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Abstract

The continuing Machine Learning (ML) revolution indubitably has had a significant 
positive impact on the analysis of downlinked satellite data. Other aspects of the Earth Observation 
industry, despite being less susceptible to widespread application of Machine Learning, are also 
following this trend. These applications, actual use cases, possible prospects and difficulties, as 
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well as anticipated research gaps, are the focus of this review of Machine Learning applied to Earth 
Observation Operations. A wide range of topics are covered, including mission planning, fault 
diagnosis, fault prognosis and fault repair, optimization of telecommunications, enhanced GNC, 
on-board image processing, and the use of Machine Learning models on platforms with constrained 
compute and power capabilities, as well as recommendations in the respective areas of research. 
The review tackles all on-board and off-board applications of machine learning to Earth 
Observation with one notable exception: it omits all post-processing of payload data on the ground, 
a topic that has been studied extensively by past authors. In addition, this review article discusses 
the standardization of Machine Learning (i.e., Guidelines and Roadmaps), as well as the challenges 
and recommendations in Earth Observation operations for the purpose of building better space 
missions. 

Keywords: Artificial Intelligence; Astrionics; Earth Observation; Edge Computing; Machine 
Learning; Neural Network; Remote Sensing; State-of-the-art

Acronyms / Abbreviations
Artificial Intelligence (AI); Machine Learning 
(ML); Deep Learning (DL); Fault Detection, 
Isolation and Recovery (FDIR); Guidance, 
Navigation and Control (GNC); Neural 
Network (NN); Convolutional Neural Network 
(CNN); Deep Neural Network (DNN); 
Artificial Neural Network (ANN); Binarized 
Neural Network (BNN); Bayesian Network 
(BN); Dynamic Bayesian Network (DBN);  
National Aeronautics and Space Administration 
(NASA); European Space Agency (ESA); On-
Board Computer (OBC); Earth Observation 
(EO); Random Decision Forest (RDF); 
Bayesian Thresholding (BT); Support Vector 
Machine (SVM); Commercial off-the-shelf 
(COTS); Size, Weight and Power (SWaP); 
Light Detection and Ranging (LIDAR); System 
on a Chip (SoC); False Positives (FP); 
Consultative Committee for Space Data 
Systems (CCSDS); Global Navigation Satellite 
System (GNSS); Global Positioning System 
(GPS);  Proportional - Integral (PI); 
Proportional - Integral - Derivative (PID);  
Attitude Orbital Determination System 
(AODS); Reinforcement Learning (RL); 
Extended Kalman Filter (EKF); Random Forest 
(RF); Attitude and Orbit Control System 
(AOCS); k-Nearest Neighbour (k-NN); Self-
Organizing Map (SOM); On Orbit Servicing 
(OOS); Anomaly Resolution and Prognostic 
Health Management for Autonomy (ARPHA); 
Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN); Electrical 
Power System (EPS); Software and Sensor 

Health Management (SSHM); Regularized 
Discriminant Analysis (RDA); Adaptive 
Regularization of Weight Vector (AROW); 
Soft Confidence-Weighted (SCW); Centre 
national d'études spatiales (The National Centre 
for Space Studies) (CNES); European Space 
Operations Centre (ESOC); Radial Basis 
Function (RBF); Deutsches Zentrum für Luft- 
und Raumfahrt (German Aerospace Center) 
(DLR); One-Class Support Vector Machine 
(OC-SVM);  Normal Gaussian Herding 
(NHERD); Thermal EMission Imaging System 
(THEMIS); Intelligent Payload EXperiment 
(IPEX); Hyperspectral Infrared Imager 
(HyspIRI); Moderate-Resolution Imaging 
Spectroradiometer (MODIS); Peak Signal to 
Noise Ratio (PSNR); Structural Similarity 
Index (SSIM); Field Programmable Gate Array 
(FPGA); Context-Based, Adaptive, Lossless 
Image Codec (CALIC); Integral Wavelet 
Transform (IWT); Peano-Hilbert (PH); 
Learning Vector Quantization (LVQ); 
TensorFlow (TF); Synthetic Aperture Radar 
(SAR); Ratio of Exponential Weighted Average 
(ROEWA); Joint Photographic Experts Group 
(JPEG); Space Test Program-Houston-5-
Cubesat Service protocol (STP-H5-CSP); 
Neural Architecture Structure (NAS); Central 
Processing Unit (CPU); Graphics Processing 
Unit (GPU); Visual Processing Unit (VPU); 
Time Processing Unit (TPU); Trained Ternary 
Quantization (TTQ); Radiation Tolerant (RT); 
Mobile Neural Architecture Search (MNAS); 
Knowledge Transfer (KT); Knowledge 
Distillation (KD); Cubesat Service Protocol 
(CSP); SpaceBorne Computer (SBC); Modified 
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National Institute of Standards and Technology 
database (MNIST); National Information 
Security Standardization Technical Committee 
(NISSTC); Deutsches Institut für Normung 
(German Institute of Standardization) (DIN); 
Deutschen Kommission Elektrotechnik 
Elektronik Informationstechnik (German 
Commission for Electrical, Electronic and 
Information Technologies) (DKE);  European 
Union (EU);  European Commission (EC);  
Small and Medium Enterprises (SMEs); 
DEpendable and Expandable Learning 
(DEEL); Earth Observation Systems’ Data 
Information Systems (EOSDIS); Space 
Generation Advisory Council (SGAC); Small 
Satellite Project Group (SSPG); Deep 
Reinforcement Learning (DRL); Geographic 
Information Systems (GIS); Explainable AI 
(XAI).

1. Introduction

Earth Observation (EO) satellites have allowed us 
to look at our planet at a scale previously unattainable 
to humankind. From the vantage point of space, it 
becomes easier to monitor everything about our lives 
on a very large scale, such as our impact on the 
planet’s ecology (Guo et al., 2017) and extent of 
specific facilities all around the world (Pan et al., 
2021). This capability has been and continues to be 
invaluable to understanding the world around us and 
enforcing regulations vital to the well-being of 
people all over the globe. 

However, as access to space becomes ever more 
affordable, EO assets multiply at an increasingly 
faster pace (Belward and Skøien, 2015). Moreover, 
EO Operations - the sequence of activities that take 
place in managing an EO spacecraft from its launch 
to its demise - keep growing in number and 
complexity as new assets are put into orbit. These 
trends could soon lead to a situation where available 
work-power becomes a limiting factor in the 
deployment of EO systems. Orchestrating these 
operations is, at its core, a control and data 
processing problem - from taking in and analyzing 
large volumes of telemetry from all EO platforms to 
taking into account their complex dynamics and 
evolving mission profiles when utilizing them.

Artificial Intelligence (AI) is becoming more 
prevalent in our daily lives, whether it is in the form 
of personalized newsfeeds, shopping online or 
streaming movie recommendations, or even mapping 
tools that help us avoid traffic jams. On a larger scale, 
AI is already having a significant impact on 

healthcare, banking, agriculture, and a variety of 
other industries, and its impact is expected to grow 
quickly in the coming years.  Machine Learning 
(ML), a subset of Artificial Intelligence (AI) as 
shown in Figure 1 wherein machines learn from data, 
has been used in a variety of space-related 
applications. In our review, we considered that ML 
is a subfield of AI for clarification. Deep learning 
(DL) is a subfield of machine learning. 

Figure 1: AI, ML, DL relationship (Zhang et al., 2021).

Human analysts may miss patterns and trends 
hidden within massive amounts of data, but ML can 
find them.ML, on the other hand, can uncover 
patterns and trends hidden inside massive amounts of 
data that are invisible to human researchers. Modern 
Earth Observation systems collect a massive amount 
of data from a variety of sensors with varying 
temporal, spatial, and spectral resolutions. Because 
of its complexity, it necessitates the use of innovative 
procedures and methods to extract useful 
information. Figure 2 represents a typical machine 
learning process.

.1.1. Machine learning for Earth Observation

ML has taken the data processing world by storm, 
with one success story after another. From object 
detection and classification (Krizhevsky et al., 2012) 
to natural language processing (Wang, 2021) and 
nonlinear control (Mnih et al., 2013), the capacity of 
these algorithms to solve different types of problems 
has been nothing short of awe-inspiring. 

For the purposes of the present review, we define 
ML algorithms as those whose performance critically 
depends on and generally improves with exposure to 
real-world data of the problem to be solved.

https://www.zotero.org/google-docs/?yYLQ5p
https://www.zotero.org/google-docs/?YcirxV
https://www.zotero.org/google-docs/?YcirxV
https://www.zotero.org/google-docs/?Oh0Ftv
https://www.zotero.org/google-docs/?TzLqN8
https://www.zotero.org/google-docs/?QZLxO3
https://www.zotero.org/google-docs/?M2K2Bv
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1

2 Figure 2: Machine Learning workflow (Pant, 2019).

3 So far, these techniques have concentrated mostly 
4 on the analysis of downlinked imagery due to the 
5 larger availability of computing power and ease of 
6 deployment relative to on-board applications, as well 
7 as its relatedness to computer vision, one of the 
8 traditional strong suits of ML.
9 But applications to other aspects of operations are 

10 now starting to surface. The present review explores 
11 the contexts for which these applications have been 

12 proposed or in which they have been applied, 
13 exposes the possibilities that they open up and risks 
14 that must be avoided, and illustrates gaps in research 
15 that we believe should be addressed by the Earth 
16 Observation community. As shown in Figure 3, ML 
17 will enhance space exploration operations in a 
18 variety of ways, particularly for Earth observation 
19 missions.

20

21 Figure 3: Potential application of ML for earth observation mission.
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22 As illustrated in Figure 3, the manuscript discusses 
23 the state-of-the-art as well as the future prospects of ML 
24 in Mission Planning (section 2), GNC (section 3), FDIR 
25 (section 4), and on-board image processing (section 5).

26 In section 6, we also discussed the useful aspect of 
27 using ML models in EO operations. We examine how 
28 operators might make the most of their limited on-
29 board resources by properly optimizing the usage of 
30 ML model resources, describing a variety of software 
31 and hardware solutions geared to that end. In Section 
32 7, we also discuss recent initiatives within the space 
33 sector to standardize and guide the deployment of ML 
34 models, as well as the kinds of considerations a 
35 designer must make in order to avoid frequent errors 
36 with this technology.

37 Our objective is to give EO Operators a thorough, if 
38 not exhaustive, assessment of the current situation with 
39 regard to ML applications in their area of expertise. The 
40 review connects EO operators and proponents of ML 
41 algorithms for EO Operations problems in an effort to 
42 spark discussion and stimulate additional application 
43 suggestions and demonstrations.

44 With one important exception, the review covers all 
45 on-board and off-board applications of ML to EO but 
46 leaves out all post-processing of payload data on the 
47 ground, a subject that has been intensively researched 
48 by other researchers.

49 The optimization of tracking, telemetry, and 
50 command is another subject we pass over. Despite the 
51 fact that this was initially our intention, we discovered 
52 an outstanding and current review by Fourati and 
53 Alouini (Fourati and Alouini, 2021). We invite 
54 interested readers to check out the excellent paper rather 
55 than pointlessly duplicating their work.

56 This article has been reviewed and updated in 
57 comparison to the conference paper presented at IAC in 
58 2021. This research, which is highly needed in present 
59 space industry, was conducted by a group of volunteers 
60 from the Small Satellite Project Group (SSPG) of 
61 SGAC. SGAC is a non-profit, non-governmental 
62 organization with over 16,000 members dedicated to 
63 the peaceful uses of space. There are over a hundred 
64 active volunteers, in addition to eleven project 
65 organizations, including the SSPG. The SSPG focuses 
66 on how small satellites are utilized in the space industry 
67 and how they can assist humanity in realizing space's 
68 full potential.

69 2. Machine Learning in Earth Observation 
70 Mission Planning

71 There are many constraints to mission planning. 
72 Some relate to the target area: It needs to be under the 
73 satellite and illuminated by the sun at capture time 
74 (orbit and time-dependent); clouds are to be avoided 
75 (weather dependent); the requester may set a deadline 
76 and/or a priority. Others relate to the satellite, such as 
77 limited memory capacity; limited transmission 
78 capability; reduced communication opportunities with 
79 the ground antennas; multiple sensors to choose from; 
80 and limited maneuverability to skew the observation 
81 angle and reach areas not directly flown over.
82 All of these parameters make optimal scheduling of 
83 observations a highly combinational problem for a 
84 mission that supports multiple independent requests, 
85 and it is even more complex when they are 
86 accomplished by a constellation of satellites. ML 
87 proposes a series of algorithms that may find better 
88 solutions than non-learning algorithms or do so more 
89 efficiently.
90 There are many different formulations of the 
91 observation scheduling problem, taking into account 
92 different subsets of the constraints presented in the 
93 previous paragraphs, adapted for different types of 
94 missions and ground segments. 

95 2.1. Classical approaches

96 Non-ML algorithms to the satellite scheduling 
97 problems can be classified into two categories: Exact 
98 and Heuristic methods (X. Wang et al., 2021). 
99 Exact methods typically consist of a combination of 

100 branch and bound methods and mixed-integer linear 
101 programming. These methods are computationally 
102 costly and can become intractable for moderately sized 
103 constellations.
104 Heuristic methods use an approximated rule to 
105 guide the construction of a solution. Greedy algorithms 
106 construct a solution by gradually choosing the best 
107 action at every decision step according to some metric, 
108 without regard as to how the overall sequence of 
109 decisions plays out. Other heuristic methods include 
110 backtracking through constraint programming and 
111 search algorithms. Other forms of search include hill-
112 climbing or squeaky-wheel optimization, where the 
113 geometry of the optimization functions is exploited to 
114 accelerate the search process. Globus et al. (Globus et 
115 al., 2003) compare multiple algorithms such as genetic, 
116 simulated annealing, squeaky wheel and hill-climbing 
117 on a problem with one or two satellites.
118 Evolutionary or genetic algorithms simulate 
119 processes akin to biological evolution to optimize 
120 candidate solutions according to a hand-crafted fitness 
121 function. Mansour et al. (Mansour and Dessouky, 2010)  

https://www.zotero.org/google-docs/?ibgf5Z
https://www.zotero.org/google-docs/?u8lD5n
https://www.zotero.org/google-docs/?u8lD5n
https://www.zotero.org/google-docs/?s0sakL
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122 studied the performances of a genetic algorithm for a 
123 single satellite with limited memory and multiple 
124 instruments and imaging modes. Li et al. (Li et al., 
125 2014) explore genetic algorithms in order to provide 
126 scheduling in real-time, optimizing the transmission 
127 path towards the user. 
128 Simulated annealing imitates the annealing 
129 processes found in metals exposed to high 
130 temperatures, and it forms the basis for another branch 
131 of heuristic algorithms. The simulated annealing seems 
132 to provide better results, confirmed by Globus et al. 
133 (Globus et al., 2003) in a complete multi-satellite 
134 formulation of the problem, including satellite agility 
135 and priorities. 
136 Lastly, multi-agent systems simulate interactions 
137 between simple agents representing part of the systems 
138 to determine an optimal policy. Bonnet et al. (Bonnet et 
139 al., 2015) use a self-adaptive multi-agent system for 
140 real-time and robust adaptation of a multi-satellite 
141 problem, including request priorities.

142 2.2. ML-based approaches

143 ML-based approaches can exploit the statistical 
144 distribution of typical problem settings to accelerate the 
145 finding of good solutions to the mission planning 
146 problem. 
147 Wang et al. (X. Wang et al., 2021) present a 
148 comprehensive review of publications on the agile 
149 observation scheduling problem, including ML and 
150 non-ML approaches. The authors classify approaches 
151 along multiple axes such as time continuous and 
152 discrete-time model, type of solving method and also 
153 other features such as autonomy, and multi-objective 
154 profit function.
155 Neural Networks (NNs) are explored by Wang et al. 
156 (Wang et al., 2019) in order to provide immediate 
157 results for a multi-satellite mission using Deep 
158 Reinforcement Learning (DRL). Peng et al. (Peng et al., 
159 2018)  apply recursive NNs in a sequential decision-

160 making process in order to achieve low scheduling 
161 computation time and high performance when 
162 compared to a deterministic resolution. Recursive NNs 
163 allow the model to condition current decisions on past 
164 inputs, instead of depending exclusively on the present 
165 inputs to the system, providing the model with a sort of 
166 memory. We have not found any applications of 
167 Transformers to this problem, a sequence modeling 
168 technique from the deep learning research field that has 
169 shown excellent results in other sequential tasks like 
170 language modeling and even in image processing tasks.
171 Neuroevolutionary techniques combine the 
172 advantages of neural models and evolutionary 
173 algorithms. Du et al. (Du et al., 2020) leverage a 
174 prediction model trained by a Cooperative Neuro-
175 Evolution of Augmenting Topologies algorithm in 
176 order to filter tasks to be scheduled according to the 
177 probability to be fulfilled before scheduling using 
178 genetic algorithms. DRL uses NNs as function 
179 approximators to approximate hard to determine 
180 functions in dynamic programming. This has enabled 
181 groundbreaking achievements in other control and 
182 scheduling problems like playing Go or automated 
183 driving.  Despite its potential, it has not been 
184 extensively applied to this problem set.  Liu (Liu, 2020) 
185 applies Proximal Policy Optimization, a method of the 
186 DRL literature, to mission planning for a single 
187 satellite. Unfortunately, they do not compare 
188 performance to other methods or extend it to a multi-
189 satellite setting.
190 Yuchen et al. offer a unique online strategy that 
191 combines a Q-network with a pruning technique to 
192 address the observation sequence planning problem. 
193 The proposed scheme's goal is to generate an 
194 observation sequence based on the Q-learning heuristic 
195 rule and increase the neural network's efficiency in 
196 optimization. A Q-network-based mission-planning 
197 algorithm for the operation of EO satellite is shown in 
198 Figure 4. It shows the suggested algorithm's overall 
199 workflow (Liu et al., 2021).

200

201 Figure 4: ML-based mission planning algorithm (Liu et al., 2021).

https://www.zotero.org/google-docs/?uyVs3n
https://www.zotero.org/google-docs/?uyVs3n
https://www.zotero.org/google-docs/?VZOjNf
https://www.zotero.org/google-docs/?FVAnuj
https://www.zotero.org/google-docs/?FVAnuj
https://www.zotero.org/google-docs/?2u4ocT
https://www.zotero.org/google-docs/?bTr1FU
https://www.zotero.org/google-docs/?6TOAIc
https://www.zotero.org/google-docs/?6TOAIc
https://www.zotero.org/google-docs/?bY9JK0
https://www.zotero.org/google-docs/?L80waF
https://www.zotero.org/google-docs/?broken=rZN4Ei
https://www.zotero.org/google-docs/?broken=rZN4Ei
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Hadj-Salah et al. (Hadj-Salah et al., 2020, 2019) 
explore the application of Actor-Critic (A2C), a DRL 
algorithm, to the mission planning problem. They 
compare it to random planning and a planning heuristic 
that compromises between greedy and long-term 
planning. Their models are trained in a simulated 
mission planning environment and then executed in a 
real test scenario. Their long-term version of A2C 
shows better performance than the heuristic algorithm. 
In their later publication, they augment the training 
process with techniques from the domain 
randomization and transfer learning literature, meant to 
increase robustness to the gap experienced when 
passing from the simulated training scenario to the real 
validation scenario. 

2.3. Recommendations

Mission planning is a very rich problem that has 
been explored for many years using machine learning 
amongst other solutions.

Comparing the performances of algorithms 
presented in different papers is not a suitable path 
because each presents its own definition of the problem, 
with a unique set of constraints, different mission 
characteristics, variable satellite capabilities and 
potentially incompatible metrics. For instance, a lot of 
schedulers take into account satellite memory, limiting 
the number of observations until a ground station is 
visible, but few of them also make sure the ground 
station is available for communication with the satellite 
and not busy communicating with another one of the 
constellations. Song et al. (Song et al., 2020) introduce 
a framework in order to facilitate future comparisons 
but additional work on model standardization is needed 
before results from different studies can be compared.

We observe a shifting trend in algorithms applied to 
this problem over the years from genetic or annealing 
to ML approaches such as NNs.  Unfortunately, we 
found no sources comparing the performances of 
genetic and ML-based schedulers on a single problem 
formulation.

Standardizing project formulations, constraints set, 
and optimization metrics seem to be a necessary step 
for sustainable collaborative research in this field. 
Relying on Consultative Committee for Space Data 
Systems (CCSDS) published standards and models 
could be a first step in the direction of a unified 
approach. 

3. Machine Learning in Earth Observation 
Guidance, Navigation and Control

GNC, describe the set of operations needed to move 
a satellite platform or any other vehicle. The guidance 
relates to planning paths from a current state to the 

desired state. Navigation is the determination of the 
present state. Control is the correct use of spacecraft 
actuators, such as an engine, to execute the desired plan.

3.1. Classical approaches

Two main tasks need to be achieved by a GNC 
system: determination of the current state, which is an 
estimation task, and use of the spacecraft’s actuators to 
go from the current state to the desired state, which is a 
control task. 

Spacecraft control is typically subdivided into at 
least two different granularity levels, guidance and 
control, where guidance is the high-level control of the 
spacecraft from a current dynamic state to a future one. 
A guidance module may output the sequence of feasible 
dynamic states necessary to achieve a new orbit from 
the required orbit. EO Satellite maneuvers are often 
planned and optimized on the ground, and the onboard 
guidance modules are minimal. For the control task, a 
number of control schemes are used, most notably 
controllers from the robust control literature such as H∞ 
controllers.

As for navigation, spacecraft state is typically 
determined via variants of the Kalman Filter (KF), such 
as the Extended Kalman Filter (EKF)or the Unscented 
Kalman Filter (UKF). These methods are model based, 
that is, they depend on an explicit model of spacecraft 
dynamics for their calculations.

Fuzzy controllers have been proposed as a possible 
improvement to the classical approach. The literature 
contains several works where GNC and Attitude and 
Orbit Control System (AOCS) controllers based on 
fuzzy logic are compared to their traditional 
counterparts. For instance, Wu et al. (Wu et al., 2001) 
studied the fuzzy logic controller with the X-38 re-entry 
vehicle. ESA also investigated the usage of fuzzy logic 
controllers to carry out Geostationary Equatorial Orbit 
(GEO) rendezvous autonomously (Ortega, 1995) to aid 
in in-orbit manufacturing. As another example, in 
(Cheng et al., 2009), a simulation of ROCSAT-1 / 
FORMOSAT-1’s attitude controller is carried out, 
where the classical setup of a Proportional - Integral 
(PI) pitch axis controller and Proportional - Integral - 
Derivative (PID) roll/yaw axis controller is replaced 
with two fuzzy controllers initially, and a single 
consolidated fuzzy controller afterwards, yielding 
considerable improvements against interference as well 
as a lower steady-state error. 

Nevertheless, despite the body of research backing 
up their effectiveness, there is no widespread use of 
fuzzy logic GNC controllers for space missions.

https://www.zotero.org/google-docs/?yJYS39
https://www.zotero.org/google-docs/?7Agmnf
https://www.zotero.org/google-docs/?Al7F2g
https://www.zotero.org/google-docs/?OmkIDM
https://www.zotero.org/google-docs/?E8zDcW
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3.2. ML-based approaches

Izzo et al. (Izzo et al., 2018) present a survey of 
Artificial Intelligence applied to GNC which, is not 
focused on EO applications, can nonetheless be useful 
to practitioners. The survey contains a section focusing 
on ML approaches, on top of other AI approaches such 
as evolutionary algorithms.

In another publication (Izzo and Öztürk, 2021), Izzo 
and Öztürk leveraged DRL to plan near-optimal real-
time computation of low-thrust transfers. They also 
suggest a new method to generate training data for such 
problem settings. Although originally designed for 
Earth-Venus transfers, their solution is applicable to all 
low-thrust transfers, but the data generation algorithm 
and optimality comparisons are problem-dependent. 

ML excels in problems where no structured pre-
existing model can be exploited. That is not the case for 
the GNC problem, where the general form of the 
dynamics governing spacecraft are well known and 
solvable. It is, however, the case for visual-based GNC, 
as no model exists for relating camera inputs to 
dynamic state or control actions. For this reason, much 
research on ML-powered GNC has focused on visual-
based GNC (Frédéric Férésin et al., 2021) for 
autonomous rendezvous. This, however, is not directly 
relevant to the EO Operations community, who are 
unlikely to engage in autonomous docking as providers.

An interesting streak of research looks into 
applications of ML to processing visual navigation 
sensors, particularly Earth and Sun sensors and star 
trackers. Koizumi et al. (Koizumi et al., 2018) present a 
DL-powered Earth sensor capable of determining the 
attitude of the spacecraft by processing the images 
captured by a Commercial-Off-The-Shelf (COTS) 
camera. It runs a real-time image processing algorithm 
to extract features into the images separating them into 
distinct feature sets using DL techniques. The features 
sets are then compared to the preloaded data sets to 
determine the position of the spacecraft relative to Earth 
in the 3D plane. The primary advantage of the system 
is the use of a COTS component and a single board 
computer.

Another research thread explores the combination 
of ML techniques and fuzzy controllers (Kim et al., 
2016). Classical fuzzy controllers rely on manually set 
parameters that define behavior. This research thread 
attempts to leverage ML techniques to learn the optimal 
value for these parameters from a training dataset. 
These have the advantage of interpretability - their 
reliance on explicitly (if fuzzily enforced) rules means 
that they remain grounded on human-interpretable 
system models. Joghataie’ PhD. thesis (Joghataie, 
1994) suggests the development of a neuro-fuzzy 
controller, wherein the tuning of the fuzzy logic is 
performed automatically by using neural networks in a 

hybrid approach. Azarbad (Azarbad et al., 2014) 
suggests a model applied to Global Positioning System 
(GPS) systems that outperform the classical fuzzy 
controller. A simulation study on MATLAB was done 
by Baranwal et al. in (Baranwal et al., 2018) , 
comparing the performance of a PID controller and a 
fuzzy PID controller for a student satellite team. The 
EKF-based fuzzy controller outperformed the classical 
controller. The study was done on a 3U CubeSat. 
Further research can be done comparing these 
controllers with ML-based approaches. We have been 
unable to find a comparison between the three types of 
controllers, i.e., neuro-based controller, fuzzy 
controller and a hybrid model, as implementation 
details in different studies differ, complicating their 
comparison. 

Wang et al. (Wang et al., 2019) have developed a 
DL framework that stabilizes the spacecraft using a 
real-time torque control. It is initially trained in a 
simulation environment, enabling it to learn the 
required torque output and extrapolate it for unknown 
disturbances. It performs better than a conventional PID 
controller, as it can correct the attitude after unknown 
disturbance rather than repeatable corrections.  A 
similar system is proposed by Yadava et al. (Yadava et 
al., 2018). They propose an Attitude Orbital 
Determination System (AODS) system that determines 
the position of the spacecraft, taking inputs from the 
magnetometers (magnetic vectors) and sun sensor (sun 
vector) along with GPS data (position and velocity 
vector), and determines the ideal attitude depending on 
the position using a neural network. The required torque 
calculations are made and sent to the Reinforcement 
Learning (RL)-based controller to make the required 
adjustments. The system performs better than classical 
PID controllers as it consumes less computation power 
for subsequent cycles as the algorithm learns. 

3.3. Recommendations

Most ML for GNC applications in the space sector 
seem to have been explored in the context of space 
logistics and space exploration rather than Earth 
Observation. Although guidance and control for EO 
platforms are simple compared to these applications, 
we believe there is a potential to adopt some of these 
technologies.

Attitude determination is a domain where EO 
operations have high requirements. We believe that 
vision-based processing applied to this area is just 
getting started, and that use of more refined neural 
architectures could enable improvements in 
performance or resource consumption compared to 
current approaches.

https://www.zotero.org/google-docs/?4702L8
https://www.zotero.org/google-docs/?OG3kqC
https://www.zotero.org/google-docs/?broken=CEuPIK
https://www.zotero.org/google-docs/?FFnDpP
https://www.zotero.org/google-docs/?JkZP21
https://www.zotero.org/google-docs/?JkZP21
https://www.zotero.org/google-docs/?fk5msb
https://www.zotero.org/google-docs/?fk5msb
https://www.zotero.org/google-docs/?qKw6i3
https://www.zotero.org/google-docs/?Se6ur5
https://www.zotero.org/google-docs/?6iwLli
https://www.zotero.org/google-docs/?flAbrn
https://www.zotero.org/google-docs/?flAbrn
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4. Machine Learning in Earth Observation Fault 
Detection, Isolation, and Recovery

Satellites performing EO tasks have stringent 
requirements in terms of accuracy, continuity and 
stability of payload operations. To this end, Fault 
Detection, Isolation and Recovery (FDIR) is focused on 
developing and improving tools to guarantee and 
maintain reliable spacecraft operations. FDIR describes 
a set of engineering disciplines focused on safeguarding 
and maintaining the spacecraft in nominal operating 
conditions. The target of these disciplines is represented 
by faults, irregular occurrences and processes with the 
potential to disrupt the mission up to the point of failure. 

ML can be an extremely powerful tool for FDIR. 
Indeed, the core capability provided by ML is pattern 
detection. Therefore, ML can be used both to detect 
anomalies in the telemetry or outputs from any 
subsystem (diagnosis) and identify signs indicating an 
incipient fault (prognosis). This section presents 
relevant ML literature for four significant sub-topics: 
fault detection, fault diagnosis, recovery, and fault 
avoidance 

4.1. Fault Detection 

Failure detection deals with identifying the presence 
of faults and their rates of occurrence. 

4.1.1. Classical approaches

In classical approaches, the recognition of failures 
is mainly based on constant thresholds and fixed logic 
diagrams defined during the design process. (Wertz and 
Larson, 1999) One of the key issues with classical fault 
detection is model brittleness. As fault detection 
schemes are based on hardcoded thresholds, these 
models are easily disrupted by noise and deviations 
from theoretical assumptions.

4.1.2. ML-based approaches

An example of an ML-based solution to the issue of 
model brittleness can be found in a paper by Jaekel et 
al. (Jaekel and Scholz, 2015). This work uses Self-
Organizing Maps (SOM), an unsupervised variant of 
Artificial Neural Networks (ANNs), for the detection of 
failures in dexterous manipulators for On-Orbit 
Servicing (OOS). SOM manages to adapt to the 
idiosyncrasies of incoming data in a simulated 
environment and thus show increased robustness to 
input variations with respect to traditional methods. 
They can also deal with uncertainties and noise in 
values. A dexterous manipulator on a maintenance 
satellite captures a client spacecraft having 7 degrees of 
freedom. They inject sensor failures, including sensor 

outage and drift, during arm operations and the results 
show that SOMs are a robust approach as temporary 
fluctuations in the sensor, outliers and peaks do not 
unnecessarily stop the current operation. But the 
computational load is relatively high and needs to be 
optimized to reduce system reaction time. The authors 
suggest improving the precision and speed of the 
method by adding more information from redundant 
sensors. Ranasinghe et al. provides a comprehensive 
analysis of FDIR (Ranasinghe et al., 2022). Fuertes et 
al. (Fuertes et al., 2018) discuss ML-based fault 
detection using NOSTRADAMUS, an algorithm 
developed by the Centre National des Études Spatiales 
(CNES). NOSTRADAMUS uses a One-Class - Support 
Vector Machine (OC-SVM), a common algorithm used 
to detect outliers, to detect the presence of an anomaly 
in telemetry data. NOSTRADAMUS runs on the 
ground segment, analyzing telemetry as it is 
downlinked from the satellite. The performance of 
NOSTRADAMUS is compared to algorithms inspired 
by Novelty Detection (ESOC), Project Sybil (Ivano 
Verzola et al., 2016), and ATHMoS (DLR) (O’Meara 
et al., 2016). NOSTRADAMUS is the best option 
because it has a 100% detection rate and the minimum 
false alarm rate (5 percent). The Novelty-inspired 
algorithms show the best performance of false alarm 
reduction, with 85 percent of valid detections and fewer 
than 1% of false alerts. 

CNES is working on an on-board version of this 
algorithm, as well as on extensions to the ground-based 
variant for processing of multiple telemetry variables 
based on dictionary learning approaches (Pilastre, 
2020). In conversations during their collaboration with 
this project, CNES teams signaled that explainability 
was a crucial aspect of any technique. Being able to 
understand the features of input data that signal a fault 
lets the operational teams understand the context of 
their satellite and know which actions must be taken to 
remedy the situation - this is comparable in value to 
being able to detect the anomaly in the first place.

Project Sybil is a collaborative effort by DLR's 
Columbus Flight Control team, ESA's Advanced 
Mission Concept Section, and Ludwig Maximilians 
Universitat to apply an outlier identification algorithm 
to the Columbus telemetry database. After data 
segmentation and computation of its respective 
characteristics, it uses the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
technique to preprocess the data. It is an unsupervised 
clustering method that divides data into a variable 
number of clusters based on their relative distances. 
Following this grouping, clusters with less than 5% of 
the population data are discarded on the assumption that 
they may indicate a non-nominal working mode in the 
learning dataset. Project Sybill allows for higher 

https://www.zotero.org/google-docs/?m0HcGK
https://www.zotero.org/google-docs/?XT7maa
https://www.zotero.org/google-docs/?WYwxgc
https://www.zotero.org/google-docs/?WYwxgc
https://www.zotero.org/google-docs/?tDK1Uz
https://www.zotero.org/google-docs/?tDK1Uz
https://www.zotero.org/google-docs/?AJnrS5
https://www.zotero.org/google-docs/?AJnrS5
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mission performance by reducing downtime caused by 
onboard system failures.

4.2. Fault Diagnosis

Fault detection identifies the presence of faults and 
performance degradation, while fault diagnosis 
identifies the root causes of these events. 

4.2.1. Classical approaches

Though traditionally, fault diagnosis has been 
achieved by human operators at the ground through 
comparison with hardcoded hand-tuned thresholds. It is 
difficult to deal with large amounts of data using this 
approach. Iverson et al. (Iverson, 2008) point out that 
for efficient utilization of the data, there is a need for an 
autonomous approach that eliminates the necessity of 
human experts for diagnosis.

4.2.2. ML-based approaches

Ricks et al. (Ricks, 2021) examine fault detection 
and identification for a satellite Electrical Power 
System (EPS) testbed using BNs compiled to arithmetic 
circuits. BNs can be used to model partial knowledge 
and uncertainty by identifying the system state based on 
probabilistic relationships between a set of system 
variables at a certain instance in time (Meß, 2019). The 
proposed methods work for complex systems 
exhibiting both continuous and discrete behavior. The 
discussed techniques can handle abrupt continuous 
faults particularly well, which often pose problems. For 
example, a nominal value region is not enough to detect 
offset faults if they are small enough - the paper uses 
cumulative sums to deal with these. Additionally, 
“stuck” faults may be difficult to detect in low-noise 
conditions since fluctuations might be infrequent. The 
authors employ a tunable time interval which will mark 
the sensor as working abnormally after it expires 
without the readings having made any change.  
Different types of nodes, modeling different 
behaviours, are grouped to defined sensors and 
components, which in turn are assembled to create the 
entire EPS functional FDIR structure. BNs have also 
been used by Schumann et al. (Schumann et al., 2011) 
to detect onboard failures and perform diagnoses. A 
Software and Sensor Health Management (SSHM) 
system is developed for a simple GNC structure of a 
small satellite using BNs that collect data from 
hardware sensors, software quality signals, software 
status signals and data from the operating system in 
order to determine whether any failures exist, what the 
most likely causes are, and to provide a statistically 
sound quality measure of the diagnose. The developed 
SSHM system requires no modification to the satellite 

subsystems for which it performs FDIR - it just uses the 
sensor data outputs. That way, model-level and code-
level Verification & Validation can be performed 
independently on the SSHM system to certify that the 
rate of false positives and false negatives is below a 
selected threshold. This SSHM, applied to a simple 
GNC system, was able to detect and diagnose both 
hardware and software problems successfully. 
Nevertheless, it remains a simplistic case and more 
research into hierarchical SSHM systems is required in 
order to apply them to large-scale BNs. The approach 
can further be extended to failures that are not modeled 
and unexpected and due to arising behavior.

Although not specifically related to space systems, 
Liu et al. (Liu et al., 2018) reviews the existing 
techniques for ML-based fault diagnosis in rotating 
machinery. In general, it presents useful research and 
conclusions which we consider can be applied to 
reaction wheels in the AOCS subsystem of spacecraft. 
K-Nearest Neighbor (k-NN) is the simplest method 
reviewed, which exhibits ease of implementation but 
necessitates careful fine-tuning and large computation 
and storage space. The authors cite BNs’ strong prior 
assumptions as the biggest shortcoming of this family 
of algorithms while mentioning as main advantages that 
it possesses a clear physical explanation of how it 
detects faults and its reduced storage space 
requirement. Support Vector Machine (SVM) is also 
reviewed, and its high-dimension accuracy is 
highlighted, even if the physical meaning is obscured, 
unlike with the previous two techniques. Finally, DL 
techniques have the potential to learn from data up to a 
degree of complexity much higher than any of the other 
techniques without the need for a manually crafted 
feature extractor. However, the main drawback of this 
approach is the need for large samples in order to train 
the network, which is difficult to obtain unless the 
spacecraft is a new iteration of previously flown models 
for which data already exists. If the satellite is a one-
off, this can only be obtained in an approximate manner 
by creating a simulation environment. The authors 
underline that future ML-based fault diagnosis methods 
should not be purely data-driven but should consider 
possible failure mechanisms, system models and prior 
knowledge in general to increase diagnostic 
performance.

Voss (Voss, 2019) explores the use of DL for fault 
detection and isolation in a simulation environment. A 
NN is developed, trained offline and tested to detect and 
isolate single faults in the reaction wheels, GPS, star 
tracker and magnetometer subsystems, as well as two 
simultaneous faults. A case study with PROBA-V 
mission parameters is also performed for the AOCS 
subsystem only. The implemented system yielded 
mixed results: while some subsystems have a near-
perfect performance, the network fared poorly 

https://www.zotero.org/google-docs/?ghTpCT
https://www.zotero.org/google-docs/?4vaw69
https://www.zotero.org/google-docs/?Z7JKPw
https://www.zotero.org/google-docs/?lfnpkJ
https://www.zotero.org/google-docs/?xHQjaK
https://www.zotero.org/google-docs/?m18il4
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regarding others, namely misalignment faults. Also, 
fault isolation was much more reliable than fault 
detection. On top of that, a large dataset is required for 
this system to work, so creating a simulation 
environment is mandatory, especially for one-off 
spacecraft, to acquire enough data for adequate network 
training. This study also assumes there is enough 
electrical and computing power available on the 
satellite to run this deep-learning-based solution. We 
overview techniques for reducing resource 
consumption of deep neural models and other 
techniques in section 6.

4.3. Recovery

In FDIR, recovery entails reconfiguring the 
problematic element and/or the entire spacecraft to 
restore normal system behaviour (Jaekel and Scholz, 
2015). 

4.3.1. Classical approaches

Traditional FDIR is able to respond to predefined 
events by selecting a recovery path from the available 
set of options. However, the status of the system and its 
environment can exhibit various kinds of uncertain 
behavior due to their dependence on the internal 
subsystem, component reliability factors, external 
environment factors (e.g., illumination conditions, 
thermal, radiation) and on system-environment 
interactions (e.g., resource utilization profiles, stress 
factors, degradation profiles) (Meß, 2019). Due to these 
uncertainties, the system and its environment cannot be 
completely observed by traditional FDIR concepts that 
pose limitations to autonomous isolation and recovery 
(Meß, 2019). For example, Mars Express lost six 
months of operational hours due to a non-resolvable 
memory problem that forced it into safe mode 
repeatedly (Jaekel and Scholz, 2015).

4.3.2. ML-based approaches

Raiteri et al. (Codetta-Raiteri and Portinale, 2015) 
discuss the use of  Dynamic Bayesian Networks 
(DBNs)  to address issues like partial observability, 
uncertain system evolution and system-environment 
interaction, as well as the prediction and mitigation of 
imminent failures. The BNs do not model the 
relationship between variables at previous points in 
time. DBNs are an extension to BNs that refer to past 
values of certain variables to express dynamic aspects 
of the system over discrete time (Meß, 2019). The 
approach is applied by Raiteri et al. (Codetta-Raiteri 
and Portinale, 2015) onto the power subsystem of a 
simulated ExoMars rover, by simulating different 
failure scenarios. The DBNs can infer whether the 

system is currently in a normal, anomalous or failed 
state. On detection of a failure, a suitable recovery plan 
is suggested. A preventive recovery plan may be 
proposed in case an anomaly is inferred. The FDIR 
presented in this paper also has the capability of 
performing a prognostic state estimation that can also 
be used for preventive recovery. The proposed 
approach has been implemented in an on-board 
software architecture called Anomaly Resolution and 
Prognostic Health Management for Autonomy 
(ARPHA). The results show that DBNs are suitable for 
failure situations requiring autonomous (preventive and 
reactive) recovery.

AIKO Technologies have developed a software 
library, MiRAGE, that can enable the spacecraft to 
make autonomous decisions for processing telemetry 
and payload. The library is meant to be installed on the 
satellites to enable functionalities such as event 
detection, predictive maintenance and autonomous re-
planning.

4.4. Fault Avoidance

Fault avoidance methods are concerned with 
preventing the occurrence of faults. 

4.4.1. Classical approaches

FDIR in past missions worked under the notion that 
a fault is detected and then the algorithm will react, 
according to predefined scenarios.(Jalilian et al., 2017; 
Olive, 2010). Regarding ML-based models, one of the 
bottlenecks to having an on-board failure avoidance 
system is that the models are trained on the ground with 
limited data that does not represent actual behavior in 
space. This gives rise to the requirement of real-time 
access to the data, which can be used to represent 
multiple onboard scenarios, and closely represents 
spacecraft behavior during the mission.

4.4.2. ML-based approaches

Especially notable in the context of ML-enabled 
fault avoidance is the work of Labrèche et al.(Georges 
et al., 2021) discussing the OrbitAI experiment onboard 
the OPS-SAT spacecraft. OPS-SAT is a special ESA 
satellite deployed with the scope of being a testbench 
for novel software technologies in orbit. OrbitAI uses 
ML techniques to obtain intelligent FDIR algorithms 
enabling the onboard camera to avoid direct exposure 
to sunlight. Interestingly the ML model used is trained 
on-board, rather than offline.  The model is trained with 
five training algorithms tested of those natively 
provided in the MochiMochi library (olanleed, 2021) 
for online ML training: Adam, RDA, AROW, SCW, 
and NHERD. When using the figure of merit of 

https://www.zotero.org/google-docs/?FljAWT
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https://www.zotero.org/google-docs/?Evcebu
https://www.zotero.org/google-docs/?7iOlCv
https://www.zotero.org/google-docs/?ipSZPe
https://www.zotero.org/google-docs/?gerpOB
https://www.zotero.org/google-docs/?gerpOB
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balanced accuracy, only one model appears to achieve 
values significantly different from 0.5: the AROW 
algorithm in three-dimensional input space.

4.5. Recommendations

FDIR innovation has been applied mainly to deep 
space missions, which need a higher degree of 
autonomy due to their long communication delays 
inherent to the long distances traveled. However, the 
analysis of the literature suggests that ML in EO FDIR 
has promising prospects. The approach can be extended 
to diagnose failures that are not modeled, unexpected 
and due to arising behavior, which offers a great 
advantage in overcoming the model brittleness issues of 
traditional FDIR. ML-based fault detection and 
diagnosis solutions can be integrated alongside the 
traditional FDIR of the satellite. But ML-based 
recovery is virtually unexplored, and much research is 
needed in this domain. The majority of the work in this 
field concerns BNs, while other research avenues 
remain largely unexplored, such as ANNs and DL. As 
it would be shown and discussed in Section 6, power 
and computational resources remain a big concern for 
ML-based FDIR, especially for small satellites. The 
benefits of ML-based FDIR can be further researched 
to be implemented in future EO satellites to perform 
FDIR on the AOCS subsystem, GNC, On-Board Data 
Handling, Power subsystem, and detection of faulty 
sensors.

5. Machine Learning in Earth Observation On-
board Image Processing

5.1. On-board Image Processing

Clouds cover 66% of the Earth’s surface and are an 
obstacle when observing the Earth’s surface in certain 
wavelengths such as visible light. Removal of clouds 
from satellite images is an important preprocessing 
phase for most of the applications in remote sensing.

Researchers have explored various forms of Cloud 
detection like “Cloud / No cloud”, “Snow / Cloud”, and 
“Thin Cloud / Thick Cloud”, using various approaches 
of ML and classical algorithms (Mahajan and Fataniya, 
2020). Cloud detection/filtering can be used alongside 
novelty detection. Novelty detection is to detect 
unexpected features and it is especially important while 
looking into new environments.

Good cloud detection algorithms are necessary to 
optimize bandwidth and memory usage in EO missions 
(Z. Zhang et al., 2019) and before the implementation 
of segmentation and object detection methods. 
Convolutional Neural Networks (CNN) have 
demonstrated excellent performance in various visual 
recognition problems such as image classification and 

enable accurate onboard cloud detection in small 
satellites.

With the increase in EO missions coupled with 
high-resolution modern sensors, there is an increase in 
bandwidth requirement that leads to the need to utilize 
new techniques to manage the bandwidth resources 
efficiently. 

5.1.1. Classical approaches

In the majority of missions, all images taken are 
transmitted to the ground, which requires a significant 
amount of bandwidth. Traditionally, data collection is 
done by specifying in advance where and when to take 
the measurements. Based on the content of the data, 
there is no mechanism to tailor what is downlinked. 
(Srivastava, 2003; Vladimirova and Atek, 2002)

Other common approaches include novelty 
detection based on spectral contrast, radiance spatial or 
temporal contrast. (Shaw and Burke, 2003) But these 
methods are better used for dark grounds like vegetation 
or deserts as clouds contrast in color compared to them. 
Furthermore, these methods rely on manually chosen 
thresholds, which are time-consuming to find and 
sometimes brittle. (Arechiga et al., 2018)
Whereas spatial coherence is a better method of cloud 
detection in areas with little contrast with the clouds 
(ice sheets). NNs have also been shown to have greater 
flexibility with classifying indistinct classes like clouds 
on snow.

5.1.2. ML-based approaches to On-board 
Image Processing

For cloud detection, Zhang et al. (Z. Zhang et al., 
2019) propose a lightweight DNN based on U-Net. For 
performance estimation of the proposed method, 
training and testing of the red, green, blue and infrared 
waveband images from Landsat-8 were used. The 
lightweight DNN is based on U-Net and obtained better 
overall accuracy while reaching the state-of-art 
inference speed by applying the LeGall-5/3 wavelet 
transform on the dataset which compresses the dataset 
and accelerates the network for on-board use. Zhang et 
al. experimental results illustrate that the proposed 
model maintains high accuracy after four-level 
compression (Z. Zhang et al., 2019). They reduce 
processing time from 5.408s per million pixels to 0.12s 
per million pixels, and average memory cost by around 
30%. The suggested method takes advantage of 
established image compression systems in satellites to 
provide a good chance of onboard cloud identification 
based on DL, hence enhancing downlink data 
transmission efficiency and lowering memory costs. On 
compressed datasets, U-Net gives improved accuracy. 
In addition, the U-Net framework demonstrated 
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tremendous promise for pixel-by-pixel categorisation 
of remote sensing datasets (Z. Zhang et al., 2019).

Hinz et al. (Hinz et al., 2020) also work on the 
detection of clouds in the H2020 EO-Alert project 
framework. However, the EO-Alert project aims at 
keeping images of clouds and enriching them with alert 
profiles in case of severe storms for weather 
broadcasting. The algorithm used is ML-based 
Gradient Boosted Decision Trees and is embedded in a 
modular image processing pipeline. Currently, tests of 
the pipeline are performed in Matlab and are ported on 
hardware to be flown to space.

Srivastava et al. (Srivastava, 2003) suggested using 
Kernel methods for better onboard discovery 
computation of cloud detection over snow and ice. This 
paper proposes a Kernel method that can be used for 
clustering and classifying images on board any satellite. 
The paper discusses a novel variant of the Probabilistic 
Kernel (P-Kernels) with a mixture of Gaussian and 
spherical covariance structures. It is very sensitive to 
even the smallest changes as it assumes all observations 
are independent. The results showed great promise, 
with clouds being differentiated much better from 
Greenland ice sheets compared to the Gaussian and 
Gaussian mixture models.

Giuffrida et al. (Giuffrida et al., 2020) (Giuffrida et 
al., 2022) discuss a CNN deployed on the PhiSat-1 
reconfigurable nanosatellite to analyze imagery from its 
Hyperscout-2 payload and select images eligible for 
transmission to the ground. It is implemented on-board 
the ESA Phisat-I mission to classify cloud-covered 
images and clear ones. Only images with less than 70% 
cloudiness are transmitted to the ground. The network 
is trained and tested against an extracted dataset from 
the Sentinel-2 mission, which was appropriately pre-
processed to emulate the Hyperscout-2 hyperspectral 
sensor. On the test set, 92% of accuracy is achieved 
with 1% of False Positives (FP). The results showed a 
power consumption of 1.8 W, requiring memory of 2.1 
MB, keeping within the power and the memory 
constraints.

(Del Rosso et al., 2021) showcase the use of CNNs 
on multispectral data to detect volcanic eruptions on-
board a satellite. Onboard detection of disaster events 
allows prioritizing their downlink and thus optimising 
response times, which can translate into saved lives. 
Moreover, they have released the dataset used for 
training, a step the rest of the industry should imitate if 
rapid progress is to be encouraged.

(Spiller et al., 2022; Thangavel et al., 2023, 2022a, 
2022b) showcase the use of CNNs on hyperspectral 
data to detect wildfire on-board a satellite.

Other solutions that have not flown yet and are in 
the concept phase have been developed. Maskey et al. 
(Maskey and Cho, 2020) proposed an ultralight CNN 
algorithm called CubeSatNet, that prioritizes quality 

data over quantity without changing the constraints of 
size, power, volume, downlink and pointing 
requirements imposed by a 1U CubeSat. The algorithm 
is trained over 48000 augmented images from CubeSats 
and validated against 12000 augmented images from 
CubeSats to classify images as “bad” when cloudy, 
sunburnt, facing space or saturated. Images are 
classified as “good” in all other cases. If in orbit, the 
algorithm would select only “good” images to be 
downlinked and discard images that are covered in 
clouds or too bright or dark. Trained on BIRDS3 
satellite images, the algorithm reportedly has an 
accuracy of 90% and can cut operation time by about 
2/3 while significantly improving the quality of images 
received.

Murray (Ireland, 2019) proposed a concept of on-
board processing with two cameras: the nadir-looking 
camera performs the standard observation, whereas a 
forward-looking camera observes if clouds are coming 
in the trajectory of the satellite. A neural net 
classification grid is used to identify clouds and an 
algorithm then decides when to capture images with the 
nadir looking. This approach would be oriented towards 
CubeSats.

Castaño et al. (Ricard Castaño et al., 2007) trained 
an SVM for estimating the opacity of atmospheric dust 
and water ice on Mars on data from the THEMIS 
camera mounted on board the Odyssey mission. The 
authors use both a regular SVM and a reduced-set 
SVM. The reduced-set SVM is trained on a reduced 
synthetic dataset maximizing the similarity of the 
reduced-set SVM to the regular SVM. The reduced 
amount of support vectors decreases compute 
requirements. They then test both the full-size SVM 
and reduced-set SVM on flight software, showing the 
capability of such software to run the proposed 
algorithms.

The authors mention two challenges related to the 
analysis accuracy of onboard Time History of Events 
and Macroscale Interactions during Substorms 
(THEMIS) data. Firstly, as the onboard data is not 
calibrated, the deployed models must be robust to 
significant noise. Secondly, the camera's response 
function can gradually increase or decrease its values 
due to temperature fluctuations, even when there is no 
change in actual value.  The authors suggest 
characterizing the operation of the algorithms in an 
environment as close as possible to that of the 
spacecraft.

Lastly, the Autonomous and Reactive Image Chain 
(CIAR) project from IRT Saint Exupéry demonstrated 
cloud segmentation on board the operational test-bed 
satellite OPS-SAT in 2021 (Frédéric Férésin et al., 
2021). Figure 5 showcases a visualization of their 
results.

https://www.zotero.org/google-docs/?MGFUTy
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https://www.zotero.org/google-docs/?z8uFKz
https://www.zotero.org/google-docs/?qR0rXa
https://www.zotero.org/google-docs/?Pf0uwq
https://www.zotero.org/google-docs/?Ea7AWw
https://www.zotero.org/google-docs/?ZI2S6W
https://www.zotero.org/google-docs/?ZI2S6W
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Figure 5: On-board cloud segmentation from the 
CIAR project

5.1.3. ML-based approaches to Novelty 
Detection

Wagstaff et al. (Wagstaff et al., 2017) show the 
benefits of reduced downlink data when performing 
cloud detection and filtering for EO missions. Cloud 
detection is demonstrated using Random Decision 
Forests (RDFs) and Bayesian Thresholding (BT), while 
a third saliency-based algorithm is used for novelty 
detection onboard EO-1. The RDF method analyzes a 
window of values around the pixel for classifying the 
pixels. In contrast, the BT independently performs the 
classification of each pixel. BT uses the difference in 
particular wavelengths between dark surface materials 
and bright cloudy regions. The novelty detection 
algorithm identifies such regions within an image that 
may contain new features. EO-1’s primary science 
instrument is Hyperion. It’s an Imaging Spectrometer 
capable of data collection with high Spatial and Spectral 
resolution. Using data from previous mission phases, 
both cloud detection algorithms were trained to drop 
useless images from the telemetry downstream. The 
performance of the algorithms has been evaluated 
onboard over a five-month period from November 2016 
through March 2017. In comparison to ground testing, 
the on-board performance showed similar or better 
results on a diverse collection of targets. Both RDFs and 
BT reached an accuracy of more than 90%.  However, 
in real-time, the RDFs were faster. The novelty 
detection was able to detect new features in remote 
locations such as small lakes and buildings; hence, such 
images could be given priority for the downlink. Such 
methods must be able to successfully operate on board 
with limited resources while posing a minimum risk to 
the overall spacecraft. With the advancement in 
computing capabilities, more complex models offering 

better accuracy can be used onboard future EO 
missions. 

Chien et al. (Chien et al., 2017)  present the results 
of the IPEX, which was based on a CubeSat that did fly 
from December 2013 to January 2015 and validated 
autonomous operations for the computation and 
generation of product onboard the platform hosting the 
Hyperspectral Infrared Imager (HyspIRI) mission 
concept's Intelligent Payload Module. IPEX was used 
as a testbed for on-board image classification, which 
was accomplished with the help of machine learning-
based random decision forest algorithms. In 
comparison to earlier missions, the solution was 
improved by using an ensemble of several trees to 
increase the classifier's reliability through statistical 
regularization without the requirement for explicit tree 
pruning. Furthermore, the system examines spatial 
neighborhoods in each image rather than single pixels 
to integrate local morphology and texture. By 
classifying every 10th pixel and the vertical and 
horizontal directions and filling in the rest with nearest-
neighbor interpolation, runtime was reduced. The IPEX 
classifiers are trained before launch using only four 
hand-labelled photos from a high-altitude balloon 
mission that used the same type of camera as IPEX. 
This is a very fascinating point. According to the 
researchers, it was the first time that an ML system was 
trained on a suborbital mission and then effectively 
used in orbit.

IPEX also experimented with an unsupervised 
method for identifying photographs with potentially 
intriguing content, which would be used in conjunction 
with supervised learning. To extract relevant regions 
for downlink in captured imagery, computer vision 
visual salience software was used. To work with 
CubeSat's limited resources, the program developed a 
simple pixel-based measurement of visual salience for 
grayscale images with the local context. To select the 
five most important parts within the image, the method 
is applied to a down sampled version of the image using 
a 32×32-pixel window. The pipeline is finished with 
thumbnails of important regions and their salience 
scores, which are saved and made available for 
downlink and on-the-ground analysis. If necessary, 
full-resolution images can also be downlinked to 
ground stations.

5.1.4. Recommendations

With the strict limitation on bandwidth, onboard 
filtering of useless data enables sending data to the 
ground with minimum compromise on image quality 
and the need for human intervention for decision-
making. The results of ML algorithms can be improved 
in terms of accuracy and precision with the availability 
of newly generated data. 

https://www.zotero.org/google-docs/?TPT7R9
https://www.zotero.org/google-docs/?TozA8r
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5.2. Object/Image Classification

Image classification is a task of extracting 
information on the basis of objects in the images instead 
of individual pixels, where “objects” are referred to as 
meaningful scene components that distinguish an image 
(Deepan and Sudha, 2020).

5.2.1. Classical approaches

While current methods do extensively apply ML 
algorithms to great success, image classification is 
more often done on the ground instead of onboard a 
satellite. (Shaw and Burke, 2003)

5.2.2. ML-Based approaches

Arechiga et al. (Arechiga et al., 2018) give an 
example of an on-board processing application where a 
CNN architecture is used for object classification and 
trained using satellite imagery of Planet’s Open 
California dataset. Nvidia Jetson TX2 is used for 
implementing this application. The authors suggest that 
more research can be done so that the application can 
be enhanced to classify more objects. Machine 
intelligence is used to perform onboard analysis of EO 
tasks such as hazard analysis (e.g., wildfire and flood 
detection), target detection, area monitoring, and 
weather forecasting (Manning et al., 2018). On MODIS 
(Moderate-resolution imaging spectroradiometer) data, 
NASA Goddard researchers employed machine 
learning to detect wildfires. In practice, CNNs are used 
to perform two tasks: training and inference. The 
process of "learning" the ideal set of weights that 
maximizes the accuracy of the desired task is referred 
to as training (e.g., image classification, object 
detection, semantic segmentation). It's a 
computationally difficult task that's frequently aided by 
Graphics Processing Unit (GPU). The inference is the 
process of making decisions based on new data using a 
trained model (with no parameters changed). The 
inference is a less computationally intensive method 
that has been carried out on Central Processing Unit 
(CPU), GPUs, and Field Programmable Gate Array 
(FPGA). 

5.2.3. Recommendations

Similar to onboard cloud detection, moving object 
classification and detection onboard satellite platforms 
allow operators to reduce the load of ground-satellite 
communications links. EO Operators can leverage the 
huge and quickly expanding research field of computer 
vision. 

The high-level information gained by using object 
classification can then be used for other tasks, like 
dynamic mission replanning.

5.3. On-board image compression

New, complicated onboard sensors can quickly 
saturate communication transceiver downlink 
bandwidth as well as onboard data storage capacity. 
Image compression codecs that are more efficient are 
becoming a need for spacecraft and can greatly lower 
the amount of data communicated or stored. However, 
while designing a tradeoff mission, it’s also important 
to think about whether these are computationally 
intensive and require quick processing to keep sensor 
data rates up.

5.3.1. Classical approaches

Systems used a range of lossless and lossy 
compression algorithms to compress data in spaceborne 
activities (Giuffrida et al., 2022; “Image Data 
Compression,” 2021; “Lossless Data Compression,” 
2020). Where the system bandwidth is too low to 
support lossless compression, when the science value is 
not compromised by lossy compression’s distortion, or 
when other sensors that do not play a role in primary 
data products are included, lossy compression is 
frequently used. An example of this last case can be 
scene-context cameras.

5.3.2. ML-Based approaches

Goodwill et al. (Goodwill et al., 2020) proposed an 
ML-based solution to achieve good reconstruction 
fidelity after lossy compression. The algorithm, CNN- 
Joint Photographic Experts Group (JPEG), makes use 
of a hybrid approach combining CNNs and JPEG 
Compression. The image is fed to a 3-layer CNN in the 
encoder to obtain a compact image representation, 
which is then encoded with JPEG. Based on previous 
work, the encoder is denoted by ComCNN and learns a 
compact image representation that is half the size of the 
original image. In the decoder, the resulting image is 
upsampled to the original size and decoded with a 
deeper 20-layer CNN, which reconstructs the original 
image by learning a residual image and adding it to the 
upsampled image. 

On an image dataset obtained from STP-H5-CSP 
compressed to the same file size, experimental results 
for CNN-JPEG demonstrate a 23.5 percent and 33.5 
percent gain in Peak Signal to Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM) over conventional 
JPEG, respectively. At a fixed PSNR, CNN-JPEG 
increased the average compression ratio by 1.74 times 
on the same dataset. It's also worth noting that the 

https://www.zotero.org/google-docs/?WxxctU
https://www.zotero.org/google-docs/?dA7NRr
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https://www.zotero.org/google-docs/?wrU1Jo
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encoding segment of CNN-JPEG in TensorFlow (TF) 
Lite, when run on the Zynq-7020's Cortex-A9 cores, 
provided an average execution time of 16.75s utilizing 
a single thread, according to the research. Using the TF 
Lite interpreter to parallelize operations was reportedly 
far from ideal linear speedup. Authors also showed that 
leveraging the Zynq-7020 FPGA resources through 
SDSoC for hardware acceleration helped decrease the 
average execution time of the CNN-JPEG encoder to 
2.293 s, with a 7.30 speedup over the single-threaded 
TF Lite solution and 6.87 times speedup over the single-
threaded TF Lite solution.

Vladimirova et al. (Vladimirova and Atek, 2002) 
discuss the development of a lossless compression 
method without the drawbacks of low compression 
ratios using predictive NNs, coupled with integral 
wavelet transforms and the Peano-Hilbert (PH) Scan 
algorithm. This is then benchmarked against the 
Context-Based, Adaptive, Lossless Image Codec 
(CALIC) Method using various image datasets. The 
image is first sent through the Integral Wavelet 
Transform (IWT)to produce a de-correlated image, 
which is mapped, and a PH scan is performed after 
which the NN (a two-layer, 4x106 x 1) scans and 
allocates a probability distribution for the next 
incoming value. On the tested data sets, using only the 
NN method achieved an average compression ratio of 
2.530, compared to the CALIC method which achieved 
a ratio of 1.806. Introducing the PH scan brought an 
8.5% improvement compared to the CALIC method at 
2.747. The IWT+PH+NN method overall achieved an 
improvement of 13.1% compression ratio over the 
CALIC method. The paper proposes potential 
applications of the algorithm in previewing a satellite 
image before a full image is transferred to assess the 
image's features and would prevent bad images from 
being sent, such as those affected by clouds or images 
suffering from other distortions. 

Cai et al. (Cai et al., 2003) proposed a novel Light 
Detection and Ranging (LIDAR) image data 
compression method. The method is called feature 
indexing where specific features are assigned to a data 
index system generated by DNNs. The whole program 
is then uploaded to onboard hardware and it stores it as 
a dictionary for reference. The On-Board Computer 
(OBC) runs a feature isolation program, identifies 
features, and creates a resultant dataset of pure indices 
based on the directory. This data set is then transmitted 
with the location data and then is decoded on the 
ground. Achieves a compression level of 99.17% and 
works far better than standard wavelet compression 
methods. The method was tested against the LIDAR 
data of the Space Shuttle program and achieved the 
above-mentioned results.

5.3.3. Recommendations:

Exploiting lossy compression to ease downlink 
clearly represents a path to be explored. The work by 
Goodwill et al. (Goodwill et al., 2020) also emphasizes 
the importance of advancement in the field of 
hardware acceleration and System on a Chip (SoC) 
FPGAs. Indeed, on-board inference of CNNs is 
computationally expensive for space platforms. 
Further advancements can possibly support the 
application of more complex algorithms even in 
constrained environments.

6. Machine Learning in resource-constrained 
Earth Observation platforms

This section addresses the topic of ML in resource-
constrained spacecraft performing EO tasks. These 
methods represent a powerful set of enabling 
technologies, relevant both for the emerging interest in 
small satellites and to preserve the operativity of large 
platforms experiencing failures or operating with 
shared resources. Moreover, the consistent 
technological lag of space hardware makes 
considerations about reduced available SWaP almost 
always necessary when redeploying architectures 
developed for Earth-based applications into orbit.

Within the scope of this work, the constraint on 
resource availability will be limited to on-the-edge 
computational and sensing capabilities, and not 
extended to the data. It is also out of the scope of the 
section to address scheduling approaches, which 
optimize the availability of resources to multiple 
subsystems or users. This variability, however, can be 
also seen as a source of constraint over the available 
budgets.

We investigate two ways in which this adaptation to 
technological limitations can be implemented: 
optimization of the AI architecture itself, and 
optimization of the interplay between the model and the 
hardware this operates on. In general, resource-
constrained platforms it is necessary to maintain a 
holistic view of the architecture of the software, the 
hardware, and the data at play. 

It is worth noting that another emerging 
technological field presenting similar constraints to the 
space sector is represented by Internet-of-Things (Lane 
et al., 2015), where the target platforms for AI are small, 
low-power devices. 

https://www.zotero.org/google-docs/?XvdkJl
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6.1. AI Architecture Optimization

6.1.1. Pruning

Pruning is the operation of removing or zeroing 
parameters of a NN model, thus reducing the network’s 
size (Han et al., 2015). This process is generally 
performed by associating scores with the network’s 
elements during training in order to select the ones to 
prune. The lighter model is then further trained and can 
be iteratively re-pruned several times. Multiple pruning 
strategies exist, such as varying the number and nature 
of items pruned, the number of iterations performed or 
changing the scoring criteria (Blalock et al., 2020). 
There are also other emerging pruning paradigms that 
do not rely on an iterative process (H. Wang et al., 
2021) (Frankle et al., 2021).

Pruning’s main trade-off is to increase 
computational efficiency at the cost of quality/accuracy 
and increased training complexity. The objective is to 
leverage compression rates of 4, 8 or even 32 while 
costing at worst only a few percent of accuracy (Blalock 
et al., 2020). Performing pruning along this objective 
remains a delicate task as literature demonstrates that 
keeping good performances is dependent on the pruning 
method. The main challenge of implementing pruning 
is thus to determine and test which pruning methods to 
use in order to achieve the required compression while 
keeping acceptable performances for a representative 
type of datasets.

Although the lack of standards in evaluation 
impedes the comparison of the multiple existing 
studies, they all advertise significant compressing at 
low accuracy cost, including several algorithms 
confirmed by multiple papers (Blalock et al., 2020). 
Pruning has been successfully applied in many image 
processing use cases but has also been proven on voice 
processing (He et al., 2014), credit classification (Tang 
et al., 2018), and multiple other types of datasets 
(Lazarevic and Obradovic, 2001).

Additional engineering and more complex training 
on the ground in order to significantly reduce the 
onboard execution constraints make pruning an 
attractive trade-off and a strong technological enabler 
of NN implementation in space.

Pruning is now developed enough to have 
documented implementation and examples in ML 
frameworks such as TF (“Pruning in Keras example | 
TensorFlow Model Optimization,” 2022).

So far, pruning has been used as part of complex NN 
applications for space but only on the ground with 
applications such as image classification (Browne et al., 
2020; Castelluccio et al., 2015; Kavzoglu and Mather, 
1999; Maggiori et al., 2017). There are some 
applications aiming towards on-board implementations 
like remote sensing image classification (Pitsis et al., 

2019; Zhang et al., 2020), vehicle detection in satellite 
images (Tan et al., 2020) and image anomaly detection 
(Ma et al., 2019).
Unfortunately, the authors were unable to find 
documented evidence of a pruned NN that flew on a 
space mission.

6.1.2. Filter compression and matrix 
factorization

In its section concerning “convolutional filter 
compression and matrix factorization,” the paper by 
Goel et al. (Goel et al., 2020) presents methods to adapt 
neural networks to low-power platforms by operating at 
a layer’s level. The distinction operated between the 
two distinguishes between the types of network 
elements that are being optimized.  

Neural Networks can be algebraically represented 
as n-dimensional matrices known as tensors. Matrix 
factorization approaches reduce the complexity of these 
underlying tensorial structures, to obtain compressed 
networks without significant loss of accuracy. Filter 
compression methods, on the other hand, reduce the 
number of parameters in the network architecture by 
acting on the structure of filters in the so-called 
convolutional layers.

In particular, Goel et al., observe that filter 
compression methods are capable of achieving state-of-
the-art accuracy in computer vision, albeit at times at a 
high computational cost. As computer vision tasks are 
essential in EO operations, this class of methods 
appears to be the most significant within the scope of 
this paper. 

Two architectures emerging as relevant for filter 
compression are SqueezeNet (Iandola et al., 2016) and 
MobileNets (Howard et al., 2017). Both these 
architectures have found applications in the EO 
community. For example, modified SqueezeNets have 
been used by Haikel (Haikel, 2018), Alswayed et al. 
(Asmaa et al., 2020) and Alhichri et al. (Alhichri et al., 
2018)for the classification of remote sensing images 
(both in drone and satellite images). In particular, 
Alswayed et al. report results comparable to or 
outperforming the state of the art at the time of 
publication.  

Poortinga et al. have used a MobileNet-based 
architecture to map sugarcanes in satellite data of 
Thailand (Poortinga et al., 2021), obtaining significant 
accuracy for the task. Zhang et al. (B. Zhang et al., 
2019) also have used an architecture capitalizing on 
MobileNet, reporting results outperforming the state of 
the art at the time. Similarly, Yu et al. (Yu et al., 2020) 
present a MobileNet-based method to classify remote 
sensing imagery and report outperforming many state-
of-the-art models while requiring a smaller amount of 
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training data. In their report paper, Hoeser et al. (Hoeser 
et al., 2020)  note that: “It is important to note the small 
group of six items which use MobileNets, of which five 
were published in 2019”. They describe an onset of 
interest in parameter efficient models with high 
accuracy and they prove that such models can compete 
in Earth observation studies.

6.1.3. Architecture search

Neural Architecture Search (NAS) refers to a set of 
tools and processes for the automatic generation of 
optimal architectures for an ANN. NAS is a specific 
instance of automated machine learning (AutoML), the 
process of automating the overall ML construction 
process (He et al., 2021). As shown by Chan et. al 
(Chan et al., 2018), this process can be specialized to 
address a constraint on available resources. 

Seminal developments in NAS emerged in late 
2016, from the work of Zoph and Le (Zoph and Le, 
2017) and Baker et al. (Baker et al., 2017). In a survey 
on the subject, Elsken et al. (Elsken et al., 2019) report 
three key parameters to operate a classification of NAS 
processes. These are: 

● Search space,
● Search strategy,
● Performance estimation strategy.  

Being an approach to adapt the heavy computational 
cost of NN to resource-constrained platforms, NAS has 
naturally found application in many space-related use 
cases. EO, there has been quite a research on 
hyperspectral images classification using NAS, with 
development performed by Liang et al. (Liang et al., 
2020) have employed NAS (and pruning) to detect 
aircraft in remote sensing images. Mobile Neural 
Architecture Search (MNAS) (Tan et al., 2019) is a 
probable candidate in implementing NAS to EO 
satellite inference on the edge application.

6.1.4. Knowledge Transfer and distillation

In Knowledge Transfer (KT) and Knowledge 
Distillation (KD) a small, lightweight network is 
trained to reproduce the behavior of a large, 
computationally intensive network without having to 
duplicate the architecture of the latter fully. This leads 
to small networks both providing results comparable to 
those of large networks and deployable on resource-
constrained platforms. 

According to the paper of Goel et al. (Goel et al., 
2020), in KT the smaller network is trained using data 
labeled by the larger network (defined as “synthetically 
labeled data” by Ba and Caruana (Ba and Caruana, 
2013)), while in KD a small network (student) is trained 

by a large network (teacher) to replicate the latter’s 
output. Within the scope of this section, it also appears 
relevant to discuss transfer learning, which has attracted 
considerable interest from the space community.

De Vieilleville et al. (de Vieilleville et al., 2020) 
proposed a distillation method to perform DNN-
mediated segmentation of EO images on board of 
CubeSats. In this work, they show that a 10 to 30-fold 
reduction of the free parameters of the network 
mediated through distillation leads to weakly worse 
performance (+5/-10% accuracy). Similarly, (Chen et 
al., 2018) provide a detailed distillation implementation 
and results showing a strong reduction of the NN 
execution load while keeping a steady accuracy in 
remote sensing scene classification. (Bazzi et al., 2020) 
applied distillation for mapping irrigated areas using 
remote sensing data. 

Since 2019, self-distillating networks are emerging 
(Chen et al., 2021) with one successful implementation 
for cloud detection in remote sensing by (Chai et al., 
2020) achieving 200-fold compression. 
Industrialization is not as developed as pruning as there 
are only a few open access examples of 
implementations but no widely developed library. 
Unfortunately, the authors were unable to find 
documented evidence of a distilled NN ever flown and 
used on a space mission.

6.2. Hardware Acceleration

Computing limitations are demanding to ML-based 
applications because of the significant amount of data 
to be processed for DL. Many NN models require high-
end GPU devices to run in inference, and even more so 
during training. In deploying ML to an EO satellite, it 
is appropriate to consider the inferencing phase due to 
volume, power, and mass constraints, especially under 
CubeSat standards. Progress in commercially available 
off-the-shelf hardware in mobile edge computing has a 
progressive effect in finding their way to CubeSats in 
implementing DL algorithms for space applications 
(Kothari et al., 2020). 

With CPUs considered to be general-purpose 
computers, AI-specific hardware such as GPU’s, 
FPGA, and Application-Specific Integrated Circuit 
(ASIC) takes the center stage which is designed to 
accelerate the computation of linear algebra and 
specializes in performing fast and matrix 
multiplications with higher performance-per-watt 
ratios. Furthermore, advanced next-generation 
architecture for onboard computing which heavily 
depends on artificial intelligence is developed like 
Artificial Intelligence-Onboard Computing (AI-OBC) 
(Huq et al., 2018) based on distributed on-board 
architecture consisting of CPU, Visual Processing Unit 
(VPU), emerging AI accelerator class of 
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microprocessor for running machine-learning 
applications to train DNN and FPGA connected 
through CubeSat Service Protocol (CSP) through which 
ML and training are carried out in real-time with COTS 
components to reduce cost and development time. One 
other form of tailored hardware optimization is the 
adoption of spiking neural networks (Kucik and Meoni, 
2021) and their deployment on optimized hardware. 
This approach, which is much closer to the way the 
brain seems to function, can allow for dramatic energy 
savings through minimization of energy use during 
neuron activation.

Table 1:  Hardware Accelerators

Name Company Description
Intel 

Movidius 
Myriad 2 

Vision 
Processing 
Unit (VPU)

Intel
Implemented with DNN 
in Phisat-1 (Esposito et 

al., 2019)

Myriad X 
(VPU) Intel Active testing

(Bruhn et al., 2020)

Jetson Nano
(GPU) Nvidia

Space Edge Zero (2021) 
by Spiral blue (Mittal, 

2019)

Tegra TX1
and TX2

(SoC)
Nvidia

Demonstrated AI Image 
processing capability 

(Buonaiuto et al., 2017; 
Hernández-Gómez et al., 

2019)

Coral TPU Google

Used with SC-LEARN 
Architecture for 

Hyperspectral models 
(Goodwill et al., 2021)

Apache 5 Almotive In development
Neuromorph

ic chip Innatera In development

Spaceborne 
Computer-2 

(SBC-2)

Based on 
Intel Xeon Onboard ISS

Ultrascale 
Radiation 
Tolerant 

(RT) Kintex 
FPGA

Xilinx Prototype available

Xilinx 
Zynq-7020

(ARM 
Cortex-A9 + 

FPGA)

Xilinx
Space Test Program 

Houston 5/ CSP
(2017)

6.3 Quantization / BNNs

In quantized networks, the number of bits used to 
represent numbers defining a model is reduced. This 
provides a decrease of orders of magnitude in 
computing, memory and power requirements, for a 
comparatively low decrease in performance. 
Quantization may be applied to weights, activation 
functions or gradients of a network, either during or 
after training. (Guo, 2018; Qin et al., 2020; Simons and 
Lee, 2019). Quantization has been explored in research 
for remote sensing image segmentation and processing 
but appears to never have been flown in space.

Perhaps the most common established quantization 
technique is reducing the bit-width of weights after 
training. However, very low bit widths, typically of four 
or less, usually incur heavy losses. This can be 
mitigated by performing model training under the 
reduced bit-width quantization, known as 
Quantification-Aware Training (QAT). Good results 
have been achieved with quantization, even going all 
the way to a single bit. 

Accuracy on par with full-precision NNs was 
achieved for standard datasets in publications such as 
Binary-Connect, Exclusive-NOR Network (XNOR-
Net), and Trained Ternary Quantization (TTQ) 
(Courbariaux et al., 2015; Rastegari et al., 2016; Zhu et 
al., 2017). Quantization of already existing NNs such as 
AlexNet (Krizhevsky et al., 2012) and Visual Geometry 
Group Network (VGGNet) (Simonyan and Zisserman, 
2015)  applied to the ImageNet dataset has been carried 
out without any accuracy loss while reducing their sizes 
up to 50 times (Han et al., 2016). Quantization both 
before and after model training is provided today either 
as part of mainstream DL libraries (“Post-training 
quantization | TensorFlow Lite,” 2022.; “Quantization 
— PyTorch 1.9.1 documentation,” 2022.) or third-party 
libraries such as Larq (“Larq | Binarized Neural 
Network development,” 2022.) and FINN (Alam et al., 
2022)   respectively.

Although there exists no consensus on why 
quantization works, a candidate explanation argues that 
large amounts of pathway redundancy in NNs make the 
expressivity loss a minor concern. Theoretical analysis 
in that regard is still limited. Anderson and Berg 
(Anderson and Berg, 2017) found that statistical 
properties of the computation are kept even when a 
network is binarized. Molchanov et al. (Molchanov et 
al., 2017) indicate that nearly 99% of weights can be 
pruned in certain NNs and achieved a 68-times sized 
reduction on VGG-like networks without loss of 
accuracy.

Quantization techniques can be divided into two 
main categories: Deterministic and Stochastic. Guo 
classifies deterministic quantization methods (Guo, 
2018) into:
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● Rounding: Floating-point values are assigned 
their nearest fixed-point representation. 

● Vector Quantization: Weights are clustered 
into groups, with the centroid of each group 
replacing the real weights. 

● Quantization as an optimization: Here, the 
quantization is treated as an optimization 
problem, which involves minimizing an error 
function taking into account real and 
quantized weight values.

Regarding stochastic quantization techniques, they 
separate them into:

● Random Rounding: The quantized value is 
obtained by sampling a discrete distribution 
parameterized by the real values themselves.

● Probabilistic Quantization: Weights are 
assumed to be discretely distributed, with the 
methods trying to estimate which distribution 
function it is. 

Deterministic quantization has seen extensive 
success, with rounding being the most commonly 
successfully employed type of quantization, such as 
Rastegari et al. (Rastegari et al., 2016) and (Polino et 
al., 2018), where a general rounding function was 
introduced. In particular, Binary-Connect Courbariaux 
et al. (Courbariaux et al., 2015) used binary rounding, 
achieving 98.8% accuracy on the MNIST dataset. Also 
noteworthy is the use of vector quantization in Gong et 
al. (Gong et al., 2014), where a network compression 
ratio of 24 was obtained, losing only 1% of accuracy on 
the ImageNet dataset. However, Stochastic 
quantization has not experienced such a resounding 
success, perhaps due to an over-reliance on statistical 
assumptions which are not guaranteed to hold. 

Quantization approaches may quantify several or all 
of the following:

● Weights: The action of quantizing weights 
yields a smaller network size and can 
accelerate the training and inference process. 
However, this comes at a price: NNs will have 
a harder time converging when training with 
quantized weights, and a smaller learning rate 
is required. Additionally, the gradient cannot 
back-propagate through discrete neurons, 
leading to the use of straight-through 
estimators in order to estimate them, usually 
with a high variance. 

● Activations: The goal of quantized activations 
is replacing inner products with binary 
operations, reducing memory constraints since 
the operation precision is reduced, all while 
accelerating network training. In fact, 
activations may fill more memory than 

weights (Mishra et al., 2017). Note that 
quantized activation will cause what is called 
a “gradient mismatch”, where the gradient of 
the activation function is different from the 
one obtained from the straight-through 
estimator used.

● Gradients: Quantizing the gradients is still a 
relatively new avenue of research in NN 
quantization. The main objective here is not 
reducing the model size, but aiding in 
distributed network training, where several 
computing nodes need to share information of 
the gradient values between them. The smaller 
the size of the data the nodes need to share, the 
faster parallel training can be performed. 
Quantized gradients need to be carried out 
with care since unsuitable implementations 
run the risk of causing the gradient descent 
algorithm not to converge.

7. Machine Learning standardization and issues in 
Earth Observation Operations

Interest in AI and ML has increased in the past 
years. Many groups in different industries are working 
on creating guidelines, best practises, and standards to 
help make sure these systems are used correctly. But the 
process is far from over, and so far, the space industry 
has only given us a real-world example of something 
similar. Standards, guidelines, and other documents 
discussed in this section blur the line between 
definitions of AI and ML. While we find this fact 
misleading, we have kept the original usage from the 
sources in order not to alter their message.

These bodies of work aim at aiding ML system 
developers to avoid common pitfalls and problems 
associated with these systems. We provide in this 
section a cursory overview of what these problems are 
in order to raise awareness amongst EO platform 
operators. We do this so that the designers and operators 
of EO platforms are aware of what ML systems are 
capable of and are not capable of doing when it comes 
to making decisions that are reliable, intelligible, and 
appropriate for usage in situations with high stakes. 
Because of the high expense of these possible 
applications on-board a big satellite platform, these 
conditions apply to the majority of those applications. 
To put it another way, any operator who is 
contemplating delegating decisions regarding the 
success or failure of their mission to ML systems should 
make it a priority to employ ML systems that are 
reliable and can be explainable.

We do this so that EO platform designers and 
operators are aware of what ML systems can and cannot 
do when it comes to taking decisions that are 
trustworthy, understandable, and fit for use in high 
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stakes scenarios. These conditions apply to many of the 
potential applications on-board a large satellite 
platform, due to their cost. In other words, using 
trustworthy, explainable ML systems should be 
important to any operator thinking of charging such 
systems with decisions deciding the success or failure 
of their mission.

7.1. Guidelines and Roadmaps

International Standards by International 
Standardization Organization (ISO) committee (“ISO - 
ISO/IEC JTC 1/SC 42 - Artificial intelligence,” 2017.) 
are currently available or under development. These 
standards and projects represent the united efforts of 
experts and entities in providing guidance and focus on 
the standardization of Artificial Intelligence, with 
currently more than twenty under development and six 
already published. We found ISO/IEC TR 24030:2021 
to be particularly interesting as it covers 132 use cases, 
as well as the projects under development concerning 
Functional Safety and AI, data quality and AI 
explainability. The ISO is not alone in working on AI 
standardization, though.

The Chinese Big Data Security Standards Special 
Working Group of the National Information Security 
Standardization Technical Committee (NISSTC) wrote 
the Artificial Intelligence Security Standardization 
White Paper (Törnblom and Nadjm-Tehrani, 2019). 
The focus of this White Paper ranges from the security 
of AI to main security threats, risks, and challenges. 
Seven recommendations have been made on the 
importance of improving a system of AI security 
standards, the need to speed up the development of 
standards in key areas, promoting the application of AI 
security standards, strengthening the training of AI 
security standardization talent, participating in 
international AI security standardization, establishing 
an AI high-security risk early warning mechanism, and 
improving AI security supervision support capabilities.

Germany developed an Artificial Intelligence 
Standardization Roadmap (Wahlster and Cristoph 
Winterhalter, 2020), continuously updated, as a joint 
effort between DIN and DKE. The roadmap strongly 
supports the idea that standardization would improve 
the explainability and reliability of AI, thus favoring its 
application. In the roadmap, AI's explainability and 
reliability, they deal with data reference models for the 
interoperability of AI systems, development of an AI 
basic security standard, practice-oriented initial 
criticality checking of AI systems. In addition, the work 
provides extensive analysis on the definition of AI as 
well as classification schemes to evaluate AI-based 
systems.

The work is particularly interesting also for 
spotlighting issues as the risk-based assessment of 

applications, trustworthiness, ethical approach and AI 
application lifecycle. In addition, in each section of the 
roadmap, specific needs in the direction of 
standardization are pinpointed.

The European Commission (EC) shaped a white 
paper (“White Paper on Artificial Intelligence,” 2020.) 
setting out policies to achieve the uptake of AI in the 
European Union (EU) and to address risks associated 
with the use of AI technology. Along the sections of the 
document, it gives particular attention to the 
opportunity to create an ecosystem of excellence. Six 
actions have been highlighted, among which: focusing 
on SMEs and ensuring that each member state has a 
digital hub highly specialized in AI; strengthening 
public-private partnerships in AI, data and robotics; and 
promoting the use of AI in the public sector. An 
overview of the most significant risks is also provided, 
with more emphasis on ethical and trustworthy AI.

The National Science and Technology Council from 
the USA’s Executive Office developed an AI Research 
Development Plan in 2016, later updated in 2019 
(Faisal D’Souza, 2019). The Plan does not define 
specific research agendas for Federal agency 
investments but highlights strategies to reach a given 
portfolio. While it must be noted that the utmost focus 
of the strategies is not on the standardization, strategy 4 
"Ensure the Safety and Security of AI Systems'' and 
Strategy 6 "Measure and Evaluate AI Technologies 
through Standards and Benchmarks" are covering 
aspects strictly related to standards and certifiability. It 
is worth mentioning great attention to the development 
of shared public datasets and open-source libraries, as 
means to keep the technological lead.

Although slightly different in scope, as more 
oriented towards certification rather than 
standardization, it is worth mentioning the White Paper 
(Gregory Flandinet.al., 2021). The document aims at 
“sharing knowledge, identifying challenges for the 
certification of systems using ML, and fostering the 
research effort”. A thorough discussion on the features 
that an ML-based system should possess to be certified 
is carried on, leading to the identification of seven 
challenges to tackle: probabilistic assessment, 
resilience, specificality, data quality, explainability, 
robustness, and verifiability.

7.2. Issues and Techniques

In this section, we offer a brief discussion of the 
potential unique issues one may encounter when 
developing and operating a system that incorporates 
ML. Whenever possible, we discuss some current 
approaches to bridge these issues. This discussion is 
meant to be illustrative to the reader and an 
encouragement to explore the topics in further detail, 
but it attempts to be comprehensive on neither scope 
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nor depth. Furthermore, the topic is under active 
research and is likely to expand in the coming years.

7.2.1. Explainability

ML models, and particularly large models with lots 
of free parameters such as large decision trees or NNs, 
can act as black boxes. The process by which they 
arrive at the final output can be too complex to be 
directly interpreted, thus becoming as inscrutable as if 
the model’s internals had been inaccessible in the first 
place. 

However, transparency, explainability, and 
interpretability are very important for any technical 
system with a moderate or large impact, be it in terms 
of dollars or human lives. Therefore, model 
explainability is very important in fields such as 
aerospace, medicine, insurance, banking, and more.

Explainability is a hard problem because of several 
reasons. Firstly, it is user-dependent: the type of 
explanation expected by an average user will differ 
from that expected by a regulator or an engineer. This 
leads to the question “How detailed must the 
explanation be, and what must it cover?”. Secondly, the 
expected outcome of transmitting an explanation can be 
hard to define, should the receiver become more able to 
predict model output after receiving explanations? 
Must the explanation point univocally to the features of 
the input data that had the largest impact on the 
produced results, and is this limited to input data, or 
does it also include training data? Perhaps it should 
illustrate a counterfactual - «What would need to 
change for the decision to have been different? » Or 
perhaps something else entirely? And are the previous 
goals mutually exclusive?”

There are a huge number of techniques to answer 
some of these and related questions. The field of 
Explainable AI (XAI) for short, is huge and expanding 
rapidly. Providing an overview of this field is not within 
the scope of the current publication, but we recommend 
our readers to consult the Interpretable Machine 
Learning book (Molnar, 2021) or one of the numerous 
reviews on the topic to learn more (Linardatos et al., 
2021; Tjoa and Guan, 2020).

7.2.2. Robustness and reliability

Reliability is the rate of failure of a system when 
operating in nominal conditions (e.g. 10-9 catastrophic 
failures per flight hour (“AC 25.1309-1A - System 
Design and Analysis – Document Information,” 1988)). 
Since a rate of system error can be extremely 
challenging to calculate without operating the system, 
heuristic development rules like no single point of 
failure are accepted as valid ways to achieve the goal. 
This acceptance stems from either a competent 

authority, which implicitly accepts the risk of not 
properly achieving the desired reliability level or 
historical data when available. Neither is a possibility 
for current ML-based systems, due to an absence of 
historically validated, robust, and widely accepted 
heuristic design rules.

For Machine Learning systems, reliability comes 
from two distinct factors: accuracy and robustness. An 
ML classifier with higher accuracy is less likely to 
misclassify an input, hence is more reliable. 
Performance does not usually come into play for 
classical software system’s reliability as accuracy for a 
valid set of inputs and execution path is 100%. This 
section does not concern itself with increasing model 
accuracy, a topic that is the main focus of each 
application-specific research field mentioned so far.

Accuracy for an ML model is calculated over the 
data points in the test dataset and only those. While this 
is also true for classical software testing, in the latter the 
notion of input equivalence classes provides assurance 
that the software system will continue to perform 
acceptably for inputs outside the test set. Correctness 
equivalence classes for ML models do not currently 
exist.  A similar notion of robustness can be used 
instead. A robust model has bounded accuracy loss for 
inputs that are within a bounded distance of the input 
distribution. This fact can be used to construct 
arguments for the reliability of an ML model.

Equivalence class discovery for random forest 
models is a topic under active research (Cheng and Yan, 
2021; Törnblom and Nadjm-Tehrani, 2019).

When demonstrating model robustness, several 
problems arise:

Firstly, how does one quantify the distance between 
input data? Although several measures exist, they are 
often hard to relate to humans' tacit notions of input 
distance. It is easier to qualitatively say to what degree 
an image does not depict a cat than it is to quantify it in 
a single measure. This only becomes harder for more 
abstract forms of input such as satellite telemetry data. 
Thus, relating system-level specifications to notions of 
input distance is sometimes complex. For a given 
distance definition, formal verification methods attempt 
to formally prove certain properties of DL models, 
including robustness (Katz et al., 2017; Mirman et al., 
2018; Müller et al., 2021; Wang et al., 2018). They 
allow a user to build a model tolerant to a certain 
distance between inputs. Equivalent research exists for 
other ML models, such as random forests (RFs) 
(Törnblom and Nadjm-Tehrani, 2019), but the literature 
is significantly less developed. Note that these 
approaches allow a designer to fight adversarial 
examples, a specific and concerning failure mode for 
ML models (Chen et al., 2019; Goodfellow et al., 2015). 
Nonetheless, the literature on the generation and defeat 
of adversarial examples is highly active and ever-
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evolving, as measures, countermeasures, and counter-
counter-measures get deployed. It is out of scope for 
this review to delve any deeper into that.

Secondly, there is the well-known issue of 
generalization. A model may offer very good 
performance on a dataset and very poor performance on 
the actual population, in the phenomenon known as 
overfitting. The PAC-Bayes approach offers 
generalization bounds that specify a minimum number 
of samples from distribution for a desired performance 
and training process reliability levels within that 
distribution. These bounds, however, are often 
extremely conservative, and improving them is another 
active field of research (Shalev-Shwartz, 2014). Since 
it is hard to quantify these bounds appropriately, the 
only recourse for organizations to ensure performance 
is to collect massive amounts of data, which is 
prohibitively expensive or downright impossible in 
many cases. Since generalization and robustness 
shortcomings are highly model-specific, one approach 
to tackle them focuses on applying mixtures of models 
working in tandem, known as ensemble models, and 
selecting an output based on the collective response of 
the ensemble (Pang et al., 2019; Yang et al., 2021).

Thirdly, and also related to the second issue, there 
is the phenomenon of domain drift (Shweta, 2019). 
Models do not just overfit to a given dataset but also to 
the current population. And, as time goes by, systems 
change. An FDIR system monitoring battery health will 
see its voltage decrease over time as the battery ages. 
The statistical distribution of deviations around the 
nominal value is also likely to change. The performance 
of the ML model will thus decrease over time as the 
world changes around it. Fine-tuning on new data can 
mitigate this issue but can trigger the phenomenon 
known as catastrophic forgetting (Nguyen et al., 2019), 
where the model loses performance on old and new 
data. A solution is to retrain it from scratch on new data, 
but this entails capturing that data and retraining the 
model, which increases operating costs and risks in hard 
to predict ways. Alternative solutions exist but they 
come with their own drawbacks. Training a model on a 
dataset representative of the whole system’s life cycle 
can mitigate the issue but requires larger models and 
better data capture at the project’s start.

Lastly, models also overfit the specifics of the 
system they’re trained for. A model trained for one 
specific satellite may have issues adapting to another 
satellite instance, or model. Version improvements 
such as equipment changes may bring performance hits 
with them too. While research fields like transfer 
learning, domain adaptation and domain generalization 
(Zhao et al., 2020) attempt to address the issue, they are 
far from universally reliable at the moment. This is 
particularly concerning for the space industry, where 
mass manufacturing and standardized equipment is the 

exception rather than the norm and can pose a serious 
challenge to the industry’s adoption of ML 
technologies. Sometimes, when adapting to new 
platforms, new input data will be available or new 
output data may be required. In this case, the field of 
transfer learning is applicable, which includes both 
domain adaptation and domain generalization.

In short, despite the aforementioned techniques, ML 
models are extremely brittle to deviations in input data 
from the training dataset, and it can be assumed that 
deviations from the training dataset will break the 
system. Therefore, building proper datasets is a key task 
of any ML system designer or operator, a topic which 
we address in the next section.

7.2.3. Dataset Construction

Datasets are the lifeblood of ML. Therefore, it is 
only right to have standards assigned for data to avoid 
anomalies and have a perfect collection that will help 
produce the right results. 

Cappi et al. (Cappi et al., 2021) propose a Dataset 
Definition Standard (DDS), which, while not 
specifically geared toward space activities, can be 
applied to EO data from either payload or satellites. It 
aims to provide a standard for training, validating, or 
testing datasets. It explains in detail the 
recommendations to be followed while collecting data 
and how to annotate it and perform functions. The paper 
talks about many important aspects any dataset should 
possess, from how it must cover as many situations as 
possible that could be encountered during model 
development to how a history of every single change to 
every data must be kept helping with traceability and 
avoid discrepancy. The paper provides clear 
recommendations for labeling and annotation of data 
and how the dataset should be segregated for training, 
validation and testing. 

The US Geological Survey (Larry R et al., 2019) 
provides dataset standards for their various operations 
like Biological, Climate and Forecast and Mapping. 
Cleansing “dirty data” is mentioned as a common 
problem faced by data scientists. They also take it a step 
further with geological mapping by producing a set of 
parameter standards to be followed while collecting 
data which define a set of rules for individual 
parameters within the dataset. The parameter standards 
cover a wide range of qualities like the date/time, 
geographic coordinates, codes, etc. the satellite data 
should contain. Report (Larry R et al., 2019) explains 
how exactly a topographical map of anything in the US 
should be produced and one important aspect of it is the 
data standards including which standards the file 
formats of the data should be stored in. 

For the data quality standards, they delve into it by 
discussing various components like currency, 
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consistency, completeness, and accuracy. The paper 
covers every aspect of mapping data from dealing with 
off grid and oversized maps, data sources and 
resolutions to how cartographic features should be 
interpreted. 

The primary space operation in Earth Orbit is 
remote sensing. As a result, they are the primary data-
producing activities. Therefore, remote sensing 
standards are relatively well developed when compared 
to other ML operations in the space industry. Authors 
(Di, 2008; Liping Di and Ben Kobler, 2000) go in-depth 
about all standards of remote sensing including the 
dataset standards. 

Di and Kobler (Liping Di and Ben Kobler, 2000) 
introduce NASA’s well developed EO Systems’ Data 
Information Systems (EOSDIS). As the EOSDIS will 
process data from various fields it is not feasible for the 
system to deal with every single data collected one by 
one. This has led to EOSDIS establishing standards to 
deal specifically with remote sensing data. 

7.3. Recommendations

As outlined above, ML systems face a number of 
issues precluding their application in many scenarios 
where they would otherwise be useful. 

We believe the fundamental research being carried 
out on ML model robustness is of great interest and 
recommend that any practitioner follow it closely. For 
certain small-scale problems, work on formal 
verification of ML models may already be enough to 
ascertain that the network responds appropriately 
within the input regime, and input data outside of this 
regime can be purged by data verification systems 
implemented in classical software. Further, we 
recommend that any practitioner keep a careful watch 
for ways in which the lifecycle operation of a system 
will deviate from the training scenarios, and mitigate 
the risks issued from model brittleness to these 
differences. The system must undergo a verification 
process to be verified and validated. The critical levels 
of various ML models are displayed in Table 2.

202 Table 2: ML Certification Criticality levels (Winter et al., 2021).

Criticality Level (CL) Impact Potential (Examples) ML Application Requirements

1
There is no risk of harm to living beings, no risk of 
loss of confidential data, and no ethical or privacy 

concerns.

Basic minimum requirements of a competently 
developed ML application are fulfilled.

2

Living beings could be harmed with limited, no 
permanent damage. Temporarily unavailability of 
non-critical data and services, violation of ethical 

concerns without identifiable harm to actual 
persons.

The ML application is developed according to 
industry standards and follows best practices that are 

regarded as state of the art.

3

Living beings could die or be restricted for life; the 
environment could be damaged. Manipulation of data 

with severe financial consequences and loss of 
control of the system to malicious attackers.

The ML application is developed and documented 
with great care. Safety & Security is ensured with 

processes and techniques that go beyond traditional 
best practices and industry standards.

4

Many living beings could die or could be restricted 
for life; the environment could be damaged 

permanently. Loss of information which endangers 
the existence of the organization. Long-term 

unavailability of critical data or services without 
which the organization cannot function.

The ML application is developed and documented 
with great care. Safety & Security is ensured with 

processes and techniques that go beyond traditional 
best practices and industry standards. All components 

of the ML application are formally secured and 
validated.

Major certification topics must be re-examined, 
even though known certification procedures for 
traditional applications cannot be used in a clear manner 
in the context of ML. This technology's total 

effectiveness and safety would be enhanced with a 
comprehensive certification strategy for machine 
learning applications, which would boost public 
acceptance and trust. Winter et al (Winter et al., 2021) 
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proposal for certification criteria for supervised 
learning with low-risk potential is shown in Figure 6.

Figure 6: ML Certification workflow (Winter et al., 
2021).

ML explainability is another core issue; 
explainability of model decisions can and does take 
precedence over model performance in scenarios with 
high-impact decisions or where (human) learning from 
the model’s decisions is key. Current model 
explainability methods can offer insight into the 
relevant features of input data used for a model’s 
decision, but they can also provide misleading or 
unhelpful signals. For applications where explainability 
is an important feature of the system, dictionary, tree, 
or kernel-based models and other easily explainable 
methods should be compared with harder-to-explain 
models for a performance-explainability trade-off.

National recommendations, white papers and initial 
official standards in the AI and ML field attest to the 
growing interest in the subject. While the scope of these 
is much broader than the space sector alone, some 
considerations can be applied to ML for space 
applications too.

Data quality and availability will play an important 
role in the adoption of ML across EO Operations and 
will certainly be demanded by supervisory and 
regulatory agencies performing standardization and 
certification. This need goes beyond the mere 
abundance of data. Relevance, cleanliness, and 
useability will require careful attention and control. The 
industry can leverage work from other fields such as the 
aforementioned dataset standards to achieve this. 
Publicly available datasets can also be a boon to 
adoption, such as those listed in (Cole, 2022; Rieke, 
2022).

8. Discussion & Conclusion

In the area of ML in EO Operations, this evaluation 
effort covers different aspects, including ground 
operations, enhanced GNC, on-board image 
processing, FDIR, and standardization. It examined the 
state of the field, which serves as a baseline, and 
brought to light intriguing trends.

We have discovered that there is mounting evidence 
in numerous application sectors that EO missions can 
benefit from ML usage on-board. Case studies 
uncovered have demonstrated advancements in 
platform autonomy and performance. New capabilities, 
such as automated payload data filtering by sending 
only pertinent photos to the ground, can lower downlink 
bandwidth requirements, which is crucial for smaller 
satellites but also lessens radio frequency band 
saturation. Better visual-based processing also makes it 
possible for spacecraft to navigate using their visual 
systems, and RL shows promise in developing more 
effective nonlinear controllers. Better autonomous 
decision-making for EO missions is made possible by 
autonomous FDIR operations, allowing current teams 
to manage more operations more efficiently and 
lowering satellite operating costs.

On-board processors must meet high criteria 
imposed by ML algorithms. A significant difficulty is 
the need to optimize ML models for space applications 
at the hardware and software levels. The good news for 
space platform operators is that this reflects and 
exemplifies the considerably more difficult task of 
installing ML on edge platforms. The community can 
benefit from a sizable and growing body of knowledge 
and expertise.

From the perspective of on-board EO applications, 
ML has mostly been used for cloud detection and 
novelty/change detection. These applications 
frequently use vision-based techniques. EO 
applications could learn technical knowledge from 
other technical disciplines that have extensively 
researched vision-based ML methods and solutions. 
There are a few examples of SAR-based images as well, 
though. This would imply that there is still an 
opportunity for advancement and growth of these 
sensors in all-weather, all-day usage.

A parallel but closely related track to research and 
applications is being standardized. There are currently 
no established standards for ML in the space industry. 
Key areas, including explainability, robustness, and 
data structure creation, are the subject of rigorous 
research. EO Operators creating ML applications ought 
to make use of this area for improved performance and 
dependability. These research areas should be taken 
into account by organizations intending to publish 
standards and guidelines, but they must be avoided at 

https://www.zotero.org/google-docs/?3ivQRY
https://www.zotero.org/google-docs/?3ivQRY


26

all costs to prevent over-prescription of remedies that 
might compromise the success of standardization 
development.

Another important element that unites all ML-based 
EO Operations is the availability of data. The ability to 
use more data for machine learning in EO operations 
might significantly advance technology and benefit all 
participants, including business, academia, and space 
agencies. There are not many open datasets available 
right now, and those are mostly designed for image 
processing or visual navigation applications. The 
technological improvement favored by open datasets in 
a wider range of applications is a significant long-term 
goal for the space sector, even while it may be counter 
to a particular organization's short-term goals to 
disclose private data. We think the field should 
concentrate on producing and disseminating such open 
datasets, and we encourage players without a profit 
motive like space agencies, to take the lead in attaining 
this goal.

The fact that currently, few EO missions have used 
ML in orbit is a common finding across the subtopics 
of this review. This can be ascribed to the space 
industry's lengthy lead periods and slow cycles, which 
contrast with other sectors, such the automotive 
industry, which have embraced the technology. We 
anticipate that these cycles can be sped up as 
technology demonstrators move quickly from test 
benches to orbit with the advent of New Space and 
faster access to space. Further enhancing the efficiency 
of ML deployments in the EO Operations industry and 
the space industry at large, increasing the number of 
missions can result in better data collecting and 
platform standardization.

Based on the preceding critical review, it is quite 
evident that incorporating ML into EO operation can 
maximize its potential and promote additional study. 
The following key topics will be the focus of EO 
research in light of current trends and requirements:

1. Investigating the Machine Learning-based 
Mission Planning and Scheduling (MPS),

2. Examine the potential for Machine Learning 
techniques to improve Guidance, Navigation 
and Control (GNC) in space operations,

3. Examine the potential of ML techniques to 
assist with on-board data processing (OBDP),

4. Explore the effectiveness of incorporating ML 
models into resource-constrained platforms,

5. Investigate the effectiveness of Fault 
Detection, Isolation and Recovery (FDIR) 
using Machine Learning techniques.

Not to mention, we have found that the use of ML 
for EO operations frequently lags behind the state-of-
the-art. Transformer models on sequential and other 

data are one example of a technique that has achieved 
significant success in research and operational 
environments but has not yet been publicly used for EO 
Operations issues. Similar to formal verification and 
other verified robustness techniques, there are very few 
applications for resource reduction strategies like 
pruning, distillation, or quantization.

Researchers and operators can use this critical 
assessment as a resource for further ML deployment 
and experimentation in demanding, complicated future 
EO missions that are more autonomous, communicate 
only useful data, and require much less involvement. 
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