while 4 € [1.0,2.0] jobs/s. Again we point out that, unlike the
experiments in Sec. 2.3.2, we have Ay = Ap = A for both A-class and B-class Fog nodes and A
grows with the average computing power of the infrastructure so that the average utilisation of the
infrastructure is p = 0.9. This means that, for same configurations we have a potential overload of half

of the infrastructure, creating a major challenge for the load balancing algorithms.
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Figure 2.3.8: Response time for different 114

Figure 2.3.8 shows the average response time as a function of © 4, ©p and describes how such
metric changes with p 4 for three values of ;14. We observe that as the A-class nodes become more
powerful, the surface becomes asymmetric stretching towards increasing values of © 4. Contour lines
in Fig. 2.3.8a and 2.3.8b help observe this effect. However, as ;14 approaches 2.0 the shape of the curve
changes significantly. This is caused by the incoming load A exceeding the pp. As a consequence a
large fraction of the infrastructure is at risk of overload and the low response times for high threshold
values (e.g., ©4 = 10,05 = 3) corresponds to trashing conditions of the system with a significant
drop rate (in some cases higher than 10%).

We now provide a comparison of the alternatives. In particular, we focus on the No LB case, on the
Sequential Forwarding and on the Adaptive Forwarding algorithms. For the Sequential Forwarding
algorithm, we tune © 4 and ©p (for every value of 1 4) to provide the best response time without
causing unacceptably high drop rates. For the adaptive algorithm, that aims at requiring little tuning,
we consider the same value of M for every j14 (the value M = 6 was found in preliminary experiments
as a good trade-off between a smooth increase in the threshold and the ability to adapt to heterogeneous
conditions reducing the number of hops).

For each column in Fig. 2.3.9a we provide a breakdown of the response time divided in service time
(T'syv, solid color, bottom part of the histogram), queuing time (Tgyeue, crossed pattern, middle part
of the histogram) and balancing time (T, oblique pattern, top of the histogram). In the no LB case,
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Figure 2.3.9: Response time and Drop rate for different 114

the balancing time is obviously absent. Looking at the response time histograms we observe a general
performance degradation for the two proposed algorithms as p14 grows. This is due to the scenario
that increases lambda as p 4 increases. For high values of lambda, half of the infrastructure is at risk of
overload with the twofold effect of the need to forward more jobs (resulting in a growth of T'z,;) and of
increasing the waiting time as the queue tends to be longer in the nodes at risk of overload (explaining
the increase in T()ycue). The No LB case seems to provide better performance as the load increases, but
this is an effect of the high drop rate shown in Fig. 2.3.9b that increases with the load. Indeed, for the
NoLB approach the drop rate increases from 5% to 13.7%. For the cooperative algorithms, the drop
rate remains below 1% as long as 14 remains less or equal to 1.75, and in the worst case (14 = 2.0) it
reaches 2.5 for the Sequential Forward algorithm and remains below 2% for the Adaptive Sequential
one. Hence the drop rate for the proposed algorithms remains from 19 to 5.5 times lower compared to
the NoLB alternative.

Comparing the Sequential Forwarding and the Adaptive Forwarding algorithms, we observe that
the two alternatives provide similar performance, with the adaptive solution offering slightly better
performance in terms of drop rate and the sequential forwarding achieving slightly lower response
times. However, it is worth to note that the adaptive algorithm provides a major advantage as it can
reach a performance level similar to the Sequential Forwarding alternative but does not require a

complex tuning of the threshold.

2.3.3.5 Sensitivity to N4 and Np

The second sensitivity analysis carried out in the experiments concerns the ratio between the A-class
and the B-class nodes. In this case, we keep the values of 14 and pp fixed (ug = 1.5, up = 1.0 jobs/s).

As in the previous sensitivity analysis, Fig. 2.3.10 shows the response time for different percentages
of A-class and B-class nodes (represented with the N4 and Np parameters). We observe that the
overall shape of the surface remains similar. However, as we reduce the number of A-class nodes,
we observe that the contour lines of the figures become more and more similar to parallel lines in
the direction of a single value of © 5. This means that the weight of the © 4 parameter becomes less
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Figure 2.3.10: Response time for different N4, Np

and less significant compared to © g. On one hand, this result is expected because, as we reduce the
number of fast A-class nodes, the slower and more numerous B class nodes become the real bottleneck
of the infrastructure. On the other hand, this result provides an important lesson to learn: adding a
few powerful nodes in a slow infrastructure is unlikely to solve any performance problem unless an

adequate tuning of the large fraction of the remaining nodes is carried out.
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Figure 2.3.11: Response time and Drop rate for different N4, Np

Figure 2.3.11 summarises the main findings of the sensitivity analysis with respect to the N4, Np
parameters. As in the previous analysis, we present a breakdown of the response time with service
time (T's,y), queuing time (Tgyeue) and balancing time (1',;) in Fig. 2.3.11a. Again, for the Sequential
Forwarding algorithm, the results are referred to the best scenario for every (© 4, © g) couple considered,
while for the Adaptive Forwarding algorithm we relay on the initial tuning. Fig. 2.3.11b shows the
drop rate for the various considered alternatives. From a comparison of the three considered options,
the No LB is clearly the worse solution, with higher drop rate and higher response time (in this case
the infrastructure does not reach a level of trashing such that the drop rate reduces significantly the
response time). Indeed, the response time remains from 11% to 19% higher compared to the proposed
algorithms while the drop rate of the NoLB approach remains roughly 15 times higher compared to the
proposed approach.

On the other hand, the two other load balancing algorithms provide similar performance in terms
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of drop rate and response time, confirming the main finding of Sec. 2.3.3.4.

2.3.3.6 Evaluation in the realistic scenario

We now focus on the realistic scenario, that is a case where loads are unevenly distributed over the Fog
nodes, the network link delays are uneven and where the processing time is no longer described as an
exponential (that is the Fog nodes are described as M/G/1/Q queuing network elements). We recall
that in this scenario, the setup is based on a geographic placement of nodes based on real locations.
Fig. 2.3.12 provides a performance evaluation for the different considered algorithms in terms
of response time. Specifically, Fig. 2.3.12a shows the response time for the Sequential Forwarding
algorithm as a function of the threshold © 4 and © 5. We confirm the main findings of Sec. 2.3.3.5 about
the major impact of the threshold © g that affects the performance of the more numerous slower nodes.
However, the high incoming load in the A-class nodes (we recall that in this scenario Ay > Ap due to
the criteria used to select the A-class nodes) makes the impact of the parameter © 4 less negligible
compared to the analysis in 2.3.3.5. Using the results in Fig. 2.3.12a to tune the Sequential Forwarding
algorithm, in Fig. 2.3.12b we can compare the response times of the three considered alternatives, that
is the No LB case, and the Sequential Forwarding and Adaptive Forwarding algorithms. As in the
previous analyses, for the adaptive algorithm, we consider M = 6 that is the value identified previously
as a value providing good and stable performance. It is worth noting that we do not provide a figure
concerning the drop rate because the two algorithms that provide load balancing have a drop rate very
low (less than 0.2%), while the No LB alternative is characterised by a drop rate in the order of 13%.
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Figure 2.3.12: Performance evaluation in the realistic scenario

The main outcome of this comparison confirms the main finding of the previous experiments: the
two load balancing algorithms provide similar performance both in terms of response time and drop
rate (response time between 19 and 21 ms, with a drop rate in both cases below 0.2%) and far outperform
the NoLB approach that is characterised by a response time nearly double compared to the proposed
algorithms. However, we point out once again that the good performance of the sequential forwarding
algorithm is the result of careful tuning of the algorithm parameters, while the adaptive alternative

provides good and stable performance with minimal effort.
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2.4 Study on the impact of the stale information on the scheduling

decision

Edge computing resource management is an essential open issue in the research agenda [74], [78],
which boils down to determining a mapping A between units of computations C, submitted to the
Edge layer by users, and the available Edge nodes E:

A:C— FE

in a way that some performance attributes are optimised. Depending on the strategy followed to
determine A, the solutions can be divided into two categories: offline and online. Let T4 be the time
required to calculate A(-), and T¢ the service time to compute C.

In offline management strategies, several units C (in this context also called jobs) are collected
and grouped in batches. Moreover, A is a solution to a well-defined optimisation problem, where
optimisation actions include job execution migration or offloading from an Edge node to another one
or from the Edge layer to the cloud one. The prerequisite for these algorithms is that the response time
is not critical. A variation to the scheme is to divide the time into intervals, observe the performance
during a time interval, and migrate the expected jobs of the next time interval towards other nodes,
based on an estimation of the benefit of such migration. Here the prerequisite is that the load is
stationary over a suitable period of time.

On the other hand, online resource management is used when the response time is critical and
hence waiting to form a batch is not possible or the load is not stationary. Online approaches apply A
on-the-fly to each new submitted job C. In this case, T4 includes the time to gather information from
other nodes, eventually needed to make a forwarding decision, e.g. via probing, and the job transfer
time®. The ratio among T4 and T may limit the applicability of online approaches. We will refer to
this ratio as the schedule lag and denote it as n = %. The schedule lag measures the time interval
between decision making and decision actuating times.

The value 1 depends on the application characteristics and on the structure of the Edge computing
system. For example, let us consider an image processing application where the job C' corresponds to
detecting and recognising objects in video frames. An application with a frame rate of 60 FPS implies
that Tc < 16.67 ms. Assuming a high-speed connection among Edge nodes, for example of 1 Gbps,
and a frame size of 2 MB, the frame transfer time is about 20 ms, so that > 1. Image compression
techniques can reduce this time, but still, it is likely to have 7 = 1. More complex image processing may
require higher service times leading to 7 < 1. Another example is sensing applications that process
thin data, like those collected by sensors. Here data are likely to be a small JSON file of a few Kbytes
and requires very short service times, likely providing n > 1.

This section considers a family of distributed online protocols based on randomisation algorithms in
which the function A is computed by each node when it receives a new job C'. The function A returns

either a node id of a less loaded node picked at random among a small subset or none, which means

8For the sake of simplicity we count it as a component of T, even if strictly speaking the transfer time is needed to reach
the Edge node and not to determine it.
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Figure 2.4.1: The cooperation in the Edge computing system based on load-aware random probing: the
overloaded Edge node (bottom left of the figure) probes a random neighbour and then forwards a job to it.

executing the job locally. The implementation of A is done via random probing [18], [28], as shown in
Figure 2.4.1.

The main contribution of this section is a study of the impact of schedule lag 1 on the performance
of such load load-aware balancing protocols based on randomisation. The work studies how and to
which extent making a decision based on stale information concerning the load state of the nodes,
weakens the effectiveness the algorithm and how load balancing can be achieved when this delay in
communicating state information is unavoidable. The work shows that it exists a “critical” value of n
starting from which load information has no value and a simpler blind forwarding algorithm performs
better.

Figure 2.4.2 sketches this claim, in which the critical value is the dot line where n = 1. Whenn > 1
(upper triangle) there is a high risk for load-aware algorithms of schedule decisions based on stale
(out-of-date) load information and consequent poor performance. On the other hand, in scenarios
characterised by values of 7 < 1, the risk related to stale load information is low, as represented by the
triangle at the bottom and a load-aware algorithm works at its best.

The work presents a thorough analysis of the impact of stale information on the effectiveness of
load balancing protocols, with the final aim to support the system designers in deciding, based on the
scenario, which algorithm is most suitable. In the proposed analysis, we consider typical application
scenarios based on smart cities. We assume to have intelligent traffic lights that can monitor traffic
(cars, pedestrians and bicycles) possibly equipped with cameras and sensors. The traffic information can
be used for multiple purposes, from supporting autonomous driving to identifying suspicious behaviour
from people.

A qualifying point of the proposed analysis concerns the methodology used in the present study.
We combine a theoretical model and numerical solutions with a simulation approach. The theoretical
model derives the correlation between two states as a function of n and quantifies when load-aware
probe-based algorithms, which pull load information from the other node, become, in fact, useless.
This result is confirmed by detailed simulations that find a similar conclusion. Moreover, a Sequential

Forwarding algorithm [15], that follows a load-blind approach where the decision is based only on local
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Figure 2.4.2: The figure qualitatively shows the risk of stale load information depending on 7.

load information, is also analysed.

Using simulations, we explore a wide set of parameters considering multiple scenarios: a uniform
mesh scenario where incoming load is evenly distributed among nodes organised in a regular mesh, and
a geographic scenario derived from the topology of a medium-sized city in Italy.

2.4.1 Algorithm definition

We now introduce the two algorithms used in our study to investigate the effect of stale information on
different approaches to load balancing. Specifically, we first introduce the Probe-based algorithm [16],
representative of load-aware approaches, then we describe a load-blind algorithm, namely Sequential

forwarding, presented in literature in [15].

24.1.1 Probe-based algorithm

The probe-based algorithm relies on a threshold to determine whether, upon receiving a new job, a
probe for a less loaded neighbour is to be started. The threshold © is applied to the system load, that
represents the number of jobs queued in the Edge node (or being executed). This metric is used as an
estimation of the waiting time for the incoming job. If the load exceeds the threshold, a probe is started,
with the the Edge node issuing query messages to a randomly selected neighbour.

Algorithm 4 presents the formalisation of the probe-based algorithm. When a job from a sensor is
received, the Edge node uses the threshold © and the local load to decide if a probe for the neighbour
load should be issued (jobs forwarded from other Edge nodes are processed locally without additional
evaluation). If probing is required, the Edge node issues a query message to the neighbour and waits for
the response. The neighbour provides its load status within the response, so the Edge node can decide
if the job has to be forwarded to the neighbour or if the job is to be processed locally (if the neighbour
has a higher load than the local node). It is worth noting that, in the case of high network delay, the
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Algorithm 4 Probe-based Algorithm

Require: O, Job
if Job.IsForwarded() or System.Load() < © then
ProcessLocally(Job)
else
Neigh <— Random(System.neighbours())
NeighLoad <— Probeneighbour(Neigh)
if System.Load() > NeighLoad then
Forward(Job, Neigh)
else
ProcessLocally(Job)
end if
end if

load returned by a neighbour may be a stale information far different from the load the forwarded job
will actually encounter. This may result in inaccurate forwarding decisions, already pointed out in the
area of Web servers [40].

Algorithm 5 Local processing: ProcessLocally()

Require: Job
if System.Queue() < System.MaxQueue() then
Enqueue(Job)
else
Drop(Job)
end if

Algorithm 5 details the case where a job is processed locally (for example, due to the call to the
ProcessLocally() procedure in Algorithm 4). In this case, the job should be placed in the ready queue of
the server. However, if the queue is already full (since it has a finite size), the job is dropped, resulting

in a loss.

2.4.1.2 Sequential Forwarding algorithm

The Sequential Forwarding algorithm [15] uses the threshold © to decide if an incoming job must be
forwarded to a random neighbour or locally processed. The algorithm relies on an additional parameter
M, the maximum number of steps to guarantee a limit on the delay associated with the load balancing
phase. Algorithm 6 presents the formalisation of the algorithm. When a job arrives, if the job has not
yet reached the M-th step, the system load is considered: if the value does not exceed the threshold O,
the job is accepted and scheduled for local processing; otherwise, it is forwarded to a randomly-selected
neighbour. If the job has already been forwarded M times, it is scheduled for local processing. This
algorithm, which is load-blind, is extremely simple to implement. In this study, we set the parameter
M =5, which is a value proved in preliminary experiments to provide low response time and low drop
rate. A detailed description of this parameter and its impact on the algorithm performance has been
provided in [14].
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Algorithm 6 Sequential Forwarding Algorithm

Require: M, O, Job
if Job.Steps() > M then
ProcessLocally(Job)
else
if System.Load() < © then
ProcessLocally(Job)
else
Neigh <— Random(System.neighbours())
Job.IncrementSteps()
Forward(Job, Neigh)
end if
end if

The sequential forwarding process is detailed in Algorithm 6. We assume that the data structure
describing the job is enriched with metadata to keep track of the number of times the job is forwarded.

2.4.2 System models

In this section,we develop two models for the probe-based protocol that uses stale (out-of-date) infor-

mation and for the sequential forwarding protocol. Table 2.5 summarises the main term definitions.

2.4.2.1 A model for probe-based protocols with stale information

The probe-based algorithm relies on load state information gathered from the other nodes. We define
the schedule lag the time interval elapsed from when a node reports its state until the node receives
a job due to a scheduling decision based on that value. As the lag increases the scheduling decisions
becomes sub-optimal since they are based on stale information. Intuitively this occurs because the job
finds the probed node in a state which is progressively unrelated to the reported state.

We now compute this value considering the generic interaction pattern of the probe based protocol,
see Figure 2.4.3. Let tp be the time when the node A receives a job, Tp the time required to decide
where to schedule a job and T’r the time required to forward. In addition, 7p and 7; denote respectively
the transmission time of a probe or a job. The schedule lag value 7 is the sum of two contributions due
to queuing and transmission times.

In the proposed model, if the current state of the node is £ > O the node stores the job into a Probe
Queue (PQ) with k£ annotated and it selects another node B, picked at random. It waits from ¢p to t;
in the queue before the probe message for that job is actually sent over the wire to B. At time tpg, B
receives the probe message, samples its load i that sends back to A through its Probe Reply Queue
(PRQ). The total delay for this operation is Tpg, which is the first source of delay of the lag. At time tf,
node A receives the reply message and decides either to serve the job locally (if £ < ©) or to forward
it to B through its Forwarding Queue (FQ). Job forwarding is the second source of the schedule lag
because the job enters the service queue at time t5 when it is fully received. The value of schedule lag

is then 7 = T'p + Tr. Note that the service time of PQ lasts from tp to ¢t and it is equal to Tpgr + 7p.
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Symbol ‘ Explanation

A

0
p

Pp
TP
Tp

Tpr
2
OPR
PFr
TJ
Tr

Tp al

Job arrival rate.
Service completion rate.
Traffic intensity (ﬁ)

Probing probability: probability to probe a node.

Probe Sending time Time required to send a probe message over the wire.
Probe time: total time required to decide where to serve a job,

for sequential forwarding Tp = 0.

Probe Reply Time: Time required to receive the state information from a node.

Variance of Probe reply time.
Forwarding probability: probability that a node forwards a job.
Job Sending time time required to send a job over the wire.

Forward Time: total time required to forward a job.

Balancer Time: time required to move a job in a service queue
either the local queue or a remote queue (I'pq; = Tp + TF).

Schedule lag: time difference between the time when a node reports

its state until the node receives a job whose scheduling is based on that value.

Ratio between schedule lag and service time.
Activation threshold.

Probability that the state of the service queue is i.
Probability that the state of the service queue is at least i.
Probability that the state of the service queue is at least maz{©,i}.

Performance metrics

Pp
TResp

Drop rate: probability to drop a job
Response Time: Average time elapsing from when a job
is received from and Edge node until its service ends

Table 2.5: Summary of symbol definitions used in the model.
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Figure 2.4.3: Time diagram model of a probe based algorithm.

This analysis doesn’t consider the propagation delay of signals because nodes are physically closed
enough to neglect this contribution.

The schedule lag value is critical because it determines the probability that by the time that a job is
received the state of B changes from i to j, which are exactly the events that cause sub-optimally. The
goal of the proposed model is to express such probability of as a function of 7 and from here how its

value affects the performance of the algorithm.

Model description Based on the previous description, we now define a model for a probe based
algorithm running on a large number of nodes. The model is based on three queues belonging to the
node A and a queue belonging to node probed node B:

1. Probe Queue (PQ) has an unbounded capacity and stores jobs awaiting for a probe reply message;
the average service time of the queue is Tpr + 7p and its variance is U%)R (see below). The
propagation delay is not considered. This queue is modelled as an M/G/1 queue.

2. Probe-Reply Queue (PRQ) has as unbounded capacity and constant service time 7p equal to the

transmission time of the probe reply message, which is modeled as an M/D/1 queue.

3. Forward Queue (FQ) has an unbound capacity for jobs to send to other nodes, whose service
time is 77 equals to the job transmission time. This queue is modelled as an M/D/1 queue.

4. Service queue (SQ) with finite capacity K for jobs being served by the node. The service time of

%) This time corresponds to the actual
time required to process the job. The dynamic of the queue is modelled as a birth-death process.

this queue is exponentially distributed with mean T =

Nodes receive jobs according to a Poisson flow with rate \. We assume that these queues are
independent from each other, [18] and denote by ; the steady-state probability of the service queue

length being i.
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Probe Queue (PQ). The probe queue is modelled as an M/G/1 queue. A job enters the queue only when
the length of the service queue (SQ) is higher than ©, and it leaves the queue when the probe reply is

received. The probability that the node probes another node is clearly:

pp = Z e (2.16)

>0

The mean service time of the queue is Tpr + 7p, so that the traffic intensity for this queue is:

pp = App(TP + TpR)

The variance of this service time is 0%, (see later). The mean time spent by message in this queue is

computed from the Pollaczek-Khinchin mean formula, [79]:

_1+C2 pp

T
d 2 1-pp

(Tp + TPR) (2.17)

2

where C2 = UT%R is the squared coefficient of the service time.
P

Probe-Reply Queue (PRQ). This queue is modelled as an M/D/1 queue. Because the transmission time of

a probe message is Tp, the traffic intensity towards this queue is:
PPR = APpTp

The mean time spent by message in this queue is derived from the well known M/D/1 formula:

2 —
Tpp = £ PPR_ (2.18)

2 (1-pprr)

2 2 2
The variance of the waiting time for this queue is: O'IZDR = 3(?1}2;;) 4({)1:5;’;)2, [79].
Forward Queue (FQ). The forward queue is also modeled as an M/D/1 queue. A job enters the queue
only when the service queue length is higher © and the state reported by the probed node is lower than

the current state, so that the probability that a job enters the queue is:

pr =YY mm (2.19)

i>0 j<i
Similarly to the previous queue, the delay due to job forwarding is:

T 2—pJy

Thp = ————
P2 1-py)

(2.20)
where pj = App7y.
Service Queue. To study this queue we take a different approach considering N — 0o nodes, and using
a deterministic fluid flow model. This approach has been successfully applied to other studies on load
balancing, [18].

Let P;;(0,t) be the fraction of service queues in the system that at time ¢ = 0 have length 7 and at
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time ¢ have length 7, g;;() the rate at time ¢ at which the length of a queue changes from i to j , and
q;j(t) the rate at time ¢ at which it changes from j. The dynamic of these nodes is described through
the set of equations, [41]:
dP;;(0,t)
Z?T = —P;;(0,t)g;;(t) + Z Py, (0, 1) qr;(t)
k#j

The equations measure the rate at which the population of nodes change their state. We now specialise
the above equations for jobs arriving to nodes according to independent Poisson processes with rate A,
exponentially distributed amount of service time with mean i and finite queue capacity K. The only

rates that are not zero are: ¢;; = \j + 11, ¢jj+1 = Aj, ¢jj—1 = p. Hence:

—a dt——PZ-j(O,t)[/\j pl+ Pijra(0,0)p+ Pija (0,021 1< < K
O(t) = — iO(O,t))\o Pz'l(oat):u
dlz 7t =+ —
I{io) = — 1K<07t):u PzK 1(07t))\K 1

This set of equations can be given in the following matrix form due to Chapman-Kolmogorov, e.g. see

[80]: 0.9
dP(0,t)
S — e,

where Q is the following (K + 1) x (K + 1) (infinitesimal generator) matrix:

[~ Ao 0 oo 0]
1% —M—)\l )\1 0
| 0 0 0 e — ]

Formally, the solution of this equation with initial condition P(0,0) = ILis:
P(0,t) = e

The challenging part to apply this equation is that the arrival rates \; that appear in the matrix depend
on the time ¢. As a workaround we use a constant value for the rates to obtain an approximation of
the real values of the matrix. Let focus of the node B probed at random by A (see Figure 2.4.3) and
suppose that the time zero corresponds to the time when B samples its state, say %, i.e.. tpr = 0. For
the sake of simplicity we omit the symbol zero from the element of the matrix P. The probability that
after a time lag 7 the state of B changes from i to j is P;;(7) because this is also the fraction of nodes

that change their state from ¢ to j and Pj;(7) can be interpreted at the probability that B belongs to
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this fraction. The rate at which jobs find node B in state j, given that it announced ¢, is then:
1 K
(1) = ;)\meri 1 Pij(7) (2.21)
7 =0

Equation (2.21) reflects the probabilities of the following events: (i) node B sends a reply message to
the probe message reporting state 4 (which occurs with probability ;), (ii) the state of A wask > i+ 1
(occurring with probability 7, ;) and (iii) during 7 time units the state of B changed from i to j. These
probabilities are conditioned to the event of B being in state j. The rates in the matrix Q are then:

r o
A (1) + A ifj <®©

(2.22)
)\f(T) + A7; otherwise

Aj(T) =
Indeed, node B receives jobs from nodes like A (first term), plus all the jobs coming from its users
(when the state is 7 < ), or from users if the state of the probed node was worst than j (j > ©).

Without loss of generality, from now on, we assume death rate ; = 1.

Model solution. To find the steady-state of the above set of queues we use a fixed point algorithm
divided into two steps. The first step calculates the Q of the service queue for a given fixed 7, while the
second step calculates the waiting times of all the three queues based on the steady-state of the service
queue. Initially, 7 = 7, 4+ 7 that represents the minimum delay needed to schedule a job from node A
to node B.

STEP 1. Given a value 7, first the matrix Qo where A; = A is created. Then, using this matrix, the
vector 7 of the steady-state probabilities is computed. From these values, the rates of Equation (2.22)
are computed, and they are used to define another matrix Q. This procedure is repeated until the
numerical convergence to a matrix Q.

STEP 2. This step uses Q* to compute the steady-state probabilities of the service queue and from
here, the waiting times associated with the probe, probe reply and forward queues from Equation (2.17)
Equation (2.20) and Equation (2.18), which allows determining a new value, say 7/. A new STEP 1 is
then executed to find a new matrix Q*(7'). This second step also monitors the distance between two
successive matrix passed from STEP 1 and halts the computation if the value is lower than e.

Model convergence In the numerical examples, the above procedure converged in less than 500

steps for e = 107°. Figure 2.4.4a compares the result from the model and discrete event simulations.

2.4.2.2 A model for the sequential forwarding protocols

The model for sequential forwarding is easier since a job is forwarded blinding to another node and the
schedule lag has 7 has no effects. Recall that jobs are served by a node only if the current service queue
length is at most © or the job was already forwarded M times. The rate of jobs that are forwarded only

one time is AT 1, those that are forwarded two times is )\77'%+1, etc. The total rate of jobs arriving to
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a node from other nodes is then:

M 1_7}M+1
dor =AY #n = X152t 1)

m=1

Since a job can find the landing queue at any state, the arrival rate of a generic queue is:

A Asp ifj <O

j pumy
ASF otherwise
As before, to model job forwarding, we assume that a job is moved to a forwarding queue, modelled as

an M/D/1 queue with psr = Agp7s and service time 7;. Accordingly, the average waiting time is:

Top = — 5 (2.23)

2(1 - psr)

2.4.2.3 Performance Metrics

Dropping rate The drop rate is defined as the probability to drop a job. For the probe-based algorithm,

it is given by:
K-1

Pp =i + Z Tip1mi Pigc () (2.24)
1=0
because a job is dropped if: (i) the receiving node is full but the job cannot be forwarded since the
receiving node reports it is full as well (first term), or (ii) the job is forwarded, but during the time 7 the
target node becomes full (the job finds the node in state K) and drops the job.
For sequential forwarding;:
Pp = 781K (2.25)

which reflects the fact that a job is forwarded towards a congested node, i.e. whose state is K.

Response time The Response time T, of a job is defined as the time elapsed from when a job is
received from a node (time t,, of Figure 2.4.3) until its service ends, t. This delay can be conveniently
expressed as the sum of two contributions: the balancer time T'5,; due to move a job into a queue and
the proper service time:

Tresp = Tpar + Ts

From Figure 2.4.3 the balancer time is the weighted sum T5,; = ppTp + pr1F, see Equation (2.16),
Equation (2.19), Equation (2.20) and Equation (2.18). The second term is determined by applying the
Little’s result to the service queue:

> im

Te =
ST X1 -pp)
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For sequential forwarding:

M-1
TResp =Ts+ Z Tsp(1— 7~7'®+1)77'(7Z)1+1 =Ts+Tsp(1— 7?@+1M)
m=0
where T’ is derived from the Little’s result using Equation (2.25), while T's is computed in Equation
(2.23).
Figure 2.4.4b shows the response time for the probe-based algorithm and sequential forwarding
algorithms that reveal a good match between model prediction and simulations. A deep explanation of

this shape is given in the simulation section.
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2.4.2.4 Performance detriment and critical value of the schedule lag

With the model in hand we can now address the main question: how long the schedule lag can be
before the detriment of the algorithm becomes prominent? Before that, it is convenient to use a new
quantity n which is the schedule lag normalised respect to the service time, n = 7 and that permits to
set 1 = 1 in the numerical solutions. It it is also important to realised that the main source for a high n
is the need to transfer long jobs. Figure 2.4.5a shows in fact how 7 increases with the size of the job
that is forwarded for the probe-based protocol. A similar shape is found for the sequential forwarding
algorithm. Clearly, because a lower threshold implies a less number of jobs that are forwarded by the
Forward Queue, 1 decreases with the threshold.

Figure 2.4.5b shows the drop rate for the probe based protocol and for the sequential forwarding
with M = 1, 2. The drop rate of sequential forwarding is not affected by 7, while it increases for the
probe-based protocol. The value n* ~ 1.8 is a cross point, after which the probe-based algorithm
performs worst than the simpler sequential forwarding, i.e. its dropping rate is higher. The following
table provides some example of critical values of the schedule lag for M = 1.
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K=6 | K=8 | K=10
09 | 190 | 34 4.9
095 | 0.69 | 2.0 3.5
098 | 0.13 | 0.54 1.8

Table 2.6: Examples of critical schedule lag

The Response time for the same setting is reported in Figure 2.4.6 and clearly it increases with M.

In the simulation section we will discuss a way to limit this issue.

2.4.3 Simulation results

To provide an additional performance evaluation of the proposed load balancing algorithm, taking
into account additional parameters and scenarios, we rely on a discrete event simulator based on
the Omnet++ framework®. The load balancing algorithms are implemented in an additional module
specifically developed. A specific additional module implements a dummy load balancing, namely
NoLB, that processes locally every received request.

In the proposed analysis, we take advantage of the insight provided by the model described in
Sec. 2.4.2 and we aim to capture the impact of the network delay on the load balancing effectiveness,
pointing out under which conditions each considered load balancing option is preferable.

2.4.3.1 Experimental setup

In the experiments, we consider the probe-based and the sequential forwarding algorithms. Furthermore,
we consider also the NoLB dummy algorithm that does not perform any load balancing.

Throughout the experiments, we consider that in the probe-based algorithm, the query/response for
probing incurs into a delay that we quantify as T’p, while the job forwarding introduces an additional

*https://omnetpp.org/
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Figure 2.4.6: Total delay vs job transmission time for the sequential forwarding and the probe-based algorithms.

delay T, as shown in Figure 2.4.3. This delay accounts for the schedule lag discussed in the model. On
the other hand, the sequential forwarding algorithm requires a delay that is just Tr; but the forwarding
can occur up to M times looking for a randomly-selected neighbour that is not overloaded. In the
NoLB, no forwarding and no probing occurs.

In all the experiments, we model the nodes as servers with an M/G/1/K queue. The incoming
load is represented as a stream of incoming jobs with an inter-arrival time exponentially distributed.
The service time is modelled according to a log-normal distribution, with a standard deviation that is
comparable with the average value.

Finally, we consider that each node has a queue of finite size K. In the experiments, we set to
K = 9. In this the system capacity is 9 jobs in the queue plus one job being executed way, that is
consistent with the theoretical model of Sec. 2.4.2 (The system capacity is 9 jobs in the queue plus one
job being executed). This assumption is consistent with application scenarios characterised by soft
real-time requirements where long delays are not acceptable. The specific setting K = 9 is the result of
an initial analysis where we explore the impact of the queue length on the algorithms’ characteristics.

In the proposed analysis we consider two scenarios, namely uniform mesh, and geographic.

The first scenario, namely uniform mesh consider a mesh of uniform nodes that have the same
incoming load A, and the same service rate p. The inter-arrival time of jobs follows a Poisson distribution,
while the service time is based on a log-normal distribution with a standard deviation comparable with
the average value. In the experiments, we focus on an overall utilisation p = 0.9 of the infrastructure to
capture the case where load balancing becomes a critical component of the infrastructure. We do not
explicitly report all the timings of the experiments as we consider more general to provide normalised

results with respect to the average service time 1/pu. We assume that the network introduces a delay

SECTION 2.4 Study on the impact of the stale information on the scheduling decision 68



CHAPTER 2 RANDOMIZED STRATEGIES

normally distributed for both probing and job forwarding. Each probing phase (query and response) is
characterised by an average delay equal to Tp, while the average job forwarding delay is T». Throughout
the performance evaluation, we consider different values for these delays. In particular, we provide a
comprehensive sensitivity analysis on the impact of parameter nwe explore setups from n =~ 0.1, where
schedule lag is significantly lower than the service time (for example, if the data to process is just an
array of scalar values but significant mathematical analyses must be performed on these data), up to a
case where 1 = 10 (for example if trivial computation must be carried out on large multimedia data).
The intermediate case where schedule lag and service time are comparable is of particular interest in
the area of Edge computing and loT because it is a common situation when data are transferred on
long-range, low-power wireless links for Edge-to-Edge communication [77] and must be processed on
low-end devices. Another analysis we carried out is evaluating the impact of the probe time compared
to the job forwarding time. To this aim, we perform a sensitivity analysis to the parameter ( = Tr/Tp
where the job forwarding time ranges from 1x to 10x the probe time. This latter analysis is particularly
interesting to understand under which circumstances the overhead probe-based approach becomes
overwhelming, compared to the faster sequential-forwarding alternative.

In the geographic scenario, we focus on a more complex setup derived from a realistic topology
based on an ongoing project of traffic sensing in Modena, a city in northern Italy of roughly 180°000
inhabitants. The sensors are located in the main city streets and collect information about the traffic
(for example, taking pictures of the street when movement is sensed to count how many cars are
passing). Fog nodes are placed in facilities belonging to the municipality and exchange data using
long-range wireless links (such as [EEE 802.11ah/802.11af [77]) to interact both with the sensors and
among themselves. The scenario description is generated using the PAFFI framework [75]. In these
links, the available bandwidth decreases with the distance. Hence, we assume the delay of each link to
be directly proportional to the distance between the two communication endpoints. In this scenario we
consider also the impact of network congestion, considering that probe packets and jobs must queue
before being sent to the neighbour node. Each sensor is connected to the closest Fog node as in [38]
so that the incoming load on each Fog node is highly heterogeneous, ranging from cases where the
incoming load is more than 3 x the processing capacity to cases where a Fog node is nearly idle.

We summarise the main experimental parameters and performance metrics in Tab. 2.7 that expands
the symbol list introduced in Tab. 2.5.

2.4.3.2 Uniform mesh scenario

We start the proposed analysis focusing on the uniform mesh scenario.

Figure 2.4.7 shows the response time of the probe-based and sequential forwarding algorithm for
several values of the threshold ©. The response time breakdown is provided to provide an insight into
its components. The results are related to the scenario where n = 1.1, { = 10, for the probe-based
algorithms, while for the sequential forwarding, we have 1 = 1.0 (the job forwarding delay T is the
same, but in sequential forwarding, we do not have the probing contribution T’p). However, even if the
example is referred to a specific scenario, the main findings have general validity and confirm previous
observation for the impact of load balancing [15]: as the threshold increase, we observe a reduction of

the time spent in the load balancing phase, due to a less frequent activation of the algorithm, at the
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Explanation

Symbol ‘ Range

Scenario parameters

O [1,10] | Load Balancing activation threshold.
service time.
nJ [0.1,10] | similar to n, without including probing
1y = Trp; used to compare the algorithms.
¢ [1,10] | impact of the cooperation delay compared to
job forwarding delay (¢ = T%/Tp).

Performance metrics

Pp Drop rate: probability of a job being discarded because
the queue of the selected Fog node is full.
TResp Response time normalised against 1/ .

Tsry Service time: time spent by jobs being processed;
normalised to 1.
TBal Balancer time: time taken for the load balancing jobs.

TQueue | Queuing time that is the time spent in the Fog node ready
queue waiting to be processed; normalised against 1/ .

Table 2.7: Summary of simulation parameters and metrics
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Figure 2.4.7: Response time vs. ©

expense of a higher queuing time, due to potential queue build-up. We also observe that the sequential
forwarding algorithm response time has a similar shape but is characterised by a higher variance with
respect to the threshold ©, suggesting the need for careful tuning of this parameter. Finally, in the case

where no load balancing occurs NoLB, we observe that the response time is generally higher compared

SECTION 2.4 Study on the impact of the stale information on the scheduling decision 70



CHAPTER 2 RANDOMIZED STRATEGIES

with the alternatives. The response time is lower only for very high threshold values, where the load

balancing algorithm seldom intervenes. This effect has already been observed in literature [15]
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Figure 2.4.8: Sensitivity to 7 (¢ = 10)

Figure2.4.8 provides a sensitivity analysis concerning the 1 parameter (the ratio between the
schedule lag and the service time). In particular, Figure 2.4.8a shows the drop rate, while Figure 2.4.8b
provides an analysis of the response time as a function of © for different values of 7. In this analysis,
we present results just for the case where ( = 10, for space reasons.

Focusing on Figure 2.4.8a we observe that, especially for low values of © and for low values of n
(for example, in the curve marked with white squares), the probe-based algorithm outperforms the
sequential forwarding alternative (reported as the curve with filled triangles). As © increases, the
difference between the algorithms is reduced because the load balancing is activated less frequently
and is, therefore, less effective. However, as 1 grows, the curve of the drop rate shifts from a monotone
growing shape when 77 = 0.1 (meaning that the impact of delay is negligible) to a concave cup-shaped
curve. This latter shape, which characterises the sequential forwarding algorithm, occurs when a job
is sent to a randomly selected neighbour and is consistent with other results in literature [15]. This
means that as the schedule lag grows, the load returned by the probing phase is less correlated with the
load found on the node when the job is forwarded — ideally up to the point when the load encountered
is completely unrelated to the probing result, reducing the probing to a random forwarding. This
effect, already discussed in Sec. 2.4.2, is consistent with findings in other fields, such as the case of load
balancing in Web servers [40]. The graph also shows the much higher drop rate that characterises the
NoLB alternative: the fraction of dropped job is more than 5%, while the other load balancing solutions
reach a drop rate typically below 1%.

Focusing on Figure 2.4.8b, we observe that the response time of the probe-based algorithm is
generally lower compared with the sequential forwarding algorithm with the same threshold value,
especially for low values of © when the load balancing is activated more frequently (again, when
O grows, the difference between the two algorithms decreases). The case when 7 is very high (e.g.
17 = 10 — the curve with triangles) shows that load balancing is providing no actual benefit because

the time to transfer the data is higher than the time to process them even with the queues are full
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(the longest wait is, on average, K/ that becomes comparable with Tr). The NoLB solution (red line)
guarantees a response time that is lower compared to the load balancing alternatives as long as n; > 1,
thanks also to the high drop rate. However, when the network delay is not so overwhelming, the benefit
of load balancing is evident also from the response time point of view.

Figure 2.4.9a summarises the analysis on the impact of 1 over the load balancing performance. In
the graph, we present a group of histograms for each value of 7 (in this graph we focus on 71 rather
than on 7 because the former parameter has the same value for both algorithms for each application
setup). For each considered value of 77, we present the drop rate of the sequential forwarding and
probe-based algorithms and the response time of the two algorithms measured for the threshold where
the drop rate is minimum. We observe that for the sequential forwarding algorithm, the minimum drop
rate remains stable with respect to the network delay, as expected. On the other hand, the drop rate of
the probe-based alternative increases. When the schedule lag becomes higher than the service time,
the lowest achievable drop rate of the probe-base algorithm is worse than the sequential forwarding
alternative. Considering the response time, we observe that the two algorithms have comparable
performance unless the network delay is very high, in which case, the multiple load balancing hops in
the sequential forwarding algorithm determine a clear performance penalty for this algorithm. The
poor performance of the NoLB alternative are clearly visible. However, to make the figure more readable,
the column of the drop rate is truncated. Indeed, the NoLB option is characterised by a drop rate that

is more than 10x compared with the load balancing algorithms.
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Figure 2.4.9b provides further proof of the impact of the delay associated with the load balancing
on the drop rate of the algorithm. For these analyses, we focus on the case where © = 1, because this
is the situation where the impact of load balancing is more evident. In particular, we consider two
different measures of the balancing-related delay: the first is n; the second is the time spent in the load
balancer T'g4; that is highly correlated with the schedule lag. Both measures provide consistent results,
demonstrating that, as the delay increases, the drop rate grows, as suggested by the model in Sec. 2.4.2.

As the last sensitivity analysis for the uniform mesh scenario, we consider the impact of the ratio

between the time for job forwarding and the probing. In this analysis, we keep constant 7, while n
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Figure 2.4.10: Sensitivity to  (n = 1)

changes as we modify (. If we analyse the impact of ¢ on the response time (Figure 2.4.10a) we observe
that, as the probing time grows due to the reduction of (, the response time increases as well (for
example from 0.038s to 0.043s, with an increment of 12% for ©® = 1). Furthermore, as © grows, the
reduction in the number of probes issued reduces the impact of the { parameter.

For a better comparison between the two considered algorithms, we present a histogram-based
representation in Figure 2.4.10b, where the sequential forwarding is compared with several setups
of the probe-based algorithm with different (. From the column on the left side of the graph, we
observe that the drop rate remains unaffected by the slight increase in the network delay due to the
probing overhead. On the other hand, in the right part of the graph, we show that, as the impact of
the probing delay increases (¢ is reduced), the response time associated with the minimum drop rate
grows accordingly. From this comparison, we can conclude that, when the probing time is comparable
with the job forwarding time ({ = 1), which is common when the application is sending a limited
amount of data to the Edge nodes, we can expect a performance drop in response time in the order of
8% compared to a case where the time to transfer the data is 10x compared to the probe. This effect
should be further considered when selecting the most appropriate protocol for load balancingwe also
report the performance of the NoLB solution, confirming its poor performance in terms of both drop

rate and response time.

2.4.3.3 Geographic scenario

We now focus on the final scenario, where the role of load balancing is crucial. In this scenario some
node receives an incoming load more that 3x w.r.t. their processing capacity, while other nodes are
nearly idle. Without load balancing the high overload in part of the infrastructure can lead to a drop
rate up to 30% (again we omit in analysis the results for the case where no load balancing occurs due to
the overload conditions). This is the opposite situation compared to the mesh uniform scenario where
load balancing must cope just with small temporary load fluctuations and, even in the worst conditions,

the drop rate is below 5%.
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Figure 2.4.11a provides the sensitivity analysis with respect to the n; parameter. The analysis is
similar to the one in Figure 2.4.8a. Even the presence of network effect, with the risk of congestion does
not affect the general conclusions. However, we point out the main differences with the previously
discussed mesh scenarios. It is interesting to observe that, in this highly skewed workload, reducing
the intervention of the load balancing (for example, for © > 8) determines a significant increase of
the drop rate that rapidly grows beyond 5%. It is worth noting that only a small subset of the nodes
experiences overloaded. Hence, only these nodes will issue probes very often. This reduces the loss of
correlation in the state reported by probing and keeps the drop rate stable even when the threshold
is very low (e.g., © = 1), explaining the monotonic shape of the drop rate curve. This is a significant
difference with respect to the previously considered scenarios, suggesting that, in the case of localised
hot-spots, the problem of stale load information previously observed is much less critical.
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Figure 2.4.11

We conclude the proposed analysis with the algorithm comparison of the best drop rate and for the
response time when the drop rate is minimum, as in the previous analyses. Again, we refer to the 1
parameter for this study, and we consider two extreme values of ( that are 10 (low probe impact) and 1
(high probe impact), respectively. Once again, as in this last set of experiments we aim to represent a
scenario as realistic as possible, we consider that the network delay in Fog-to-Fog communication is
caused by a bandwidth-constrained link, that can be subject to congestion.

In Figure 2.4.11b we observe that the minimum achievable drop rate of the sequential forwarding
algorithm remains basically stable with the increasing network delay. On the other hand, for the
probe-based algorithm, the delay has the already-proven negative impact on the drop rate. The ¢
parameter has a limited effect on the drop rate, with the additional delay increasing slightly the drop
rate due to its additional effect of the overall load balancing delay.

If we focus on the response time, we observe that the impact of  is much more significant: as the
time for load balancing becomes comparable with the time for job forwarding, the delay experienced
during the load balancing phase makes the probe-based algorithm slower than the sequential forwarding
alternative. The effect is even worse when the network delay is higher than the service time. Further

increasing the ¢ and the n parameters would result in severe network congestion that can affect
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negatively both response time and drop rate.
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Chapter 3

Model-based approach

All models are wrong, but some are useful.

GEORGE E. P. Box

ATHEMATICAL models that have been presented in Chapter 2 are probabilistic models since
M they particularly fit the randomisation aspect of the protocols. In that models, Markov
Chains were used to model the state of a node representing the number of tasks that are
currently executing leveraging on M/M/1 and M/M/1/K queue models. In this Chapter, the approach
followed is slightly different. Indeed, instead of relying on probability theory for modelling the system,
we rely on dynamic systems theory. In the only work that belongs to the Chapter, we tried to model the
function of the load as seen by every node, taking into account the cooperation for achieving the final
goal of levelling the latency among all the nodes. Indeed, a node sees, as a load, the request rate coming
from its clients and the rate that comes from the neighbours. However, at the same time, the node itself
may decide to forward part of its load to neighbours according to specific ratios called migration ratios.
By defining how the load changes over time (and therefore its “dynamics”), what we have is a system
of ordinary differential equations (ODE) that, when it is solved, allows us to derive the trajectory of the
migration ratios over time and find the solution at the convergence.
The algorithm and the results presented in this chapter (Section 3.2) has been published in [4].

3.1 Related Work

The main area in which the study presented in this chapter lies is the problem of load balancing in
Edge and Fog computing [81], [82], [83] and [16]. In the aforementioned work, a QoS-oriented load
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balancing algorithm is proposed. The approach targets the delay that users experience when using the
deployed application. Similar works, like [84] propose the (OLBA) framework, which takes into account
turn-around time and service delay and relies on Particle Swarm Optimisation (PSO) for finding the
best load balancing strategy but the approach is not fully decentralised, the same approach is followed
by [85]. Then, Tripathy et al. in [86] focus on the QoS parameters but in a smart city setting and a smart
allocation scheme is performed through a genetic algorithm. However, the approach is not “online”, and
the scheduling decision is not taken for every task. More technological approaches instead, like the one
proposed in [87], design algorithms specifically targeting well-known frameworks like Kubernetes. In
that case, the authors propose a proxy-based approach that periodically monitors the pods’ state, and
according to the load, it forwards the requests to balance it; however, the approach does not consider
node heterogeneity which can have the same load but generates different service latency. Similarly,
Singh et al. in [88] propose a container-as-a-service (CaaS) load balancing strategy that is focused
on energy efficiency, however, the approach is based on two steps service level agreement, while this
study tries to use only one, moreover the results are only provided in simulations. A game theory-based
approach is proposed by [89], however, no simulation or real implementation results are provided.
Sthapit et al, in [90] propose a modelling of Edge computing layer as a set of queues and design a load
balancing strategy which targets the job completion rate and the energy consumption, however, only
simulation results are provided, like in [91].

A set of works, instead, focus on healthcare [92] and the “internet of healthcare things” [93]. For
example, [94] proposes a load balancing framework which is able to avoid any failure in responsiveness
and [95] which targets a smart city. Both approaches focus on the quality of service but they do not
directly target the service latency, which is critical when having heterogeneous computing nodes.

By introducing even the Cloud layer [96] we increase the computation capability, although the
cloud is not used in this study, we can still refer to the load balancing strategies offered by different
works. For example, [97] proposes an Edge-Fog-Cloud algorithm for distributing the traffic in all of
the three layers but the focus is not the latency optimisation, [98] provides a model based on queuing
theory, [99] studies a load balancing approach for the Fog-Cloud environment classifying requests in
real-time, important and time-tolerant but again the approach is not focused on latency levelling, then
[100] proposes a scheduling approach based on blockchain and [101] a strategy to cope with failures by
using Software-Defined Networks (SDN).

In conclusion, the last set of works worth mentioning focuses on load balancing by using intelligent
approaches like reinforcement learning [102], [103], [7]. The heuristic proposed in the following Section 7
is not explicitly using reinforcement learning but it follows a strategy that mimics a learning process

since the migration ratios are continuously adapted to meet a goal by using a learning rate c.
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3.2 Latency-levelling load balancing algorithm modelled with a dy-

namical system

Service latency plays a crucial role in modern distributed applications [98]. In particular, in the Edge
and Fog Computing environments, due to the geographic displacement of the nodes, some of them can
be subjected to more traffic than others. In these situations, for designing an effective and QoS-oriented
load balancing algorithm, it is not possible to consider only the typical hardware parameters that
regard, for example, the CPU load, the RAM utilisation or the network traffic. This is because all of
these performance indicators are both hardware and application-agnostic, they do not consider that
the devices may be heterogeneous and the same application on different hardware performs differently.
Suppose that we have two Edge or Fog nodes Node A and Node B with two different CPUs, CPU A and
CPU B respectively. Suppose that we designed an algorithm that enables nodes to cooperate, and some
nodes can forward part of their flow of tasks to be executed to another node. Also, suppose that we
designed an algorithm which is able to level the CPU time and in the end both CPU A and B are levelled
to 50%. If there are no differences in network delays, what can we say about the application that is
running on both devices? Will the users that make task requests to Node A experience the same service
latency as the ones that will make requests to Node B? Yes, but only in one case, the CPU A must be
equal to CPU B, a characteristic of the system which is not common in Edge or Fog computing and even
if we deploy the same hardware, we will never have exactly the same performances, due to background
processes of the OS and intrinsic hardware differences. Given these conditions, it is necessary to change
the performance indicators which drive the balancing, we need to design an algorithm which is able to
balance the QoS that each user will experience: each user, independently from the node at which it will
request the service, will have to experience the same service latency. The latency can be intended as a
performance parameter which best describes how the application is behaving, independently of the
effective load situation. Therefore by levelling the latency of the service, we will probably not balance
the CPU load. Indeed, slower devices will be, in general, less loaded than the faster ones because they
will saturate when the load is lesser than the faster ones. But in general, we will be sure that each user
will experience the same QoS as the others since there will be no user that will experience a higher or
a lower service latency than the other. The motivation of this study is clear, and the principal focus
is designing, in a fully decentralised environment (that particularly fits the Fog and Edge Computing
models) with no central entity, a load balancing algorithm that is able to level the service latency across
all the nodes by tuning the percentage of tasks that a node can forward to another, a percentage that
we call the migration ratio. In other words, each node can decide if and at which level it can cooperate
with others offloading part of its work for reducing its service latency until it reaches a stable value
that is equal across all the neighbours when this is possible, or at least closer to the value of the others.

The contributions of this Section can be summarised as follows.

A continuous-time model which describes the dynamics of the system by using a system of
differential equations that reaches stability when all the nodes experience the same service

latency;

« An heuristic algorithm which tries to find a solution to the problem in a real environment by
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continuously adapting the migration ratios in rounds of fixed duration;
« Simulation results of the proposed heuristic algorithm;

« Results of the implementation of the proposed algorithm in a testbed of Raspberry Pis which
shows the efficacy of the solution even in a real setting.

Symbol Meaning

Model
N Set of nodes
A Adjancency matrix
aij Cell of the adjacency matrix that is 1
if node 7 can communicate with node j, otherwise 0
Ai Traffic to node i (in reqs/s)
i Service rate of node 7 (in reqs/s)
K; Maximum queue length for node ¢
1;(¢t) Service latency of node i at time ¢
la, () Average service latency between node 7 and its
neighbours at time ¢
mi;(t) Percentage (of \;) of tasks forwarded from node i to node j at time ¢

Adaptive Heuristic (Algorithm 7)

M Matrix of migration ratios
mij Current percentage (of \;) of tasks forwarded from node i to node j
o Step size
€ Tolerance of the average for which the algorithm
stops the updating of the migration ratios (balance zone)
T Round duration

Trajectories and Experiments

dy Average service latency
dg Average service latency among all the nodes

Table 3.1: List of symbols used

3.2.1 Performance Model

In the presented model model, we suppose to have a set N of nodes, whose network topology is
described by the adjacency matrix A, in particular, given any two nodes i and j, they can communicate
only if a;; = aj; = 1 since we always suppose that the communication between nodes is bi-directional.
Each node i receives a fixed traffic rate of requests \; req/s from the underlying clients and it is able to
execute (i; req/s, moreover, a node ¢ is able to forward part of its load A; to a given neighbour node j,
and we do not consider the network communication latencies. We call the percentage of forwarded
requests from node 7 to j the “migration ratio” and it is expressed as m;;. We also stress the fact that a
node ¢ cannot forward the load that it receives from other nodes and it can only forward the one from
the clients, that is \;.

We now want to mathematically model the system and for doing so, we define which is the total
load of a node i over time, and we call this function z;(t) that models the state node i in a given time t:

zi(t) = Ni — Z aijimi;(t) + Z ajiAjm;i(t) (3.1)

JjeVv JjeV
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where the following conditions must be followed
0<my(t) <1, D my(t) <1 Vit (32)
J
and the initial condition, at t = 0, since m;;(0) = 0 V%, j is

z;(0) =X Vi (33)

Equation 3.1 can be interpreted as follows. A node 1, receives constant traffic by the clients that are
connected to it, that is A;, then a part of this traffic can be forwarded to the neighbour nodes (for which
a;; # 0) and it is subtracted, but neighbour nodes may also decide to forward part of their traffic to ¢
and this part is added to the total load of the node. For any node i, the functions m;;(t) V;j describe the
portions of incoming traffic A; that are forwarded to the neighbour nodes and they are the unknowns.
By knowing the m;;(t), we will then need to find a time t* where m;;(t) = m;;(t*), Vi,j,t > t*, and
the values m;;(t*) Vi, j will be the final migration ratios that each node will need to apply to reach
the final goal. At this point, we need to model this final goal: the levelling of latencies. For finding the
functions m;;(t), instead of trying to define them directly, it is easier to describe their variation over

time, for this reason, we calculate the derivative with respect to the time of Equation 3.1 that is:

i(t) = = aghiii (D) + ) ajidjrivi(t) (3.4)
jev jev

Equation 3.4, describes the dynamic of the state of node ¢, that is how the load that every node
i sees at time t changes over time. The formulation can be repeated for every node, thus we have a
system of | V| Ordinary Differential Equations (O.D.E.). Before solving the system, we need to define
the functions ri;;(t) that are still unknown but we remind that the solution to the system will allow us
to know the original m;;(t).

Basically, we define the 1;;(t) as the multiplication of three factors logically derived from the fact
that the objective is that, in every node, every task must have the same duration, and therefore the
average service latency of each node must be the same. Moreover, we need to keep in mind two essential
behaviours of the entire system: (i) when a node ¢ migrates a portion of the incoming traffic to another
node j the node i will see its average service latency decrease, while in the node j the average task
service latency will increase. This is because the service latency function is a monotonically increasing
function with respect to the load of a node. In the case, we suppose, for simplicity, that nodes can be
modelled as M/M/1/K queues and the service latency at time ¢ of node i can be expressed as (given

pi(t) = zi(t)/ pi):
Lty = Lo i+ Dpi) 4+ Kipi(8) 54D
e wi(1 = pi(6))(1 — pi(t)53)

Then (ii) the average delay between neighbours nodes plays a crucial role, because the average

(3.5)

service latency of a given node can be higher or lower than the average, and trying to level them to
the average proved to be the key strategy to solving the problem. But how we can level them to the
average? There are three sub-strategies that we need to adopt to reach the goal and they concretize in
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three factors:

1. the tasks migration must be performed only if the delay of the current node i, [;(t), is greater
than the average delay between itself and its neighbours, called [,,, for this reason the first factor
() Lo 1)

Ca i a;
mg;(t) = max [O, 0 ] (3.6)

2. the tasks migration must be performed only if the delay of the current node i, [;(¢), is greater

than the delay of its neighbour j, [;(t), and therefore:

mfj (t) = max [0, W] (3.7)

3. the tasks migration must be performed only if the delay of the neighbour node j, (), is lesser

than the average delay between node ¢ and itself, and therefore:

The final dynamic of the migration ratios is therefore

g (t) = g () - iy (t) - ] (t) (3.9)

and the idea behind the formulation is that the dynamic of the state & () stops when at least one
of them becomes zero, both for the received load and the forwarded one.

As already mentioned, the [, (¢) is the average delay between the current node ¢ and its neighbours:

Li(t) + X jeviz aiili(t)

la, (£) = (3.10)
1+ ZjEV Qjj
Finally, [5, (t) and [y, (t) are the summations of the differences over time:
In,(t) = max [0, 1i(t) — I;(t) (3.11)
JjeV
Ik, (t) = max |0, ", () — 1;(t) (3.12)
JjeV

We will resort to numerical calculus to find the time trajectories of the system of non-linear ODE
described in Equation 3.4 with initial conditions x;(0) = \;, Vi but unconstrained for simplicity. Then,
after finding the numerical solution z;(t), Vi, we can easily find the effective behaviour of migration
ratios over time considering that:

t
mi;(t) = /0 mi; (&) d§ (3.13)
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We will consider the trajectory of the solution valid until the condition expressed in Equation 3.2 is

respected.

3.2.1.1 Latency-levelling property

We now prove that when the trajectories of the solution of the system at Equation 3.4 converge, then
the latencies are aligned to the same value. In the Appendix at Section 3.2.4 we instead prove the
existence and the uniqueness of a set of steady states x;V¢ for which the latencies are levelled.

Theorem 3.2.1. [f the solution’s trajectories of the O.D.E. system at Equation 3.4 converges, i.e. 3 t* s.t.
&i(t) = 0 Yt > t*,Vi then all the nodes have the same service latency, i.e. lo(t) = l1(t) = ... = l;(t) Vi
and this latency is the average latency l,,(t*) among all the neighbours of each node i at time t*.

Proof. We can prove the theorem by contradiction. Suppose that the system solution converged at
t* but there exists one node i that has not the same service latency as the other nodes, i.e. [;(t) #
l;(t),Vj # i, VYt > tx. We can distinguish two possible cases, for any ¢t > t*:

(@) li(t) > la,, i.e. the service latency of node i is higher than the average latency between i and
its neighbours, we point out that every other neighbour node’s latency can be higher, equal or
lower than the average latency but at least one node must have the latency below the average.
From this fact we have that the 7 (t) # 0 by definition, ml’g](t) # 0 and mzj(t) # 0 because
there exist at least one node with average service latency below the average and the same node’s
latency is also lower than the latency of node i. This means that, from Equation 3.4 the negative
part is not zero, the positive part instead is zero since ¢ is the only one node with latency higher
than the average it will not receive traffic from any neighbour. Therefore we showed that &(t) # 0

for some t > t*, and this is a contradiction %;

(b) 1i(t) < lg,, i-e. the service latency of node i is lower than the average latency between i and its
neighbours. As in the case (a) if the node ¢’s latency is below than the average latency then there
exists at least one neighbour j whose latency is higher than the average. The consequences are

exactly the ones of case (a) and we proved the contradiction 3% ;

O]

From these two cases emerges that the only possible case is that /;(t) = [,, and no other node can

have a service latency that is higher or lower than the average ;.

3.2.1.2 Trajectories and Topologies

We will now explore some configuration of nodes and parameters that we will reuse later in the
simulations and in the experimental setting, the general idea is to show how this model can predict
quite well the behaviour of a real system. The crucial point for the results to match is the alignment
of the service latency, but the alignment value and the migration ratios may differ as will be clearer
later. In this section,we study the behaviour of the latency over time d;(t), computed by using the

Equation 3.5 and the migration ratios m;;(t) computed by using Equation 3.13.
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We tested different network topologies, the first three are shown in Figure 3.2.1. These small
topologies are taken into consideration because it is easy to have a direct comparison with the behaviour
shown in simulations and in the real deployment. Finally, we tested a fully connected topology with 15

nodes.

23.00
A 1.00 1 1.00
12,00 a
A 1.00
1 2.00
2 4.00 u E
A 150 2 4.00
K230 1 1.50 1 2.50
(a) Topology A (b) Topology B (c) Topology C

Figure 3.2.1: The nodes topology and parameters configuration used across the mathematical model, the
simulations and the final experimental setting.

Topology A (Figure 3.2.1a) is composed of three nodes arranged in a fully connected graph, the
Figure 3.2.2a shows the trajectories of the latency and the migrations ratios m;; of the nodes. As we
can observe, after the transient the system reaches the steady-state at about ¢t = 15 where the latencies
are levelled at 1.2s. From the migration ratio, Figure 3.2.2b we can observe that the Node 1 gives 25% of
its load A1 to Node 2 since it has the higher service latency at ¢ = 0 and part of its load is forwarded to
the node that is below the average service latency, that is Node 2. Node 2 only has to receive load while
Node 0 and Node 1 have to lose their load in order to balance the service latency, indeed even Node 0
forward exactly the 5% of its load to slightly reduce the service latency.

Topology B (Figure 3.2.1b) comprehends four nodes connected as a ring, the Figure 3.2.1b shows the
numerical trajectories of the the performance parameters. Each node, from 0 to 3, starts with service
latency, respectively, 0.86s, 2.06s, 1.22s and 2.18s and the end of the transient (Figure 3.2.3a) is levelled
to 1.38s. At steady state and we can observe how (Figure 3.2.3b) Node 3 forwards about the 65% of its
traffic to nodes 0 and 2 for lowering the latency, the same is done by Node 1 which forwards a total of
about 60% of its load to Nodes 2 and 1, then Node 2 does not forward tasks because already close to
the average latency while starting from ¢ = 10 Node 0 starts to forward tasks to its neighbours up to
the 10%. This means that the Node 1 must give back part of the load to Nodes 1 and 3 but these nodes
already forwarded part of their load to Node 0, this behaviour is justified by the fact that the derivative
of migration ratios functions 72;;(t) are always positive, therefore the only way for diminishing them is
making a node to give back the load to the sender.

Topology C (Figure 3.2.1c) is a star topology and includes four nodes, but this particular configuration
of the nodes is more challenging because one single node is connected to all the others while the others
are only connected to the same node, and therefore the node at the centre can be overwhelmed by the

load of the others. However, the model converges to a levelled latency of 1.4s (Figure 3.2.4a) but the
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Figure 3.2.2: Trajectories of the average latency d; and the migration ratios m;; for the three nodes described

by Topology A (Figure 3.2.1a).
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Figure 3.2.3: Trajectories of the average latency d; and the migration ratios m;; for the four nodes described by

Topology B (Figure 3.2.1b).
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solution that is reached is actually not achievable because the condition expressed at Equation 3.2 is no
more respected (Figure 3.2.4b), since the model is unconstrained. This does not mean that we cannot
use the solution, indeed, it is sufficient to consider the transient as long as the condition is still met, i.e.
at ¢ = 26 and consider the migration ratios there. What is clear is that the exact levelling of the latency
is not feasible but considering the solution, at ¢ = 26 we still reached a point in which the latencies are
closer, even if they do not exactly match. In particular, we recall that in this solution, the node my;3 is

required to forward all of its traffic Ay and execute only the traffic forwarded by the other nodes.
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Figure 3.2.4: Trajectories of the average latency d; and and the migration ratios m;; for the four nodes described
by Topology C (Figure 3.2.1c).

The last topology that we tested comprehends instead 15 nodes in a fully connected topology with
0< X <40<u; <4and2 < K; < 6. All of these parameters are picked at random, but the
purpose of this is to understand how the system behaves with many nodes. The SageMath' Python
ODE solver took about 20 hours to derive the trajectories up to t = 100 with the numeric solver
Runga-Kutta-Felhberg on a Ryzen 9 5800X processor. Figure 3.2.5a shows the behaviour of the latency
for all the nodes and as we can see the system reduce their variance, but again we need to cut the
solution at time ¢ = 31 because » _; m;;(t) > 1 for some i when t > 31 (3.2.5b).

This last result shows how the model scales with the number of nodes, however, we do not envision
modelling a system of more than 20 Edge or Fog nodes, because aligning the latencies in a very large
set of nodes may not be the best strategy for balancing the load. As we can see, some nodes can be
obliged to forward all of their traffic and if the parameters A; and p; are particularly different then
it would not be possible to level the latencies, without counting the difficulties of implementing the
algorithm in the real world where the network latencies have a significant impact. Instead, it is more
efficient to create groups of a maximum of 20 nodes and try levelling the latencies within the groups,

these groups can, for example, represent neighbourhoods of a smart city.

'https://www.sagemath.org/

SECTION 3.2 Latency-levelling load balancing algorithm modelled with a dynamical system 85


https://www.sagemath.org/

CHAPTER 3 MODEL-BASED APPROACH

1
0.40 1 |
i
1
0.35 1 !
i
1
0.30 - '
i
1
0.25 - !
£ 0.20 A
0.15 -
0.10 1 I — e
/l/_’
0.05 - e
0.00 !
10 20 30 40 50
Time Time

(a) Service latency d; (s)

(b) Migration ratios m;;

Figure 3.2.5: Trajectories of the average latency d; and the migration ratios m;; for 15 nodes in a fully connected
topology.

3.2.2 Adaptive Heuristic

We now want to effectively implement a strategy for levelling the latency among the nodes. The
mathematical model tells us what are, at steady state, the migration ratios m;; Vi, j but calculating
them requires finding the trajectories of the model. Moreover, there are other 3 points that motivate
the design of an algorithm. First of all, (1) the mathematical model assumes that we know the state of
every node but in the real world, we want to have a fully decentralised approach, each node should be
able to see the only state of its neighbours and tune the migration ratios accordingly, also that state
must be explicitly requested when needed. Then (2) real nodes may be subject to variation in load
conditions over time, thus the algorithm should react and re-tune the migration ratios to cope with the
changes. As the last point, (3) the model does not take into account the communication latencies that
exist between the nodes. Therefore, we now propose an adaptive strategy which follows a heuristic
approach to find the most suitable set of migration ratios for every node in such a way the latency is
made equal when it is possible or at least closer when it is not feasible.

The Figure 3.2.6 summarises the logic behind the heuristic. Firstly, we suppose to divide the time
into rounds of T' seconds each. The Algorithm 7 is run every time a round ends and has as a final
objective the one of modifying the migration ratios when it is needed. We also divide the algorithm
into steps for describing the rationale behind its design. The input that it takes comprehends the
index of the current node i in which the algorithm is executed (we remind that the algorithm is fully
distributed, there is no central entity or coordinator), the step size a, the set of nodes N, the vector of
migration ratios M; which describe the percentage of tasks that is forwarded to each (neighbour) node,
percentage on the average latency that defines the balancing zone € and the incidence vector for node ¢

that is Z; and describes which are the neighbours of the current node. Suppose that the round time T’
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just elapsed, and the algorithm does the following:

1. first of all, the node computes the average latency between itself and all the neighbours, moreover,
it computes the upper and lower average limits by multiplying the average latency by 1 1-¢, these
limits allow us to relax the constraint that each node must exactly match the latency of each
other, which in real scenarios is very unlikely due to the arrivals’ distribution. As the last step, it
is also computed the sum of all the migration ratios, which cannot exceed 1.0;

2. once the average is known, we proceed to the adjusting of the migration ratios; the first check
that we perform is to see if the current node is below the average and if it is migrating tasks
to other nodes. Indeed, if this happens, then it means that the node is forwarding too much
traffic to the others. We remind from the mathematical model, that the strategy for making the
algorithm work is that a node can only receive or give traffic to others at the same time, and, in
general, only the nodes that are above the average must forward tasks to the ones that are below.
Thus, a node that is below the average and it is giving traffic to others must reduce the ratios
in such a way its average returns the balance zone (d,, & €). This is what the algorithm does in
during this step for all the neighbours nodes by previously checking if the ratio given to the node
does not reach negative numbers and this is done by using the auxiliary functions described in
Algorithm 8. If the adjustment is done, the function returns with no further steps;

3. at this point, we check if the average latency of the current node is below the high level of the
average zone, because if this is true then it means that the node latency is in the average zone,
then no further action is needed;

4. if we reach this step, then the node’s latency is out of balance, i.e. it is above the high level
of the zone, then we need to adjust the migration ratios for every neighbour node, but we can

distinguish the following two cases:

(a) if the average latency of neighbour node j is above the balance zone, then we reduce the
migration ratio towards it of the step size « since it means that we are forwarding too much
traffic;

(b) if the average latency of the neighbour node is below the balance zone, then we increase
the migration ratio towards it of the step size a, this will cause the latency to be reduced

and its one to increase, approaching the balancing zone.

3.2.2.1 Simulations results

We now show some results of the proposed algorithm in a discrete event simulator written in Python
by using the library “Simpy”? and published as open source®. We will use the same topologies and
parameters (Figure 3.2.1) used in for computing the trajectories of the mathematical model in order to
have terms of comparison.

In the simulator, we again assume no communication delays between the nodes and the same nodes

are modelled as M/M/1/K queues since the objective of simulations is to understand if the migration

2https://pypi.org/project/simpy/
*https://gitlab.com/gabrielepmattia/simulator-2022-mswim
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Algorithm 7 Adaptive Heuristic for leveling latencies

Require: i, a, N, M, e, T;

currentNode < N[i]

[1. Compute the average latency among all the neighbour nodes)

averagelatency <— currentNode.latency

numberOfNeighbours < 0

forall j in |[N] and Z;; # 0 [Loop over the neighbours] do
averagelatency <— node.latency and
numberOfNeighbours <— numberOfNeighbours + 1

end for

averagelatency <— averagelatency / numberOfNeighbours

averagelatencyLow < averagelLatency - (1.0 + ¢)

averagelatencyHigh < averagelLatency - (1.0 — ¢€)

totalRatiosGiven < > mi;

[2. If under average and migrating, then reduce migration)]

if currentNode.getAveragelatency() < averagelatencylLow and totalRatiosGiven > 0 then

forall j in M| and Z;; # 0 do
if N'[j].getAveragelatency() > averagelLatencyHigh then
if canBeSubtractedToNode(j, @) and canSubtract(«) then
mij; < Mij — Q&
totalRatiosGiven < totalRatiosGiven - «
end if
end if
end for
return
end if
[3. If latency below the high zone limit, then the node is balanced]
if currentNode.getAveragelLatency() < averageLatencyHigh then
return
end if
[4. If latency greater or equal the high limit we need to migrate]
for all j in [N]and Z;; # 0 do
[4a. Reduce the ratio to neighbour above the average high limit]
if N'[j].getAverageLatency() > averageLatencyHigh then
if canBeSubtractedToNode(j, ) and canSubtract(c) then
Myij <= Mij — Q
totalRatiosGiven <— totalRatiosGiven - o
end if
end if
[4b. Increase the ratio to neighbour below the average low limit]
if N'[j].getAverageLatency() < averagelLatencyLow then
if canBeGiven(«) then
mgj < Mij + «
totalRatiosGiven < totalRatiosGiven + o
end if
end if
end for
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Figure 3.2.6: Representation of the logic behind the adaptive heuristic for a node ¢ in a given time t. We suppose
the average delay [,, between the node ¢ and its neighbours to be fixed during an instant time ¢.

Algorithm 8 Auxiliary functions

Require: i, a, N, M;, 2, z, T,, totalRatiosGiven
[Check if the specified amount of ration can be given)
def canBeGiven(alpha: float): boolean

return totalRatiosGiven + alpha < 1.0

end def

[Check if the specified amount of ratio can be subtracted]
def canSubtract(alpha: float)

return totalRatiosGiven - alpha > 0.0
end def

[Check if the specified amount of ration can be subtracted to a node]
def canBeSubtractedToNode(j: int, alpha: float)

return m;; — alpha > 0.0
end def
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ratios found by the heuristic match the model. All the tests are done with the simulator to use a round
time T' = 60s and the behaviour of the average latency are filtered with a Savitzy-Golay filter with
window size 20 and polynomial degree of 4. Moreover, the balance zone uses € = 0.05, the step size
a = 0.01 and K; = 4V 1. A peculiar characteristic of the simulator is that the average latency is
computed as the average of the last 10 rounds, this is done in order to stabilize the curves, otherwise
due to the exponential distribution of the inter-arrival times and of the execution times the average
latency may be subjected to significant variations.

Figure 3.2.7 shows the results of the simulations of Topology A. First of all, we can observe how
after 25 rounds, the average latency starts to stabilize at about 1.2s (Figure 3.2.7a), we have highlighted
in grey the balance zone that is the average delay d, £ € and in the chart the average it is computed
across all of the nodes. We can notice how the latency result is perfectly matching the model compared
to Figure 3.2.2a, the fluctuations around the average is due to the exponential inter-arrival times and
execution times. For levelling the latency the migration ratios found by the algorithm are represented
in Figure 3.2.7b. In particular, we can observe that m;5 stabilizes at around 0.24 and mgy at around
0.07 while the others are less than 0.03. Again these result matches the ones of the model shown in
Figure 3.2.2b, in which mj2 and mgg stabilizes at 0.26 and 0.05 respectively, while the others are set to
0.
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Figure 3.2.7: Behaviour of the average latency d; and migration ratios for Topology A (Figure 3.2.1a) in the
simulated environment.

Topology B results are shown in Figure 3.2.8. As far as regards the average service latency (Fig-
ure 3.2.8a) we can observe how it stabilizes at about 1.4s which is in line with the mathematical model
shown Figure 3.2.3a. The same holds for the migrations ratios, for example, the Node 0 gives 5% of the
Ao to its two neighbours respectively that match the model, Node 1 gives about 20% of its traffic to
Node 0 but the model 26% and about 45% to Node 2 while the model 34%. The same slight differences
hold for Nodes 3 and 4 and are due to the traffic variability.
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Figure 3.2.8: Behaviour of the average latency d; and migration ratios for Topology B (Figure 3.2.1b) in the
simulated environment.

Topology C results are shown in Figure 3.2.9. Regarding the service latency (Figure 3.2.9) we can see
how it does not converge to the same value for each node, and this behaviour is the same presented in
the model in Figure 3.2.4a where we truncated the trajectory at t = 26. Indeed, the same values are
obtained in the simulation, Node 0, 1 and 3 align at about 1.5s while Node 2 stabilizes to 1.3s because
it cannot receive enough traffic from Node 0 in order to increase its latency to match 1.5s. This does
happen in the model after ¢ = 26 but Node 0 would forward more traffic than the one that is available.
Regarding instead the migration ratios, shown in Figure 3.2.9b, we can observe that as the latency, they
match with the truncated solution of the model (Figure 3.2.4b) with slight differences. In particular, msg
reaches 0.9, mo2 reaches 0.9 while in the model 1.0, then mg3 and m1g reach 0.2 respectively while in

the model 0.0 and 0.2.

3.2.3 [Experimental Setting

After testing the proposed adaptive heuristic in simulations, we finally implemented it in a testbed
of Raspberry Pi 4% connected with Gigabit ethernet to a dedicated subnet. Each node implements a
Python web server based on the Flask® library, that once deployed with Docker, receives the traffic
from a machine that acts as a traffic generator. The source of the application is published as open
source®. The webserver implements the scheduling decision, indeed, when a new task arrives, it decides
to execute it locally or forward it to another neighbour node according to the current configuration of
migration ratios. Migration ratios are updated according to Algorithm 7 every T" seconds

For implementing the tasks of variable duration we used a loop that performed the same operation

*https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
Shttps://pypi.org/project/Flask/
®https://gitlab.com/gabrielepmattia/framework-2022-mswim
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Figure 3.2.9: Behaviour of the average latency d; and migration ratios for Topology C (Figure 3.2.1c) in the
simulated environment.

repeated a fixed amount of times, we measured the duration of a single iteration and from there we
compute the number of iterations to match the desired p; parameter for each node. The operation
carried out in the loop is the computation of the SHA-512 hash of the same (20 bytes) string. We
measured that, the operation in question, in a Raspberry Pi 4 has an average duration of 4.721us
(on 30’000 iterations repeated 10 times). Therefore, for example, setting i = 2 is equal to perform
(1/2)/4.7217% =~ 105900 loop iterations.

Deployment The deployment process involves two phases. (I) After the container is started in every
node, the webserver is put on wait for the configuration that is passed via POST. The configuration
is a JSON file where the main parameters are declared, for example, the queue length K, how many
rounds are used for computing the average latency, the round duration 7" and the balance zone size e.
This structure contains also some parameters that regard the identification of the node: the IP, the
ID, the name, i, the step size o and A. The last part regards the topology of the network that defines
with which nodes the communication is possible. After the configuration is received (Il) each node
starts 2 threads: the update thread that is in charge of updating the migration ratios at every round and
collecting all statistics parameters used by the algorithm as service latency, the number of executed
tasks and the queue length; and the worker thread that is in charge executing a service execution
request by picking the first available from the internal queue. Now the node is ready to receive the
requests from the task generator and the adaptive heuristic (Algorithm 7) updates the migration ratios

accordingly every T' seconds.

Results All of the topologies shown in Figure 3.2.1 have been run in the above-mentioned framework,

we will now illustrate the results obtained. In all the experiments we set K; = 4, V i, the round time
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T = 30s, the tolerance e = 0.1, & = 0.01 and all the curves have been filtered with the Savitzy-Golay
filter by using window size 20 and polynomial degree 4. The Figure 3.2.10 shows the behaviour of the
average service latency and of the migration ratios for the Topology A (Figure 3.2.1a). Regarding the
latency (Figure 3.2.10a) we can observe how the alignment value is slightly different from the model
(Figure 3.2.2a) and the simulations (Figure 3.2.7a), in particular, the average service latency is levelled
to 1.7s and this represents an increase of 0.5s with respect the other tests, but as we can notice the
latency at round 1 is not matching the simulations nor the model and this is justified by the fact that
the model of the queue M/M/1/Kis not representing well the behaviour of a real node, moreover we
ignore the eventual background work of the CPU that may interfere with tasks that we are sampling.
However, the algorithm manages to level the latencies among all the nodes but with migration ratios
that are different from the model. Indeed, in Figure 3.2.10b we can observe how the Node 0 forwards
about the 17.5% of its traffic to Node 2 and the Node 1 forwards about the same amount of traffic to
Node 0. This solution found by the heuristic is quite different from the one predicted because we point
out that the solution, i.e. the combination of m;; ratios may not be unique.
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Figure 3.2.10: Behaviour of the average latency d; and migration ratios for Topology A (Figure 3.2.1a) in the
experimental setting.

The Figure 3.2.10 shows the behaviour of the average service latency and of the migration ratios for
the Topology B (Figure 3.2.1b). As the previous result, the final alignment latency is again different, we
pass from 0.8s, 4.1s, 2.6s, 5.5s (respectively from Node 0 to 3) to 2.5s for each node with respect 1.5s in
the model and in the simulations. The algorithm manages to level the latency by making Nodes 1 and 3
forward about the 30% of their traffic to Node 0, and Node 3 forward the 15% of its traffic to Node 2 at
steady state.

The final test on the real deployment regards Topology C (Figure 3.2.1c) and its result is shown in
Figure 3.2.10. As we can observe, latencies (Figure 3.2.12a) are higher than the ones predicted of 1.5s,

however, the final result is the same, since Nodes 0, 1 and 3 are aligned while Node 2 instead cannot
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Figure 3.2.11: Behaviour of the average latency d, and migration ratios for Topology B (Figure 3.2.1b) in the
experimental setting.

reach the alignment latency (see Figures 3.2.5a and 3.2.8a). This is also reflected in the migration ratios
(Figure 3.2.12b) in which we have the Node 3 which forwards the 70% of its load to Node 0 while the
Node 0 will try to forward all of its traffic to Node 2, even if the Figure is cut to t = 120.

Concluding, the results in a real testbed of Raspberry Pishowed how the adaptive heuristic algorithm
allows reaching the final goal of levelling latencies with a behaviour that was predicted both in the model
and in the simulations. However, due to the absence of a more precise model of a real node, the predicted
alignment latencies and migration ratios are not the same but this does not limit the applicability of

the proposed heuristic, rather the tests showed how it can work even in a real deployment.

3.24 Appendix

In the following, we consider a completely connected topology, and a generic load-delay relationship
fi(A) which is a monotonically increasing continuous function, with f(0) = 0 and lim)_,~ fi(A) = dag,.
The transmission delay is not considered, but the same proof sketch can be used by adding the

transmission delay to the definition of f;.

Property 3.2.1 (Existence of balanced loads). Given a vector A = (A1, Ao, ..., An) of loads, |T| Y
> Ai = Ap it there exists another vector A" = (N[, A5, ..., Ny) such that:
AN = f(05) =... = fn(Ay) = d, [T = [I|

Proof. Let consider the function:

XNp(d) = fiH(d) + f () + ...+ i (d)

SECTION 3.2 Latency-levelling load balancing algorithm modelled with a dynamical system 94



CHAPTER 3 MODEL-BASED APPROACH

0.7
10 _ Mmoo
06 i mo2
= o3
8 _ Mo
059 Py
Qo
pe] _ M3y
61 = 041
= =
= 9
S % 0.3
4- 2
~ 0.2
2 -
0.1 1
.
0 004 ¢
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Round Round
(a) Service latency d; (s) (b) Migration ratios m;;

Figure 3.2.12: Behaviour of the average latency d; and migration ratios for Topology C (Figure 3.2.1c) in the
experimental setting.

and let dyy = min{dyy, }. Due to the property of f, this function is continuous and increases monoton-
ically with d; moreover, \.(0) = 0, M.(das) = oo. Since N.(0) — Ap < 0, N.(dar) — Ar > 0, due to
the Bolzano’s theorem, it there exits a value d < djs such that X.(d) — Ar = 0, i.e. Np(d) = Ap. [

Property 3.2.2 (Unicity of balanced loads). For a given d, the vector A’ is unique.
Proof. Follows from the properties of f;. O

Property 3.2.3 (Migration). Given two load vectors of size N, A and A, |A| = |A’|, where A’ is such that
Ji(AL) = d > 0, it there exists at least an N x N migration matrix M such that:

A = MA
where 0 < m;; < 1,> . mi; = 1.

Proof. Since |A| = |A’|, A can be partitioned in two sets, A and B, namely the set of nodes such that
A; < \; and the set of nodes such that X} > \; - unless A = A" in which case M = L.

First of all, observer that all nodes in 3 have )\9 > Aj,sowecansetm;; = 0,7 € Bii € A,mj; =1
(these nodes only receive load from others).

The other values m;;,j € A,i € B are constrained as following:

i :/\i—f—Zij)\j 1€B
jeEA

There are B = |B| of these equations, each with A unknowns, A = | A|. In addition there are other A
constrains on the coefficients, i.e. (1 =), m;j)\; = /\;-. Of these equations one is redundant since it
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must be X;\; = X;\}, so only A + B — 1 are truly independent. Overall, we have AB unknowns and
A+ B — 1 equations. Since A+ B = N,AB > A+ B — 1, i.e. the unknowns are at least equal to the
number of constrains. The system of equations has then either one solution or it is undetermined and
infinity solutions exist. Since each node j € A migrates a fraction m; < 1 of A; towards nodes of B
(this is true since f;(0) = 0and d > 0) m; = i—i < 1 and all the coefficients are <1. O

Example of migration matrix with N = 4, A = {1, 2} showing 4 unknowns:

)\/1 1-— ma31 — M4y 0 0 0 /\1
Ay | 0 1—m3z—mya 0 0 Ao
Ny | ms1 ms32 L O |2
) may M2 0 1/ \A\4
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Chapter 4

Reinforcement Learning based strategies

Our intelligence is what makes us human,
and Al is an extension of that quality.

YANN LECUN

ACHINE learning changed the perspective of decisional algorithms. In particular, the extraor-
dinary flexibility of Reinforcement Learning made it a very powerful tool to be used when
we want to create a decision mechanism that is efficient and adaptive over time. In this

Chapter, we present two works that tried to improve the performances of power-of-n strategies by
creating agents that are able to implement the direct forwarding to a given node without probing
the state. The main idea was that Reinforcement Learning is able to infer the state of another node
according to the reward that it receives when a task is scheduled for it. This not only eliminates the
need for probing but also creates a solution that is adaptive over time. Results show, for example, that
when a node goes down, and it starts to reject all of the requests, the learned scheduling policy is
automatically adapted to compensate for the loss of the node, moreover, it returns to the previous state
when the faulty node is restarted.

This Chapter is organised as follows. Section 4.1 presents the related works, Section 4.2 shows an
extension of the power-of-n strategy presented in Chapter 2 with Reinforcement Learning specifically
targeting Fog Computing in a Smart City setting, instead in Section 4.3 a QoS approach is presented,
where RL is again used for online scheduling of tasks, but it is programmed for matching as much as
possible users FPS requirements.

Part of the work presented in Section 4.2 has been published in [7], while the work presented in
Section 4.3 has been published in [104].
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4.1 Related Work

The principal topic of this Chapter is the problem of scheduling and load balancing in Fog or Edge
computing environments by using Reinforcement Learning. This problem has its roots in the classic
"job-shop" scheduling problem which has countless declinations and particularly fits the Fog com-
puting paradigm, due to its distributed nature. However, one of the first attempts to solve it with a
learning approach was introduced in 1999 by [105]. From there the scenario changed radically with the
development of new machine learning techniques and with the spread of distributed systems which
concretised in the Fog and in the Edge computing layers [2].

In Table 4.1, we offer a summary of the related works classified according to the following criteria:
if they deal with (a) online or offline scheduling according to the fact that the scheduling decision is
taken on a per-task basis (online) or for a group of tasks (offline), if they consider a task deadline (b), if
they use a geographic set up (c), and finally, if they provide (d) a real or pseudo-real implementation
results and they may propose a framework in which to run the algorithm. Moreover, we specify which
algorithm they use for finding the policy (i.e., Q-Learning, Sarsa, A3C) and how they solve the RL
problem (for example by using the Q-Table or Deep Neural Networks).

(@o. (b)d. (c)g. (d)i. RL Policy Alg. RL Solver
[106] v v - - Q-Learning Two DNNs
[107] v - - - Q-Learning Two-level DNNs
[108] - - - - DDPG Two DNNs
[109] v v - - Custom Single DNN
[110] v - - - Custom RNN
[111] v - - - Q-Learning Two DNNs
[112] - - v - Q-Learning Single DNN
[113] - - - - Q-Learning Single DNN
[114] v v - - Q-Learning Q-Table
[115] v v Q-Learning Q-Table
[116] - v - - A3C Residual RNN
[117] - - - - Q-Learning, Sarsa Q-Table
[105] - - - - Actor-Critic Residual RNN
[118] - - - - Q-Learning Two DNNs
[119] v - v - Q-Learning Q-Table
[120] - - - - MRL Custom
[121] - - - - Custom Two DNNs
[122] - - - - Actor-Critic Custom
[123] - - - - Q-Learning Q-Table
[124] - - - - Q-Learning DNNs
[125] - - - - Q-Learning Custom. DNNs
[126] - - - - Actor-Critic DNNs
n27] - - - - DDPG Two DNNs
[103] v - - - Q-Table Q-Learning
[128] - - v - DDPG Custom
[102] - - - - Q-Table Q-Learning
[129] - - - vooo- -
this v ' v v’ Sarsa Lin. Approx. + QTable

Table 4.1: Summary of related works to scheduling solution with reinforcement learning in Fog or Edge
computing. The criteria listed in columns are: (a) online scheduling, (b) task deadlines, (c) geographic approach,
(d) real implementation.

Similarly to the works presented in this chapter, [117] uses Sarsa and Q-Table for implementing the
scheduling in a generic heterogeneous distributed system by using reinforcement learning, however,
the authors do not consider task deadlines and we also use the average reward approach that best fits
a continuous learning task. A similar geographic approach, by using a similar traffic dataset is followed

by [119], instead [103] focuses on smart cities but does not use a real traffic dataset, and [128] which
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uses a real node topology.

In [106], the authors present a Deep Reinforcement Learning approach, based on Q-Learning, in a
MEC environment, for selecting the best Edge server for offloading in order to minimise the energy
consumption (also studied in [115], [124]) while at the same time maximising the number of tasks that
meet the deadline. In this work, two DNNs are used: one is kept fixed during an episode, while the
other is updated and at the end of the episode they are swapped. Differently from the works presented
in this chapter, that approach is not fully decentralised and requires a central entity which collects
information about the state of each node and takes the decision (as also studied in [123]). However, the
followed approach is very common and also used in [108], [111], [118] and [127]. Other works instead
relies for example on Meta Reinforcement Learning (MRL) [120], blockchain [122], or even a genetic
algorithm [102].

Pandit et al. in [107], propose a scheduling scheme based again on two DNNs but they are used
for two different decisions, the first one is in charge of deciding if the task should be offloaded to the
cloud, but if not, the second decision level chooses the best suitable Fog node to which schedule the
task. In the presented works instead, we do not rely on a neural network, since we keep the state as
small as possible since we noticed that when dealing with deadlines the inference time is critical.

The approach followed by [108], but in the context of MEC cells (as in [121]), is the one of defining
the reward as the weighted sum of energy consumption, delay and cache fetching cost, then the Deep
Reinforcement Learning approach is followed by using a Deep Deterministic Policy Gradient (DDPG)
method which solves the problem of the state discretisation in the standard Q-Learning approach. In
the presented works instead, the state is discrete and we rely on basic RL approach for reducing the
inference time.

Main et al. [109] focus on real-time task assignment but consider the evolution strategies approach
instead of the backpropagation for updating the weight of the DNN. The task model is very similar to
the one that we study but the work uses a DNN and does not provide real implementation results of
the proposed algorithm.

In [110], an approach based on a recurrent neural network (RNN) is proposed for online task
scheduling, however, the authors suppose the existence of a central orchestrator which is able to
maintain the state and take the decision. Although this can work in simulations, in real scenarios, with
task deadlines, this could introduce a non-negligible scheduling latency which we avoid by making
each node a learner agent.

Tuli et al.[116] uses the Asynchronous Advantage Actor Critic (A3C) algorithm in a Edge-Cloud
environment for scheduling in a supposed high number of host nodes, however, the task deadlines are
not considered and the authors did not provide a real-world prototype implementation, rather they use
simulators. Instead, [126] uses again the Actor-Critic paradigm for a size adaptive caching scheme.

In a broader sense of schedule, other works are instead focused on resource allocation [130], [131],
[118], [124], [125] but the task model does not fit the one that is studied in this section. Other solutions
targets vehicular networks [111], [114] or crowdsensing [112].

The Reinforcement Learning algorithm that is used in the works presented in this chapter is
specifically tailored for a continuous learning approach and not an episodic one, indeed the scheduling

that we follow is online and a per-job decision task must be taken. The approach is called Differential
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Semi-Gradient Sarsa and it is presented in [132]. However, many works in literature rely on Deep Q
Learning for solving the task scheduling problem in Edge or Fog computing, especially because of the
high dimensionality of the state space. For example, in [133], the authors propose a deep reinforcement
approach for resource allocation in a MEC system, differently from this study, the allocation scheme is
based on time slices and the objective is to minimise the execution time. In [134], the focus is instead
on base stations that must be selected by the client in an ultra-high-dense network, the authors show
through numerical experiments the beneficial effect of their solution. The authors of [135] specifically
study task scheduling in Edge computing and use reinforcement learning for deciding the order of
the execution of the tasks and in which machine they have to be executed, the approach uses Deep
Reinforcement Learning but the scheduling is not done online. In [136] a solution for caching at the
Edge is proposed, the authors use reinforcement learning for finding an optimal stochastic allocation
policy, and the approach is tested with simulations. In [137], the scenario studied is the one in which
mobiles can appear randomly in a cell, the authors take as reference the uplink transmission, the device
selection and the power allocation. The proposed approach uses reinforcement learning and stochastic
gradient descent for the online improvement of the system. More similar to this study is [138] which
focuses on online scheduling and using time differential learning, but the tasks do not have to meet a
deadline. Then [139] introduces a specific study on task placement in the Edge-to-cloud computing
continuum.

Other works are still focused on scheduling but targeting the energy consumption [113], [140],

vehicular networks [141], [142], network resources allocation [143] or security [144].
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4.2 Online scheduling in a geographic setting

Fog Computing [2] is a well-known computing paradigm that is, not only, but usually chosen when the
computation must be distributed in a geographic domain. This “must be” is generally given by the fact
that the application has to be deployed as near as possible to users who have to use it. Indeed, in such
situations, a cloud approach cannot be feasible, especially when the tasks that the application should
carry out are strict in their deadlines, for instance, when we refer to a shared Virtual Reality (VR) [145]
or Augmented Reality (AR) experiences. Distributing the load involves the setup of different computing
nodes, called Fog Nodes, which, for example, can be spread across a city. Issues that arise within this
setup essentially regard the fact that these nodes should be able to interact in some way in order to
reach a common goal: each task requested to be executed by a user, to any Fog node, has to be able
to meet its deadline. This kind of interaction is needed not only because we want to create a sort of
an ecosystem in which the application can live, so that it can be reachable in any Fog node, but also
because in such dynamic environments, for instance, some nodes can be overwhelmed by unpredictable
traffic load, some instead can go down or others can become idle since no user is requesting them to
execute tasks. Indeed, if we want them to be able to cooperate, a smart scheduling algorithm should be
able to change its scheduling policy according to the current situation, by always having in mind the
same previous goal we suppose that each Fog node receives requests to execute tasks from the clients
and we need to make a scheduling decision on a per-task-request basis. This requires that, for making
an optimal scheduling decision, we need to know the state of the other nodes. However, since this
environment is completely distributed and decentralised, the only way for knowing the state (i.e. its
current load level) of another node is to explicitly ask for it.

A well-known approach, that is proven to perform efficiently in this setting, is the power-of-random
choice paradigm [19] (presented in Chaper 2), where every scheduling decision, that is done on a
per-task basis, is preceded by a random probing to another node, with the purpose to retrieve its
current load. Once this information is retrieved, the task is scheduled internally or forwarded to the
random-probed node. Executing a probing for each request is not always the best behaviour, indeed,
adding a control threshold to decide when to trigger a new probing request [13] is shown to be an
effective way to increase the performance over the standard approach. However, even this improved
algorithm has limitations, for example, the scheduling policy (i.e. when to trigger the probing) is a
fixed step function (i) of the current load, e.g. the probing is performed only if the current workload
exceeds the threshold, moreover it is also fixed over time (ii) and it cannot react to load variation on
the nodes, and finally, it doesn’t take task heterogeneity into account (iii). The purpose of this study is
to overcome these limitations by designing a dynamic scheduling policy based on the Reinforcement
Learning (RL) paradigm, where the probing decision is a function defined over the whole set of load
states and the task performance requirements (expressed as a deadline). As a further step from the
power-of-random of choice paradigm, we also study a scheduling policy that directly forward the tasks
to a specific node with no probing at all. In the proposed approach, we encode a learner agent as a Fog
Node. This agent chooses the correct action, that is a per-task scheduling decision (e.g. forward the
task to another node, or execute the task locally), from a set of predefined actions by looking at its
current state. Then, after the task is finished we assign to the chosen action a reward signal that will
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drive the learning process. This reward will be positive only if the scheduling decision that has been
taken has satisfied a simple constraint: the task has completed in the defined deadline.

We can summarise the main contributions of this study as follows.

« Design of a decentralised RL-based algorithm to be implemented in every Fog node that is able
to choose the best scheduling decision according to the current situation, which is a step forward
the power-of-random choice approach, that allows for more complex policies than simple and
fixed threshold-based decisions, to be dynamic over time reacting to the current load situation
of nodes and to deal with different kinds of time-constrained (i.e. with deadline requirements)
tasks.

« Study of a Geographic setting which involves six Fog nodes deployed in the city of New York and
in which the algorithm can be deployed.

+ Simulation Results on a delay-based simulator prove the efficiency of the algorithm in a previously

defined geographic environment compared to the classic power-of-choice strategy.

« Results from a pseudo-real deployment with the proposed prototype framework “P2PFaaS” in
a rack of 12 Raspberry Pis which shows that the algorithm achieves the same performance

indicators even outside the simulation.

4.2.1 System Model and Problem Definition

In order to reach the goal of adaptability and optimality, we frame the problem as a Markov Decision
Process (MDP), which is solved using the Reinforcement Learning (RL) techniquewe use a model-free
approach with the advantage that it doesn’t require the knowledge of the details of the underlying
mathematical model, such as the state transition probabilities. Rather, it is enough to observe and
interact with the environment. In addition, once tested using simulations, the algorithm can be ported
on a real deploy. To proceed the discussion, it is needed preliminarily to identify the two main entities

of RL: the environment and the agent.

4.2.1.1 Environment

The environment is composed of a set of N communicating and nearby Fog nodes F = {F, Fb, ..., Fx}
with the same computing power. Every Fog node serves an area from where users can require the
execution of a task and we define the total rate of the arriving requests to a node i to be A; req/s. One
example of application scenario for such tasks is Virtual Reality (VR), where a user needs to execute
compute-intensive tasks like recognising and tracking objects or activities. Tasks have a deadline T’
associated with them, which represents the absolute time before which they must be processed, e.g.
10ms in a VR scenario [145]. They also have a physical size b, that is represented by the number of bytes
of the payload that it is needed to transmit for executing the task (e.g. an image, a set of video frames).

A Fog node F; has a performance profile defined by its queue capacity K, representing the maximum
number of pending tasks waiting to be processed, and the rate of execution of the tasks that is p task/s
that is supposed to be equal for each node. A Fog node is capable of executing one task at a time but

since it has a queue of K this is exactly equal to say that it is capable of executing K; tasks at a time
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Learning Environment

AG Learner agent
ENV  Environment in which the agent acts

F Set of Fog nodes
A Set of actions which comprehends execute-locally
and probe-and-forward actions
A Set of actions of node ¢ which comprehends A plus the direct

forwarding to a specific neighbour node

R Reward for task j
€ Parameter of the e-greedy strategy for action selection
L In-deadline rate
Z Window size of completed tasks that triggers the training process
Fog Nodes
i Rate of arrival to node i (task/s)
I Service rate of node i (task executed per second)
Di Load to node i (\;/p)
fx Arrival rate for a node 7 starting from which request are dropped
for payload Image X (A or B)
v Percentage over d; that is added to the deadline of a task
Queues
Qe Execution Queue
Qp Probing Queue
Q: Transmission Queue
Times and Delays
de Total time spent in @, for a given task
dp Total time spent in @, for a given task
dy Total time spent in @, for a given task
w Total completion time of task (as seen by clients)
T Task deadline
Probabilities
Pp Probability of a task to be rejected by the node
Py Probability of a task to be forwarded to another node

Table 4.2: List of symbols used

in time-sharing with no queue, that is a mechanism closer to reality.
The total load to a specific node i is:
s
pi="— (4.1)
1
Nodes can communicate with each other and each transmission requires a time interval d;, deter-

mined by the data rate, r of the link connecting the two communicating nodes:

dy = = (4.2)

Moreover, a node A can probe another node B, meaning that A can ask B its current queue length in

order to take scheduling decision. The queue length of a node it is usually referred as its current “state”.
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4.2.1.2 Agent

Upon each task request arrival to a Fog node from a client, a scheduling decision has to be taken. This
is an online decision process that is carried out by an agent, running at each Fog node. Each agent has
associated the same set of actions A that can perform. The action a € A to take is determined by a

function 7(s), called policy, of the current observed state s € S.
TS —A (4.3)

4.2.1.3 Observed states

The agent running on node Fj is able to observe its current state, that is referring to the number of
tasks in its execution queue ). at time ¢, i.e. kf < K. Moreover, we consider the case in which tasks
of multiple types can arrive in the node, for this reason the final observed state by the agent is the
aggregation of the number of tasks in the queue for each type and the type of the newly arrived task.
This means that the decision about the action to choose is only done by observing the queue length of
the current node. As stated in the introduction of the section, since the environment is fully distributed
we cannot have an updated information about the state of the other nodes, we could suppose that each
node periodically polls the other nodes and updates its internal cache of the states but this is left as
future work, here we consider no knowledge of other nodes involved in the learning process. However,
the agent should be anyway able to perform the correct decision, this because the load is inferred from
the reward of a given action in a particular state.

Finally, the state that is derived as described and used for the learning process is not taken as is,
indeed the tiling technique [132] is used for representing it as a vector v € N®,

4.2.1.4 Actions

We studied separately two sets of actions that can be performed by the agent. In the first case (i), the
agent selects an action from the set A = {0, 1}, where 0 means to execute the task locally, while 1 to
probe another node at random and offloading the execution of the task to that node only if its queue
length is lesser than the one of the current node (we call this strategy “probe-and-forward”) otherwise
the task is executed locally. In the second case (ii) instead, the agent of node i selects an action from
A, = AU F;, where F; contains additional direct forwarding actions that depends on the Fog node 1.
The action f; € F; means to directly forwarding a task to the neighbour j without probing, obviously
with j # 1.

It is worth to remind that, in any case, when the task is scheduled to be executed locally, despite
being forwarded from another node, it can be rejected if there is no room for being executed, i.e. the
queue is full (at a certain time ¢, k! = K;).

4.2.1.5 Reward

The immediate reward given to a specific action is given by the fact that the task has been executed

within the deadline or not. Therefore, the reward is a function of the state and the action performed
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given the state. For a given task j, the reward assigned to action a performed when the state was s is,

given the total completion time W

1 ifW<T
Rj(s,a) = (4.4)

0 otherwise
Obviously, the agent cannot know the reward until a task has been completed its execution path
and in the meanwhile other tasks may arrive and need to be scheduled. Moreover, even if two tasks
are scheduled sequentially, the second can terminate before the first, altering the causal order for the
decision path. To overcome this problem, the learning step is put on hold until a number equal to Z

(the window size) of tasks have been completed. This is discussed in Section 4.2.2.

For measuring the performances of the algorithm we use the reward rate, also called the in-deadline

rate ¢ that is the average reward per second.

4.2.1.6 Delay model

Dealing with deadlines requires a fine-grained model of the delays. In the proposed study, the environ-
ment is simulated as a network of N nodes in which every node is composed of three different internal

queues:
« the execution queue (Q.) represents the queue of tasks that have been scheduled to be run in

the current node; a node can execute one task at the time and the total time that a task spends
on this queue is d., but the actual execution time of a single task follows a Gaussian distribution;

« the transmission queue (Q);) represents the queue of tasks that are in the transmission phase; the
transmission can occur: (i) from client to node, (ii) from node to node, (iii) from node to client.
The total time that a task spends on this queue is d; and it follows a Gaussian distribution with

w equal to Equation 4.2;

+ the probing queue ((),) represents the queue of tasks for which there is a probing request to run;

the total time that a task spends on this queue is dp;

The flow according to which a task transits among the queues is represented in Figure 4.2.1. Suppose
that a client sends a task request to node A that can decide to forward the task to a node B. The task

enters in the transmission queue Qy:

1. when the client transmits it to a node A, in this case, afterward, the scheduling decision is taken

that can include a probing and the task will be added to the probing queue Qp;
2. when it is transmitted from a node A to a node B;

3. when it returns from a node B to a node A and afterward the task will be again added to the

transmission queue to simulate the retransmission to the client;
4. when it returns to the client from node A.

When the task is scheduled to be run in the current node, the task is added to the execution queue

Qe

The total time of a task to be executed, from the client perspective, is the summation of all the
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Figure 4.2.1: The logic of the delay model.

time spent in all the queues during its entire execution path, it is referred as W and it is measured in

seconds.

4.2.1.7 Geographic Scenario

A peculiar characteristic of Fog computing is that nodes can be positioned in a geographic scenario [2].
In order to evaluate the adaptivity of the proposed solution in a real environment, we used open data
of New York city' to estimate the average daily traffic in specific points of the city. The data is referred
to taxi trips of year 2013, and for every trip we considered the start coordinates, the end coordinates,
and the total trip time. Then we placed six Fog nodes, as in Figure 4.2.2, considering 1 km of radius
for the service to be available, this is inline with the capability of a RRU to which has been attached a
computing node. We estimated the taxi traffic by dividing the day in 15-minute time slots (for a total of
96 time slots) and counting the number of taxis within the area of the nearest Fog nodes during their
tripwe used the first three months of data by averaging the daily traffic within each time slot for every
Fog node.

By normalising in the range between 0 and 0.9 the final traffic distribution is represented in
Figure 4.2.3. This range is given for simplicity, and derives from a reasonable assumption that Fog
nodes never saturate, leaving the opposite case as future work. Moreover, the final curves have been
smoothed with Savitzky-Golay filter, using an order 4 polynomial and a window of size 17.

The final result of this study has been used in a simulated environment by setting the load to a

"https://web.archive.org/web/20210424121526/https://chriswhong.com/open-data/foil_nyc_taxi/
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74°W

74°W

Figure 4.2.2: Fog nodes position (diamond symbols) in New York city used in the experiments, from left to right
Node 0 to Node 5. The radius of the circle for each node is 1 km.

specific Fog node i (p;) to be equal to the value of the respective curve in that precise moment of the

simulation.

4.2.2 Online scheduling decisions with RL

The final objective of the agent is the one of learning a scheduling policy 7 that maximizes the long-term
reward. Since each decision must be taken online, we cannot envision episodes but we treat the problem
as a continuing learning task.

In a continuing learning task it is not useful to discount future rewards but it is better considering
the current average reward for taking the right direction. Given a state s € S, we perform the action
a € A, we obtain the immediate reward r the next state is s’ € S then the optimal policy (that is the

policy which maximizes the long-term reward) will result in the optimal ¢, function defined as [132]:

g«(s,a) = Zp(s’, r|s,a) [r — max r(7) + max q«(s',a’) (4.5)

r,s’

Where () is a function which returns the average reward of the policy 7. At certain time ¢ and
given a weight’s vector  the differential form of the error, following the Sarsa approach for learning

the policy, can be expressed as [132]:

6 = Rip1 — Rip1 + G(Ses1, Avgr, W) — G(St, Ap, ) (4.6)
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Figure 4.2.3: The average distribution of the traffic during the day for the picked Fog nodes.

When used in practice, the ¢(s, a,w) is approximated by using the linear combination of the
coordinates given by the tiling technique, as described in Section 4.2.1.2. The final used strategy for
learning the policy is called Differential Semi-Gradient Sarsa (Algorithm 10).

In the experimental setting (subsection 4.2.4), we used a variant of this scheme since the state space
is so small that a table for storing the Q values can be used, therefore we used the QTable as the final
function approximation mechanism, and in practice the cells of the table has been updated according
to the following Equation 4.7.

Q(St, At) < Q(S, CL) + OéAt (47)

The A at time ¢ can be written by following the Sarsa approach and still considering the average

reward Ry, 1, as in the following Equation 4.7.

At = [Rip1 — Rip1 + Q(Seq1, Ari1) — Q(St, Ar)) (4.8)

As in the linear approximation solution, we also apply a discount factor to the average reward,

which becomes as in Equation 4.9.

Riy1 = Ry + BA; (4.9)

However, in the analysed setting, we do not have a real notion of immediate reward because we it
can be known only after a task has been executed or rejected, for this reason we set a window size of Z
tasks and right after the execution of every task we check if the window is reached and every task in
the window has been executed or rejected. This is explained in the following algorithms descriptions.

The Algorithm 9 is run whenever a new task to be executed arrives. First of all, we append the task

SECTION 4.2 Online scheduling in a geographic setting 108



CHAPTER 4 REINFORCEMENT LEARNING BASED STRATEGIES

to the array of pending tasks (“TasksArray”) then we compute the state (as described in Section 4.2.1)
and we retrieve the best action to perform given the current ¢(s, a, ). If the action is 0, the task is
immediately executed locally, if is 1 the node asks the state to a random node and the task is forwarded
only if the random node’s state is better that the current one. These two actions are of A, in any other
case the task is directly forwarded to the chosen node (A3), unless the picked node is the current one,

in that case the function forwardTo() only executes the task locally.

Algorithm 9 Scheduling Decision

Require: Node, Task, TasksArray, w, A
TasksArray.append(Task)
s < aggregate(Node.getLoad(), Task.getType())
a < maxge A q(s,a, W) with prob. 1 — € otherwise random(A)
Task.saveStateAction(s, a)
if a == 0 (Execute Locally) then
Node.execute(Task)
else if a == 1 (Probe-and-Forward) then
RandomNode <— pickRandom(Node.getneighbours())
if RandomNode.getLoad() < Node.getLoad() then
forwardTo(Randomneighbour, Task)
else
Node.execute(Tasks)
end if
else
Node <« pickNode(a)
forwardTo(Node, Tasks)
end if

Every time that a task completed its execution (that means that result payload of the task is returned
to the client), whether it is local or remote Algorithm 10 is executed. First of all, we record the task
reward and then we start to iterate over the array of pending tasks (“TasksArray”) for checking if the
first Z tasks of the array are finished, if this is not the case the function returns, otherwise we go on by
retrieving the information about the first Z tasks by popping them from the array. This information is

used to train the weights vector w using the semi-gradient differential Sarsa algorithm.

4.2.3 Simulation Results

The results that we are going to present in this section follows the assumption that there are 6 Fog
Nodes (/N = 6) and for every Fog node ¢ the maximum queue length is K; = 5. Moreover, the arrival
distribution of the tasks is a Poisson with mean j;we suppose that nodes are connected with a link of
1Gbps, the payload of each task is 100kb and the probing delay is 5ms. @); and @), are unlimited in
size, for each node. The rationale behind this number of nodes is that to avoid a high offloading delay
among nodes, the cooperating nodes are physically close one with the other and hence they amount to
a few units. In other words, cooperation occurs only among nearby nodes.

In the following subsections, we evaluate the proposed algorithm in the scope of three settings.
The first one (Section 4.2.3.1) is when the loads (i.e. p; to every node ) are fixed in time to each node.

This setting is basically used as a validity check of the RL approach, we test every possible policy with
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Algorithm 10 Learning with Differential Semi-Gradient Sarsa

Require: Task, TasksArray, Z, 0, R o, 8

Task.setReward()
i< 0
for all j in TasksArray do

if lj.isDone() then

return
end if
if i == Z then
break

end if

i—i+1
end for
i+—0
Jo < TasksArray.pop(0); s <— jo.getStateSnapshot()
a + jo.getAction(); r < jo.getReward()
fori=0;i<Z;i++do

j < TasksArray.pop(0)

s’ < j.getStateSnapshot()

a’ + j.getAction()

S+ r-R+q(s d %) -q(s,a,ib)

R <+ R+ 38 + 0 + adVq(s, a, )

s+ §';a < a’;r + j.getReward()
end for

the power-of-choice strategy and we show that the agent is able to learn the best one by using the
set of action A. In the second setting (Section 4.2.3.2), instead, we vary the loads to the nodes but
again making them fixed over time. Here we show how the RL approach can outperform the classic
power-of-choice strategy founding a solution that maximises ¢ in every node when using the set of
actions A’. In the last setting (Section 4.2.3.3), we apply the traffic study results (Section 4.2.1.7) and we
make nodes to follow the load traces in Figure 4.2.3. In this setting we again show how the RL approach
can outperform the standard one when also when the traffic is variable over time.

In all of these experiments, the proposed RL algorithm is labelled as “Sarsa” while the power-of-
choice one “Pwr2”, that is specifically referring to the power-of two choices since only one node is
probed random and therefore the scheduling decision is between the current node and the probed one,
that are two choices.

4.2.3.1 Homogeneous Loads

The first approach that it has been followed is the one of supposing the load is constant to every Fog
node. The learning agent AG, that we remind is present in every Fog node, can choose among the
two actions in A. Then, if the agent chooses to probe a random node, only if the queue length of
the remote node is lesser than the current one, the job will be forwarded to it (we call this approach,
“probe-and-forward”), otherwise the task will be executed locally. In this context, the policy m can be
easily binary encoded m = (ag, a1, . ..ax), where a; € A = {0, 1} is the action executed when the
state of the agent is ¢. For example, for K = 5 the policy 000111 means that the task is executed locally

when the state is 0, 1, or 2 (action 0), and forwarded otherwise (action 1).
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For having a term of comparison with the learning algorithm, we tested every possible scheduling
policy statically, without the learning framework but leaving all the infrastructure valid. This means
that the environment, the set of actions and the reward function are the same, we only consider the
policy as staticwe set the mean task duration for every Fog node i as 1/p; = 0.023s, the load as
pi = 0.6 and the deadline " = 0.042s. The bar plot in Figure 4.2.4 compares the reward of each possible
policy, expressed as in the form of rate of in-deadline tasks .. What we can observe is that the optimal
policy is 001111 (¢ = 0.8164) that is the one of performing the random probing if the load is greater or
equal to 2. This is a sort of cooperation threshold that perfectly matches the results of [13], although it
considered no deadlines. However, this policy is very similar, in terms of performances, also to 001110
(¢ = 0.8147),001100 (¢ = 0.8145) and 001101 (¢ = 0.8114) which respectively disable the cooperation
when the load is equal to 5, 4 and 5, and only 4. This is justified by the fact that the rewards gained in
such situations that are referring to load values greater than 4 are negligible with respect the other
states. In the chart, we can also observe that the forwarded rate (in green), that is referred to the
percentage of jobs that are scheduled to run in a remote node, is strictly depending on the cooperation
trend of the policy and that the rejected rate (in orange) is greater than zero for policies that are less
willing to cooperate, this confirms the validity of the experiment. Surprisingly, the policy that performs
the worst is not the one that never cooperates (i.e. 000000) but 100001 (¢ = 0.4990), this behaviour
emerges from strictness of the task deadline, indeed cooperating when the state is zero leads to more

tasks that cannot be executed in deadline.

100

B InDeadline
80 4 I Rejected
B Forwarded

60

40 4

Percentage of Tasks (%)

20 4

Scheduling Policy

Figure 4.2.4: Percentage of In-Deadline, Rejected and Forwarded tasks of all the possible policies with 6 nodes,
a policy is encoded in binary where 1 means probing and 0 means executing locally. In this experiment p = 0.6,
deadline is = 0.043s and job duration is 0.020s.

In the same set up, we used the learning approach described in Section 4.2.2. At the end of the
simulation, the policy learned by the learner is the one in Figure 4.2.5, i.e. 001110. This is not the
optimal policy, but this is again justified by the fact that the contribution of state 5 is so small that is
not appreciable by the learner. For this reason, we defined a decision confidence by just taking into
account how many times the decision has been made in each possible state. Given that s; is the number
of tasks whose scheduling decision has been made when the state was j, and J the total number of

jobs, the value in the cell ¢, j of the heat map is given by the following choice confidence function of
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the action in ¢ when in state j:

5 if i = 0 (Non-Prob
Clij) = ~ if 4 (Non-Probe) (4.10)

—(1-3%)=3% -1 ifi=1(Probe)

This formulation allows us to understand the confidence in the choice of the agent. In particular,
from Figure 4.2.5 we can appreciate how the choices in the lower states are more confident since the

states have been more frequent.
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Figure 4.2.5: The policy learned by the agent in the same setting of Figure 4.2.4

4.2.3.2 Heterogeneous Loads

During the previous experiments, we assumed only one kind of task, which has deadline 43ms and its
average duration is 20ms. By using the same framework we switched to two kinds of tasks, one (type 0)
that is expected to run at 60fps and therefore we supposed that it has deadline 16ms and mean duration
8ms (0 = 0.4ms) and one (type 1) that is expected to run at 30fps and therefore it has deadline 40ms
and mean duration 20ms (o = 0.4ms).

Figure 4.2.6a shows the behaviour of the in-deadline rate ¢, and therefore of the reward, when every
node has a different load (from node 0 to 5 we set: 0.2, 0.4, 0.6, 0.7, 0.8, 0.9) but it is stationary over
time. The chart compares the proposed reinforcement learning approach and the power-of-choice with
the threshold set to 2 (i.e. policy 00111). What emerges again is that the learning approach exactly
mimics the power-of-choice under the point of view of the performances (¢). Since here we use the
set of actions A we also deduce that the policy is likely to be the same of the power-of-choice with
threshold set to 2.

At this point, we wonder how we can achieve better performances, over than using the same reduced
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set of policies. The only way of achieving better results is obviously allowing to increase the action space
of the agent. For this reason, we introduced the set of actions A;. Figure 4.2.6b shows the behaviour of
the in-deadline rate when the loads are not balanced, as in the previous experiment, but stationary
over time. The only difference here is that the agent can choose to directly forward tasks to a given
node. After the first 1000s, which is the period in which the € is greater than 0.1 (the lower limit), we
can observe how ¢ is fixed over time and it is equal to every node. This means that even the nodes
that with the policy 001111 could have a better reward they are not selfish but voluntarily decrease its
reward for making the others to achieve the best rewardwe do believe that this behaviour is inherent to
the distributed usage of the reinforcement learning approach, since every node is able to understand
the situation only from the reward, that in the end declares the goodness of the chosen action. This
means that allowing the nodes to forward directly (set of actions .A;) we make them understand which
is the best node to forward the jobs in a given time, and this enables the fact that acting like selfish will

deteriorate its reward. Anyway, this aspect will be further studied as a future work.
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Figure 4.2.6: Comparison between Sarsa and Pwr2 regarding the behaviour of the in-deadline rate ¢ for every
node

4.2.3.3 Geographic Scenario

As described in Section 4.2.1 the open data for New York city has been used for generating the traffic to
six Fog nodes positioned as in Figure 4.2.2. Starting from this setting, by using the same assumptions of
the previous experiment, we only enable the load to change according to the derived distribution for
the open data (Figure 4.2.3). In Figure 4.2.7 we can observe as the behaviour that was shown in the
fixed load case is again confirmed even if the load follows a variable distribution. Every node reaches
the same level of the reward, even if by following the policy 001111 (power-of-choice with threshold 2)
could make a node able to reach a better reward, and this behaviour is an invariant with respect to the
traffic variability.

As a final note, we remark that the policy that is chosen by this reinforcement learning approach,
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Figure 4.2.7: Comparison between Sarsa and Pwr2: behaviour of the in-deadline rate ¢ for every node when the
load is variable according to the geographic scenario, Figure 4.2.3

both in the fixed and in the geographic scenario, is not trivial and easy to be manually determined but
it dynamically change over time and unfortunately it is not feasible to be represented in a figure, for

this reason it has been skipped.

4.2.4 Experimental Setting

In this section, we introduce and describe the implementation of the proposed RL scheduling policy in
a pseudo-real setting by using the proposed prototype framework. The environment is “pseudo-real”
because the hardware is real but the nodes are not placed in a real smart city and the traffic is still
simulated, however, we believe that this has not a great impact on the trustworthiness of the final

results achieved.

4.2.4.1 Practical Setting

The P2PFaaS framework has been installed in a cluster of twelve Raspberry Pis 4. In particular, the
nodes from #0 to #5 have 4GB of RAM and the nodes from #6 to #11 have 8GB of RAM. The installation
of the framework to all of the nodes and its continuous updating during the development has been
made possible thanks to the open-source OpenBalena? laaS framework which allows the simultaneous
deployment and management of Docker containers in clusters of devices of the same type. The
Figure 4.2.8, shows the diagram of the final experiment setting. The Raspberry Pi nodes are attached

*https://github.com/balena-io/open-balena
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to a 1 Gigabit network switch, then there is a router and a server which has two purposes: the first is
the one of hosting the OpenBalena framework and the second is to generate the traffic to the nodes
and collect the data. The traffic generator program is still written in Go, and it generates one thread of
traffic to each node. We preferred it over Python since Python threads are not true parallel threads,
due to the Global Interpreter Lock (GIL).

Cluster
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Figure 4.2.8: The diagram of the practical setting in which we run the experiments. We can observe that the set
of nodes are attached to a network switch as well as a traffic generator server.

4.2.4.2 Single Node Behaviour

The Faa$ function used in all the following tests is a face detection function® written in Go and ported
from the OpenFaaS project. The function takes as input payload an image and returns the same
image with the faces highlighted in JPG format with compression of 80%. The image payload has
a great impact on the duration of the function, indeed, as shown in Table 4.3, two different images
have been used. In the table, we can observe both the effective execution time d, and the total one d;
and how the difference among them is in the order of =~ 8ms. That specific delay comprehends the
transmission time of the payload (both when invoking the function and when receiving the output)
and the TCP connection time that is irreducible unless we do not relay anymore on HTTP calls for
triggering the function but we use raw sockets. Again, the keep-alive feature cannot be used for the
same aforementioned reasons.

Differently from the simulations, in the experimental setting, we use real devices. In the simulations,
for the sake of simplicity, we assumed that a node could be able to execute one task at a time and have
a queue of length three tasks, this means that the maximum number of tasks in the system is four
(K = 4), if a new request arrives when the maximum is reached then it will be “blocked”, i.e. discarded.
This assumption is not very far from reality when we deal with low latency tasks and it is equal to saying

*https://github.com/esimov/pigo-openfaas
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‘ Image A Image B
Resolution 320x210 180x118
Size (kB) 28.3 23.8
de (ms) 180.08 £ 7.25" | 67.19 £ 0.64"
dy (ms) 188.24 + 7.27* | 74.95 + 0.81"

Table 4.3: Resolution, size and delays of the image payloads used for the tests. The delays are computed on the
average of 200 requests with A = 1.0, the error is computed from t-Student distribution (p-value = 0.01)

that the node is able to execute four tasks at a time with a single core that obviously interleaves the
execution of the tasks. Indeed, the total time for executing all the tasks, on average, is four times their
execution. Now, Raspberry Pi 4’s CPU has four processing cores, therefore the simulation assumptions
do not hold anymore but we expect to have very similar results. However, in this real environment,
to have four processing cores is not equal to saying that we have four independent servers, as in the
M/M/k/k or in the M/M/1/k queue models. In real world, due to the underlying operating system (in
this case balenaOS) and in the end the Linux Kernel, continuously balance the load among the different
cores and it is quite difficult to have a task that strictly holds a core for its entire processing time,
moreover there is an underlying operating system which has to be scheduled meanwhile. This means
that we cannot know in advance which is the processing capability of a single node and therefore we
cannot establish the load to give to each node in order to obtain a desired p. Since we do not have
a reliable model for a real Raspberry Pi node we proceeded to make an estimate. Therefore, for the
two payload images, we used a benchmark script which triggered the execution of a Faa$ at gradually
increasing () rates, the node is configured without a queue, with only four executable tasks in parallel,
and the arrival distribution is deterministic (i.e. inter-arrival time is fixed). Figure 4.2.9 shows the
results of this experiment, on the left the blocking probability (Pg) is the percentage of requests that
are blocked, while on the right the average execution time d.. The blocking probability allows us to
understand when a node starts to reject requests, in the case of Image A we notice that it starts from
A = 7 reqgs/s and for the Image B A\ ~ 18 reqs/s. This result could not be derived in theory, since
logically, suppose the Image A and its average processing time of 180ms, a node with a single core
should have a maximum processing rate i ~ 1/0.180 ~ 5.55, with four core this should be multiplied
by four but as we have seen it is only 7 req/s, this is justified by the fact the cores are not independent,
indeed, we can observe in the Figure 4.2.9b how the execution time increases when the arrival rate (\)
increases and this drastically reduces the service rate (i) of the node. For example, again for Image A,
when A = 7 req/s then the average delay d. ~ 310ms, increased about 72% with respect the duration
when A = 1 req/s.

Concluding, we derived that the service rate is a function of the arrival rate (u())), but since
delineating a model of the node is out of scope for this study it is enough to derive the maximum service
rate starting from which a node rejects requests, that we call ji: for the Image A we have ji4 = 7 req/s
and for the Image B, fip = 18 reqg/s.
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Figure 4.2.9: Results of the face detection function from a single node with no cooperation, two payload images
have been tested: Image A and Image B. Every point is the average of 500 requests and the confidence intervals
have been derived from t-Student (p-value = 0.01), the test has been repeated 10 times.

4.2.4.3 Performance metric

We now introduce a performance metric which will allow us to compare the different scheduling
policies. In the experiments, the purpose is obviously to maximize the reward, but an approach that also
distributes it with respect one that makes every node behave selfishly is definitely preferable because it
will be able to offer the best service across all the geographic domain. For this reason, the performance

metrics that we will consider will be:

« 1, that is the sum of the reward divided by the number of tasks completed in a second, that, given
the reward definition in Section 4.2.1.5, it is equal to the percentage of tasks that are completed
within the deadline

+ Py, the percentage of tasks that have been forwarded, that is used to understand the level of

cooperation among the nodes.

Similarly to the metrics of the simulations, we represent their behaviour over the entire simulation
time, this is needed to grasp how the learning algorithm improves the performances over time. However,
for drawing conclusions more analytically we even consider the last seconds of the tests, where the
RL algorithm settled the performances, and then compare not only the mean of the metrics but also
the variance, because, as we have seen in the simulations, the learning algorithm tends to equalize
the reward among the nodes, therefore a lower variance of the mean ¢ among all the nodes will be
expected, this will be clearer in the next sections.

The set of actions used in all the tests is the one that performed well in the simulations, namely A’

(Section 4.2.1.4) and the Sarsa algorithm is compared with the Power-two-choices, as in the simulations,
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but now with threshold T' = 1, since we now allow K = 3 tasks to be executed in parallel. However, we
shall remind that a study of power-of-two choices with an M/M/k/k model (the most similar to a real
environment), or even better, a model that mimics real nodes has been not studied yet, therefore the

T =1 decision is not fully justified, however, we expect to be the best threshold to use for comparison.

4.2.4.4 Results

In this section, we will present the test results of the proposed policy called, as in the simulations,
“Sarsa”, that run in the presented pseudo-real environment. Table 4.4 shows the complete list of all the

experiments performed:

« experiment 1 has been used to test the learning infrastructure, it uses no deadlines, no queues

and only one payload;

« the series of experiments 2.x uses the deadlines, the queue is set to 2 and they last 3600s each, their
major characteristic is that we tried to estimate the beneficial effect of the learning algorithm
with different deadlines since it is clear that the wider the deadline the higher the probability of
a task to be completed within it and the higher the rewardwe tested seven different deadlines

measured in percentage of the total duration d; of the task with Image A and Image B;

+ experiment 3 instead uses only one deadline but the traffic differently from the other nodes is
geographic and derived from the study in Section 4.2.3.3, however, since the study was on 6 nodes
we applied the 6 curves to 12 nodes by assigning to two nodes the same curve, for example, the
traffic curve of node #1 in the study has been assigned to the Raspberry Pi node #1 and #2, and

SO on.

In every experiment and for every node, the traffic is distributed according to a Poisson distribution,
moreover, the e-greedy policy for action selection starts with ¢ = 0.9 and has a decay of 0.9995 that is
applied for each new task.

Deadlines (ms)

#  Traffic Payload | ~ Ty ) ‘ K Qe ‘ Duration (s)
1 Fixed Heterogenous | Single - 00 00 3 0 3600
2.1 Fixed Heterogenous | Multi | 0.00 188.25 74.95 | 3 2 3600
2.2 Fixed Heterogenous | Multi | 0.05 197.66 78.70 | 3 2 3600
2.3 Fixed Heterogenous | Multi | 0.10 207.08 82.45 | 3 2 3600
2.4 Fixed Heterogenous | Multi | 0.15 21649 86.19 | 3 2 3600
2.5 Fixed Heterogenous | Multi | 0.20 22590 89.94 | 3 2 3600
2.6 Fixed Heterogenous | Multi | 0.25 23531 93.69 | 3 2 3600
2.7 Fixed Heterogenous | Multi | 0.30 24473 97.44 | 3 2 3600
3 Geographic Multi | 0.05 197.66 7870 | 3 2 8000

Table 4.4: Summary of all the experiments performed in the cluster of Raspberry Pi with specification (from the
left) of the traffic type, the number of payloads, the deadlines, the maximum parallel tasks K, the execution
queue length |Q.| and the duration.
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4.2.4.5 Experiment1 - No deadline

In this experiment, we used fixed and heterogeneous traffic, in particular, the traffic A from Node
#0 to Node #11is 2, 3,4, 5,6, 7,7, 8,9, 10, 11 and 12. The image payload used is only the Image A
and the learning parameters are « = § = 0.01 with a window size Z = 20. In Figure 4.2.10 we can
observe the behaviour of the percentage of tasks that are forward from the perspective of every node,
we skipped the chart of the reward because in this first experiment we did not perform any comparison,
we only evaluated the behaviour of the learning algorithm. As in the simulations, we can appreciate an
initial phase in which the rate is very high, that for the e-greedy approach, the policy progressively
stabilizes even not following a gradual approach, this is probably because forwarding to particular
nodes (especially the ones that are more loaded) drastically reduces the reward and when this happens
the policy changes drastically up to a stabilised situation. Moreover, we can notice how the P; is not
depending on the load, by we remind that in this case, deadlines are infinite, and therefore the learner
only tries to execute more tasks as possible without rejecting them.
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Figure 4.2.10: Experiment 1: Py, behaviour of the percentage of forwarded tasks during the experiment, average
is performed every 15 seconds. In this experiment, deadlines are not considered and only a single payload is used,
Image A.

SECTION 4.2 Online scheduling in a geographic setting 119



CHAPTER 4 REINFORCEMENT LEARNING BASED STRATEGIES

4.2.4.6 Experiment 2 - Fixed load

In this experiment, we introduce, as in the simulations, the concept of deadlineswe use the two presented
payloads (Table 4.3) Image A and Image B, assigning two different deadlines. We calculate the deadline
on the average d; as shown in Figure 4.3. The deadline T'x where X is the (Image) A or B is given by
equation

Tx = diy +ydiy (4.11)

For example, for Image A and choosing v = 0.05, T4 = 188.25 4 0.05 - 188.25 = 197.66mswe
suppose that the task arrives in percentage 50/50, and the fixed traffic A from Node #0 to Node #11 is: 8,
8.5,9,9.5,10,10.5, 11, 12, 12.5, 13, 13.5, 14. The maximum load of 14 reqs/s derives from the study in
Section 4.2.4.2, since i4 = 7 reqs/s and jip = 18 reqs/s, given the 50/50 distribution of the payloads,
the maximum figp = 0.5- 7+ 0.5 - 18 = 12.5 reqs/s. Now, from this value with tried to go slightly
over it, reaching 14.0 to understand how the algorithm behaves in a slight overload condition.

Regarding the deadlines, we start from 7 = 0, which maps to a deadline equal to the average duration
of a task, to 7 = 0.3. The proposed “Sarsa” approach is compared with the Power-of-two choices with
T =1, as widely presented in Section 4.2.3.

In every experiment performed, the proposed Sarsa approach performs better of Power-of-two
choices “Pwr2”, but for space issues, we only report the reward (¢) behaviour of experiment 2.5 (Fig-
ure 4.2.11), in which the effect is more evident. What we can observe is a very similar behaviour to
the simulations, in particular to the Figure 4.2.6b, indeed in the less loaded nodes, as Node #0 and
Node #1 the performances are almost equal to the Pwr2 approach, while, increasing the load, Sarsa
performs well, especially in the Node #11 where the average improvement, across all the nodes, is of
~ 20% (performing the average only on the latest 200s of the test). This is expected because, for the
least loaded nodes is easier to meet the deadline, since their traffic is lower, on the contrary, the nodes
that are heavily loaded struggle to meet the deadline, unless an intelligent policy comes into play. The
intelligent policy will forward the tasks to the nodes that are less loaded (and this is inferred by the
learning algorithm), instead of forwarding them blindly at random, as the Pwr2 algorithm does.

For having a clearer picture of the results of the proposed algorithm across all the nodes we analysed
the mean and the variance of the reward (1) and of the forwarding probability Py when the deadlines
vary. Figure 4.2.12a shows the comparison of the average reward ¢ and the forwarding probability Py in
all the tested deadlines. As expected, the reward increases when the deadline increases, the proposed
Sarsa approach performs better but inevitably when the deadline increases the difference with the
Pwr2 approach reduces, but not progressively. Indeed, the deadline in which Sarsa perform better is
for v = 0.05, with an improvement of 55% over Pwr2, while when v = 0.3 the improvement is 11%. In
general, we pass from an in-deadline ¢ rate of 28% when v = 0 to a rate of 85% when v = 0.3.

Figure 4.2.12b shows the comparison of variance regarding the reward ¢ and the forwarding prob-
ability P;. What we can observe is that, when the deadline increases, the variance of the reward ¢
reduces and this is a clear confirmation of what has been found in the simulations, namely that the
Sarsa approach tries to equalize the reward in every node, and this effect is more evident when the
deadline is higher. In particular, when the deadline is 0% of the total duration of the task, the variance
of the reward is 0.010, while when the v = 0.3, the variance is 0.0009. Conversely, this does not hold for
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Figure 4.2.11: Experiment 2.2: behaviour of ¢ during the entire test duration with deadline set at 5% (v = 0.05)
of the total task duration d;. Values are averaged every 15 seconds.
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the Pwr2 approach, in which the variance is higher when the deadline is v = 0.15 (that is 0.0105). This
confirms that the Pwr2 approach makes the nodes behave selfishly with respect to the Sarsa which

tries to reach the best reward rate for every node in such a way no one gains more than another.
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Figure 4.2.12: Experiments 2.x: Comparison of average reward ¢ and forwarding probability Py across all the 12
Raspberry Pi nodes in the last 200s of a 3600s test.

4.2.4.7 Experiment 3 - Geographical

The final experiment uses a traffic distribution that is derived from the study in Section 4.2.3.3. As
already anticipated, the traffic of the 6 nodes is applied to 12 nodes in such a way nodes 0-5 and nodes
6-11 maps to nodes 0-5 of Figure 4.2.3. However, since the traffic curve describes only which is the p,
namely the load of a single node over time, we scaled the traffic to the range of lambdas from 0.0 to
20.0, therefore when in the curve p = 0.9 then the actual load to the node is 0.9 - 20 = 18. As described
in the fixed load experiment (Section 4.2.4.6) in which the maximum load was set to 14.0, here we
increase it to 20 for understanding how the algorithms behave even in during an overload condition.
The traffic curve is repeated 3 times within a test of 8000s duration. What we can observe is that
Sarsa performs better of the Pwr2 choices in almost all the entire duration of the test, except for the
initial training phase of the algorithm. However, the most evident improvement can be recognised at
the #8, #9, #10 and #11, in particular in the moments in which the traffic is higher, which are between
2000s and 3000s, 4800s and 5800s, and from 7000s to end. In that specific moments, the nodes which
match the same traffic load, that are nodes #3, #4 and #5 perform well with Pwr2, they match Sarsa but
in the others, Pwr2 is not able to maintain the same level of reward, this behaviour is determined by
the hardware differences between the nodes. In real world is quite impossible to have two nodes that
have exactly the same performance characteristics, in the experiments in particular, nodes from #6 to
#11 are equipped with 8GB of RAM instead of 4GB. Even if this can be counter-intuitive, the nodes
with 8GB of RAM are slightly less performing when they saturate with respect to the nodes with 4GB
of RAM. This has been shown by repeating the test and changing the node’s IPs by leaving unaltered

the traffic trace, however, the charts have been omitted for space.
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Figure 4.2.13: Experiment 3: behaviour of ¢ during the entire test duration with deadline set at 5% of the total
task duration d;. Traffic to every node is the one described in 4.2.3. Values are averaged every 10 seconds.
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4.3 Online scheduling in Fog environment with clusters and user QoS

parameters

In this study, we assume that we have an AR or VR application and a task is a frame processing. This
kind of tasks must be real-time and therefore their execution cannot exceed a certain amount of time,
because otherwise its output is useless, since the frame must be shown to the user in time. The solution
that we propose in this study addresses the scheduling problem of the tasks, that is where to schedule

them, by using an online Reinforcement Learning approach.

End Devices

Figure 4.3.1: The Edge-to-Cloud continuum environment considered as computing scenario.

Figure 4.3.1 illustrates the computing environment that is considered. The intermediate layer can
be the Fog or the Edge, the only requirement is that we consider it as composed by different clusters
and every cluster has a scheduler node and a certain number of worker nodes which may vary over
time. For avoiding confusion, in this study, the intermediate computation layer is considered and
Edge computing layer. In the scheduler of each cluster we place a learning agent which, for every task
execution request that comes from the end users, it is able to observe the state of the worker nodes
and to take an action which coincides with a scheduling decision and it can be to execute the task in
the worker node w;, execute it in the Cloud or even reject the request. For every task that is executed
within the deadline or near the deadline, the learner will receive a positive reward that will drive its
learning process. The online learning approach that is followed in this study is not episodic but it is
driven by the average reward that the learner obtain over time. With this approach we make able the
Edge-to-Cloud computing continuum to adaptively apply the best possible scheduling policy without
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knowing the nodes computing power.

The main contributions of this section can be summarised as follows.

» Design of a RL based online scheduling algorithm for the computing continuum that is able

to cope with node inhomogeneity and to satisfy user defined processing frame rate requirement;

« Simulation results of the proposed algorithm in two main settings, one cluster or more clusters
in the Edge layer, within a simulator that is focused on replicating fine-grained delays that a job

may encounter during its execution path;

Environment

Set of clusters
i Set of clusters without the cluster ¢
4% Set of worker nodes in the cluster i
Set of schedulers
Set of actions without inter-cluster cooperation for cluster %
i Setof actions with inter-cluster cooperation for cluster ¢
Generic task T of type k

Learning Parameters

a, 8 Learning parameters of Diff. Semi-gradient Sarsa
€ Parameter of the e-greedy strategy for action selection
Z Completed tasks window that triggers the training process

Edge/Fog Nodes

Si;  Computing speed of worker j in cluster

B.; Bandwidth between a client and a scheduler node

B,s Bandwidth between a scheduler and another Scheduler
Bg,, Bandwidth between a scheduler and a Worker

B,. Bandwidth between a scheduler and the Cloud

Times and Delays
wn, Nominal rate of frames generation from the device (fps)
wm  Minimum frame rate requested for the application (fps)
We Effective frame rate for processing (fps)
de CPU time for processing a frame (ms) in a worker with S;; = 1.0
dy Total response time for processing a frame (ms)

Table 4.5: List of symbols used

4.3.1 System Model and Problem Definition

The online scheduling problem that is configured in this study is formalised as a Markov Decision
Process (MDP) and its solution is found by using Reinforcement Learning (RL). No prior assumption
is done on the underlying mathematical model, therefore a model-free approach is followed. The
learning agent observe the current state of the environment, performs an action by using its knowledge
(exploitation) or randomly (exploration). The action coincides with a scheduling decision that is where
a task must be executed. Then, after the task is completed a reward signal is obtained, a value that
will drive the learning process. The entire process has been wired in a delay-focused discrete events
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simulator written by using the Simpy* library in Python, but theoretically the solution can be directly

and easily applied to a real-world scenario that fits the task model that we are going to present.
What follows in this section is the specification of all the entities that come into play, that are: the

environment, task and delay model, the state, and the reward. Finally we will define the performance

metric to measure the performances of the proposed algorithm.

4.3.1.1 Environment

As depicted in Figure 4.3.1, we envision a computing continuum environment and we place the learner
agent in Edge layer. In particular, this layer is composed by computing clusters that have exactly
one scheduler node and a certain number of worker nodes that may vary in each cluster. We call
H = {hi,ha,...} the set of the schedulers nodes and W; = {wj;1, wj2, ...} the set of worker nodes
for cluster ¢;, then C = {cy, ca, ... } is the set of clusters, where, for example, in the cluster ¢; we have
the scheduler h; and the set workers W;. For convenience, we also define C; = C — ¢;, in other words,
the set of clusters without the current one i. The scheduler node does not execute tasks but it only
receives task execution requests from the underlying clients (end users) and take a decision that can be
the rejection or where to execute the task if locally in the cluster (in particular, to which worker node),
in the cloud or to forward it to another cluster. This because all of the clusters can communicate with
each other. The scheduler node of the cluster i receives a traffic of A; requests per second and for each
of these requests a scheduling decision is made by using RL. Regarding the worker nodes instead, they
can execute one task at a time and they have a fixed size queue that is K. If a task is scheduled on a
node and the current number of elements in the queue is equal or greater than K the task is rejected. A
peculiarity of these nodes is that they are inhomogeneous, therefore we associate to every of them an
execution speed .S;; (of the worker 7 in the cluster j) that is a time extension factor of the tasks that are
executed in that node, for example, if S1; = 0.8 and a task has a nominal duration of 16ms, then on
the worker node 1 of the cluster 1 its duration will be 16/0.8 = 20ms. The concept of execution speed
is representing, in the real world, the available CPU time that a worker node can dedicate to execution
of the task and it may be subject of fluctuations over time, however, in this study we consider it as

fixed and the dynamic case is left as future work.

4.3.1.2 Task and Delay models

In the presented model, we consider tasks as some work that can be executed independently from
others and even sandboxed, matching one to one the FaaS paradigm (Function-as-a-Service). Therefore
we can see that tasks as function invocations that are then dispatched on a specific worker node. The
main characteristic of these tasks is that they have a nominal rate of execution wy,, that is the nominal
processing time on machines in which S = 1.0 and the minimum rate of execution w,, which is the
lower-bound admissible for the task, given as a user requirement. As presented later, in the experiments,
we define four kinds of tasks (Table 4.8 to which are associated different execution times and constraints.

Regarding the delays that are experienced by the task during its execution, they are simulated by

equipping each scheduler node with a transmission queue, in which, as for the execution queue of the

*https://pypi.org/project/simpy/

SEcTION 4.3 Online scheduling in Fog environment with clusters and user QoS parameters 126


https://pypi.org/project/simpy/

CHAPTER 4 REINFORCEMENT LEARNING BASED STRATEGIES

Figure 4.3.2: The task request path from the client to the final worker node when s; decides to forward the
task to another cluster. The transmission latency is simulated with a transmission queue per scheduler node.

workers, each transmission is elaborated one at a time but the queue has no fixed size. Figure 4.3.2
shows the example path when a task is forwarded to another cluster. First of all, when the task is
generated it is added (1) to the transmission queue of s; by using the bandwidth between the client
and the cluster B.s, when it exits from the queue s; makes a decision and then the task is added again
to the transmission queue (2) in order to simulate the transmission to the so and the bandwidth is
Bss; now, so can only decide to forward the task to a worker or to the cloud, in the image the task is
forwarded to ws (3) and the bandwidth used is By, (for the cloud it could have been By.). After the
execution, the task result is returned back to s2 (4), then s1 and finally the client (6) using again the

same values for the bandwidth and the same payload size for the task.

4.3.1.3 The Agent

The agent is in charge of learning a scheduling policy 7 that is a function of the state:
mT:S— A (4.12)

Therefore, given a state s € S the policy returns an action a € A, given a generic set of actions
Awe remind that, given the cluster i, Wj is the set of workers node in the cluster i. Moreover we define
C; as the set of clusters, excluding the current cluster i. Beside the action of rejecting the task, and
forwarding it to the cloud, in the first set of experiments (Section 4.3.3.1), the task can be assigned only

to the worker nodes. The set of actions for the node ¢ can be described as:
A; = {reject,cloud} U W; (4.13)
In the second setting (Section 4.3.3.2) we enable the cooperation even among clusters, and therefore:
A'; = {reject, cloud} U W; U C; (4.14)

We remind that only the scheduler node of a cluster receives the task requests and takes scheduling

decisions.
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4.3.1.4 State representation

The set S contains all of the possible states in which the environment can be represented. It is
fundamental for the agent, in order to decide which action to perform, to observe a representation of
the environment that contain as much as possible information to make the correct decision. In the
proposed setting, the only information that we are accessed to is the number of the current scheduled
tasks in each given worker node and of which type. This because every task must pass within the
scheduler, therefore when a task of type i arrives and it is scheduled to a worker j, a counter for the
tasks of type i of worker j is increased by one, conversely when the same task finishes its execution
and returns to the scheduler the counter is decreased by one. If it is true that we know the type of the
task that is arriving, we cannot know the speed of nodes for the reasons presented in the introduction.
As an example, the Figure 4.3.3 illustrates the state representation for a scheduler node with three
worker nodes and two task types. First of all, we have the task type that is an integer (e.g. type t1 is
number 1) that is going to be scheduled, then we associate a tuple for each worker node, describing the
number of tasks of that types in the queue.
Number of ~ Number of
tasks of type 1 tasks of type 2
<L
S¢=1{0,1,0,0,2,1, 1}
/ [ | B
| | |

Task Type Worker 1 Worker 2 Worker 3

Figure 4.3.3: The state representation of a scheduler node at time ¢ with three worker nodes.

However, the state is not used as is for the learning process, indeed, the tiling [132] technique is
used for mapping the vector to another vector but in a 24-dimensional vector space.

As presented in subsection 4.3.3, the task type is an information that is defined by the specific user
and it embodies all of the characteristics of the tasks and of its traffic flow, such as, for example, the

arrival and desired execution rate.

4.3.1.5 Reward

The definition of the reward is crucial for obtaining the desired results of meeting the user QoS
constraints. In the analysed case, the attention is focused on the particular applications in which
frames are generated from the devices and they must be processed one-by-one by a back-end server
(e.g. AR application) and the result of the elaboration is shown to the user to a screen or to a VR
headset, supposing that the refresh rate of the screen is the same of the frame generation and they
are synchronised, namely when the screen is refreshed a frame is sent to the server (with a minimal
oscillation depending on a Gaussian distribution). The constraint that we want to impose is that in
the client, which generates frame at w,, there is no lag or frame loss but we can tolerate a minimum
response frame rate from the server (called w,) to be equal to wy,. For understanding the best possible
definition of the reward which allows us to achieve the desired result, we analyse which are the main

situations in which the frames received. In the Figure 4.3.4 four main possible cases are identified, the
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general idea behind of the scheme is we can define three main qualifiers for performances:

« the effective rate of frame processing w,, which only depends on the machine that will execute

the task (i.e. the execution time of the task in the worker node);
« the lag 7 which instead mainly depends on the network delays;

« if the order of received frames is the same of the ones sent. This last case is not studied in this
study, but in general, if a frame f; is sent before f> and the result of the processing fa, 79, reaches
the client before 1 then 71 may be lost and not shown to the user if the application has no buffer,
this is left as future work.

These points are used for deriving the following cases. In case (a), the rate of the received frames
we is the same as the one sent w;,. Moreover responses are returned before the next frame generation
time (1/wy,), this is the best case and the user will be allowed to have an experience without noticing
that frames are offloaded to a server, this because, supposing that the refresh rate of the screen is the
same of the generated frame, the next frame will contain the results of the elaboration from the server.
In the case (b) instead, we suppose that responses do not arrive before the generation of the next frame
but still we = wy, in this case the user will experience a lag, that in this study is computed in seconds
but in the end, from the user point of view, is the number of the frames that are skipped, because the
refresh of the screen. For example, if the response 7 of f] arrives after the generation of fa, r; cannot
be shown on the refresh tick of fy but of f3 so one frame has been skipped. In the case (c), we suppose
that there is again a lag but the rate of the responses is not the same of the generation (we # wy).
The user will experience a drop in the frame rate with a lag, and the device may adapt its w,, in order
to match the one of the server. The latest case (d), as introduced earlier, describes the case in which
the order of the received frame is not the same rate of the generation, in this case, depending on the
application, frames can be skipped, the study of the reward with this case is left as future work.

In the light of these cases, we defined the reward as shown in Figure 4.3.5. Let us focus on a specific
traffic flow and consider one generated frame of this flow, say f;. Let 1 be the result of the processing
of the frame f received by the client, and let d; the time elapsed from when f; was generated. The

reward is defined as follows:

R(s,a) =41 ifl/w, <di <1/wp (4.15)
1 ifdy > 1w

Where s is the state seen by the scheduler when frame arrived, a the chosen scheduling action
chosen, w,, and wy, are specific of the given traffic flow.

However, the reward received by the agent is never immediate after a scheduling action, this because
only when the task returns to the client we can know its total execution time. For this reason, we
maintain a window of Z executed tasks and updated the weights only after all the tasks in the window
terminated and reached the client.
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Figure 4.3.4: The frame generation and process in real-time applications, four cases of identifying performances.
In case (a) rate of frame generation is the same of the frame result receiving and there is no lag, in case (b) a lag
is introduced, in case (c) the rate of the received frame is different by the one of the frame sent, finally in case (d)
the order of received frames is altered.
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Figure 4.3.5: Diagram that illustrates how reward is assigned when the task is executed and the frame f;
returns to client after being processed (r1).

4.3.1.6 Performance Parameters

To understand the performance of the proposed RL-based scheduling algorithm, we delineated the

following performance parameters that are computed and shown over the simulation time:
« the total reward (R), defined as in Equation 4.15;

« the effective frame rate (we) measured in frames-per-second and computed as the sum of the total

number of frames successfully processed every second (not rejected);

« the total response time (d;) measured in milliseconds and computed as the average response time
of all the tasks finished every second;

« the lag time (T) measured in milliseconds and computed as (depicted in Figure 4.3.4.b):
T=d —1/wy (4.16)

4.3.2 Online scheduling decisions with RL

The final objective of the agent is the one of learning a scheduling policy 7 that maximizes the long-term
reward. Since each decision must be taken online, we cannot envision episodes but we treat the problem
as a continuing learning task.

In a continuing learning task it is not useful to discount future rewards but it is better considering
the current average reward for taking the right direction. Given a state s € S, we perform the action
a € A, we obtain the immediate reward 7 the next state is s € S then the optimal policy (that is the

policy which maximizes the long-term reward) will result in the optimal g, function defined as [132]:

g«(s,a) = Zp(s’, r|s,a) [r — max () + max q(s',a") (4.17)
s a

r,s’
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Where () is a function which returns the average reward of the policy 7. At certain time ¢, by
using the Sarsa algorithm for learning the policy and given the weights vector 0, the differential form

of the error can be expressed as [132]:

6t = Rip1 — Rip1 + G(Ses1, Avgr, W) — G(St, Ap, W) (4.18)

This form can be applied to any function approximation algorithm for estimating the g., in the
analysed case we used the tiling technique [132]. As already introduced, in the proposed setup, the
reward is never immediate because we know it only after a task has been executed or rejected and it
returned to the client, for this reason we set a window size of Z tasks and right after the execution
of every task we check if the window is reached and every task in the window has been executed or
rejected, if this is true, then the weights are updated for all the tasks in the window.

The Algorithm 11 is run by the scheduler ¢ whenever a new task to be executed arrives, supposing
the set of action A’; (with the inter-cluster cooperation). First of all, we append the task to the array of
pending tasks (“TasksArray”) then we compute the state (as described in Section 4.3.1) and we retrieve
the best action to perform given the current q(s, a, ). If the action is 0, then the task is immediately
rejected, if it is 1, then the task is forwarded to the cloud, otherwise, we check the action number and
we derive the index of the worker of of the cluster to which the task must be forwarded. In particular,
in the case in which the task is scheduled to be executed in a worker node we check if the current
queue length is equal or exceeding the limit K, because in that case the task is rejectedwe remark that,
once a task has been forwarded to a worker or to the cloud, then it will be necessarily executed there if

room, otherwise it will be rejected, therefore no further decision is taken for its scheduling.

Algorithm 11 Scheduling Decision (scheduler of cluster 7)

Require: Scheduler, Task, TasksArray, w, Aj, Wi, C;, K
TasksArray.append(Task)
s < aggregate(Scheduler.getWorkersLoad(), Task.getType())
a < max,¢ o’ q(s, a, @) with prob. 1 — € otherwise random(A7)
Task.saveStatéAction(s, a)
if a == 0 then
Scheduler.reject(Task)
else if a == 1 then
Scheduler.forwardToCloud(Task)
elseif a > 1 and a < |W;| + 2 then
workerToForwardTo <— Scheduler.getWorker(a — 2)
if workerToForwardTo.getQueuelength() < K then
Scheduler.forwardToWorker(workerToForwardTo, Task)
else
Scheduler.reject(Task)
end if
elseif a > |W;| + 2 and a < |W;| + |Ci| + 2 then
Scheduler.forwardToCluster(a — |W;| — 2, Task)
end if

Every time that a task completes its execution (which means that result payload of the task is
returned to the client), whether it is local or remote, Algorithm 12 is executed. First of all, we record the
task reward and then we start to iterate over the array of pending tasks (“TasksArray”) to check if the

first Z tasks of the array are finished. If this is not the case, the function returns otherwise we go on by
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retrieving the information about the first Z tasks by popping them from the array. This information is

used to train the weights vector 1 using the semi-gradient differential Sarsa algorithm.

Algorithm 12 Learning with Differential Semi-Gradient Sarsa

Require: Task, TasksArray, Z, 0, R, o, B
Task.setReward()
i<0
for all j in TasksArray do
if !j.isDone() then
return
end if
if i == Z then
break
end if
i<—i+1
end for
i+ 0
Jo < TasksArray.pop(0)
s < jo.getStateSnapshot()
a 4+ jo.getAction()
r < jo.getReward()
fori=0;i < Z;i++ do
j < TasksArray.pop(0)
s’ < j.getStateSnapshot()
a’ + j.getAction()
Sr-R+q(s,d,0)-q(s,a,w)
R« R+p6
W< W+ adVq(s, a, W)
s« s
a<+a
r < j.getReward()
end for

4.3.3 Results

In this section, we present the results of the simulation in the described environment of the proposed
RL-based scheduling algorithm both in a single cluster (Section 4.3.3.1) and in a multi-cluster setting
(Section 4.3.3.2). The results are structured as follows.

First of all, in the single cluster case we show that the agent is able to learn a scheduling policy that
matches the requirements provided by the users, this is given by the fact that it manages to learn the
nodes speeds that are unknown to it. The proposed approach not only make it possible to reach the
desired frame rate for each traffic flow but also minimises the lag time. Then, by using the same setting
we simulate a failure of a node, the faster one, and we observe that the agent is able to recover the
situation by dynamically adjusting the scheduling policy. In the second part of the section, we apply
the proposed algorithm in a multi-cluster environment by simulating three different clusters that can
also cooperate.

In all of these experiments, the execution speeds of the workers in the clusters, i.e. S;;, and the
maximum queue length K, have been derived from the technical parameters of real devices as shown

in Table 4.6. Specifically, the service rate is normalised with respect to the highest clock speed in the
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group, e.g., the service rate of the Asus Tinker (1.8 GHz) is § = % = 0.9. The cloud instead runs always

with a speed equal to 1.0.
The traffic flows arriving to each cluster is defined in Table 4.6. Table 4.7, instead, shows the network

parameters used in the simulations.

Brand name  Frequency Parallelism S K

Odroid-C4 2.0 GHz 4 cores 1.0 4
Asus Tinker 1.8 GHz 4 cores 09 4
Rock Pi N10 1.4 GHz 4 cores 0.7 4
Raspberry Pi 3 1.2 GHz 4 cores 06 4

Table 4.6: Specifications of worker nodes used in the experiments.

Parameter Value Description
de 20ms Round-trip time between Scheduler-Cloud
B 200Mbps  Client - Scheduler bandwidth
By, 300Mbps  Scheduler - Scheduler bandwidth
By 1GBps Scheduler - Worker bandwidth
B, 1GBps Scheduler - Cloud bandwidth

Table 4.7: The specification of the network parameters in the simulation.

4.3.3.1 Single Cluster

The setting of this series of experiments if depicted in Figure 4.3.6. We have one single cluster which
receives exactly four flows of traffic, described in Table 4.8. The first three flows, namely tfj, tfy and
tf3 represent three hypothetical users which require respectively a processing rate w, of 60, 30 and
15 fps and they tolerate a minimum service frame rate w,, of 50, 20 and 10 fps, respectively. The
tasks of these flows, arriving to the cluster, are periodic and the inter-arrival time is picked from a
Gaussian Distribution with i = 1/w,, and o as described in the table. Then there is a fourth flow that
is not periodic but the inter-arrival time is picked from an exponential distribution for simulating a
background traffic to the cluster.

The duration time of a single task, that is a frame processing, is again picked from a Gaussian
distribution with 1t = d. and o = 0.0003, the d. value differs among the different task types and it is
referring to the execution of the task in a worker that has execution speed S = 1.0. The payload of

each task, independently from its traffic flow, it is fixed at 50kb.

Normal Operation The Figure 4.3.7 shows the performance metrics of the proposed algorithm in
a simulation with the single cluster and the already discussed conditions. Metrics are plot over the
simulation time, we have the reward in the first line, then the effective frame rate w,, the total response

time d; and the lag time 7. Specifically, for the w, and the d; we also show the desired ranges in which
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‘ Wn, Wi, Distr. o de Distr. o Payload

tf; | 60 fps 50 fps G. Periodic 0.001 | 10 ms  Gauss. 0.0003 | 50 kb
tfy | 30 fps 20 fps G. Periodic 0.002 | 20 ms  Gauss. 0.0003 | 50 kb
tf3 | 15fps 10 fps G. Periodic 0.01 | 55ms  Gauss. 0.0003 | 50 kb
tfy | 10 fps - Exp. - 100 ms Gauss. 0.0003 | 50 kb

Table 4.8: The list of traffic flows used for the simulation, each traffic flows tf; generates tasks of type .

the metrics must reside, that are the ones requested by the users. What we can observe is that after
the initial phase in which the € parameter of the e-greedy approach is progressively reduced in order
to favouring exploitation over exploration (that is choosing the action at random), the learner in the
scheduler node manages to reach the desired requisites for the three flows tf}, tfs and tfs. In particular,
we can see how the designed reward scheme allows, at the same time, to reach the desired w,, and the
d; and to reduce the lag time 7we remind that, if the reaching of the desired frame rate wy, is matching a
correct scheduling decision to the correct worker in the correct moment, and we remark that the agent
does not know which is the speed of any of the workers in the cluster, the lag time strictly depends on
the network latency. This is why, for example, tf3 cannot reach a low value of the lag 7.
The Figure 4.3.8, instead, shows the percent-
age of the actions that are chosen by the agent
QCloud in the scheduler node over time. What we can

observe is that the workers’ speed is learned well

R ,»/’] ---------------- AP and very fast, this because distribution of the ac-
: @ S1=10 Nodes tion follows the speed of the worker nodes, indeed,
ag = reject s @ $,=0.9 the worker #1, the faster, is the most chosen, then

Scheduler we have worker #2 and worker #3. We also can see

’vvfljf @ 53708 uster: that the cloud is chosen as well, this essentially

RL Agent NN .................. Edge because there are the background noise of the
Ve Th.;f/“icl;lows tasks that have no deadline.

Finally, the Table 4.9 shows the comparison

LN N30fs T
', ’ of the proposed algorithm, after the training

D ) 15fps D g phase (referred as “Sarsa Trained”) and other two

End Devices

scheduling strategies: the least loaded approach,
which always schedules the action to the least
loaded node, i.e. with the lowest queue length,

Figure 4.3.6: The setting of the of the experimentsona and the random, which chooses the worker node
single cluster with three workers nodes and four traffic

. to schedule to the task at random. As shown in
flows (Section 4.3.3.1).

the charts, the proposed approach allows us to

meet the user requirements and minimise the lag
time 7, this is because the objective is to maximize a reward based on the total response time of the
tasks.
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Figure 4.3.7: Results of the simulation of a single cluster and three worker nodes (Section 4.3.3.1), regarding,
from top to bottom, the reward, the effective frame rate we, the total response time d; and the lag time 7.

Failures In the same setting of the single cluster we simulate that the faster worker, worker #1, after
4000s fails and each task request sent to him is rejected. The Figure 4.3.10 shows the results of the
simulation with the same structure of Figure 4.3.7. As we can see, when the worker #1 fails there is a
drop in the reward, in the frame rate w, and in the response time d;, and for the tf; the requirements
are not met anymore, tfs finds its response time to increase but still in the requirements and finally the
lag time is increased both for tf; and tf; of about 5ms. However, the proposed approach finds a new
scheduling policy for solving the problem and restoring at least the response time requirement and the
effective frame rate of tfj.

In the Figure 4.3.10 we can appreciate which are the modifications done to the scheduling policy
after the failure. Almost immediately the percentage of actions for scheduling towards node #1 drops,
moreover, more tasks are scheduled to worker #2, #3 and to the cloud. The change in the actions is
generated from the fact that the learner starts to receive negative reward when scheduling to the node
#1, indeed the percentage of actions towards it progressively reaches zero, then, again the faster worker

(worker #2) receives more traffic than the other (worker #3).
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Figure 4.3.8: The distribution of the actions made by the agent on the scheduler node in the experiments with a
single cluster and three worker nodes (Section 4.3.3.1).

Sarsa Trained Least Loaded Random
We T dy We T N We T dy

tf; | 54.08 19.63 20.57 | 37.85 48.75 96.05 | 29.61 65.23 100.71
tfy | 28.15 36.00 35.69 | 19.04 72.22 110.50 | 15.72 88.35 109.64
tf3 | 1317 76.34 84.71 | 9.52 120.35 148.80 | 8.11 142.38 144.25

Table 4.9: Comparison regarding the effective frame rate (w.), the lag time (7) and the total response time d;
between the proposed algorithm "Sarsa Trained" and other two approaches: scheduling to the least loaded node
and random scheduling.

4.3.3.2 Multiple Clusters

In this setting we suppose to have multiple clusters which can cooperate, therefore the set of actions
used by the scheduler i is now A, for each schedulerwe suppose that each cluster receives the flows
described in the Table 4.8 and we use the proposed algorithm to each scheduler of each cluster. The
clusters are the following:

o cluster #1 has three nodes with speeds 1.0, 0.9 and 0.6;
« cluster #2 has two nodes with speeds 0.9 and 0.6;
o cluster #3 has three nodes with speeds 1.0, 0.7 and 0.6.

The Figure 4.3.11 shows the results of the simulations, in particular we can observe that behaviour
of the reward, but also of the the effective frame rate we, the total response time d; and the lag time
T is similar to the single cluster setting, for this reason the chart of these last three parameters has
been omitted. However, in this setting, is relevant to notice the behaviour of the decisions taken by the
schedulers, shown in the last three lines of Figure 4.3.11. As the first cluster setting, the agents are able
to derive the speeds of the worker nodes and pick the best allocation but now part of the traffic goes to
the nearby cluster and more than of the one that is forwarded to the slower nodes. This means that
agents prefer to forward some tasks to other clusters, instead of executing them in the current one if
the worker are slower, and this was perfectly expectedwe remind that the agents have no information

about the other clusters, the representation of the state is always the same of the one presented in
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Figure 4.3.9: Results of the simulation of a single cluster and three worker nodes (Section 4.3.3.1), regarding,
from top to bottom, the reward, the effective frame rate we, the total response time d; and the lag time Twe
assume that node #1 fails at time 4000.

Section 4.3.1.
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Figure 4.3.10: The distribution of the actions made by the agent on the scheduler node in the experiments with
a single cluster and three worker nodes (Section 4.3.3.1)we assume that node #1 fails at time 4000.
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Figure 4.3.11: Results of the simulation in a three clusters setting, regarding, from top to bottom, the reward
per second, the percentage of the chosen action over time for the three clusters, in order.
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Chapter 5

Energy-oriented Studies

If you want to find the secrets of the
universe, think in terms of energy, frequency

and vibration.

NikoLA TESLA

HE energy aspect of devices has particular relevance, mainly in Green Edge Computing envi-
ronments, where devices use energy from solar panels but also in smartphones which are
particularly sensitive to the battery duration. In this Chapter, we gathered two works whose

principal purpose is analysing and managing the power consumption of the devices and studying possi-
ble offloading mechanisms. The first work, presented in Section 5.2, is a study of the energy/latency
tradeoff which exists when a smartphone off-loads intensive ML tasks to a Fog or an Edge node.
The work presents the study of different mobile computer vision set-ups for evaluating the energy
requirement that they need to be performed and the improvements that it is possible to achieve if
the inference is run on the edge or in the cloud. In particular, the experiments show that offloading
the task (in my case a real-time object recognition) to a possible next-to-the-user node allows saving
about the 70% of battery consumption while maintaining the same framerate (fps) that local processing
can achieve. Then, in Section 5.3 we report a study of possible energy-oriented load balancing policy
which specifically targets Green Edge Computing. In particular, we consider the case of a group of
communicating Edge nodes only supplied with photovoltaic (PV) panels. Since the amount of storable
energy is limited by the battery capacity, the solar energy at an Edge node with fully charged battery
cannot be further accumulated, which is an indirect source of inefficiency. As a consequence, an Edge

node which is running out of green energy can conveniently offload its computations to energy-richer

140



CHAPTER 5 ENERGY-ORIENTED STUDIES

nodes in idle states. The work reports some preliminary results of this form of green cooperation.
The solutions presented in Section 5.2 and Section 5.3 has been respectively published in [10]

and [5].

5.1 Related Work

Mobile neural networks Different works investigated the energy efficiency of neural networks
or tried to provide solutions for assisting mobile devices in computer vision tasks. Neural networks
represent the core of deep learning [146], they allow performing various machine learning tasks, starting
from the simple classification to the generation of new data [147] by using any kind of input data, like
numbers, images and audio. The major challenge, that mobile devices open, is the one of making the
network most efficient as possible in order to drastically reduce power consumption without losing
accuracy. This can be done in different ways [148] as pruning some parts of the network, decomposing
tensors and quantising the weights. Every optimisation is done to reduce the number of operations
that needs to be performed for running the network.

In [148] a method for compressing a CNN is proposed. The method is composed of 3 steps and
it is a one-shot process that can be easily implemented by using publicly available tools. In [149] are
presented a series of lightweight neural networks, called MobileNets, that are optimised for running
in mobile devices, in particular, they use the “depthwise separable convolution”, a form of factorised
convolution which is able to drastically reduce the computation load and the size of the model. Finally,
in [150] an example of an efficient neural network for mobile application is designed and evaluated. The
network uses “pointwise group convolution” as for MobileNets, and “channel shuffling”, a technique

which allows exploiting the convolution in a more computation-wise manner.

Frameworks for mobile neural networks Another set of works is not just focused on the design
of lightweight neural networks but they are aimed to provide a complete solution for allowing deep
learning tasks on mobile, both on their own and with the assistance of a backend server. Frameworks
like the ones presented in [151]-[153] support computer vision tasks on mobiles by using the GPU and
for supporting real-time applications, in particular, they implement an engine that is able to load and
run CNN models in a fast and energy-efficient manner. Otherwise, many solutions allow offloading the
deep learning tasks to the Edge, for example, in [154] shows how is possible to have a synergy between
the mobile and the Edge taking into account parameters like video quality, battery consumption,
accuracy and latency in the case of an AR application. A similar proposal is presented in [155] but not
designed for real-time applications.

In all of these works what is missing is a clear depiction of the actual energy consumption gain of
the offloading task, mainly when we want to use open-source frameworks that are freely available on
the web.

Green Energy for Edge Computing Several papers address the problem of energy efficiency in
Fog Computing via load balancing or proper resource allocation. [156] proposes an energy-aware
load balancing and scheduling (ELBS) method based on Fog computing. The work reports an energy
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consumption model of the workload on the Fog node. [157] designs a novel Energy-aware Data Of-
floading (EaDO) technique to minimise energy consumption and latency in the industrial environment.
[158] studied a sustainable infrastructure in Fog-Cloud environment for processing delay-intensive and
resource-intensive applications with an optimal task offloading strategy. The proposed offloading strat-
egy optimises two Quality-of-Service (QoS) parameters such as energy consumption and computational
time. The model in these papers includes a cloud layer where the computation is eventually performed.
[159] presented an energy-efficient Fog architecture considering the integration of renewable energy.

Three resource allocation algorithms and three consolidation policies were studied.
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5.2 Energy and latency tradeoff in local and remote offloading of ML
tasks

Image-processing-based applications for smartphones and mobile devices are growing at an extraor-
dinary rate due to the level of maturity achieved by most support technologies (e.g. computer vision,
hardware, Al). Application domains range from immersive multi-gaming, online shopping, virtual
browsing, remote assistance, etc. Experts predict that the Augmented/Virtual Reality (AR/VR) industry
will reach over $25 billion by 2025 and that growth will continue steadily.

Cloud VR/AR services are currently offered by the main cloud providers, but they will hardly meet
both the above conditions. Edge/Fog computation capability will likely complement and improve these
services, however, running these tasks directly in mobile devices is progressively possible with inference
latencies, for example in the case of Convolutional Neural Networks (CNN), that are comparable to the
ones that before was only expected on high-end GPUs [150] — obviously with less but still acceptable
accuracy. These results can be achieved, not only by using the CPU and GPU resources of the device
but also by directly implementing particular chips, also called coprocessors [160], that are designed
for executing the most recurring machine learning operations. For example, Google, starting with the
Pixel 4 smartphone, implemented the Pixel Neural Core, a dedicated core for efficiently performing
image-related machine learning (ML) tasks. Indeed, the most common applications for having Deep
Neural Networks (DNN) directly running in the device regard [161]: photo improvement [162], activity
recognition and tracking [163], [164], image classification [165], face recognition [166], real-time object
recognition especially for supporting AR (Augmented Reality) applications [167] (like for example the
landmark recognition). All of these applications can now easily run on smartphones, even with very
low processing latency but this strategy has a clear downside. Indeed, running a DNN requires a
non-negligible number of operations (that are often referred as FLOPs — floating-point operations),
as a consequence, we expect a significant impact on the power consumption, that is a critical aspect
for mobile applications. The approach for reducing this problem is to compress the DNN model [168],
[169] by pruning the network, decomposing layers or use quantised weights for the model. Obviously,
by losing information and model complexity, we lose something in the accuracy of the neural network,
but in some cases, this loss is so minimal that the performances of the network are still acceptable.

The second approach to solve the problem is the offloading [154], namely making the device to
execute the inference on an external server and then locally parsing the results. Task offloading consists
of delegating part of the image processing to a remote server. The convenience of this technique
presupposes three conditions: (1) the energy cost of offloading operations at the device is less than the
energy cost required if the delegated calculation is performed on-board; (2) the response time and more
generally the processing latency should guarantee at least the frame rate measured when processing is
all local, and does not produce a lag in the rendering of the video; (3) the image processing precision
metrics, e.g., accuracy, does not deteriorate.

For example, if we use a ’classic’ cloud provider we can obtain very low inference latencies, but
the network latency can reach values of 100ms or more, and therefore this cannot be suitable for
performing VR applications. In addition, some AR applications require shared virtual objects (also called
“cloud anchors”) that must be updated in real-time by multiple users, which make the adoption of a
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low latency and a high throughput cloud service mandatory. In these application scenarios, Edge/Fog
computing can provide a solution’.

In this Section, we report the results of the measurements of some experiments conducted on real
mobile devices and using state-of-the-art and open-source video and image processing libraries, with
the aim of concretely verifying what are the energy consumption and processing capabilities measured
in frames per second. The useful use of this study lies in acquiring concrete data that can be used as
criteria of choice in the design of offloading algorithms.

In this study, we investigated the energy compromise that a deep learning task for object recognition
imposes to a mobile device and how much we can gain in terms of power consumption when the task
is completely offloaded to a backend server equipped with a good GPU as well as the achievable frame
rate.

For doing this, we set up an environment by using the most common libraries that allow doing
inference with CNNss, like TensorFlow?, OpenCV? and Darknet?, and a set of pre-trained networks.
From this, by using a sample video, we run the object recognition frame by frame, testing different
set-ups, libraries and neural networks by using a custom Android application (Figure 5.2.1) and a Python
Flask backend. We have conducted several benchmarks for deeply understanding the energy impact of
a neural network deployed in a mobile system but also for evaluating how the offloading can have a
beneficial effect on power consumption though preserving inference latencies. As the main source for
power consumption data, we used the values offered by the Android OS that have been cross-checked
by using a USB power meter.

The main contributions of this study can be summarised as follows:

+ we present which are the strategies for implementing mobile object recognition task and for
offloading it to a possible Edge device by using publicly available open-source frameworks and

tools;

« we measure and analyse which is the energy impact of a mobile neural network directly running
in a mobile smartphone and the consumption gain that we can obtain when the neural network
recognition task is offloaded to an Edge device;

« we quantify the beneficial effect of the task offloading.

5.2.1 Background

The main purpose of this study is to find out when and how offloading a deep neural network inference
task is convenient, especially under a power consumption point of view. In particular, we focus on
the object recognition, namely the task of recognising the highest number of objects present in a
photo and classify them by also giving the coordinates of where they can be found. The most used
pattern for classifying objects is the one of setting up a Convolutional Neural Network (CNN), that is a
neural network which takes grid-like data as input, and instead of performing matrix multiplications

for describing the interaction between neurons’ input and output (like in the classic Artificial Neural

'Google is experimenting/suggesting solutions in this sense for its AR core SDK
*https://www.tensorflow.org

*https://opencv.org

*https://pjreddie.com/darknet/
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Figure 5.2.1: TensorFlow Lite Application for mobile object recognition.

Network model), they use the convolution operation [146]. The convolution has particular properties
that make CNNs very successful with images.

When a CNN is used for classification, the final neurons layer that is used is the fully connected
layer, which has a number of neurons equal to the number of categories that we are classifying. Instead,
performing object detection requires that the final layer is generally replaced with a detection network,
namely another set of hidden layers which are able to localize and classify objects inside the photography
given as input the features extracted by the CNN. The two major examples of detection networks are
Fast R-CNN [170] and SSD [171]. This is one approach to the object detection, but it is not the only
one, indeed CNNs like YOLO [172] do not use a final detection network, but they try to do all at once.

The performance of a neural network of the kind mentioned above is described by:

« the mean average precision (mAP), that is the mean average precision across all the categories of
objects that the network can recognize;

« the FLOPS, as already mentioned, that is the number of operations that the network requires for

generating the output.
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5.2.2 Experimental Setup

The purpose of this study is, first of all, to set up a complete environment which allows recognising
objects that are framed by the mobile camera. Once the environment is ready, as a first case we
consider that the mobile acts autonomously, then the device will be “assisted” by a backend which is
characterised by a medium-level GPU and offers a very low latency communication with the device.
This is the common environment that is provided, for example, in a Fog/Edge infrastructure [173].

In my setup, we consider that we are offering a real-time application, and therefore the maximum
inference latency per-frame that we can expect is &~ 50ms. If we consider that the device camera is able
to provide 30fps, then we are allowing that the recognition does not fall under the 20fps limit. This is
a relaxed limit since here we did not test the most advanced hardware, but it is still acceptable for a
subset of AR applications.

In the tests that we conducted, we used two different libraries for setting up the task environment.
The two environments make use of the following libraries for running a CNN: Tensorflow, OpenCV and
Darknet.

5.2.2.1 Mobile

The first step for running a mobile object recognition task is to set up an application which is able
to capture the camera frames and process them one by one. Once the frame has been captured, this
must be passed to a neural network that tries to find the objects and then returns their class and their
position within a box. According to the library that is used, there are different strategies that we can
follow.

OpenCV The OpenCV library is an open-source library which implements a very high number of
features that are specifically related to computer vision: image/video processing and machine learning
tasks. The other core feature of the library is that it is available for almost any computing platform,
and in particular the Android version comes with some pre-written solutions for capturing the camera
frames and running a callback function for each of them. In particular, all the frames that pass when
we are processing one frame are lost, since a new frame is processed only when the callback function
returns.

The first version of the mobile application, used for running the experiments, has been built
completely with OpenCV 4.2.0 (Figure 5.2.2). The DNN subpackage of the library allows loading
the main model formats for neural networks® like TensorFlow, Caffe, Torch, ONNX and Darknet. In
presented experiments, as shown in Figure 5.2.2, we run the TinyYoloV3 [172] CNN a reduced version
of the YOLO network. This first kind of experiment showed a big drawback of the OpenCV library: the
lack of GPU support. The obtained values are in line with the ones obtained in other works [174].

The complete inference process that has been built is the following:

1. when a frame is captured by the camera the callback function OnCameraFrame is called by passing

as a parameter the frame in the OpenCV Mat format;

2. the frame is converted to RGB (from RGBA if we use the OpenCV camera object or YUV if we

*https://docs.opencv.org/master/d6/dof/group__dnn.html
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use the native camera object), scaled to fit the neural network input size (for example 416x416 for
TinyYOLOV3, or 300x300 for MobileNet) and set as input to the neural network;

3. the neural network is run with the forward command;
4. the output matrix is parsed and non-maximum suppression [175] is applied to the output boxes;
5. boxes are drawn in the input frame;

|

y remote (0§705126%)
% f2 ~ S S AN A
‘ 5 3 ‘

Figure 5.2.2: OpenCV object detection with YOLO

TensorFlow Lite TensorFlow Lite is a completely different library with respect to TensorFlow,
it supports a reduced set of its features, but it is optimised for running with low-power devices like
smartphones or Raspberry Pi®. These optimisations require that the TF models must be converted
in a format that is readable by the library, the “.tflite" format. Differently from the OpenCV library,
TensorFlow Lite natively allows using the device’s GPU, thus allowing decreasing the inference time
drastically.

The TensorFlow team provides many examples of how using their libraries, in particular for Tensor-
Flow Lite there is an example application which implements the real-time object recognition by using
MobileNet neural network 7 and the mobile camera. The main difference with the OpenCV solution is
that the application offers two image layers, in the lower one the camera frames are directly displayed,

even if we are doing inference on them, in the upper one only the object boxes are displayed; this

®https://www.raspberrypi.org/
"https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android
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strategy allows making the camera stream fluid during the inference process.

The second version of the experimental application has been built upon the example mentioned
above, some core parts have been rewritten to implement a benchmark process that takes as input a
video file and allows analysing it frame by frame. Figure 5.2.1 shows two screenshots of the application.
On the left, there is the real-time object recognition with the essential parameters displayed on the
screen, and on the right, there is the activity which we implemented for loading videos. As we will see in
Section 5.2.3, for every frame we log the frame number, the inference and network latency, the battery
percentage, the instantaneous current (mA), residual battery capacity (mAh) and the battery voltage
(mV). The inference process is precisely equal to the OpenCV version with the only difference that the
inference result is not directly drawn to the frame but is passed to a layer that draws boxes on top of
the camera frame. Within the application, the neural network that is implemented is MobileNet [149],
which is a class of CNN specifically designed for mobile and embedded devices deployment.

5.2.2.2 Edge

We implemented the object recognition service by firstly using TensorFlow and then Darknet by
wrapping them with the Python Flask® library. Finally, we attached the mobile device to a Wi-Fi hotspot
created from the PC, thus simulating an Edge offloading infrastructure. The working paradigm is the

following;:

1. the device captures the frame and scales it to match the neural network input size — in this phase,
the mobile also choose the compression level of the image, that is a critical parameter since it

determines the network latency;

2. the Edge device that already loaded the neural network performs the inference and returns the

result as a response;
3. the mobile device visualizes the results on the screen;

To natively exploit the GPU, before installing any neural network library, we need to obtain the
CUDA toolkit and the cuDNN SDK manually. In the experiments, with the latest nVidia drivers 440.33,
we used the CUDA toolkit 10.1 and the cuDNN 7.6.5 (compatible with TensorFlow 2.1°).

TensorFlow TensorFlow is an open-source library for performing machine learning tasks. As in the
mobile case, we used neural pre-trained networks model available at the TensorFlow website'.

Darknet We used Darknet [176] to run the YOLO neural network. Darknet is a neural network
runtime environment written in C, and it is from the same authors of YOLO. The library must be

compiled and then imported it in the Python web server script.

5.2.2.3 Equipment

In the experiments, we used a Samsung Galaxy Note8, a smartphone equipped with Exynos Octa 8895
@ 2.31Ghz processor, 6GB of RAM and a Mali G71 MP20 GPU with a computing capability of 374GFlops

8https://www.fullstackpython.com/flask.html
*https://www.tensorflow.org/install/source#tested_build_configurations
Yhttps://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_
zoo.md
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and 29.80GB/s of memory bandwidth. The OS of the device is Android 9.0 Pie.

As Edge device which allows performing object detection, we used a PC with 16GB RAM, AMD
FX-8350 processor and an nVidia GTX 1070 GPU with a computing capability of 5.73TFlops and a
memory bandwidth of 256.3GB/s. All the neural network frameworks have been installed on Ubuntu
18.04 LTS.

5.2.3 Measurements and Results

The experiments have not been conducted by using the device camera but by analysing a video. The
video that we used is a view of the Warsaw city from a car''. The original video has been converted
from the resolution of 3840x2160 to 720x576, cut to 5 minutes (or 9000 frames) and then analysed in
the device by using the JavaCV library'?, that binds together OpenCV and other media tools, like
FFmpeg, the most common library for processing videos. The main reason for this conversion is due to
the memory and the time required to load the video. During the video processing, as introduced in
Section 5.2.2, we logged for every frame not only the timings but also the battery data that comes from
the BatteryManager service of the Android OS. These values have been then cross-validated with a USB
power meter, as shown in Figure 5.2.5. As far as regards the OS battery values, from the experiments
emerged that they are not returned by every device, but every vendor decides whether log or not to log
them. Specifically, the Samsung Galaxy Note8 device that we used for tests, the values do not change
every time they are requested, but they are updated within a specific interval of time, in particular, the
residual battery capacity is updated in multiple of 3.139mAh.

Results of the experiments are summarised in Table 5.1, which describes the environment used
along with the timings and battery data. The neural networks tested are:

o FakeNet, that is a placeholder of processing frame by frame by doing nothing, this kind of test is

done to understand which is the baseline consumption of the device;

+ MobileNet, in the specific test we used a quantised MobileNet v1.0 with SSD for the TF Lite
framework'3, and for the TensorFlow framework MobileNet v2.0 with SSD'#;

« YOLOTinyV3, that is a smaller version of the YOLO neural network [172]".

All the neural networks that we used are pre-trained on the COCO dataset'®, a very large dataset of
segmented images with 80 objects categories.

What emerges from the experiments, as we can see in Figure 5.2.3a and Figure 5.2.3b, is that running
the object detection remotely allows to save about the 70% of the battery energy, in particular, about
45J are saved when the object recognition is offloaded to the Edge. Moreover, across the entire test,
the recognition task has a constant energy consumption, this is justified by the fact that the number of
objects recognised has not a great impact on the number of operation executed by the neural network,

we assume that the oscillations are due to the underlying operating system of the device. As far as

"https://archive.org/details/0002201705192

https://github.com/bytedeco/javacv

BThe codename of the network, available at the TF repository, is coco_ssd_mobilenet_v1_1.0_quant_2018_06_29
"The codename of the network, available at the TF repository, is ssd_mobilenet_v1_coco_2018_01_28
Bhttps://pjreddie.com/darknet/yolo/

"®https://cocodataset.org
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DNN Framework Average Time (ms) FPS Energy Consumption
Neural Network ~ Mobile Edge Inference  Network Total Average Instant (mA) Cumulative (J)
FakeNet - - - - - - 264.31 10.67
Local MobileNet TF Lite - 46.1 - 46.1 21.70 918.32 63.65
YOLOTinyV3  OpenCV - 4239 - 4239 2.36 950.97 61.28
Remote MobileNet - TensorFlow 421 256  67.7 14.80 330.45 17.91
YOLOTinyV3 - Darknet 21.9 27.0 489 20.44 360.25 14.70

Table 5.1: Summary of the main results of the experiments.

regards the inference latencies, in the tests, the remotely deployed TinyYOLOV3 allowed to reach
about 20FPS, that is slightly less than the locally deployed MobileNet. These values are justified by
two factor, first of all, the computational power of the nVidia GPU and, secondly, by the network
latency that is in the order of 27ms — a value that depends on the specific Wi-Fi protocol used by the
network adapter. In Figure 5.2.4 the behaviour of the inference latency is shown, and as we can observe
the offloading scheme of the recognition framework allows for a more stable inference time, but this
is essentially justified by Android operating system and all the background services that have been
unpredictably activated during the test. What emerges is also that YOLOTinyV3 in remote reaches the
same performances of the local MobileNet but with no impact on energy, this is a clear example of the
beneficial effect of the offloading mechanism.

Summarising, offloading the object recognition has almost a zero-impact on the energy consumption,
and in real Fog/Edge deployment with latest “Wi-Fi 6” [177] technology and more powerful GPUs could
also allow reaching real-time inference latencies, i.e. 30FPS.
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Figure 5.2.3: Power consumption during the experiment
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Figure 5.2.4: Inference latency behaviour in FPS.
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Figure 5.2.5: The USB power meter and the mobile device used for experiments
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5.3 Energy-oriented load balancing for Green Edge computing

The amount of data generated by loT devices is expected to increase exponentially over the next
years. Edge computing [2] may alleviate the need to transfer data to a cloud server by performing
data elaboration closer to the data sources. With the improvement in their performances, complex
elaborations are also possible at the Edge. For example, accelerator-based single-board computers
(SBCs) showing high performance are being used as Edge devices to run the inferencing part of the
artificial intelligence (Al) model to deploy intelligent applications [178]. Besides being valuable for
performance reasons, local elaboration is also the first step towards a reduction of pollution. Moving
data to remote servers has, in fact, a non-negligible carbon footprint due to all the telecommunication
equipment involved in data transmission and, of course, in the use of the data centres [179].

During the idle state, the energy consumed by an Edge device is one-third or less of the power
needed when executing code. For example, NVIDIA Jetson Xavier NX consumes 15.2W when running
object detection with YOLOv3, and only 3.6W when idle [178]. Another element to add to the picture is
the cost reduction of the Wh [Watt per hour] of batteries and the increasing efficiency of photovoltaics
(PV) panels, which makes it possible to design green Edge computing systems, that are energy self-
sustainable (and to ensure service continuity this deployment can run side-by-side with classic grid
powered architectures).

In this section, we focus on a use-case scenario where a set of off-grid PV supplied Edge nodes with
their own camera implement a common service of image-based object detection, so that a node can
delegate the inference done on an image acquired by its own camera, to another node in the set (thus
relying on the task offloading strategy). This can be seen as a typical scenario of traffic monitoring in a

smart city.

Concept and motivation The distributed nature of Edge/Fog resources makes it harder to exploit
locally-produced green energy as more sites are considered [159].

In general, the amount of solar radiation converted by a PV panel into electrical energy depends,
besides exogenous variables, e.g. weather conditions, on the orientation of the panels, and on the
specific day of the year. It is reasonable to assume that due to mechanical or other constraints, the
orientation of panels in this set is different, so that nodes have different green energy production. In
addition, the state of these nodes (idle or working) may also differ.

Since the amount of storable energy is limited by the battery capacity, the solar energy at an
Edge node with fully charged battery cannot be further accumulated, which is an indirect source of
inefficiency. We call this not-accumulated energy, energy surplus loss. In order to consume as much
green energy as possible, it is worth it for an Edge node that is running out of green energy to offload
image detection tasks to nodes with (almost) full battery at risk of energy surplus loss. This offload is
globally energy efficient since the energy consumed to move (send) the image data from one node to
another is usually less than to do computation locally.

The contribution of this study is (i) the characterisation of an off-grid green Edge computing model

and (ii) an initial evaluation of the benefit of task green energy aware task offloading.
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5.3.1 Background: the Solar geometry

Equatorial

Figure 5.3.1: The position of the sun in the sky is identified through two angles: the Right Ascension (o) and
the declination (§). The movement of the sun is due to the earth rotation and revolution.

The apparent movement of the sun in the sky is due to two rotations: the earth’s rotation around
the earth’s axis with a period of one sidereal day and the earth’s revolution around the centre of gravity
of the earth-sun system with a period of one sidereal year. The two rotations take place on two planes,
respectively called equatorial and ecliptic planes, which are inclined by € = 23.4°. The intersection
of the planes defines a line called the equinox line. To describe the motion, it is convenient to use a
geocentric coordinate system (see Figure 5.3.1. We can use a simple model to derive the position of
the sun d, in which the orbit around the sun is circular, and the speed of the earth is constant. The
position depends not only on the time but also on the geographic latitude of the earth and on the day
of the year. The motion is firstly described in the so-called ECI frame and then transformed into the
horizontal frame, which is used to orient solar panels.

The Earth-Centred-Inertial (ECI) frame has its origin at the centre of mass of the earth, the X axis
on the equinox line pointing towards the vernal equinox (denoted as point 7, Z on the (mean) earth’s
rotation axis, Y = Z x X", the Earth-Centred-Earth Fixed (ECEF) frame that co-rotates with the
earth. The ECEF and ECI frames are overlapped every sidereal day. The X and Y axis point towards
longitude 0° (Greenwich meridian) and e 90°(east).

The position of the sun in the ECI frame can be expressed in Cartesian coordinates with following

unit length vector:

TS cosdcosa
decr = |ys | = |cosdsina (5.1)
zZs sind

""Due to slight changes of the earth’s axis rotation over time, it is common to adopt for the definition the orientation of
the axis at a given date. This sync point is called an epoch. ECI J2000 refers to the orientation at the 12:00 Terrestrial Time on
1 January 2000.
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Figure 5.3.2: Example of sun path in the NEU frame at the equinox, winter and summer solstice, latitude 42°
derived from Equation 5.6. At the equinox, the sun rises due east and sets due west. The duration of the day is
the longest at summer solstice and the shortest at the winter solstice.

from which:

_ . —1(Ys
a=tg <$S> (5.2)
§ = sin"tzg (5.3)

where a and ¢ are two angles: the Right Ascension (RA), which is the angle from the vernal equinox
measured along the equator and the declination angle with the equatorial plane, see Figure 5.3.1.

By definition, at vernal equinox (21 March), dgcr=(1,0,0) so that @ = 0 and § = 0. A simple
relationship between o and 9 is the following. As the ecliptic plane is tilted of ¢, its normal in the ECI
plane is n = (0, —sine, cose). The points on the vertical line (parallel to Zgc ) passing from the sun
with given a and 0, have coordinates p = (cosa, sina, tgd). Hence, the intersection with the ecliptic

plane is the point p - n = 0, so that the relationship between a: and ¢ is:
§ = tg 1 (tge x sina) = € x sina (5.4)

which the relationship in [180]. Days are numbered from January first and during day N the « is fixed:

a(N) = %(N +A) (5.5)

where A~ is the number of days from the last vernal equinox (Mach 20) from December 31, Ay = 286.
The value « is the right ascension of the sun during day N, which corresponds to the sun on the local
meridian of the observer.

The NEU frame has the origin on the surface of the earth, the Z that points up to the sky towards
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Position of the sun, latitude=42"

50
—+= Equinox
Winter Solstice
40 A e
S T S,
F Y
e 3
S 30 e %
© Z e
3 7 %
w +
5 7 X
520 I jY
fj Xx
+
10 A I Y
7 3
{ X
N IS S T
-75 -50 -25 0 25 50 75

Solar Azimuth

Figure 5.3.3: Example of solar diagram for the winter solstice and equinox.

the zenith (opposite to the plumb line), Y points towards the true North and X points towards East. The
XY axis is tangent to the earth (assumed sphere). For this reason, the frame is also called the horizontal
frame, and it is used to define the orientation of the panel on the earth.

The position of the sun d in the NEU frame is found through the following linear mapping:

x cg, —53, 0 cosécos
d= |y | =1css5 csc5 —ss cosdsina (5.6)
z 86,56. CB.5px  Cho s110

where cg = cosf} and sg = sinf3, with 8, = —\ — m/2 — wt and 8, = ¢ — /2. The meaning of
these parameters are: w = 360/24 = 15[°/h] is the angular rotation speed of the earth, ¢ is the time
elapsed from when the ECI and ECEF frames were aligned, ¢ is the latitude and A the longitude of the

place on the earth. See [5] for details.

Horizontal ECI ECEF
Elevation (a) Declination (9) Declination ()
[—90°,90°] [—90°,90°] [—90°,90°]
Azimuth (A) right ascension (a) hour angle (h)
[0, 24]h [0,24h] clockwise+ [0, 24h]

clockwise+  clockwise- from v  from south meridian

Table 5.2: Position angles in definitions in different reference frames.
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5.3.2 Energy produced by solar panels

5.3.2.1 Panel orientation

The orientation of the panel is assigned via the normal to the surface of the panel n, which is specified
through a pair of angles: the altitude a - also called elevation or tilt angle, and the Azimuth (A). Elevation
is measured from the horizon along the vertical, while the azimuth is positive clockwise. Instead of the

altitude, it may be sometimes convenient to specify the zenith angle £ = 90 — a.

55°

North (Y)

East (X)

Figure 5.3.4: Example of panel orientated towards the west (A = 330°) and titled of a = 55° (Creative
Commons, authors unknown).

For example, a panel oriented towards west of 30° and tilt angle a = 55° is specified as A =
—30°, a = 55° (see Figure). Clearly, the Cartesian coordinates of the normal are n = (cos§, sincosA, sinsinA).

The global solar irradiance (energy per unit time and per unit area) hitting the surface of the PV
panel is the sum of three contributions: direct bean, diffuse and reflected irradiance [181]. The amount
of these contributions depends on three main elements: (i) panel orientation, (ii) the path of the sun in
the sky and (iii) weather conditions. To keep the analysis simple and since we want to characterise the
difference among nearby solar panels, we will focus only on the first contribution due to direct beam
irradiation in clear days.

The value of solar irradiation at the mean distance of the earth from the sun on a surface normal to
the sun is called the solar constant G, and its current estimation is G, = 1360W/m2. The maximum
value of the direct irradiation is approximately 1000W /m? at sea level on a clear day. With the current
technologies, it is about 10% to ~ 23% of the solar energy is converted into electrical energy by a solar

panel. We will then assume that the maximum power generated by the panels is Gy = 100WW/m?.

5.3.2.2 Energy production

The power produced at a given time by a unit square surface can be computed as:

Gf = Gocos© = Gy(d - n) (5.7)
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where O is the angle between the position of the sun in the sky (and hence the direction of incidence
ray on the surface of the PV panel) d, and the normal to the surface of the panel n. The energy that

recharges the battery during an infinitesimal time interval dt is:

Grdt b(t) < B

Pe=1  wy-n

(5.8)

where b(t) is the battery level at time ¢ and B the battery capacity. The infinitesimal energy discharged
from the battery is:

P(t)dt b(t) >0
dEp(t) = ®) ®) (5.9)
0 b(t) =0
where P(t) is the power required by the attached operating Edge node. The energy stored int the
battery at time t is:

b(t) = / dEc(t) — dEp(t) (5.10)

The amount of energy produced over a period tg, %1 by the panel that cannot be stored nor used is
called the energy loss, E1.. This quantity can be computed as the difference of the energy entering the
battery of infinity capacity and into a battery of finite capacity is:

t1

B = Gf(t)dt—/tl P(t)dt—/tl dEc(t) (5.11)

to to to

5.3.3 Baseline results

Parameter Symbol Range

Idle power consumption Pr 25W
Working power consumption Py 7.0 W

Power required to send tasks Pg 0.5W

PV power generation P 25 W, 35W
Battery capacity B 80 Wh,120 Wh
Time interval with no sun Tns

Table 5.3: Parameters definition and value ranges

We report here some general results useful to motivate the proposal. The main parameters and
their range are reported in table 5.3.

5.3.3.1 Charge-discharging cycles

The energy accumulated in a battery of a single Edge station follows a charging-discharging cycle that
depends on the generated/consumed energy and battery capacity. A well-defined system should be

able to fully charge the battery in a sunny day and supply the device at its maximum computation
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speed starting from a fully charged battery, i.e. B > E > Py x Tng. Figure 5.3.5 shows b(t) from
Equation 5.10 for two days.

B=80Wh P= 25W Py=7.0W B=80Wh P= 35W Py=7.0W
80 1 capacity 80 1 capacity
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Figure 5.3.5: Example charge-discharge cycles over two days. Poor design due to insufficient battery (upper
figures); insufficient PV performance (bottom left). The bottom rightmost figures show a correct design that
provides good behaviour.

5.3.3.2 Effect of PV orientation

Figure 5.3.6 shows how the tilt angle that produces the maximum power depends on the day. Rotation
from the south (azimuth=180) towards the west (azimuth=200) shifts the time when the maximum

power is generated and pushes production more towards sunset time.

5.3.4 Seeker-Giver: an algorithm for green cooperation.

The idea of the algorithm is based on the observation that since the system is not connected to a
grid when a battery is fully charged, further energy coming from the PV is not utilised (green energy
loss). The proposed algorithm assumes a set of Edge nodes connected in a full mesh via a wireless

communication channel. The algorithm divides the operating period of nodes into time slots of equal
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Figure 5.3.6: Example of power generated during the equinox (day 79), and summer solstice (day 169), for
different elevation angles.

length, say of some minutes indexed as k = 0,1,.... Let e,’f be the accumulated energy at the end of
time slot k, expressed as a percentage of the capacity B. If the accumulated energy at node ¢ is higher
than a threshold value, say ¥ > T} the node announces itself as a surplus or energy giver node, while
the node whose energy is ¢£ < Ty is called an energy seeker node. The nodes form two sets, named the
Giver set GS and the Seeker Set E'S. In order to match a giver with a seeker, nodes in the two sets are
sorted according to their battery level to form two lists, ES” and EG’. The first node in the order list
ES" is the one with the lowest stored energy, while the first in GS’ has the highest accumulated value.
Ties are broken based on ids. The value n = min{|ES|,|GS|} is computed. Then the first node in the
ES’' set is matched with the first node in the G.S’ set, the second one with the second, and so on until

n pairs are determined.

5.3.4.1 Results

We now present some preliminary numerical results of the above algorithm. Results are obtained
numerically with time steps of 1 min at equinox day, sunny clear day, and latitude ¢ = 42°.
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Experiment 1 This experiment considers two nodes with same orientation, A = 180° and £ = 42°.
Figure 5.3.7 shows the charge-discharge cycle among an energy giver and energy seeker node over four
days. In this experiment, node 1 requires full power Py for all days and eventually becomes a seeker,
while the other node (node 0) is in idle state and it is a giver. The top graph shows how node 0 is subject
to energy loss events, while node 1 basically discharges the whole battery. This means in the off-grid
assumption that node 1 needs to move into a frozen state and be rebooted when energy is available
again. The bottom graph shows the cycles for 71 = 0.5 and 75 = 0.2. Task offloading costs 0.5W, i.e.,
when offloading the sender node (seeker) consumes P; 4+ Ps while the giver node Py + Ps. We can
see how node 1 never runs out of energy. The difference in the slope of the energy demarcates the time
when offloading occurs.

B=120Wh P= 25W Py =7.0W P;=2.5WPs=0.5W B=120Wh P= 25W Py =7.0W P;=2.5WPs=0.5W
1201 120 A
801 80 1
= =
z z
> 60 > 60
o o
2 2
w w
40 40
DAY 1 DAY 2 DAY 3B DAY 4 DAY 1 DAY 2 DAY 3 DAY 4
204 20 A
—— node 0 —— node 0
04 node 1 0 node 1
IObO 2(;00 30'00 40'00 50'00 60'00 70'00 10'00 20'00 30'00 40'00 50'00 60'00 70'00
Time [min] Time [min]

Figure 5.3.7: Example of algorithm with T3 = 0.5 and 75 = 0.2. No cooperation (left), with cooperation (right)

Experiment 2 In the second experiment we considered four Edge nodes with the following orienta-
tions: & = 20°, A1 = 120°,& = 35°, Ay = 120°,&3 = 35°, A3 = 130°,§; = 42°, A3 = 180°. A trace
over four days is reported in Figure 5.3.8. The first two nodes are idle all the days, while the other
are working. Again, the cooperation shows how the working nodes never goes out of energy. The
energy loss without cooperation was evaluated from Equation 5.11 to £, = 787.5W h, while under
cooperation it was E'y, = 747.31W h. This reduction is due to offloading.
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Figure 5.3.8: Example of algorithm with four nodes having slightly different PV orientation, with 773 = 0.5 and
Ty = 0.2. No cooperation (left), with cooperation (right).
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Chapter 6

Infrastuctural Studies

There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no
deficiencies. And the other way is to make it
so complicated that there are no obvious
deficiencies. The first method is far more
difficult.

C.A.R. HOARE

HILE the previous Chapters focused essentially on system modelling and algorithm design
and development, in this chapter instead, the approach is studying the infrastructural
conditions, requirements and software which are needed for running the scheduling and

load balancing algorithms. In particular, in Section 6.2, we formulate a series of conditions which are
needed for building an unattended cluster of SBCs (Single Board Computers), moreover, we provide a
hardware solution for exploiting a standard desktop PC case and the annexed ATX power supply. Instead,
in Section 6.3 we illustrate the design of a framework, called “P2PFaaS”, that allows the implementation
of the aforementioned algorithms by relying on the Function-as-a-Service (FaaS) task model. The
framework, based on Docker containers, has been published as open source.

The solutions and the concepts presented in Sections 6.2 and 6.3 have been published respectively
in [12] and [3].
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6.1 Related Work

Raspberry Pi and SBCs (Single Board Computers) clusters There are different approaches in
literature for building a Raspberry Pi cluster, indeed the low realisation and operational costs make it
usable for learning parallel computing [182], [183], running distributed algorithms [184], [185] or just
for studying the energy and the computation power system [186]-[188].

In particular, [182] and [183] describe a Raspberry Pi cluster that is built for learning purposes. The
devices are arranged in a cart and they make use of the MPI messaging protocol for intercommunication.
However, this solution is not self-contained and it does not provide a practical solution to power
management.

Works [189] and [184] show an implementation of a cluster of Raspberry Pi that is assembled with
Lego bricks, the former also introduces a software management system called PiCloud and the latter
uses the cluster for running a tourism data aggregation application. In both cases, a self-enclosing and
an unattended design and structure are not considered.

“Iridis-Pi” is a cluster of 64 Raspberry Pi presented in [190]. The authors perform a benchmark of
the cluster trying to derive the total computing power of the entire architecture, but for doing that
different issues are addressed, like the power supply, the network capability and shared and distributed
storage.

A series of challenges when building a Raspberry Pi cluster is listed in [191]. The paper, after
describing the design and the setup of the cluster, performs a series of benchmarks regarding the total
computational power of the system.

Concluding, [186] studies a Raspberry Pi cluster as a high-performance computing (HPC) cluster,
considering the computing and the electric power the work provides performance results regarding the

number of cores and the number of computing nodes in a cluster.

Frameworks for Fog and Edge Computing The idea of constructing a framework for Fog or Edge
computing is quite well addressed in literature. Indeed, similarly to the work presented in this chapter,
[129] proposes a platform for performing online machine learning with loT data streams by leveraging
Kubernetes for managing the containers that compose the framework. However, the operating model
studied in this chapter is different since the focus is on the scheduling of Faa$ execution requests and it
is done in an online manner. Then, OpenFaa$S [192] is an open-source software framework which allows
to easily implement Faa$S functions but the software does not allow the customisation of the internal
scheduler, which is left to the underlying Kubernetes framework. From this framework, only the FaaS
creation process has been taken into consideration. In [193], the authors propose an extension of the
OpenFaaS framework addressing the scheduling of the task in nodes that are distributed geographically,
however, the work focuses on the scheduling of the services and not of the single tasks and the approach
is more oriented to the Cloud computing environment than the Fog or the Edge one.

Finally, other works instead are still focused on the implementation of scheduling and load balancing
algorithms but differently from this study, they only simulate the computing nodes, these simulators are
iFogSim [194], FogWorkflowSim [195], YAFS [196], xFogSim [197] and FogNetSim++ [198]. Simulations

can have advantages during the design of the algorithm but do not consider real environments’ issues
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and parameters. Indeed, with the proposed framework, researchers can assess the efficacy of the

algorithms in real environments.
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6.2 Raspberry Pi testbed design

A crucial aspect of designing distributed algorithms for Fog or Edge computing is to provide results
that efficiently run, aside from a simulation, in a real setup with real hardware and software. Most
of the time trying to set up such kind of testbed could appear costly and time-consuming, but it is
not always the case. Indeed, thanks to the current hardware technologies, there are many types of
single-board computers (SBCs) which have a non-negligible computing power and they are available at
a very low cost, like, for example Raspberry Pi'. Building a cluster with this kind of device is reasonable
but if we want to build a stable, long-term, and stand-alone solution there are different issues that
must be addressed: (i) decide a proper enclosure or chassis which will hold all the components of the
cluster, and this must bring with it a suitable solution for managing the power supply of the entire
system since it can be unfeasible to have a single power adapter for every single-board PC; (ii) the entire
cluster should be managed, under the hardware point of view, like a server rack component which
can be easily added or removed for example from a server cabinet; (iii) the ability to power on and off
the cluster remotely, and this feature introduces an entire new set of problems that regards software
management; (iv) the system is to be unattended or there is a low probability of the intervention of an
operator who manually has to remove the single-board PCs from the cluster enclosure and reinstall the
operating system, indeed in this kind of low power devices, the software resides on external storage, like
a microSD, therefore installing the operating system requires the software to be flashed in the storage
support. All these needs are the prerequisite to set up a general cluster that can be used remotely to
run experiments, i.e., a concept that we dubbed Testbed as-a-Service.

This study is the result of an experience done to realise the envisioned cluster by using Raspberry

Pi SBCs. The main contributions of this section can be summarised as follows:

« delineation of hardware and software requirements for a long-term, unattended and remote
controllable solution for implementing a Raspberry Pi cluster;

« design of a power supply board for using a desktop computer power supply (called ATX) for
powering up to eight Raspberry Pi boards;

« design of a remote Ethernet switch system for remote controlling the power of the cluster to be
associated with the power supply board;

+ propose a way to define the testbed configuration and an experiment via JSON configuration

files, towards a Testbed-as-a-Service paradigm;

+ show the results of the benchmark of a distributed scheduling algorithm installed in the cluster.

6.2.1 Hardware
6.2.1.1 Enclosure

The first decision that is needed to take when building the cluster regards a suitable physical structure
that is able to hold the essential components, namely the SBCs and the power supply unit. There are
many solutions that can satisfy our needs but they are often offered at a very high cost, relatively to

'https://www.raspberrypi.org/
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the cost of the boards. For this reason, in this study, we tried to re-use a desktop PC case and its power
supply unit. Figure 6.2.1 shows a preliminary set up of the cluster enclosure. We can observe that the
single Raspberry Pis are arranged in (black) cases which have a single screw on the side, then all of these
are attached to a rigid plastic structure that fits the standard holes of a Standard-ATX motherboard,
which are specified by Intel [199]. The case has also been enriched with two fans for favouring the
airflow.

The case that has been used is a standard ATX case but it is not rack-able (i.e. it cannot be arranged
in a server rack). For better space management, there are also available rack-able ATX cases of 4 units

that could be easily installed in a server cabinet. However, switching to this kind of case does not alter
anything of the study presented here.

o) o - o —) 3 pes=s=-
ower Supply
47780 TS B W B BT
‘U ¢ cB re @ © Ensosso (] p

Figure 6.2.1: Preliminary set up of the cluster

6.2.1.2 Power board design

The main issue of using a PC case as an enclosure is the usage of the ATX power supply unit, this
because having eight power adapters for eight Raspberry Pis is not a feasible solution, especially in
terms of space. A standard ATX power supply has different connectors that are usually attached to
the motherboard and to all the peripherals. There are many vendors and types (we used a “Trustech

TR-20787”, whose specifications are listed in Table 6.1) but in general all of the connectors are cascade
arranged in at least in 4 lines, in the following way:

L1) this line has one 24-pin port (Figure 6.2.2a) for the motherboard power;
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Figure 6.2.2: Desktop PC power supply unit connectors

L2) this line has two 4-pin ports for powering the peripherals (Figure 6.2.2b) and two ports for
powering SATA disks;

L3) same as L2);
L4) this line has one 4 (or 4+4) pins port powering the CPU.

All of these lines are made up of 20 AWG cables (which corresponds to 0.50mm? of section) and
they have 20 cores. In normal conditions, each of these cables can bring up to 3.5A2, considering 5V
that is the voltage needed for the Raspberry Pi. Moreover, a Raspberry Pi 4 needs 3A for operating
correctly?, this means that for powering up to 8 Raspberry Pi 4 we need 24A and 7 cables from the +5V
rail of the PSU (whose colour is red) and at least 7 cables for the negative pole (whose colour is black).

We can gather all the needed cables from the PSU connectors, in particular we can:
« pick 5 red +5V cables and 8 black negative cables from the 24pin connector;

« pick 2 red +5V cables and 2 black negative cables from the two lines in which we have the

peripheral 4pin connector.

This configuration would allow powering up 8 Raspberry Pi since the PSU can support at maximum
28A on the +5V rail (Table 6.1).

Figure 6.2.3 shows the circuit diagram of “ATX2RPi8”, a printed circuit board (PCB) that we designed
for powering eight Raspberry Pi using a desktop ATX power supply unit. The red tracks are printed at
the front face of the board and the blue ones instead to the rear face. The diagram has been designed
with EasyEDA* and then submitted to the factory for printing®. Aside from gathering the red and black
cables as described, also considering the thickness of the tracks proportional to the load, the board also

has the following features:

2https://www.engineeringtoolbox.com/wire-gauges-d_419.html
*https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
*https://easyeda.com/

*https://jlcpch.com/
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Trustech TR-20787

Voltage Current Frequency

AC Input 230Vac 6A Max 50Hz

+3.3V. +5V  +12Vv -12V -5V +5VSB

MaxDCQutput )" 5eA" 28A 08A 06A 25A

Table 6.1: The specification label on the PSU (Power Supply Unit)

it distributes the 5V+ current to eight clamps, to which will be attached the cables towards the

Raspberry Pis. These cables have been assembled with a Type C connector;
it offers two fan ports, one at 5V and one at 12V;

it offers a clamp for the PS_ON rail that if connected to ground cause the switching on of the PSU.

This clamp will be attached to an ethernet switch for remotely turning on and off the cluster;

it offers a clamp for the +5VSB rail, that is a line always powered, even if the PSU is turned off.

This line is used for powering an ethernet relay;

it offers an additional clamp for 12V, for general purposes.

Table 6.2 shows the Bill of Materials (BOM) of the board, it can be used for ordering the components

from the supplier®. The components are: the 24pin female connector, two fan ports, two 4pin peripheral

power connectors and eleven generic bipole clamps. The PCB printing and the components cost for a

single board, including the shipping fees, is about 10$.
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Figure 6.2.3: Power supply board (ATX2RPi) (82x70mm)

®https://lcsc.com
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ID Name Designator Quantity Manufacturer Part Manufacturer  Supplier Supplier Part
1 CONN-TH_39281243 ATX24P 1 39281243 MOLEX LCSC C114088

2 CONN-TH_47053-1000 FAN_12V,FAN_5V 2 47053-1000 MOLEX LCSC C240840

3 CONN-TH_350211-1 4P_1,4P_2 2 350211-1 TE Connectivity LCSC C305826

4 CONN-TH_2P-P5.00_W)500V-5.08-2P  RPI* 11 WJ500V-5.08-2P-14-00A  ReliaPro LCSC C8465

Table 6.2: BOM for ATX2RPi(8) board

6.2.1.3 Power control board

A relevant feature that an unattended cluster needs to have, especially if composed by Raspberry Pi, is
the ability to remotely switching on and off the power in case there is the necessity of force restart
the devices. This capability is included in the design of ATX2RPi8, but it must be completed with an
ethernet or wireless relay which must be connected to the +5VSB port for being powered and to the
PS_ON port for switching on and off the PSU.

In proposed set-up, we used a “HW-584 Web_Relay_Con V2.0” that is a relay control board and it
can manage up to 16 channels. we only used one channel that has been connected to a high/low-level
trigger relay, and the relay has been connected to the PS_ON port of the ATX2RPi8 board. The controller
exposes a web dashboard from which we can switch on and off the relay and therefore the entire cluster.

6.2.1.4 Final Setup

Figure 6.2.4 shows the final configuration of the cluster that is currently operational. As we can observe,
the cluster with eight Raspberry Pis 4B (with a quad-core Cortex-A72 CPU, 4GB of RAM and gigabit
port) have been attached to a WiFi router (ASUS RT-AX88U, that supports up the 802.11ax standard)
which allows experiments that make use of the wireless network, for example, smartphones or loT. Then
another two external Raspberry Pis 3B (with a quad-core Cortex-A53 CPU, 1GB of RAM and gigabit
ethernet capped to 300Mbps due to the internal design of the RPi) have been added: the former is used
as traffic generator which can simulate a background or noise traffic to the other SBCs, the latter is
instead an entry point, since the cluster lives in a department network, it is necessary to have an SSH
or VPN entry point from which we can have the control of all the components of the cluster, in this
way we expose only a single node to the department’s internal network and the cluster traffic remains
confined in the subnetwork. In particular, this Raspberry Pi has been equipped with a USB ethernet
(ethT), beyond the embedded ethernet port (eth0) in this way the RPi can be reachable from both the

subnetworks.

6.2.2 Software

A crucial feature that a cluster of Raspberry Pi should have, regards the ability of easily deploy and
un-deploy software when it is needed. This process could be the easiest and cleanest as possible, we
cannot allow an uncontrolled installation of libraries, dependencies and configurations. Therefore the
use of some container management system is essential. We chose to install within each Raspberry Pi
board a software distribution that already has included Docker and cloud-init that is a utility used

in cloud contexts for auto-configuring nodes at boot. This distribution is open-source and it is called
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Figure 6.2.4: Final set up of the cluster

Hypriot OS’. But we did not use the software as it is, we adapted it to the following guidelines that we
defined to make the cluster unattended.

1. in order to limit a human operator intervention we need to drastically reduce the possibility of
OS corruption, for this reason the root partition should be read-only while all the persistent data

(e.g. the Docker images and containers data) should be moved to a new writable partition;

2. the Raspberry Pi should reboot automatically if the system hangs or freezes (for example due to
a kernel panic) therefore the watchdog kernel module (which is natively supported by hardware
backend in RPi) must be enabled;

3. every node must auto-configure itself at boot, in particular every node must be reachable with SSH
without manually typing username and password, this for facilitating any set-up or benchmarking

script.

These code changes are published as open-source®. The final OS has been built and installed to all
the Raspberry Pis and configured to have fixed IPs under a WiFi6 router which completed the cluster
deployment.

6.2.2.1 Testbed-as-a-Service

For executing experiments, we installed in the cluster a FaaS scheduling framework called P2PFaa$ [13]
that allows implementing distributed scheduling algorithms for the Faa$ job unit model. Since the
framework is fully configurable via REST API, we can envision a JSON configuration file which sets up
the testbed environment, like the needed nodes, the topology, the chosen scheduling algorithms and
other parameters. This JSON, which can be accompanied by another configuration file which regards
the specific experiment parameters, should be taken as input to a hypothetical master node which is in
charge to actuate the passed configuration constraints.

"https://blog.hypriot.com/downloads/
8https://github.com/rpi-cluster
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Listing 1 shows the full description of a possible JSON file for describing the testbed environment.

As we can see, the capabilities that are offered by the configuration regards:

1.

the definition of the infrastructure, namely the number of nodes to start and their specific
topology which is expressed in terms of neighbours nodes;

. the configuration of the scheduler service envisioned as a Docker container; therefore we need

to pass the address of the Docker image, the name of the scheduler that will be used (to choose
among a set of schedulers implemented in the framework), the arguments of the scheduler and
other basic parameters like the maximum number of parallel jobs that can be executed and the

maximum job queue length;

. the configuration of the discovery service, which is again a Docker container in charge of making

nodes aware of their neighbours; here we could configure, for instance, the Docker image and
the delay between the heartbeats;

the configuration of the functions that will be made available for testing, again envisioned as
Docker containers; therefore we need to specify the Docker image address of the function, a
name, the APl address that will be call-able by clients and a set of specific fixed deployment
arguments, if needed. The list of functions is expressed as a JSON array of JSON objects.

The proposed cluster is implementing a Fog environment, therefore we emphasize that the scheduler

and the discovery service (and therefore the P2PFaa$S framework) with the specified functions will be

spawned in every node, since every node will be able to execute that functions by calling the respective

API addresses and to schedule the execution in other neighbours nodes.

Listing 2 represents the configuration file for running an experiment. As in the previous case, this

file should be passed to a hypothetical master node that is in charge of executing parallel flows of REST

API calls to all the nodes in the cluster. The configuration file should allow to properly set:

the api address of the function to test (that has previously configured in Listing 1);
the payload path to associate to every REST API call;
the path (log_path) to the log directory where the test results can be collected:;

the job arrivals configuration, that comprehends the rate (requests/s, also referred as \) to
every specific node and the distribution according to which the requests will be generated, for
example as a Poisson distribution; for the sake of simplicity, we assume a fixed distribution but we
could also envision to use here a distribution that comes from real user traffic, properly defined
in a plain text file;

the total number of request after that the experiment can stop, with field max_num_requests.

By having defined both the configuration files for the testbed itself and the experiment to carry

out, we envision that the testbed usage can follow a Testbed-as-a-Service paradigm.
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Listing 1 Testbed JSON configuration file

{
"infrastructure”: {
"nr_nodes": "3",
"topology”: {

"o": ["1","2"1,
1" 70", "2"],
"2": ["e","1"]
)
}’

"scheduler”: {
"image": "https://...",

"name"”: "SchedulerIdentificator”,
"args”: ["argl”, "arg2”, "arg3” 1,

"max_parallel_jobs": 4,
"max_queue_length": 2,
3
"discovery": {
"image"”: "https://...",
"heartbeat"”: "30s"

}
"functions”: [
{
"name"”: "My Service”,
"api”: "my_service",
"image": "https://...",
"args": ["argl", "arg2", "arg3"]
b
{
"name": "My Service #2",
"api”: "my_service_2",
"image": "https://...",
"args": ["argl", "arg2", "arg3"]
b
]

Listing 2 Testbed experiment JSON configuration file

{
"api”: "/my_service",
"payload”: "/path/to/payload”,
"log_path"”: "/path/to/log",
"arrivals”: {
"distribution”: "poisson”,
"rate”: 1.0,
"rates”:
"Q": 1
" 2.
1

"max_num_request”: 2000,

}’
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6.2.3 Experiments and Results
6.2.3.1 Experiments

We performed two experiments by using the presented cluster:

1. the first experiment has been run configuring the testbed to use a scheduler that requested no
cooperation between nodes: upon a job arrival the job is always executed locally in the node, if
there are available resources, otherwise it is rejected. Then we chose an arrivals scheme with no
distribution behind, thus with fixed jobs interarrival time. This has been done for understanding
the computational power of a single node in the cluster and to properly choose a reasonable
arrival rate for the next experiment;

2. the second experiment is based on a power-of random choice cooperation algorithm for scheduling
(called PowerOfN within the framework), in particular, the one presented in [13]. We executed a

benchmark for eight different payload sizes.

For both the experiments, we tested the same function, namely a face detection task based on the
PiCo algorithm?. The same image has been used for every job request: a 640x480 JPG with exactly four
faces.

6.2.3.2 Results

Experiment 1 With this experiment, we collected the response time of 2000 requests sent in series.
We obtained an average of 0.696s (0 = 0.01848) and the distribution depicted in Figure 6.2.5. This
means that the service rate y for a single node in the cluster is about 1.43 jobs/s, but this must be
multiplied by the four processing cores of the CPU, therefore we estimated a total service rate of
1.43 x 4 = 5.72 jobs/s. This value can be considered as a good estimation because we assume that the
kernel scheduler is fair and therefore four parallel jobs will be approximately scheduled to four different
cores for the most of the execution time. This is also the reason why we set the P2PFaa$ framework to
be allowed to execute only four jobs in parallel (K = 4) in each node and in each benchmark.

Experiment 2 Listing 3 shows the testbed configuration file for this experiment. As we can observe,
the topology has been declared as a fullyConnected graph, and we set the PowerOfN scheduler which
takes as input: (i) the fanout, that is the number of random probed nodes, set to one; (ii) the threshold
(©), that is the limit above which cooperation is started, set to two; (iii) if the job that cannot be executed
is discarded and not put in a waiting queue, set to true; (iv) the maximum number of hops that job
can perform before being executed, set to one. Then we also set the maximum number of parallel jobs
to four, as four is the number of cores of the Raspberry Pi 4B, and we set to use no additional queue,
since max_queue_length is set to zero. As far as regard the function, the parameters input_mode and
output_mode that refers to the input and output type of the function are set to image, therefore the
input will be a binary file representing a JPG image and the output a binary file that is the same image

with the highlighted faces.

’https://github.com/esimov/pigo
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Figure 6.2.5: Job duration distribution for a single Raspberry Pi 4B with no cooperation scheme
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Listing 3 Testbed JSON configuration file for Experiment 2.

{

"infrastructure": {
"nr_nodes”: "6",
"topology”: "fullyConnected”

1

"scheduler": {
"image": "p2pfaas/scheduler”,
"name"”: "PowerOfN",
"args": [1, 2, true, 1],
"max_parallel_jobs": 4,
"max_queue_length": 0

i

"discovery": {
"image": "p2pfaas/discovery”,
"heartbeat”: "30s”

3,
"functions": [
{
"name": "Pigo Face Detector”,
"api": "pigo-face-detector”,
"image": "esimov/pigo-openfaas”,
"args": {
"input_mode"”: "image",
"output_mode”: "image",
"write_timeout”: 100,
"read_timeout"”: 100
}
3
]
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Metrics collected and analysed during the benchmarks are of two types. The first set of metrics
regards the jobs’ execution, and it has been collected by using the data reported by P2PFaaS. We have:

« drop rate (Pp), the percentage of jobs that have been rejected because they find the node to
which they have been assigned at full load (K = 4);

« total delay (d;), the total elapsed time for completing the request as seen by the client, in the

present case the Raspberry Pi Generator;

« probing delay (d,), the total elapsed time for asking another node its current load: it comprises
the time for transmitting the request and for receiving the response;

« forwarding delay (dy), that is the total time required for transmitting the job (only a few bytes of

metadata) and its payload to another node;

« T that is the time between the decision to forward a job and the effective job arrival in the remote
node and it is defined as d¢ + d,/2.

The second set of metrics regards the nodes operating system and have been collected using Telegraf'

and InfluxDB'. They comprise:
« network activity, the bytes received and sent by the network adapter every second;

« CPU load, the CPU time used by the system, the user and for serving the interrupt requests (Soft
IRQs);
« system load, the average load of the system as reported by Linux in the last 1, 5 and 15 minutes.

In this experiment, we tested different payload sizes but we used the same image in order to not
change the computational time required to detect the faces. We indeed appended spare bits at the end
of the payload to reach desired payload sizes. The following results focus to nine different payloads,
from 50kB (7. = 0.021s), the original size of the image, to 800kB (7. = 0.135s) the maximum payload
supported by the Raspberry Pi Generator (we experimented that a payload greater than this limit
saturates the network adapter queue). Each test for each payload involved 2000 requests sent with
Poisson distribution and has been repeated five times. Confidence intervals that are shown have been
computed as X =+ t%,n,l% (where X is the sample mean, S the sample variance, and ¢ the Student-t
distribution) with o = 0.05. All the sample means of the experiments are reported in table 6.3. Listing 4
shows the JSON configuration file for this experiment, notice that we need a configuration for each
payload to use, for this reason the payload path is set as payload-Xkb. jpg.

Figures 6.2.6a and 6.2.6b show the average drop rate and the delay when the threshold © = 2 and
the job arrival rate A = 5.50 jobs/s as a function of 7.. We can observe that the increase of the job
payload, and thus of the network delay that exists between the forwarding decision and the actual
arrival of the job to the destination node, causes a twofold effect: (i) an increase of the percentage of
jobs that are dropped and (ii) a growth of the total delay. In particular, when we deal with the original
image of about 50kB the drop rate is 55.16%, the total delay is 754ms while 7. = 21ms; when raising
the payload up to 800 kB we observed an additional 10% in the drop rate, an increase of the total delay
to 1.14s and of 7. to 135ms.

Yhttps://github.com/influxdata/telegraf
"https://github.com/influxdata/influxdb
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Listing 4 Testbed experiment JSON configuration file for Experiment 2.

{
"api”: "/pigo-face-detector”,
"payload”: "./payload-Xkb.jpg",
"log_path”: "./log",
"arrivals": {
"distribution”: "poisson”,
"rate": 5.5,
"max_num_requests”: 2000,
}
}

kB Pz 4 dy  dp T

50 0.5517 0.7545 0.0174 0.0073 0.0211
100 0.5572 0.7751 0.0284 0.0075 0.0321
200 0.5736 0.8175 0.0455 0.0075 0.0492
300 0.5958 0.8740 0.0591 0.0078 0.0630
400 0.6046 09159 0.0744 0.0074 0.0781
500 0.6163 0.9486 0.0867 0.0072 0.0902
600 0.6344 1.0158 0.0998 0.0074 0.1035
700 0.6452 1.0712 0.1132 0.0070 0.1167
800 0.6553 1.1401 0.1314 0.0070 0.1349

Table 6.3: Summary of experimental results (O = 2, A = 5.50) as a function of the payload size (kB), all times
are expressed in seconds
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The probing delay remains independent from the job payload, and it remains steady to about 7ms,
and this reasonable since the probing does not use any relevant data transmission.

The linear relationship between the drop rate and the delay is reasonable and it shows the impact
of the uncorrelation between the moment in which the node takes the forwarding decision and the

moment in which the job actually arrives in the remote node
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Figures 6.2.7a, 6.2.7b, and 6.2.7c shows Raspberry Pi 4B node OS statistics for a single benchmark
from payload 50kB to 800kB with 2000 requests for payload size and using © = 2 and A = 5.50
images/s. In all of these figures, the x-axis represents the time elapsed during the benchmark, and we
can notice a periodic fall of the y-axis values. Indeed, when switching the payload size, we observe a
60s gap during which the system is idle: this is voluntarily done to let the OS free all the resources and
also to insert a clear recognition mark for the beginning each different test in the chart. analysing these
results, we can observe the behaviour of network activity when the payload increases, and we can note
that the bytes received and sent grow linearly with different slopes: this is justified by the fact that
the bytes sent from the node regard only (i) the payload jobs that are forwarded and (ii) the response
payload to the traffic generator (that is always the 50kB with the face highlighted independently from
the payload of the request). Since we increase the payload while leaving constant the job arrival rate,
the bytes sent rate also increases. In particular, we start with and an average of 0.5MB/s when the
payload is 50kB to 1.5MB/s when the payload is 800kB. Focusing on the bytes received rate, we observe
(iii) the payload of the jobs sent by the traffic generator and the (iv) payload of the job forwarded by
other nodes: we start with 0.5MB/s when the payload is 50kB to 5SMB/s when the payload is 800kB.
The total network traffic estimation is reasonable considering nodes and router network capabilities.

We can conclude the analysis by observing the CPU usage (Figure 6.2.7b) and the system load
(Figure 6.2.7c). In particular, we can note how the CPU usage in “user” space, which includes the job
processing, remains constant during the experiment, while the IRQ processing and the system usage
increases. This effect is explained because, by increasing the payload size, we require more packets to
be received and to be sent: for this reason, there is more work to be done by the kernel with respect to
the job processing. The system load, instead, reflects the overall load of the system, and due to the
increase of the system and IRQ processing, it grows with the payload size. These last results again

confirm the consistency of the experiments.
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Figure 6.2.7: Performance parameters for one Raspberry Pi 4B varying the payload size every 2000 requests
(about 10 minutes)
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6.3 The P2PFaaS Framework

6.3.1 Motivation and significance

The Edge and the Fog Computing paradigms [2] arise from the need to distribute the computation
among a set of nodes. In general, this necessity is a natural consequence of the application’s non-
functional requirements, which can regard the latency experienced by the users and service availability.
The classic use case often refers to a smart city where computing nodes can be positioned in precise
locations and also attached to 5G antennas [200]. In this scenario, we suppose that users are able to
request services to the nearest node available. An inexorable issue that arises in this context is that
we can often observe a non-negligible variation of the traffic to the nodes during the day [7]. This
leads to some nodes being overwhelmed by a consistent number of requests per second (req/s that we
call \) thus the latency seen by the users for executing the service increase, and the node itself also
can start to reject requests. In the meanwhile, other nodes may receive no traffic and be completely
unloaded. This situation creates the necessity of designing load balancing algorithms which are able
to reach a balanced load situation by allowing the nodes to forward part of their traffic to others.
In particular, we focus on cooperative strategies which allow no central entity or orchestrator, but
every node, aware of its neighbours, can make decisions (that can also be based on Reinforcement
Learning) independently from others by asking them for information that can regard their current load
or other performance parameters. The only assumption that we make is that the scheduling decision
is made per-single function execution request and therefore in an online manner. Different works in
literature [82], [99], [102] are focused on the solution to this problem, but most of them only consider
mathematical models and event-based simulations, and in general, real environments present many
details and unexpected conditions that are very difficult to be grasped in a model of the system. For
example, the operating system of the nodes may perform additional work in parallel to the execution of
the service, the particular programming language used may add more execution latency due to the fact
that it is compiled or interpreted and if the QoS requirement is tied to the latency this aspect can be
crucial.

In this Section, we present P2PFaaS$, a software framework whose objective is the practical im-
plementation of cooperative online scheduling and load balancing algorithms generally studied only
in mathematical and simulation prospectives. The key terms of the framework denomination are:
peer-to-peer (P2P), which refers to the fact that each node can be considered a peer in the network
who can share tasks with others without a central entity or orchestrator; and FaaS, which refers to the
Function-as-a-Service paradigm that is chosen as the task model. The idea of the framework, which
is built on different modules deployed as Docker containers, compensates for a lack of flexibility in
modern orchestrators, like Kubernetes, which do not allow a custom definition of scheduler algorithm
when multiple containers are deployed in different machines. This is essentially given by the fact that
they are built for production and not for research.

The P2PFaaS framework has already been used in different works [7], [13] in order to perform
benchmarks of distributed algorithms in real environments. These tests required the installation of the

framework both in x86 virtual machines and in ARM devices, in particular the Raspberry Pi.
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6.3.2 Experimental Setting

The framework is written to be fully portable, indeed, it uses languages like Go and Python, which are
available for all of the main architectures. For running the starting up the framework, the user needs
to have only Docker installed, then it will be built from the source. Regarding the hardware, it will
suffice to have x86 machines or even ARM-based nodes, while in the former case we leave it to the user
to clone the source and build the framework within every node, in the latter we instead suggest that
the deployment can be efficiently done by using OpenBalena'? framework. OpenBalena requires to
prepare the devices with a custom OS (called BalenaOS'?) and then the P2PFaa$ can be built for ARM
and deployed to all the nodes in the set by using the balena-cli'* tool.

For setting up the framework it will be needed to clone the repository stack'® and use Docker
Compose for building and running all the needed containers. Once all the containers are running the
discovery service must be configured only at the first running of the nodes. This can be done by using
the APl /configuration at port 19000.

6.3.3 Software description

The proposed framework consists of independently developed modules. Each module has associated
a code repository and it is built as a Docker container. This means that an always-alive process is
associated with it. In general, it is a web server which exposes APls routes. However, in delay-sensitive
operations, websocket pools are used. This has been shown to drastically reduce the time for creating
the request since the setting up of the TCP socket and the handshaking are only done once.

The building of the framework can be done in any machine that supports Docker and even in ARM
architectures for which Dockerfile.aarch64 are given.

6.3.3.1 Software Architecture

The overall architecture of the framework is shown in Figure 6.3.1 which clearly depicts the main

modules.

 The scheduler service listens at port 18080 and represents the entrypoint of the framework where
the clients can request the execution of a function via REST API. The service usually contacts
the discovery service for retrieving the list of the nodes and the learner service for retrieving
the scheduling action to perform when a Reinforcement Learning based scheduler is used. The
essential role of the service is forwarding the request to the correct Faa$ after making a scheduling
decision that can be to execute the function locally or remotely. In the latter case, the scheduler

of another node is called with the same payload as the original request.

 The learner service listens at port 19020 and implements the training and the inference of Rein-
forcement Learning models used by the scheduler service for making the scheduling decision.

« The discovery service listens at port 19000 and implements the nodes discovery.

2https://www.balena.io/open/
Bhttps://www.balena.io/os/
“https://github.com/balena-io/balena-cli
Bhttps://gitlab.com/p2p-faas/stack
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Figure 6.3.1: The P2PFaaS$ high-level software architecture. The framework comprises three core modules:
the scheduler, the discovery and the learner services. Then a set of Faa$S functions can be installed beside the
framework. All of these components are deployed as Docker containers.

These three services compose the core of the framework, then the user must install one or more
FaaS that implement the services offered by the node. For simplicity, we assume that every node
implements the same set of functions and therefore the framework does not provide a way for the
parallel deployment of the functions; indeed, this operation must be done manually or by using
OpenBalena (see Section 6.3.2). The functions that can be used with the framework can be borrowed
from the OpenFaaS'® open source project. It will suffice to choose a function available and packaged with
the of-watchdog'’ daemon and then build it with the tool faas-cli. However, the only requirement
for the FaaS$ is that it must be deployed as a Docker container which implements a web server that
executes the function when an HTTP call is issued at port 8080 and at the root °/’ route. In [7], [13]
the function that is used is the pigo-openfaas'® function which implements a simple face recognition
service.

Flow of operation The Figure 6.3.2 shows the flow of the operations that are carried out when the
client (1) requests the execution of a function (called <fn> in the Figure). Once the framework is set up
in a set of nodes, the flow of usage starts from a client which makes a request to a node, in particular

to the scheduler service exposes at port 18080. The URL which must be called by the client is the
following;:

"®https://openfaas.com
Thttps://github.com/openfaas/of-watchdog
®https://github.com/esimov/pigo-openfaas
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http://ip:18080/function/<fn>

The placeholder <fn> must be replaced with the name of the function and it is mapped to the
container name which implements the function. After making the request, the list of neighbours nodes
is retrieved from the discovery service and cached. Then, a scheduling action is taken (2) and if a
scheduler based on RL is configured, the current state is passed to the learner service which replies with
the action to be taken. Once the action is known it is immediately executed (3) and this can require
forwarding the request to another node. The request forwarding is implemented with an HTTP call to
the URL:

http://remote-node-ip:18080@/peer/function/<fn>

This HTTP will trigger the scheduler of the remote node and the task will be executed remotely or it
can also be rejected. Otherwise, if the request has been marked as to be executed locally, the node will
enqueue it and finally, it will be executed (4). The actual function execution is mapped to an HTTP call
to the function’s container. After the execution of the function, the output payload is finally forwarded
to the client which will see its HTTP request to be concluded (5). At this point, there is an optional step
that is executed only if the scheduler is RL based, that is the training of the model (6). Indeed, after the
execution of the request, which is finished with the return of the output payload, we can derive the
reward and forward it to the learner service which will update the weights of the model accordingly.

This concludes the operations that are needed for completing a FaaS execution request, we will now
see in detail the core mechanisms of the three modules that we will call services in order to differentiate
them from the sub-modules that compose them.

6.3.3.2 Scheduler Service

The scheduler module is written in Go. The language has been chosen because it is particularly tailored
for the development of web servers. Figure 6.3.3 illustrates the architecture of the scheduler service
with all the submodules that compose it.

As anticipated, the scheduler service can be seen as the entrypoint of the framework. This is because
the client makes the function execution request directly to it. The handling of the APIs, declared in the
root Go file of the service, is done by the API module that handles both the preparation of the function
execution request that is then forwarded to the actual scheduler and the preparation of the payload for
the configuration update.

Upon the booting of the container two threads are started, one is the web server thread which
manages the HTTP API calls, the other is the worker thread which manages the internal task queue.

Scheduler The scheduler module has been designed in order to allow the interchangeability of the
scheduling algorithms. For this reason, a schedule interface is declared (Listing 5). In this way, every
scheduler algorithm can be easily instantiated and configured.

The Schedule() function implements the effective scheduling of the function execution request
and three possible actions can be taken: the request is rejected, the request is executed in the current
node or otherwise it can be forwarded to other nodes. When the request is rejected, the client HTTP
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Figure 6.3.2: The flow of the operations that takes place after a function execution request is issued from the
client to the scheduler service of the framework. The <fn> placeholder represents the name of the function and
the calls are all HTTP calls. The example assumes the usage of Reinforcement Learning for making the scheduling

decision.
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Figure 6.3.3: The architecture of the scheduler service.
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Listing 5 The scheduler interface declares the Schedule() function which implements the scheduling
algorithm.
type scheduler interface {

GetFullName() string

GetScheduler() =*types.SchedulerDescriptor
Schedule(req *types.ServiceRequest) (*xJobResult, error)

request is immediately closed by returning the HTTP error code 500, otherwise, in other cases the
request in enqueued locally or remotely. The forwarding of the request, which is done by using the
“API1/Peer” (Figure 6.3.3) module, again uses the function Schedule() for scheduling the request, but
this time the same request will be marked as “External”.

Queue The internal queue of the scheduler has been conceived with the idea of limiting the number
of parallel running functions. The parameter that is often referred to as the number of parallel tasks that
can be executed in a node is called K. When, for example, K = 4 we are assuming that the maximum
number of parallel running Faa$S functions is 4. The queue is managed by a thread which implements
the producer-consumer scheme, in this way the functions are started only when at least one running
slot is available. The queue can be also limited in size, and in this case, when it is full, the requests are
automatically rejected. The queue that is implemented in the described way limits the parallelism and
specifically targets Edge devices which do not have a relevant computational power and at the same
time it matches with models which are based M/M/1/K and M/M/K/K queues.

Configurator The configurator module is in charge to read and write the configuration of the
scheduler service. Configurations can be of two types: static and dynamic. The former regard parameters
that are loaded upon the boot of the container through environment variables and the latter instead
are passed via HTTP API calls and then saved to a JSON file. The scheme is applied to all of the other
services. In particular, in this service, the static parameters regard the port and the host to which the
server will listen, the logging verbosity and the path in which the dynamic configuration will be saved.
The dynamic parameters are instead divided into two parts, the ones which refer to the service itself

which can be set by using the API

http://ip:18080/configurator

and they regard, for example, the K parameter and the queue length; and the others instead to the

scheduler algorithm and they can be set by using the API

http://ip:18080/configurator/scheduler

and these instead regard the name of the scheduler algorithm to be set and a variable array of

parameters which set the algorithm’s behaviour.

FaaS Manager The FaaS Manager module is in charge of forwarding the function execution request
to the correct Faa$ function container. The module is conceived for allowing a further level of decoupling
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in order to allow different Faa$ container technologies. The name resolution that translates the name

of the container to the IP address of the FaaS container is done automatically by Docker.

Other modules The remaining modules are the “Log” module which is in charge to manage the
logging, indeed extensive logging may slow down the service and increase the latency of the tasks, then
we have the “Scheduler Service” module and the “Learner Service” module which both are in charge of
allowing the interoperability between the Scheduler Service and the other services.

6.3.3.3 Learner Service

The learner module is written in Python. The language has been chosen because it is widely used for
machine learning. The role of the module is of implementing Reinforcement Learning models which
are used for making scheduling decisions. Figure 6.3.4 illustrates the overall structure of the service.

The learning process Reinforcement learning models need three fundamental entities for operating:
the state, the actions and the reward. The state is encoded as a string and in general, it contains the
current load of the node, the action is mapped to a scheduling action and can be to execute the task
locally, reject it or forward it to another node. Finally, the reward drives the learning process and it can
refer to the total task duration. For example, we may assign a positive reward if a task is completed
within a certain deadline. For implementing this paradigm, we need to make the clients able to train
the model, because the final delay is only known when the output payload of the function reaches the
client. For this reason, the “AP1” module implements the /train and /train_batch routes, the first
for the training of a single entity and the second for multiple entities at a time.

The learning entities The training of the model is carried out by passing to the learner thread blocks
of learning information wrapped in structures called learning entities. A learning entity contains a
progressive number, the state (as a string), the action (as a float) and the reward (as a float).

The learning thread The learning process is carried out by the learner thread which is in charge to
defer the training upon the fact that all the needed entities are present. Indeed, the training process
must follow the specific order according to which tasks are generated by the client but it may happen
that tasks did not complete in the same order according to which they are generated. For this reason,
to each arriving task to the Scheduler Service, a progressive number is attached, then after the action is
taken, the number (called “EID”), the state and the action are transferred (through HTTP headers) to
the client which finally triggers the training. The learning thread for deferring the learning implements
a producer-consumer scheme has been implemented in such a way the training only starts when a W

learning entries with consecutive EIDs are in the queue which is continuously sorted.

The learning model The weights associated with the learning model are updated by the “Value
Function” module which implements the approximation of the Q(s, a) [132] function. Both the Q-Table
and the Tiling methods are implemented but the framework can easily be extended even with Deep

Neural Networks (DNNs). The Value Function model updates the weights according to the error that is
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computed by the “Bellman TD Form”. This module, given the current state, the action, the next state,
the next action and the reward, returns the d. For example, the Sarsa learning strategy for the average

the reward is [132]

g«(s,a) = Zp(s’, r|s,a) [r — max () + max q«(s',a’) (6.1)

r,s’

the time differential form of the Equation 6.1 is

A¢ = [Rip1 — R + Q(Sis1, A1) — Q(S, Ay (6.2)

which is returned by the “Bellman TD Forms” module and applied by the Value Function module

by using the Q-Table as in Equation 6.3.

Q(St, At) < Q(S, a) -+ OéAt (6.3)

( N
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Figure 6.3.4: The architecture of the learner service. The learning entries, composed by a progressive EID, the
state, the action and the reward are enqueued in a sorted list, then as soon as W consecutive entries are available
the training of the batch is started. The training of the model is done through the “Value Function” module which
retrieves the delta to be applied to the weights from the “Bellman TD Forms” which describes the learning model.

6.3.3.4 Discovery Service

The discovery module is written in Go, and its purpose is to allow the nodes to know which are their
neighbours. The service is based on a gossip algorithm and must be configured at boot with the IP of

another node (called “init server”); then, when another node, suppose B, requests to it, node A, the
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list of all the nodes that it knows, the IP of B will be added list nodes known by A. For now, only fully
connected topologies are supported by the framework and therefore, if every node is initialised with

the same init server, then every node will eventually be aware of each other.

6.3.4 lllustrative Examples

Examples of the running framework have been illustrated in [13] and in [7]. In particular, [13] shows
an early version of the framework running a benchmark on a power-of-n choices-based algorithm for
distributed load balancing that follows a randomised approach. Instead, in [7] the framework has been
used to show in practice how a Reinforcement Learning based approach for making the scheduling
decision can be used on real devices. Indeed, after testing the solution in a simulated environment, the
framework has been installed on 12 Raspberry Pi 4 and a Sarsa-based RL strategy has been used.

All the scripts used for running the benchmarks have been published as open source. They are

available in the experiments'® repository.

6.3.5 Impact

The P2PFaaS framework presented in this section is probably the first framework available as open
source which allows the implementation of distributed scheduling and load balancing algorithms
between nodes by following a fully decentralised (peer-to-peer) scheme. Indeed, its flexibility is the
maximum possible achievable since the development of the framework started from the constraints
imposed by well-known production frameworks. P2PFaa$S does not have the same level of maturity as
them but for researchers in the field, it can allow testing if the designed algorithms can have a possible
implementation in real devices and under which conditions they can work. Moreover, after defining the
Faa$ function, the scheduler can be easily written within the core of the scheduler service and changed.

Due to the portability of the code, P2PFaasS is also easy to be deployed in multiple SoC computers
(like Raspberry Pis) by leveraging OpenBalena and therefore avoid using virtual machines in order to
test the algorithms on real computer devices which can be bought in bulk due to their affordable cost.
Testing this kind of algorithms in real devices has a clear impact on the research and, in particular, on
the algorithm design. A series of conditions and peculiar characteristics of real environments cannot
be easily grasped by simulations and mathematical models. For example, in the original design of the
Learner Service, the Scheduler Service had to ask for the action of the Learner by means of HTTP
calls. However, these HTTP calls added a fixed delay of about 10ms to each request. When testing
a deadline-based scheduling algorithm this is revealed to be a critical issue, indeed, the RL-based
approach was not able to outperform even a simple randomised approach. This led to the replacement
of the HTTP calls with a pool of 20 web sockets which are now used in parallel only for requesting the
action to the Learner Service. Therefore, mathematical models and simulations can give a direction
about the performance of the algorithms in a world that is simplified, but they are fundamental to

study the algorithms.

Yhttps://gitlab.com/p2p-faas/experiments

SEcTION 6.3 The P2PFaaS Framework 187


https://gitlab.com/p2p-faas/experiments

Chapter 7

Conclusions & Future Research

Directions

In this thesis, different works have been presented and they were all focused on the design of algorithms
and solutions for targeting load balancing, scheduling and offloading in Fog and Edge Computing
environments. In this final section, we will draw conclusions about all the main topics covered and we

will try to delineate future research directions.

Distributed algorithms for load balancing (and task offloading)

« Section 2.2 illustrated the performance of the randomised load balancing algorithm Least Loaded
among d nodes (LL(d)) [201] when adapted to a Fog Computing deployment. This adaptation
consisted of triggering the randomised search only when the workload of the current Fog node
that receives a new job to execute is above a threshold value, T'. The threshold is shown to be a
simple way to reduce control delays without affecting the very nature of the power-of-random
choices principle. Through a mathematical analysis we show that under Poisson arrivals and an
exponential distributed service time, setting T’ = K — 2, where K is the number of servers of a
node, achieves practically the same performance of the power-of-n choices classic implementation
requiring a single global scheduler, but at much lower delay penalty and control overhead of up
to one order of magnitude less. Simulation experiments and a real implementation corroborated
the finding;

« in Section 2.3 two innovative algorithms, namely Sequential Forwarding and Adaptive Forwarding
has been presented and they aim to provide load balancing in a Fog Computing infrastructure.
The two algorithms are explicitly designed to be extremely simple and to be fully distributed to
provide fair load sharing in highly heterogeneous scenarios with variable workload levels and high
network delays which are typical characteristics of Fog computing. The results of the experiments
suggest that the proposed algorithms clearly outperform the case where no load balancing is
applied with a reduction in the drop rate by a factor of 19 and by a reduction in response time up
to 19%. The results in a realistic scenario are even more impressive as we can nearly halve the

response time and we can reduce the loss rate from 13% to less than 0.2%. However, additional
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features such as managing jobs with different priorities and different dropping policies is an

interesting space not considered in the present paper but that could be addressed in future works;

« Section 2.4 focused on the load balancing issue of distributing incoming jobs over the nodes
of an Edge computing infrastructure. Specifically, the analysis concerned the impact of stale
load information caused by network latency on the effectiveness of load balancing algorithms
based on the randomisation of jobs dispatching over the nodes, showing that when this latency
is comparable with the service time, the algorithm performs poorly. The study has been carried
out from two different points of view: a mathematical model and a full-fledged simulator. The
analysis revealed that taking schedule decisions based on state information received even with a
small delay compared to the service time reduces the load balancing effectiveness considerably.
In this setting, it is convenient to keep the randomisation principle incorporating it as a blind
forward towards neighbouring nodes. The addition of a threshold to regulate the triggering of

the algorithm is a valid method to reach high performance.

+ Section 3.2 studied the mathematical modelling of a system of n Fog or Edge nodes for designing
a dynamic which is able to level the service latency among all the nodes in a given topology.
Then, even if from the model we are able to derive the solution, that is the migration ratios m;;
from any node 7 to a node j, we designed a fully decentralised and adaptive heuristic which is
able to reach the same solution but without the need to have a centralised entity (which is able
to run the model) and with potential capability to adapt when the load varies over time. The
algorithm has been run both in simulations and in a real deployment of Raspberry Pi boards
and we showed how the solution is very similar to the one predicted by the mathematical model.
However, further research directions are needed to improve the proposed approach. First of all,
the communication latency has to be included in the model while in the analysed case we only
consider them in the final Raspberry Pi deployment which justifies the differences in the results,
moreover, a more precise model for a real node must be studied since the M/M/1/K does not
approximate exactly a real computer node, and this again justifies the discrepancy between the
model and the final deployment results. Then, as the last improvements points, a load that varies
over time can be introduced in the model, instead of having a fixed \; we can suppose to have
a \;(t) function and we can also consider to jointly level even other performance parameters
beyond the single service latency;

« Section 5.2 presented a complete environment for allowing a real-time object recognition task,
and it focused firstly on running it locally in the device and then offloading it on the Edge. we
used free and open-source frameworks, we assessed their maturity and their ease of use. The
experiments that we conducted show that, despite the fact that we can now rely on a big set
of neural networks deeply optimised for mobile devices, it is far more convenient to offload a
deep learning task to the Fog/Edge network. This strategy is even more corroborated by the fact
that the Edge environments are able to offer very low latencies. However, this was only a first
attempt to test the ground on this field. Indeed, we envision as future work to conduct more
experiments by exploiting a wider range of neural networks and frameworks for assessing their

convenience even with other types of computer vision tasks, and also by exploiting the WiFi6
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technology that allows to drastically reduce network latencies. Moreover, we also envision using
in Edge/Fog layer less powerful computing units, like for example Raspberry Pis equipped with
specialised ML processing chips (e.g. Coral USB Accelerator').

« Section 5.3 focused on the study of a deployment configuration of Edge nodes supplied by PV
panels. Using numerical models we provided a first assessment of the advantage of performing
cooperation among Edge nodes to maximise the use of solar energy. The algorithm is the first
step towards a new class of energy-aware resource sharing and cooperation among nodes.

Distributed algorithms for scheduling

+ Section 4.2 addressed the problem of extending the power-of-n choices distributed scheduling
scheme with Reinforcement Learning in order to be able to efficiently schedule real time and
deadline-constrained tasks. Starting from the simple approach in which the agent learns a
known policy, we arrived to provide simulation-based results that the approach works even if
the load conditions are typical of a real Fog deployment in a smart city. we showed that a fully
distributed scheduling approach based on reinforcement learning, in which every node is an
agent and it does not have any kind of load information about the others, is able to maximise
the performances of every single node by not behaving in a selfish manner. However, other
environmental characteristics can be studied in order to reveal the true efficiency of the approach,
for example by introducing a variable communication delay between the nodes, considering that
the nodes maintain a periodically updated value of the load of the others, or even increasing
the complexity of the state in order to take into account other factors like CPU time and RAM

consumption;

« Section 4.3 presented an approach for solving the online task scheduling in the Edge or Fog to
cloud continuum computing model by using Reinforcement Learning. This approach is perfectly
suiting the problems that regard this dynamic context, for example, heterogeneity of the nodes,
difficulties in estimating the real execution speed of the nodes, the possible failure of the nodes,
cooperation strategies and different QoS requirements (e.g. minimum frame rate). The results of
my approach have been shown both in a single cluster and in a multi-cluster environment, and
they demonstrated that in any of these cases, given a hypothetical traffic flow the agent, placed
in the scheduler of each cluster, can derive the best scheduling policy without nothing anything
about the characteristics of the worker nodes or of the neighbour clusters. As anticipated in
the Section, unfortunately, some points have been left open and will be further investigated, for
example, in the experiments we hypothesised that the nodes speed is fixed but, in general, it
fluctuates over time since every worker node has an underlying operating system and CPU time
may be reserved for other applications, a further study should investigate the frame skipping,
that occurs when the processed frames return to the client in an order that is different from the
generation one, and a further investigation should be focused on the consequences of using a

higher number of task types.

'https://www.coral.ai/products/accelerator
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Testbeds and implementation design

« Section 6.2 showed a long-term solution for building a cluster of Raspberry Pi that is self-enclosed
and tries to minimise the intervention of a human operator. we designed a power supply and a
control board system for using a desktop PC case (ATX2RPi8), we presented a set of software
guidelines, a Testbed-as-a-service configuration file architecture and finally we showed a us-
age scenario of the cluster, namely the implementation and the benchmarking of a distributed
scheduling algorithm in a very close to real Fog computing deployment. However, some aspects
should be further investigated, for example, the nodes’ configuration is static and cannot change
dynamically. Indeed, it will be needed to consider the possibility to provide a centralised configu-
ration solution for managing the single SBCs operating system parameters (like adding new users
or SSH keys), for switching on/off desired nodes, or setting up a particular network topology for
running specific benchmarks of other algorithms by using the JSON configuration files structure

that we proposed;

« Section 6.3 presented the concept of “P2PFaaS” framework that we designed and implemented
to test and experiment with load balancing and scheduling algorithms in real Fog and Edge
environments. Due to the modularity of the framework, the extension is made as easy as possible,
and further improvements have already been started regarding the energy aspect of the scheduling

algorithms.

To summarize, future research directions from the topics covered in this thesis essentially regard
two main areas. Firstly, Green Edge Computing, indeed the optimal usage of renewable energy in
the case of Edge computing is a topic that is recently becoming particularly relevant, especially when
applied to precision agriculture contexts. Indeed, the work presented in Section 5.3 is only a preliminary
study which opens for me a new research branch on scheduling and load balancing algorithms focused
on the energy consumption of the edge devices. Then, the second area regards the innovative core of
my PhD which is the application of Reinforcement Learning strategies to distributed scheduling and
load balancing algorithms. Indeed, in this thesis, we presented an innovative approach of using the
models which regard the multi-agent approach to the problem. Indeed, they concretise in the mapping
of each node to a learning agent and then make them learn even from the action of the others. A clear
future research direction is the further development of RL models, introducing further QoS parameters
and network characteristics like slow or saturated links. Moreover, these models can also be applied to
optimize the usage of green energy in edge devices, designing algorithms which explicitly target energy

consumption.
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