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INTRODUCTION 
 

In recent years the diagnostic imaging field has found new strategies to exceed its 

limitations related to uncertainties in the response to therapy and prognostic evaluation 

looking for new tools able to detect tissue characterization with a more precise and deeper 

approach than just visual assessment through a quantitative evaluation of images. With 

the genomic revolution in the early 1990s, medicine and biology fields has started to 

conceive that diseases has a genetic specific fingerprint, medical research has been 

driven to deepen the basis of human disease on a genomic level with the aim of provide 

precise therapies’ strategies tailored to the specific genetic makeup of a pathology [1; 2].  

The “Omic” revolution has also involved the field of medical imaging, through radiomics [3; 

4]. Such technology aims to extract quantitative features from imaging studies to improve 

disease characterization.  

Radiomics, is a new emerging Imaging field consisting of an automated high-

throughput extraction of huge number of quantitative features and has the capability to 

analyze intratumoral heterogeneity in a non-invasive manner in order to extract a 

quantitative imaging biomarkers potentially, aiming at exploiting personalized medicine [2; 

5]. Clearly, Radiomics is a method of research that extracts quantitative radiologic data 

from medical images (radiomic data) and explores the correlation with clinical outcomes [6; 

7]. In addition, radiomics profiling has shown to be superior to conventional approaches in 

predicting a patient's response to treatment. The process used in radiomics involves the 

identification of vast amount of quantitative features within digital images, storage of such 

data in federated databases (that is, a system in which several independent databases 

function as a single entity) and the subsequent mining of the data for knowledge extraction 

and application. Innumerable quantitative features already be extracted using high-

throughput computing from medical images such as CT, MR, PET and US [8; 9]. 
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To date, Radiomics has becoming central in emerging precision personalized-

medicine especially for oncologic patients; traditional Imaging has been shifting from 

diagnostic and staging to be a quantitative tool in detecting cancer, prognosis prediction 

and assessment of response to therapy [10]. Today, Radiomics has the expectancy to be 

an additional skill to provide a quantitative evaluation of tumor in a complementary manner 

to the observational approach. It should be considered as a helpful tool for the physicians 

to manage oncologic patients by building a structured workflow by adding some objective 

data to traditional clinical evaluation.   

Radiomics parameters are extracted from a specific regions of interest (ROIs) [11], 

selected on encrypted medical images, and the mineable quantitative data reflect 

neoplasm phenotypes and heterogeneity, usually correlated with tumor aggressiveness 

[11-13].  Then, radiologists in a single image evaluation can obtain an estimation of 

volumetric tumor heterogeneity in terms of radiomic parameters (i.e. tumor shape and 

textural parameters). In that scenario, Oncologists may have an additional non-invasive 

biomarker to complement the biopsy that often can result too reductive or not diagnostic 

especially in case of small lesion [14]. 

This recent landscape of Imaging, which is showing fundamental for improving 

clinical practice of oncologic patients, has been attracting the attention of many 

researchers, driven by promising results achieved through integration of Radiomics data 

with clinical biomarkers, in fact between 2013 and 2018 were published 553 original 

articles concerning Radiomics [15]. Radiomics-approach resulted to be a promising tool for 

oncologists to set, modify or assess treatment protocol according to evidence-based 

medicine [16]. In this way, Radiomics could provide a quantitative measurable difference 

of radiomic parameters between baseline and post-treatment images that may reflect 

intralesional radiomics changes that could be induced by therapy, such as necrosis or 

vessel tortuosity, or by tumor progression [17; 18].  
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The aim of this thesis is to investigate the pivotal role of Radiomics in diagnosis, 

prognosis and evaluation of response to therapy in cancer patients, through an accurate 

description of promising results and main limitations of quantitative approach.  
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SURGERY IN COLORECTAL CANCER 
 

Surgery remains the mainstay for the treatment of colon and rectal cancer.  

Localization of the tumor and its histopathology are important in selecting an operative 

plan and the optimal resection margins. The presence of a lesion at watershed areas of 

vascular supply may require a more extensive resection of the colon.  Colonoscopy is 

widely used today and represents the optimal means of detecting a cancer, identifying its 

location, providing histopathologic material, and tattooing for intraoperative localization 

when required. Precise localization of the lesion with ink tattooing is paramount in the era 

of laparoscopy since manual palpation is not possible. The lesion should be inked in three 

separate areas around the circumference of the colon wall distal to the lesion. Computer 

tomography (CT) allows the localization of larger lesions, identification of local organ 

invasion, and provides important staging information regarding the presence of 

extracolonic disease, particularly liver involvement. For rectal cancer patients, the tumor-

related factors of prognostic significance which may be evaluated prior to the treatment of 

rectal cancer include the depth of penetration of the tumor through the rectal wall, the 

presence or absence of metastases to the regional and pelvic lymph nodes, and the 

presence of distant metastases. So preoperative staging includes assessment of local 

staging by ERUS, MRI, and CT. 

The preoperative detection of distant metastasis can influence the initial management of a 

colorectal cancer patient. Computed tomography is the most widely used imaging modality 

to screen for liver metastasis because of its availability and relative low cost compared to 

positron emission tomography (PET). 
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Effective preparation of the patient requiring a colonic resection for colon cancer or an 

anterior resection for rectal cancer requires knowledge of the tumor location, clinical stage 

and patient’s physiologic status. A variety of scoring systems are available for grading 

operative risk of surgical patients. The most widely applied scoring system is the American 

Society of Anesthesia (ASA) score; however, this tool only provides information regarding 

the risk of an anesthesia complication given a certain physiologic status. 

Bowel preparation has historically been considered an essential component of the 

preoperative preparation of the patient. Mechanical cleansing combined with oral 

antibiotics reduces the concentration of aerobic and anaerobic bacteria within the colon 

and decreases the incidence of wound infection from 35 to 9%. However, more recent 

prospective randomized studies have questioned the additional benefit of luminal 

preparation, compared to the use of appropriate intravenous antibiotics administered in a 

timely manner. 

For colon cancer, the principles of an oncologic resection were a wide mesenteric 

resection achieved by ligating the feeding artery at its origin with adequate distal and 

proximal margins. It is recommended that a minimum of 12 lymph nodes should be 

examined. There are several studies that support a survival benefit for patients who have 

12 or more lymph nodes examined after surgical resection. This benefit most likely occurs 

for two reasons. First, the greater number of lymph nodes examined increases the 

accuracy of the final pathologic staging, a phenomenon known as stage migration. 

Second, there is clearly an oncologic benefit to a radical mesenteric resection, where all 

involved lymph nodes are resected. For rectal cancer, total mesorectal excision (TME) 

should typically be performed. 
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Right colectomy  

The patient is placed supine on the operating table. If laparotomy rather than a minimally 

invasive technique is chosen, a vertical midline incision is made sufficiently long to allow 

complete visualization of the operative field. After the incision is fashioned, a thorough 

examination of the abdominal and pelvic contents should be performed. Particular 

attention should be paid to potential metastatic sites, especially the liver. The resectability 

of the tumor should be assessed with minimal manipulation of the lesion. It is important to 

determine if disease is adherent to adjacent viscera which should then be included as an 

en bloc resection. It is rare that a right-sided tumor is unresectable, however, extensive 

involvement of the vena cava, superior mesenteric artery, or the pancreas may dictate a 

palliative resection or bypass procedure. The key to an oncologically safe and effective 

resection of a colon cancer requires clear lateral margins, resection of the locoregional 

lymph node bearing mesentery for both cure and staging, and performance of an accurate 

and well-vascularized anastomosis. The right colon mesentery is elevated off the 

retroperitoneum, and the duodenum is identified. The lateral attachments are incised and 

the hepatic flexure is fully mobilized. For cancer operations, it is best to resect the 

omentum with the specimen, so when entering the lesser sac, the lesser omentum or 

gastrocolic attachments are divided. The ileocolic and right or hepatic branch of the middle 

colic vessels are ligated at their origins. The terminal ileum should be divided 10–15 cm 

proximal to the ileocecal valve to allow for good vascular supply. The transverse colon is 

divided just to the right of the main trunk of the middle colic artery. The ileocolic 

anastomosis can be fashioned according to the desire of the operating surgeon. We 

usually perform an end-to-lateral ileo-colic anastomosis by anastomosing the bowel 

segments with a circular stapler and closing the remaining colostomy with a linear stapler 

or sutures. 
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Figure 1. Levels for vascular ligation and colonic transition for a right hemicolectomy 

 

Extended Right Colectomy  

An extended right colectomy should usually be performed for any lesion involving the 

transverse colon. This procedure once again should achieve complete resection, lymph 

node clearance, and most importantly two optimally vascularized bowel segments for 

anastomosis. The operation proceeds in similar fashion as the right colectomy described 

above. However, rather than proceeding through the transverse colon mesentery to ligate 

and divide the right branch of the middle colic artery, dissection continues in the 

retroperitoneal plane to identify the main middle colic arterial trunk anterior to the 

pancreas. This vessel is ligated and divided. The right colon is then mobilized medially as 

before, and the lesser omentum is divided along the entire transverse colon. The splenic 

flexure is released and the bowel with its mesentery is divided just proximal to the left colic 

artery which is preserved for right-sided lesions. The left colic may be sacrificed for left 

transverse colon lesions, where a more distal colonic anastomosis is desired. The ileocolic 

anastomosis is then constructed based upon surgeon preference. 
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Left Colectomy  

The left colon can be mobilized in either a lateral to medial or medial to lateral approach. 

For the lateral to medial approach, the small bowel is packed to the right upper quadrant. 

The lateral peritoneum from the sigmoid colon to the splenic flexure is incised. The left 

colon mesentery is elevated off the retroperitoneum, so the left ureter is exposed and the 

colon and its mesentery are brought to the midline. This allows the inferior mesenteric 

artery (IMA) to be ligated at its origin at the aorta and the inferior mesenteric vein (IMV) to 

be ligated near the ligament of Treitz and the inferior border of the pancreas. For the 

medial to lateral approach, the small bowel mesentery is mobilized to the right upper 

quadrant to expose the origin of the inferior mesenteric artery located just caudal to the 

third portion of the duodenum. The superior rectal artery is grasped at the level of the 

sacral promontory, the peritoneum is incised, and the retroperitoneum is entered. The left 

ureter is reflected into the retroperitoneum and the IMA is traced up to its origin. A window 

is then created on the cephalad side of the artery, medial to the IMV, and the artery is then 

ligated. The inferior mesenteric vein is ligated at the base of the pancreas. The mesentery 

is elevated off the retroperitoneum toward the abdominal wall and the lateral attachments 

are then incised. For either approach, the splenic flexure is mobilized by separating the 

omentum from the transverse colon. This completely opens the lesser sac and allows the 

posterior attachments to the inferior border of the pancreas to be divided. The bowel is 

transected with at least a 5 cm proximal margin and the distal site of resection on the top 

of the rectum. We perform an end-to-end circular stapled anastomosis, dividing the 

rectosigmoid junction with a linear stapler or purse-string suture. A leak test with air 

insufflation of a submerged anastomotic segment should be performed in all cases. 

Resection of proximal left colon lesions may require division of the middle colic artery to 

allow the right transverse colon to reach the rectal stump for an anastomosis. However, an 
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extended right colectomy and ileosigmoid or ileorectal anastomosis may be preferable if 

there is any concern related to the blood supply. Another alternative is to perform a 

retroileal right colon to rectum anastomosis if maintenance of the right colon is desired. 

The type of anastomosis is left to the discretion of the surgeon. 

 

Figure 2. Left colon cancer 

The small bowel mesentery is mobilized to the right upper quadrant to expose the 

origin of the IMA located just caudal to the third portion of the duodenum. An incision 

running along the base of the left colic and sigmoid mesentery from the sacral promontory 

to the ligament of Treitz, exposes the aorta, bifurcation of the common iliac arteries, and 

IMA vein. The IMA is ligated and divided proximal to the take-off of the left colic artery. The 

left branch of the middle colic vessels requires ligation and division for a formal left 

colectomy. 
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Laparoscopic Colon Resection for Cancer  

The application of laparoscopic techniques has been used in colorectal surgery for more 

than 15 years. The short-term benefits of laparoscopy have been demonstrated, such as 

faster return of bowel function, shorter length of stay, and less narcotic use, but there was 

minimal short-term quality of life benefit with laparoscopy. Further studies stated that 

overall survival was equivalent between the laparoscopic and open groups. Additionally, 

there was no difference in survival or recurrence for any stage of cancer. Furthermore, it 

was demonstrated that conversion did not have a negative impact on the oncologic 

outcome of these patients. Equivalent survival and recurrence rates stage for stage have 

been reported for laparoscopic and open colectomy for colon cancer. A significant learning 

curve is associated with laparoscopic colectomy. Nevertheless, with adequate experience, 

laparoscopic colectomy for right- or left-sided colon cancers is safe and provides similar 

outcomes to open colectomy.  

 

Rectal Cancer 

The type of surgery used for rectal cancer depends on the stage of the cancer, where it is, 

and the goal of the surgery. Radiation and chemotherapy are often given before and/or 

after surgery.  

Local excision is an appropriate treatment modality for carefully selected patients with 

cT1N0 rectal cancer without high-risk features. Transanal excision may also be 

appropriate for patients with more advanced cT disease but who are considered medically 

unfit for radical cancer surgery. Whereas local excision offers advantages of minimizing 

operative risk and functional sequelae, it does not adequately remove or pathologically 

stage the mesorectal lymph nodes.  
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Distinguishing early depth of invasion (ie, Tis, T1, T2) may be difficult with MRI, and EUS 

may be utilized as a complementary staging tool in certain situations. Clinical criteria for 

local excision typically include small (<3 cm) adenocarcinomas limited to <30% of the 

rectal circumference, that are well or moderately differentiated, without lymphovascular 

invasion, perineural invasion, tumor budding on tissue biopsy, and no clinical nodal 

involvement, and that are accessible transanally for full-thickness excision. In general, 

local excision is considered an oncologically inadequate treatment for cT2 lesions because 

the local recurrence rate ranges from 26% to 47%, and these tumors have an elevated risk 

for harboring occult nodal disease. Radical resection should typically be recommended 

under these circumstances. 

For curative resection of tumors of the upper third of the rectum, a tumor-specific 

mesorectal excision should typically be performed as part of a low anterior resection (LAR) 

with the mesorectum divided, ideally, at least 5 cm below the distal margin of the tumor.  

Total mesorectal excision (TME) in conjunction with an LAR or an abdominal perineal 

resection involves precise sharp dissection and removal of the entire rectal mesentery, 

including that distal to the tumor, as an intact unit. For tumors of the middle and lower 

thirds of the rectum, TME should typically be performed. Appropriate surgical technique is 

integral to optimizing oncological outcomes and minimizing morbidity and should follow the 

principles and anatomic planes of a TME. Dissection between the visceral and parietal 

layers of the endopelvic fascia facilitates en bloc removal of the rectal cancer and 

associated mesentery, lymphatics, and tumor deposits. Mesorectal excision can preserve 

the autonomic nerves and reduce intraoperative bleeding and the rate of local recurrence.  

Conventional rectal surgery is associated with a significant incidence of sexual and urinary 

dysfunction. The extent of resection margins in rectal cancer remains controversial. 

Although the first line of rectal cancer spread is upward along the lymphatic course, tumors 



 16 

below the peritoneal reflection also spread distally by intramural or extramural lymphatic 

and vascular routes. When distal intramural spread occurs, it is usually within 2.0 cm of the 

tumor, unless the lesion is poorly differentiated or widely metastatic. 

 

Figure 3. Correct TME dissection versus an incorrect dissection. The dissection should proceed between the 
mesorectal fascia and the pelvic wall fascia to ensure a “complete” TME. 

 

Sphincter-sparing procedures for resection of mid and some distal rectal cancers have 

become increasingly prevalent as their safety and efficacy have been established. The 

advent of circular stapling devices is largely responsible for their increasing popularity and 

utilization. An LAR involves dissection and anastomosis below the peritoneal reflection 

with ligation of the superior and middle hemorrhoidal arteries. An extended LAR indicates 

complete mobilization of the rectum down to the pelvic floor with division of the lateral 

ligaments and posterior mobilization through Waldeyer’s fascia to the tip of the coccyx. 

Additionally, there is dissection of the plane between the anterior rectal wall and the 

vagina in a female patient and dissection of the plane between the rectum and the 

prostate in a male patient to a level distal to the inferior margin of the prostate gland. As 

long as the surgeon can obtain a distal margin of at least 2 cm, an anastomosis can be 

considered appropriate if technically feasible. Body habitus, adequacy of the anal 
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sphincter, encroachment of the tumor on the anal sphincters, and adequacy of the distal 

margin are all factors in determining the applicability of a sphincter-sparing operation. 

 

Figure 4. Treatment options for rectal cancer depending on stage and location.  

Stage I (T1N0, T2N0 – the cancer is confined to the rectal wall, and no nodes are involved). Distal rectal 
cancers: T1 (invasion into the submucosa only): Local excision; Radical resection, often an APR; Adjuvant 
therapy is usually not recommended. Distal rectal cancers: T2 (invasion into the muscularis propria): Local 
excision with preoperative or postoperative adjuvant therapy; Radical resection without adjuvant therapy, 
often an APR. Mid rectal cancer: T1: TEM (transanal endoscopic microsurgery); Radical resection, usually 
an LAR with low anastomosis. A temporary proximal diverting ostomy is often required; Adjuvant therapy is 
usually not recommended. Mid rectal cancer: T2: TEM with either preoperative or postoperative adjuvant 
therapy; Radical resection similar to a T1 cancer; Adjuvant therapy is not recommended if a radical resection 
is performed but is recommended before or after a TEM resection. Upper rectal cancers: T1 and T2: LAR; 
TEM?  

Stage II and Stage III cancers [Stage II cancers have invasion into the mesorectal fat (T3) but no involved 
mesorectal lymph nodes. Stage III cancers are any rectal cancer (T1, T2, or T3) but with involved lymph 
nodes.] Distal rectal cancers: Preoperative adjuvant therapy is most often recommended followed by a 
radical resection, usually an APR; If preoperative imaging does not clearly define the stage of the cancer, 
resection can be done first followed by postoperative adjuvant therapy. Mid rectal cancers: Same as above 
for distal rectal cancers except an LAR is usually performed instead of an APR. Upper rectal cancers: LAR, 
with either preoperative or postoperative adjuvant therapy.  

Stage IV cancers: Treatment for any cancer is dependent on the extent of metastasis. With better surgical 
and medical treatments for metastatic disease, locoregional control of the primary should be aggressive and 
similar to the above recommendations except in the most advanced cases. Key: LE local excision, short XRT 
short-course radiation therapy given two times a day for 5 days in larger fractions, ChXRT long-course 
therapy given in 30 smaller fractions over weeks in combination with chemotherapy 

Laparoscopically Assisted Resections for Rectal Cancer 
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The application of laparoscopy for the treatment of intraabdominal malignancies including 

proctectomy for rectal cancer is now being performed. In these operations, part of the 

procedure is done using the laparoscope, and completion of the procedure is in the 

traditional manner. In particular, exploration and mobilization of the colon and rectum can 

be done with the laparoscope and laparoscopic instruments. Ligation of the vascular 

pedicle is performed with laparoscopic clips, vascular stapling devices, or radiofrequency 

coagulation devices. The improved optics of laparoscopy can provide a much better view 

in the pelvis, thus facilitating rectal dissection. In the recent years, there has been an 

increased use of robotic more than laparoscopic resection for rectal cancer. Most often, 

however, the actual resection of the bowel and an anastomosis are still more easily 

performed in an extracorporeal manner. The main questions about laparoscopic- and 

robotic-assisted proctectomy for colorectal cancer are whether they provides the same 

TME specimen as traditional open techniques, and whether there is any other unique 

biologic alteration in the laparoscopic procedure that leads to a change in survival or in 

recurrence patterns. It is of paramount importance that laparoscopic and robotic resection 

follows the same oncologic principle as open surgery including precise or better TME. The 

blood loss is usually less. Most of the studies report earlier return of bowel function, 

decreased hospital stay, and reduction in pain. The rate of anastomotic leak in sphincter 

sparing rectal surgery is comparable between two approaches and is approximately 10% 

and can be as high as 17%. Also, there have been two reports of an increase in erectile 

dysfunction with the minimally invasive rectal resection versus open surgery.  

 

 

 



 19 

Robotic assisted surgery 

The advantages of a robotic platform over laparoscopy include stability of visualization, 

tireless retraction, improved exposure and precision, better instruments, and suturing 

movements. For rectal cancer specifically, the robot allows for a finer dissection of the 

rectum out of the tight space where it is located. The advantages of robotic surgery are 

especially applicable in cases like these, due to the difficulty of laparoscopic pelvic 

surgery. The improved ergonomics that robotics offer are therefore hugely beneficial in the 

treatment of colorectal conditions. The advantages of robotic colorectal surgery are 

expressed in a better postoperative recovery, lower anastomotic leak rate, lower 

conversion rate and better functional outcomes. There was no difference in survival or 

recurrence for any stage of cancer. It was demonstrated that conversion rate to open 

surgery was lower than laparoscopy. Equivalent survival and recurrence rates stage for 

stage have been reported for laparoscopic and robotic colorectal resections. A significant 

learning curve is associated with robotic surgery. 
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Technical Background 

Imaging has an important role in healthcare and is considered as a complementary 

knowledge to lab tests, patient demographic, and family information. The major topics in 

imaging informatics, include image resolution, image enhancement, denoising, fusion, and 

knowledge extraction. Commonly, after the images are acquired from the imaging 

modalities, they are processed by these methods in a processing pipeline with the end 

goal of producing image features or actionable knowledge to improve healthcare.  

Figure 5 illustrates the radiomics workflow for any imaging dataset, which may be 

2D, 3D, or of higher dimension. Component parts are: (1) identification of the location of 

the VOI to be analyzed, (2) annotation of the tissue with semantic features, (3) VOI 

segmentation, i.e., identification of the entire imaged volume of tissue to be analyzed, and 

(4) feature computation via human-engineered image features. In some cases, “delta” 

features [19; 20] may be computed by comparing individual feature values derived from 

different images acquired at different times. Collections of imaging features may be also 

created that combine features computed from multiple imaging methods. These imaging 

features may be summarized in a feature vector. 

 

Figure 5. Radiomic workflow 
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- VOI identification: Each and every VOI to be processed must first be identified, either 

semi-automatically or manually by a radiologist or automatically using computer aided 

detection approaches. In cancer imaging, e.g., when multiple tumors are present in a 

single imaging study, human effort is generally required to identify those that are 

clinically relevant, as in the case of index lesions scored with RECIST (“response 

evaluation criteria in solid tumors”). When computing delta radiomics features, 

matching of tumors across observations will also be required. 

- Annotation with semantic features: Semantic features are descriptive observations of 

image content. For example, semantic features of a lung tumor might include “left lower 

lobe,” “pleural attachment,” “spiculated,” “ground-glass opacity,” etc. However, 

extraction of semantic content from unstructured radiology reports may not be 

appropriate due to inconsistent and/or ambiguous vocabulary across observations and 

observers. Further, structured reports may not support the kinds of detailed 

observations required for making fine distinctions among tumor characteristics that may 

prove useful in classification or assessing response. Some semantic features, such as 

location, other morbidities, etc., are meant to be complementary to computational 

features; others, such as “spherical,” “heterogeneous,” etc., are correlated with 

computational features. One advantage of semantic annotations is that they are 

immediately translatable, i.e., they can be elicited in clinical environments without 

specialized algorithms (e.g., segmentation) or workstations. As such, they have shown 

interesting results in several radiogenomic studies [21; 22] 

- VOI segmentation: Radiomics features can be extracted from arbitrary regions within 

the image volume: In cancer imaging, e.g., a given region may contain an entire tumor, 

a subset of the tumor and/or a peritumoral region thought to be involved with or 

affected by the tumor. In all cases, these regions must be unambiguously identified 

(segmented) and input to the radiomics feature computation algorithms. This 
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segmentation step is the single most problematic aspect of conventional radiomics 

workflows, as the features computed from tumor volumes may be extremely sensitive 

to the specification of the volume to be analyzed. Each combination of tumor type and 

image modality presents its own challenges (including volume averaging of tissues 

within each voxel, tumor contrast with surrounding/adjacent structures, image contrast-

to-noise characteristics, and variations of image quality across vendor implementations 

and time). In addition, many algorithms require operator inputs, such as bounding 

boxes and/or seed points, and the segmentation outlines and radiomics features 

computed from them may be sensitive to these inputs. Thus, the state-of-the art today 

is such that each segmentation must be reviewed and possibly edited by a human 

observer in order for the radiomics features computed from it to be trusted. One 

potential mitigation is to ignore segmentation altogether and to compute only features 

that do not require complete edge-to-edge coverage of the tumor, i.e., histogram and 

texture features, which may be less sensitive to the exact tumor definition, and to 

ignore shape and margin sharpness features, which require accurate and consistent 

edge delineations.  

- Image feature computation: Conventional or human-engineered computational image 

features can be divided into four classes: those that describe (1) shape, (2) margin 

sharpness, (3) histogram features (e.g., mean, variance, kurtosis, maximum, 

minimum), and (4) texture features, which describe the spatial variation of gray values 

within the tumor. Within each class there are hundreds to thousands of individual 

features, for example, some texture features quantify the spatial variation of gray 

values across multiple scales and orientations, and shape features can similarly 

quantify edge irregularity at multiple scales. It is important to recognize that many 

image features are inter-correlated and, as a result, not all features may add 

independent predictive power to radiomics models. A standard approach in many 
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studies is to generate an autocorrelation matrix and combine correlated features into a 

single descriptor. Several groups have made available computer code and processing 

pipelines for the calculation of image features from volumetric image data and 

segmentations (or at least volumes of interest): see, e.g., the imaging biomarker 

explorer, the Quantitative Image Feature Engine, and pyRadiomics. 

An additional challenge is the need to standardize the methods for calculation of radiomics 

features so that identically intended features computed from the same data by different 

algorithms have the same name and values. Indeed, the same study referenced above 

that compared features computed from multiple segmentations also revealed that 

implementations from separate institutions of purportedly the same feature sometimes 

produced different values [23]. Much effort is underway to standardize feature naming and 

computation conventions, predominately led by the image biomarker standardization 

initiative and the Quantitative Imaging Network [24]. 

In addition to the challenges raised by segmentation, a final challenge is sensitivity of 

radiomics features to image acquisition and reconstruction, i.e., the heterogeneity of image 

acquisitions. Each clinical study uses their own combination of acquisition parameters, 

such as slice thickness, reconstruction kernel, MR pulse sequences, etc. In addition, many 

acquisition parameters are optimized for the particular patient under study (e.g., kilovolts 

[kV], milliamperes [mA] field of view). While radiologist interpretations are somewhat 

immune to these differences, computational radiomics features are by design sensitive to 

these choices.  
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IMAGE ANALYSIS 
 

Imaging modalities can be divided into anatomic, functional, and molecular screening. 

Each of them can contribute to disease interpretation, and the combination of their 

extracted information can supply a significant added value. Anatomic imaging modalities 

such as computerized tomography (CT), mammography, and MRI need to have high 

spatial resolution to accurately identify the structure of objects of interest (e.g., organs, 

lesions). Other imaging techniques focus on functional imaging and tend to have a lower 

spatial resolution, comparing with anatomic imaging. Relying on these techniques for an 

accurate structural identification will not be accurate enough, though they will able to help 

in under- standing the functional significance of the specific tissue. Example functional 

modalities include ultrasound Doppler that can help to analyze the blood flow and positron 

emission tomography that can help in recognizing metabolic processes. Therefore, 

functional imaging can help in finding ischemia, inflammation, necrotic regions, and cancer 

tissue. Another emerging technique is molecular imaging, a sub-field of functional imaging, 

in which we measure the expression of particular genes. This provides a potential platform 

for linking specific imaging analysis with a specific molecular gene expression pattern.  

Lastly, the importance of integrating the image information from two imaging types (e.g., 

molecular, functional, anatomical) to detect tissue changes was recognized and became 

very popular over the recent years. Such a cross-modality analysis can help in 

understanding the role of specific genes on the tissue structure/functionality. Two 

approaches were introduced: (1) a single machine such as functional magnetic resonance 

(fMRI) that can supply both anatomical and functional analyses, and (2) fusion of the 

information that is obtained from two separate modalities and will be detailed below in the 

“Image Registration” section.  
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Image fusion 

Image fusion is applied to construct a more detailed and representative output image by 

using image registration, feature extraction, and semantic information conclusion [25]. 

Image registration is the process of mapping input images with the help of reference 

image. Image registration is considered as an optimization problem whose goal is to 

maximize the similarity between the images. Applications in the medical field usually 

include registration of anatomical modalities (e.g., CT, MRI) with functional modalities such 

as PET, single-photon emission computed tomography (SPECT), or f-MRI. This kind of 

registration supplies complementary information that can help a lot for intervention and 

treatment planning, computer-aided diagnosis and disease following-up, surgery 

simulation, radiation therapy, assisted/guided surgery, anatomy segmentation, 

computational model building, and image subtraction for contrast-enhanced images [26; 

27]. Image registration can be roughly done by three different approaches. First, by 

measuring the intensity similarity between different pixels/voxels in the images. It can be 

done by applying rigid or non-rigid techniques. The main difference between them is that 

in case of rigid approach, we assume that the whole object is moving together and in non-

rigid—different local distortions can occur in different locations within the object. Second, 

by detecting key points within the images and then matching those points. In this group of 

techniques, one can find SIFT and SURF. These key points must be characterized by a 

distinction to the spatial neighbors, invariance to the original image variations, robustness 

against noise, and with high computational efficiency. Image descriptors are then used to 

represent the extracted key points. After defining the coordinates of the key points, the 

transformation function estimates the geometric relation between the images. The 

transformation functions can be selected based on the images that are needed to be 

registered, although, it is hard to find a single transformation function that is better for all 

types of images due to the strengths and weaknesses associated with each function. After 
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registering the images, multiple image features can be extracted, and the information that 

was extracted from the different imaging modalities can be fused and lead to the overall 

clinical decision. Third, an image registration can be done by atlas-based approaches [28]. 

 

Image Resolution 

Image quality depends, among all, on image resolution. Image resolution is divided into 

spatial, temporal, and contrast resolutions. Spatial resolution refers to the ability of 

differentiating between two points in the space. High spatial resolution means that we can 

separate well between two points that are very close to each other in the space. Temporal 

resolution represents the number of images that can be acquired per second. Real-time 

application must have a high frame rate, means high number of images per second. An 

optimal imaging modality would produce images with high spatial and temporal resolution, 

however, usually there is a trade-off between these two. There are many super-resolution 

methods that were developed to improve the image resolution. Most of these techniques 

can be divided into four different groups—prediction models, edge- based models, image 

statistics, and patch-based models. 

Contrast resolution refers to differences in spatially adjacent pixels or their local 

surrounding and is the basis for recognizing anatomic structures and abnormalities, which 

differ from adjacent regions through local differences in pixel values. Imaging contrast 

agents can help to increase the contrast resolution. Contrast agents have different imaging 

characteristics than the body tissues, and as a result, they can enhance the contrast 

differences between themselves and the surrounding regions. The composition of contrast 

agents varies according to the modality characteristics and to optimally be visible based on 

the physical basis of image formation. Over the recent years, advances in molecular 

biology have led to the ability to design contrast agents that are highly specific for 
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individual molecules, and as a result, only the specific region of interest is highlighted in 

the image. 

 

Image Enhancement 

The goal of image enhancement is to improve the visual appearance of the image by 

converting a low- quality image to a high-quality image and to enable better automated 

image analysis such as detection, segmentation, and recognition. An optimal image 

enhancement technique should supply: (1) time and computational efficiency, (2) simple 

implementation, (3) robustness to noise to avoid noise enhancement and to different kinds 

of images, (4) structure preservation to keep image texture, and (5) continuity, which 

means that a small change in the input should cause a only a small change in the output. 

Enhancement procedures can be mainly divided into two classes—spatial domain 

methods and transform domain methods. Spatial domain methods are very popular for 

image enhancement, and they incorporate different histogram manipulations such as 

histogram equalization to automatically determine a transformation function producing an 

output image with a uniform histogram. Another approach is histogram matching, wherein 

we generate an image that has the same intensity distribution as a predefined desired 

histogram. Gamma correction is another popular technique to stretch the histogram of a 

region of interest, separately and independently enhancing each local region. Transform 

enhancement frameworks incorporate techniques such as Fourier transforms, and as a 

result, the image is enhanced by modifying the frequency substance of the image.  

 

Image Denoising 

Similar to image enhancement, image denoising approaches can be categorized as spatial 

domain, transform domain, and dictionary learning-based approaches. Spatial domain 

methods include local and non-local filters, which exploit the similarities between the 
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statistics of different regions in the image. The main difference between local and non-

local frameworks is the size of the surrounding region that an examined region is 

compared with. A large number of local filtering algorithms have been designed for noise 

reduction such as wavelet filter Wiener filter, least mean squares filter, bilateral filter, 

anisotropic filtering, blind source separation, and co-occurrence filter. Local methods are 

effective in terms of time complexity and also for considering the more relevant information 

within closer regions only. However, local frameworks are more sensitive than non-local 

ones to high amounts of image noise. Even though they are better than local filters for 

dealing with high noise levels, their major drawback is that they still create artifacts such 

as over-smoothing. The second category is transforming domain methods, wherein the 

image patches are represented by their frequency content. These methods usually 

achieve better performance compared to spatial domain methods, because they have 

higher level properties such as sparsity and multiresolution.  

 

Image Segmentation 

Segmentation of images involves an automated annotation of a relevant ROI within an 

image. Traditional segmentation approaches mostly include thresholding, region- growing, 

watershed, clustering, active contours and level sets, atlas- based, and graph-based 

models. Popular segmentation techniques can be divided into edge-based, regions-based, 

model-based or knowledge-based, and machine learning-based approaches. Edge-based 

segmentation relies on detecting and analyzing the boundaries of an object. However, in 

cases of noisy images, low contrast images, or incomplete broken boundaries, edge-

based approaches will not perform well. Region-based techniques can handle better with 

these challenges because they con- sider the statistics inside a ROI, thus an object will be 

accurately segmented as long as the background- foreground statistics are different from 

each other. Both region-based and edge-based segmentation are essentially low-level 
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techniques that only focus on local regions in the raw image data. A popular alternative 

method for medical image segmentation is a model-based deformable models (e.g., active 

contour, level set, active appearance models). These segmentation approaches have 

been established as one of the highly successful methods for image analysis. By 

developing a model that contains information about the expected shape and appearance 

of the structure of interest to new images, the segmentation is conducted in a top-down 

fashion. Due to the significant a priori information, this approach is more stable against 

local image artifacts and perturbations than conventional low-level algorithms that consider 

the image data only. Information about common variations has to be included in the 

model. A straight-forward approach to gather this information is to examine a number of 

training shapes by statistical means, leading to statistical shape models (SSMs). Well-

known methods in that area are the active shape models and active appearance models.  

 

Feature Extraction 

After segmenting the desired ROI, image features can be extracted. These images can be 

first-order features such as pixels’ intensity or higher-order features such as more complex 

texture features. These features can be considered as a sparse representation of the 

whole image data. In order to reduce the feature space dimensionality, the feature 

extraction procedure is usually followed by a feature selection step. Feature selection is 

the technique of selecting a subset of dominant features for building robust learning 

models by keeping the most dominant features only. Feature selection also helps people 

acquire better understanding about their data by telling them what are the important 

features and how they are related with each other and with the image itself. There are 

several common-used methods for features selection, including principal components 

analysis (PCA), linear discriminant analysis (LDA), least absolute shrinkage and selection 

operator (LASSO), and generalized linear models with elastic-net penalties (GLMNET) that 
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are usually used in case that we have many more features than patients. It combines L1 

and L2 losses by integrating LASSO and ridge regression. 

 

Deep Learning 

Machine learning approaches also have been popular for medical image analysis as the 

strong computational resources became available. Machine learning and specifically deep 

learning architectures can be used in different types of tasks. However, their main 

limitation is the need of a lot of training labeled data. Many recent methods were 

developed to tackle those limitations. Generative adversarial networks (GANs), w-GANs, 

and stacked-GANs can be used for data augmentation and for the improvement of the 

image quality. Convolutional neural networks such as U-Net and V-Net were designed 

specifically to deal with medical domain challenges such as small amount of labeled data. 

Autoencoders, variational autoencoders, and stacked-autoencoders can be used for 

image denoising and as an unsupervised features extractor. Other methods were 

designed to handle with various of classifications tasks such as lesion detection, 

segmentation, and disease classification. 
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Introduction 

Colon cancer is the fifth most common cancer for incidence and mortality with 1.480.000 

new cases in 2020 worldwide [29]. The main therapeutic options are the surgical resection 

and adjuvant chemotherapy in non-metastatic colon cancer; however, the evaluation of 

overall adjuvant chemotherapy benefit, in patients with high risk of recurrency, is a clinical 

challenge [30]. The decision is based on TNM staging system [31], which represents the 

most important parameter, colon cancer at stage III are globally recognized as patients 

who can benefit from chemotherapy, while regarding stage II with other clinical risk factors 

the advantages of chemotherapy are still debated [30; 32].  In presence of clinical risk 

factors the final strategy is often arbitrary decided by the oncologist. Nevertheless, several 

evidence reveal that not all clinical risk features are equal, not all affect the overall survival, 

and the decision to treat colon cancer with adjuvant chemotherapy should be assessed in 

a multidisciplinary approach [33].  

 In that context, Radiomics could have a pivotal role in the colon cancer workup with 

the expectancy to help the clinicians in identifying patients with high-risk disease. 

Radiomics might be used as a non-invasive imaging biomarker, able to provide a 
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quantitative evaluation of medical images, with the chance to shift the imaging approach 

from conventional, which is qualitative and subjective, to quantitative. This new field of 

imaging has the ability to extract a large amount of data from specific regions of interest 

(ROIs), including differences in image texture, spatial resolution and pixel interrelations, 

that are rather imperceptible to the human eye, in order to quantitatively outline image 

phenotypic characteristics at an ultrastructural level [11; 34]. Up to date, radiomic 

approach has been extensively investigated in the cancer patients with a specific focus on 

tumor diagnosis, staging, prediction prognosis and long-term monitoring [34].  

Concerning colon cancer, several managerial aspects were explored with the aim to test 

the performance of radiomics as an adding tool in clinical setting. In particular, the main 

fields examined were the preoperative assessment of mutational panel, the differentiation 

between low- and high-grade colon cancer, and the prediction of nodal metastases [35-

37]. Almost studies were performed on baseline CT scans by outlining the primary tumor; 

overall, results achieved good and consistent efficiency especially in mutational paneling 

and in identifying hisk-risk clinical factors, reinforcing the idea that radiomics could have a 

central role in colon cancer patient’s workup. Nevertheless, radiomics knows numerous 

shortcomings, which make the daily use extremely difficult. Among these, lack of 

standardization and validation, poor reproducibility, and missing prospective multicentric 

studies represent the main drawbacks which must be overcome to introduce the radiomic 

approach in clinical routine [34]. 

On the best of our knowledge, no studies assessed the performance of radiomics to 

stratify patients with high-risk disease in patients with non-metastatic colon cancer. We 

built and validated a radiomic model with the purpose to preoperatively identify patients 

with high-risk colon cancer, who could benefit of adjuvant chemotherapy.  
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Methods 

Patient selection 

This retrospective observational study was in accordance with the Declaration of Helsinki, 

and it was approved by ethical committee of Sant’Andrea University Hospital (ref. nr. CE 

6597/2021). All patients enrolled were new diagnoses of non-metastatic colon cancer from 

January 2015 to June 2020, all patients provided the informed consensus. For each 

patient were collected epidemiological and clinical data, including age, sex, perineural 

invasion (PNI), lymphovascular invasion (LVI), budding, staging. Population was selected 

in accordance with the following inclusion criteria: I) radical surgery, II) availability of 

clinical and histological data, III) availability of portal phase on baseline CT scan, IV) stage 

I, II and III. Exclusion criteria: I) stage IV, II) patients previously treated with neoadjuvant 

chemotherapy. The internal cohort (n=108) was divided into High-risk (n=58) and No-risk 

(n=50) according to the presence of least one of the following risk factors: staging T4, LVI, 

PNI, budding, and nodal metastases [30] (Fig. 6). An external validation cohort of 40 non 

metastatic colon cancer (27 male and 13 female), selected following the same inclusion 

and exclusion criteria described for the internal cohort, was used to test the predictive 

models. 

Figure 6. Patients recruitment flow-chart 
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CT Acquisition Protocol 

All patients were studied with contrast enhanced CT scans, by using 128-slices CT (GE 

Revolution EVO Slice CT Scanner, GE Healthcare, Milwaukee, WI, USA), before the 

surgery. CT scans were acquired with the patients in supine position, performing the scans 

at end-inspiration in cranio-caudal direction, the Z-axis was set covering the entire 

abdomen.  

The contrast medium (CM) volume was tailored for each patients, following the lean body 

weight [38; 39]:  

 

 

The bolus of contrast medium (Iodixanolo 320 mg I/mL, Visipaque 320; GE Healthcare, 

USA) and the subsequent saline solution (50mL) were injected by the contrast media 

injection system (MEDRAD® Centargo CT Injection System) fixing a flow rate of 3.5 mL/s 

through an antecubital venous access (18-20 gauge). The bolus-tracking method (Smart 

Prep, GE, Milwaukee, WI) was used for the multiphases CT scans acquisition by setting a 

100 HU-threshold region of interest, at tripod celiac level, within the abdominal aorta. For 

each patient were performed the unenhanced, late arterial (18s from threshold) and portal 

venous (70s from threshold achieved) phases. The following CT technical specification 

were set: tube voltage 100kV; spiral pitch factor 0.98; tube current modulation 130-

300mAs by using SMART mA (GE Healthcare, Milwaukee, USA); time of rotation 0.6s; 

collimation 64x0.625mm.  
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CT scans segmentation analysis 

All colon cancers were segmented by two expert abdominal radiologists (E.I. and D.C. of 

25 and 10 years of experience), who independently performed a volumetric segmentation 

of colon cancer on preoperative CT scans at portal phase. The open-source 3D Slicer 

software (version 4.10.2, http://www.slicer.org)  was used for the segmentation. The 

volumetric region of interest was manually outlined slice-by-slice, in order to cover the 

entire colon cancer volume and avoiding to include the surrounding pericolic fat and 

healthy large bowel wall in the segmentation (Fig. 7).  

 

Figure 7. Colon cancer 3D segmentation of in portal phase, performed by using Slicer software (version 
4.10.2, http://www.slicer.org). Panel (A) displays axial, (B) 3D volumetric segmentation, (C) coronal, (D) 
sagittal. 
 

 

 

 

 

 

 

 

 

 

Radiomics extraction 

To extract 107 radiomic features from CT portal venous phase was used the 3D Slicer 

Radiomics extension (pyradiomics library [40]). The 107 features extracted including: First 

Order statistics, 19 features, 2D and 3D Shape, 13 features, Neighbouring Gray Tone 

Difference Matrix (NGTDM), 5 features, Grey Level Size Zone Matrix (GLSZM), 16 
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features, Gray Level Co-Occurrence Matrix (GLCM), 24 features, Gray Level Dependence 

Matrix (GLDM), 14 features, Gray Level Run Length Matrix (GLRLM), 16 features.  

Statistical Analysis  

All continuous data were evaluated as mean ± standard deviation. Interobserver variability, 

evaluating the inter-class correlation (ICC), was used to select the stable radiomic features 

and radiomic features achieving ICC>0.8 were maintained for the next statistical steps of 

analysis [41]. Student T-test and Mann-Whitney U test were used in the comparison of 

continuous variables of High-risk and No-risk patients, according to Gaussian normality or 

non-normality, respectively. Univariate enter logistic regression was used to test stable 

radiomic features (ICC>0.8) as predictors of high risk cancer. All parameters resulted 

significant (P<0.05), were selected for the multivariable enter logistic regression analysis 

with the goal to build a radiomic model to predict High-risk colon cancer. This predictive 

radiomic model was validated through the external cohort. Statistically significance was 

considered with a P<0.05. Statistical analysis was achieved with MedCalc (MedCalc 

Software, version15, Ostend, Belgium).  

 

Results 

Study population 

Internal population included 108 patients (Median age 72, Male 56/108), 58 patients were 

stratified as High-risk and 50 as No-risk.  In the sub analysis of the High-risk patients, 

concerning T staging, 1 (1,7%) was T1, 3 (5.2%) were T2, 33 (56.9%) were T3, 17(29.3%) 

were T4a, and 4 (6.9%) were T4b. About the presence of risk factors 36 (62%) were LVI 

positive, 4 (6.9%) were PNI positive, 34 (58.6%) were budding positive, and 16 (27.6%) 
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 High-risk (58/108) N patients % No risk (50/108) N patients % 
T   T   

o T1 1 1.7 o T1 1 2 

o T2 3 5.2 o T2 8 16 

o T3 33 56.9 o T3 41/50 82 

o T4a 17 29.3 o T4a 0/50 0 

o T4b 4 6.9 o T4b 0/50 0 

LVI    LVI    

o LVI+ 36/58 62 o LVI+ 0/50 - 

o LVI- 22/58 38 o LVI- 50/50 100 

PNI   PNI   

o PNI+ 4/58 6.9 o PNI+ 0/50 - 

o PNI- 54/58 93.1 o PNI- 50/50 100 

BUDDING   BUDDING   

o Budding + 34/58 58.6 o Budding + 0/50 - 

o Budding- 24/58 41.4 o Budding- 50/50 100 

Nodes   o Nodes   

o N0 42/58 72.5 o N0 50/50 100 

o N1a 4/58 6.9 o N1a - - 

o N1b 5/58 8.6 o N1b - - 

o N2a 5/58 8.6 o N2a - - 

o N2b 2/58 3.4 o N2b - - 

*T: T staging; LVI: lymphovascular invasion; PNI: perineural invasion 

were N positive.  In the sub analysis of the No-risk patients, concerning T staging, 1 (2%) 

was T1, 8 (16%) was T2, 41 (82%) were T3 (Table 1).  

Table 1. Patient clinical data 

 

 

 

 
 

 

 

 

 

 

 

Feature selection and radiomic analysis 

107 radiomic features were extracted from the 3D segmentations of colon cancer on portal 

phase of baseline CT scans.  The analysis of ICC revealed that only 35 radiomic features 

(8 Shape, 5 First order, 3 GLCM, 5 GLDM, 6 GLRLM, 7 GLSZM, and 1 NGTDM features) 

resulted to be stable (0.81 ≤ ICC < 0.92). Among the stable features, 28 features (7 Shape, 

3 First order, 1 GLCM, 4 GLDM, 6 GLRLM, 6 GLSZM, and 1 NGTDM features) resulted to 

be significantly different in the comparison between High-risk and No risk patients 

(0.004 ≤ P < 0.05) (Table 2). 
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Univariate and Multivariate analyses 

All significant stable radiomic features were tested by using univariable logistic regression 

analysis to evaluate the correlation with High-risk colon cancer. Univariate analysis 

showed that 9 radiomic features (1 First Order, 1GLCM, 5GLRLM, and 2 GLSZM features) 

were significantly associated with high-risk cancer, P values ranging from 0.01 to 0.05 with 

OR <1. Among these features, 1 Shape (SurfaceVolumeRatio), 3 GLRLM 

(RunLengthNonUniformityNormalized, RunPercentage, and ShortRunEmphasis), and 1 

GLSZM (ZonePercentage) resulted to be predictors of High-risk cancer, with P values 

ranging from 0.01 to 0.05 and OR between 13.6 and 157x104. While 1 GLCM (Idmn), 2 

GLRLM (LongRunEmphasis and RunVariance), and 1 GLSZM (SmallAreaEmphasis) 

showed inverse correlation with High-risk cancer, with P value from 0.01 to 0.02 and OR 

between 0.84 and 4.2004e-17. The remanent stable radiomic features showed no 

significant correlation with high-risk cancer or indifferent value of OR. Multivariate analysis 

was tested to build the radiomic model by including the radiomic features showing 

significant correlated with high-risk cancer.  
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Table 2. Stable radiomic features resulted in comparison between High-risk and No risk patients. 

 

 

Radiomic features High-risk No risk ICC P 

 Mean ± SD Mean ± SD   
Shape_LeastAxisLength  23.34 ± 10.43 28.38 ± 12.24 0.82 0.02 
Shape_Maximum2DDiameterColumn 43.20 ± 18.48 56.74 ± 23.58 0.87 0.003 
Shape_Maximum2DDiameterSlice 49.30 ± 19.09 58.63 ± 22.76 0.90 0.02 
Shape_MeshVolume 21047.06 ± 26389.25 39659.83 ± 43204.46 0.81 0.02 
Shape_MinorAxisLength 31.52 ± 11.29 38.45 ± 13.76 0.91 0.004 
Shape_SurfaceArea 6507.93 ± 4960.29 10070.17 ± 7988.04 0.87 0.02 
Shape_SurfaceVolumeRatio 0.46 ± 0.19 0.38 ± 0.16 0.85 0.02 
Shape_Maximum3DDiameter 56.72 ± 22.63 65.57 ± 24.46 0.89 0.07 
First Order_VoxelVolume 21532.50 ± 26508.12 40253.22 ± 43386.76 0.91 0.009 
First Order_Energy 5272857.19 ± 6465846.03 9614816.02 ± 10922495.83 0.90 0.03 
First Order_TotalEnergy 142367144.12 ± 174577842.8 259600032.54 ± 294907387.3  0.86 0.03 
First Order_Maximum 149.91 ± 30.88 147.02 ± 27.59 0.82 0.61 
First Order_Mean 74.72 ± 15.85 72.08 ± 18.64 0.88 0.81 
GLCM_Idmn 0.98 ± 0.01 0.98 ± 0.01 0.89 0.03 
GLCM_Icm2 0.29 ± 0.10 0.26 ± 0.09 0.85 0.08 
GLCM_SumAverage 9.55 ± 6.30 11.28 ± 7.01 0.85 0.16 
GLDM_DependenceNonUniformity 39.95 ± 42.32 70.22 ± 72.70 0.87 0.02 
GLDM_GrayLevelNonUniformity 439.23 ± 537.16 877.22 ± 985.89 0.86 0.01 
GLDM_LargeDependenceEmphasis 152.75 ± 71.20 185.66 ± 83.91 0.88 0.02 
GLDM_SmallDependenceEmphasis 0.06 ± 0.03 0.05 ± 0.02 0.90 0.03 
GLDM_SmallDependenceLowGrayLevelEm
phasis 

0.02 ± 0.01 0.01 ± 0.01 
0.89 

0.06 

GLRLM_GrayLevelNonUniformity 199.18 ± 202.85 342.55 ± 321.67 0.88 0.02 
GLRLM_LongRunEmphasis 4.34 ± 2.62 5.61 ± 3.63 0.85 0.03 
GLRLM_RunLengthNonUniformityNormali
zed 

0.47 ± 0.09 0.43 ± 0.10 
0.81 

0.02 

GLRLM_RunPercentage 0.62 ± 0.09 0.58 ± 0.11 0.82 0.04 
GLRLM_RunVariance 1.37 ± 1.10 2.04 ± 1.92 0.87 0.04 
GLRLM_ShortRunEmphasis 0.70 ± 0.07 0.67 ± 0.08 0.87 0.03 
GLSZM_ LargeAreaEmphasis 12801.55 ± 22785.03 32877.79 ± 45848.79 0.90 0.006 
GLSZM_ 
LargeAreaHighGrayLevelEmphasis 

609276.79 ± 1704878.107 1908734.67 ± 4536097.03 
0.90 

0.01 

GLSZM_ LargeAreaLowGrayLevelEmphasis 693.99 ± 1234.32 1714.36 ± 3566.59 0.82 0.03 
GLSZM_SmallAreaEmphasis 0.58 ± 0.17 0.64 ± 0.11 0.87 0.04 
GLSZM_ZonePercentage 0.07 ± 0.04 0.05 ± 0.04 0.89 0.01 
GLSZM_ZoneVariance 12224.58 ± 22231.55 31666.31 ± 44755.72 0.91 0.008 
GLSZM_ 
SmallAreaHighGrayLevelEmphasis 

16.35 ± 29.18 23.66 ± 31.59 
0.90 

0.06 

NGTDM_ Coarseness 0.04 ± .06 0.02 ± 0.04 0.88 0.01 
* SD: Standard Deviation; ICC: inter-class correlation; P: P value; GLCM: Grey Level Co-occurrence Matrix; GLDM: Gray Level Dependence 
Matrix; GLRLM: Gray Level Run Length Matrix; GLSZM: Grey Level Size Zone Matrix; NGTDM: Neighbouring Gray Tone Difference 
Matrix 
 

 



 40 

The radiomic model showed a good performance with AUC of 0.73 (95% CI, 0.63-0.82; 

P<0.001), with positive predictive power of 71.43% and negative predictive power of 

69.7%. Results were validated through the external cohort, in which the radiomic model 

yielded an AUC of 0.75 (95% CI, 0.55-0.94; P=0.02), with positive predictive power of 70% 

and negative predictive power of 77.3% (Figure 8 and Table 3). 

 

Figure 8. Performance of radiomic model to identify the High-risk colon cancer in the internal (dotted black 
line) and external cohort (solid grey line). 
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Table 3. Multivariate logistic regression to test the performance of radiomic model in predicting High-risk 
colon cancer in internal and external cohorts. 

 

 

 

Radiomic variable Internal Cohort Radiomic model External Cohort 

 OR(95%CI) Coefficient OR(95%CI) Coefficient 

Shape_SurfaceVolumeRatio 
0.79 

(7.82e-022 to 5.42e+030) 
-0.24 

227.1 
(6.65e-005 to 1771984111) 

5.42 

GLCM_Idmn 
3647282668 

(2.973e-010 to 1.16e+0.30) 
22.02 

1.21e+020 
(2.07e-028 to 1.05e+074) 

46.25 

GLRLM_LongRunEmphasis 
0.02 

(0.0003 to 1.42 
-3.63 58.36 (0.0004 to 183464701) 4.067 

GLRLM_RunLengthNonUnifor
mityNormalized 

5.99e+014 
(3.38e-015 to 1.37e+044) 

34.03 
8.20e+0.38 

(9.29e-060 to 5.55e+145) 
89.60 

     

GLRLM_RunPercentage 
4.7e+018 

(0.005 to 1.66e+042) 
42.99 

1.54e-054 
(1.33e-131 to 126781) 

-123.9 

GLRLM_RunVariance 
1537 

(1.24 to 4121443) 
7.34 

1.89e-005 
(1e-017 to 36401) 

-10.87 

GLRLM_ShortRunEmphasis 
3.54e-045 

(2.35e-088 to 0.0006) 
102.4 

735727550 
(1.49e-077 to 1.94e+100) 

20.42 

GLSZM_SmallAreaEmphasis 
38.22 

(0.49 to 3684) 
3.64 

0.89 
(9.58e-006 to 64647) 

-0.11 

GLSZM_ZonePercentage 
6.87e-008 

(6.04e-019 to 1659) 
-16.49 

42583803 
(1.39e-022 to 1.75e+040) 

17.57 

P value <0.0001 0.02 
AUC 0.73 0.75 
Positive Predictive Power 71.4% 70% 
Negative Predictive Power 69.7% 77.3% 
*OR: Odds Ratio; AUC: Area under curve; GLCM: Grey Level Co-occurrence Matrix; GLRM: Gray Level Run Length Matrix; 
GLSZM: Grey Level Size Zone Matrix. 



 42 

Discussion 

In this study, we developed a radiomic model to predict High-risk disease in non-

metastatic colon cancer by performing a volumetric segmentation of primary tumors on 

baseline CT scans. All patients were treated with surgical resection and we considered 

clinicopathological data as reference standard to divide the starting population in High-risk 

and No-risk patients, according to the presence of at least one of clinical risk factors 

between staging T4, LVI, PNI, budding, and nodal metastases [33; 42]. We analyzed all 

pre-operative CT scans on portal phase, extracting from each volumetric tumor 

segmentation multiple radiomic features which were reduced according to the value of 

ICC, to maintain only the stable features. Then, the stable radiomic features were 

compared by testing the differences between high-risk and no-risk patients, and the 

significant radiomic features were used to build a radiomic predictive model. This model 

reached a good performance in predicting high-risk disease with an AUC of 0.73, 

highlighting the promising role of radiomics in patient risk stratification. Finally, we also 

validated the radiomic model through an external cohort, in which the AUC was confirmed 

good, yielding the value of 0.75. 

 To date, Radiomics has been widely described as the new field of quantitative 

imaging having the ability to outline the micro-architecture and heterogeneity of the tissues 

through the large volume of numeric data extracted from medical images [34]. These high-

dimensional data could be expression of tumor aggressiveness, with the possible 

opportunity to overcome the limitations of conventional imaging, that is subjective and 

qualitative [12]. Focusing on colon cancer, conventional imaging knows consistent 

limitations in identifying the main high-risk clinical factors, such as nodal metastases, LVI, 

and PNI. Among these, nodal involvement was the factor mostly investigated by using 
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conventional imaging and no consistent results were reached. In fact, almost all qualitative 

evaluation to predict the risk of nodal metastases were found to be non-performing [43].  

In that context, radiomics could be seen as a novel tool to stratify the patients affected by 

colon-cancer providing some additional quantitative data, with the goal to outline tumor 

phenotype and to predict patient prognosis before starting therapeutic workflow. Recently, 

the group of Yao X. [44] demonstrated the chance to use a radiomic approach to predict 

the disease free survival in colon cancer patients. They compared the predictive value of 

TNM staging system, clinical model, and radiomics. Radiomic signature resulted to be 

more efficient than TNM and clinical model in predicting the patient’s prognosis. Similar 

results were showed by Dai W. et al., who tested radiomics as imaging biomarker to 

identify patients with poor prognosis. They evaluated the potentiality of a quantitative 

approach to assess overall survival and relapse free survival by analyzing preoperative CT 

scans. Authors obtained good performance for both the endpoints, reaching an AUC of 

0.77 and 0.74 in predicting overall survival and relapse free survival, respectively. These 

studies enhanced the potential value of radiomics as imaging biomarker in non-metastatic 

colon cancer, that will help the clinicians in choosing the best treatment option according 

to patient risk-stratification.  

Nowadays, all colon cancers at stage III and II with high-risk clinical features are 

recommended to be treated with adjuvant chemotherapy. However, the benefit of adjuvant 

chemotherapy in stage II with high-risk clinical features is debated, mainly due to the 

conflicting results of some clinical studies [45; 46]. Then, the option of adjuvant 

chemotherapy in high-risk colon cancer at stage II is still arbitrary, and often guided from 

subjective evaluation of the oncologists. In such scenario, we decided to use the 

clinicopathological data only to stratify the patients in High-risk and no-risk groups and to 

test only the performance of radiomic model. The study design was weighted on the basis 
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of the controversial results present in literature about the combined model, clinical-

radiomic, to preoperatively identify colon cancer at stage III. In fact, on the one hand, a 

recent study stated that a clinical-radiomic nomogram was superior in preoperative 

prediction of nodal metastases [47]. Conversely, in a different study it was reported that 

radiomic signature achieved the best performance in N staging in comparison with 

combined model [37]. These opposite results guided our decision to consider the 

histological data only to stratify the patients and not to build a combined model, even 

considering that our main investigation was to look at radiomic approach as a supporting 

tool for the clinicians without any possibilities to replace clinical approach. Nevertheless, 

we did not include to stratify patients several novel biomarkers concerning the mutational 

panel (e.g. BRAF, KRAS, and microsatellite instability) [30; 32].  The paneling of 

mutational status was not widely used as routine in colon cancer, especially in the 

previous years, and these information were not available at the moment of analysis also 

considering the retrospective nature of the study.  

In the new era of personalized medicine, quantitative imaging could be central in 

management of colon cancer, by providing to the clinicians a non-invasive imaging 

biomarker to properly tailor the therapy especially in doubtful cases. The arbitrary 

decisions should be reduced, and a structured workflow is required to ensure a therapeutic 

program fitted per patient.  Despite the high potentialities of radiomic analysis in pre-

operative clinical setting, the real strengths in predicting patient outcome have been 

verified, however the leading limitations are dependent on a poor standardization, low 

reproducibility of results, and different acquisition parameters among different centers [34]. 

In fact, between the various cancer-research centers there is a disparity concerning 

several factors inherent to CT acquisition workflow, such as contrast enhanced CT 
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phases, iterative reconstructions, and the total volume of contrast medium, which could 

affect the consistency of radiomics[48]. 

The study has several limitations, firstly, the retrospective nature of the study; secondly, 

the small sample of internal and external cohorts; thirdly, data of patient outcome are 

missing and a survival analysis was not perfumed.  

 

Conclusion  

To sum up, we can conclude that radiomic model might have a pivotal role in the future 

colon-cancer workup, focusing on patient risk stratification in a pre-operative clinical 

setting. This approach might serve as a supporting tool for the clinicians, with the 

expectancy to enter in the structured treatment management, allowing to get a 

personalized therapeutic strategy.  
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