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a b s t r a c t 

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin pack- 

ing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task 

is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on ho- 

mogeneous servers of limited capacity. To keep operational costs but also energy consumption low, TBPP 

is concerned with minimizing the number of servers in use, whereas TBPP-FU additionally takes into ac- 

count the switch-on processes required for their operation. Either way, challenging integer optimization 

problems are obtained, which can differ significantly from each other despite the seemingly only marginal 

variation of the problems. In the literature, a branch-and-price method enriched with many preprocessing 

steps (for TBPP) and compact formulations (for TBPP-FU), benefiting from numerous reduction methods, 

have emerged as, currently, the most promising solution methods. In this paper, we introduce, in a sense, 

a unified solution framework for both problems (and, in fact, a wide variety of further interval scheduling 

applications) based on graph theory. Any scientific contributions in this direction failed so far because of 

the exponential size of the associated networks. The approach we present in this article does not change 

the theoretical exponentiality itself, but it can make it controllable by clever construction of the resulting 

graphs. In particular, for the first time all classical benchmark instances (and even larger ones) for the 

two problems can be solved – in times that significantly improve those of the previous approaches. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. General Overview 

The optimal assignment of given jobs to one or more servers 

ith limited capacity is an important theoretical problem in dis- 

rete optimization, but also highly relevant in many applications 

rom computer science ( Bartlett et al., 2005 ), logistics ( Hall & 

agazine, 1994 ), or communications engineering ( Chen, Hassin, & 

zur, 2002 ). Despite some clear relationships between the under- 

ying abstract problems, a wide variety of different specifications 

nd associated terminologies have developed independently in re- 

ent years, in each of these scientific fields. To provide a coherent 

verview, in this article we would like to mainly focus on the op- 

rations research (or rather, the cutting and packing) perspective, 
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E-mail addresses: john.martinovic@tu-dresden.de (J. Martinovic), 

ico.strasdat@tu-dresden.de (N. Strasdat), vc@dps.uminho.pt (J. Valério de Car- 

alho), fabio.furini@uniroma1.it (F. Furini) . 

Q  

Q

Q

ttps://doi.org/10.1016/j.ejor.2022.10.012 

377-2217/© 2022 Elsevier B.V. All rights reserved. 
ut we will also refer to important concepts and results from the 

ther areas mentioned above for further information. 

In most of these scheduling problems, we consider a set of 

 ∈ N given jobs, each characterized by a profit p i , a resource con-

umption c i , and an activity interval [ s i , e i ) with s i < e i , that have

o be assigned to a single- or multi-server architecture the capac- 

ty C of which has to be respected at all instants of time. Note 

hat, given these assumptions, jobs cannot move in time, so that 

he scheduling is only done with respect to the capacity dimension 

that is, the machines). Without loss of generality, all input data 

re assumed to be nonnegative integer numbers. Classical decision- 

aking problems arising in this context have been coarsely classi- 

ed in Angelelli, Bianchessi, & Filippi (2014) as follows: 

1: Is it possible to arrange all jobs on a fixed set of r ∈ N given

servers? 

2: Which is the subset of jobs that yields the largest profit when 

arranged on r ∈ N given servers? 

3: Which is the smallest number r ∈ N of servers needed to ar- 

range all jobs? 

https://doi.org/10.1016/j.ejor.2022.10.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.10.012&domain=pdf
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Although Q1 can be interpreted as a decision version of Q3, 

nd thus there are strong relationships between these two ques- 

ions, the relevant literature has initially focussed intensively on 

2. Probably the most significant special case of that question is 

nswered by the temporal knapsack problem (TKP) , where a profit- 

aximal allocation of a single server (i.e., r = 1 ) has to be found.

owever, referring to concrete applications in communications 

heory, this problem was originally introduced as the bandwidth 

llocation problem (BAP) , see Bar-Noy, Canetti, Kutten, Mansour, & 

chieber (1999) , Chen et al. (2002) , generalizing some preliminary 

oncepts from an earlier publication ( Arkin & Silverberg, 1987 ) 

n machine scheduling. In that framework, a server can also be 

hought of as a fixed-capacity communication channel for which 

here are certain requests to reserve bandwidth (that is, to trans- 

it information). Consequently, assuming the profit of each job to 

e proportional to its area in the capacity-time space, its contribu- 

ion to the objective function is directly linked to the amount of in- 

ormation conveyed by it, see Bar-Noy et al. (1999) . Given the state 

f computational hardware and commercial software (for the exact 

olution of such problems) at that time, the literature initially fo- 

ussed on heuristic methods and corresponding performance anal- 

ses, but also on complexity-theoretic aspects of the overall prob- 

em or of special cases. For the latter, important milestones can be 

ummarized as follows: 

• The TKP with uniform weights , i.e., a scenario where all c i are 

identical, was shown to be polynomially solvable in O(n 2 log n ) 

in Arkin & Silverberg (1987 , Theorem 1) by drawing connec- 

tions to the coloring of interval graphs and minimum cost flow 

problems, respectively 1 . In that special case, the capacity con- 

straint reduces to a cardinality constraint, and the problem un- 

der consideration is also referred to as the interval schedul- 

ing problem , see Kolen, Lenstra, Papadimitriou, & Spieksma 

(2007) for a good survey article. 
• In contrast, the TKP with uniform profits , where p i is assumed to 

be identical for all jobs, turns out to be N P -hard, see Darmann, 

Pferschy, & Schauer (2010 , Theorem 1) for a proof drawing a 

connection to a specific partition problem. For the sake of com- 

pleteness, we mention that the TKP is called the resource allo- 

cation problem (RAP) in that publication. 
• In Chen et al. (2002 , Theorem 1), the TKP was shown to be

polynomially solvable if the capacity C is not part of the input. 

To this end, an O(n C+1 ) time algorithm based on dynamic pro- 

gramming was described, establishing some early foundations 

for a graph-theoretic interpretation of the TKP. Note that a sim- 

ilar observation was already part of Arkin & Silverberg (1987 , 

Theorem 3), but this result did not refer to the traditional TKP. 
• For the general TKP, significant contributions were made in 

Chen et al. (2002) . Here, the authors distinguish between con- 

crete specifications in bandwidth or memory allocation. The 

main difference is that in the second application, the so-called 

storage allocation problem (SAP) , the jobs must be positioned as 

actual rectangles, i.e., they particularly must consume contigu- 

ous capacity units at any time. This represents a fundamental 

difference to the BAP, but both application examples are rem- 

iniscent of classical two-dimensional assignment problems of 

cutting and packing. In fact, the authors also point out strong 

relations to the multidimensional knapsack problem , see Kellerer, 

Pferschy, & Pisinger (2004) for a very good overview. However, 

the dimension (and, thus, also the size) of this substitute prob- 

lem highly depends on the input data of the TKP (more pre- 
1 In fact, Arkin & Silverberg (1987) consider a slightly different problem descrip- 

ion with C identical machines having unit capacity, and c i = 1 for all i ∈ I. However, 

n closer examination, this is nothing else than a TKP on a single server with ca- 

acity C. 
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555 
cisely, the time horizon), so that both problems (BAP and SAP) 

turn out to be N P -hard even in the very restricted case when 

s i = 0 , e i = 1 , and p i = c i hold for all jobs. 

As can be seen from this overview, already the TKP (which did 

ot yet appear under this name in the aforementioned publica- 

ions) is a very challenging problem from a theoretical point of 

iew. For this reason, heuristic methods have been an essential 

ubject of further investigations. We refer the interested reader to 

ome classic approaches proposed in Bar-Noy, Bar-Yehuda, Freund, 

 Naor (2001) , Chen et al. (2002) , Darmann et al. (2010) and to

lgorithms for handling more general problem aspects such as on- 

ine scenarios with preemption ( Bar-Noy et al., 1999 ) and specific 

ob durations that can be smaller than the activity interval, so that 

here is more flexibility in allocation ( Phillips, Uma, & Wein, 20 0 0 ).

.2. Problem-specific Literature Review 

From a more mathematically-oriented perspective, the TKP was 

ormally introduced in an article addressing an application in the 

ontext of resource allocation in high performance computing, see 

artlett et al. (2005) . In that work, the authors suggested tack- 

ing the TKP by techniques combining constraint programming and 

ranch-and-cut, but their algorithms were not as strong as a di- 

ect solution of the integer program by the commercial CPLEX- 

olver. Some years later, however, solution methods for the TKP 

ere significantly advanced by applying Dantzig-Wolfe decompo- 

ition methods ( Caprara, Furini, & Malaguti, 2013; Caprara, Furini, 

alaguti, & Traversi, 2016 ). Remarkably, in that strategy, the (rel- 

tively large) set of constraints is first systematically partitioned, 

hen each of these (relatively small) partition classes is separately 

onvexified, and finally the partial solutions obtained in this way 

re harmonized. In that regard, it is of particular benefit that an 

rbitrary but fixed variable occurs exclusively in successive con- 

traints, see also (Furini, 2011, Chapter 3) . Meanwhile, further re- 

nements of such decomposition methods have been discussed in 

he literature, see Clausen, Lusby, & Ropke (2022) , Gschwind & Ir- 

ich (2017) for two recent examples. Moreover, a standard Dantzig- 

olfe decomposition also empirically proved to be very helpful for 

 multi-server version of TKP, referred to as the operational inter- 

al scheduling with a resource constraint (ORSIC) in Angelelli et al. 

2014) . However, as the authors admit, even this approach does not 

ddress the question Q3 from the above list, which is identified as 

nteresting future work in the concluding section of Angelelli et al. 

2014) , but has remained untouched (at least in terms of the ef- 

ciency of the solution approaches) for quite a long time in the 

cientific community. 

To this end, the current paper focuses on the optimization prob- 

em pertinent to that open question, namely the temporal bin pack- 

ng problem (TBPP) , which consists of finding the minimum number 

f servers required to accommodate all given jobs. Even though it 

s a rather obvious generalization of the well-known bin packing 

roblem (BPP) , see Delorme, Iori, & Martello (2016) , Scheithauer 

2018) , Valério de Carvalho (2002) for some very good and thor- 

ugh overviews, the TBPP has recently been mentioned for the first 

ime in the context of a concrete practical application from com- 

uter science in de Cauwer, Mehta, & O’Sullivan (2016) . In fact, the 

larming predictions concerning the exponential increase in the 

nergy consumption of physical computing resources, illustrated 

n recent studies like ( Barnett, Jain, Andra, & Khurana, 2018 ), have 

ade industry and scientific communities take notice, and conse- 

uently prompted a sustained intensification of the debate and re- 

earch on more energy-efficient operating options, see Buyya, Yeo, 

enugopal, Broberg, & Brandic (2009) , Kaplan, Forrest, & Kindler 

2008) for some general aspects and Fettweis et al. (2019) for some 

pecific ideas and results of a leading European research cluster. 
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Given its relations to other already well-studied optimization 

roblems (like strip packing), which exist but are less helpful 

n detail, see Martinovic, Strasdat, & Selch (2021 , Section 1), the 

onsideration of exact solution methods for the TBPP represents 

n independent branch of research, see Dell’Amico, Furini, & Iori 

2020) for a first rigorous investigation of compact models and 

urther more sophisticated methods. As a result of that research, 

urrently, the most promising algorithm for solving the TBPP 

s a branch-and-price method that incorporates numerous lower 

ounds and heuristics and leads to convincing results in numerical 

est calculations. Despite all these efforts, still not all associated 

enchmark instances can be solved optimally in reasonable time, 

s reported in Dell’Amico et al. (2020) . 

The last statement also applies, and even more clearly, to the 

uch younger temporal bin packing problem with fire-ups (TBPP-FU) . 

n that scenario, we assume the same input data as for the TBPP, 

ut in the objective function we have to minimize a weighted sum 

f the number of servers in use and the number of switch-on 

rocesses (so-called fire-ups ) required during operation. More pre- 

isely, a fire-up has to be counted whenever a server goes from 

n inactive state (no load at all) into an active state (executing 

ome job). Including this additional aspect generally leads to inte- 

er programs of even larger size which are therefore typically more 

ifficult to solve. The second objective is thereby provided with a 

eighting factor γ > 0 . For γ ≤ 1 /n it was shown that a solution

f the TBPP-FU always solves the TBPP as well and thus both prob- 

ems are relatively close, see Aydin, Muter, & Ilker Birbil (2020) . For 

ther choices of the weighting parameter 

• a solution with minimum number of servers (in terms of TBPP) 

does not have to be optimal for the TBPP-FU, see Aydin et al. 

(2020 , Example 2.2), 
• the possibility to decompose an instance (of the TBPP-FU) in a 

temporal sense is lost, see Martinovic & Strasdat (2022 , Theo- 

rem 3), 

o that a straightforward relation between the two problems does 

ot exist anymore. Although the compact models for the TBPP- 

U (called M1 and M2), originally introduced in Aydin et al. 

2020) , have been substantially improved over the past two years 

 Martinovic & Strasdat, 2022; Martinovic, Strasdat, & Selch, 2021; 

artinovic, Strasdat, Valério de Carvalho, & Furini, 2022) , only 

bout 66% of the problem-specific benchmark instances can be 

olved optimally in reasonable time. In addition, if the benchmark 

ets formerly designed in Dell’Amico et al. (2020) for the tradi- 

ional TBPP are now also taken into account, many more instances 

f moderate size cannot be tackled successfully, see Martinovic, 

trasdat, & Selch (2021) . 

Thus, for both variants of temporal bin packing considered 

ere, good exact approaches (either compact models or branch- 

nd-price) have been found and their numerical performance has 

een optimized to a large extent, but numerous instances still re- 

ain unsolved. This article therefore proposes the concept of flow 

ormulations, which is still (almost) entirely unexplored for both 

roblems under consideration. Flow formulations form a powerful 

ool in cutting and packing, as they combine important structural 

roperties (e.g., a good LP relaxation) with a large illustrativeness 

nd a generally manageable model size, and so they can be han- 

led efficiently by commercial solvers. In particular, extensions of 

he flow models originally described in detail for the first time 

n Valério de Carvalho (2002) have therefore been widely used in 

he recent past to present competitive exact approaches to fun- 

amental optimization problems such as the cutting stock prob- 

em ( de Lima, Iori, & Miyazawa, 2022b; Delorme & Iori, 2020 ), the

kiving stock problem ( Martinovic, Delorme, Iori, Scheithauer, & 

trasdat, 2020 ), or the multiple knapsack problem ( Dell’Amico, De- 

orme, Iori, & Martello, 2019 ). In particular, the importance of the 
556 
eneral methodology is also highlighted by the recent survey arti- 

le ( de Lima, Alves, Clautiaux, Iori, & Valério de Carvalho, 2022a ). 

.3. Our Contribution 

While all these very successful approaches have in common 

hat they require a (pseudo-)polynomial number of states (nodes) 

nd transitions (arcs) and thus allow the efficient treatment as an 

LP formulation, such a graph-theoretic formulation for the TBPP 

s not yet known and not within reach. As already described for 

he example of the TKP, see Arkin & Silverberg (1987) and Caprara 

t al. (2013) , the only way out is therefore via a graph which has

n exponential number of states and transitions. Such an approach 

s also called a combinatorial flow model and is, however, accord- 

ng to the previous sources (and also Furini, 2011 , page 22), only 

seful if, for example, the number of simultaneously active jobs 

t any point in time is very restricted – a property that is gener- 

lly not given for the benchmark instances mentioned before. In 

ddition, even the authors of a very recent work on exponential- 

ize networks to tackle the TKP, see Clautiaux, Detienne, & Guil- 

ot (2021) , admit that a straightforward application of the graph- 

heoretic idea does not lead to an efficient solution framework. 

robably for these reasons, such an approach to temporal bin pack- 

ng problems has not yet been investigated in the literature at all. 

With this paper, we would like to contribute to foster the re- 

earch on flow-based approaches to the two optimization problems 

nder consideration. The main results of this work are the follow- 

ng: 

• For both, the TBPP and the TBPP-FU, we present a layer-based 

combinatorial flow model. Here, each layer corresponds to a 

maximal clique of the interval graph belonging to the instance. 
• Our approach is different from the previous attempts from the 

literature, see Caprara et al. (2013) and Clautiaux et al. (2021) , 

as it uses another interpretation of states and transitions, lead- 

ing to much smaller (but still exponentially large) networks. 
• We improve the combinatorial flow models obtained in this 

way by valid inequalities. 
• For both problems, the TBPP and the TBPP-FU, all known bench- 

mark instances can be solved exactly in reasonable time. More- 

over, significantly better computation times are achieved for 

those instances that could already be handled with the meth- 

ods from the literature. As an outlook, we also try to explore 

the limits of our combinatorial arcflow model by dealing with 

instance sizes much larger than reported in Dell’Amico et al. 

(2020) and Martinovic, Strasdat, & Selch (2021) . 

We highlight that, although the paper just addresses two im- 

ortant application problems, which are related but have rele- 

ant structural differences, combinatorial flow models have a much 

ider applicability, and pave the way for further very powerful so- 

ution techniques to other interval scheduling problems discussed 

n the introductory parts. 

. The Temporal Bin Packing Problem: Preliminaries and 

olution Methods 

Let us consider a list of n ∈ N items ( jobs ), specified by an

tem size ( resource demand ) c i > 0 and an activity interval ( lifespan )

 s i , e i ) with s i < e i , i ∈ I := { 1 , . . . , n } , and a sufficiently large num-

er of homogeneous bins ( servers ) of capacity C > 0 . We will refer

o s i and e i by the starting time and ending time (or terminating 

ime ), respectively. Without loss of generality, we make the follow- 

ng assumptions: 

• All input data are integers. 
• The items are sorted with respect to non-decreasing starting 

times (where ties are broken in an arbitrary way). 
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Fig. 1. An illustration of the instance E 0 . The horizontal axis specifies the time in- 

stants, while the vertical grid measures the item sizes. 

Fig. 2. An assignment of seven items to one bin of size C = 5 , following an idea 

from bandwidth allocation in wireless networks, see Chen et al. (2002) . The blue 

item i = 7 with [ s i , e i ) = [5 , 6) and c i = 2 is not placed in a connected manner. 

Moreover, there is no rearrangement of the items that enables representing item 

i = 7 as a single rectangle of size 1 × 2 , without destroying the rectangular struc- 

ture of another item. In particular, this packing would not be feasible for the strip 

packing problem (SPP). (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 

u

o

a

D  

d

e

 

a  

s  

t

E

E

w

t  

{  

o

a

o  

d

R

D  

e

s

t

t

s

w

f  

i

 

 

z

s

x

z

T

u

i

s

t

a

(  

a

f

D

T

l

t

i

t  

c

w  

r

m

E  

c  

t

I

d

more bins than proposed by the lower bound. 
• The statement c i ≤ C holds for all i ∈ I (because the problem 

would become infeasible otherwise). 

Then, the temporal bin packing problem (TBPP) requires to sched- 

le the jobs to a minimum number of servers, so that the capacity 

f any server is respected at any instant of time. To briefly refer to 

 particular TBPP, we introduce the following well-known term. 

efinition 1. A tuple E = (n, C, c , s , e ) , where c , s , and e are n -

imensional vectors collecting the input-data (size, starting time, 

nding time) of the items, is called an instance (of the TBPP). 

Typically, we refer to the set of time instants by T := 

⋃ 

i ∈ I { s i , e i } ,
nd address the set of starting times by T S = 

⋃ 

i ∈ I { s i } . Moreover, the

et I t := { i ∈ I | t ∈ [ s i , e i ) } collects all jobs that are active at time

 ∈ T . 

xample 1. Let us consider the instance 

 0 = (5 , 5 , (2 , 2 , 3 , 2 , 1) , (1 , 2 , 5 , 7 , 12) , (3 , 14 , 10 , 8 , 13)) 

hich is displayed in Fig. 1 and taken from Furini (2011 , Sec- 

ion 3.2). Here, we have T = { 1 , 2 , 3 , 5 , 7 , 8 , 10 , 12 , 13 , 14 } , T S =
 1 , 2 , 5 , 7 , 12 } , and (by way of example) I 7 = { 2 , 3 , 4 } . Note that an

ptimal solution requires two servers. 

Notice that, although the items are visualized as ordinary rect- 

ngles in the “capacity-time plane” in Fig. 1 , in a feasible solution 

f the TBPP they can in fact also be packed in such a way that they

o not represent connected objects, see Fig. 2 for an example. 

emark 1. A similar illustration was already presented in 

ell’Amico et al. (2020 , Fig. 2) to show that the TBPP uses a differ-

nt concept of feasible configurations than, for instance, the SPP. It 

hould be noted that the instance depicted in Fig. 2 is smaller than 

he existing counterexample from the literature, both in terms of 

he number of items and the server capacity. 
557 
Following the structure of Kantorovich-type models for the BPP, 

ee Kantorovich (1939) , a first compact formulation for the TBPP 

as proposed in Dell’Amico et al. (2020) and can be obtained as 

ollows. With K := { 1 , . . . , n } denoting the set of all servers, we can

ntroduce two types of binary variables: 

• We define z k ∈ { 0 , 1 } with z k = 1 if and only if server k ∈ K is

used. 
• We define x ik ∈ { 0 , 1 } with x ik = 1 if and only if item i ∈ I is as-

signed to server k ∈ K. 

Then, we obtain the 

Compact Model for the TBPP (from Dell’Amico et al., 2020 ) 

 

com = 

∑ 

k ∈ K 
z k → min 

.t. 
∑ 

k ∈ K 
x ik = 1 , i ∈ I, (1) 

∑ 

i ∈ I t 
c i x ik ≤ C · z k , t ∈ T , k ∈ K, (2) 

 ik ∈ { 0 , 1 } , i ∈ I, k ∈ K, (3) 

 k ∈ { 0 , 1 } , k ∈ K. (4) 

he objective function minimizes the total number of servers in 

se. Moreover, the two sets of constraints make sure that any job 

s executed precisely once (see (1) ) and that the capacity of the 

ervers is respected at any instant of time (see (2) ). Additionally, 

he latter prevent jobs from being assigned to unused servers at 

ll. 

For a fixed server k ∈ K, it is sufficient to require Conditions 

2) only for all t ∈ T S , since the load on a server can increase only

t precisely these points in time. In fact, we can even go one step 

urther. 

efinition 2 ( Dell’Amico et al., 2020 ) . Let E be an instance of the 

BPP and let t 1 < t 2 ∈ T S follow each other directly in the chrono- 

ogically ordered set T of all time instants. If t 2 is not also an end 

ime, then t 1 is dominated by t 2 . The set of all non-dominated start- 

ng times is referred to as T nd 
S 

⊆ T S . 

In a situation like the one described in the definition, all jobs 

hat are active at t 1 are still active at t 2 , meaning that the asso-

iated capacity condition (2) for t = t 2 contains all the terms that 

ould appear in the constraint for t = t 1 , so that it dominates that

estriction for all k ∈ K. Hence, Constraints (2) only need to be for- 

ulated for the non-dominated starting times. 

xample 2. For our toy instance E 0 , illustrated in Fig. 1 , we con-

lude that T nd 
S 

= { 2 , 7 , 12 } . By way of example, the former element

 1 = 1 ∈ T S is dominated by t 2 = 2 and t 4 = 5 by t 5 = 7 . 

Despite these possible improvements, such assignment-based 

LP models usually have two major drawbacks, which are also evi- 

ent here: 

• The set of feasible solutions is highly symmetric due to permu- 

tations of the server indices. 
• The LP bound coincides with a problem-specific generalization 

of the material bound, that is, � σ/C� where σ = max t∈ T 
∑ 

i ∈ I t c i . 
This bound is known to be rather poor, see Dell’Amico et al. 

(2020 , Property 1) for a general observation and Dell’Amico 

et al. (2020 , Fig. 3) for an exemplary instance needing strictly 
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Due to these disadvantageous properties of the compact model, 

 pattern-based approach has been established in the literature, 

ee Dell’Amico et al. (2020) , with a structure strongly reminiscent 

f the Gilmore-Gomory model of one-dimensional cutting stock 

roblems, see Gilmore & Gomory (1961) . 

efinition 3. Any feasible assignment of jobs to a single server is 

alled a pattern . 

Mathematically, a pattern can be described by an n -dimensional 

ncidence vector a ∈ { 0 , 1 } n (or, equivalently, as a subset U ⊆ I) the

omponents of which contain the information whether item i ∈ I is 

art of the pattern ( a i = 1 ) or not ( a i = 0 ). Hence, the set of pat-

erns for the TBPP is given by 

 := P(E) := 

{ 

a ∈ { 0 , 1 } n | ∑ 

i ∈ I t 
c i a i ≤ C, t ∈ T 

} 

, 

here T can also be replaced by T nd 
S 

. Due to the numerous com-

ination possibilities, the cardinality of this pattern set typically 

rows exponentially with the number n of jobs appearing in an in- 

tance. Let J denote an index set of P , then we can introduce a

ecision variable ξ j ∈ { 0 , 1 } for each pattern j ∈ J , stating whether

t is used ( ξ j = 1 ) or not ( ξ j = 0 ). By that, we obtain the 

Exponential-size Model for the TBPP (from Dell’Amico et al., 

020 ) 

 

exp = 

∑ 

j∈J 
ξ j → min 

.t. 
∑ 

j∈J 
ξ j a 

j 
i 
= 1 , i ∈ I, (5) 

j ∈ { 0 , 1 } , j ∈ J . (6) 

gain, the total number of servers is minimized while ensuring 

hat any job is contained in precisely one pattern used, see Con- 

traints (5) . The exponential-size formulation does not contain any 

ymmetry, and also its LP bound is generally better than that of the 

ompact model presented before, see Dell’Amico et al. (2020 , Prop- 

rty 4). Since the LP relaxation of the exponential-size model can 

e solved efficiently by column generation, the currently best so- 

ution approach for the TBPP, called B&P + , uses a branch-and-price 

lgorithm based on that formulation, see Dell’Amico et al. (2020 , 

ection 6). Before starting the actual (and costly) branch-and-price 

ain procedure, the algorithm first tries to solve a given instance 

xactly using various lower bounds and heuristics. 

• Determining appropriate lower bounds is mainly done by com- 

puting the rounded-up LP values � z exp,� 

LP 
� . 

• During the first phases of the algorithm, the previously deter- 

mined lower bounds are compared with a plethora of heuris- 

tic values. The heuristics used for this comparison are sorted 

by ascending difficulty and complexity. Thus, first an attempt is 

made to prove optimality for a given instance using very simple 

heuristics (e.g., first-fit techniques for the original and the lifted 

instance, see also Boschetti, Hadjiconstantinou, & Mingozzi 

(2002) , Clautiaux, Carlier, & Moukrim (2007) for the general 

concept of lifting ), before moving to successively more sophis- 

ticated procedures culminating in token-based diving heuristics . 

The latter were proposed and discussed intensively in Sadykov, 

Vanderbeck, Pessoa, Tahiri, & Uchoa (2019) and intend to de- 

scend within a small part of the branch-and-bound tree accord- 

ing to a fixed (simple) heuristic rule until a suitable integer fea- 

sible solution is obtained. The value of the token thereby regu- 

lates that the numerically more difficult branching path ξ j = 0 

(i.e., the decision not to use a certain pattern) can be chosen 
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only very rarely. In contrast, the simpler branching path ξ j = 1 

(which allows continuing with a reduced and thus easier TBPP 

by removing the items occurring in the chosen pattern) may be 

used as often as desired. 

Only when these previous techniques could not yet find a 

roven optimal solution for the given instance, the actual branch- 

nd-price procedure is started. Here, the authors deviate from the 

lassical pattern-based branching scheme, i.e. ξ j = 0 vs. ξ j = 1 . In- 

tead, the algorithm uses a branching rule due to Ryan and Foster, 

ee Ryan & Foster (1981) , a strategy that considers several variables 

t once per node and, thus, typically offers rather balanced branch- 

ng trees and a more efficient performance of the overall algorithm. 

or corresponding justifications and further explanations of the in- 

orporation of the additional conditions into the respective sub- 

roblems, we refer to the general explanations in Barnhart, John- 

on, Nemhauser, Savelsbergh, & Vance (1998 , Section 4) as well as 

he problem-specific contributions to the TBPP in Dell’Amico et al. 

2020 , Section 6). 

Altogether, the overall state-of-the-art algorithm B&P + is able 

o solve to proven optimality TBPP instances with up to 500 items 

nd 150 non-dominated starting times, in reasonable computing 

imes, as literally reported in Dell’Amico et al. (2020) . However, not 

ll the benchmark instances can be solved to proven optimality yet. 

. A Combinatorial Flow-based Formulation for the Temporal 

in Packing Problem 

Although there is no graph-theoretical formulation for the TBPP 

n the relevant literature so far, two main concepts for the underly- 

ng TKP could constitute a starting point for further considerations. 

hese approaches each describe layer-based graphs of exponential 

ize, but they differ significantly in how such a layer is constructed. 

ore specifically, the details of these two frameworks are given as 

ollows: 

I) In Caprara et al. (2013 , Section 3.3), a clique-based idea already 

partly outlined in Arkin & Silverberg (1987) is discussed for 

the TKP. In that approach, the number of layers in the graph 

is determined by the number of maximal cliques of the inter- 

val graph belonging to the given instance. We note that there 

is a one-to-one relationship between the non-dominated start- 

ing times, see Definition 2 , and the maximal cliques, implying 

a natural order among the maximal cliques. Moreover, the lat- 

ter can be efficiently determined in polynomial time, see Biedl 

(2005) or Furini (2011 , Algorithm 1) for an implementation 

with O(n 2 ) time. Let us define C 0 := ∅ and V 0 := {∅} to rep-

resent an artificial first layer. For any of the remaining layers, 

consider a fixed maximal clique C l . Then, the basic idea used in 

Caprara et al. (2013) is to define the states (nodes) V l occurring 

in layer l of the graph as all feasible server allocations that can 

be built with the items of C l , i.e., we have 

V l := 

{ 

J ⊆ C l : 
∑ 

i ∈ J 
c i ≤ C 

} 

. 

In other words, V l somewhat collects the “subpatterns” relevant 

for clique C l . For any layer index l ≥ 1 , the arc set E l between

layer l − 1 and layer l is defined as follows: (
J , J 

)
∈ E l ⇐⇒ J ∈ V l−1 , J ∈ V l , J ∩ C l = J ∩ C l−1 . 

This definition particularly implies that both states, J and J , have 

to contain the same items from the set C l−1 ∩ C l , so that, among

others, the artificial source node in C 0 is connected to any node 

of the first layer. It is straightforward to see that there are at 

most O(2 |C l | ) nodes in layer l, so that the overall graph has an

exponential size. 
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II) In Clautiaux et al. (2021) , on the other hand, an event-based ap- 

proach is presented that leads to a graph whose number of lay- 

ers is, by and large, determined by twice the number of items. 

Each of these layers belongs to a particular event, i.e., either 

the start or the completion of a job. In addition, there is an ar- 

tificial last layer (with index 2 n + 1 ), which consists only of a

dummy sink node. In the graph itself, a state is described by a 

triple (e, c, a ) , where e specifies the event and c is the capacity

consumed by pattern a ∈ P . Of course, it is important to note 

that a can only use those items that are consistent with the 

event under consideration. A transition from one state to the 

other can occur exactly when the associated item is picked up 

(at its start time) or released (at its end time). In the first case, 

it must also be checked whether the capacity condition is still 

fulfilled, while the second case requires the completed item to 

be part of the server state before. It is clear that, also for this 

variant, the state space will grow exponentially with the num- 

ber of items. 

Both approaches generally lead to very large graphs, which re- 

ult, among other things, from focusing on the pattern set and/or 

aving to represent each item twice (that is, by two events) during 

raph generation. However, the latter, as well as a certain degree of 

edundancy in the representation of nodes, is necessary for the ap- 

lication of the relaxation techniques presented in Clautiaux et al. 

2021) . 

Therefore, in the following we would like to describe a pos- 

ibility which, on the one hand, avoids redundant information in 

he labels and, on the other hand, leads to significantly smaller 

raphs, although we also put the patterns themselves in the cen- 

er of our construction. In turn, however, our graph will sometimes 

ave multiple arcs between two nodes. Let us start with two mo- 

ivating examples to draw a direct connection to the previous at- 

empts from the relevant literature, before going through the pre- 

ise construction. 

xample 3. We consider again the instance E 0 from Example 1 and 

ollow the idea of Caprara et al. (2013) . First, the instance has three

aximal cliques, namely C 1 = { 1 , 2 } , C 2 = { 2 , 3 , 4 } , and C 3 = { 2 , 5 } ,
o the construction presented in Caprara et al. (2013) will lead to 

 graph consisting of four layers (three for the cliques and one 

ummy layer for the source node). For example, the first actual 

ayer l = 1 contains the states V 1 = { ∅ , { 1 } , { 2 } , { 1 , 2 } } , while V 2 
nd V 3 consist of seven and four elements, respectively. Thus, in to- 

al, the graph has 16 nodes, which are connected by 32 arcs. Given 

ts relatively large size we omit an illustration here, but note that 

ne can be found in Furini (2011 , Fig. 3.3). Looking at this graph

 bit more closely, we see, for example, that the nodes ∅ and { 1 }
rom layer l = 1 are connected to exactly the same four nodes from 

ayer l = 2 (namely, ∅ , { 3 } , { 4 } , and { 3 , 4 } ). Thus, from the point of

iew of the arcs emanating from layer l = 1 , these two states are

o be evaluated as equivalent. This is also not unexpected, because 

t the end of the time interval relevant for clique C 1 , job i = 1 has

lready ended, so that it is irrelevant for the further server uti- 

ization (in the subsequent layers) which of the states ∅ or { 1 }
as once selected in layer l = 1 . Hence, we suggest equipping a

lique-based layer only with one representative per set of equiv- 

lent states (in the sense described before). Of course, then we 

ave to attach the information which items were actually chosen 

o some other component of the graph. For that purpose, we will 

nally add a corresponding label to the arcs and allow multiple 

rcs between the states of two consecutive layers, if required. In 

ig. 3 , the combinatorial arcflow graph for E 0 is depicted. Although 

he precise construction details have not yet been revealed, we see 

hat it contains the same four clique-based layers, but only a to- 

al number of six nodes (illustrated as rectangles with rounded 

orners) and 15 arcs (black lines with rectangular label placed in 
559 
heir center). So, in fact, the arcs of our approach somewhat carry 

he information of the states appearing in Furini (2011 , Fig. 3.3), so 

hat both, the number of nodes and arcs in Fig. 3 , is much smaller

han before. 

xample 4. We highlight that, for the toy instance E 1 := 

3 , 8 , (4 , 4 , 8) , (0 , 1 , 3) , (2 , 4 , 5)) appearing in Clautiaux et al.

2021) , our idea would lead to a graph having three layers (the 

wo maximal cliques are C 1 = { 1 , 2 } and C 2 = { 2 , 3 } ), four nodes,

nd seven arcs, see Fig. 4 . In contrast, the event-based approach 

lso results in a much larger network consisting of seven layers, 15 

odes, and 18 arcs, see Clautiaux et al. (2021 , Fig. 2). 

Already from these examples we can see that our approach will 

ead to a much more efficient representation of the graphs. Al- 

hough, from a theoretical point of view, they still are exponential 

n size, we will observe later in the numerical test calculations (see 

ections 5 and 6 ) that both the generation of these graphs and the 

irect application of an ILP solver to the flow problem belonging 

o it does typically not consume an unreasonable amount of time 

nymore. In other words, for the first time our construction makes 

he exponential size controllable without requiring additional tech- 

iques. 

We would now like to formalize the idea outlined in the previ- 

us examples. To this end, let E be a fixed instance of the TBPP, and

et C := {C 1 , . . . , C m 

} denote the set of its maximal cliques sorted

n increasing order with respect to the associated non-dominated 

tarting times. Moreover, we define two index sets L := { 1 , . . . , m }
nd L 0 := { 0 } ∪ L to refer to the cliques and the layers, respectively.

astly, remember that P represents the set of all feasible patterns 

f E. In a slight abuse of notation, when describing and visualiz- 

ng the ideas of our graph construction we will usually not re- 

er to patterns by their incidence vectors. Instead, to not display 

oo many redundant zero entries, we will make use of the cor- 

esponding subsets J ⊆ I. Since there is a one-to-one relation be- 

ween these two concepts, no harm will arise from statements like 

 ∈ P . 

In our construction of the directed graph G = (V, E ) , any node

ill be referred to as a pair (l, J) with l ∈ L 0 and some J ⊆ I. So,

he first entry contains information about the layer, whereas the 

econd specifies a subset of the items. Similarly, we will define an 

rc by a tuple (l − 1 , l, J) with l ∈ L and some J ⊆ I, thus describing

 transition from layer l − 1 to l caused by J. Note that, whenever 

n arc is concerned, the subset J appearing in the tuple (l − 1 , l, J)

an also be interpreted as a (sub)pattern from 

 l := 

{ 

U ⊆ C l : 
∑ 

i ∈ U 
c i ≤ C 

} 

. 

o initialize the set of nodes, let us define the dummy layer C 0 with

ode set V 0 := { (0 , ∅ ) } . For any l ≥ 1 , we define (in two equivalent

ays) 

 l := { (l, U ∩ C l ∩ C l+1 ) : U ∈ P } = { (l, U ∩ C l+1 ) : U ∈ P l } . 
or the special case l = m (that is, the final layer), we use C m +1 := ∅
n the above definition. So, in fact, V l collects the possible server 

tates at time 

 (l) := max { e i : i ∈ C l \ C l+1 } , 
hat can be observed if only the items exclusive to the set of 

liques C 1 , . . . , C l processed so far are considered. In other words, 

hese are the representative states that have been described in 

xample 3 . Note that, due to the second possibility to define V l ,
e typically do not have to cope with the complete pattern set, 

ut only with P l , so that the total number of vertices does not 

row as fast as in the approaches known from the literature. 
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Fig. 3. The combinatorial arcflow graph for E 0 consisting of four layers, six nodes, and 15 arcs. In contrast to the idea presented in Caprara et al. (2013) , the arc and node 

labels carry some information relevant to the respective clique (so that, in our visualization, both of them are related to the blue background indicating a specific maximal 

clique). For the sake of completeness and to better understand the overall construction process, we depicted the entire pattern set P in any layer, but cancelled out the 

elements that are infeasible because they do not use the items allowed for the respective clique. Those infeasible subpatterns are colored black and do not belong to any 

arc. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The combinatorial arcflow graph for the instance E 1 taken from Clautiaux 

et al. (2021) . 
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Let E l , l ∈ L , denote the set of arcs from layer l − 1 to layer l.

imilar (but not identical) to the approach presented in Caprara 

t al. (2013) and Furini (2011) , there is some arc between two 

odes (l − 1 , J ) ∈ V l−1 and (l, J ) ∈ V l if and only if J ∩ C l+1 = J ∩ C l−1 .

owever, for our network, we have to be more precise, because 

e can have multiple arcs between the same pair of nodes. So, 

he previous definition, in fact, just tells us that there is at least 

ne arc between the two specific nodes, but further information 

s still missing. Hence, we demand that the nodes (l − 1 , J ) ∈ V l−1 

nd (l, J ) ∈ V l are connected if and only if 

 J ∈ P l : J ∩ C l−1 = J , J ∩ C l+1 = J 

olds, and we have to draw a separate arc for any such J. Hence,

ssociated to each arc in E , there is a unique subset of I (in fact, a
l 

560
ubpattern from P l ), called J in the previous definition, so that we 

an use this set to label the arc. As a consequence, we are allowed 

o abstractly refer to an arc by a tuple (l − 1 , l, J) with some J ∈ P l ,

o that the notation introduced earlier is justified. 

emark 2. Note that any pattern J ∈ P corresponds to a unique di- 

ected path from the source node (0 , ∅ ) to the sink node (m, ∅ ) .
ndeed, that path has to use the vertices (l, J ∩ C l ∩ C l+1 ) , l ∈ L 0 ,

nd the arcs (l − 1 , l, J ∩ C l ) , l ∈ L . On the other hand, each path

onnecting the source and the sink node of the network via the 

rcs (0 , 1 , J 1 ) , (1 , 2 , J 2 ) , . . . , (m − 1 , m, J m 

) defines a unique pattern,

amely J = J 1 ∪ . . . ∪ J m 

(or, more accurately, the corresponding in- 

idence vector). 

To conveniently formulate an integer optimization problem, let 

s collect all arcs referring to the bin allocation of item i ∈ I in the

et E(i ) . In other terms, we define 

(i ) := { (l − 1 , l, J) ∈ E : i ∈ J \ C l−1 , l ∈ L } . 
oreover, the arcs entering and leaving a given state (l, J) ∈ V will 

e denoted by E in (l, J) and E out (l, J) , respectively. Now, let us intro-

uce an integer variable ξl −1 ,l ,J ∈ Z + representing the units of flow 

arried by an arc (l − 1 , l, J) ∈ E l , l ∈ L . For the sake of simplicity,

e will always use e to abbreviate the elements contained in a 

pecific set of arcs. Then, we obtain the 

Combinatorial Arcflow Model for the TBPP 

 

comb = 

∑ 

e ∈E out (0 , ∅ ) 
ξe → min 
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.t. 
∑ 

e ∈E in (l, ̃  J ) 

ξe = 

∑ 

e ∈E out (l, ̃  J ) 

ξe , (l, ̃  J ) ∈ V \ { (0 , ∅ ) , (m, ∅ ) } , (7) 

∑ 

e ∈E(i ) 

ξe = 1 , i ∈ I, (8) 

e ∈ Z + , e ∈ E l , l ∈ L. (9) 

he objective function minimizes the total flow traversing the net- 

ork (that is, the number of required servers), while Constraints 

7) ensure the flow conservation at every vertex (except for the 

ource and the sink node). Moreover, Conditions (8) manage that 

very job is executed precisely once. Note that, it is sufficient to re- 

trict the flow to zero or one for most of the arcs. However, there

re some arcs (namely, the arcs (l − 1 , l, ∅ ) , l ∈ L , representing a

ransition from one empty state to the next by means of J = ∅ )
hich can be used by multiple patterns. So, for exactly those arcs 

t is necessary to have integer-valued flow variables. To simplify 

he presentation of the model, here we do not differentiate be- 

ween these two possibilities. 

emark 3. It is important to note that our construction does not 

equire the items to be different in size, since the labelling just 

epends on the item indices. In the special case that items of the 

ame size, in addition, have exactly the same activity interval, it 

ould even be possible to use this information to slightly reduce 

he state space in the graph. Then the graph has to be constructed 

n a way to capture the number of items in each feasible state (in

ddition to their type). The reduction (compared to the original ap- 

roach) comes from the fact that it is not necessary to construct 

ll combinations of identical items. However, since most of the in- 

tances considered later (in Sections 5 and 6 ) either do not contain 

uch “identical” items at all or only a very small number of them 

relative to the total number of items), we will not examine this 

odification further here. 

Now that we have presented and thoroughly explained the 

echnical details of our graph construction, we would like to con- 

lude by briefly discussing another example. In contrast to E 0 and 

 1 , this one was not taken from the literature, but is already de- 

igned in such a way that we can then continue to work with it in

he following section (when fire-ups have to be taken into account, 

oo). 

xample 5. Let us consider the instance E 2 := 

5 , 5 , (1 , 2 , 5 , 2 , 4) , (1 , 2 , 5 , 6 , 9) , (7 , 10 , 6 , 9 , 10)) , see Fig. A.1 in

he appendix for a graphical illustration. The maximal cliques 

re given by C 1 = { 1 , 2 , 3 } , C 2 = { 1 , 2 , 4 } , and C 3 = { 2 , 5 } , so that

 = (V, E ) will consist of four layers, eight nodes, and 16 arcs, see

ig. 5 . For the sake of completeness, in the appendix we also pro-

ide the graphs resulting from the approaches of Clautiaux et al. 

2021) and Caprara et al. (2013) in Figs. A.2 and A.3 , respectively. 

. An Extension to the Temporal Bin Packing Problem with 

ire-ups 

.1. Preliminaries and a Basic Solution Approach 

Minimizing the number of fire-ups and servers required is a 

ery new aspect in the context of energy-efficient job-to-server 

cheduling introduced in Aydin et al. (2020) as the temporal bin 

acking problem with fire-ups (TBPP-FU) . The idea behind this is 

hat not only the infrastructure as such but also its operating mode 

ontributes to the energy consumption of the overall system. Con- 

equently, this optimization problem assumes that servers that are 

emporarily unused can be put into a sleep mode or can be com- 

letely deactivated to save energy. However, such a server must 
561 
hen be switched on again later, at the cost of a so-called fire-up . 

oth objectives are usually addressed by a weighted sum, scaling 

he number of fire-ups by some parameter γ > 0 , in the objective 

unction. This approach is also justifiable from a practical point of 

iew, since both criteria more or less describe an energy consump- 

ion, and we can therefore bundle these objectives in a joint objec- 

ive function. 

efinition 4. A tuple E = (n, C, c , s , e , γ ) where (in addition to the

lready known objects) γ > 0 represents a scaling parameter is 

alled an instance (of the TBPP-FU). 

So far, the TBPP-FU has only been studied with respect to com- 

act formulations. Two of these (called M1 and M2) were already 

uggested in Aydin et al. (2020) , the article introducing this new 

ptimization problem. Due to some serious drawbacks of these for- 

ulations, they were subject of numerous improvements over the 

ast two years, see Martinovic, Strasdat, & Selch, 2021 ; Martinovic 

t al. (2022) . The currently best formulation in the literature, see 

artinovic & Strasdat (2022) , has evolved from the original model 

1. However, to keep the explanations short here we just intro- 

uce the basic version of M1 from Aydin et al. (2020) . In addition

o the classic assignment-based variables (that is, z k and x ik ) al- 

eady known from Section 2 , M1 uses the following two sets of 

ariables to better access the temporal aspects of the problem un- 

er consideration: 

• The decision variables y tk ∈ { 0 , 1 } will be interpreted in the

sense that y tk = 1 represents a positive load on server k at time

t . 
• We use binary variables w tk ∈ { 0 , 1 } to state whether server k ∈

K was activated at time t ∈ T S . 

Then, we obtain the 

Assignment Model 1 (M1, original version from Aydin et al., 

020 ) 

 

(1) = γ ·
∑ 

k ∈ K 

∑ 

t∈ T S 
w tk + 

∑ 

k ∈ K 
z k → min 

.t. y tk ≤
∑ 

i ∈ I t 
c i · x ik ≤ y tk · C, k ∈ K, t ∈ T , (10) 

∑ 

k ∈ K 
x ik = 1 , i ∈ I, (11) 

 ik ≤ y s i ,k , i ∈ I, k ∈ K, (12) 

 tk ≤ z k , k ∈ K, t ∈ T , (13) 

 tk − y t−1 ,k ≤ w tk , k ∈ K, t ∈ T S , (14) 

 ik ∈ { 0 , 1 } , i ∈ I, k ∈ K, (15) 

 tk ∈ { 0 , 1 } , k ∈ K, t ∈ T , (16) 

 tk ≥ 0 , k ∈ K, t ∈ T S , (17) 

 k ∈ { 0 , 1 } , k ∈ K. (18) 

he objective function collects the number of fire-ups (first sum) 

nd the number of servers (second sum) and has to be minimized. 
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Fig. 5. The combinatorial arcflow graph for E 2 from Example 5 . 
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hile Conditions (11) already appeared in the TBPP scenario, Con- 

traints (10) manage that the capacity is respected whenever the 

onsidered server is active at the moment. In addition, Restrictions 

12) –(14) are responsible for linking the different variable types 

onsistently. Without going further into details, we mention that, 

eanwhile, this original version of M1 was improved by several 

eneral and problem-specific techniques like symmetry reduction, 

ifting, valid cuts, and heuristic-based information, see Martinovic 

 Strasdat (2022) , Martinovic, Strasdat, & Selch, 2021 , Martinovic 

t al. (2022) . 

.2. A Combinatorial Flow Formulation for the TBPP-FU 

In the TBPP-FU a fire-up occurs if a server is used for the first 

ime or if it is reactivated after it became inactive at some point 

ack in time. So, basically, a fire-up should be registered whenever 

 server leaves the empty state. However, we cannot simply use 

he network introduced for the TBPP, because the new main chal- 

enge for our graph-theoretic approach is that no fire-up is neces- 

ary, if another jobs starts exactly at the time when a server in- 

ends to get empty. This means that it is necessary to differenti- 

te between two possible empty states to count fire-ups correctly. 

ore precisely, our construction will be based on a true empty state 

shutdown), called ∅ , and an artificial empty state (possible imme- 

iate resumption of activity), called ∅ A . 
Before discussing the necessary changes in our graph construc- 

ion, we have to identify in which situation the introduction of an 

dditional empty state (in a specific layer) is mandatory. To this 

nd, note that a server can only go into the artificial empty state if 

he last active job (on that server) runs exactly until another new 

ob starts. Otherwise, the server is actually turned off and returns 

o the true empty state. To define the states accurately, we intro- 

uce the following notation for any clique C l , l ∈ L : 

s (l) := min { s i : i ∈ C l \ C l−1 } , 
 (l) := max { e i : i ∈ C l \ C l+1 } . 
ote that the second one already briefly appeared in Section 3 , 

ut we think mentioning it again will help to remember its mean- 

ng within the following constructions. From a descriptive point of 

iew, s (l) is the earliest starting time of jobs that are introduced 

n C l , whereas e (l) refers to the latest ending time of jobs that are

ompleted in C l . This means that a node representing the artifi- 

ial empty state has to exist in layer l, l ∈ L \ { m } , if and only if

 (l) = s (l + 1) holds. 
562 
xample 6. For the instance E 2 from our previous example, we ob- 

ain the arcflow graph depicted in Fig. 6 , if the TBPP-FU is consid- 

red. 

Even if the essential differences to the graph generation of the 

BPP have already been summarized, we would now like to discuss 

he formal definitions of the node and arc sets in more detail. To 

etter distinguish between standard and artificial objects, we in- 

roduce additional tags in the description for both the states and 

he transitions. More precisely, we let V S 
l 

, l ∈ L 0 , and V S denote the

et of standard nodes, i.e., these are the vertices which already ap- 

eared in the TBPP graph from Section 3 . In addition, we define 

 

A := { (l, ∅ A ) : l ∈ L \ { m } , e (l) = s (l + 1) } 
o refer to the artificial empty states, whenever they are required 

n the respective layer of the graph. Of course, the set of all nodes 

s then given by V := V S ∪ V A . 
To correctly reconstruct the fire-ups later, it is convenient to at- 

ach an additional fourth component to the description of an arc. 

irst of all, we again have a set E S of standard arcs between two 

on-artificial states which can be inherited from the TBPP graph, 

ee Section 3 . However, any such arc is now referred to as a 4-

uple (l − 1 , l, J, S) , where the tag ‘S’ refers to ‘standard’. Similarly,

ny arc involving an artificial state can be assigned to one of the 

ollowing three groups: 

 

A ← := 

{
(l − 1 , l, J, ← ) : l ∈ L, J ∈ P l , max 

i ∈ J 
{ e i } = s (l + 1) 

}
, 

 

A → := 

{
(l − 1 , l, J, → ) : l ∈ L, J ∈ P l , min 

i ∈ J 
{ s i } = e (l − 1) 

}
, 

 

A ↔ := 

{
(l − 1 , l, J, ↔ ) : (l − 1 , l, J, → ) ∈ E A → 

and (l − 1 , l, J, ← ) ∈ E A ← 

}
. 

e define the set of all arcs as E := E S ∪ E A ← ∪ E A → ∪ E A ↔ . The

ew types of arcs represent the following transitions. 

• An arc (l − 1 , l, J, ← ) ∈ E A ← connects a state in V S 
l−1 

(namely,

the state belonging to J ∩ C l−1 ) to the subsequent artificial 

empty state (l, ∅ A ) ∈ V A . This corresponds to a server which

would get empty at time s (l + 1) , but could continue execution 

if a suitable job is assigned. 
• Similarly, an arc (l − 1 , l, J, → ) ∈ E A → starts in the artificial

empty state (l − 1 , ∅ A ) ∈ V A and goes to a state in V S 
l 

(namely,
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Fig. 6. The combinatorial arcflow graph for the TBPP-FU and the instance E 2 . 
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the state belonging to J ∩ C l ). In this transition, a server which

got empty recently is directly reactivated (without requiring a 

fire-up). 
• An arc (l − 1 , l, J, ↔ ) ∈ E A ↔ connects one artificial empty state

(l − 1 , ∅ A ) ∈ V A to the subsequent artificial empty state (l, ∅ A ) ∈
V A (via the subpattern J ∈ P l ). In fact, this transition is a com-

bination of the previous ones. 

emark 4. For the instance E 2 dealt with in Section 3 , we obtain

he following sets of non-standard arcs 

 

A ← = { (0 , 1 , { 3 } , ← ) , (1 , 2 , { 1 , 4 } , ← ) , (1 , 2 , { 4 } , ← ) } , 
 

A → = { (1 , 2 , { 4 } , → ) , (2 , 3 , { 5 } , → ) } , 
 

A ↔ = { (1 , 2 , { 4 } , ↔ ) } , 
hich can also be found in Fig. 6 . Note that extending the repre-

entation of arcs to 4-tuples is indeed necessary, because in our 

xample there are four different scenarios to move from layer l = 1 

o layer l = 2 via the subpattern J = { 4 } , but the arcs (1 , 2 , { 4 } , → ) ,

1 , 2 , { 4 } , ↔ ) do not contribute to a fire-up. 

A potential issue with our definition of the states is that there 

s no longer a one-to-one relationship between patterns (i.e., the 

lements of P) and directed paths in the graph. As in the TBPP 

ase, we still have that each path from the source to the sink cor- 

esponds to a feasible pattern, but there may be different paths 

eading to the same pattern, in general. More precisely, this is the 

ase if the set V A is nonempty. In particular, for any path which 

oes through some artificial empty state (l, ∅ A ) ∈ V A , there is an-

ther path using the node (l, ∅ ) ∈ V S instead and ends up with the

ame pattern, see Fig. A.4 in the appendix for an example. The nec- 

ssary arcs for this replacement must exist by the definition of the 

raph. As regards our optimization model, however, this ambiguity 

s typically not problematic since a path through an artificial empty 

tate is preferred over the equivalent path using a true empty state 

ecause of the fire-up costs γ > 0 . 

For the purpose of a preferably convenient modeling, we again 

et E(i ) denote the set of all arcs which represents the starting of 

ob i ∈ I. Moreover, with κ acting as a generic tag symbol, we spec-

fy the incoming and outgoing arcs of some node (l, ̃  J ) ∈ V as fol-
563 
ows: 

 

in (l, ̃  J ) := 

⎧ ⎨ ⎩ 

{
(l − 1 , l, J, κ) ∈ E : J ∩ C l = ̃

 J , 

κ ∈ { S, →} } if ( l, ̃  J ) ∈ V S , 
{ ( l − 1 , l, J, κ) ∈ E : κ ∈ {← , ↔} } if ( l, ̃  J ) = ( l, ∅ A ) ∈ V A . 

 

out (l, ̃  J ) := 

⎧ ⎨ ⎩ 

{
(l, l + 1 , J, κ) ∈ E : J ∩ C l+1 = ̃

 J , 

κ ∈ { S, ←} } if ( l, ̃  J ) ∈ V S , 
{ ( l, l + 1 , J, κ) ∈ E : κ ∈ {→ , ↔} } if ( l, ̃  J ) = ( l, ∅ A ) ∈ V A . 

he main difference to the previous combinatorial flow model is 

hat we have to correctly perceive the fire-ups. To this end, we 

ake use of set 

 

F U := { (l − 1 , l, J, κ) ∈ E : l ∈ L, J � = ∅ , J ∩ C l−1 = ∅ , κ ∈ { S, ←} } . 
n other words, a fire-up has to be counted when connecting the 

rue empty state with some other state via a standard arc (with 

ag ‘S’) corresponding to some pattern J � = ∅ or, alternatively, with 

n artificial empty state via an arc from E A ← . In particular, the first 

ossibility also takes care of recognizing the first activation of a 

erver. 

With all these ingredients at hand, we can introduce integer 

ariables ξl −1 ,l ,J,κ ∈ Z + denoting the units of flow carried by arc 

l − 1 , l, J, κ) ∈ E l , l ∈ L . Then, we obtain the 

Combinatorial Arcflow Model for the TBPP-FU 

 

comb = 

∑ 

e ∈E out (0 , ∅ ) 
ξe + γ ·

∑ 

e ∈E FU 

ξe → min 

.t. 
∑ 

e ∈E in (l, ̃  J ) 

ξe = 

∑ 

e ∈E out (l, ̃  J ) 

ξe , (l, ̃  J ) ∈ V \ { (0 , ∅ ) , (m, ∅ ) } , (19) 

∑ 

e ∈E(i ) 

ξe = 1 , i ∈ I, (20) 

e ∈ Z + , e = (l − 1 , l, J, κ) ∈ E l , l ∈ L. (21) 

n fact, the general form and the interpretation of the constraints 

id not change when moving from the TBPP to the TBPP-FU. The 

nly considerable difference is that the objective function now also 

ontains a sum collecting the fire-up terms. 



J. Martinovic, N. Strasdat, J. Valério de Carvalho et al. European Journal of Operational Research 307 (2023) 554–574 

5

5

C

p

 

 

 

 

R

C

|  

i  

t

a

t

D

t

M

i

c

T

a

s

o

a

o

5

n

m

a

a

e

t

t

C

R

a

c

f  

p

D  

i

m

i

a

e

b

p

t

n

R

t

b

e  

C

t

r

i

d

s

(  

t

t

t

a

o  

fi

s

“

s

t  

C

e

c

C

i

o

. Numerical Tests: Preliminaries 

.1. Computational Environment and Test Instances 

In the literature, the following benchmark sets (referred to as 

ategory (A) and Category (B) ) have been described for the two 

roblems under consideration: 

(A) In Aydin et al. (2020 , Section 5), the authors suggested 48 

differently characterized groups of 5 instances each, forming 

a set of 240 instances in total. All instances share the values 

C = 100 , γ = 1 , but any two groups differ in precisely one of

the criteria: 
• number of items: n ∈ { 50 , 100 , 150 , 200 , 500 , 1000 } , 
• time horizon: dense scenario ( ̄s := max i ∈ I { s i } = n ) vs. re-

laxed scenario ( ̄s = 1 . 2 n ), 
• job duration: short (’ d S ’) vs. long (’ d L ’), 
• capacity consumption: low (’ c L ’) vs. high (’ c H ’). 

For the precise construction, we refer the interested reader 

to the aforementioned publication. From the input data, we 

can see that there is a wide range of possible values, espe- 

cially with respect to the number of jobs, and these can be 

used to further decompose (A) into two subcategories: 

(A1) In this subset, we would like to summarize those 160 in- 

stances with values n ≤ 200 . Those instances have been 

tackled and (partially) solved in Aydin et al. (2020) us- 

ing exact approaches, and they are also used in the ar- 

ticles dealing with improved compact formulations, see 

Martinovic, Strasdat, & Selch, 2021 , Martinovic et al. 

(2022) . 

(A2) In this subset, we would like to gather the 80 sig- 

nificantly more difficult instances with n ∈ { 50 0 , 10 0 0 } .
These have been treated in the literature so far exclu- 

sively with heuristic methods, see Aydin et al. (2020) , so 

no information about optimal solutions is available. 

(B) In Dell’Amico et al. (2020 , Section 7) the authors introduced 

a set of 1500 instances with C = 100 , originating from an 

earlier investigation of the TKP in Caprara et al. (2013) . In 

contrast to Category (A), the range of the item sizes is not 

that restricted, and the main input parameter is given by the 

number of non-dominated starting times (maximal cliques). 

More precisely, for any | T nd 
S 

| ∈ { 10 , 20 , 30 , . . . , 150 } a set of

100 instances (divided into ten classes called I-X) is consid- 

ered. Any class is described by a parameter a denoting the 

average number of items per clique, and a parameter b in- 

fluencing the job duration. So, the higher the a -parameter 

or the lower the b-parameter of an instance, the more jobs 

will have to be assigned in total. The full details of that con- 

struction can be found in Dell’Amico et al. (2020) . Here, we 

just highlight that Classes VI and IX possess relatively small 

b-parameters, whereas Classes VIII-X exhibit relatively large 

values of the a -parameter, so these classes contain the more 

challenging instances. 

emark 5. For the sake of completeness, it should be noted that 

ategory (B) also contains two sets of 100 instances each with 

 T nd 
S 

| ∈ { 5 , 15 } . However, according to the experiments conducted

n Dell’Amico et al. (2020) , we will not make use of these (rela-

ively easy) instance sets. 

In the following subsections, we compare our combinatorial 

rcflow approach with the best known solution methods from 

he literature. To recapitulate, we have the B&P + algorithm from 

ell’Amico et al. (2020) for the TBPP and a compact model for 

he TBPP-FU (originating from the formulation M1) presented in 

artinovic & Strasdat (2022) . Following the relevant literature, the 

nstances of Category (B) will be used for both problems under 
564 
onsideration, whereas Category (A) is exclusive to the TBPP-FU. 

he new flow-based approach is coded in Python (version 3.10.1) 

nd solved by Gurobi (version 9.5) on an AMD A10-5800K proces- 

or with 16 GB RAM. Unless stated otherwise, we use a time limit 

f 30 minutes. However, especially for some very large instances 

ppearing in Subsect. 6.3 , we will also perform computations with- 

ut any time limit. 

.2. Structural Comparison of the Graph-based Approaches 

Before dealing with the concrete numerical performance of our 

ew approach, we would like to study its general applicability in 

ore detail. This is done in particular against the background of 

llowing a comparison to the approaches from the literature, but 

lso to show that the exponential size of the network, which still 

xists (in theory), now appears to be much more controllable. To 

his end, we collected the average size of the three graphs (in 

erms of nodes and arcs) for two representative instance sets from 

ategory (B) in Table 1 . 

emark 6. To give some more information about the instances, we 

lso list the average size of the cliques |C l | a v g (i.e., the items per 

lique) and the average total number of items | I| a v g . Note that, ef- 

ectively, the first value is identical to the mean value of the a -

arameter used to construct the instance class in Category (B), see 

ell’Amico et al. (2020) for the details. Later, in Table 5 , the same

nformation will be shown for Category (A) as well. 

We clearly see that combinatorial arcflow (termed ‘CAF’) is 

uch smaller than the two competitors from the literature. Hav- 

ng a look at the average numbers of states and transitions, there 

re remarkable savings of between 85 and 90% compared to the 

vent-based graph presented in Clautiaux et al. (2021) . A similar, 

ut not to the identical degree superior, result is obtained in com- 

arison with the layer-based idea from Caprara et al. (2013) . Here, 

he reduction in terms of nodes is slightly above 37% , whereas the 

umber of arcs decreases by almost 60% . 

emark 7. An interesting side aspect is given by the observation 

hat, as a direct consequence of the construction itself, the num- 

er of nodes in the approach from Caprara et al. (2013) is almost 

qual to the number of arcs in CAF. In fact, only the source node of

aprara et al. (2013) does not appear as an arc in our implementa- 

ion. 

To also obtain a rough impression of the numerical data with 

espect to other parameter values of | T nd 
S 

| or the specific class 

ndex, in addition to the representative numbers in Table 1 , we 

isplay the normalized arc numbers (i.e., the value |E| of CAF is 

caled to 1) of Category (B) for the approaches from Caprara et al. 

2013) and Clautiaux et al. (2021) in Fig. 7 . This is of particular in-

erest because the number of arcs is identical to the number of in- 

eger variables in the ILP model and, thus, significantly determines 

he solution effort s. First, it is noticeable that after initial fluctu- 

tions, a relatively constant ratio is obtained for increasing values 

f | T nd 
S 

| . We attribute this to the fact that the construction of a

xed instance class, independent of | T nd 
S 

| itself, always follows the 

ame principle, and, therefore, basic structural properties (like the 

density” of the arcs between the layers) of the graphs are pre- 

erved for each of the three approaches. It can be further seen 

hat even for values of | T nd 
S 

| other than those studied in Table 1 ,

AF achieves a large saving over the networks from the literature, 

specially compared to Clautiaux et al. (2021) . The effect varies by 

lass and is particularly pronounced, then also in comparison with 

aprara et al. (2013) , for Classes VI and IX, which have the most 

tems (see Table 1 ) and are, thus, particularly challenging. 

However, all these observations are pointless if the generation 

f the still exponentially large network alone takes too much time 
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Table 1 

The average number of nodes and arcs (in units of 10 3 ) for three different arcflow graphs: the event-based version from Clautiaux et al. (2021) , the 

layer-based variant from Caprara et al. (2013) , and combinatorial arcflow (’CAF’) presented in this work. For the sake of exposition, we just consider two 

representative sets of instances from Category (B). 

number of nodes ( |V| ) number of arcs ( |E| ) 
| T nd 

S | Class |C l | a v g | I| a v g Clautiaux et al. (2021) Caprara et al. (2013) CAF Clautiaux et al. (2021) Caprara et al. (2013) CAF 

50 I 10.0 59.0 4.7 2.5 1.9 5.2 3.2 2.4 

II 15.0 97.0 20.1 6.7 4.9 22.0 10.1 6.7 

III 20.0 110.0 33.3 9.8 7.5 35.6 14.0 9.8 

IV 25.0 139.1 113.0 26.9 19.6 120.4 41.6 26.9 

V 30.0 161.2 214.1 45.0 32.6 226.5 70.0 45.0 

VI 30.0 339.7 424.7 48.8 22.2 451.4 208.6 48.8 

VII 30.0 161.8 209.2 42.9 31.4 220.7 66.9 42.9 

VIII 30.0 213.5 330.0 49.6 30.4 349.3 93.9 49.6 

IX 29.9 354.4 442.4 46.8 20.9 468.3 208.7 46.8 

X 34.9 231.3 436.4 62.3 40.8 457.9 114.2 62.3 

Average 25.5 186.7 222.8 34.1 21.2 235.7 83.1 34.1 

100 I 10.0 109.0 8.5 4.6 3.7 9.5 6.1 4.6 

II 15.0 181.0 39.0 13.4 9.8 42.7 20.5 13.4 

III 20.0 201.3 61.6 18.6 14.4 65.9 26.6 18.6 

IV 25.0 255.1 209.4 51.0 37.2 223.2 79.1 51.0 

V 30.0 294.0 354.2 75.3 54.8 374.8 118.5 75.3 

VI 30.0 657.1 760.8 87.8 40.7 808.0 375.2 87.8 

VII 30.0 295.6 371.4 78.1 57.4 392.1 122.5 78.1 

VIII 30.0 402.5 630.3 96.7 60.5 666.6 181.8 96.7 

IX 30.1 689.9 872.8 92.1 41.1 923.9 422.3 92.1 

X 35.0 432.3 982.4 140.7 91.2 1032.0 258.0 140.7 

Average 25.5 351.8 429.0 65.8 41.1 453.9 161.0 65.8 

Fig. 7. Number of arcs (normalized to CAF) for the networks presented in Caprara et al. (2013) and Clautiaux et al. (2021) for the ten classes belonging to Category (B). The 

horizontal axis represents the parameter | T nd 
S | of the instances. 
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o be able to solve it subsequently. To reject this possible criticism 

s well, we list the average times to generate the graph (includ- 

ng the corresponding ILP model for the TBPP) in Table 2 . Given 

his data and the time limit of 30 minutes, it can be stated that 

he construction of the graph generally requires only a relatively 

mall amount of time, even for larger instances, and thus the ILP 

odel can be easily passed to a solver. We also point out that with

ther programming languages, even shorter runtimes could be ex- 

ected for model generation, because the performance of statically 

yped, compiled languages is typically much better (compared to 

ython). 
565 
emark 8. It is interesting to note that it does not matter which of 

he networks (TBPP or TBPP-FU) is considered. The times to gen- 

rate the graphs (and the corresponding ILP formulation) are very 

lose to each other, because there is only a tiny difference with 

espect to the number of nodes and arcs between the two frame- 

orks. Since this argument should be clear from the constructions 

escribed in the previous sections, in Tables 1 and 2 we do not 

ntend to provide additional data for the case of the TBPP-FU. 

As a conclusion of this subsection, we would like to summa- 

ize that our graph is, in fact, much smaller than the previous 
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Table 2 

The average time (in seconds) to construct the CAF network (and the associated ILP). 

| T nd 
S | 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

I 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 

II 0.1 0.2 0.3 0.5 0.6 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.6 1.7 1.9 

III 0.1 0.3 0.5 0.7 0.9 1.0 1.2 1.3 1.6 1.7 1.9 2.2 2.6 2.8 3.1 

IV 0.5 1.0 1.3 2.0 2.5 3.0 3.4 3.8 4.3 4.8 5.4 5.8 6.4 6.6 7.0 

V 0.7 1.4 2.3 3.5 4.3 4.8 5.4 6.0 6.5 7.1 8.2 9.1 9.9 10.7 11.4 

VI 0.7 1.3 2.1 2.8 3.7 4.4 5.0 5.6 6.3 6.9 7.7 8.7 9.3 10.2 11.0 

VII 1.0 1.8 2.6 3.3 4.1 4.7 5.5 6.2 6.9 7.5 8.5 9.2 10.0 10.9 11.9 

VIII 0.7 1.5 2.2 3.3 4.3 5.3 6.5 7.2 8.0 8.7 9.8 10.3 11.1 12.2 12.8 

IX 0.5 1.3 2.2 2.8 3.6 4.3 4.9 5.5 6.4 7.2 7.9 8.8 9.3 9.8 10.5 

X 1.1 2.1 3.4 4.5 6.0 7.2 8.7 10.1 11.2 13.0 14.5 15.9 17.7 20.1 21.9 

Average 0.6 1.1 1.7 2.3 3.0 3.6 4.2 4.7 5.3 5.8 6.6 7.2 7.8 8.6 9.2 

Table 3 

Numerical comparison (for the TBPP) between CAF and the best solution approach 

from the literature, that is, B&P + from Dell’Amico et al. (2020) , for Category (B) 

(ordered by number of non-dominated starting times). 

CAF with t max = 1800 s Dell’Amico et al. (2020) with t max = 3600 s 

| T nd 
S | t opt t opt 

10 0.4 (100) 2.0 (100) 

20 1.4 (100) 5.2 (100) 

30 2.5 (100) 9.3 (100) 

40 3.7 (100) 15.7 (100) 

50 6.9 (100) 27.9 (100) 

60 10.0 (100) 63.9 (100) 

70 15.7 (100) 115.1 (100) 

80 16.5 (100) 132.6 (100) 

90 20.4 (100) 151.8 (99) 

100 23.9 (100) 168.8 (99) 

110 26.7 (100) 218.0 (98) 

120 30.7 (100) 237.9 (99) 

130 38.6 (100) 432.9 (94) 

140 40.2 (100) 475.1 (92) 

150 51.5 (100) 559.4 (90) 

Average 19.3 (1500) 174.4 (1471) 
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Table 4 

Numerical comparison (for the TBPP) between CAF and the best solution approach 

from the literature, that is, B&P + from Dell’Amico et al. (2020) , for Category (B) 

(ordered by instance classes). 

CAF with t max = 1800 s Dell’Amico et al. (2020) with t max = 3600 s 

Class t opt t opt 

I 0.2 (150) 0.6 (150) 

II 2.0 (150) 9.4 (150) 

III 1.8 (150) 8.1 (150) 

IV 25.3 (150) 60.1 (150) 

V 49.0 (150) 396.0 (146) 

VI 11.1 (150) 214.7 (146) 

VII 48.9 (150) 248.7 (147) 

VIII 17.7 (150) 223.9 (144) 

IX 10.6 (150) 82.3 (147) 

X 26.2 (150) 500.3 (141) 

Average 19.3 (1500) 174.4 (1471) 
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A

pproaches from the literature, and its generation takes only a rel- 

tively short time (especially measured against the available time 

imit). The graph we present is therefore very well suited to be 

sed for an exact solution by ILP solvers. The corresponding results 

btained from numerical computations involving the benchmark 

ets presented before will be documented and discussed in the 

ollowing subsections. 

. Numerical Tests: Solving Benchmark Instances with CAF 

.1. Numerical Results for the TBPP 

As mentioned in Section 2 , currently the best method for solv- 

ng TBPP instances is the B&P + algorithm developed in Dell’Amico 

t al. (2020) . This approach has already been able to solve the vast 

ajority of the 1500 TBPP-specific benchmark instances (that is, 

ategory (B)) in reasonable time. However, there are still 29 of 

hese instances – all of which having | T nd 
S 

| ≥ 90 and originating 

xclusively from the Classes V-X – where no proven optimal so- 

ution was found. To this end, in Tables 3 and 4 we copied the

esults of the previous state of the literature (so, the mean run- 

ing times and number of optimal solutions reported in Dell’Amico 

t al., 2020 ), and compare them with the performance of CAF. We 

ote that in Dell’Amico et al. (2020) a time limit of one hour was

sed. 

We see that CAF can now solve every single instance, typically 

equiring significantly less computation time in each of the subsets 

f instances considered in the tables. Looking at the averages over 
566 
ll instances (in the last row), we observe a reduction in computa- 

ion time of almost 90 % , which on closer inspection, for example, 

ecomes even larger for particularly challenging choices of the pa- 

ameter | T nd 
S 

| , see Table 3 . On the other hand, we also note that for

ome of the more difficult instance classes, such as Classes VI, VIII, 

nd X, there are still much more remarkable performance gains of 

p to roughly 95 % , see Table 4 . By way of example, for Class VI we

lready saw in Fig. 7 that, compared to the large number of items, 

AF leads to a particularly small graph representation, so that the 

onvincing performance noticed in Table 4 is consistent with the 

revious results. 

emark 9. We note that the tabulated computation times for CAF 

re only the pure solution times of the ILP solver. However, this 

oes not distort the previous statements in any way, as we have 

een in Table 2 how small the modeling times turn out to be de- 

pite the exponential size. So, even if we added these times to the 

verage values of the solution time, we would still observe a clear 

ictory of CAF for each considered subset. 

A somewhat more detailed overview of both solution methods 

s shown in a performance profile, see Fig. 8 . This illustration dis- 

lays the percentage of optimally solved instances over time, and 

t reveals that, apart from a small interval around a computation 

ime of one second, CAF is strictly better than B&P + at any point 

n time. 

.2. Numerical Results for the TBPP-FU 

Since we are now able to solve any known benchmark instance 

or the TBPP in a short time with the help of our new approach, we

ould now like to turn to the somewhat more complex TBPP-FU. 

t the beginning, we note that we have added the lower bound 
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Fig. 8. Performance profile for the comparison of CAF and B&P + from Dell’Amico et al. (2020) applied to Category (B). 
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LP 
� for the number of servers in use to the model from

ection 4 by requiring ∑ 

 ∈E out (0 , ∅ ) 
ξe ≥ h and 

∑ 

e ∈E FU 

ξe ≥ h. (22) 

bserve that this bound can be obtained in relatively short time by 

olving the LP relaxation of the ordinary TBPP, and therefore it al- 

eady appeared in any of the compact models on the TBPP-FU pro- 

osed in the literature 2 . Despite numerous improvements of these 

ompact formulations, only about two thirds of the 160 classical 

est instances from Category (A1) could be solved to proven opti- 

ality so far. Currently, the most successful approach is a model of 

1-type, see Section 4 , whose final variant was recently presented 

n Martinovic & Strasdat (2022) . The results listed in Table 5 con- 

ain the following main information: 

• CAF can solve any single benchmark instance from Category 

(A1). Moreover, the solution times are (almost) always much 

better than reported in Martinovic & Strasdat (2022) . Having a 

look at the overall average, we see that the solution time has 

reduced by more than 90 % again. 
• Since we have so far collected only exemplary model genera- 

tion times for instances of Category (B), Table 5 also contains 

the respective average values t mod for the instances consid- 

ered here. It is again noticeable that these generation times are 

much smaller than the available time limit (and, thus, accept- 

able). Except for some very easy instance classes with a rather 

small number of items, where the time required for both for- 

mulations is in the very low seconds range, CAF wins the com- 
2 To be more precise, the lower bound on the number of servers (that is, the 

rst inequality from (22) ) directly appears in any compact formulation from the 

iterature, whereas the lower bound on the number of fire-ups (that is, the sec- 

nd inequality from (22) ) is implicitly imposed by means of valid inequalities, see 

artinovic, Strasdat, & Selch (2021) . The important overall message, then, is that 

AF has no advantage based on modeling by adding the lower bounds presented in 

22) . 

m

e

n

567 
parison with the compact formulation (generally clearly) even 

when the modeling times are taken into account. 
• For some of the (d S , c H ) scenarios, we see that t mod ≈ t or even

t mod > t holds for CAF. However, as can be observed from the 

comparison with t mod of other parameter configurations, this is 

not an indication of a disproportionately large modeling time. 

In fact, in these scenarios, the graph has many cliques of rather 

small cardinality (since the job durations are short), together 

with relatively few feasible patterns (since many items are in- 

compatible) and, consequently, a somewhat small number of 

arcs. Thus, the optimization problems obtained for CAF gener- 

ally have the fewest variables and can therefore be solved par- 

ticularly fast. We will come back to this point with more details 

later in Table 8 . 
• In particular, those instances where there are many possible 

item combinations (i.e., the constellation (d L , c L ) ) proved to be 

very difficult or even intractable for all the compact formula- 

tions, see Martinovic et al. (2022) . In contrast, CAF can also 

solve the hardest subsets of these instances to proven optimal- 

ity in less than ten minutes on average. However, we clearly 

see, especially when compared to the computation times of the 

ordinary TBPP reported in Table 3 , that these are indeed already 

somewhat more challenging instances even for CAF. This is be- 

cause, with such a large number of possible temporal interac- 

tions between the items, the maximal cliques generally consist 

of many different items and, thus, the number of nodes (as well 

as, implicitly, the number of arcs) increases considerably com- 

pared to other parameter constellations. Therefore, the model- 

ing time is by far the largest for these instance groups, and the 

relatively large flow-based ILP to be solved then also requires 

some noticeable computation times. 

Typically, another advantage of flow models over compact for- 

ulations is given by a substantially better LP bound, see de Lima 

t al. (2022a) . Here, too, for Category (A1) a corresponding domi- 

ance relation can be manifested empirically in Table 6 . However, 
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Table 5 

Numerical comparison (for the TBPP-FU) between CAF and the best solution approach from the 

literature, that is, a compact M1-type model from Martinovic & Strasdat (2022) , for Category (A1). 

In addition to the pure solution times, we also report about t mod , the time to build the network 

and the corresponding ILP formulation. Moreover, the average clique size |C l | a v g is given. 

CAF Martinovic & Strasdat (2022) 

n s̄ d i c i |C l | a v g t mod t opt t opt 

50 50 d S c L 21.1 1.0 1.6 (5) 4.0 (5) 

c H 18.7 0.2 0.1 (5) 1.3 (5) 

d L c L 33.6 1.7 0.8 (5) 360.8 (4) 

c H 34.9 0.5 0.1 (5) 0.5 (5) 

60 d S c L 16.8 0.6 0.9 (5) 1.2 (5) 

c H 17.4 0.3 0.2 (5) 1.7 (5) 

d L c L 33.2 2.0 1.2 (5) 11.2 (5) 

c H 30.9 0.5 0.1 (5) 0.6 (5) 

Average (Sum) 25.8 0.9 0.6 (40) 47.7 (39) 

100 100 d S c L 20.0 2.1 4.2 (5) 3.6 (5) 

c H 20.1 0.7 0.3 (5) 78.6 (5) 

d L c L 38.6 10.9 78.2 (5) 1449.8 (1) 

c H 39.1 3.0 1.7 (5) 1092.9 (2) 

120 d S c L 16.9 1.3 3.1 (5) 85.3 (5) 

c H 16.6 0.5 0.3 (5) 83.6 (5) 

d L c L 31.1 5.6 13.7 (5) 685.9 (4) 

c H 32.7 1.7 0.7 (5) 546.9 (4) 

Average (Sum) 26.9 3.2 12.8 (40) 503.3 (31) 

150 150 d S c L 19.5 3.2 13.2 (5) 85.7 (5) 

c H 20.1 1.0 0.6 (5) 1464.1 (1) 

d L c L 39.6 18.9 177.1 (5) 1462.2 (1) 

c H 38.5 4.2 4.2 (5) 1372.0 (2) 

180 d S c L 16.7 2.1 8.0 (5) 37.2 (5) 

c H 17.0 0.9 0.4 (5) 853.9 (3) 

d L c L 33.4 13.0 175.1 (5) 1198.4 (3) 

c H 32.9 3.0 2.2 (5) 1494.0 (1) 

Average (Sum) 27.2 5.8 47.6 (40) 995.9 (21) 

200 200 d S c L 20.4 5.1 47.1 (5) 99.2 (5) 

c H 19.8 1.5 1.6 (5) 1800.0 (0) 

d L c L 40.3 29.9 571.0 (5) 1800.0 (0) 

c H 39.6 7.3 9.1 (5) 1624.6 (1) 

240 d S c L 17.0 3.3 14.1 (5) 123.1 (5) 

c H 16.9 1.2 0.7 (5) 1693.9 (2) 

d L c L 33.2 18.6 283.2 (5) 1201.9 (2) 

c H 33.0 5.0 14.2 (5) 1800.0 (0) 

Average (Sum) 27.5 9.0 117.6 (40) 1267.8 (15) 

Total: Average (Sum) 26.9 4.7 44.7 (160) 703.7 (106) 

Table 6 

Average rounded-up LP bound for instances of Category (A1), averaged over the input parameter ‘time horizon’. Hence, in this table, every number is the average of ten 

instances. 

n = 50 n = 100 n = 150 n = 200 

d i c i CAF Martinovic & Strasdat (2022) CAF Martinovic & Strasdat (2022) CAF Martinovic & Strasdat (2022) CAF Martinovic & Strasdat (2022) 

d S c L 18.2 18.2 21.2 21.2 20.6 20.6 23.0 23.0 

c H 24.9 24.6 32.7 31.0 36.7 34.6 39.0 35.1 

d L c L 29.8 29.8 32.6 32.6 35.2 35.2 35.2 35.2 

c H 43.8 43.8 47.5 46.9 51.5 50.2 50.9 49.9 

Average 29.2 29.1 33.5 32.9 36.0 35.2 37.0 35.8 
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xcept for the constellation (d S , c H ) being the most favorable setup 

n terms of a small network, the deviations are typically less than 

 % and, therefore, not as considerable as one might have expected. 

his is due to the fact that the compact formulations have been 

ignificantly improved by numerous techniques like valid inequal- 

ties ( Martinovic, Strasdat, & Selch, 2021; Martinovic et al., 2022 ). 

n particular, any ILP model from the literature already uses the 

ower bound of the exponential-size TBPP formulation, which is 

ery powerful especially in those scenarios where an optimal solu- 

ion contains a small number of servers and only a few additional 

re-ups (like in the setting (d S , c L ) , see also Table 5 ). 
568 
emark 10. As a consequence of the very powerful model im- 

rovements (for the compact formulations from the literature) dis- 

ussed above, we note that the LP bound of CAF does not dominate 

he bound of the compact formulation from Martinovic & Stras- 

at (2022) for any possible instance, so a general theoretical result 

annot be established. 

As a summary of the discussion of Category (A1) and in the 

ight of the graphical illustration of computational results chosen 

n Martinovic, Strasdat, & Selch, 2021 , Martinovic et al. (2022) , we 

ould also like to provide the following performance profile, in 



J. Martinovic, N. Strasdat, J. Valério de Carvalho et al. European Journal of Operational Research 307 (2023) 554–574 

Fig. 9. Performance profile for the comparison of CAF and the compact model from Martinovic & Strasdat (2022) applied to Category (A1). 

Table 7 

Numerical results for instances of Category (B), always with t max = 1800 s . For the sake of 

an easier comparison, we repeat the solution times obtained for the classical TBPP from 

Table 3 in the first two columns of the main table. Moreover, we also display a selection of 

the results which would have been obtained with the approach from Martinovic & Strasdat 

(2022) , but also point out that these results did not appear in the literature before. Due 

to this reason, we just conducted and included a reasonable subset of these additional 

calculations which is, however, sufficient to anticipate the general trends. 

TBPP TBPP-FU Martinovic & Strasdat (2022) 

| T nd 
S | t opt t opt t opt 

10 0.4 (100) 0.5 (100) 20.0 (99) 

20 1.4 (100) 1.5 (100) 144.2 (94) 

30 2.5 (100) 3.9 (100) 293.0 (90) 

40 3.7 (100) 12.3 (100) 461.1 (82) 

50 6.9 (100) 11.4 (100) 572.4 (75) 

60 10.0 (100) 17.1 (100) 684.5 (67) 

70 15.7 (100) 26.8 (100) – –

80 16.5 (100) 46.8 (100) – –

90 20.4 (100) 42.8 (100) – –

100 23.9 (100) 53.1 (100) – –

110 26.7 (100) 59.4 (100) – –

120 30.7 (100) 70.9 (100) – –

130 38.6 (100) 83.9 (100) – –

140 40.2 (100) 97.7 (100) – –

150 51.5 (100) 106.7 (100) – –

Average (Sum) 19.3 (1500) 42.3 (1500) – –
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ddition to the values appearing in Table 5 . In Fig. 9 , it can be seen

hat CAF is clearly ahead of the best compact formulation during 

he entire observation period. Remarkably, after only 15 seconds 

lmost 80 % of all instances are already solved, also making CAF 

uitable for applications where decisions have to be made within 

ather short time. 

In a last experiment, we interpret the instances of Category 

B) as TBPP-FU instances, to enrich the variety of test sets for 

he latter problem, and collect the numerical results in Table 7 . 

lthough there are no corresponding calculations for the com- 

act model from Martinovic & Strasdat (2022) reported in the 
569
iterature, we added some results for moderate instance sizes 

o enable a rough comparison. As can be seen in Table 7 , nei-

her of these instances is challenging for the TBPP-FU when us- 

ng CAF, because (on average) they all can be solved in less 

han one minute, while even the harder subsets just require 

oughly the double amount of time. In particular, already for the 

00 representative instances considered, CAF clearly outperforms 

he results which can be obtained for the compact model from 

artinovic & Strasdat (2022) , so that spending more computation 

ime to fill in the associated columns completely is definitely not 

equired. 
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Table 8 

Average numbers of states and transitions (in units of 10 3 ) for the instances of Category 

(A). The averages are calculated based on ten instances each (since the criterion ‘time 

horizon’ is not specified here to keep the list short). 

d i c i n = 50 n = 100 n = 150 n = 200 n = 500 n = 10 0 0 

|V| d S c L 5.7 11.4 17.5 27.5 67.2 140.7 

c H 1.6 4.0 6.8 9.7 25.5 50.5 

d L c L 13.1 59.3 115.5 175.3 469.4 904.9 

c H 3.4 16.9 25.9 44.1 122.6 240.1 

|E| d S c L 7.7 15.8 24.2 37.8 91.4 191.5 

c H 2.2 5.3 8.8 12.7 33.4 65.7 

d L c L 17.6 71.4 137.3 206.5 553.1 1064.6 

c H 4.4 20.1 30.2 51.4 141.5 276.4 
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Table 9 

Number of optimally solved instances and average computation times for Cat- 

egory (A2) for two different time limit settings: the classical t max = 1800 sec- 

onds vs. an open-end calculation with no time limit (indicated by t max = ∞ ). 

t max = 1800 s t max = ∞ 

n s̄ d i c i t mod t opt t opt 

500 500 d S c L 11.9 121.7 (5) 121.7 (5) 

c H 4.6 4.7 (5) 4.7 (5) 

d L c L 75.4 1696.3 (1) 5103.3 (5) 

c H 19.6 144.2 (5) 144.2 (5) 

600 d S c L 7.8 47.4 (5) 47.4 (5) 

c H 2.6 2.3 (5) 2.3 (5) 

d L c L 53.8 1467.3 (2) 2011.9 (5) 

c H 13.8 47.0 (5) 47.0 (5) 

Average (Sum) 23.7 441.4 (33) 935.3 (40) 

1000 1000 d S c L 24.5 887.5 (4) 933.4 (5) 

c H 7.2 12.4 (5) 12.4 (5) 

d L c L 150.0 1800.0 (0) 20483.1 (5) 

c H 38.9 176.8 (5) 176.8 (5) 

1200 d S c L 18.2 340.1 (5) 340.1 (5) 

c H 5.5 8.3 (5) 8.3 (5) 

d L c L 103.1 1800.0 (0) 5615.1 (5) 

c H 28.1 126.6 (5) 126.6 (5) 

Average (Sum) 46.9 644.0 (29) 3462.0 (40) 

Total: Average (Sum) 35.3 542.7 (62) 2198.6 (80) 
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An interesting side aspect of the results presented in Table 7 is 

hat, for any | T nd 
S 

| , solving the TBPP-FU is more time-consuming 

han coping with the traditional TBPP. Since neither the associated 

etworks nor the sets of variables and constraints differ very much 

among the TBPP and the TBPP-FU), we partly attribute this to 

he observation that, as discussed earlier in Section 4 , the TBPP-FU 

raph itself offers some symmetries to represent a feasible pattern. 

owever, the more important reason is that any feasible sched- 

le is now assessed by two terms (number of servers, number of 

re-ups), typically entailing a wider variety of possible “numerical 

tates” of the objective function, especially when there are much 

ore fire-ups than active servers in an optimal solution. 

.3. Exploring the Limits: Numerical Results for Very Large Instances 

In the previous subsection, we have demonstrated that CAF is 

ble to solve all benchmark instances from the literature (that have 

een investigated so far in the context of exact approaches) in a 

hort time, both for the TBPP and for the TBPP-FU. We therefore 

rovide some more numerical tests, in particular to also show the 

imitations of our new approach: 

• For Category (A), such instances have already been collected 

in the literature, see Aydin et al. (2020) , but they have only 

been treated heuristically so far. To this end, these 80 in- 

stances already appeared in the presentation at the beginning 

of Section 4 as Category (A2) . 
• For Category (B), the relevant literature does not yet spec- 

ify larger instances. Nevertheless, such instances can easily be 

obtained according to the known construction principles even 

for values | T nd 
S 

| > 150 . To this end, applying the procedure de-

scribed in Dell’Amico et al. (2020) to the raw data from Caprara 

et al. (2013) , we obtain more instances along the lines of Cate- 

gory (B). To be more precise, we thus generated 100 instances 

each for any parameter value | T nd 
S 

| ∈ { 160 , 170 , . . . , 400 } . Al-

though there is no set (B1), we will refer to these 2500 very 

large instances as Category (B2) to synchronize with the termi- 

nology of Category (A). 

Let us proceed in alphabetical order. Before examining the ac- 

ual numerical results of Category (A2), we would first like to 

resent some data on the size of the respective CAF networks. For 

his purpose, we have summarized the number of nodes and arcs 

n Table 8 , but we included all instances from Category (A) to pro-

ide a better overview of the overall evolution. 

In particular, the following interesting insights should be noted: 

• We see that the different parameter constellations lead to very 

heterogeneous graph sizes and thus cover a reasonable range 

of different benchmark scenarios. In particular, it becomes clear 

that the configuration (d S , c H ) indeed leads to the smallest net- 

works, while (d L , c L ) typically allows for very many item in- 

teractions and thus requires many states and transitions. This 
570 
is consistent with the associated observations of modeling and 

solution times (see Table 5 ), which have already been partially 

addressed in the related discussion before. 
• Compared to Category (B), we see that the instances from Cat- 

egory (A) can be judged as more challenging on average. To il- 

lustrate this more thoroughly, we consider the case of n = 500 

items as an example. Then the data from Table 8 prove that an 

associated CAF graph in the case of Category (A) has on average 

about 171 thousand nodes and 205 thousand arcs. If we now 

search Table 1 for instances from Category (B) with compara- 

ble or even larger item numbers (i.e., for example, | T nd 
S 

| = 100

and Classes VI or X), we notice that the associated networks 

are generally much smaller. It is therefore to be expected that 

CAF will faster reach its limits in the case of Category (A), in 

particular since already for n = 10 0 0 items partly more than 

one million integer variables have to be dealt with according 

to Table 8 . 

In view of these remarks, a time limit of 30 minutes is no 

onger sufficient in some cases to cope with these very large in- 

tances. We have therefore also performed a calculation without 

ny time limit in Table 9 to determine the so far unknown optimal 

alue of these instances on the one hand, and to get a more precise 

mpression of how long it actually takes to solve such challenging 

nstances on the other hand. We highlight the following main ob- 

ervations: 
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Table 10 

Average size of the CAF network for some instances from Category (B2) depending on the class index. 

number of nodes ( |V| ) number of arcs ( |E| ) 
| T nd 

S | 200 250 300 350 400 200 250 300 350 400 

I 6.5 8.4 10.0 11.8 13.6 8.0 10.3 12.2 14.5 16.7 

II 19.6 24.1 27.6 31.7 35.8 26.5 32.4 37.2 42.7 48.2 

III 34.3 44.6 55.6 62.8 71.7 44.8 58.7 73.0 82.5 94.4 

IV 69.8 91.7 108.4 126.9 146.1 95.1 125.3 147.6 172.6 198.7 

V 114.1 142.4 173.3 205.2 240.6 156.0 195.2 236.8 280.1 328.4 

VI 83.8 107.1 129.6 151.3 171.2 179.2 229.7 277.5 324.9 367.4 

VII 117.8 151.6 175.6 209.9 243.6 160.1 204.9 237.2 283.7 330.2 

VIII 119.2 146.0 178.6 208.6 231.7 187.7 230.7 283.5 329.0 364.7 

IX 82.4 104.4 123.6 145.3 165.2 184.0 234.0 275.5 322.5 366.8 

X 194.4 248.3 299.2 343.1 386.6 301.6 386.1 467.3 535.6 602.1 
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Table 11 

Numerical Results for instances of Category (B2) for both, 

the TBPP and the TBPP-FU (with t max = 1800 s ). 

TBPP TBPP-FU 

| T nd 
S | t opt t opt 

160 48.9 (100) 123.1 (100) 

170 55.7 (100) 133.7 (100) 

180 54.2 (100) 139.6 (100) 

190 62.8 (100) 158.6 (100) 

200 71.3 (100) 201.2 (99) 

210 80.9 (100) 183.0 (99) 

220 73.6 (100) 205.0 (99) 

230 85.6 (100) 206.4 (99) 

240 82.4 (100) 226.2 (99) 

250 100.6 (100) 241.8 (98) 

260 97.9 (100) 267.5 (98) 

270 99.6 (100) 266.6 (97) 

280 106.7 (100) 314.2 (96) 

290 109.6 (100) 287.3 (96) 

300 115.2 (100) 310.1 (96) 

310 120.0 (100) 327.3 (96) 

320 119.3 (100) 363.3 (94) 

330 131.2 (100) 329.6 (97) 

340 136.8 (100) 338.7 (98) 

350 135.3 (100) 376.0 (95) 

360 138.9 (100) 363.5 (96) 

370 140.3 (100) 343.9 (98) 

380 161.5 (100) 425.4 (94) 

390 166.8 (100) 415.8 (95) 

400 164.4 (100) 404.4 (97) 

Average (Sum) 106.4 (2500) 278.1 (2436) 
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• The modeling times of these huge instances are still perfectly 

fine, as even the most challenging subset requires only 2.5 min- 

utes on average. This is a justifiable effort in view of the ex- 

pected solution time and gives hope that, in the future, possi- 

bly also these instances can be coped with more efficiently as 

a consequence of the steady progress in terms of optimization 

software. 
• Still, 62 of the 80 instances are solved optimally within a max- 

imum of 30 minutes. The unsuccessfully attempted instances, 

with only one exception, all originate from the constellation 

(d L , c L ) , which has already been identified as the greatest chal-

lenge before, with the help of Table 8 . Comparing the two 

columns ( t max = 1800 s vs. t max = ∞ ), it is noticeable that the

only unsolved instance that did not come from that subset re- 

quired a solution time that was roughly in the range of half an 

hour, so that one could also speak of a random effect here. 
• Overall, it can be stated that on average all 80 instances are 

solved in less than one hour. The longest solution time we ob- 

served was slightly less than nine hours (for an instance with 

n = 10 0 0 items and the combination (d L , c L ) ) – a time that is

admittedly already relatively long, but nevertheless would not 

be achievable at all with the compact formulations from the 

literature. 

Finally, we consider the instances from Category (B2) and first 

resent an overview of the size of the corresponding CAF graphs 

n Table 10 . 

On the one hand, it is noticeable that these networks are on 

verage much smaller than it was the case for the most diffi- 

ult instances from Category (A2). By way of example, we men- 

ion that even for the most challenging combinations (e.g., Class 

 and | T nd 
S 

| = 400 ), one detects a much smaller size on average

han, say, for n = 10 0 0 items and the setting d L in Category (A2).

he instances from Category (B2) can thus still be classified as eas- 

er, despite a significant increase of the input parameter | T nd 
S 

| . It is
lso interesting to note that in contrast to Table 8 , here a dou-

ling of the input parameter | T nd 
S 

| also leads to a doubling of the

umber of nodes and arcs for basically any instance class. This is 

ainly due to the fact that the number of items per clique for each 

lass is predefined by the a -parameter choice (see Dell’Amico et al., 

020 for the construction details) and thus, with increasing | T nd 
S 

| , 
nly the number of cliques grows. Consequently, the graph size in- 

reases only proportionally to that value and not in a “combinato- 

ial sense” (i.e., in the size of the cliques). 

As a result of these observations, it seems reasonable to assume 

hat even these enlarged instances will not be too challenging for 

AF yet, and indeed this is also visible in the results depicted in 

able 11 . We highlight that in the case of TBPP, still every single in-

tance can be solved optimally within a relatively short time (less 

han three minutes on average for any | T nd 
S 

| ). Conversely, within 

he time limit of 1800 seconds, a very few instances of the TBPP- 
571 
U can no longer be dealt with because, as described earlier, solv- 

ng this problem is generally somewhat more costly. We would like 

o note that most of the unsolved instances are from Class X and 

herefore, as seen previously in Table 10 , correspond to the (on av- 

rage) largest ILP models. In addition, especially for larger param- 

ter settings (that is, approximately, | T nd 
S 

| ≥ 300 ), sometimes one 

r two instances from Classes IV, V, or VII cannot be tackled suc- 

essfully due to some random effects, so that there is no strict 

onotonicity in the number of instances solved to proven opti- 

ality for the TBPP-FU. However, and this is the difference to the 

nstances from Category (A2), the maximum computation time in 

ur case was only about 142 minutes (for one instance from Class 

), so that we can assume that CAF will also solve the vast ma- 

ority of even larger benchmark instances constructed according to 

he same principles. 

emark 11. To get a somewhat more accurate idea of the actual 

oundaries of applying CAF to Category (B2), we conducted some 

urther (less systematic) internal tests. In these calculations, we ob- 

erved some first memory issues (in terms of storing the result- 

ng branch-and-bound trees) when dealing with TBPP-FU instances 
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aving | T nd 
S 

| = 500 non-dominated starting times. However, this 

nly happened in a very few exceptional cases, so that even here 

he size of the graph is not problematic, in general, and almost all 

nstances can still be tackled properly. 

. Conclusions 

In this article, we addressed the exact solution of two types 

f temporal bin packing problems, the TBPP and the TBPP-FU, by 

eveloping a new graph-theoretic approach (called CAF). Such an 

dea had previously been identified in the literature as an ineffi- 

ient solution method given the generally exponential size of the 

esulting networks. By cleverly grouping equivalent states together 

n the construction of the graph, we managed to significantly re- 

uce the number of nodes and arcs compared to previous concepts 

rom Caprara et al. (2013) and Clautiaux et al. (2021) . Remarkably, 

he associated ILP formulations can now be generated in a rela- 

ively short time even for very large instances, and thus they can 

asily be passed to a commercial ILP solver. Based on extensive 

est calculations, it turns out that for the first time ever all bench- 

ark instances of the TBPP and the TBPP-FU, previously used in 

he context of exact approaches, can be solved to proven optimal- 

ty in reasonably short time. Moreover, our new formulation not 

nly outperforms the previous state of the art in terms of solution 

imes, but also succeeds in handling much larger new benchmark 

nstances based on the classical test scenarios mentioned before. 

ll in all, we have thus presented a powerful unified approach 

or solving temporal bin packing problems, the basic concepts of 

hich can be prospectively applied (with minor modifications, if 

ecessary) to other classes of optimization problems in the field of 

nterval scheduling. In future research, we will try to further im- 

rove this very promising concept, for example by incorporating 

educed cost variable fixing or by investigating whether the now 

nown optimal solutions can also be obtained using thinned-out 

raphs, like for example illustrated for the CSP in de Lima et al. 

2022b) ; Delorme & Iori (2020) . 
Fig. A.2. The network from Clautiaux et al. (2021) w
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ppendix A. Further Illustrations 

Fig. A.1. Visualization of the instance E 2 from Example 5 . 
hen applied to instance E 2 from Example 5 . 

https://github.com/wotzlaff/tbpp-instances
https://github.com/sibirbil/TemporalBinPacking
https://github.com/wotzlaff/tbpp-caf
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Fig. A.3. The network from Caprara et al. (2013) when applied to the instance E 2 from Example 5 . 

Fig. A.4. The combinatorial arcflow graph for the TBPP-FU and the instance E 2 with two different paths leading to the same pattern J = { 3 , 4 } . The joint (parts of the) arcs 

are colored purple, while the two alternatives to pass layer l = 1 are painted red and blue, respectively. In terms of optimization, the blue path will be preferred, because 

it does not imply additional fire-up costs (which is consistent with the pattern J described before). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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