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Abstract

Finding the stability and the chromatic number of a graph are two among the fundamental problems

in combinatorial optimization. Given a graph, the first calls for a stable set of maximum cardinality,

i.e. a subset of vertices such that no two are adjacent; the latter asks for a partition of the nodes

into the minimum number of stable sets (i.e. colors).

Both the stable set and graph coloring problems are well-known to be NP-hard, hence no poly-

nomial time algorithm to solve them exactly is expected to exists unless P=NP. Thus, the study of

strong relaxations of these two problems is a well-researched topic. In particular, the Lovász theta

function θ(G) provides at the same time a good upper bound on the stability number of a graph G

and a lower bound on the chromatic number of its complement. It can be computed in polynomial

time by solving a semidefinite program, which in addition turns often out to be fairly tractable in

practice. As a consequence, θ(G) achieves a hard-to-beat trade-off between computational effort

and strength of the bound. Hierarchies of relaxations to strengthen θ(G) both towards the stability

and chromatic number have been documented, but in general such improvements come at a heavy

computational burden with off-the-shelf SDP algorithms and require highly specialized methods to

be addressed.

In the last decades, Lift-and-Project methods have gained a lot of attention, being able to

generate strong relaxations for combinatorial optimization problems. In particular, starting from

any linear relaxation Lovász and Schrijver’s Lift-and-Project framework generates a semidefinite

relaxation. Its application to the fractional stable set polytope showed its potential, producing

bounds stronger than θ(G) but in general they come at a nontrivial computational cost.

In this thesis we introduce a new semidefinite relaxation for the stable set problem obtained

by the lifting of a more compact linear formulation than the classical one. Then, we characterize

some classes of valid inequalities for the stable set polytope which are implied by our proposal. We

then discuss how to face the computational burden arising from these semidefinite programs by the

employment of a general purpose solver for SDPs.

Despite Lift-and-Project applications have been widely studied on the Stable Set problem, to

the best of our knowledge none on the Graph Coloring problem have been presented. We investigate

its employment in this problem, showing that the resulting SDP can yield bounds above the frac-

tional chromatic number, a remarkable threshold not so straightforward to cross with semidefinite

programming.

Although interior-point methods achieve good accuracy in reasonable time for small and medium

size SDPs, their scalability to large instances is often compromised by memory requirements. On

the other hand, Alternating Direction Methods of Multipliers currently represent the most popular



first-order alternatives, being suited to scale to much larger semidefinite programs. This of course

at some cost in accuracy, that should be correctly addressed when bounding the optimal solution of

some combinatorial optimization problem. In this work we focus on an ADMM designed for SDPs

in standard form and extend it to deal with inequalities. Moreover, we report different methods to

compute a valid bound on the optimal value of the SDP starting from a medium accuracy solution

and we discuss the employments of these methodologies within ADMMs.
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Chapter 1

Introduction

1.1 Overview

In a Combinatorial Optimization (CO) problem, we want to find a set from a finite family of subsets

F (i.e. feasible solutions) made up of elements from a finite set E = {e1, . . . , en}, which is the best

under a given cost function.

There are many different real-world problems falling under such a definition and a wide literature

on them: covering, packing, scheduling, assignment, shortest path, traveling salesman, etc.

One of the most important methods in combinatorial optimization is to represent each feasible

solution of the problem by a 0-1 vector and then describe the convex hull K of the solutions by a

system of linear inequalities. In a perfect world, this would allow one to compute the optimum of any

linear objective function in polynomial time by the usage of Linear Programming (LP) techniques,

but in most cases such tight description of integral solutions has an exponential size (in the number

of inequalities and/or number of variables) and this causes such an object to be hard to handle in

general. Therefore, a customary in the literature is to try and find “good” relaxations of the convex

hull of many CO problems, i.e. descriptions of a larger, but easier to handle convex region P ⊇ K

whose integral solutions coincide with the latter. By doing this, apart from a few very special cases,

we pay a price: optimizing a linear function over P yields only a bound on the optimal value of the

original problem.

The stable set problem is one of the fundamental combinatorial optimization problem, which is

sometimes referred as independent set or vertex packing problem.

Maximum Stable Set Problem Let G = (V,E) be a graph. Then a subset of vertices S ⊆ V is

called a stable set if no two vertices of S are adjacent. A stable set is called maximum if there is no

stable set with larger cardinality in G. The cardinality of a maximum stable set is called stability

number of G and denoted by α(G). The maximum stable set problem (MSSP) calls for a stable set
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1.1. Overview

of size α(G).

Many results on the MSSP have been presented in literature: Karp [41] proved in 1972 that deciding

whether α(G) ≥ k or not for a given k ∈ N is an NP-complete problem, while Håstad [34] proved

that α(G) is hard to approximate within n1−ε for any ε > 0. Therefore there is no polynomial time

algorithm for solving the stable set problem unless P=NP. The stable set problem is strictly related

to another well-established combinatorial optimization problem

Maximum Clique Problem Let G = (V,E) be a graph. Then a subset of vertices K ⊆ V is

called a clique if {i, j} ∈ E for all vertices i, j ∈ K. A clique is called maximum if there is no clique

with larger cardinality in G. The cardinality of a maximum clique is called clique number of G and

denoted by ω(G). The maximum clique problem (MCP) calls for a clique of size ω(G).

It is well known that α(G) = ω(Ḡ), i.e. the stable set problem on G is equivalent to the max-

imum clique problem on Ḡ, the complement graph of G. These problems have a wide range of

applications in practical context, see for example [11, 13, 68]. Numerous approaches to solve or

approximate the stable set problem have been proposed. We refer to the paper by Bomze et al. [7]

and more recently, Wu and Hao [81] for a survey of exact algorithms (such as explicit and implicit

enumerations) and heuristics (such as sequential greedy approaches, local and random searches) for

the maximum clique problem and therefore the stable set problem. At last, let us introduce another

fundamental CO problem.

Graph Coloring Problem Let G = (V,E) be a graph and let k ∈ N. Then a k-coloring of the

graph is a partition of V into k stable sets. The minimum number k s.t. G has a k-coloring is

denoted by χ(G). The graph coloring problem (GCP) calls for finding χ(G).

The coloring problem was also proven to be NP-Hard by Karp [41]. For more information about

this topic, we refer the reader to the survey of Malaguti and Toth [55], for example.

The first and straightforward approach to obtain a “natural” relaxation of a CO problem is to

formulate it as an integer linear program (ILP) in which the vector of variables must satisfy the

(non-convex) constraint x ∈ {0, 1}n and then replace this constraint with x ∈ [0, 1]n. On the one

hand, linear relaxations are relatively fast to compute using simplex-based algorithms or the interior

point methods, on the other hand the resulting bounds are frequently weak. As a result, a significant

amount of time must be spent in enumeration if one wishes to solve instances to optimality (see

e.g., Rossi and Smriglio [67]).

Federico Battista 2



1.1. Overview

Another kind of relaxations arise from Semidefinite Programming (SDP), whose interest has

grown in the last two decades. From a high-level of perspective, semidefinite programming can

be considered a generalization of linear programming since they both belongs to the wider field

of convex optimization: in LP the vector variable x is restricted to the cone of non-negative real

vectors Rn+ while in SDP, a symmetric matrix variable X is restricted to the cone of symmetric

positive semidefinite matrices S+
n , also denoted by X � 0. The first success of SDP in the field of

CO dates back to 1979 when Lovász in his seminal paper [52] introduced the Lovász theta function

θ(G) of a graph G. He proved the following sandwich theorem

α(G) ≤ θ(G) ≤ χ(Ḡ),

giving at the same time an upper bound for the stability number α(G) and a lower bound on the

chromatic number χ(Ḡ) of the complement graph for every graph G. Some years later, Goemans and

Williamson [25] presented a semidefinite relaxation for the Max-Cut problem which was proven to

yield an approximation ratio of 0.878. Due to the numerous applications arose from this field along

with the possibility to formulate strong relaxations for NP-Hard problems, the demand of efficient

algorithms for solving Semidefinite Programs increased. The peculiar property of SDP is that one

can solve a semidefinite program to arbitrary precision in polynomial time [76] using interior point

methods [62]. For small and medium scale problems, these methods are a well-established tool

but their memory requirements are too demanding for large SDPs. On the other hand, augmented

Lagrangian based approaches such as the boundary point method in [56] and later elaborated by

Cerulli, De Santis, Gaar and Wiegele [14], represent a valid alternative since, as first-order methods

they allow to scale better on large instances.

A wide range of approaches have been developed in literature having the scope to tighten both

linear and semidefinite relaxations: the general idea behind is to find valid (linear) inequalities for

the convex hull K of the problem concerned but violated by its relaxation P , so that such an in-

equality “cuts” part of the latter, as a matter of fact we refer to these kind of inequalities as cutting

planes or simply cuts. One of the first general approaches was introduced by Gomory, exploiting

integrality properties of the problem with the so-called Chvátal-Gomory cuts, see for example [80].

Extensive research has been done for finding valid (linear) inequalities for many convex hulls arising

from specific combinatorial optimization problems such as the stable set for which we refer to Pad-

berg [63], for example. Another popular method which will be part of the focus in this thesis, is to

try to represent K as the projection of another convex set Q lying in a higher (but still polynomial)

dimensional space. The idea behind this is that the projection of Q may have more facets than

Q itself. Hence it might be that even if the description of K has an exponential size, it can be

Federico Battista 3



1.1. Overview

obtained as the projection of a set Q whose description in that dimensional space is of polynomial

size (we say that Q admits a compact representation in such a space). Several methods have been

developed for constructing projection representations for general 0-1 problems: Sherali and Adams

[71], Balas et al. [2], Lasserre [44] and Lovász and Schrijver [53]. Our focus will be on the latter

and it will be addressed in Chapters 4 and 5. A detailed comparison of these methods have been

presented in Laurent [46]. A common feature is the construction of a hierarchy of relaxations, which

typically involve several levels, each of which gets increasingly tighter to the exact solution, but the

computational effort grows accordingly. More recently, a related work specialized to the stable set,

graph coloring and max-cut problems was introduced by Adams, Anjos, Rendl and Wiegele [1] and

revised in Gaar and Rendl [20].

To summarize, this thesis deals with the following new studies:

• A new Semidefinite relaxation obtained by the application of Lovász and Schrijver’s Lift-and-

Project operator to a compact linear formulation for the Maximum Stable Set problem.

• An innovative application of the M+(·) operator to the Graph Coloring problem in order to

obtain a new Semidefinite relaxation.

• The implementation development of an Alternating Direction Method of Multipliers capable

of dealing with inequality constraints, addressing the issue of computing valid bounds on the

optimal solution of Semidefinite programs. Furthermore, a collection of benchmarks are built

up and experiment’s results are reported.

Federico Battista 4



Chapter 2

Preliminaries

For the sake of this work’s self-containment, in this Chapter we report some basic definitions and re-

sults on cones and polyhedra which will be useful later. Moreover, in Section 2.2 a brief introduction

on Semidefinite Programs including its duality theory is given.

For a detailed treatment, we refer the reader to Bertsimas and Tsitsiklis’ text-book [4] for

Section 2.1 and to the surveys of Helmberg [35] or Laurent and Rendl [47] for Section 2.2.

2.1 Cones and Polyhedra

Let us start with the formal definition of a polyhedron [4]:

Definition 2.1. A polyhedron P is a set that can be described in the form

P = {x ∈ Rn | Ax ≤ b} ,

with A ∈ Rm×n and b ∈ Rm.

If a polyhedron P is bounded, then we refer to P as a polytope. Polyhedra are always closed

sets. Moreover, they belong to the more general class of convex sets.

Definition 2.2. A set S ∈ Rn is convex if for any x, y ∈ S and any c ∈ [0, 1], cx + (1 − c)y ∈ S

holds.

The geometric interpretation of this definition is that S is convex if and only if for all x, y ∈ S

all the points belonging to the line connecting x and y are also in S. Given a set of vectors

S = {x1, . . . , xk ∈ Rn} and a set of scalars c1, . . . , ck ∈ Rn+ with
∑k

i=1 ci = 1 then the vector

k∑
i=1

cixi,

5



2.1. Cones and Polyhedra

is a convex combination of vectors in S. Then the convex hull of S, denoted by conv(S) is the set

of all convex combinations of vectors in S. When addressing combinatorial optimization problems

with linear programming, for example, we describe the solutions of these problems as 0-1 vectors

contained in Qn = [0, 1]n, the n-dimensional unit cube. The convex hull of (a subset of) 0-1 points

contained in Qn is always a polytope.

Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron. Then an inequality c>x ≤ δ is valid for P if it is

satisfied by all points in P , i.e. if c>x̄ ≤ δ for all x̄ ∈ P . Then, the hyperplane H =
{
x | c>x = δ

}
is called a supporting hyperplane of P if c>x ≤ δ is valid for P and H intersects P . Hence, we can

give the following definition of faces:

Definition 2.3. A face F of a polyhedron P is its intersection with a supporting hyperplane of P .

In other words a face is a set of the form

F = P ∩
{
x | c>x = δ

}
,

where c>x ≤ δ is a valid inequality for P .

Given a polyhedron P we are usually interested in identifying its facets.

Definition 2.4. F is a facet of P if and only if the following hold:

1. F is a face of P ;

2. dim(F ) = dim(P )− 1.

In other words, facets are faces of P of maximum dimension.

Now let us introduce the definition of cones:

Definition 2.5. A set C ⊆ Rn is a cone if 0 ∈ C and for every x ∈ C and c ≥ 0, cx also belongs

to C. In other terms, C is a cone if and only if it contains the origin and, for every x ∈ C \ {0},

C contains the half line starting from the origin and passing through x.

In particular, a polyhedral cone is a polyhedron defined by a homogeneous system of inequalities,

that is

CP = {x ∈ Rn | Ax ≥ 0} .

We remark that, any polyhedron P := {x ∈ Rn | Ax ≤ b} can be seen in a space of dimension n+ 1

(with an additional variable x0) as the intersection of a polyhedral cone with the hyperplane x0 = 1.

Cones need not to be closed. If C is a cone in Rn, its dual or polar cone is C∗ and it is defined

by

C∗ =
{
y ∈ Rn | y>x ≥ 0 for all x ∈ C

}
.

Federico Battista 6



2.2. Semidefinite Programming

The dual cone C∗ is the cone spanned by the vectors defining valid inequalities for C. C∗ is always

a closed set. Moreover, if C is closed, then (C∗)∗ = C and we say that C is self dual. Examples of

self dual cones are the nonnegative orthant Rn+ and the cone of positive semidefinite matrices S+
n .

2.2 Semidefinite Programming

In this section we report some basic definitions and results about semidefinite programming along

with duality theory. For a complete survey on SDP we refer the reader to Helmberg [35].

Definition 2.6. Let Y ∈ Sn be a symmetric matrix. Then Y is positive semidefinite if v>Y v ≥ 0

for all v ∈ Rn and we write Y � 0 or Y ∈ S+
n , equivalently.

There are several equivalent definitions of positive semidefinite matrices, the following proposi-

tion collects them together:

Proposition 2.7. Let Y ∈ Sn, then the following statements are equivalent:

1. Y is positive semidefinite.

2. v>Y v ≥ 0 for all v ∈ Rn.

3. All eigenvalues of Y are non-negative.

4. ∃ U ∈ Rm×n such that Y = U>U . For any such U , rank(U) = rank(Y ).

It will be useful to remark some properties of positive semidefinite matrices. A principal subma-

trix of a square matrix B is a square submatrix B′ obtained by deleting a subset of rows and the

corresponding columns from that matrix, then

Proposition 2.8. Let Y ∈ S+
n , then

1. Every principal submatrix of Y is positive semidefinite and det(Y ) ≥ 0.

2. ∀ i ∈ [n], diag(Y ) ≥ 0. If yii = 0 for some i, then yij = yji = 0 for all j ∈ [n].

3. If A ∈ Rn×n is non-singular, then A>Y A � 0.

Lemma 2.9. Let A,B ∈ S+
n . Then

1. 〈A,B〉 ≥ 0,

2. 〈A,B〉 = 0 ⇐⇒ AB = 0.

Federico Battista 7



2.2. Semidefinite Programming

Now, let C and A1, . . . , Am be matrices in Sn and b ∈ Rm, then a Semidefinite Program in its

standard notation is defined as follows:

min 〈C,X〉

s.t. A(X) = b

X ∈ S+
n

(PSDP)

where A : Sn → Rm is a linear operator defined as

A(X) =


〈A1, X〉

...

〈Am, X〉

 .

The adjoint operator A> : Rm → Sn can be derived through the equation

〈A(X), y〉 =
〈
X,A>(y)

〉
, for all X ∈ Sn, y ∈ Rm.

Therefore,

〈A(X), y〉 =

m∑
i=1

yi 〈Ai, X〉 =

m∑
i=1

〈yiAi, X〉 =

〈
m∑
i=1

yiAi, X

〉
=
〈
A>(y), X

〉

and hence, 〈
X,A>(y)

〉
=

m∑
i=1

yiAi.

A fundamental in linear optimization is the concept of duality. In order to derive the dual to 6.1,

we are going to use the following well-known

Lemma 2.10. minimax inequality [66, Lemma 36.1] Let f be a function from the non-empty

product set C ×D to [−∞,∞], then

inf
v∈D

sup
u∈C

f(u, v) ≥ sup
u∈C

inf
v∈D

f(u, v).

Now we introduce the vector y ∈ Rm to be the Lagrangian multiplier (or dual variable) for the

Federico Battista 8



2.2. Semidefinite Programming

equations. Then the following is always true:

inf
X∈S+n

{〈C,X〉 | A(X) = b} = inf
X∈S+n

sup
y∈Rm

〈C,X〉 − 〈A(X)− b, y〉

≥ sup
y∈Rm

inf
X∈S+n

〈b, y〉+
〈
C −A>(y), X

〉
= inf

{
〈b, y〉 | C −A>(y) ∈ S+

n , y ∈ Rm
}
.

The first equation holds, since when A(X)− b 6= 0, the maximization over y yields ∞, while in the

other case 〈C,X〉 is attained, i.e.

sup
y∈Rm

〈C,X〉 − 〈A(X)− b, y〉 =


〈C,X〉 if A(X) = b

∞ otherwise.

The inequality is the application of Lemma 2.10 while for the last equation, the value 〈b, y〉 is

attained when
〈
C −A>(y), X

〉
≥ 0 and this means that the first argument has to belong to the

cone S+
n (by Lemma 2.9), i.e.

inf
X∈S+n

〈b, y〉+
〈
C −A>(y), X

〉
=


〈b, y〉 if C −A>(y) ∈ S+

n

−∞ otherwise.

Hence now we can write the dual of (PSDP)

max 〈b, y〉

s.t. A>(y) + Z = C

y ∈ Rm, Z ∈ S+
n .

(DSDP)

Here a matrix Z is introduced. We can think of Z as “surplus” matrix variable (in a similar manner

it is done for linear programming), in this way the sole constraint in (DSDP) is an equality, while

Z only has to be positive semidefinite.

Duality theory is one of the fundamentals in convex optimization. Many concepts valid for LPs

can be still applied to semidefinite programs, even if for the latter the theory is more involved and

for guaranteeing strong duality they have to fulfill the so-called Slater condition. Before introducing

the basics for duality theory, we are going to state the following

Definition 2.11. (Feasibility) A matrix X ∈ S+
n is feasible for (6.1) if A(X) = b holds. The pair

(y, Z) ∈ Rm × S+
n is feasible for (DSDP) if A>(y) + Z = C.

Definition 2.12. (Strict feasibility) A matrix X ∈ S+
n is strictly feasible for (6.1) if A(X) = b
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holds. The pair (y, Z) ∈ Rm × S+
n is strictly feasible for (DSDP) if A>(y) + Z = C.

Now let X be a primal feasible and (y, Z) a dual feasible solution, then the difference between

the objective values of the primal and dual feasible solution is defined as duality gap.

Definition 2.13. (Duality gap) Given the primal-dual feasible pair (X, y, Z) ∈ S+
n ×Rn×S+

n the

duality gap is given by

〈C,X〉 − 〈b, y〉 .

Since Z and X are PSD, due to Lemma 2.9 the duality gap is always non-negative:

〈C,X〉 − 〈b, y〉 =
〈
A>(y) + Z,X

〉
− 〈A(X), y〉 = 〈Z,X〉 ≥ 0.

This is sufficient to prove that weak duality between (PSDP) and (DSDP) holds. As for LP, we can

formulate it by the following

Lemma 2.14. (Weak duality) Let X ∈ S+
n , y ∈ Rm with A(X) = b and A>(y) + C � 0. Then

〈C,X〉 ≥ 〈b, y〉 .

A more interesting property is when the duality gap is 0 and the quantities 〈C,X〉, 〈b, y〉 are

equal, i.e. strong duality holds. For strong duality to hold in LPs, it suffices that the primal (or

equivalently, the dual) attains its optimum. As shown by the example in Vandenberghe and Boyd

[76], in Semidefinite Programming the primal and dual attainment of their optima does not imply

strong duality.

Example 2.15. Consider the following SDP

max x12

s.t.


0 x12 0

x12 x22 0

0 0 1 + x12

 � 0.

In order to derive the dual, we rewrite it so that the matrices composing the A linear operator become
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more evident:

max x12

s.t.

〈
0 −1

2 0

−1
2 0 0

0 0 1

 , X

〉
= 1

〈
1 0 0

0 0 0

0 0 0

 , X

〉
= 0

〈
0 0 1

0 0 0

1 0 0

 , X

〉
= 0

〈
0 0 0

0 0 1

0 1 0

 , X

〉
= 0.

Then the dual problem is

min y1 + 0y2 + 0y3 + 0y4 s.t. y1A1 + y2A2 + y3A3 + y4A4 − C � 0,

or equivalently

min y1

s.t.


y2

1−y1
2 y3

1−y1
2 0 y4

y3 y4 y1

 � 0.

By Proposition 2.8, x12 must be 0 in order X to be positive semidefinite, thus the optimal value of

the primal is 0. On the other hand, in the dual 1−y2
2 must equal zero, by the same arguments and

therefore the optimal dual value is 1. Then the duality gap is 1 for any primal and dual feasible

solution.

A sufficient condition for strong duality to hold in semidefinite programming is given by the

Slater condition.
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Definition 2.16. (Slater condition)

(PSDP) satisfies the Slater condition if there exists X ∈ S+
n s.t. A(X) = b.

(DSDP) satisfies the Slater condition if there exists a pair (y, Z) with Z ∈ S+
n s.t. A>(y)+Z = C.

Then we can state the following

Theorem 2.17. Denote

p∗ = inf
{
〈C,X〉 | A(X) = b, X ∈ S+

n

}
and

d∗ = sup
{
〈b, y〉 | A>(y) + Z = C ∈ S+

n

}
.

• If (PSDP) satisfies the Slater condition with p∗ finite, then p∗ = d∗ and this value is attained

for (DSDP).

• If (DSDP) satisfies the Slater condition with d∗ finite, then d∗ = p∗ and this value is attained

for (PSDP).

• If (PSDP) and (DSDP) both satisfy the Slater condition, then p∗ = d∗ is attained for both

problems.

A proof of the previous theorem can be found in Nesterov and Nemirovskii [62] or Rockfellar [66].

For semidefinite problems where strong duality holds we therefore obtain the following necessary

and sufficient optimality conditions (also referred as Karush-Kuhn-Tucker conditions).

Proposition 2.18. (KKT conditions for SDP) Let strong duality holds for the (PSDP) and

(DSDP) pair. Then (X, y, Z) is optimal if and only if

A(X) = b, X ∈ S+
n (Primal feasibility)

A>(y) + Z = C, Z ∈ S+
n (Dual feasibility)

ZX = 0 (Complementary slackness)
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Chapter 3

Review of known results

3.1 The stable set problem

In this section we report some of the fundamental results for the maximum stable set problem.

Among the several equivalent formulations this problem admits, we are going to discuss its classic

linear and quadratic formulation, and we are going to show how the Lovász theta function [52] can

be derived as a relaxation of the latter. Then we review some of the valid linear inequalities for the

stable set problem which will be useful for our work. At last, following the development of Galli and

Letchford [21], we present a hierarchy of semidefinite relaxations starting from the theta function,

further strengthened by linear constraints.

3.1.1 Standard formulations

Let G = (V,E) a simple undirected graph and let us introduce a vector x ∈ {0, 1}|V | of binary

variables in which the i-th component of x states whether the node i ∈ V belongs to the stable

set or not. Then the exact standard formulation of the MSSP is given by the following 0-1 linear

program:

α(G) = max e>x

s.t. xi + xj ≤ 1 ∀ {i, j} ∈ E (3.1)

x ∈ {0, 1}|V | .

Inequalities (3.1) arise directly from the problem’s definition, stating that for each edge {i, j} ∈ E

at most one of the nodes i and j can be taken into the solution. Another equivalent formulation of

13
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the MSSP can be obtained using quadratic constraints as follows

α(G) = max e>x

s.t. xixj = 0 ∀ {i, j} ∈ E (3.2)

x2
i = xi ∀ i ∈ V,

where the first equation is equivalent to the edge inequalities in (3.1), while the last is easy to see

that only 0-1 points satisfy such inequality. Indeed, optimizing over this quadratic formulation is

hard as well, but it will be interesting to use this model to derive the Lovász theta function as a

semidefinite relaxation of the latter, showing the capacity to express quadratic constraints as linear

equations in terms of a certain “augmented” matrix Y .

The stable set polytope is usually denoted by STAB(G) [28] and it is defined as the convex hull

in R|V |+ of 0-1 solutions of (3.1)

STAB(G) = conv
{
x ∈ {0, 1}|V | | (3.1) hold

}
.

Due to the hardness in optimizing a linear objective function over STAB(G), it is natural to consider

its continuous relaxation, i.e.

FRAC(G) =
{
x ∈ [0, 1]|V | | xi + xj ≤ 1 ∀ {i, j} ∈ E

}
,

which defines the so-called fractional stable set polytope. If on the one hand, it is easy to optimize

over FRAC(G), from the other hand this provides very weak upper bounds on α(G). As a matter

of facts if G is connected, it can be proved that the vector x∗ = (1
2 , . . . ,

1
2) is always an optimal

solution. Hence, a great effort has been devoted in research to improving this basic relaxation, as

we will discuss in the following section.

3.1.2 Valid linear inequalities

Clique The study of the stable set polytope was initiated by Padberg [63]. Let C ⊆ V inducing

a clique in G. Then the inequality ∑
i∈C

xi ≤ 1, (3.3)

is valid for STAB(G). He observed that clique inequalities dominates the edge inequalities and

moreover he showed that (3.3) induces a facet of STAB(G) if and only if C induces a maximal

clique in G. Graphs for which all the clique and non-negativity inequalities suffice to describe

STAB(G) are called perfect graphs.
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Odd hole and odd antihole Padberg also introduces the odd cycle inequalities. Let H ⊆ V

induce a simple cycle in G, with |H| odd, then the inequality

∑
i∈H

xi ≤
⌊
|H|
2

⌋
, (3.4)

is valid for STAB(G). In the case of |H| ≥ 5 and the cycle is chordless, the cycle is called hole and

we refer to (3.4) as odd hole inequalities. When V = H, the odd hole inequality induces a facet

of STAB(G). However, Padberg pointed out that the odd hole inequalities do not induce facets in

general. To convert an odd hole inequality into a facet for a general graph it has to be lifted [80],

i.e. appropriate coefficients must be computed for the other variables.

The complement graph of an odd hole is referred as an odd antihole. Let A ⊆ V inducing an

odd antihole in G, then Padberg showed that the odd antihole inequality

∑
i∈A

xi ≤ 2, (3.5)

is valid for STAB(G). Again in general (3.5) are not facet-defining and must be lifted, unless A = V .

Web and antiweb Trotter [75] introduced two classes of valid linear inequalities. Let p, q ∈ N

such that p ≥ 2q + 1 and q ≥ 2. Here, arithmetic modulo p is used. The W (p, q) (shown in Figure

3.1a) is a graph with V = {1, . . . , p} and containing edges from node i to {i+ q, . . . , i− q} for all

1 ≤ i ≤ p. The AW (p, q) (shown in Figure 3.1b) is the complement of the web W (p, q), i.e. each

node i is connected to {i− q + 1, . . . , i+ q − 1}. Therefore, every consecutive q nodes in an antiweb

graph induces a clique.

Trotter [75] showed that the web inequality

∑
i∈W (p,q)

xi ≤ q, (3.6)

is valid for STAB(G). When G = W (p, q), (3.6) is facet-defining if and only if p and q are relatively

prime.

The antiweb inequality is defined as

∑
i∈AW (p,q)

xi ≤
⌊
p

q

⌋
(3.7)

and was proven to be valid for STAB(G) by Trotter. Laurent [45] showed that (3.7) is facet-

defining for G = AW (p, q) if and only if p is not a multiple of q. In general, for graphs G having
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web and/or antiweb as a node-induced subgraphs, both inequalities need to be lifted in order to

become facet-defining.

We notice that web and antiweb graphs are quite general and they include many other remarkable

graphs as special cases. AW (p, 2) with p odd (or equivalently W (2q+ 1, q)) are odd holes, whereas

AW (2q + 1, q) (or equivalently W (p, 2), with p odd) are odd antiholes. Moreover, a clique on p

vertices can be regarded as a “degenerate” web W (p, 1) or antiweb AW (p, dp/2e).

1

2

3

4

5

6

7

8

(a) The W (8, 3) graph.

1

23

4

5

6

7 8

9

10

(b) The AW (10, 3) graph.

Figure 3.1: An example of Antiweb and a Web graphs

Rank All the aforementioned inequalities belong to a more general class of valid inequalities for

the stable set polytope, the so-called rank inequalities. Let H ⊆ V any subset of nodes and let

G[H] be the subgraph induced by the nodes in H and let α(G[H]) be its stability number, then the

rank inequality corresponding to H is

∑
i∈H

xi ≤ α(G[H]) (3.8)

and clearly, it is valid for STAB(G). Finally, we remark that not all facet of STAB(G) are rank

inequalities.

Odd wheel Let us consider H ⊂ V inducing an odd hole and let u ∈ V be a node adjacent to all

others in H. The subgraph induced by the nodes U = H ∪ {u} is sometime referred as odd wheel

(see [28], for example) and the corresponding inequality

∑
i∈H

xi +

⌊
|H|
2

⌋
xu ≤

⌊
|H|
2

⌋
(3.9)

is called odd wheel inequality and is valid for STAB(G). If V = U , then (3.9) induces a facet of the

stable set polytope. Such an inequality is one example of facet-inducing inequality which does not

belong to the rank inequality class.
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1
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3
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50

Figure 3.2: The 5-wheel graph.

Orthonormal representation Another class of non-rank constraints of a rather different char-

acter are the orthonormal representation inequalities, introduced by Grötschel, Lovász and Schrijver

[27]. Let us associate with each vertex i ∈ V , a vector vi ∈ Rn, so that ||vi|| = 1 and non-adjacent

vertices correspond to orthogonal vectors, i.e. vi ·vj = 0 for all {i, j} /∈ E . Let c ∈ Rn, an arbitrary

vector with ||c|| = 1. Then the constraints

∑
i∈V

(c>vi)
2xi ≤ 1, ∀ i ∈ V, (3.10)

are valid for the stable set polytope. These class of inequalities, along with the non-negativity

defines TH(G) i.e., the theta body of G which, as we will discuss in the next section, is strictly

related to the Lovásztheta function.

3.1.3 Semidefinite relaxations

In his seminal paper dated back in 1979, Lovász [52] introduced the well-known theta function θ(G)

of a graph G which was proven to yield at the same time an upper bound on the stability number

α(G) and a lower bound on the chromatic number χ(Ḡ) of the complement graph of G. Lovász

presented several alternative derivations based on semidefinite programming. Subsequently to the

publication of [52], SDPs were shown to be solvable in polynomial time, up to a fixed precision

[76]. Then afterwards, different stronger relaxation have been presented through the addition of

valid linear inequalities each of which based on two different formulations of the theta function,

mainly. In order to report a complete picture about the hierarchy, we are going to report the two

more common formulations (and the consequent strengthenings) following the survey of Galli and

Letchford [21].

Theta function θ(G) The Lovász theta function of a graph G = (V,E) can be derived starting

from the quadratic formulation of the stable set problem (3.2) [28]. Let |V | = n, then for any
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feasible solution x ∈ {0, 1}n we consider the augmented matrix (indexed from 0 up to n) defined as

Y :=

1

x

1

x

> =

1 x>

x xx>

 .

We notice that Y is symmetric, positive semidefinite and has rank 1 (by Proposition 2.7). Moreover,

since x2
i = xi we have that the first row of Y equals its diagonal. Now replacing the product xx>

with a matrix of variables X ∈ Sn, with (X)ij = (X)ji = xij , an equivalent exact formulation for

the MSSP is given by

α(G) = max tr(X)

s.t. Y00 = 1

xij = 0 {i, j} ∈ E

xii = x0i i ∈ V

Y ∈ S+
n+1, rank-1

−→

θ(G) = max tr(X)

s.t. Y00 = 1

xij = 0 {i, j} ∈ E

xii = x0i i ∈ V

Y ∈ S+
n+1,

(th-SDP1)

where the right-hand side of the arrow is obtained by relaxing the rank-1 constraint, yielding a

semidefinite relaxation of the stable set problem and whose optimum value is exactly the theta

function θ(G).

The original formulation, introduced in [52] goes as follows. Given a feasible vector x ∈ {0, 1}n,

define the matrix Z = xxT /(eTx) ∈ [0, 1]n×n. By definition, Z is positive semidefinite and

〈J, Z〉 = (eTx)2/(eTx) = eTx.

Moreover, diag(Z) = x/(eTx), which implies tr(Z) = 1. Then θ(G) can again be computed by the

SDP problem:

θ(G) = max 〈J, Z〉

s.t. tr(Z) = 1

Zij = 0 {i, j} ∈ E

Z ∈ S+
n .

(th-SDP2)

Even if the optimal values of the two formulations are the same, the relationship between th-SDP1

and th-SDP2 is more involved than it might appear. th-SDP2 has only |E|+ 1 constraints, whereas

th-SDP1 has |V |+ |E| linear constraints. On the other hand, the latter has a very nice property: its

projection onto the subspace defined by the original (non-quadratic) x variables is usually referred
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as the theta body of G and it is denoted by TH(G). Such a set is always convex, but non-polyhedral

in general as remarked in [53]. This is due to the fact that TH(G) is defined by orthogonality

inequalities (3.10) (along with the non-negativity) which are infinitely many for a given graph.

Remarkably, Grötschel et al. [28] proved that

STAB(G) ⊆ TH(G) ⊆ FRAC(G),

furthermore he showed that TH(G) satisfies all clique constraints. This implies that when G is

perfect, TH(G) is polyhedral and it describes the stable set polytope exactly. As a consequence,

there exists a polynomial-time separation algorithm for a class of inequalities which includes all

clique inequalities. This is so despite the fact that clique separation itself is strongly NP-hard. In

practice, θ(G) often provides a strong bound to the stability number α(G), typically better than

those obtained from standard linear relaxations [23, 24, 40, 83]. Another interesting feature of

these SDPs concerns with their computational behaviour. In fact, they turn often out to be more

tractable than general SDPs of comparable size by general SDP solvers. Moreover, very efficient

tailored algorithms have been designed. The Lovász theta function can be computed efficiently for

reasonable graph dimensions using augmented Lagrangian approaches as in Povh et al. [64] for

example, or the regularization method of Malick et al. [56]. For these reasons, θ(G) achieves quite

a good trade-off between strength of the upper bound to α(G) and computational burden.

Schrijver relaxation θ+(G) According to Schrijver [69] non-negativity inequalities xij ≥ 0 for all

{i, j} /∈ E, are added to th-SDP1, as these are not implied by the condition Y ∈ S+
n+1. Remember

that Y � 0 if and only if b>Y b ≥ 0 for all vectors b = (b0, b1, . . . , bn) ∈ Rn. Now letting b0 = 1
2 ,

bi = bj = −1 for a pair {i, j} /∈ E and all the remaining elements to 0, b>Y b ≥ 0 implies xij ≥ −1
8 .

By the same arguments, Zij ≥ 0 for all {i, j} /∈ E are added to th-SDP2. The resulting upper

bounds are denoted by θ+(G). The Schrijver’s number slightly improves over θ(G) in practice,

but already the addition of Y ≥ 0 to the semidefinite program th-SDP1 non-trivially increases the

complexity of its resolution, such as for general purpose interior point methods for example. As a

matter of facts, Y ≥ 0 corresponds to O(n2) linear inequalities. On the other hand, augmented

Lagrangian approaches overcome to this issue by handling lower (and upper) bounds on the matrix

variable via a projection, see [14, 79, 82] for example.

Lovász-Schrijver relaxation This relaxation is obtained by applying the Lovász-Schrijver N+(·)

operator to FRAC(G). This is equivalent to adding the following linear inequalities to th-SDP1:
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xij ≥ 0 {i, j} /∈ E, (3.11)

xik + xjk ≤ xk {i, j} ∈ E, k ∈ V, k 6= i, j, (3.12)

xi + xj + xk ≤ 1 + xik + xjk {i, j} ∈ E, k ∈ V, k 6= i, j. (3.13)

Lovász and Schrijver [53] showed that N+(FRAC(G)) satisfies all clique, odd hole, odd antihole and

odd wheel inequalities. Giandomenico and Letchford [22] showed that, in fact, it satisfies all web

inequalities. Thus, SDP provides a polynomial-time separation algorithm for a class of inequalities

which includes all web and odd wheel inequalities (and therefore all clique, odd hole and odd antihole

inequalities). A characterization of graphs for which N+(FRAC(G)) completely describes the stable

set polytope has been presented in Bianchi et al. in [5] and more recently in [6].

Computational results obtained by optimizing overM+(FRAC(G)) have been given for example

by Balas et al. [3] (using lift-and-project cutting plane methods) and Burer and Vandenbussche [10],

where a specialised augmented Lagrangian method is devised to deal with these SDPs. These

upper bounds are often noticeably better than θ+(G) but at the expense of very large running

times. In practice, this relaxation turns out to be hardly computationally accessible for graphs of

medium/large size.

Gruber-Rendl relaxation The Gruber and Rendl relaxation, introduced in [29], is obtained by

adding further inequalities to LS formulation, namely

xik + xjk ≤ xk + xij ∀ stable {i, j, k}, (3.14)

xi + xj + xk ≤ 1 + xij + xik + xjk ∀ stable {i, j, k}. (3.15)

They use an interior-point SDP algorithm and incorporate the triangle inequalities by La-

grangian relaxation. Near-optimal multipliers are then computed via the bundle method. The

upper bounds obtained are very good, although again at the expense of large running times.

Dukanovic-Rendl relaxation Dukanovic and Rendl [19] instead proposed to add the following

set of inequalities to th-SDP2:

Zij ≥ 0 {i, j} /∈ E, (3.16)

Zik + Zjk ≤ Zkk {i, j} ∈ E, k ∈ V, k 6= i, j, (3.17)

Zik + Zjk ≤ Zkk + Zij ∀ stable {i, j, k}. (3.18)
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Computational results documented in [19] show that the upper bounds provided by this relax-

ation are strong. Here computational results are reported as well, but running times are demanding

on reasonable graph dimensions.

We finally mention that a quite strong bound α(G) (indeed presented in the context of the clique

number) has been achieved by Locatelli [50] by adding non-valid inequalities. The resulting method

turns out to be one of the most powerful among those currently available.

The general picture provided by these relaxations is that the additional computational cost to

be paid in order to improve the theta bound is often quite significant. Indeed, the insertion of

linear inequalities in the basic Lovász model yield much harder SDPs and does require specialised

methods. In the next chapter we introduce a new relaxation with the purpose of bridging such a

gap.

3.2 Graph Coloring Problem

In this section we are going to report some basic concepts about the graph coloring problem. As

it has been done for the MSSP, we are going to present the classical integer linear formulations

accordingly to the surveys in [36, 55]. Hence, we review the main semidefinite relaxations known

for this problem starting again from the Lovász theta function and further improved through the

addition of valid linear inequalities.

3.2.1 Standard formulations

Given a graph G = (V,E) with |V | = n, the natural ILP formulation can be obtained by the

introduction of a vector x ∈ {0, 1}n×n and a vector w ∈ {0, 1}n, where the general entry xvi, v ∈ V ,

i ∈ [n] assumes value 1 if and only if the node v is assigned to color i, while wi = 1 if and only if the

color i is used (i.e. it has been assigned to at least one vertex). Then the GCP can be formulated

by

χ(G) = min
∑n

i=1wi

s.t.
∑n

i=1 xvi = 1 ∀ v ∈ V

xui + xvi ≤ wi ∀ {i, j} ∈ E, i ∈ [n]

x ∈ {0, 1}n×n ,

w ∈ {0, 1}n .

(GCP-ASS)

This formulation is usually referred as assignment formulation and it has the advantage to be in-

tuitive and can be easily adapted to variants of the GCP. The equality constraints state that each

vertex is assigned to exactly one color. The inequality constraint has a twofold meaning: from the
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one hand it enforces each adjacent vertices to be assigned to different colors, while on the other

hand ensures that if some node receives color i, then wi must be set to 1. In this way, the objec-

tive function correctly minimizes the number of used colors. Here we presented this model using

|V | as the maximum number of colors needed, but in many cases (unless the graph is a clique,

for example) this number can be lowered (and hence reducing the number of variables and con-

straints) to some tighter upper bound, such as the result of a heuristic. Let H be such a number,

then this model employs H|V | + H = O(|V |2) variables and |V | + H|E| = O(|V ||E|) inequalities.

Malaguti and Toth [55] pointed out that beyond the fact that colors are indistinguishable and then

there exists many symmetric solutions, the LP relaxation is extremely weak: it is easy to verify

that xv1 = xv2 = 1
2 and xvj = 0, w1 = w2 = 1 and wj = 0 for ∀ v ∈ V and j = 3, . . . ,H is always a

feasible solution of value 2, for any graph G.

Since any k-coloring inG defines a partition of the nodes V into k stable sets, Mehrotra and Trick [57]

proposed the so-called set covering formulation. Let S be the collection of all stable sets in G and

S(i) ⊆ S be the subset of stable sets including vertex i. Moreover, let xs a binary variable for each

stable set s ∈ S with value 1 if and only if the stable set s belongs to the partition and 0 otherwise,

then an alternative formulation of GCP is given by

χ(G) = min
∑

s∈S xs

s.t.
∑

s∈S(i) xs ≥ 1 ∀ v ∈ V

x ∈ {0, 1}|S| .

(GCP-COV)

Here, the objective function calls for the minimum number of stable sets employed to partition (i.e.

to color) the vertices in V . The inequality constraints enforce that each vertex belongs at least

to one stable set. One drawback of this formulation resides in the number of variables, which is

exponential in the number of nodes in G. In order to face this issue Mehrotra and Trick proposed

a branch-and-price algorithm, starting with a compact number of variables and then adding new

ones using column generation methodologies. Along this approach, Gualandi and Malucelli [30]

proposed a method employing branch-and-price enhanced by constraint programming to compute

exact solutions for the graph coloring problem. The linear relaxation of the set covering formulation

is quite interesting, indeed relaxing the integrality constraint with x ∈ [0, 1]|S| we allow each node

to be assigned to a set of fractions of colors. As a matter of fact it is referred to the optimal value
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3.2. Graph Coloring Problem

of such a relaxation as the fractional chromatic number of G, denoted as χf (G) [43]:

χf (G) = min
∑

s∈S xs

s.t.
∑

s∈S(i) xs ≥ 1 ∀ v ∈ V

x ∈ [0, 1]|S|.

(FGCP)

The dual of FGCP corresponds to the fractional clique problem, a relaxation of the clique problem

whose optimal value is denoted by ωf (G). By strong duality in LP, the following inequality holds:

ω(G) ≤ ωf (G) = χf (G) ≤ χ(G).

We also mention the alternative linear formulation for the graph coloring based on the definition of

a partial ordering proposed by Jabrayilov and Mutzel [36] and further strengthened in [37] recently.

In Chapter 5 we investigate a new SDP relaxation based on the LP representative formulation

proposed by Campelo et al. [12].

3.2.2 Semidefinite relaxations

Similarly to upper bounds on the stable set, the computation of lower bounds for χ(G) has been

intensively investigated with the purpose of achieving a good trade-off between quality of the bound

and efficiency. Again, lower bounds from linear relaxations [58, 61] are cheap to compute but may be

rather weak, while lower bounds from semidefinite programming relaxations are typically stronger

but also harder to handle in practice. The SDP approaches are based on the fundamental result of

Lovász [52] which states that

α(G) ≤ θ(G) ≤ χ(Ḡ).

Hence, computing the parameter θ(G) already provides a lower bound on the chromatic number on

the complement graph Ḡ. In literature many equivalent formulations have been presented, we refer

to Laurent and Rendl [48] for a detailed comparison. Given a graph G = (V,E), let Ḡ = (V, Ē) be

its complement graph, then an alternative to formulation th-SDP2 was proposed by Meurdesoif [59]

and it goes as follows:

θ(G) = min t

s.t. Xii = t− 1 v ∈ V

Xij = −1 {i, j} ∈ Ē,

X ∈ S+
n .

(th-SDP3)
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Again, the Lovász theta number provides a good trade-off between quality of the bound and com-

putational burden. On the other hand, Lovász [52] also proved that θ(G) ≤ χf (Ḡ). Thus, the gap

χ(Ḡ) − θ(G) tends to increase as χf (Ḡ) gets closer to α(G). In general, such a gap may become

arbitrarily large as in the case of the triangle free (ω(G) = 2) Mycielski graphs [43].

In order to improve the lower bound towards the chromatic number, several attempts have been

made with adding linear inequalities to the Lovász SDP relaxation towards χ(Ḡ) [19, 59, 74].

The θ′(G) parameter In a similar fashion to the Schrijver’s number, Szegedy [74] proposed to

replace Zij = 0 to Zij ≤ 0 for {i, j} ∈ E to th-SDP2 as a sharpening for the chromatic number of Ḡ.

Independently, Meurdesoif [59] added Xij ≥ −1 to th-SDP3. The resulting lower bound, denoted

as θ′(G) is the same for the two formulations

θ′(G) = max 〈J, Z〉

s.t. tr(Z) = 1

Zij ≤ 0 {i, j} ∈ E

Z ∈ S+
n .

θ′(G) = min t

s.t. Xii = t− 1 v ∈ V

Xij = −1 {i, j} ∈ Ē,

Xij ≥ −1 {i, j} ∈ E,

X ∈ S+
n .

The resulting lower bound improves over the initial θ(G). Meurdesoif also presented graphs for

which the inequality θ(G) ≤ θ′(G) is strict.

Triangle inequalities In his paper, Meurdesoif [59] proposed a further strengthening by the

introduction of the so-called triangle inequalities. Those inequalities are a standard way to improve

relaxations in which variables correspond to some Boolean variables. Indeed, the exact formulation

for the graph coloring behind th-SDP3, asks the entries Xij to assume values in {t− 1,−1}, whether

i and j are assigned to the same color or not. Thus, he proposed to add the following family of

nontrivial inequalities:

Xij +Xjk −Xik ≤ t− 1 {i, j} , {j, k} ∈ E

The resulting relaxations typically require tailored algorithms to be handled. In particular,

a computational progress has been documented in [19] by using different models for sparse and

dense graphs and by exploiting symmetry. However, these studies seldom presented lower bounds

which lie above the fractional chromatic number. This threshold has been crossed in [33] by a

powerful operator and computational results have been presented in [32]. The latter have been again
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obtained by a sophisticated algorithm embedding an advanced symmetry-exploiting mechanism.

Moreover, Gaar and Rendl [20] recently presented computational results on the so-called exact

subgraph hierarchy for the GCP where SDP bounds above χf (Ḡ) have been presented.

3.3 The Matrix-Cut Operator

In this section we describe the general framework introduced by Lovász and Schrijver [53] to derive

valid inequalities (i.e. cutting planes), called matrix cuts, for 0-1 vectors in polyhedra. Such a

construction “lifts” a 0-1 problem K in n variables to O(n2) variables, and then projecting it back to

the n-space so that cuts, i.e. tighter inequalities still valid for all 0-1 solutions, are introduced. Such

Lift-and-Project methods owe their success by the following principle: the convex hull of 0-1 points

ofK whose number of facets are exponential, might be represented as a projection of another convex

set Q “living” in a higher (but still polynomial) dimensional space, since the projection of Q onto

the K-space might have more facets than Q in its lifted space. Beside Lovász and Schrijver, several

related works have been presented by Sherali and Adams [71], Balas et al. [2] and Lasserre [44].

A detailed comparison of these methods have been presented in Laurent [46]. A common feature

of these methods is the construction of a hierarchy of relaxations, which typically involve several

levels, each of which gets increasingly tighter to the exact solution, but the computational effort

grows accordingly. Our interest will be in the first level of the N+(·) hierarchy.

3.3.1 The construction of matrix-cuts

Let Qn be the 0-1 cube in Rn, that is Qn = [0, 1]n. If the dimension is obvious from the context,

we denote the 0-1 cube by Q. Let P be a polytope defined by

P = {x ∈ Q | Ax ≤ b} , (3.19)

where Ax ≤ b is the system of m linear inequalities a>i x ≤ bi,∀ i ∈ [m], defining P . We assume,

for the sake of convenience, that the inequalities 0 ≤ x ≤ 1 are included in the system. We are

interested in determining (or approximating) P I , i.e. the convex hull of all 0-1 vectors in P .

In what is following, it will be convenient to work with homogeneous systems of inequalities,

i.e., with convex cones rather than polytopes. In order to accomplish that, we can obtain a convex

cone from P by embedding the n-dimensional space in Rn+1 within the hyperplane x0 = 1. Now,
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let us consider the following set

P̄ :=


1

x

 ∈ Rn+1 | u>i

1

x

 ≥ 0, ∀ i ∈ [m]

 , (3.20)

where ui :=

 bi

−ai

. Clearly, P̄ is a convex cone in Rn+1 and we have that P =

x |
1

x

 ∈ P̄
.

We denote by P̄ I the cone spanned by all 0-1 vectors in P̄ (i.e. the convex hull of its 0-1 vectors)

and let P̄ ∗ be its polar cone, i.e. the cone spanned by vectors ui, for i ∈ [m]. The same process can

be done with Qn, considering it as the set spanned by all 0-1 vectors x ∈ Rn+1, with x0 = 1, hence

Q̄ =


1

x

 ∈ Rn+1 | e>i

1

x

 ≥ 0, (e0 − ei)>
1

x

 ≥ 0, ∀ i ∈ [n]

 . (3.21)

Let Q̄∗ be the polar cone of Q̄, denote by ei, i = 0, . . . , n the ith unit vector, and let fi := e0 − ei,

then Q̄∗ is spanned by all vectors ei and fi.

Lovász and Schrijver noticed that if we consider any pair of valid inequalities for P̄ and Q̄

respectively (i.e. vectors belonging to their polar cones) and we multiply them together, we get a

(quadratic) inequality which is still valid for every point in P̄ . To exemplify, let us consider a>i x ≤ bi

and xj ≤ 1. Clearly they represent two inequalities defining P and Q for some i ∈ [m] and j ∈ [n],

then all points in P̄ and Q̄ must satisfy bi−a>i x ≥ 0 and 1−xj ≥ 0 equivalently and since they are

both non-negative also the product (b − a>i x)(1 − xj) ≥ 0 will be valid for the cone P̄ (and hence

for P ).

Let u ∈ P̄ ∗ and v ∈ Q̄∗, by the discussion above we remark that the following holds

0 ≤

u>
1

x



1

x

> v
 =

〈
uv>,

1

x

1

x

>〉 , (3.22)

for any x ∈ P . Inequalities generated as in (3.22) are quadratic. In order to linearize them we need

the following

Remarks 3.1. 1. Given a feasible 0-1 vector x ∈ P I ⊆ P , the matrix

Y =

1

x

1

x

> =

1 x>

x xx>

 ,

satisfies inequalities (3.22);

2. Since xixj = xjxi, Y ∈ Sn+1 and by Proposition 2.7 Y ∈ S+
n+1 and has rank 1;
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3. All 0-1 vectors x ∈ P I (and no other point in P ) also satisfy:

x2
i = xi, for all i ∈ [n],

or equivalently, diag(Y ) = Y e0. Therefore, by the substitution in (3.22) of x2
i with xi, the

inequality remains valid for 0-1 points in P I , but not necessarily for other points in P . Hence

we call (3.22) a matrix-cut for P .

By the remarks above, we can now replace the product xx> in Y with a new symmetric matrix

X ∈ Sn, where (X)ij = xij and diag(X) = x. Then the inequality (3.22) becomes

〈
uv>,

1 x>

x X

〉 ≥ 0, (3.23)

which is linear in the entries of Y . After this discussion we are ready to describe the steps needed

to apply the Lovász and Schrijver Lift-and-Project operator to the polytope P .

3.3.2 Lift-and-Project operator

Let P be the polytope defined by (3.19). Then the operator involves three steps:

Step 1. Lift Generate the set of nonlinear inequalities

(bi − a>i x)xj≥ 0, (3.24)

(bi − a>i x)(1− xj)≥ 0, for i ∈ [m], j ∈ [n]. (3.25)

Step 2. Linearize Define the augmented matrix

Y :=

1 x>

x X

 ,

with X ∈ Sn, (X)ij = xij and diag(X) = x. Then equations (3.24) and (3.25) become

〈
uie
>
j , Y

〉
≥ 0, (3.26)〈

ui(e0 − ej)>, Y
〉
≥ 0, for i ∈ [m], j ∈ [n]. (3.27)
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Now define the following cone

M+(P ) :=


1 x>

x X

 ∈ S+
n+1

∣∣∣ (3.26) and (3.27) hold, with diag(X) = x

 .

Step 3. Project The projection of M+(P ) onto the original space is defined as

N+(P ) :=

diag(X) |

1 x>

x X

 ∈M+(P )

 .

3.3.3 Properties of the matrix cut operator

The focus of this section is to outline the main properties of M+(·) and N+(·) operators just

introduced. For the sake of compactness, in what is following we are going to omit some of the

proofs. We refer the reader to the original paper [53] for a complete treatment.

The first, crucial question is whether the result of the operator N+(P ) is actually a relaxation

of P I stronger than P , or not. Indeed Lovász and Schrijver proved the following

Lemma 3.2. P I ⊆ N+(P ) ⊆ P .

Proof. P I ⊆ N+(P ). By Remarks 3.1.1-2, the matrix

Y =

1 x>

x xx>

 ,

is symmetric, positive semidefinite and satisfies (3.26) and (3.27), for any 0-1 point x ∈ P I .

N+(P ) ⊆ P . For any i ∈ [m] and any j ∈ [n], we have

bi − a>i x = (bi − a>i x)xj + (bi − a>i x)(1− xj),

then inequalities defining P can be obtained as a convex combination of inequalities defining N+(P ).

The previous lemma gives us the certificate of N+(P ) to be a relaxation of P and the inclusion

is strict in general. In order to provide a better understanding of the construction of the N+(·)

operator, Lovász and Schrijver observed the following geometrical property:

Lemma 3.3. For every polytope P ⊆ Q and every i ∈ [n],

N+(P ) ⊆ conv((P ∩ {x | xi = 0}) ∪ (P ∩ {x | xi = 1})).
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Let us point out the consequences of this lemma: clearly, {x | xi = 0} and {x | xi = 1} are facet

of Q, and all facets of Q are determined in this way. Hence, if P does not intersect some facet of

Q, then N+(P ) is contained in the opposite facet. Furthermore, if P does not intersect some pair

of opposite facets of Q, then N+(P ) = ∅.

Another crucial point to address that will be important for our purpose, is to answer the fol-

lowing:

Question. Given an inequality c>x ≤ d (or d− c>x ≥ 0), is such an inequality valid for N+(P )?

In order to answer, Lovász and Schrijver provided two main theoretical tools which will be use-

ful to report now. The first tool is given by the next Lemma, defining an explicit description of the

polar cone M+(P )∗, containing valid constraints for M+(P ).

Lemma 3.4. An inequality d− c>x ≥ 0 is valid for M+(P ) if and only if

 d

−c

 e>0 =
∑
i,j

αi,juie
>
j +

∑
i,j

βi,jui(e0 − e>j )+ (3.28)

∑
j

λjej(e0 − e>j ) + A + B,

where αi,j , βi,j ≥ 0, λj ∈ R, for i ∈ [m], j ∈ [n], A is a skew-symmetric matrix and B is a

symmetric positive semidefinite matrix. Then d − c>x ≥ 0 is called an N+-cut (or matrix-cut) for

P .

The polar cone M+(P )∗ is precisely the set of matrices having the same form as the right-hand

side of (3.28): the first two summations can only yield convex combination of inequalities (3.26)

and (3.27), the last summation achieves the same purpose as replacing x2
i by xi, while matrices A

and B are related to the symmetry and positive semidefiniteness of matrix Y , respectively.

The other tool to certificate the validity of an inequality for N+(P ) is a sufficient condition

stated by the following

Lemma 3.5. [53, Lemma 1.5] Let c ≥ 0. If c>x ≤ d is valid for (P ∩ {x | xi = 1}) for all ci > 0,

then c>x ≤ d is valid for N+(P ).

Notice that the Lemma assume c ≥ 0. This can be done without loss of generality as shown

in the original paper [53] (by flipping coordinate i, if ci < 0). During our application of the N+(·)

to the stable set problem, we will use this tool, since its use can be easily verified in the graph
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P

P I

(a) P ⊆ Q and its convex hull of 0-1 points P I

N+(P )

P I

(b) N+(P )

Figure 3.3: The application of N+(·) to P

G on which the problem is defined (by the removal of some node i). As a matter of fact, by the

employment of this lemma, Lovász and Schrijver proved that N+(FRAC(G)) satisfies clique, odd-

hole, odd-antihole and odd-wheel inequalities. In the negative direction, Bianchi et al. [5] observed

that not every valid inequality of N+(FRAC(G)) satisfies these conditions.

3.3.4 An example of the N+(·) operator

In this section we report an example of N+(·) construction, in order to clarify what we discussed

until now. The following example is reported in Dash’s PhD dissertation [16]. Let us consider the

two-dimensional unit cube Q = [0, 1]2, and let P ⊆ Q be the polytope (as shown in Figure 3.3a)

defined by the inequalities

1.5− x1 − x2 ≥ 0,

0.5 + x1 − x2 ≥ 0, (3.29)

x1 ≥ 0, 1− x1 ≥ 0,

x2 ≥ 0, 1− x2 ≥ 0,

in order to derive N+(P ), we proceed by applying the steps described in Section 3.3.2.

Step 1. Lift Since 1.5−x1−x2 and x1 must be non-negative for every point in P , the quadratic

inequality (1.5−x1−x2)x1 ≥ 0 will be valid for P . We repeat this process for each of 2mn possible

combinations (m = 6, n = 2 in our example). Then the following (non-trivial) inequalities are valid
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for P :

(1.5− x1 − x2)x1 ≥ 0,

(0.5 + x1 − x2)x2 ≥ 0, (3.30)

(1.5− x1 − x2)x2 ≥ 0,

(0.5 + x1 − x2)(1− x1) ≥ 0,

Step 2. Linearize All 0-1 points in P satisfy x2
i = xi. Then by replacing x2

1 by x1, in the

first equation in (3.30), 1.5 − x2
1 − x1x2 ≥ 0, we obtain 0.5x1 − x1x2 ≥ 0. Now we replace the

product x1x2 = x2x1 with a new variable x12. Repeating this process for all equations in (3.30)

and collecting all variables in the augmented matrix Y , we can infer that M+(P ) is defined by the

following system:

0.5x1 − x12 ≥ 0,

−0.5x2 + x12 ≥ 0, (3.31)

0.5x2 − x12 ≥ 0,

0.5− 0.5x1 − x2 + x12 ≥ 0,

Y =


1 x1 x2

x1 x1 x12

x2 x12 x2

 ∈ S+
3 .

Step 3. Project The projection of (3.31) onto R2 yields the inequalities

x1 − x2 ≥ 0, (3.32)

1− x1 − x2 ≥ 0,

which define N+(P ), as shown in Figure 3.3b. Then (3.32) are N+-cuts, valid for P I but not for P .

We notice that in this special case, N+(P ) is polyhedral but in general this is not the case, since the

condition Y � 0 is equivalent to an infinite number of linear inequalities. Furthermore, we remark

that it might be the case in which not all inequalities generated by the lifting in Step 1 are needed

for the description of M+(P ) and then N+(P ), and the identification of such “redundant” part of

the lifting is not straightforward.
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Chapter 4

Application of N+(·) operator to NOD(G)

The Lovász theta function θ(G) has been a game changer since its introduction: it provides an

exact polynomial-time algorithm for solving the MSSP on a special subclass of graphs, while for

general graphs it yields stronger upper bounds than linear ones achieving a hard-to-beat trade-off

between computational effort and strength of the bound. As shown in Section 3.1.3 many attempt

of strengthen θ(G) bounds have been proposed but although their success, the general picture is

that the additional computational cost to be paid in order to yield a significant improvement is

non-trivial, resulting in SDPs harder to solve with general purpose algorithms.

In last section we reviewed the Lovász and Schrijver matrix-cut operator which allows to

strengthen any linear relaxation of a general 0-1 linear problem into a semidefinite one in an elegant

fashion based on cones’ properties. The application of such operator to the fractional stable set

polytope proposed by Lovász and Schrijver, namely N+(FRAC(G)), showed the potential of this

procedure to yield strong bounds on the stability number, as remarked by the results in Burer and

Vandenbussche [10] for example. Although the strength of these bounds is alluring, dealing with

N+(·) SDPs tends to be computationally challenging and the employment of tailored algorithms is

often required.

This chapter deals with the following study: we investigate a new semidefinite relaxation for the

MSSP obtained by the application of Lovász and Schrijver Lift-and-Project operator to an alterna-

tive compact formulation for the stable set problem. At first, theoretical aspects are addressed in

order to provide a comparison with the well known N+(FRAC(G)), following the development of

the original paper [53]. Then extensive computational experiments are reported, discussing on how

to deal with the computational burden using general purpose SDP methods.
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4.1 Nodal inequalities

As remarked in Section 3.3, when the lifting operatorM+(·) is applied, 2nm valid linear inequalities

are generated (n and m being the number of variables and the number of constraints defining the

polytope on which the operator is applied, respectively). For example, FRAC(G) requires O(n2)

inequalities, then M+(FRAC(G)) size would be of O(n3). Clearly, this implies that the starting

linear formulation plays a crucial role on the tractability of the resulting SDP. An alternative

formulation for the stable set problem has been proposed by Murray and Church [60], based on

the so called nodal inequalities. Before introducing their formulation, some notation is needed.

Let G = (V,E) a simple undirected graph, then for each i ∈ V we denote with Γ(i) ⊂ V the

neighborhood set of i, i.e. Γ(i) = {j ∈ V | {i, j} ∈ E}. Given any S ⊆ V , we denote with G[S]

the subgraph induced by the nodes in S and by r(G[S]) its stability number. Then Murray and

Church’s formulation reads as follows:

α(G) = max e>x

s.t.
∑

j∈Γ(i) xj + r(G[Γ(i)])xi ≤ r(G[Γ(i)]) i ∈ V

x ∈ {0, 1}|V |,

(4.1)

where equations (4.1) have the following meaning: in any stable set S, if i ∈ S then no other nodes

j ∈ Γ(i) in its neighborhood can also be in S; otherwise if i /∈ S, then at most r(G[Γ(i)]) among

adjacent to i can be in S. Remarkably, (4.1) are exactly |V | = Θ(|V |) in number, one for each node;

while the standard edge formulation has |E| = O(|V |2) inequalities. We denote with

NOD(G) =
{
x ∈ [0, 1]|V | | (4.1) hold

}
the polytope associated with its continuous relaxation. Then we report the following

Remark 4.1. The computation of r(G[Γ(i)]) coefficients needed to write (4.1) has been deeply

investigated by Letchford, Rossi and Smriglio [49]. Even if it may involve large CPU times, they show

how to deal with this process in practice for the graph’s sizes of interest, proposing a decomposition

technique to enhance the computation.
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1

2

3

4

50

Figure 4.1: An almost-wheel graph GLT

Remark 4.2. NOD(G) does not satisfy the edge inequalities in general. As shown in Figure 4.1,

let us consider the graph GLT as reported in [5], i.e. the 5-hole with an additional 0-node and let it

adjacent to three consecutive nodes in the hole, say {1, 2, 3} for example. Let x̄ =
(

2
3 ,

2
3 , 0, 0, 0, 0

)
,

it’s easy to verify that x̄ ∈ NOD(GLT ), but on the other hand the edge inequality x0 + x1 ≤ 1 is

clearly violated by x̄.

Remark 4.3. When G is an odd wheel graph, NOD(G) trivially satisfies the odd wheel inequality.

Indeed equation (4.1) corresponding to the hub of the wheel, is equivalent to (3.9).

Murray and Church [60] proposed a more general family of formulations based on a combination

of (4.1) and a collection of clique inequalities, but here we consider only the “pure” nodal formulation.

4.2 Lifting the nodal polytope

In this section we describe the matrix-cuts generated by the application of M+(·) to NOD(G).

Again let n = |V |, then we denote with Q = [0, 1]n the 0-1 cube of the right dimension and recall

the definition of the augmented matrix

Y :=

1 x>

x X

 ,

with X ∈ Sn, (X)ij = (X)ji = xij and diag(X) = x. For the sake of compactness, we write ri in

place of r(G[Γ(i)]). To apply Step 1 of the procedure described in Section 3.3.2, we need to multiply

(4.1) by xk ≥ 0 and 1 − xk ≥ 0, k ∈ [n]. Hence, we report all possible classes of matrix-cuts (i.e.

inequalities) generated by an exhaustive case analysis. For the sake of simplicity, we implicitly

perform the linearization of the inequalities (i.e. by the substitutions xi = x2
i and xij = xixj for all

i and j).
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Multiplying by xk ≥ 0 We need to develop the following product:

xk(ri −
∑
j∈Γ(i)

xj − rixi) ≥ 0,

for every i, k ∈ [n]. Here, one out of three possible cases can occur:

1. (i = k), then we obtain

−
∑
j∈Γ(i)

xij ≥ 0; (4.2)

2. (i 6= k, k ∈ Γ(i)), then we obtain

(ri − 1)xk −
∑

j∈Γ(i)\{k}

xjk ≥ 0; (4.3)

3. (i 6= k, k /∈ Γ(i)), then we obtain

rixk −
∑
j∈Γ(i)

xjk − rixik ≥ 0. (4.4)

Multiplying by 1− xk ≥ 0 In this case, we need to develop the following product:

(1− xk)(ri −
∑
j∈Γ(i)

xj − rixi) ≥ 0,

for every i, k ∈ [n]. By the same argument as before, the three possible cases are:

1. (i = k), then we obtain

ri −
∑
j∈Γ(i)

(xj − xij)− rixi ≥ 0; (4.5)

2. (i 6= k, k ∈ Γ(i)), then we obtain

ri −
∑

j∈Γ(i)\{k}

(xj − xjk)− rixi − rixk + rixik ≥ 0; (4.6)

3. (i 6= k, k /∈ Γ(i)), then we obtain

ri −
∑
j∈Γ(i)

(xj − xjk)− rixi − rixk + rixik ≥ 0. (4.7)
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As remarked in Lovász and Schrijver [53], since NOD(G) is contained in Q, every Y ∈M+(NOD(G))

satisfies, in addition

xij ≥ 0, (4.8)

xij ≤ xi, (4.9)

xi + xj − xij ≤ 1, for all i, j ∈ [n] (4.10)

xi ≤ 1, for all i ∈ [n]. (4.11)

This set of (non-trivial) constraints is the result of the lifting corresponding to the bound constraints

0 ≤ x ≤ 1 in NOD(G) (which are assumed to be in the description of the polytope). The bound

constraint (4.11) is implied by the condition Y � 0 since by Proposition 2.8, xi ≥ 0 and the

determinant of all submatrices of Y of the form 1 xi

xi xi

 ,

for i ∈ [n] must be non-negative, implying the bounds 0 ≤ xi ≤ 1. Moreover, the determinant of all

submatrices of Y of the form  xi xij

xij xj

 ,

implies the bound xij ≤ 1 for all i and j.

Hence, we can now define the convex set

M+(NOD(G)) =


1 x>

x X

 ∈ S+
n+1 | diag(X) = x, (4.2)–(4.10) hold

 ,

along with the corresponding projection onto the original space

N+(NOD(G)) :=

diag(X) |

1 x>

x X

 ∈M+(NOD(G))

 .

4.3 On the strength of N+(NOD(G))

In this section we investigate the relationships between N+(NOD(G)) and some of the previous re-

laxations. In order to do that from a theoretical viewpoint, we are going to prove which class of valid

inequalities reviewed in Section 3.1.2, are satisfied by this new semidefinite relaxation. We recall

that Grötschel et al. [28] proved that TH(G) satisfies all clique constraints, while Lovász and Schri-

Federico Battista 36



4.3. On the strength of N+(NOD(G))

jver showed that the application of the operator to the edge formulation N+(FRAC(G)) ⊆ TH(G)

and furthermore it satisfies all odd wheel inequalities, odd hole and odd antihole. Giandomenico

et al. [23] showed that the more general class of web inequalities (which includes all odd holes

and antiholes as special cases) is satisfied. A characterization of graphs for which N+(FRAC(G))

completely describes the stable set polytope has been presented in Bianchi et al. in [5] and more

recently in [6].

By Remark 4.2, NOD(G) does not imply edge inequalities in general. Hence the question is whether

this is still the case after the lifting or not. With the next lemma we are going to prove a stronger

result, that is N+(NOD(G)) satisfies all clique inequalities (and hence all edge inequalities, by

dominance).

Lemma 4.4. N+(NOD(G)) satisfies all clique inequalities.

Proof. Let G = (V,E) be any simple undirected graph and let C ⊆ V inducing a maximal clique

in G. In order to apply Lemma 3.5 to the clique inequality

∑
i∈C

xi ≤ 1,

we need to show that ∑
j∈C\{i}

xj ≤ 0,

is valid for NOD(G) ∩ {x | xi = 1} for all i ∈ C.

Let i be any node in C, then the nodal inequality corresponding to i is

∑
j∈Γ(i)

xj + r(G[Γ(i)])xi ≤ r(G[Γ(i)]),

then xi = 1, along with x being non-negative imply xj = 0 for all j ∈ Γ(i) but clearly C ⊆ Γ(i),

hence the statement holds.

Next, we consider the orthonormal representation constraints. In order to prove this result we

will use the containment relation given by the following

Lemma 4.5. N+(NOD(G)) ⊆ TH(G).

Proof. We can show that the inequalities xij = 0, ∀ {i, j} ∈ E are satisfied by all solution matrices

ofM+(NOD(G)). Notice that any edge (i, j) ∈ E belongs to exactly two neighbor sets, namely Γ(i)

and Γ(j). Then, if we sum up all of the inequalities (4.2) we obtain
∑
{i,j}∈E xij ≤ 0. Since xij ≥ 0
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by (4.8) for any i, j ∈ V (and, in particular, for {i, j} ∈ E), this implies xij = 0 for {i, j} ∈ E. This

shows that M+(NOD(G)) is contained in the feasible region of th-SDP1. The result follows from

projection onto the x space.

Since all points in N+(NOD(G)) are in TH(G), we can state the following

Corollary 4.6. N+(NOD(G)) satisfies all orthonormal representation constraints.

Furthermore, we remark that M+(NOD(G)) is also contained in the feasible region of the Schri-

jver’s number, since the non-negativity constraints xij ≥ 0 for {i, j} /∈ E are included in the

description of M+(NOD(G)) as well. Hence, the optimum over the latter is at least as good as

θ+(G), by the previous Lemma.

Now we are going to address a more complicated, yet interesting issue, that is in which way

N+(NOD(G)) and N+(FRAC(G)) are related each other. As we have just seen, both applications

of the Lift-and-Project operator are a strengthening of the Lovász theta function and hence they

both satisfy all clique and orthonormal representation constraints. Since by Lemma 3.2, all linear

constraints in the description of NOD(G) are obtainable as a convex combination of M+(NOD(G))

(by construction) then we can state the following

Corollary 4.7. N+(NOD(G)) satisfies all odd wheel inequalities.

The same holds for N+(FRAC(G)), as showed by Lovász and Schrijver [53]. Therefore a straight-

forward question is what happens when we look at web and antiweb inequalities. Let us consider

the web graph W (8, 3) (as shown in Figure 3.1a), by the result provided by Giandomenico et

al. [23] N+(FRAC(W (8, 3))) implies the facet-defining web inequality
∑8

i=1 xi ≤ 3, hence if we

optimize over it we get an integer solution with value 3. On the contrary, the optimum yield by

N+(NOD(W (8, 3))) is (0.42675, . . . , 0.42675) with value 3.414. This suggests two important aspects:

• N+(NOD(G)) does not satisfies the class of web inequalities in general;

• there exists a point for which x̄ ∈ N+(NOD(W (8, 3))) but x̄ /∈ N+(FRAC(W (8, 3))).

On the other hand, if we consider the antiweb graph AW (10, 3) (as shown in Figure 3.1b) we are

able to identify a complementary result. Indeed, the optimal value obtained overN+(NOD(AW (10, 3)))

correspond to α(AW (10, 3)) = 3, while optimizing over N+(FRAC(AW (10, 3))) yields the frac-

tional solution (0.31055, . . . , 0, 31055) with value 3.1055. Again the following considerations can be

inferred:

• N+(FRAC(G)) does not satisfies the class of antiweb inequalities in general;

• N+(NOD(AW (10, 3))) implies the antiweb inequality
∑10

i=1 xi ≤ 3;
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• there exists a point for which x̄ ∈ N+(FRAC(AW (10, 3))) but x̄ /∈ N+(NOD(AW (10, 3))).

By these points, we can immediately generalize that there is no containment relationship between

N+(NOD(G)) and N+(FRAC(G)). More interestingly, it turns out that the satisfaction of the

antiweb inequalities can be generalized as well. Indeed, with the next theorem we are going to

prove that N+(NOD(G)) satisfies almost all inequalities belonging to such a class.

Theorem 4.8. N+(NOD(G)) satisfies all AW (p, q) inequalities such that p mod q 6= q − 1.

Proof. Let G = AW (p, q). Here we denote the stability number with α, in place of α(G) for short.

We are going to prove the statement by duality i.e. that the matrix we>0 belongs to the dual cone

M+(NOD(G))∗, where w := (α,−1, . . . ,−1) ∈ Rp+1. For this purpose, it is sufficient to show that

the inequality α −
∑

i∈V xi ≥ 0 can be obtained as a convex combination of inequalities defining

M+(NOD(G)). Hence, the result will follow by the projection onto the x-space.

First, we consider the case in which α =
⌊
p
q

⌋
≥ 4. Recall that Y � 0 if and only if bTY b ≥ 0

for all b ∈ Rp+1. Thus, the positive semidefiniteness condition on Y implies the following explicit

family of linear inequalities, the so-called psd inequalities:

b20 +
∑
i∈V

(2b0bi + b2i )xi + 2
∑

1≤i≤j≤p
bibjxij ≥ 0, (4.12)

where b = (b0, b1, . . . , bp)
T is an arbitrary real vector. We construct the psd inequality with b0 =

√
α

and bi = −
√
α
α for i = 1, . . . , p and by Lemma 4.5, since xij = 0 ∀ {i, j} ∈ E is implied by

N+(NOD(G)), we can remove them from the inequality:

α+

(
1

α
− 2

)∑
i∈V

xi +
2

α

∑
{i,j}/∈E

xij ≥ 0. (4.13)

Here, arithmetic modulo p is used. For each ī = 1, . . . , p select the inequalities (4.3), for i = ī

and for k = ī + q − 1 and its symmetric k′ = ī − q + 1 with coefficient 1. Then again, for each

k̄ = 1, . . . , p consider the subset of nodes h = {k̄ + 2(q − 1) + 1, . . . , k̄ − 2(q − 1) − 1}. Starting

from i = k̄ + 2(q − 1) + 1 and i′ = k̄ − 2(q − 1) − 1, select inequalities (4.4) with coefficient 1 for

k = k̄ and i, i′. Now iterate the selection increasing (resp. decreasing) i (resp. i′) by q, until i and

i′ would cross one another. Then consider the subset h̄ = {i+ 1, . . . , i′− 1} of h. If |h̄| < q no other

inequalities (4.4) are needed. Otherwise, one out of the two following cases can occur:

• if |h̄| is odd let ih̄ be the element in position
⌈
|h̄|
2

⌉
(i.e. the element in the middle of h̄) and

select the inequality (4.4) for k = k̄ and ih̄ with coefficient 1;
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• if |h̄| is even let ih̄ and i′
h̄
be the elements in position |h̄|2 and |h̄|2 + 1 respectively (i.e. the

two elements in the middle of h̄) and select the inequalities (4.4) for k = k̄ and ih̄, i′h̄ with

coefficient 1
2 both.

Summing up all the selected inequalities yields

(2α− 2)
∑
i∈V

xi − 4
∑
{i,j}/∈E

xij ≥ 0. (4.14)

We remark that in some cases in order to get the inequality (4.14), summing inequalities xij ≥ 0

for some {i, j} /∈ E and for some c ∈ R+ along with those above mentioned, may be needed.

Now, multiply (4.14) by 1
2α > 0 and sum it to (4.13) in order to get

α−
∑
i∈V

xi ≥ 0.

Now consider the case in which α = 2. By the same arguments as before, we construct the psd

inequality (4.13)

α+

(
1

α
− 2

)∑
i∈V

xi +
2

α

∑
{i,j}/∈E

xij ≥ 0.

For each ī = 1, . . . , p select the inequalities (4.3), for i = ī and for k = ī+ q − 1 and its symmetric

k′ = ī− q + 1 with coefficient 1. Summing up all the selected inequalities yields

2
∑
i∈V

xi − 4
∑
{i,j}/∈E

xij ≥ 0. (4.15)

Now, multiply (4.15) by 1
2α > 0 and sum it to (4.13) in order to get the antiweb inequality.

At last, consider the case in which α = 3. Again, we construct the psd inequality (4.13)

α+

(
1

α
− 2

)∑
i∈V

xi +
2

α

∑
{i,j}/∈E

xij ≥ 0.

For each ī = 1, . . . , p select the inequalities (4.3), for i = ī and for k = ī+ q − 1 and its symmetric

k′ = ī− q + 1 with coefficient 1. Summing up all the selected inequalities yields

2
∑
i∈V

xi − 2
∑
{i,j}/∈E

xij ≥ 0. (4.16)

Now, multiply (4.16) by 1
α > 0 and sum it to (4.13) in order to get the antiweb inequality.

On the negative side, when p mod q = q − 1 we are unable to apply the steps reported in
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Figure 4.2: The AW (8, 3) graph.

the previous proof. To exemplify, consider the AW (8, 3) as shown in Figure 4.2. Optimizing over

N+(NOD(AW (8, 3))), the optimal solution is (0.2929, . . . , 0.2929) yielding an optimal value of 2.343,

hence the inequality
∑

i∈V xi ≤ 2 is clearly violated.

Despite this fact, a large subset of antiweb inequalities are satisfied by our application of the

Lovász and Schrijver operator. Similarly to the web graphs, due to their generality we can extend

this result to odd holes and odd antiholes. Indeed, AW (p, 2) with p odd are odd holes, whereas

AW (2q+ 1, q) are odd antiholes. On the negative side, since p mod q = 1 = q− 1 for q = 2 and for

any p odd, we have the following

Corollary 4.9. Odd hole inequalities are not implied by N+(NOD(G)).

On the contrary, since for any q > 2, 2q + 1 mod q = 1 6= q − 1 we have to following result

Corollary 4.10. Odd antihole inequalities are implied by N+(NOD(G)) for |H| > 5.

In conclusion, we have shown the existence of an “anti-symmetric” behaviour between the ap-

plication of the same Lift-and-Project operator to two different linear formulations for the MSSP,

namely the edge and nodal formulations:

• on the one hand, N+(FRAC(G)) satisfies all clique, orthonormal representation, odd wheel,

odd hole, odd antihole and web inequalities;

• on the other hand, N+(NOD(G)) satisfies all clique, orthonormal representation, odd wheel,

odd antihole and almost all antiweb inequalities.

In the next section we are going to investigate the behaviour of these two relaxations in prac-

tice. We are going to face the computational challenge arising by the SDPs yield from the applica-

tions of the Lovász and Schrijver Lift-and-Project operator. As we will see, the difficulty of facing

N+(FRAC(G)) reported in Burer and Vandenbussche [10], will be confirmed in our computational

experiments. Despite being more compact and easier to keep in memory, the computational burden
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needed to solve N+(NOD(G)) with semidefinite algorithms is non-trivial as well and one need to

address it properly. On the positive side, we will show how to effectively deal with these hard for-

mulations deploying general alternating direction methods of multipliers for large-scale semidefinite

programs.

4.4 Numerical results

In this section we discuss our computational study. Here the main goal is to compare these different

SDP relaxations in terms of their strength and computational tractability with general purpose

algorithms for SDPs. The comparison we propose is not limited to N+(NOD(G)) and Lovász

and Schrijver’s N+(FRAC(G)): in order to describe a clearer picture we extend it also to other

relaxations of the hierarchy reported in Section 3.1.3, namely Gruber-Rendl and Dukanovic-Rendl

(denoted by GR and DR for simplicity in what is following). In general, these SDP relaxations

raise a computational challenge due to the number of constraints which increases quickly w.r.t. the

size of the graph. Hence the selection of an appropriate general purpose SDP algorithm is an issue

to address: despite interior-point methods being well-established tools for small and medium sized

SDPs providing a good accuracy in a reasonable time, they become impractical for large scales

semidefinite programs (i.e. hundreds of thousands of constraints) due to memory requirements.

On the other hand, alternating direction methods of multipliers (ADMMs) represent a competitive

alternative for solving large scale SDPs. In particular, for this computational study we have made

use of SDPNAL+ [82] a state-of-the-art MATLAB software awarded with the Beale-Orchard-Hays Prize in

2018, implementing an ADMM combined with a semismooth Newton-Conjugate Gradient method.

Despite SDPNAL+ being able to handle such large instances, preliminary experiments in which we

fed to the solver the whole formulations were unsatisfactory since the computational burden to solve

them was too demanding. As a matter of facts, the addition of such a number of inequalities to

the Lovász theta function’s basic formulations (both th-SDP1 and th-SDP2) makes the convergence

of these SDPs harder to reach in a reasonable time, in general. Hence, in order to mitigate the

computational burden we have investigated the employment of a cutting-plane scheme, as shown

in Algorithm 1: taking advantage of the fact that relaxations N+(NOD(G)), N+(FRAC(G)), GR

and DR can be seen as a strengthening of the Schrijver’s number θ+(G), instead of solving the

whole formulations one can start by solving the Schrijver’s relaxation and then adding the most

violated constraints (if any). This process is then repeated until either no more violated constraints

are found or the objective value is not improving substantially. Such a cutting-plane method was

originally presented in Kelley’s seminal paper [42], where at each iteration, the separation problem

is solved by selecting the most violated inequalities by the current optimum X∗ in the linear system
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A(X∗) ≤ b.

For this numerical experiment we employed an Intel Xeon CPU E5-2698 v4 running at 2.20GHz,

equipped with 256GB of RAM, under Linux (Ubuntu 16.04.7). The solver SDPNAL+ has been used

with its default settings, that is an optimality tolerance set at 10−6. At each iteration of the cutting-

plane scheme we select at most 1000 violated hyperplanes and we stop it if the improvement of the

objective value is less than ε = 10−1, imposing one hour as a time limit for each instance. The code

employed to formulate the SDPs can be found at https://github.com/batt95/SDP_MSSP_GCP.

Algorithm 1 Cutting-plane scheme for MSSP SDP relaxations
1: Choose c ∈ N, ε ∈ R+

2: Let R = {X ∈ S+
n : A(X) ≤ b} be the relaxation to solve

3: Let TH+ ⊇ R be the Schrijver’s relaxation
4: δ ← +∞
5: C ← {}
6: Compute p∗ = opt(TH+) and let X∗ be its optimal solution
7: while X∗ violates constraints in R or δ > ε do
8: Let V be the set of c most violated constraints by X∗ in A(X∗) ≤ b
9: C ← C ∪ V

10: Compute pnew = opt(TH+ ∩ C) and let Xnew be its optimal solution
11: δ ← |pnew − p∗|, X∗ ← Xnew, p∗ ← pnew

12: end while

4.4.1 Instances

The numerical experiments are based on the following collections of graphs.

• Erdös–Rényi random graphs: G(n, p) where n ∈ N is the number of nodes in the graph and

p ∈ [0, 1] is the edge probability. In particular, for this experiment we have taken instances

proposed in Letchford, Rossi and Smriglio [49] that is, instances with

n ∈ {150, 175, 200, 225, 250, 275, 300}, p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Moreover for each combination of n and p, 5 different instances have been created for a total

of 315 graphs. These graphs can be downloaded from http://optimization.disim.univaq.

it/stableset/ in the edge-list format.

• graphs from the Second DIMACS Implementation Challenge (see [39]). These graphs form

the standard benchmark for max-clique algorithms. We complemented the graphs to convert

the max-clique instances into MSSP instances. We selected graphs among brock, C, DSJC,

hamming, johnson, keller, MANN, p-hat and sanr families. The final collection includes 38
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graphs.

• graphs from the Sloane Independent Set Challenge [72] and in particular 1zc-instances are

known to be hard instances for the MSSP. As a matter of facts, for most of them the optimal

solutions are still unknown. Here we selected only two instances, namely 1zc512 and 1zc1024.

4.4.2 Comparison among relaxations

As remarked before, our main focus is to measure the strength of the bounds obtained byN+(NOD(G))

compared to other the SDP relaxations belonging to the hierarchy described in Section 3.1.3, in

particular N+(FRAC(G)), GR and DR. For the first two relaxations and N+(NOD(G)) we are going

to start the cutting-plane algorithm by solving the formulation based on th-SDP1 of the Schrijver’s

number θ+(G), while the equivalent based on th-SDP2 will be used for the latter.

As a customary, given a graph G and a relaxation R we measure the so-called percentage gap,

that is the following quantity:

Gap(R, G) :=
R(G)− α(G)

α(G)
,

where R(G) is the optimal value obtained by solving the corresponding SDP and α(G) is the stability

number of G (if α(G) is unknown, then the best lower bound is used in place). When no confusion

arises we denote such a quantity by Gap, for short.

In addition we report, the total number of violated cuts (denoted by Cuts) that have been added

during the cutting-plane scheme along with the total CPU resolution time in seconds (denoted by

CPU-time).

Random instances

In Table 4.1 results on random instances are shown. In addition to N+(NOD(G)), N+(FRAC(G)),

GR and DR we reported the Gap obtained by the linear relaxation NOD(G) and by the starting

value θ+(G) (along with the CPU-time needed to solve the formulation based on th-SDP1), as a

reference. For every pair of values n and p, each entry reports the arithmetic mean computed over

the 5 different instances. Moreover, in Figure 4.3 three-dimensional plots show the comparison

among gaps yield by N+(NOD(G)) with θ+(G), N+(FRAC(G)), GR and DR respectively, varying

for each density and number of nodes in the graphs. Here, we were able to formulate and solve all

315 instances for each relaxation.

In particular, N+(NOD(G)) improves the upper bound over θ+(G) in 205 cases out 315, while

N+(FRAC(G)), GR and DR improve over the latter in 110, 111 and 17 out of 315 instances, respec-

tively. Furthermore, if we look at the linear formulation NOD(G) we can notice that its semidefinite
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counterpart is significantly better on all instances, confirming the strength of the Lovász and Schri-

jver’s Lift-and-Project operator. Moreover, the gap obtained by N+(NOD(G)) outperforms the

N+(FRAC(G)) gap in 193 instances out of 315.

The quality of the bounds are also confirmed by the numbers of added violated cuts which point

out a clear message: in N+(FRAC(G)) and Gruber-Rendl the major number of violated cuts can

be found on graphs with p = 0.1 and it decreases as soon as the density goes up, while when the

density reaches 50% almost none can be found. Although this behaviour can be measured also when

the size of the graph increases, the number of cuts and hence the improvement of the bound is less

prominent. DR relaxation has a similar, yet less marked, behaviour: violated cuts can be found on

very sparse graphs, but as soon as the size of the graph increases, the number of cuts goes down.

(a) N+(NOD(G)) and θ+(G) (b) N+(NOD(G)) and N+(FRAC(G))

(c) N+(NOD(G)) and Gruber-Rendl (d) N+(NOD(G)) and Dukanovic-Rendl

Figure 4.3: Percentage gap of semidefinite relaxations on Erdös–Rényi G(n, p) random graphs
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A complementary result can be identified on N+(NOD(G)), where violated cuts are found as

soon as the density hits p = 0.4, reaching the peak between 0.7 and 0.8. Moreover, the number

of cuts increases accordingly to the number of nodes. Such consistency in the number of cuts is

reflected on the quality of the bound as well, managing to almost close the gap on very dense

graphs (80-90%). This behaviour is also remarked in Figure 4.3, where the slope of the magenta

lines (N+(NOD(G))) increases at p = 0.4 w.r.t. the blue lines (θ(G), N+(FRAC(G)), GR and DR,

resp.). On the contrary, the latter are slightly under the magenta lines on very sparse graphs.

Moreover, we point out that the maximum improvement of GR is achieved on n = 150, p = 0.1

and is about of 1.5 percentage point, which is remarkably for such a sparsity. On the other hand,

where N+(NOD(G)) shows an improvement, its Gap is significantly lower not only over θ(G), but

also over NOD(G) which achieves a good Gap on these instances already.

About the computational tractability, these results confirmed our perspective. Since violated

cuts have been identified in N+(NOD(G)), N+(FRAC(G)), GR and DR in 213, 130, 131 and 17

cases out of 315 (resp.) and when found the total amount is a small portion w.r.t. the total number

of constraints for those formulations, the cutting-plane scheme helps to mitigate the computational

burden compared to the time needed by the whole formulations to converge. Even though there are

cases where the computation of multiple SDPs are needed to solve only one relaxation, the trade-off

is positive for this approach. As a matter of fact, SDPNAL+ managed to reach the accuracy required

for each of these subproblems in a reasonable amount of time, leading to only one additional order

of magnitude of overhead in average over the resolution of θ+(G) (except for n = 225 and p = 0.8,

where N+(NOD(G)) needed on average about 200 seconds to converge but it almost closes the gap).

At last, we remark that the resolution time of DR may be different to the time to compute θ+(G),

even without the addition of violated cuts. This is due to the fact that the time reported for θ+(G)

is related to formulation th-SDP1, while Dukanovic and Rendl’s relaxation is based on th-SDP2 and

hence the behaviour of the solver may vary.

DIMACS instances

In Table 4.2 results on DIMACS instances are reported. In this case we listed the Gap obtained

by relaxations θ+(G), N+(NOD(G)), N+(FRAC(G)), GR and DR, the number of total violated

Cuts added during the cutting-plane and the CPU-time needed to reach the optimality. While for

N+(NOD(G)) we were always able to formulate the SDPs, we failed to build the N+(FRAC(G)),

GR and DR’s models due to memory requirements in 12 out of 40 cases.
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4.4. Numerical results

In 15 out of 40 instance N+(NOD(G)) significantly improves over θ+(G). In particular, on

p_hat300-1, p_hat500-1 and p_hat700-1 it almost closes the gap, while on brock200_2, DSJC125.5,

DSJC500-5 and sanr400_0.5 it outperforms the other SDP relaxations. Surprisingly, while on

smaller instances brock200 and brock400, N+(NOD(G)) does not change the Gap significantly, an

improvement of up to 2% has been achieved on large instances brock800. On the 28 instances where

we could solve N+(FRAC(G)) and GR relaxations, they show a similar behaviour, improving over

θ+(G) in 11 cases and in particular they significantly outperforms the other relaxations on C125-

9, DSJC125.1, MANN_a9, p_hat300-3, p_hat500-2 and sanr200_0.9. DR’s relaxation is slightly

weaker than N+(FRAC(G)), indeed we were able to identify violated cuts in 5 out of 28 instances

while on the remaining cases, it equals θ+(G)’s Gap.

Similarly to random graphs, also on DIMACS instances the cutting-plane scheme matched our

perspectives. Violated cuts have been found in 27 out of 40 cases for N+(NOD(G)), in 16 out of 28

cases for N+(FRAC(G)) and GR, in 5 out of 28 instances for DR. Again, the number of separated

cuts is far less to the total number of constraints in these formulations, yielding a computational

overhead of at most two order of magnitude only w.r.t. the time needed to solve the starting for-

mulation of θ+(G). Exceptions can be found in p_hat700-1 for N+(NOD(G)), where the bound

improves significantly and in MANN_a27 for GR.
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4.4. Numerical results

NOD(G) θ+(G) N+(NOD(G)) N+(FRAC(G)) Gruber-Rendl Dukanovic-Rendl
n p Gap Gap CPU-time Gap Cuts CPU-time Gap Cuts CPU-time Gap Cuts CPU-time Gap Cuts CPU-time

150 0.1 32.117 12.954 4.358 12.952 6.4 9.264 11.369 1311.8 17.888 11.356 1352.8 17.240 12.625 40.4 4.692
0.2 75.793 20.269 2.910 20.269 0.2 3.420 20.109 187.2 5.642 20.102 202.8 5.746 20.259 1.0 1.572
0.3 82.288 22.330 1.720 22.330 1.0 2.378 22.316 27.0 3.154 22.316 27.8 3.022 22.330 0.0 0.862
0.4 75.183 28.268 1.144 28.266 6.8 2.632 28.265 5.6 2.456 28.264 6.0 2.476 28.268 0.0 0.880
0.5 56.020 24.861 1.096 24.362 193.2 3.514 24.860 1.6 2.230 24.860 1.6 2.314 24.861 0.0 1.078
0.6 39.308 21.161 1.332 17.281 1095.4 10.900 21.161 0.6 1.988 21.161 0.6 1.926 21.161 0.0 0.984
0.7 23.890 14.027 1.280 6.200 1479.0 15.202 14.026 0.8 2.434 14.026 0.8 2.354 14.027 0.0 1.126
0.8 14.920 10.140 2.954 3.441 1250.2 14.856 10.137 1.4 4.442 10.137 1.4 4.546 10.140 0.0 2.214
0.9 8.900 1.378 15.110 1.071 926.0 54.250 1.341 8.0 27.070 1.341 8.0 27.380 1.366 1.0 11.030

175 0.1 37.780 15.091 5.582 15.091 0.6 7.752 14.092 1155.4 20.354 14.080 1182.6 20.218 15.023 6.8 3.458
0.2 93.892 25.326 3.208 25.326 0.0 3.212 25.274 71.0 6.488 25.272 77.6 6.392 25.326 0.0 1.166
0.3 87.880 26.152 1.986 26.152 0.0 1.994 26.145 8.8 3.472 26.145 9.4 3.352 26.152 0.0 1.042
0.4 72.113 27.688 1.384 27.683 6.8 2.890 27.687 1.2 2.260 27.687 1.2 2.308 27.688 0.0 1.076
0.5 58.318 29.078 1.274 28.505 281.0 4.530 29.077 0.6 1.902 29.077 0.6 1.952 29.078 0.0 1.162
0.6 32.564 18.100 1.542 13.062 1364.0 18.580 18.100 0.0 1.704 18.100 0.2 2.010 18.100 0.0 1.496
0.7 23.143 17.776 1.734 6.229 2087.0 19.966 17.775 0.4 2.702 17.775 0.4 2.758 17.776 0.0 1.292
0.8 7.907 7.531 2.718 1.506 1400.0 14.842 7.530 0.4 4.152 7.530 0.4 3.946 7.531 0.0 2.262
0.9 9.250 5.341 6.732 4.045 1000.0 18.314 5.338 1.0 10.320 5.338 1.0 10.270 5.341 0.0 4.680

200 0.1 46.957 19.330 6.566 19.330 0.2 8.150 18.723 1018.2 25.144 18.714 1052.4 24.594 19.328 0.2 2.390
0.2 102.539 27.924 3.756 27.924 0.0 3.762 27.912 29.8 7.956 27.911 31.4 8.010 27.924 0.0 1.414
0.3 93.334 30.774 2.270 30.774 0.0 2.276 30.773 1.8 3.516 30.773 1.8 3.502 30.774 0.0 1.198
0.4 73.543 30.550 1.524 30.537 10.0 3.346 30.550 0.4 1.982 30.550 0.4 1.992 30.550 0.0 1.276
0.5 56.527 30.597 1.516 29.540 634.0 9.378 30.597 0.0 1.704 30.597 0.0 1.738 30.597 0.0 1.362
0.6 39.889 25.708 1.624 20.138 1587.4 15.810 25.708 0.0 1.880 25.708 0.0 1.918 25.708 0.0 1.546
0.7 30.543 25.579 2.160 12.494 2294.0 32.826 25.579 0.0 2.434 25.579 0.0 2.466 25.579 0.0 1.594
0.8 9.720 13.474 3.104 1.836 1400.0 21.840 13.474 0.0 3.426 13.474 0.0 3.472 13.474 0.0 1.918
0.9 9.600 10.123 5.136 5.665 1800.0 22.542 10.120 0.8 8.992 10.120 0.8 8.854 10.123 0.0 4.036

225 0.1 54.825 22.934 7.556 22.934 0.0 7.564 22.559 798.4 27.196 22.554 836.4 27.424 22.934 0.0 2.506
0.2 112.700 32.506 4.294 32.506 0.0 4.304 32.503 11.4 9.216 32.503 12.6 9.030 32.506 0.0 1.866
0.3 97.343 34.482 3.214 34.482 0.2 3.622 34.482 0.6 4.530 34.482 0.6 4.614 34.482 0.0 1.556
0.4 81.214 38.547 2.134 38.524 20.2 4.282 38.547 0.0 2.370 38.547 0.0 2.412 38.547 0.0 1.682
0.5 59.427 35.876 1.876 33.947 1088.8 14.466 35.876 0.2 2.504 35.876 0.2 2.546 35.876 0.0 1.702
0.6 43.044 32.497 1.860 24.985 2000.0 18.024 32.497 0.0 2.212 32.497 0.0 2.256 32.497 0.0 1.744
0.7 29.957 26.023 1.782 13.745 2825.2 34.120 26.023 0.0 2.232 26.023 0.0 2.288 26.023 0.0 1.992
0.8 13.733 15.208 2.730 0.149 1914.2 194.072 15.208 0.0 3.172 15.208 0.0 3.176 15.208 0.0 2.194
0.9 8.130 12.293 5.274 4.074 2600.0 32.476 12.293 0.0 5.812 12.293 0.0 5.794 12.293 0.0 3.908

250 0.1 64.521 27.371 8.426 27.371 0.0 8.442 27.112 615.2 27.514 27.109 641.2 28.054 27.371 0.0 2.978
0.2 118.348 35.462 5.848 35.462 0.0 5.866 35.459 7.4 11.872 35.459 7.8 11.742 35.462 0.0 2.206
0.3 103.026 39.136 4.196 39.136 0.0 4.214 39.136 0.4 5.422 39.136 0.4 5.444 39.136 0.0 2.082
0.4 78.520 38.335 2.440 38.312 24.0 4.770 38.335 0.2 3.216 38.335 0.2 3.274 38.335 0.0 2.076
0.5 54.333 33.563 1.966 31.421 1239.6 17.622 33.563 0.0 2.412 33.563 0.0 2.446 33.563 0.0 2.298
0.6 46.178 39.416 2.066 28.532 3000.0 34.146 39.416 0.0 2.646 39.416 0.0 2.664 39.416 0.0 2.212
0.7 39.114 38.531 1.938 23.678 3000.0 36.856 38.531 0.0 2.594 38.531 0.0 2.612 38.531 0.0 2.476
0.8 19.867 20.012 2.426 4.433 2500.2 72.364 20.012 0.0 3.104 20.012 0.0 3.100 20.012 0.0 2.870
0.9 5.950 11.717 5.430 3.232 2400.0 40.546 11.716 0.2 7.422 11.716 0.2 7.380 11.717 0.0 6.352

275 0.1 71.409 29.643 8.868 29.643 0.0 8.896 29.528 305.4 20.656 29.526 318.8 20.270 29.643 0.0 3.324
0.2 135.226 45.260 5.384 45.260 0.0 5.408 45.258 2.8 11.534 45.258 3.0 11.734 45.260 0.0 2.338
0.3 107.159 42.996 4.576 42.996 0.0 4.606 42.996 0.4 5.996 42.996 0.4 6.108 42.996 0.0 2.360
0.4 82.947 43.825 2.596 43.790 42.0 5.052 43.825 0.0 3.102 43.825 0.0 3.176 43.825 0.0 2.320
0.5 59.050 39.984 2.282 36.995 1609.0 19.978 39.984 0.0 2.892 39.984 0.0 2.956 39.984 0.0 2.604
0.6 46.384 42.860 2.274 29.635 3000.0 39.284 42.860 0.0 2.976 42.860 0.0 3.026 42.860 0.0 2.640
0.7 26.504 30.619 2.086 13.342 3600.0 52.436 30.619 0.0 2.926 30.619 0.0 3.020 30.619 0.0 2.780
0.8 22.100 25.079 3.278 9.048 3000.0 69.560 25.079 0.0 4.068 25.079 0.0 4.094 25.079 0.0 3.322
0.9 5.920 5.030 15.670 5.000 200.0 18.424 5.030 0.0 16.608 5.030 0.0 16.684 5.030 0.0 45.198

300 0.1 75.661 31.124 10.342 31.124 0.0 10.370 31.047 256.2 23.402 31.046 265.2 24.460 31.124 0.0 3.824
0.2 137.919 46.238 7.386 46.238 0.0 7.416 46.237 1.4 12.340 46.237 1.4 12.428 46.238 0.0 3.204
0.3 113.088 48.426 5.288 48.426 0.0 5.330 48.426 0.0 5.694 48.426 0.0 5.862 48.426 0.0 2.654
0.4 89.040 50.228 3.086 50.166 76.8 6.572 50.228 0.0 3.682 50.228 0.0 3.782 50.228 0.0 2.584
0.5 62.433 46.061 2.556 41.439 2000.0 23.406 46.061 0.0 3.362 46.061 0.0 3.408 46.061 0.0 2.806
0.6 42.224 39.956 2.474 26.444 3000.0 42.344 39.956 0.0 3.414 39.956 0.0 3.466 39.956 0.0 2.858
0.7 23.650 31.619 2.216 11.347 4000.0 67.134 31.619 0.0 3.390 31.619 0.0 3.418 31.619 0.0 3.128
0.8 23.333 29.809 3.426 11.667 3600.0 69.064 29.809 0.0 4.432 29.809 0.0 4.404 29.809 0.0 3.538
0.9 7.090 23.160 6.302 5.681 4200.0 97.612 23.160 0.0 7.702 23.160 0.0 7.694 23.160 0.0 4.710

Table 4.1: Numerical results on Erdös–Rényi G(n, p) random graphs
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4.4. Numerical results

θ+(G) N+(NOD(G)) N+(FRAC(G)) Gruber-Rendl Dukanovic-Rendl
Graph Gap CPU-time Gap Cuts CPU-time Gap Cuts CPU-time Gap Cuts CPU-time Gap Cuts CPU-time

1zc512 9.677 27.65 9.677 1000 60.11 9.677 0 28.01 9.677 0 29.78 9.677 0 17.06
1zc1024 14.286 153.15 14.286 1000 2803.55 - - - - - - - - -
brock200_1 29.508 3.53 29.508 0 3.55 29.505 10 6.47 29.505 10 6.79 29.508 0 1.27
brock200_2 17.758 1.59 16.795 659 12.31 17.758 0 1.81 17.758 0 1.86 17.758 0 1.30
brock200_3 24.479 1.70 24.467 7 3.80 24.479 1 3.35 24.479 1 3.43 24.479 0 1.43
brock200_4 24.242 2.64 24.242 1 4.32 24.242 0 2.76 24.242 0 2.79 24.242 0 1.14
brock400_1 45.670 11.79 45.670 0 11.83 45.670 0 12.66 45.670 0 13.00 45.670 0 4.32
brock400_2 35.160 12.16 35.160 0 12.23 35.160 0 12.85 35.160 0 13.29 35.160 0 4.31
brock400_3 26.324 11.83 26.324 0 11.89 26.324 0 12.51 26.324 0 12.89 26.324 0 4.21
brock400_4 18.883 12.29 18.883 0 12.37 18.883 0 12.96 18.883 0 13.36 18.883 0 4.55
brock800_1 82.032 19.27 80.646 2000 64.28 - - - - - - - - -
brock800_2 75.435 19.33 73.896 2000 72.00 - - - - - - - - -
brock800_3 67.530 19.83 66.043 2000 63.54 - - - - - - - - -
brock800_4 61.541 19.17 60.039 2000 63.59 - - - - - - - - -
C125-9 10.431 3.72 10.429 14 8.59 8.075 1442 14.38 8.054 1488 14.19 9.597 128 4.40
C250-9 26.856 9.70 26.856 0 9.70 26.618 565 30.45 26.613 610 28.16 26.856 0 2.45
C500-9 46.630 24.08 46.630 0 24.12 46.630 1 53.76 46.630 1 54.76 46.630 0 9.97
DSJC125.1 11.896 3.44 11.881 36 8.26 9.651 1454 13.48 9.624 1570 13.82 10.993 146 7.07
DSJC125.5 14.021 1.16 13.531 141 3.76 14.017 8 2.67 14.016 10 2.94 14.021 0 0.78
DSJC125.9 0.000 1.61 0.000 0 1.67 0.000 0 1.68 0.000 0 1.70 0.000 0 1.10
DSJC500-5 73.621 6.01 58.014 4000 85.91 73.621 0 9.79 73.621 0 10.06 73.621 0 6.66
hamming10-4 6.667 29.41 6.667 0 29.87 - - - - - - - - -
johnson32-2-4 0.000 3.45 0.000 0 3.55 - - - - - - - - -
keller4 22.417 4.24 22.236 144 12.24 22.388 48 8.15 22.388 48 7.74 22.417 0 1.66
keller5 14.799 81.25 14.799 0 81.49 - - - - - - - - -
MANN_a9 9.219 0.61 9.201 504 1.43 6.811 1000 2.96 6.811 1036 9.47 7.087 708 5.22
MANN_a27 5.367 9.26 4.752 1000 76.14 4.057 1212 631.01 4.057 8000 2707.50 5.367 0 5.54
p_hat300-1 25.253 8.98 7.288 3000 120.48 25.253 0 9.95 25.253 0 9.93 25.253 0 15.39
p_hat300-2 6.855 80.75 6.768 727 310.26 6.317 988 206.70 6.314 1056 228.55 6.819 4 141.19
p_hat300-3 13.057 14.65 13.053 75 34.93 12.829 761 28.79 12.826 805 28.99 13.057 0 32.17
p_hat500-1 44.533 17.27 18.721 5000 381.28 - - - - - - - - -
p_hat500-2 48.306 190.29 48.225 1000 918.25 47.863 1043 682.15 47.860 1054 715.59 48.300 1 264.72
p_hat500-3 15.622 34.66 15.621 72 82.90 15.524 548 80.94 15.522 574 81.52 15.622 0 65.56
p_hat700-1 36.774 33.90 2.709 7000 2038.55 - - - - - - - - -
p_hat700-2 10.091 426.60 10.023 1000 1270.03 - - - - - - - - -
p_hat700-3 15.734 77.08 15.733 188 199.38 - - - - - - - - -
sanr200_0.7 31.296 2.54 31.296 0 2.57 31.291 3 4.58 31.291 3 4.61 31.296 0 1.62
sanr200_0.9 16.440 6.49 16.440 1 13.67 15.786 1060 27.41 15.774 1083 25.53 16.440 0 2.12
sanr400_0.5 55.217 4.05 46.952 3000 52.79 55.217 0 5.89 55.217 0 6.18 55.217 0 4.34
sanr400_0.7 61.746 7.38 61.746 0 7.46 61.746 0 8.45 61.746 0 8.62 61.746 0 4.34

Table 4.2: Numerical results on DIMACS second challenge’s graphs
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Chapter 5

Application of N+(·) operator to REP(G)

The computation of lower bounds, as well as exact methods for the chromatic number χ(G) of

a graph are well researched topics. As we reviewed in Section 3.2, bounds obtained from linear

relaxations may be loose, while those coming from semidefinite programming are stronger but they

come at a heavier computational cost. Moreover, semidefinite approaches based on the Lovász theta

function yield estimates lying below the fractional chromatic number χf (G) and one needs powerful

operators and/or tailored algorithms to cross this threshold [19, 33].

As we have seen in Chapter 4, Lovász and Schrijver’s Lift-and-Project operator is able to

strengthen linear formulations into semidefinite ones, improving the bound’s quality of the first.

Despite the computational burden yields by this process in general, we were able to mitigate it

by the employment of a general purpose algorithm for large-scale SDPs along with a cutting-plane

scheme in our application to the MSSP. Although the N+(·) operator have been thoroughly studied

for the stable set problem [10, 16, 53], to the best of our knowledge we are not aware of an appli-

cation of such operator to the graph coloring.

In this chapter we deal with the following computational study: driven by the interesting results

followed by the lifting of the nodal polytope for the stable set problem, we investigate a new SDP

relaxation obtained by the application of the Lift-and-Project operator to a compact linear formu-

lation for the graph coloring problem.

As we have seen, the selection of the formulation to which apply the operator M+(·) is a crucial

step. Here, some remarks are needed. For the stable set problem we were able to identify a LP

requiring only |V | inequalities (where V is the set of nodes in a graph) and this led to face more

compact semidefinite relaxations yield by the lifting. For the GCP the question is more involved:

considering the classical assignment formulation GCP-ASS, for example, not only the number of

constraints, but also the variables become quadratic w.r.t. the size of the graph. Due to this fact,
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5.1. Representative formulation

after a preliminary attempt to lift the assignment formulation, we opted for a more compact one

proposed by Campelo et al. [12] that we are going to review in the next section.

5.1 Representative formulation

Campelo et al. [12] proposed an alternative linear formulation for the GCP, the so-called repre-

sentative formulation. In order to introduce it, we need to fix some notation. Let G = (V,E) be

a simple and connected graph, with n = |V | and m = |E| and let Ḡ = (V, Ē) its complement

graph. For v ∈ V , let Γ(v) and Γ̄(v) denote the neighborhood of v in G and Ḡ (also referred as

anti-neighborhood of v), respectively. For simplicity, we write Γ[v] := Γ(v)∪{v}, the same for Γ̄[v].

At last, we denote by E[S] the set of edges of G[S], i.e. the subgraph of G induced by the nodes in

S ⊆ V . The authors pointed out the following remarks:

Remarks 5.1. A node u ∈ V is called universal if it is connected to all other vertices in V , i.e.

Γ̄(u) = ∅. If such a node exists in G, then χ(G) = χ(G[V \ {u}]) + 1, since u needs a color for itself

only.

Remarks 5.2. Given a node u ∈ V , the subset S ⊆ Γ̄(u) is a set of isolated vertices in G[Γ̄(u)] if

E[Γ̄(u)] = E[Γ̄(u) \ S], in this case we have that χ(G) = χ(G[V \ S]), since all the nodes in S can

be assigned to the same color of u.

By these remarks they make the following

Assumption 5.3. G has no universal vertices and the anti-neighborhood of every vertex in G has

no isolated vertices.

Since a vertex coloring divides the vertices into disjoint color classes, Campelo et al. suggested

a model in which each color class is represented by exactly one vertex. In order to achieve that,

they introduce a binary variable xuv for each non-adjacent pair of vertices u, v ∈ V stating whether

the color of v is represented by u or not, along with additional binary variables xuu indicating if u

represents its own class. In particular, the binary variables are defined as follows:

∀ u ∈ V, v ∈ Γ̄[u], let xuv =


1 if u represent the color of v

0 otherwise
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5.2. Lifting the representative polytope

Thus, an exact formulation for the graph coloring on G can be obtained by the following ILP:

χ(G) = min
∑
u∈V

xuu

∑
u∈Γ̄[v]

xuv ≥ 1 ∀ v ∈ V (5.1)

xuv + xuw ≤ xuu ∀ u ∈ V, {v, w} ∈ E[Γ̄(u)] (5.2)

xuv ∈ {0, 1} ∀u ∈ V, v ∈ Γ̄[u].

Constraints (5.1) states that each vertex u ∈ V in the graph must be represented either by itself or

by some vertex not adjacent to u, i.e. for some v in the anti-neighborhood of u. On the other hand,

constraints (5.2) enforces adjacent nodes to have different representatives. The authors remarked

that by Assumption 5.3, if u ∈ V and v ∈ Γ̄(u), then the inequality xuv ≤ xuu is a consequence of

constraints (5.2). Such class of inequalities have the following meaning: if u represents v, then u

must be the representative of its color.

The representative formulation described make use of exactly |V |+ 2|Ē| binary variables while

the number of constraints are O(|V ||Ē|), and hence the dimension clearly depends on the density of

the graph G. Moreover, we remark that the xuv’s are not symmetric by definition, i.e. xuv 6= xvu.

Here we focus on the polytope defined by the continuous relaxation of the previous formulation, i.e.

REP(G) =
{
x ∈ [0, 1]|V |+2|Ē| | (5.1) and (5.2) hold

}
.

5.2 Lifting the representative polytope

In this section we describe how to build matrix-cuts from the application of the M+(·) operator to

REP(G), similarly to Section 4.2. We start from recalling the definition of the augmented matrix,

let n = |V |+ 2|Ē|, given a vector x ∈ REP(G) in the original space, we index its generic entry by

xuv for some u ∈ V and some v ∈ Γ̄(u). Hence we define

Y :=

1 x>

x X

 ,

with X ∈ S+
n , where (X)uv,hk = (X)hk,uv = xuv,hk for some u, h ∈ V , v ∈ Γ̄[u], k ∈ Γ̄[h] are the

variables in the “quadratic” space with diag(X) = x. Again, to apply Step 1 of the procedure as

reported in Section 3.3.2 we need to multiply constraints (5.1) and (5.2) by xhk ≥ 0 and 1− xhk ≥

0, h ∈ V, k ∈ Γ̄[h]. Thus, we are going to report all possible cases of inequalities generated by
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5.2. Lifting the representative polytope

an exhaustive case analysis. As for Section 4.2, we perform the linearization of the inequalities

implicitly (i.e. by the substitutions xuv = x2
uv and xuv,hk = xuvxhk for all uv’s and hk’s).

Multiplying by xhk ≥ 0 Starting from (5.1), we need to develop the following product:

xhk

 ∑
u∈Γ̄[v]

xuv − 1

 ≥ 0.

Here we can identify only two possible cases, namely:

1. (h ∈ Γ̄[v], k ∈ V, k = v), then we obtain

∑
u∈Γ̄[v]\{h}

xuv,hv ≥ 0 (5.3)

2. (h /∈ Γ̄[v], k ∈ V, k 6= v), in this case we obtain

∑
u∈Γ̄[v]

xuv,hv − xhk ≥ 0 (5.4)

Considering constraints (5.2), the product to develop is

xhk (xuu − xuv − xuw) ≥ 0,

which is equivalent to

xuu,hk − xuv,hk − xuw,hk ≥ 0, (5.5)

for each u, h ∈ V , k ∈ Γ̄[h], {v, w} ∈ E[Γ̄(v)]. Here we remark that if hk ∈ {uu, uv, uw} the

corresponding term in the last equation becomes simply xhk.

Multiplying by 1−xhk ≥ 0 Again, starting from (5.1), we need to develop the following product:

(1− xhk)

 ∑
u∈Γ̄[v]

xuv − 1

 ≥ 0.

Here we consider two cases, as before:

1. (h ∈ Γ̄[v], k ∈ V, k = v), then we obtain

∑
u∈Γ̄[v]

xuv −
∑

u∈Γ̄[v]\{h}

xuv,hv ≥ 1 (5.6)
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2. (h /∈ Γ̄[v], k ∈ V ), in this case we obtain

∑
u∈Γ̄[v]

(xuv − xuv,hv) + xhk ≥ 1 (5.7)

Considering constraints (5.2), the product to develop is

(1− xhk) (xuu − xuv − xuw) ≥ 0,

which is equivalent to

xuu − xuv − xuw ≥ xuu,hk − xuv,hk − xuw,hk (5.8)

for each u, h ∈ V , k ∈ Γ̄[h], {v, w} ∈ E[Γ̄(v)]. Again, the last inequality may be simplified for some

hk. Indeed, when hk ∈ {uu, uv, uw} one of the term on the right-hand side can be elided with the

corresponding one to the left-hand side.

As remarked in Lovász and Schrijver [53], since REP(G) is contained in Qn, the n-dimensional

unit cube, every Y ∈M+(REP(G)) satisfies, in addition

xuv,hk ≥ 0, (5.9)

xuv,hk ≤ xuv, (5.10)

xuv + xhk − xuv,hk ≤ 1, for all u, h ∈ V, v ∈ Γ̄[u], k ∈ Γ̄[h], (5.11)

xuv ≤ 1, for all u ∈ V, v ∈ Γ̄[u]. (5.12)

As remarked for M+(NOD(G)), this set of (non-trivial) constraints is the result of the lifting corre-

sponding to the bound constraints 0 ≤ x ≤ 1 in REP(G) (which are assumed to be in the description

of the polytope). The bound constraints (5.12) and xuv,hk ≤ 1 for all uk’s and hk’s are implied by

the condition Y � 0.

Hence, the resulting convex set is defined by

M+(REP(G)) =


1 x>

x X

 ∈ S+
n+1 | diag(X) = x, (5.3)–(5.11) hold

 ,

along with the corresponding projection onto the original space

N+(REP(G)) :=

diag(X) |

1 x>

x X

 ∈M+(REP(G))

 .
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5.3 Numerical results

In this section we report an experimental analysis focused on evaluating the strength of the relax-

ation M+(REP(G)). In particular, we compare its optimal value with three reference lower bounds

of χ(G): the classical theta number θ(Ḡ) computed by using formulation th-SDP3, its strengthening

θ′(Ḡ) proposed by Meurdesoif [59] and the fractional chromatic number χf (G). We remark that

the latter represents a target value not straightforward to reach with SDP relaxations based on the

theta function.

All computations were carried out on an Intel Xeon CPU E5-2698 v4 running at 2.20GHz,

equipped with 256GB of RAM, under Linux (Ubuntu 16.04.7).

Instances are solved with the state-of-the-art general purpose solver for large-scale SDPs, namely

SDPNAL+ [82] based on an alternating direction methods of multipliers combined with a semismooth

Newton-Conjugate Gradient method. SDPNAL+ runs with default settings, optimality tolerance

set at 10−5 and 4 hours time limit. The code employed to formulate the SDPs can be found at

https://github.com/batt95/SDP_MSSP_GCP.

One major difficulty in experimenting with relaxation M+(REP(G)) is represented by its size. As

a matter of fact, recall that REP(G) has n = |V |+ 2|Ē| variables and m = O(|V ||E|) constraints,

so according to the Lift-and-Project procedure described in Section 3.3.2 the number of constraints

is O(nm) = O(|E||V |2 + |Ē||V ||E|) which is roughly O(|V |4). Indeed, we expect these formulations

to be challenging to address.

Following the promising results obtained on the stable set application, in a preliminary test on

M+(REP(G)) we investigated the employment of the cutting-plane scheme described in Section 4.4.

Unfortunately, the results were not satisfactory enough. While previously we were able to start the

cutting-plane algorithm from the resolution of the Lovász theta function for the stable set, in this

case it is not straightforward anymore since the relation between M+(REP(G)) and θ(Ḡ) is not

so trivial, also due to the fact that the variable spaces are different. As a matter of facts, for

this numerical experience we were starting the cutting-plane scheme with just a small subset of

constraints and then subsequently separating most violated constraints at each iteration but the

objective value was improving only when almost all constraints were separated by the scheme making

the whole algorithm time-consuming.

Although we encourage a further investigation of the separation scheme, due to this ill-behaviour

we opted for a different setup throughout the reminder of these experiments. On the positive side,

in this preliminary experience we observed that some classes of inequalities defining M+(REP(G))

were rarely tight at the final solution. Hence, instead of using a separation scheme we decided
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to feed to SDPNAL+ solver a relaxation of M+(REP(G)), precisely, the one defined by inequalities

(5.3)–(5.7) and (5.9).

5.3.1 Instances

The numerical experiments are based on the following collections of graphs.

• Graphs from the second DIMACS implementation challenge instances (see [39]), represent-

ing standard benchmarks for graph coloring algorithms. We consider small and reasonably

dense graphs, which give rise to tractableM+(REP(G)) relaxations, and show significant gaps

χ(G)− θ(Ḡ) and χ(G)−χf (G). This selection resulted in: the triangle free Mycielski graphs

myciel3, myciel4 and myciel5 along with 1-FullIns_3,

2-Insertions_3, 3-Insertions_3 and the two larger instances dsjc125.9 and r125.1c.

• The Petersen’s graph (shown in Figure 5.1), which belongs to the well-known class of Kneser

graphs. The interest of this graph to our analysis comes from the fact that χf (G) and the

χ(G) can differ significantly, while χf (G) number is close to the clique number ω(G) [54].

• Erdös–Rényi random graphs: G(n, p) where n ∈ N is the number of nodes in the graph and

p ∈ [0, 1] is the edge probability. In our experience we reported random graphs with 40 vertices

used in [59], with p ∈ {0.5, 0.66, 0.75}.

Figure 5.1: The Petersen’s graph

5.3.2 Comparison among relaxations

In Table 5.1 optimal values to the SDP relaxations are reported along with θ(Ḡ), θ+(Ḡ) and both

the fractional and integer chromatic number (resp. χf (G) and χ(G)). Instances which did not

achieve convergence within the time limit of 4 hours are marked with †. For such instances, we

anyhow report the objective function values attained at time limit, since their optimality conditions

were close to 10−4 in most of the cases.

On Table 5.1 a few comments are in order. Consider first the DIMACS instances and the petersen

graph. Here, M+(REP(G)) improves over θ+(Ḡ) on 7 out of 9 cases and, on the two instances
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Graph θ(Ḡ) θ+(Ḡ) M+(REP(G)) χf (G) χ(G)

1-FullIns_3 3.064 3.064 †3.294 3.333 4
2-Insertions_3 2.104 2.104 2.434 2.423 4
3-Insertions_3 2.068 2.068 †2.349 2.334 4
myciel3 2.400 2.400 3.036 2.900 4
myciel4 2.530 2.530 3.267 3.245 5
myciel5 2.639 2.639 †3.465 3.553 6
petersen 2.500 2.500 2.720 2.500 3
dsjc125.9 37.768 37.802 †34.181 42.727 44
r125.1c 46.000 46.000 †37.995 46.00 46
G(40, 0.5) 6.301 6.325 †6.277 7.030 8
G(40, 0.66) 9.260 9.284 †9.126 10.371 11
G(40, 0.75) 11.111 11.147 11.146 12.030 13

Table 5.1: Computational experiments on SDP relaxations of the GCP.

dsjc125.9 and r125.1c whereM+(REP(G)) does not outperforms θ+(Ḡ), the SDP solver does not

converge with the required optimality tolerance. On the 7 instances where the SDP converges with

sufficient precision, M+(REP(G)) attains a very good lower bound, either outperforming χf (G)

(on 5 instances out of 7) or nearly reaching χf (G) (on 1-FullIns_3 and myciel5). Note also that

M+(REP(G)) closes the integrality gap to zero (by integer rounding) on myciel3.

As far as random instances are concerned,M+(REP(G)) is not able to improve θ+(G) but it attains

practically the same value whatever the optimality tolerance reached.

It is also important to remark that the evaluation of M+(REP(G)) by an effective but general

purpose SDP solver as SDPNAL+ requires, on average, a CPU time up to 3 orders of magnitude larger

than the one for θ(Ḡ) and θ+(Ḡ). This prevents the straightforward application of M+(REP(G))

to large graphs.

Federico Battista 57



Chapter 6

On Solving large scale Semidefinite

Programs

In the previous chapters we investigated how to obtain strong bounds for two basic CO problems

from semidefinite programming by the application of Lovász and Schrijver Lift-and-Project opera-

tor. Here we focus more on how to deal with these SDPs in practice. We recall that semidefinite

programming can be solved to arbitrary precision in polynomial time [76] using interior-point meth-

ods [62], providing a good precision in a reasonable time for small and medium size formulations.

Despite this class of algorithms are widely used, as we have seen semidefinite programs of our interest

can easily reach several millions of inequality constraints, making interior-point methods impractical

both in terms of computation time and memory requirements. As a matter of facts, in our pre-

vious computational experiments we used SDPNAL+ [73], a well-established state-of-the-art MATLAB

software implementing an Alternating direction methods of multipliers (ADMMs) combined with

a semismooth Newton-Conjugate Gradient method. Augmented Lagrangian methods are known

to be an alternative to interior point methods and currently represent the most popular first-order

algorithms used to handle large scale semidefinite programs [8, 9, 56, 65]. ADMMs, which are a

variant of augmented Lagrangian methods, gained growing attention in the last years [17, 73, 77, 82]

and their success comes from the fact that as first-order methods avoid computing, storing and fac-

torizing large Hessian matrices and are able to scale to much larger problems than interior point

methods. This of course at some cost in accuracy, that should be correctly addressed in case the

semidefinite programming problem is the relaxation of a combinatorial problem and one aims at

obtaining a valid bound on its optimal solution.

In this chapter we present our computational study on methods for solving semidefinite pro-

grams: we devise the ADMM algorithm ADAL [56, 65, 77] for solving SDPs in standard form, then

extending this method to handle problems with inequality constraints. Hence, we discuss different
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methodologies to recover a valid dual bound on the optimal primal value, starting from an approx-

imated solution. Then numerical results are reported measuring the performance of our alternative

ADAL implementation in python and SDPNAL+ on random SDPs as well as MSSP and GCP semidef-

inite relaxations. In addition, we perform a computational study on ADAL equipped with different

procedures to compute safe bounds for CO problems, discussing the trade off between quality of

the safe bound and computational burden.

6.1 An ADMM method for SDPs with inequality constraints

We focus on SDPs in the following form:

min 〈C,X〉

s.t. 〈Ai, X〉 ≤ bi, ∀i = 1, . . . , l

〈Aj , X〉 = bj , ∀j = l + 1, . . . ,m

X ∈ S+
n

(6.1)

where C ∈ Sn, Ai ∈ Sn, i ∈ [m + l] and b ∈ Rm+l. In order to deal with problem (6.1) a standard

way is to add slack variables si ≥ 0, i ∈ [l] and expand the matrix variable X to X̄ ∈ Sn+l:

X̄ :=

 X 0n,l

0l,n Diag (s)

 .

Recall that if B is a diagonal matrix, the constraint B � 0 boils down to B ≥ 0. In particular,

imposing X̄ � 0 is equivalent to consider X � 0 and s ≥ 0. By expanding the matrices Ai, Aj , and

C, i = 1, . . . , l; j = l + 1, . . . ,m; to Āi, Āj and C̄ as

Āi :=

 Ai 0n,l

0l,n eie
>
i

 , Āj :=

Aj 0n,l

0l,n 0l,l

 , C̄ :=

 C 0n,l

0l,n 0l,l


problem (6.1) can be rewritten as an SDP in standard form as follows:

min
〈
C̄, X̄

〉
s.t. Ā(X) = b

X̄ ∈ S+
n+l

(6.2)
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where b := (b1, . . . , bm) ∈ Rm and Ā : Sn+l → Rm is the linear operator (Ā(X))i =
〈
Āi, X

〉
with

Āi ∈ Sn+l, i ∈ [m]. The dual problem of (6.2) is defined as

min b>y

s.t. Ā>(y) + Z̄ = C̄

Z̄ ∈ S+
n+l,

(6.3)

where Ā> : Rm → Sn+l is the adjoint operator of Ā, namely Ā>y =
∑

i yiĀ
i for y ∈ Rm. Note that

the matrix Z̄ ∈ Sn+l is a "surplus" matrix variable that can be written as

Z̄ :=

 Z 0n,l

0n,l diag(p)

 ,

with p ∈ Rl. In particular, the equality constraint in (6.3) can be rewritten as

C̄ − Ā>(y)− Z̄ =


C −A>(y)− Z 0n,l

−y1 − p1

0n,l
. . .

−yl − pl


= 0.

Assuming that both the primal (6.2) and the dual (6.3) problems have strictly feasible points (i.e.

Slater’s condition is satisfied) strong duality holds and (y, Z̄, X̄) is optimal for (6.2) and (6.3) if and

only if the following conditions hold:

Ā(X̄) = b, Ā>(y) + Z̄ = C̄, Z̄X̄ = 0, X̄ ∈ S+
n+l, Z̄ ∈ S+

n+l. (6.4)

In the following, we assume that the constraints formed through the operator Ā are linearly inde-

pendent.

6.1.1 ADAL: an ADMM for SDPs in standard form

We now present ADAL [65, 77], an alternating direction method of multipliers (ADMM) to address

standard SDPs and in particular, we extend it in order to be able to deal with problem (6.2).

Recently Zhao and Wiegele [79] independently presented a related work in which an extended

ADMM in order to solve semidefinite programs arising from graph partitioning problems is proposed.

The method we consider is based on the maximization of the augmented Lagrangian built over the

dual problem. Let X̄ ∈ Sn+l be the Lagrange multiplier for the dual equation Ā>(y) + Z̄ − C̄ = 0
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and σ > 0 be fixed. The augmented Lagrangian of the dual (6.3) is defined as

Lσ(y, Z̄; X̄) = bT y − 〈Ā>(y) + Z̄ − C̄, X̄〉 − σ

2
‖Ā>(y) + Z̄ − C̄‖2.

In augmented Lagrangian methods applied to the dual (6.3) the problem

max Lσ(y, Z̄; X̄)

s.t. y ∈ Rm, Z̄ ∈ S+
n+l,

(6.5)

where X̄ is fixed and σ > 0 is a penalty parameter, is addressed at every iteration. When the

maximization of the augmented Lagrangian Lσ(y, Z̄; X̄) is performed by optimizing first with respect

to y and then with respect to Z̄, we are considering the well known alternating direction method of

multipliers (ADMM), first proposed in [56, 65] and then extended in [77]. In the following, we refer

to this method as ADAL. To be more precise, the new point (yk+1, Z̄k+1, X̄k+1) is computed by the

following steps:

yk+1 = argmax
y∈Rm

Lσk(y, Z̄k; X̄k), (6.6)

Z̄k+1 = argmax
Z∈S+n

Lσk(yk+1, Z̄; X̄k), (6.7)

X̄k+1 = X̄k + σk(A>(yk+1) + Z̄k+1 − C̄). (6.8)

The update of y in (6.6) can be performed in closed form, as it derives from the first-order optimality

conditions of the problem on the right-hand side of (6.6): yk+1 is the unique solution of

∇yLσk(y, Z̄k; X̄k) = b− Ā(X̄k + σk(Ā>y + Z̄k − C̄)) = 0,

that is

yk+1 = (ĀĀ>)−1
( 1

σk
b− Ā(

1

σk
X̄k + Z̄k − C̄)

)
.

The update of Z̄ in (6.7) is conducted by considering the equivalent problem

min
Z̄∈S+n+l

‖Z̄ +W k+1‖2, (6.9)

where

W k+1 =
X̄k

σk
− C̄ + Ā>(yk+1).

Federico Battista 61



6.1. An ADMM method for SDPs with inequality constraints

Solving problem (6.9), is equivalent to project W k+1 ∈ Sn+l onto the (closed convex) cone S−n+l

and take its additive inverse (see Algorithm 2). Such a projection is computed via the spectral

decomposition of the matrix W k+1. Finally, it is easy to see that the update of X̄ in (6.8) can be

performed considering the projection of W k+1 ∈ Sn+l onto S+
n+l multiplied by σk, namely

X̄k+1 = X̄k + σk(Ā>(yk+1) + Z̄k+1 − C̄) =

= σk(X̄k/σk − C̄ + Ā>(yk+1)− (X̄k/σk − C̄ + Ā>(yk+1))−) =

= σk(X̄k/σk − C̄ + Ā>(yk+1))+.

We report in Algorithm 2 the scheme of ADAL. ADAL is stopped as soon as the following errors related

Algorithm 2 Scheme of ADAL from [77]

1: Choose σ > 0, ε > 0, X̄ ∈ S+
n+l, Z̄ ∈ S

+
n+l

2: δ = max{rP , rD}
3: while δ > ε do
4: y = (ĀĀ>)−1

(
1
σ b− Ā( 1

σ X̄ − C̄ + Z̄)
)

5: Z̄ = −(X̄/σ − C̄ + Ā>(y))− and X̄ = σ(X̄/σ − C̄ + Ā>(y))+

6: δ = max{rP , rD}
7: Update σ
8: end while

to primal feasibility (ĀX̄ = b) and dual feasibility (Ā>(y)+Z̄+S̄ = C̄) are below a certain accuracy

rP =
‖ĀX̄ − b‖

1 + ‖b‖
, rD =

‖Ā>(y) + Z̄ − C̄‖
1 + ‖C̄‖

.

More precisely, the algorithm stops as soon as the quantity δ = max{rP , rD} is less than a fixed

precision ε > 0. The other optimality conditions (namely X̄ ∈ S+
n+l, Z̄ ∈ S

+
n+l, Z̄X̄ = 0) are

satisfied up to machine accuracy throughout the algorithm thanks to the projections employed in

ADAL. The numerical performance of ADMMs, including the one of ADAL, strongly depends on the

update rule used for the penalty parameter σ. As in [14, 78], we follow the strategy by Lorenz and

Tran-Dinh [51], considering at every iteration k the ratio between the norm of the primal variable

X̄k and norm of the dual variable Z̄k.

The memory required to store the augmented matrices C̄, Āi, Āj , Z̄ and X̄ gets large with the

number l of inequalities and even using efficient sparse matrix implementations may be insufficient

to computationally deal with large scale problems. Our idea is then to rewrite the steps of ADAL

in terms of the original matrices C,Ai and X, so that one can keep in memory only the matrices

that are actually defining the problem. Indeed, let 1 ≤ i ≤ l be a generic index of an inequality

constraint and let l + 1 ≤ j ≤ m be a generic index of an equality constraint, then the following
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holds:

〈
Āi, X̄

〉
=
〈
Ai, X

〉
+ si,〈

Āj , X̄
〉
=
〈
Aj , X

〉
,〈

C̄, X̄
〉

= 〈C,X〉;

The linear map applied to X̄ becomes:

Ā(X̄) =



〈
A1, X

〉
...〈

Al, X
〉〈

Al+1, X
〉

...

〈Am, X〉


+

 s>

0m−l

 = A(X) +

 s>

0m−l.



Similarly, the adjoint operator ĀT : Rm → Sn+l of Ā is defined as

ĀT (y) :=
i=1∑
m

yiĀ
i =



∑i=1
m yiA

i 0n,l
y1

0n,l
. . .

yl


=


A>(y) 0n,l

y1

0n,l
. . .

yl


.

Using the operator vec(·), we can write Ā(X̄) = b as Ā vec(X̄) = b, where

Ā :=
(
vec(Ā1), . . . , vec(Ām)

)T ∈ Rm×(n+l)2 .

Note that matrix Āi, i = 1, . . . , l, corresponding to the i-th inequality constraint, is the unique

matrix having 1 in position (n+ i, n+ i). Then, ĀĀ> can be expressed in terms of AA> as follows:

ĀĀ> = AA> + diag

 1l

0m−l

 ,

as the zero entries of Āi i = 1, . . . ,m, do not contribute in the row-by-column product and the 1

in position (n+ i, n+ i) contributes only to the entry where vec(Āi) is multiplied by itself, i.e., in

position (i, i) of ĀĀ>. According to the notation introduced, the update of the y variable can be
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rewritten as follows:

yk+1 =

AA> + Diag

 1l

0m−l

−1 1

σk
b−A vec

(
1

σk
Xk − C + Zk

)
+

 1
σk s

k> + pk
>

0m−l


Furthermore, the spectral decomposition of the matrix W , needed for updating the variable X̄ and

Z̄ can be computed in a “block-wise” fashion. At a generic iteration of ADAL, matrix W can be

written as follows:

W k+1 =



Xk

σk − C +A>(yk+1) 0n,l

0n,l Diag

 sk>

σk +


yk+1

1

...

yk+1
l




 .

Then, in order to compute the eigenvalues and eigenvectors of W k+1, we can first compute the

spectral decomposition of the matrix Xk

σk − C +A>yk+1, then we trivially get the eigenvalues and

eigenvectors of the diagonal part ofW k+1 and eventually we adjust the dimension of the eigenvectors

computed, in order to have them in Rn+l.

The convergence of the scheme introduced is inherited by the convergence of ADAL [77]. In

particular, Algorithm 2 can be interpreted as a fixed point method and we can state the following

result

Theorem 6.1. The sequence {(X̄k, yk, Z̄k)} generated by Algorithm 2 from any starting point

(X̄0, y0, Z̄0) converges to a solution (X̄∗, y∗, Z̄∗) ∈ Ω∗, where Ω∗ is the set of primal and dual

solutions of (6.2) and (6.3).

ADMM framework turned out to be quite general. As a matter of fact, many extensions of

the basic scheme shown in Algorithm 2 have been presented in literature (see e.g. [14, 77, 79]). In

particular, Cerulli et al. [14] deployed a factorization of the dual variable to improve the convergence

of the ADMM for solving semidefinite problems with nonnegativity constraints. In the context of

ADMMs defined over the dual problem, bounds on the matrix variable can be handled by introducing

a further step, where a projection onto the nonnegative orthant is performed. Although these 3-

blocks ADMMs may not theoretically converge [15], they perform well in practice.

6.2 Computing valid bounds for semidefinite programs

Despite being suited for solving semidefinite programs with a large number of constraints, ADMMs

as first-order methods may require more time to compute high accuracy optimal solutions, compared
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to interior-point methods. Moreover, conversely to LP methods such as the simplex algorithm for

example, where at each iteration a (primal or dual) feasible solution is computed, in ADMMs primal

and dual feasibility are satisfied to the desired precision (or close to it) only at the last iterations

of the algorithm and then we are unable to retrieve feasible solutions in general, even of moderate

quality.

SDPs are used to bound combinatorial problems, hence methodologies able to compute valid

bounds - even of moderate quality - have a twofold purpose: from the one hand, as post-processing

procedure, they can correct the inaccuracy of the optimal value obtained from the ADMM, from

the other hand one can use these procedures through the iterations of the SDP solver when con-

sidering, for example, branch-and-bound frameworks to define exact solution methods for specific

combinatorial optimization problems.

6.2.1 Valid dual bounds

Given a pair of primal-dual SDPs, weak and strong duality hold under the assumption that both

problems are strictly feasible. Duality results imply that the objective function value of every

feasible solution of the dual SDP is a valid bound on the optimal objective function value of the

primal. Therefore, every dual feasible solution and in particular the optimal dual solution of an SDP

relaxation, yields a valid bound on the solution of the related combinatorial optimization problem.

Following ideas developed in Cerulli et al. [14], we define a post-processing procedure for ADAL on

SDPs in form (6.1), that allows to get a feasible dual solution starting from a positive semidefinite

matrix Z̃ ∈ S+
n . Let Aineq and Aeq be the linear operators defining the inequality and equality

constraints in problem (6.1): Aineq =
〈
Ai, X

〉
with Ai ∈ Sn, i = 1, . . . , l and Aeq =

〈
Aj , X

〉
with

Aj ∈ Sn, j = l + 1, . . . ,m. Let bineq and beq be the right hand side vectors accordingly defined.

Introducing the adjoint operators of Aineq and Aeq, the dual problem (6.3) can be equivalently

written as
max − b>ineqλ+ b>eqµ

s.t. C +A>ineq(λ)−A>eq(µ) = Z

Z ∈ S+
n , λ ≥ 0,

(6.10)

with λ ∈ Rl and µ ∈ Rm−l. We can then extend the results proposed in [14] and define a procedure

to get feasible solutions of problem (6.10) and then, by weak duality, valid bounds on the optimal

objective function value of the primal (6.1). Recently, a similar approach have been investigated in
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Zhao and Wiegele [79]. Let Z̃ ∈ S+
n . If the linear programming problem

max − bTineqλ+ bTeqµ

s.t. C +A>ineq(λ)−A>eq(µ) = Z̃

λ ≥ 0

(6.11)

has an optimal solution (λ̃, µ̃) ∈ Rm, then (λ̃, µ̃, Z̃) is a feasible solution for (6.10) and the value

−b>ineqλ̃ + b>eqµ̃ is giving a dual bound. If (6.11) is unbounded, then also (6.10) is unbounded and

hence the primal (6.1) is not feasible. If (6.11) is infeasible, it means that the starting Z̃ ∈ S+
n

does not allow to find a feasible dual solution and then get a dual bound. From a practical point of

view, once problem (6.1) is approximately solved by ADAL, we can try to get a feasible solution of

problem (6.10), by addressing problem (6.11). This is what we have implemented, using GUROBI

9.1.1 [31] as solver for problem (6.11).

6.2.2 Rigorous error bounds

An alternative method to produce safe underestimates for some SDP relaxation has been proposed

by Jansson et al. [38] and further adapted within ADMMs framework in [14, 79]. The main idea is

based on Lemma 3.1 and Theorem 3.2 in [38] which in our setup, according to the primal-dual pair

(6.2)-(6.3), can be stated as follows:

Lemma 6.2. Let Z̄, X̄ ∈ Sn+l symmetric matrices such that 0 ≤ λ(X̄) ≤ x̃. Then

〈
X̄, Z̄

〉
≥

∑
i:λi(Z̄)<0

x̃λi(Z̄).

Theorem 6.3. Let X̄∗ be an optimal solution to (6.2) and let p∗ be its optimal value. Given y ∈ Rm,

set

Z̃ = C̄ − Ā>(y).

Assume we know x̃ ∈ R such that λmax(X̄∗) ≤ x̃, then the following inequality holds:

p∗ ≥ b>y +
∑

i:λi(Z̃)<0

x̃λi(Z̃).

Proof. Let X̄∗ be an optimal solution to (6.2). Then

〈
C̄, X̄∗

〉
− b>y =

〈
C̄, X̄∗

〉
−
〈
Ā(X̄∗), y

〉
=
〈
C − Ā>(y), X̄∗

〉
=
〈
Z̃, X̄∗

〉
.
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Hence, Lemma 6.2 implies

p∗ =
〈
C̄, X̄∗

〉
= b>y +

〈
Z̃, X̄∗

〉
≥ b>y +

∑
i:λi(Z̃)<0

x̃λi(Z̃).

In order to apply Theorem 6.3 we need to provide an upper bound x̃ on the maximum eigenvalue

of the optimal solution X̄∗. For structured SDPs, such as semidefinite relaxation of combinatorial

problems, such a value might be known. Furthermore, it is well-known that

tr(A) =
∑
i

λi(A), (6.12)

for any matrix A. Hence, any SDP bounding from above (or fixing to some value) the trace of

the matrix variable X gives us for free the upper bound x̃. This is the case for the Lovász theta

function formulation th-SDP2, where x̃ = 1. Hence, when solving this kind of SDPs the error bound

procedure may be applied not only as a post-processing, but also during the iterations of the ADMM

and stop the latter prematurely as soon as the quality of the safe bound is satisfactory. At last, we

remark that the predominant computational burden yield by the Theorem 6.3 resides in finding the

eigenvalues of Z̃.

6.2.3 Norm dual bounds

What we are going to present in this section is a joint work with Jan Schwiddessen from Alpen-

Adria-Universität in Klagenfurt and is inspired by the idea of the forthcoming paper [70]. As we

have seen, many 0-1 linear programs admits also a semidefinite exact formulation. Usually such

exact SDPs, as for the MSSP for example, involve a rank-1 constraint on the matrix variable X.

We consider the optimization problem in the form

max 〈C,X〉

s.t. A(X) = b,

X � 0,

rank(X) = 1.

(P)
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A semidefinite relaxation for (P) is obtained by dropping the rank-one constraint:

max 〈C,X〉

s.t. A(X) = b,

X � 0,

(PSDP)

The dual problem of (PSDP) is

min b>µ

s.t. C −A>(µ) + Z = 0,

µ free, Z � 0,

(DSDP)

Many solution approaches, especially first-order methods, compute dual solutions (µ,Z) that are

close to dual feasibility, but that are actually not feasible for (DSDP). Hence again, some post-

processing routines are required to obtain valid dual/upper bounds for (P). In the following we

describe an idea how we can use any pair of dual variables (µ,Z) with Z � 0 to derive valid dual

bounds. Suppose that we know an upper bound U on the norm of an optimal solution matrix X

of (P):

‖X‖F ≤ U.

Thus, (P) is equivalent to

max 〈C,X〉

s.t. A(X) = b,

X � 0,

rank(X) = 1,

‖X‖2F ≤ U2.

(P-norm)

Again, a relaxation of (P) and (P-norm) is obtained after dropping the rank-1 constraint:

max 〈C,X〉

s.t. A(X) = b,

X � 0,

‖X‖2F ≤ U2.

(SDP-norm)
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A more convenient way to write the problem is

max 〈C,X〉

s.t. A(X)− b = 0

−X � 0

‖X‖2F − U2 ≤ 0

Dualizing all constraints yields the Lagrangian

L(X;µ,Z, α) =:= 〈C,X〉 − µ>(A(X)− b)− 〈Z,−X〉 − α

2
(‖X‖2F − U2)

= b>µ+
α

2
U2 − α

2
‖X‖2F +

〈
C −A>(µ) + Z,X

〉
.

The dual function is

f(µ,Z, α) := sup
X∈Sn

L(X;µ,Z, α)

and the dual problem is

inf
µ free, Z�0, α≥0

f(µ,Z, α).

We fix α > 0 and consider the dual function

fα(µ,Z) := max
X∈Sn

L(X;µ,Z, α)

The Lagrangian as a function of X is strongly concave. Therefore, the maximum over Sn is attained

and the unique optimizer is characterized by

−αX + C −A>(µ) + Z = 0.

Hence we have

X∗ =
1

α

(
C −A>(µ) + Z

)
.

We obtain

fα(µ,Z) = b>µ+
α

2
U2 − α

2

∥∥∥∥ 1

α

(
C −A>(µ) + Z

)∥∥∥∥2

+

〈
C −A>(µ) + Z,

1

α

(
C −A>(µ) + Z

)〉
= b>µ+

α

2
U2 +

(
−α

2

1

α2
+

1

α

)∥∥∥C −A>(µ) + Z
∥∥∥2

= b>µ+
α

2
U2 +

1

2α

∥∥∥C −A>(µ) + Z
∥∥∥2
.
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We have

opt(P ) ≤ b>µ+
α

2
U2 +

1

2α

∥∥∥C −A>(µ) + Z
∥∥∥2

(∗)

for any µ, Z � 0, α > 0 by weak duality.

Now, let’s assume that we are given any µ, Z � 0. What is the best bound that we can get

with these dual variables, i.e., what value of α > 0 yields the best bound?

The optimal α is the solution of

min α
2U

2 + 1
2αK

s.t. α > 0,

where K =
∥∥C −A>(µ) + Z

∥∥2. The unique minimizer is characterized by

1

2
U2 − K

2

1

α2

!
= 0.

We obtain

α∗ =

√
K

U
=

1

U

∥∥∥C −A>(µ) + Z
∥∥∥ .

Thus, we can substitute α∗ into (∗) and obtain

opt(P ) ≤ b>µ+ U
∥∥∥C −A>(µ) + Z

∥∥∥ . (6.13)

Now let’s discuss how we can apply what we introduced in practice. Clearly we need to identify a

valid upper bound U on the norm of an optimal solution of (PSDP) which for well-structured SDPs

this may be the case, as we are going to discuss in the next section. We remark that to compute

(6.13), the most expensive step is the computation of a norm which value is already calculated by

the ADMM as one of the stopping criteria. Hence, this means that the computational effort is

negligible and (6.13) may be computed at every single iteration, in principle.

6.3 Numerical results

In this section we report our computational study: we compare the performance of ADAL and

SDPNAL+ [82] on randomly generated instances and on instances from SDP relaxations of the stable

set problem and the graph coloring problem. Moreover, for these combinatorial optimization prob-

lems we are going to discuss also the employment of three methodologies to compute safe bounds,
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namely Dual bound, Error bound and Norm bound (Sections 6.2.1, 6.2.2 and 6.2.3 respectively).

SDPNAL+ implements an ADMM combined with a semismooth Newton-Conjugate Gradient method.

SDPNAL+ is implemented in MATLAB, with some subroutines in C language incorporated via Mex

files. For our comparison, we considered the version of SDPNAL+ available at https://blog.nus.

edu.sg/mattohkc/softwares/sdpnalplus/. Our version of ADAL is implemented in python and

uses NumPy library, the fundamental package for scientific computing (see https://numpy.org/).

Our code and instances as well, can be found at https://github.com/batt95/ADAL-ineq. In the

implementation of SDPNAL+ a refined management of the matrices is implemented exploiting their

symmetry and allows the optimization of the subroutines used throughout the application of the

algorithm.

The experiments were carried out on an Intel Xeon CPU E5-2698 v4 running at 2.20GHzwith

256GB of RAM, under Linux (Ubuntu 16.04.7).

We compare the performance of the algorithms using performance profiles as proposed by Dolan

and Moré [18]. Given a set of solvers S and a set of problems P, the performance of a solver s ∈ S

on problem p ∈ P is compared against the best performance obtained by any solver in S on the

same problem. The performance ratio is defined as

rp,s = tp,s/min{tp,s′ | s′ ∈ S},

where tp,s is the measure we want to compare, and we consider a cumulative distribution function

ρs(τ) = |{p ∈ P | rp,s ≤ τ}|/|P|.

The performance profile for s ∈ S is the plot of the function ρs. Being aware of the issue to assess

the relative performance of the solvers noted in Gould and Scott [26], we will mainly focus on ρs(1)

for some solver s, to measure the number of instances where s outperforms other solvers.

6.3.1 Comparison on randomly generated SDPs

The random instances considered in the first experiment are obtained from the instance generator

used in [56]. Given n, m and a percentage p, we built 5 instances having bpmc number of inequal-

ities. In Table 6.1, we report the comparison between ADAL and SDPNAL+ in terms of number of

iterations and CPU time needed in order to reach an accuracy of 10−5. We consider instances with

n ∈ {200, 250, 500, 1000}, m ∈ {5000, 10000, 25000, 50000, 100000} and p ∈ {0.25, 0.5, 0.75}. We

excluded those combinations of n and m leading to matrices Ai with linearly dependent rows. We

set a time limit of 1800 seconds CPU time.

Federico Battista 71

https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://numpy.org/
https://github.com/batt95/ADAL-ineq


6.3. Numerical results

0.0 0.5 1.0 1.5 2.0
log10( )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(
)

CPU_ADAL
CPU_SDPNAL

Figure 6.1: Performance profiles on CPU time. Comparison between ADAL and SDPNAL+ on random
instances.

As a preliminary test, we ran the version of ADAL tailored for SDPs in standard form. How-

ever, this non-optimized version of ADAL did not allow us to solve any instance due to memory

issues. Therefore, in the following comparisons, we only consider the version of ADAL described in

Section 6.1.

In Table 6.1, for each solver and each combination of n, m and p, we report the number of

instances solved within the time limit and the average running time. We notice that for n = 250

andm = 25000, SDPNAL+ is not able to solve any instance within the time limit, while ADAL is able to

solve all of them with a precision of 10−5. For n = 500 andm = 100000 both algorithms are not able

to solve any instance within the time limit. SDPNAL+ performs better on instances with n = 1000

and m = 10000, while for the other instances either the two solvers show similar performances or

ADAL outperforms SDPNAL+. The performance profiles of ADAL and SDPNAL+ on random instances

are reported in Figure 6.1, showing the better performance of ADAL with respect to SDPNAL+: on

almost 60% of the instances ADAL is the fastest algorithm and it is also able to solve 90% of the

instances while SDPNAL+ solves only 80% of the instances within the time limit.

6.3.2 Safebounds for the stability number and the chromatic number

The focus of this section is, from the one hand to compare the performance of ADAL and SDPNAL+

on SDP relaxations for MSSP and GCP and from the other hand, to investigate the employment

of the three different procedures to compute valid bounds we reported before. In particular, for the

latter we are going to discuss the quality of the best safe bound computed, the time at which such
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ADAL SDPNAL+
n m p (%) #sol CPU time #sol CPU time

200 10000 25 5 39.24 5 33.05
50 5 58.24 5 109.14
75 5 67.14 5 713.82

250 5000 25 5 7.99 5 11.05
50 5 9.87 5 15.51
75 5 11.28 5 16.93

25000 25 5 838.04 0 -
50 5 1166.45 0 -
75 5 1114.52 0 -

500 10000 25 5 15.52 5 15.54
50 5 16.49 5 22.45
75 5 28.87 5 23.94

25000 25 5 18.11 5 31.33
50 5 30.20 5 50.78
75 5 45.53 5 52.57

50000 25 5 217.61 5 106.28
50 5 260.43 5 221.66
75 5 325.71 5 250.97

100000 25 0 - 0 -
50 0 - 0 -
75 0 - 0 -

1000 10000 25 5 136.63 5 49.52
50 5 157.21 5 58.22
75 5 242.63 5 71.38

50000 25 5 57.19 5 60.96
50 5 94.09 5 109.48
75 5 110.00 5 111.29

100000 25 5 83.15 5 136.53
50 5 127.37 5 181.13
75 5 155.05 5 184.21

Table 6.1: Results on 120 random instances

bound is found and the overhead needed to apply such procedures during the iterations of ADAL.

For this experiment we are going to consider the formulation of θ+(G) based on th-SDP1 for the

stable set problem and the formulation of θ′(G) based on th-SDP3 for the graph coloring problem.

In what is following, we will refer to the matrix variables of th-SDP1 and th-SDP3 as Y and X,

respectively. Note that in both formulations the entries of Y and X are bounded from below. In the

context of ADMMs defined over the dual problem, bounds on the matrix variable can be handled

by introducing a further step, where a projection onto the nonnegative orthant is performed (see

e.g. [14, 77, 78]). Although these 3-blocks ADMMs may not theoretically converge [15], they perform

well in practice.

While the application of the Dual bound methodology does not require additional information

on the SDP, in order to use the Error bound and the Norm bound a superior limitation of the

maximum eigenvalues λmax(Y ), λmax(X) and of the norms ||Y ||, ||X|| on optimal solutions are
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needed.

An exact formulation for the MSSP can be obtained by adding the rank-1 constraint to th-SDP1.

Hence, any matrix Y that is feasible for MSSP only has entries in {0, 1}. Therefore, ||Y ||2 equals

the number of nonzero entries of Y . Obviously, ||Y || is maximized by any optimal solution Y of

MSSP. Now let Y ∗ denote the optimal solution with objective value α. Y ∗ has in total 2α + 1

nonzero entries in the first row and column. Moreover, there are α2 other nonzero entries in the

remaining rows and columns. Therefore we have that

||Y ∗||2 = 2α+ 1 + α2 = (α+ 1)2

and hence, ||Y ∗|| = α+ 1. Thus, given any upper bound β ≥ θ+(G) on the stability number,

||Y || ≤ β + 1,

holds for any Y that is optimal for th-SDP1. If no better bound is known, we notice that a trivial

(initial) upper bound for MSSP is given by β0 = |V | (which can be lowered to
⌊
|V |
2

⌋
if the graph

is connected). Then, given a dual pair (µ,Z) computed at a certain iteration of the ADMM, by

applying (6.13) with U = β0 we can compute a safe bound, say nb0. Since the latter is a safe upper

bound on the stability number, we can use nb0 to further improve the initial estimate β0 by the

following:

β1 = min(β0, bnb0c+ 1),

which in turn will help to improve the subsequent values obtained by the Norm bound and notice

that this process can be applied each time a new safe bound is computed. As regarding λmax(Y )

we can say, by (6.12):

λmax(Y ) ≤
∑
i

λi(Y ) = tr(Y ) = θ+(G) + 1 ≤ β0 + 1,

holds for any feasible solution Y . By the same argument as before, each time time an Error bound

is computed, we can improve β accordingly.

As remarked by Meurdesoif [59], the exact formulation of the GCP based on th-SDP3 is given

by a bivalent program where the entries Xij ’s assume values in {−1, t− 1}, in particular:

Xij =


t− 1 if i and j have the same color,

−1 if i and j have distinct colors.
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Clearly ||X|| is minimized by the optimum X∗. Hence, a straightforward upper bound on ||X|| can

be given by a feasible coloring. Let c : V → 1, ..., ψ be a feasible coloration for the graph G with

value ψ ≥ θ′(G). Now, consider the following matrix

Xψ
ij =


ψ − 1 if c(i) = c(j)

−1 otherwise,
(6.14)

then ||X∗|| ≤ ||Xψ||. Here, since the safe bounds we are going to compute are lower estimates, we

cannot use the latter to improve the upper bound on the norm. As for the stable set problem, in

order to bound λmax(X) of an optimal solution we are going to use (6.12):

λmax(X) ≤
∑
i

λi(X) = tr(X) = |V |(θ′(G)− 1) ≤ |V |(ψ − 1).

For these experiments we are going to consider the following setup: as benchmarks we are going to

formulate and solve θ+(G) and θ′(G) on graphs taken from the second DIMACS implementation

challenge [39], complementing clique instances to convert them into stable set instances. Both

solvers ADAL and SDPNAL+ have been set with an accuracy of 10−6, along with a time limit of one

hour. The solver GUROBI has been set to a feasibility tolerance of 10−5 for the resolution of

(6.10). Moreover, we equip ADAL with the Dual, Error and Norm bound procedures which will be

applied every 200 iteration of ADAL and at its last, keeping the best bound found by each procedure

along with the time at which it has been identified. Thus, besides the comparison between ADAL

and SDPNAL+ we are going to measure which procedure produces the best bounds, which is faster to

detect a good bound and a comparison of the overheads yield by the application of these procedures.

Stable set instances

Table 6.2 reports results on 51 DIMACS instances. For each solver (ADAL and SDPNAL+) we reported

the optimal values (ObjVal) along with the time in seconds needed to reach the optimality conditions

(CPU-time). Then, for each safe bound procedure (Norm, Error and Dual Bound) we reported the

best safe bound computed through the algorithm and the time needed to detect it. Notice that if

ADAL’s CPU-time is less than some values in “found at” columns, this means that the corresponding

valid bound have been identified at the very last iteration of the algorithm. While for Error and

Dual Bounds we also reported the total time spent by these procedures (tot-time) within the ADAL’s

CPU-time, we omitted the time spent by the Norm Bound since for all instances it was not superior

than 0.01 seconds.

First of all, we can notice that ADAL and SDPNAL+ were able to solve all instances but p_hat1500-2,
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Figure 6.2: Performance profiles on CPU times for Stable Set instances.

where both solvers show a failure and keller6, where ADAL was not able to converge within the time

limit. Moreover, the Norm bound, the Error bound and the Dual bound were able to identify a safe

bound on all instances. In particular, we are interested in how many cases there is an integrality

gap between the value of the safe bounds and the ObjVal (if available) of SDPNAL+ (i.e. considering

their rounding down to the closest integer). Hence, we report that:

• the best Norm bound differs to ObjVal in only 1 out of 51 cases;

• the best Error bound differs to ObjVal in 14 out of 50 cases;

• the best Dual bound differs to ObjVal in 0 out of 51 cases.

We remark that the difficulty of the Error bound to find a tight safe bound in these cases is due to

the fact that, since this procedure is applied every 200 iterations of the algorithm, the Error bound

was not capable to effectively update the upper bound on λmax(Y ) when ADAL converges in few

hundreds iterations. In order to overcome to this phenomenon it would be sufficient to apply the

Error bound more often. On the other hand, we notice for the Norm bound that even starting from

a trivial upper bound on the norm ||Y ||, just few updates have been sufficient to yield a good safe

bound.

In Figure 6.2, the performance profiles of ADAL and SDPNAL+’s CPU-time, along with the times to

identify the best Norm, Error and Dual bound are shown. It is clear that on these instances SDPNAL+

outperforms ADAL. However, we want to underline the good performances of the latter with the

employment of the Dual bound, which was able to outperform SDPNAL+ and the other safe bound

procedures in about 30% of the instances, finding a tight valid bound and in particular on the p-hat
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graphs, where we are often able to get the same bound as the optimal dual objective of SDPNAL+ in

a much lower CPU time.

Clearly, solving an LP every 200 iterations has a non trivial cost for large instances (as confirmed

by Dual bound’s tot-time), but this overhead can be easily mitigated by seldom applying this

procedure during ADAL’s iterations.

ADAL SDPNAL+ Norm Bound Error Bound Dual Bound
Graph ObjVal CPU-time ObjVal CPU-time best found at best found at tot-time best found at tot-time
DSJC125.1 38.04 9.64 38.04 5.19 38.05 6.69 38.05 7.11 0.05 38.06 6.26 0.27
DSJC125.5 11.40 2.68 11.40 2.57 11.40 2.13 11.41 2.13 0.01 11.40 2.64 0.11
DSJC125.9 4.00 2.20 4.00 2.72 4.00 2.00 4.00 2.00 0.01 4.00 2.22 0.06
DSJC500-5 22.57 9.27 22.57 5.75 22.66 6.97 31.06 7.07 0.09 22.57 8.67 1.04
DSJC1000-5 31.67 33.85 31.67 35.80 31.93 25.75 55.76 26.19 0.43 31.67 32.62 4.56
C125-9 37.55 8.44 37.55 1.93 37.55 6.96 37.57 5.67 0.04 37.55 5.47 0.25
C250-9 55.82 36.65 55.82 3.77 55.82 27.23 55.82 26.21 0.35 55.86 21.21 1.73
C500-9 83.58 151.73 83.58 8.88 83.59 114.80 83.61 100.41 1.77 83.61 99.28 8.14
C1000-9 122.60 690.36 122.60 36.30 122.64 522.33 122.61 522.75 8.42 122.87 342.82 42.21
C2000-5 44.56 150.67 44.56 536.32 45.31 117.69 136.03 119.01 1.32 44.56 145.41 18.95
C2000-9 177.73 2836.23 177.73 280.32 177.78 2672.59 177.75 2726.72 40.40 177.95 1784.69 194.49
brock200_1 27.20 5.01 27.20 1.77 27.20 3.81 27.20 3.83 0.05 27.20 5.11 0.26
brock200_2 14.13 3.06 14.13 2.43 14.13 2.25 14.17 2.27 0.04 14.13 3.15 0.18
brock200_3 18.67 3.30 18.67 2.86 18.67 2.43 18.76 2.44 0.03 18.67 3.40 0.18
brock200_4 21.12 4.14 21.12 2.89 21.12 2.98 21.28 2.99 0.03 21.12 3.70 0.24
brock400_1 39.33 15.07 39.33 5.10 39.34 11.83 40.50 11.88 0.16 39.33 15.37 0.73
brock400_2 39.20 15.04 39.20 5.12 39.20 12.93 40.33 13.04 0.31 39.20 15.33 0.73
brock400_3 39.16 15.88 39.16 4.93 39.17 11.92 40.31 11.97 0.16 39.16 16.19 0.76
brock400_4 39.23 15.71 39.23 4.50 39.24 13.12 40.33 13.17 0.26 39.23 16.01 0.73
brock800_1 41.87 33.97 41.87 13.06 41.88 27.24 88.37 27.49 0.50 41.87 35.24 2.20
brock800_2 42.10 34.87 42.10 14.13 42.11 27.31 90.01 27.56 0.49 42.10 36.18 2.23
brock800_3 41.88 33.46 41.88 14.65 41.89 27.75 84.12 27.99 0.48 41.88 34.74 2.19
brock800_4 42.00 34.81 42.00 14.00 42.01 27.33 86.63 27.57 0.50 42.00 36.11 2.25
p_hat300-1 10.02 58.09 10.02 17.33 10.02 14.37 10.02 14.39 0.13 10.02 9.17 3.40
p_hat300-2 26.71 1058.64 26.71 163.11 26.71 196.52 26.71 196.55 1.75 26.71 30.17 60.69
p_hat300-3 40.70 144.44 40.70 37.10 40.70 56.60 40.70 56.63 0.57 40.70 20.84 7.85
p_hat500-1 13.01 142.97 13.01 16.13 13.01 37.56 13.02 37.64 0.48 13.01 24.06 8.79
p_hat500-2 38.56 725.88 38.56 538.33 38.56 723.20 38.56 723.29 8.62 38.56 88.84 208.43
p_hat500-3 57.81 639.90 57.81 35.68 57.81 210.51 57.81 210.61 2.62 57.81 65.02 36.70
p_hat700-1 15.05 282.60 15.05 35.87 15.05 71.31 15.07 71.50 0.82 15.05 61.08 17.48
p_hat700-2 48.44 1788.07 48.44 297.81 48.44 1787.44 48.44 1776.18 18.61 48.44 170.97 217.28
p_hat700-3 71.76 1961.95 71.76 95.01 71.76 615.68 71.76 615.85 7.61 71.76 141.00 116.32
p_hat1000-1 17.52 404.67 17.52 120.12 17.52 115.77 17.57 116.09 1.61 17.52 88.78 27.78
p_hat1000-2 54.84 2852.66 54.84 698.39 54.84 2851.17 54.85 2851.48 31.70 54.85 302.03 245.96
p_hat1000-3 83.53 2337.28 83.53 244.45 83.53 694.69 83.54 695.04 8.38 83.53 242.76 154.07
p_hat1500-1 21.89 1118.44 21.89 480.53 21.89 295.59 21.99 296.27 3.45 21.89 216.50 79.24
p_hat1500-2 - - - - 76.46 3565.92 76.48 3494.53 34.54 76.46 872.20 234.78
p_hat1500-3 113.65 3014.54 113.65 881.41 113.66 3014.01 113.66 3014.70 35.88 113.65 958.14 226.53
keller4 13.47 16.44 13.47 2.74 13.47 10.17 13.47 10.18 0.09 13.47 5.18 0.86
keller5 31.00 1281.91 31.00 54.41 31.00 499.35 31.62 499.55 6.73 31.00 755.56 67.24
keller6 - - 63.00 1526.56 63.03 1535.40 288.88 1541.51 20.91 63.00 1913.78 79.56
sanr200_0.7 23.63 4.81 23.63 2.19 23.64 3.30 23.72 3.32 0.03 23.63 3.76 0.28
sanr200_0.9 48.90 20.16 48.90 3.29 48.91 14.49 48.91 15.14 0.17 48.91 13.69 1.02
sanr400_0.5 20.18 6.98 20.18 4.45 20.25 4.83 23.90 4.88 0.05 20.18 7.27 0.52
sanr400_0.7 33.97 10.54 33.97 6.01 33.97 8.81 34.88 8.91 0.15 33.97 9.82 0.79
MANN_a9 17.48 0.61 17.48 1.61 17.48 0.56 17.48 0.54 0.00 17.48 0.38 0.05
MANN_a27 132.76 838.69 132.76 6.55 132.76 561.87 132.77 475.86 8.62 132.94 340.53 43.47
hamming6-2 32.00 11.54 32.00 1.29 32.75 0.97 32.00 5.95 0.03 32.00 6.54 0.50
hamming6-4 4.00 0.20 4.00 1.62 4.01 0.17 4.07 0.17 0.00 4.00 0.21 0.01
hamming8-2 128.00 1951.74 128.00 5.09 128.53 36.17 128.00 1245.57 23.90 128.00 419.50 104.14
hamming8-4 16.00 3.78 16.00 2.79 16.00 2.84 16.00 2.87 0.07 16.00 2.38 0.27
hamming10-4 42.67 60.55 42.67 32.69 42.68 50.41 42.76 31.87 2.99 42.76 33.11 4.28

Table 6.2: Safe bounds of the stability number on DIMACS instances.
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Figure 6.3: Performance profiles on CPU times for Graph Coloring instances.

Graph coloring instances

In Tables 6.3 and 6.4 results on 112 DIMACS instances have been reported. As before, for each

solver (ADAL and SDPNAL+) we reported the optimal values (ObjVal) along with the time in seconds

needed to reach the optimality conditions (CPU-time). Then, for each safe bound procedure (Norm,

Error and Dual Bound) we reported the best safe bound computed through the algorithm and the

time needed to detect it. Again, while for Error and Dual Bounds we also reported the total time

spent by these procedures (tot-time) within the ADAL’s CPU-time, we omitted the time spent by

the Norm Bound since for all instances it was not superior than 0.01 seconds. Moreover, since

in this experiments we noticed that the upper bound on the norm ||X|| we proposed in (6.14),

i.e. computed by ||Xψ|| yield by a feasible ψ − coloring was too large w.r.t. the optimal norm

||X∗||, we opted to report an additional column as a reference, namely “Opt Norm Bound” where

this procedure has been applied by using U = ||X∗||, where X∗ is an optimal solution for θ′(G)

computed beforehand, so that the potential of this method can be shown.

As we can notice, SDPNAL+ have been able to solve all instances to optimality within the time

limit, while ADAL have shown failure in 5 instances. On the other hand, ADAL outperforms SDPNAL+

in 35 out of 107 solved instances.

In this experiment the Norm and the Dual bound were able to identify a valid bound in, re-

spectively, 92 and 94 out of 112 cases, while the Error and the Norm bound with the optimal U

were always able to find a safe bound. As for the stable set problem, it is of interest to consider the

cases in which there is integrality gap between the objective value (ObjVal) of the solver SDPNAL+

and the valid bounds (here, since we are minimizing the rounding up to the closest integer must be
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considered). In particular, we have:

• the best Norm bound differs to ObjVal in 45 out of 92 cases;

• the best Error bound differs to ObjVal in only 4 out of 112 cases;

• the best Dual bound differs to ObjVal in 2 out of 94 cases;

• the best Opt Norm bound differs to ObjVal in 0 out of 112 cases.

From these data we can clearly point out that the Norm bound procedure relies on a “good” estimate

of U . As a matter of fact, we experienced that ||Xψ|| could be up to 3 orders of magnitude bigger

than the actual optimal ||X∗||, moreover the impossibility of an update of U during the iterations of

ADAL, as we did for the stable set instances, does not turn in favor of this method. On the contrary,

the estimate on λmax(X) gave the possibility to identify a valid bound in all cases which is almost

always close to the optimal value of the solvers.

The effectiveness of the Dual bound method is also reflected in the performance profiles, as

shown if Figure 6.3. In the performance profiles, we excluded those instances for which the differ-

ence in absolute value of the best valid bounds found by Opt Norm, Error and Dual bound methods

and the objective of SDPNAL+ is less than 0.5. In particular, we excluded all the instances where the

post-processing procedure was not able to compute a bound. The Dual bound was the first able to

identify the best valid bound in almost 45% of the instances, while the Error bound outperforms

both the solvers and the other procedures in almost 30% of the cases. Again, we remark that for

large instances the computational burden of the Dual bound is nontrivial, but it can be lowered by

changing the frequency of the calls to the procedure.

As a further comparison between ADAL and SDPNAL+ on SDP relaxations of the chromatic number,

we built instances adding 1000, 2500 and 5000 inequalities to th-SDP3 for ϑ(G). Such inequali-

ties have been randomly selected among the so-called triangle inequalities proposed by Meurdesoif

in [59].

Results are reported in Table 6.5. Among 45 total SDPs SDPNAL+ was able to converge to

optimality within 1 hour in 35 cases, while ADAL solves 36 instances. Moreover, we can identify

12 instances where the CPU-time of ADAL is lower than SDPNAL+’s, in particular the first performs

remarkably well on most of DSJC instances and abb313GPIA.

Similarly as before, these results confirm the need of a good estimate U to employ the Norm

bound procedure, while Error and Dual bound were able to find a tight valid lower bound in a time

much less than the convergence time of ADAL.
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ADAL SDPNAL+ Norm Bound Opt Norm Bound Error Bound Dual Bound
Graph ObjVal CPU-time ObjVal CPU-time best found at best found at best found at tot-time best found at tot-time
DSJC125.1 4.14 69.01 4.14 22.88 3.08 3.55 4.14 8.39 4.12 3.55 0.03 4.14 1.72 0.91
DSJC125.5 11.87 1.02 11.87 1.36 11.61 0.32 11.87 0.69 11.86 0.32 < 0.01 11.87 0.74 0.06
DSJC125.9 37.80 1.87 37.80 2.03 37.76 0.54 37.80 1.23 37.79 0.54 0.01 37.80 1.31 0.09
DSJC250.1 4.94 6.65 4.94 6.70 1.86 1.32 4.94 2.85 4.92 1.33 0.03 4.94 2.19 0.16
DSJC250.5 16.35 1.90 16.35 2.84 15.73 0.69 16.35 1.62 16.33 0.70 0.01 16.35 2.00 0.10
DSJC250.9 55.22 4.76 55.22 3.76 55.06 1.58 55.22 3.85 55.20 1.59 0.04 55.22 3.76 0.37
DSJC500.1 6.25 8.66 6.25 16.57 1.59 3.75 6.25 6.17 6.22 3.79 0.10 6.25 5.91 0.16
DSJC500.5 22.90 5.41 22.90 9.64 18.90 2.27 22.90 4.03 22.81 2.31 0.05 22.90 5.71 0.30
DSJC500.9 84.14 17.04 84.14 16.36 80.85 6.36 84.14 12.54 83.03 6.36 0.02 84.14 17.53 1.21
DSJR500.1 12.00 35.18 12.00 10.00 10.09 13.53 12.00 21.92 12.00 15.04 0.03 12.00 23.59 0.34
DSJR500.1c - - 83.75 1231.74 83.45 506.26 83.74 941.95 83.69 506.27 1.17 83.75 190.31 294.26
DSJR500.5 122.01 198.08 122.00 16.95 108.36 52.64 122.00 85.38 122.00 52.65 0.29 122.00 181.80 6.48
DSJC1000.1 8.36 31.65 8.36 59.76 - - 8.36 20.30 8.23 15.27 0.03 8.36 22.83 0.57
DSJC1000.5 32.11 18.30 32.11 38.11 13.94 10.39 32.11 14.32 31.82 10.59 0.20 32.11 19.46 1.17
DSJC1000.9 122.80 72.30 122.80 63.88 90.40 37.11 122.79 54.62 122.80 37.14 0.09 122.80 70.85 6.89
fpsol2.i.1 65.00 200.57 65.00 11.71 - - 65.00 139.90 64.97 87.18 0.17 65.00 199.60 2.67
fpsol2.i.2 30.00 28.11 30.00 9.75 18.69 14.79 30.00 22.71 30.00 14.79 0.03 30.00 25.71 0.43
fpsol2.i.3 30.00 27.36 30.00 7.82 19.53 13.42 30.00 18.77 30.00 13.42 0.03 30.00 27.43 0.42
inithx.i.1 54.00 604.51 54.00 32.25 - - 54.00 339.96 53.99 260.84 0.47 54.00 537.71 4.96
inithx.i.2 31.00 387.80 31.00 12.39 29.57 23.17 30.98 230.08 30.99 159.76 0.27 30.22 35.60 3.70
inithx.i.3 31.00 341.12 31.00 13.64 29.64 21.09 31.00 152.15 31.00 102.87 0.23 30.23 32.57 3.45
latin_square_10 90.00 48.40 89.99 41.12 - - 90.00 40.18 89.87 19.98 < 0.01 - - 2.91
le450_15a 15.00 6.37 15.00 5.18 - - 15.00 5.13 15.00 3.31 < 0.01 - - 0.12
le450_15b 15.00 7.06 15.00 5.61 - - 15.00 5.04 15.00 3.25 < 0.01 15.00 7.13 0.14
le450_15c 15.00 3.92 15.00 4.70 6.62 1.78 15.00 2.70 15.00 1.78 < 0.01 15.00 4.02 0.10
le450_15d 15.00 3.86 15.00 4.71 6.59 1.75 15.00 2.88 15.00 1.76 < 0.01 15.00 3.96 0.10
le450_25a 25.00 19.73 25.00 7.54 - - 25.00 13.61 24.99 9.23 < 0.01 25.00 19.53 0.29
le450_25b 25.00 18.44 25.00 7.27 21.53 9.06 25.00 13.45 24.99 9.23 < 0.01 - - 0.23
le450_25c 25.00 9.67 25.00 7.03 - - 25.00 6.88 24.98 3.04 < 0.01 25.00 9.78 0.20
le450_25d 25.00 9.15 25.00 6.82 7.89 4.74 25.00 7.12 25.00 4.75 < 0.01 25.00 9.25 0.19
mulsol.i.1 49.00 18.89 49.00 3.48 30.75 5.52 49.00 9.97 48.99 5.52 0.01 - - 0.66
mulsol.i.2 31.00 9.02 31.00 2.92 25.69 2.95 31.00 7.10 31.00 2.89 0.01 31.00 9.04 0.28
mulsol.i.3 31.00 8.13 31.00 3.12 25.14 2.66 30.99 6.94 31.00 2.66 0.01 31.00 7.47 0.19
mulsol.i.4 31.00 7.97 31.00 2.40 25.03 2.73 30.99 7.03 31.00 2.73 < 0.01 31.00 6.31 0.22
mulsol.i.5 31.00 9.88 31.00 3.34 26.78 3.31 31.00 8.41 31.00 3.57 0.01 31.00 9.01 0.19
school1 14.00 14.74 14.00 65.03 10.69 5.87 14.00 10.52 13.99 5.87 0.01 14.00 8.08 0.40
school1_nsh 14.00 12.12 14.00 75.97 9.40 3.94 14.00 7.97 13.98 3.96 < 0.01 14.00 7.29 0.30
zeroin.i.1 49.00 24.91 49.00 2.47 25.89 8.04 49.00 16.68 48.94 6.43 0.02 49.00 21.91 0.80
zeroin.i.2 30.00 14.63 30.00 2.43 19.63 5.15 30.00 13.74 30.00 5.02 0.01 30.00 14.13 0.48
zeroin.i.3 30.00 14.62 30.00 2.80 18.98 4.97 29.99 7.17 30.00 4.97 0.01 30.00 13.53 0.46
anna 11.00 9.97 11.00 1.16 7.56 3.18 11.00 6.24 11.00 3.18 0.01 - - 0.13
david 11.00 2.46 11.00 0.59 10.82 0.76 11.00 1.78 11.00 0.76 < 0.01 - - 0.08
huck 11.00 1.60 11.00 0.43 10.91 0.47 11.00 1.13 11.00 0.49 < 0.01 - - 0.04
jean 10.00 1.35 10.00 0.53 9.18 0.39 10.00 0.90 10.00 0.33 < 0.01 - - 0.03
games120 9.00 3.23 9.00 0.86 7.20 0.94 9.00 1.69 9.00 0.94 < 0.01 - - 0.07
miles250 8.00 7.17 8.00 0.94 6.20 2.10 8.00 4.85 8.00 2.10 < 0.01 8.00 6.30 0.11
miles500 20.00 6.78 20.00 1.69 15.13 1.98 20.00 4.52 19.99 1.35 < 0.01 20.00 6.26 0.11
miles750 31.00 4.75 31.00 2.73 28.51 1.52 31.00 3.57 30.75 0.54 0.01 31.00 4.77 0.09
miles1000 42.00 7.81 42.00 1.64 39.97 1.37 42.00 4.87 41.97 1.93 < 0.01 42.00 7.61 0.16
miles1500 73.00 10.36 73.00 1.48 70.02 2.75 73.00 6.66 72.87 2.00 0.01 73.00 10.28 0.27
queen5_5 5.00 0.01 5.00 0.11 4.99 0.01 5.00 0.01 5.00 0.01 < 0.01 5.00 0.04 0.03
queen6_6 6.04 0.77 6.04 0.69 6.04 0.21 6.04 0.29 6.04 0.21 < 0.01 6.04 0.19 0.04
queen7_7 7.00 0.08 7.00 0.29 6.94 0.03 7.00 0.06 7.00 0.03 < 0.01 7.00 0.08 0.01
queen8_8 8.00 0.10 8.00 0.19 7.82 0.03 8.00 0.08 7.97 0.03 < 0.01 8.00 0.11 0.01
queen8_12 12.00 0.55 12.00 0.62 11.26 0.19 12.00 0.42 11.90 0.19 < 0.01 - - 0.02
queen9_9 9.00 0.15 9.00 0.23 8.36 0.05 9.00 0.12 8.91 0.05 < 0.01 9.00 0.16 0.01
queen10_10 10.00 0.23 10.00 0.44 9.18 0.08 10.00 0.18 10.00 0.08 < 0.01 10.00 0.24 0.01
queen11_11 11.00 0.46 11.00 0.47 10.12 0.13 11.00 0.29 10.90 0.13 < 0.01 11.00 0.47 0.01
queen12_12 12.00 0.67 12.00 0.68 7.97 0.17 12.00 0.37 12.00 0.17 < 0.01 12.00 0.71 0.04
queen13_13 13.00 0.76 13.00 0.64 8.18 0.25 13.00 0.66 12.56 0.25 < 0.01 13.00 0.80 0.04
queen14_14 14.00 1.27 14.00 0.82 11.35 0.37 14.00 0.76 13.78 0.37 < 0.01 14.00 1.32 0.04
queen15_15 15.00 1.38 15.00 1.26 6.25 0.44 15.00 1.01 15.00 0.44 < 0.01 - - 0.04
queen16_16 16.00 1.84 16.00 1.46 7.11 0.61 16.00 1.57 15.36 0.62 < 0.01 16.00 1.90 0.06
myciel3 2.40 0.01 2.40 0.13 2.40 0.00 2.40 0.01 2.40 0.00 < 0.01 2.40 0.04 0.03
myciel4 2.53 0.04 2.53 0.18 2.53 0.01 2.53 0.02 2.53 0.01 < 0.01 2.53 0.04 0.01
myciel5 2.64 0.41 2.64 0.41 2.64 0.06 2.64 0.21 2.64 0.06 < 0.01 2.64 0.23 0.02
myciel6 2.73 1.73 2.73 1.16 2.73 0.36 2.73 0.81 2.73 0.36 < 0.01 2.73 0.51 0.04
myciel7 2.82 7.35 2.82 7.60 2.79 1.99 2.82 4.47 2.82 1.99 < 0.01 2.82 1.34 0.24
mug88_1 3.00 11.78 3.00 29.45 2.65 0.72 3.00 1.62 3.00 0.72 < 0.01 3.00 0.35 0.24
mug88_25 3.00 20.81 3.00 47.43 2.73 1.03 3.00 2.20 3.00 1.03 < 0.01 3.00 0.35 0.43
mug100_1 3.00 19.59 3.00 84.51 2.61 0.97 3.00 2.93 3.00 0.97 < 0.01 3.00 0.46 0.31
mug100_25 3.00 26.20 3.00 84.97 2.69 2.04 3.00 4.42 3.00 2.04 < 0.01 3.00 0.46 0.39

Table 6.3: Safe bounds of the chromatic number on DIMACS instances.
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ADAL SDPNAL+ Norm Bound Opt Norm Bound Error Bound Dual Bound
Graph ObjVal CPU-time ObjVal CPU-time best found at best found at best found at tot-time best found at tot-time
abb313GPIA 8.00 615.04 8.00 2949.22 - - 8.00 317.51 7.84 245.06 0.46 8.01 55.61 4.48
ash331GPIA 3.38 125.34 3.38 17.85 3.12 60.83 3.38 88.25 3.37 60.85 0.12 3.38 38.24 1.01
ash608GPIA 3.33 265.72 3.33 41.34 2.84 92.45 3.33 201.23 3.33 138.20 0.25 3.31 129.25 1.34
ash958GPIA 3.33 529.68 3.33 124.35 - - 3.33 412.24 3.19 197.96 1.13 - - 2.51
will199GPIA 6.10 156.39 6.10 32.11 4.05 90.26 6.10 132.49 6.09 90.28 0.25 6.10 124.61 1.22
1-Insertions_4 2.23 1.93 2.23 1.01 2.23 0.40 2.23 0.98 2.23 0.40 < 0.01 2.23 0.34 0.07
1-Insertions_5 2.28 19.71 2.28 15.04 2.26 5.62 2.28 12.96 2.28 5.62 < 0.01 2.28 2.64 0.56
1-Insertions_6 2.31 337.22 2.31 100.65 2.23 140.52 2.31 200.17 2.31 140.53 0.2 2.31 22.80 3.29
2-Insertions_3 2.10 0.38 2.10 0.57 2.10 0.10 2.10 0.11 2.10 0.10 < 0.01 2.10 0.18 0.04
2-Insertions_4 2.13 25.27 2.13 9.06 2.13 5.31 2.13 11.76 2.13 5.31 < 0.01 2.13 1.59 0.36
2-Insertions_5 2.16 544.91 2.16 109.90 2.11 207.86 2.16 295.30 2.16 207.87 0.4 2.16 52.67 4.99
3-Insertions_3 2.07 1.22 2.07 1.00 2.06 0.23 2.07 0.55 2.07 0.23 < 0.01 2.07 0.31 0.06
3-Insertions_4 2.09 125.48 2.09 29.79 2.08 26.00 2.09 52.68 2.09 26.01 < 0.01 2.09 8.39 2.37
3-Insertions_5 - - 2.10 3568.47 1.92 2551.74 2.10 3255.45 2.10 2551.80 4.8 2.11 130.38 17.94
4-Insertions_3 2.05 2.39 2.05 2.75 2.03 0.40 2.05 1.23 2.05 0.40 < 0.01 2.05 0.38 0.08
4-Insertions_4 2.06 563.58 2.06 130.23 2.04 118.00 2.06 160.38 2.06 118.01 0.2 2.06 8.89 6.64
1-FullIns_3 3.06 0.32 3.06 0.35 3.06 0.14 3.06 0.20 3.06 0.14 < 0.01 3.06 0.13 0.05
1-FullIns_4 3.12 4.37 3.12 2.45 3.12 1.48 3.12 3.31 3.12 1.48 < 0.01 3.12 1.39 0.10
1-FullIns_5 3.18 71.27 3.18 17.55 3.16 26.45 3.18 49.18 3.18 26.45 < 0.01 3.18 18.65 1.52
2-FullIns_3 4.03 1.34 4.03 0.39 4.03 0.29 4.03 1.07 4.03 0.41 < 0.01 4.03 0.74 0.08
2-FullIns_4 4.06 57.51 4.06 9.21 4.04 5.99 4.06 49.66 4.06 21.58 < 0.01 4.06 26.76 1.64
2-FullIns_5 4.08 2670.31 4.08 184.26 3.78 1461.35 4.08 1935.61 4.08 1461.37 2.8 4.08 381.59 19.29
3-FullIns_3 5.02 6.12 5.02 1.18 5.02 1.96 5.02 4.79 5.02 1.96 < 0.01 5.02 4.47 0.15
3-FullIns_4 5.03 329.51 5.03 24.03 5.03 110.09 5.03 273.46 5.03 205.20 0.3 5.03 58.31 4.94
3-FullIns_5 - - 5.05 1769.01 1.25 3413.16 5.04 3600.31 5.03 3554.98 10.9 5.04 2965.54 18.40
4-FullIns_3 6.01 21.19 6.01 2.30 6.01 7.97 6.01 20.86 6.01 7.97 < 0.01 6.01 1.65 0.32
4-FullIns_4 6.02 1979.86 6.02 88.40 6.02 808.21 6.02 1664.70 6.02 808.22 2.3 6.02 283.54 16.15
5-FullIns_3 7.01 61.22 7.01 2.72 7.01 24.23 7.01 55.09 7.01 24.23 < 0.01 7.00 12.48 0.71
5-FullIns_4 - - 7.01 207.83 7.01 3600.07 7.01 3600.02 7.01 3600.10 6.9 7.01 137.49 21.11
wap01a - - 41.00 309.86 40.61 3600.31 40.40 3600.41 40.65 3600.60 10.68 40.38 3575.61 20.34
wap02a 40.00 538.62 40.00 473.42 - - 40.00 424.41 38.50 106.12 0.90 - - 3.29
wap03a 40.00 1594.69 40.00 2668.31 - - 40.00 1341.59 39.46 817.83 2.26 40.00 1507.80 10.12
wap04a 40.00 2175.13 40.00 2658.54 - - 40.00 1948.48 40.00 1860.39 3.51 40.00 2179.94 13.84
wap05a 50.00 1099.11 50.00 24.19 - - 50.00 609.10 50.00 621.27 1.44 50.00 918.93 11.72
wap06a 40.00 63.35 40.00 69.47 - - 40.00 50.88 33.83 50.57 0.10 - - 0.74
wap07a 40.00 309.93 40.00 426.97 - - 39.98 204.64 39.36 206.91 1.84 40.00 145.89 3.00
wap08a 40.00 278.67 40.00 224.35 - - 40.00 211.24 39.97 160.02 1.01 - - 2.26
qg.order30 30.00 32.22 30.00 21.30 - - 29.98 27.02 29.99 26.04 0.06 - - 0.30
qg.order40 40.00 153.25 40.00 82.68 - - 40.00 108.10 39.99 125.77 0.72 - - 1.08
qg.order60 60.00 1684.60 60.00 496.86 - - 59.99 1149.90 59.96 1232.78 3.66 - - 9.74

Table 6.4: Safe bounds of the chromatic number on DIMACS instances.
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ADAL SDPNAL+ Norm Bound Opt Norm Bound Error Bound Dual Bound
Graph ObjVal CPU-time ObjVal CPU-time best found at best found at best found at tot-time best found at tot-time

ϑ(G) + 1000 inequalities from [59]
DSJC500.5 22.90 16.57 22.90 38.73 21.88 13.83 22.90 13.71 22.86 13.78 0.08 22.90 13.77 0.54
DSJC1000.1 8.36 34.73 8.36 154.79 - - 8.35 24.06 8.23 24.11 0.05 8.36 25.85 0.56
DSJC1000.5 32.11 33.63 32.11 154.82 25.35 27.76 32.11 27.05 32.02 27.10 0.05 32.11 34.50 1.18
myciel7 2.85 256.14 2.85 13.77 2.85 113.71 2.85 112.93 2.85 112.93 0.14 2.85 13.39 6.77
mug88_25 3.00 17.66 3.00 33.92 2.78 2.47 3.00 3.07 2.98 3.07 0.00 - - 0.25
mug100_25 3.00 23.13 3.00 97.57 2.74 6.55 3.00 6.61 2.99 6.61 0.03 - - 0.28
abb313GPIA 8.00 663.11 8.00 3466.57 - - 7.96 336.59 7.84 337.24 4.21 8.00 178.77 4.49
1-Insertions_6 2.33 1014.77 2.33 233.15 2.30 529.41 2.33 533.20 2.33 533.22 1.06 2.33 65.62 8.98
2-Insertions_5 2.18 820.34 2.18 373.95 2.14 426.93 2.18 426.83 2.18 426.84 0.77 2.18 100.30 7.21
3-Insertions_5 - - - - 1.86 3600.16 2.11 3600.08 2.11 3600.17 7.77 2.11 415.32 18.32
4-Insertions_4 2.07 622.86 2.07 363.73 2.06 339.75 2.07 324.79 2.07 324.80 1.09 2.07 87.32 6.53
1-FullIns_5 3.19 2005.78 3.19 141.02 3.15 308.58 3.19 303.53 3.19 303.54 0.49 3.19 59.14 35.67
5-FullIns_4 - - 7.01 257.83 7.01 3197.10 7.01 3210.44 7.01 3210.48 7.23 7.01 132.12 21.35
wap03a 40.00 1635.81 - - - - 39.98 1374.89 39.99 1376.46 3.01 40.00 1496.25 11.16
wap04a 40.00 2300.91 - - - - 39.98 1980.45 38.97 994.79 3.66 40.00 2302.30 13.66

ϑ(G) + 2500 inequalities from [59]
DSJC500.5 22.90 80.22 22.90 43.81 21.88 13.83 22.90 13.71 22.86 13.78 0.08 22.90 79.92 0.60
DSJC1000.1 8.36 40.43 8.36 167.61 - - 8.35 24.06 8.23 24.11 0.05 8.36 29.44 0.57
DSJC1000.5 32.11 125.35 32.11 157.33 25.35 27.76 32.11 27.05 32.02 27.10 0.05 32.11 91.06 2.39
myciel7 2.87 322.10 2.87 13.80 2.85 113.71 2.85 112.93 2.85 112.93 0.14 2.87 63.14 3.51
mug88_25 3.00 83.45 3.00 81.22 2.78 2.47 3.00 3.07 2.98 3.07 0.00 3.00 36.93 1.22
mug100_25 3.00 92.20 3.00 97.93 2.74 6.55 3.00 6.61 2.99 6.61 0.03 3.00 85.68 1.43
abb313GPIA 8.00 684.48 8.00 2611.71 - - 7.96 336.59 7.84 337.24 4.21 8.00 250.42 4.60
1-Insertions_6 2.34 828.31 2.34 553.82 2.30 529.41 2.33 533.20 2.33 533.22 1.06 2.34 111.23 6.91
2-Insertions_5 2.19 795.11 2.19 576.61 2.14 426.93 2.18 426.83 2.18 426.84 0.77 2.19 157.16 5.79
3-Insertions_5 - - - - 1.86 3600.16 2.11 3600.08 2.11 3600.17 7.77 2.12 1133.88 18.54
4-Insertions_4 2.08 619.78 2.08 537.75 2.06 339.75 2.07 324.79 2.07 324.80 1.09 2.08 143.96 4.82
1-FullIns_5 - - 3.19 145.95 3.15 308.58 3.19 303.53 3.19 303.54 0.49 3.19 270.64 34.75
5-FullIns_4 - - 7.01 308.79 7.01 3197.10 7.01 3210.44 7.01 3210.48 7.23 7.01 149.04 20.10
wap03a 40.00 1922.71 - - - - 39.98 1374.89 39.99 1376.46 3.01 40.00 1935.99 10.83
wap04a 40.00 2630.68 - - - - 39.98 1980.45 38.97 994.79 3.66 40.00 2011.30 14.42

ϑ(G) + 5000 inequalities from [59]
DSJC500.5 22.90 462.24 22.90 46.24 21.88 13.74 22.90 13.49 22.86 13.61 0.12 22.90 456.20 1.14
DSJC1000.1 8.36 62.30 8.36 163.05 - - 8.35 23.90 8.23 23.94 0.04 8.36 48.59 0.70
DSJC1000.5 32.11 590.96 32.11 168.79 25.35 26.53 32.11 27.07 32.02 27.11 0.04 32.11 590.91 2.12
myciel7 2.89 584.85 2.89 15.44 2.85 113.86 2.85 115.04 2.85 115.04 0.14 2.89 132.16 3.90
mug88_25 3.00 199.54 3.00 116.73 2.78 2.55 3.00 2.45 2.98 2.45 0.00 3.00 78.35 1.56
mug100_25 3.00 216.11 3.00 154.84 2.74 6.73 3.00 6.88 2.99 6.88 0.03 3.00 190.52 1.39
abb313GPIA 8.00 734.66 - - - - 7.96 333.23 7.84 333.78 4.00 8.00 356.07 4.36
1-Insertions_6 2.36 1351.31 2.36 258.02 2.30 530.00 2.33 529.56 2.33 529.58 1.05 2.36 218.89 8.25
2-Insertions_5 2.19 906.51 2.19 572.94 2.14 424.90 2.18 424.94 2.18 424.96 0.77 2.19 274.81 5.39
3-Insertions_5 - - - - 1.86 3600.04 2.11 3600.02 2.11 3600.11 7.72 2.12 1737.21 15.49
4-Insertions_4 2.09 756.11 2.09 831.07 2.06 317.93 2.07 322.20 2.07 322.21 1.08 2.09 315.23 4.01
1-FullIns_5 - - 3.19 179.80 3.15 305.48 3.19 295.42 3.19 295.42 0.46 3.19 554.77 22.29
5-FullIns_4 - - 7.01 344.28 7.01 3203.17 7.01 3198.19 7.01 3198.25 7.28 7.01 293.47 17.54
wap03a 40.00 2587.76 - - - - 39.98 1452.74 39.99 1454.26 3.01 40.00 2383.76 15.00
wap04a - - - - - - 39.98 1987.05 38.97 1000.33 3.69 40.00 3129.61 18.72

Table 6.5: Safe bounds of the chromatic number on DIMACS instances.
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Conclusions and outlook

This thesis covers Semidefinite relaxations obtained by the strong Lift-and-Project operator intro-

duced by Lovász and Schrijver applied to two fundamental Combinatorial Optimization problems,

namely the Maximum Stable Set and the Graph Coloring Problem.

In Chapter 4 we introduced a new SDP relaxation for the Stable Set problem obtained by the

lifting of the so-called nodal polytope, a compact linear formulation of this problem. At first,

theoretical aspects have been addressed by showing some classes of facet-defining inequalities for

the stable set polytope implied by our proposal, allowing to define a clear comparison with the

well-known hierarchy of SDP relaxations for this problem. Then, computational experiments have

been reported. Although the application of the operator produces SDPs of polynomial size, they

are challenging to solve with general-purpose SDP solver, such as interior-point methods for SDP.

Hence, in order to mitigate such computational burden a cutting-plane scheme within a state-of-the-

art Alternating Direction Method of Multiplier have been employed. This setup led us to investigate

the behaviour of SDP relaxations on a wide benchmark.

In order to write the nodal inequality corresponding a node v in the graph G, one needs to

compute the stability number α(G[Γ(v)]) of the subgraph induced by its neighborhood. Clearly,

replacing this coefficient with a polynomially computable upper bound, maintains the validity of

the inequality for the stable set polytope. Although we were able to afford this computation in our

experiments, it would be interesting to investigate the substitution of α(G[Γ(v)]) with θ(G[Γ(v)])

and studying if and how the theoretical properties we were able to prove for N+(NOD(G)) are

affected. In the best-case scenario, this would imply the existence of a polynomial-time separation

algorithm for a class of inequalities which includes all clique, orthonormal representation, odd wheel,

odd antihole and almost all antiweb inequalities.

Despite Lift-and-Project applications have been widely studied on the Stable Set problem, to the

best of our knowledge none on the Graph Coloring problem have been presented. Hence, in Chapter 5

we investigated the application of the Lovász and Schrijver operator to the compact representative

formulation due to Campelo et al. [12]. The numerical results pointed out the existence of a class of

graphs with a significant gap χ(G)−θ(Ḡ), where the proposed SDP relaxation can yield strong lower
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bounds to the chromatic number. In particular, these can be better than the fractional chromatic

number, which is a remarkable threshold to cross even by strong SDP relaxations. Computations

have been carried out by a standard general-purpose SDP algorithm which has been able to handle

only a restricted set of small graphs. To our knowledge, a deeper study of alternative relaxations of

M+(REP(G)) may both lead to better bounds and smaller models. While, as in related experiences,

designing tailored algorithms with clever symmetry handling seems the natural direction to be

followed in order to increase problem size.

Although interior-point methods are well-established for small and medium size SDPs, they

become soon impractical for large scale semidefinite programs, such as those obtained by the ap-

plication of the Lift-and-Project operator previously discussed, for example. On the other hand,

Alternating Direction Methods of Multipliers currently represent the most popular first-order alter-

natives, being capable to scale to much larger semidefinite programs. This of course at some cost in

accuracy, that should be correctly addressed when bounding the optimal solution of some combina-

torial optimization problem. To this purpose, in Chapter 6 we presented an implementation of an

ADMM for SDPs with inequality constraints. Moreover, we reported three different methodologies

to retrieve a safe bound on their optimal solutions. The extensive computational experiments had a

twofold intent: from the one hand, we were able to identify classes of instances where our implemen-

tation is competitive with the state-of-the-art solver SDPNAL+, from the other hand we investigated

the trade-off between the quality of the valid bounds and the computational burden of the three

safe-bound methods, showing that in general a good dual bound - even of moderate quality - can

be identified despite the convergence criterion is far to be met.

Currently, we are developing a branch-and-bound framework in python for solving the stable set

problem employing semidefinite relaxations solved by our implementation of the ADMM, equipped

with safe bounds procedures. It would be highly interesting to investigate how the valid bounds pro-

duced by these procedure may allow to stop the ADMM prematurely when solving the subproblems,

yielding a possible speedup of the implicit enumeration.
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