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Abstract
Several	redox	modifications	have	been	described	during	viral	infection,	includ-
ing	influenza	virus	infection,	but	little	is	known	about	glutathionylation	and	this	
respiratory	virus.	Glutathionylation	 is	a	 reversible,	post-	translational	modifica-
tion,	in	which	protein	cysteine	forms	transient	disulfides	with	glutathione	(GSH),	
catalyzed	by	cellular	oxidoreductases	and	in	particular	by	glutaredoxin	(Grx).	We	
show	 here	 that	 (i)	 influenza	 virus	 infection	 induces	 protein	 glutathionylation,	
including	that	of	viral	proteins	such	as	hemagglutinin	(HA);	(ii)	Grx1-	mediated	
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1 	 | 	 INTRODUCTION

Redox-	dependent	changes	are	 implicated	in	different	as-
pects	of	viral	infections,	at	the	level	of	viral	replication1,2	
and	pathogenesis,	particularly	of	respiratory	viruses.3–	7

It	is	now	appreciated	that	oxidative	stress,	historically	
defined	as	an	 imbalance	between	 the	production	of	oxi-
dant	species,	mainly	reactive	oxygen	and	nitrogen	species	
(ROS,	RNS),	and	antioxidant	systems	of	the	cell,	leads	to	
disruption	of	redox	signaling.8	Several	groups,	 including	
ours,	 have	 reported	 overproduction	 of	 ROS	 and	 impair-
ment	of	antioxidant	defenses,	such	as	reduced	glutathione	
(GSH)	 levels,	 during	 influenza	 virus	 infection;	 of	 note,	
perturbation	 of	 redox-	sensitive	 pathways,	 including	 the	
immune	 ones,	 favors	 influenza	 virus	 replication.9–	13	 In	
particular,	depletion	of	GSH	affects	the	folding	and	mat-
uration	of	the	viral	glycoprotein	hemagglutinin	(HA)	and	
the	progression	of	the	virus	life-	cycle.9

Importantly,	GSH	is	not	only	an	antioxidant	molecule	
but	is	fundamental	in	the	redox	regulation	of	several	cellular	
functions.14–	16	In	addition	to	determine	the	H2O2	level,	that	
acts	 as	 an	 intracellular	 messenger	 in	 signal	 transduction,	
GSH	can	play	a	direct	role	in	cell	signaling	through	the	for-
mation	of	mixed	disulfides	with	proteins,	a	process	known	
as	 glutathionylation,	 that	 can	 be	 regulated	 in	 infections,	
immune	and	inflammatory	responses.17,18	 In	 fact,	protein	
glutathionylation	meets	two	fundamental	requirements	for	
a	 regulatory	role,	 reversibility	and	enzymatic	catalysis;	 in	
particular,	the	reaction	can	be	reversibly	catalyzed	by	thiol-	
disulfide	 oxidoreductases,	 such	 as	 glutaredoxins	 (Grxs).19	
Glutathionylation	 of	 cellular	 proteins	 has	 been	 observed	
in	infection	models	with	different	viruses,	including	para-
influenza	virus,20	HIV,21	HSV,22	and	more	recently,	SARS-	
CoV-	2.23	Other	studies	have	demonstrated	that	some	viral	
proteins	can	undergo	glutathionylation,	resulting	in	differ-
ent	effects	on	their	 functions;	examples	 include	retroviral	
protease,	 chikungunya	 virus	 nsP2,	 dengue	 and	 zika	 NS5,	
HCV	polymerase	and	SARS-	CoV-	2	protease.24–	28

Protein	 deglutathionylation	 is	 mainly	 catalyzed	
by	 Grxs,	 enzymes	 belonging	 to	 the	 Thioredoxin	 (Trx)	
fold	 family,	 with	 whom	 they	 share	 a	 well-	conserved	

cysteine-	containing	 structural	 motif	 important	 for	 their	
oxidoreductase	activity.19	So	far,	four	Grxs	have	been	iden-
tified	in	mammals	(1–	3,	5,	and);	Grx1	has	a	dithiol	active	
site	(Cys-	X-	X-	Cys)	and	is	mainly	localized	in	the	cytosol.	
Bacterial	 Grxs,	 and	 a	 Grx	 homolog	 in	 viruses,	 have	 also	
been	 identified19;	 in	 particular,	 vaccinia	 virus	 O2L	 open	
reading	frame	encodes	for	a	functional	enzyme	with	thi-
oltransferase	activity29	and	an	enzyme	regulating	the	ac-
tivity	of	glutathionylated	HIV	protease	has	been	detected	
within	HIV	virions.30

While	several	redox	modifications	have	been	described	
during	influenza	virus	infection,	little	is	known	about	glu-
tathionylation	and,	to	our	knowledge,	there	are	no	data	on	
Grx1	and	the	influenza	virus.

The	aim	of	the	present	study	was	to	analyze	the	gluta-
thionylation	process	during	influenza	virus	 infection	and	
investigate	 the	 possible	 role	 of	 Grx1	 in	 the	 regulation	 of	
viral	replication.	For	this	purpose,	we	used	different	mod-
els	of	infections:	canine	kidney	epithelial	cells	MDCK	and	
human	lung	epithelial	cells	A549	infected	with	influenza	
A	virus	A/Puerto	Rico/8/34	H1N1	(PR8)	and	the	murine	
macrophage	cell	line	RAW264.7	infected	with	influenza	A	
virus	strains	PR8,	A/NWS/33	H1N1	(NWS),	and	pandemic	
A/California/04/09	H1N1	(pH1N1).	We	studied	Grx1	lev-
els	and	activity	in	infected	epithelial	cells	and	the	effects	of	
Grx1	inhibition	on	viral	replication;	to	inhibit	Grx1	we	used	
a	chemical	inhibitor	or	short	interfering	RNA	(siRNA).

The	results	indicate	that	protein	glutathionylation,	in-
cluding	of	viral	proteins,	is	induced	by	the	influenza	virus,	
and	that	Grx1	deglutathionylation	activity	is	important	for	
the	virus	to	complete	its	replication	cycle.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Cell culture

Madin-	Darby	 canine	 kidney	 (MDCK)	 cells	 and	 A549	
human	lung	carcinoma	cells	were	grown	in	RPMI	1640	
and	 DMEM	 medium	 respectively,	 supplemented	 with	
10%	 fetal	 bovine	 serum	 (FBS),	 0.3  mg/ml	 glutamine,	

Ricerca	(MIUR),	Grant/Award	Number:	
2017KM79NN,	2017BMK8JR006	and	
2020KSY3KL;	Sapienza	Università	di	
Roma	(Sapienza	University	of	Rome),	
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deglutathionylation	 is	 important	 for	 the	viral	 life	cycle,	as	 its	 inhibition,	either	
with	an	inhibitor	of	its	enzymatic	activity	or	by	siRNA,	decreases	viral	replication.	
Overall	 these	data	contribute	 to	 the	characterization	of	 the	complex	picture	of	
redox	regulation	of	the	influenza	virus	replication	cycle	and	could	help	to	identify	
new	targets	to	control	respiratory	viral	infection.

K E Y W O R D S
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100	U/ml	 penicillin,	 and	 100	μg/ml	 streptomycin.	
RAW264.7	mouse	macrophage	cells	were	grown	as	de-
scribed	for	A549	cells.

2.2	 |	 Viruses infection and titration

Influenza	 A	 virus	 strains	 A/Puerto	 Rico/8/34	 H1N1	
(PR8),	 A/NWS/33	 H1N1	 (NWS),	 and	 pandemic	 A/
California/04/09	 H1N1	 (pH1N1)	 were	 grown	 in	 allan-
toic	 cavities	 of	 10	days	 old	 embryonated	 chicken	 eggs	
and	harvested	after	48	h	at	37°C.	To	perform	a	single-		or	
multi-	cycle	of	infection,	epithelial	cells	were	challenged	
with	PR8	at	a	multiplicity	of	infection	(m.o.i.)	of	1	or	0.1	
for	 1  h	 at	 37°C,	 washed	 with	 PBS	 and	 incubated	 with	
medium	supplemented	with	2%	FBS	for	8 h	or	24	h,	re-
spectively.	 Mouse	 macrophages	 were	 challenged	 with	
NWS,	pH1N1,	or	PR8	at	10,	1,	and	0.1 m.o.i.	Virus	pro-
duction	was	determined	in	the	supernatants	of	infected	
cells	by	measuring	the	hemagglutinating	unit	(HAU)	or	
the	tissue	culture	infectious	dose	50	(TCID50),	as	previ-
ously	described.31

2.3	 |	 Cell treatments

Glutathione	ethyl	ester	biotin	amide	(BioGEE,	Invitrogen)	
was	dissolved	 in	DMSO	and	 then	diluted	 to	a	 final	con-
centration	 of	 200	μM	 in	 a	 cell-	culture	 medium.32	 N-	
ethylmaleimide	 (NEM,	 Sigma-	Aldrich)	 was	 added	 to	 a	
final	concentration	of	40	mM	for	cell	lysis	to	avoid	thiol-	
disulfide	exchange.

R,R′-	2-	Acetylamino-	3-	[4-	(2-	acetylamino-	2carboxy
ethylsulfanylthiocarbonylamino)	 phenylthiocarbam-
oylsulfanyl]	 propionic	 acid	 hydrate	 (2-	AAPA,	 Sigma-	
Aldrich)	was	dissolved	in	DMSO	and	then	diluted	to	the	
final	concentrations	in	a	cell-	culture	medium;	its	cyto-
toxicity	was	evaluated	on	A549	cells	by	treating	the	cells	
with	concentration	from	25	to	200	μM	for	20 min,	as	in	
Sadhu	et	al.33;	then	the	medium	was	changed	and	left	for	
the	following	24	h,	after	which	cells	were	detached	and	
counted	by	Trypan	Blue	staining.	2-	AAPA	was	added	to	
A549	cells	at	a	concentration	of	100	μM,	20 min	before	
viral	infection.

2.4	 |	 GSH and PSSG assay

Intracellular	 GSH	 was	 assayed	 upon	 the	 formation	 of	
S-	carboxymethyl	 derivatives	 of	 the	 free	 thiol	 with	 io-
doacetic	 acid,	 followed	 by	 the	 conversion	 of	 free	 amino	
groups	 to	 2,4-	dinitrophenyl	 derivatives	 by	 the	 reaction	
with	1-	fluoro-	2,4-	dinitrobenzene	and	quantified	through	

high-	performance	liquid	chromatography	(HPLC).	Mixed	
disulfides	were	determined	by	HPLC,	after	the	reduction	
of	cell	lysates	with	NaBH4	for	30	min	at	40°C,	as	described	
in	Ciriolo	et	al.20

2.5	 |	 Western blot and 
immunoprecipitation

Cells	 were	 lysed	 with	 lysis	 buffer	 supplemented	 with	
NEM,	 phenylmethylsulfonyl	 fluoride,	 and	 protease	
inhibitor	 mixture	 (Sigma-	Aldrich)	 for	 30	min	 on	 ice.	
Protein	concentration	was	determined	with	DC	Protein	
Assay	 (Bio-	Rad).	 Then	 cell	 lysates	 were	 analyzed	 by	
SDS-	PAGE	under	reducing	or	non-	reducing	conditions	
(i.e.,	without	treatment	with	DTT)	followed	by	Western	
blot	 (WB).	 Biotinylated	 proteins	 were	 visualized	 using	
Streptavidin-	peroxidase	 (POD)	 conjugated	 (Roche)	 at	
1:20	000	 dilution.	 The	 other	 proteins	 were	 visualized	
using	the	following	primary	and	secondary	horseradish	
peroxidase	(HRP)-	conjugated	antibodies:	anti-	Influenza	
(Merck	Millipore),	anti-	M2,	anti-	Grx1,	anti-	ATF6,	anti-	
IRE1	 and	 anti-	GAPDH	 (Santa	 Cruz	 Biotechnology),	
anti-	p-	IRE1	 (Novus	 Biologicals),	 anti-	Actin	 (Sigma	
Aldrich);	anti-	goat,	anti-	rabbit,	and	anti-	mouse	(Bethyl	
Laboratories).	 Membranes	 were	 developed	 with	 the	
WesternBright	 ECL	 HRP	 substrate	 (Advansta);	 when	
indicated,	 densitometric	 analysis	 was	 performed	 using	
ImageJ.

For	immunoprecipitation,	cell	lysates	from	BioGEE-	
treated	 and	 virus-	infected	 cells,	 blocked	 with	 NEM	 to	
prevent	the	artifactual	formation	of	disulfides,	were	in-
cubated	 with	 anti-	influenza	 antibody	 at	 1:100	 dilution	
at	 4°C	 for	 4  h,	 then	 the	 immunocomplexes	 were	 pre-
cipitated	 with	 Protein	 A/G	 Plus-	Agarose	 (Santa	 Cruz	
Biotechnology)	 at	 4°C	 overnight.	 After	 washing	 with	
cold	PBS,	agarose	beads	were	eluted	by	boiling	them	in	
a	sample	buffer	for	5 min.	Eluate	was	split	into	two	al-
iquots,	one	left	untreated	and	one	reduced	with	10	mM	
DTT	for	5 min,	loaded	on	gels,	and	analyzed	by	WB	with	
streptavidin-	POD	 as	 described	 above.	 After	 stripping,	
the	 membranes	 were	 reprobed	 with	 an	 anti-	HA	 anti-
body	(Santa	Cruz	Biotechnology).

2.6	 |	 RT- qPCR

Total	RNA	was	extracted	from	cells	with	TRIzol	(Sigma-	
Aldrich)	 and	 RNA	 quality	 and	 concentration	 were	
measured	with	a	NanoDrop	spectrophotometer.	Reverse-	
transcription	(RT)	and	quantitative	PCR	(qPCR)	were	per-
formed	using	SensiFAST	cDNA	Synthesis	kit	(Bioline)	for	
viral	HA,	M2	and	human	GRX1,	and	actin	was	used	as	a	
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reference	gene	 for	normalization.	The	primer	sequences	
used	were	the	following:

HA F:	ATTCC	GTC	CAT	TCA	ATC	CAGAGG

R:	ACCAT	CCA	TCT	ATC	ATT	CCAGTCC

M2 F:	GCAAG	CGA	TGA	GAA	CCA	TTGG

R:	GCGGC	AAT	AGC	GAG	AGGATC

GRX1 F:	GGAGC	AAG	AAC	GGT	GCC	TCGAG

R:	AAAGC	AGA	TTG	GAG	CTC	TGCAG

ACTIN F:	AGCGT	CTT	GTC	ATT	GGCGAA

R:	TTTTC	TGC	TCC	AGG	CGGACT

Relative	quantitative	evaluation	was	performed	by	the	
comparative	ΔΔCt	method.12

Viral	 RNA	 in	 supernatants	 was	 quantified	 using	 a	
standard	curve	consisting	of	serial	dilutions	of	a	plasmid	
containing	 the	 PR8	 genome	 with	 a	 known	 titer	 (range,	
105	 cp/ml–	102	 cp/ml).	The	amount	of	 cellular	RNA	was	
quantified	simultaneously	using	a	SYBR	GREEN	PCR	for	
the	housekeeping	β-	globin	gene	and	used	to	normalize	the	
PR8	RNA.

2.7	 |	 Grx1 deglutathionylation activity 
(HED assay)

In	this	assay,	first	an	artificial	substrate,	2-	hydroxyethyl	di-
sulfide	(HED),	reacts	with	GSH	forming	mixed	disulfides,	
then	 Grx1	 makes	 a	 nucleophilic	 attack	 and	 releases	 the	
deglutathionylated	substrate.	Briefly,	cells	lysed	with	lysis	
buffer	 (100	mM	 Tris–	HCl,	 150	mM	 NaCl,	 1%	 NP-	40)	 at	
pH  7.9,	 cleared	 by	 centrifugation,	 equalized	 for	 protein	
content	 were	 incubated	 with	 reaction	 buffer	 consisting	
of	1	mM	GSH,	0.2	mM	NADPH,	2	mM	EDTA,	1.2 U	glu-
tathione	reductase,	in	100	mM	Tris–	HCl	pH 7.9.	To	500	μl	
of	this	mixture,	HED	(Sigma-	Aldrich)	was	added	to	a	final	
concentration	of	0.7	mM.	The	decrease	in	absorbance	(in-
dicative	 of	 the	 consumption	 of	 NADPH)	 was	 followed	
spectrophotometrically	 at	 340	nm.	 Grx1	 activity	 was	 de-
termined	after	subtracting	the	spontaneous	reduction	rate	
observed	in	the	absence	of	cell	lysates	and	was	expressed	
as	micromoles	of	NADPH	oxidized/min/mg	protein.34

2.8	 |	 Grx1 silencing

Semi-	confluent	 monolayers	 of	 A549	 cells	 were	 trans-
fected	 with	 Grx1	 siRNA	 (or	 control	 siRNA,	 Santa	 Cruz	
Biotechnology)	 following	 preincubation	 with	 Lullaby	
transfection	 reagent	 (Oz	 Biosciences),	 according	 to	
the	 manufacturer's	 instructions,	 for	 24	h.	 Then,	 trans-
fected	cells	were	infected	as	described	above	for	8 h.	The	

evaluation	of	silencing	was	performed	by	WB	at	32	h	after	
transfection.

2.9	 |	 Immunofluorescence analysis

Following	 transfection	 and	 PR8	 infection	 as	 described	
above,	 A549	 cells	 were	 fixed	 with	 methanol,	 per-
meabilized	 with	 0.1%	 Triton	 X-	100,	 blocked	 with	 3%	
milk,	 and	 stained	 with	 anti-	HA	 antibody	 (Santa	 Cruz	
Biotechnology).	 Alexa-	Fluor	 546-		 conjugate	 anti-	mouse	
was	 used	 as	 a	 secondary	 antibody.	 Nuclei	 were	 stained	
with	4′6-	diamidino-	2-	phenylindole	(DAPI).

2.10	 |	 IL- 6 ELISA

Human	IL-	6	was	assayed	by	ELISA	(Cusabio),	according	
to	the	manufacturer's	instructions.

2.11	 |	 Statistical analysis

Differences	between	the	two	groups	were	assessed	for	sta-
tistical	significance	using	a	two-	tailed	Student's	t	test.	A	p	
value	<.05	was	considered	statistically	significant.

3 	 | 	 RESULTS

3.1	 |	 Influenza viruses induce protein 
glutathionylation

To	investigate	whether	the	influenza	virus	induces	pro-
tein	 glutathionylation,	 we	 first	 used	 MDCK	 epithelial	
cells,	known	to	be	highly	permissive	to	this	virus.	Cells	
were	infected	with	PR8	and	treated	with	BioGEE.	After	
24	h,	cell	lysates	were	analyzed	by	SDS-	PAGE	in	either	
non-	reducing	 or	 reducing	 conditions,	 followed	 by	 WB	
with	 streptavidin-	POD	 to	 visualize	 glutathionylated	
proteins.	As	shown	in	Figure 1A,	protein	glutathionyla-
tion	was	higher	in	the	PR8-	infected	samples	compared	
to	 the	 control.	 In	 the	 lanes	 either	 with	 DTT-	reduced	
samples	 or	 with	 no-		 BioGEE	 samples	 very	 faint	 bands	
were	 visible,	 indicating	 that	 the	 signal	 was	 due	 to	 a	
binding	 of	 BioGEE	 via	 a	 disulfide	 bond,	 as	 in	 protein	
glutathionylation,	 and	 that	 there	 was	 no	 non-	specific	
binding	of	streptavidin	to	the	proteins	(Figure 1A).	The	
same	experiment	was	performed	 in	PR8-	infected	A549	
cells	 with	 similar	 results	 (Figure  1B).	 To	 confirm	 the	
higher	amount	of	glutathionylated	proteins	in	influenza	
virus-	infected	 A549	 cells,	 a	 different	 technique	 was	
used:	the	mixed	disulfides	were	measured	by	HPLC	and	
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   | 5 of 12CHECCONI et al.

they	were	only	detectable	in	cells	infected	by	PR8	virus	
(Figure 1C).

We	 then	 studied	 RAW264.7	 mouse	 macrophages	 in-
fected	 with	 PR8,	 NWS,	 and	 pH1N1.	 We	 detected	 viral	

production	by	the	HA	assay	in	the	supernatants	in	a	dose-	
dependent	manner	24	h	post-	infection	(p.i.),	especially	for	
NWS	and	pH1N1	strains	(Figure S1A).	Interestingly,	 the	
total	 amount	 of	 free	 GSH	 decreased	 following	 infection	

F I G U R E  1  Influenza	virus	induces	glutathionylation	of	proteins	in	epithelial	cells.	BioGEE-	treated,	PR8-	infected	(or	not)	MDCK	(A)	
and	A549	(B)	cell	lysates	were	analyzed	by	SDS-	PAGE	in	non-	reducing	(DTT−)	and	reducing	conditions	(DTT+),	followed	by	Western	blot	
with	streptavidin-	POD.	Two	Western	blots	representative	of	six	(n = 3	biological	replicates	for	each	cell	line)	were	shown.	GAPDH	was	
shown	as	the	loading	control.	(C)	PR8-	infected	and	not	(CTR)	A549	cell	lysates	were	analyzed	for	the	measurement	of	mixed	disulfides	by	
HPLC.	Data	are	the	mean	±	SD	of	six	replicates	from	two	different	experiments	(n = 6).

(A)

(B)

(C)

F I G U R E  2  Influenza	virus	
hemagglutinin	is	glutathionylated	in	A549	
cells.	(A)	BioGEE-	treated,	PR8-	infected	
A549	cells	were	immunoprecipitated	with	
anti-	influenza	antibody	and	analyzed	by	
SDS-	PAGE	in	non-	reducing	(DTT−)	and	
reducing	conditions	(DTT+),	followed	by	
Western	blot	with	streptavidin-	POD	(on	
the	left);	the	membrane	was	stripped	and	
reprobed	with	anti-	influenza	antibody	
(on	the	right).	Representative	of	three	
replicates	(n = 3).	(B)	BioGEE-	treated,	
PR8-	infected	A549	cells	were	analyzed	
as	in	(A)	but	lastly	stained	with	a	
monoclonal	anti-	HA	antibody.

(A)

(B)
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6 of 12 |   CHECCONI et al.

(Figure  S1B)	 and	 the	 signal	 related	 to	 glutathionylated	
proteins	was	higher	in	cells	infected	with	influenza	viruses	
than	in	control	cells	(Figure S1C).	The	HPLC	confirmed	
that	 viral	 infection	 induced	 mixed	 disulfide	 formation	
(Figure S1D).

3.2	 |	 Influenza virus proteins are 
glutathionylated

To	 investigate	 whether	 viral	 proteins	 undergo	 glutath-
ionylation,	 PR8-	infected	 A549	 cells	 were	 treated	 with	
BioGEE	and	lysed	at	24	h	p.i.,	then	immunoprecipitation	
of	influenza	virus	proteins	was	performed.	The	immuno-
precipitated	samples	were	analyzed	by	SDS-	PAGE	in	non-	
reducing	 or	 reducing	 conditions	 followed	 by	 WB	 with	
streptavidin-	POD.	 Strong	 signals	 from	 viruses-	infected	
samples	were	detected,	whereas	the	signals	from	the	same	
samples	 reduced	 with	 DTT	 before	 electrophoresis	 were	
considerably	decreased	(Figure 2A,	bands	indicated	with	

the	arrows	in	the	blot	on	the	left),	once	again	confirming	
the	 specific	 detection	 of	 glutathionylated	 proteins	 with	
this	technique.	Then	the	membrane	was	stripped	and	rep-
robed	 with	 an	 anti-	influenza	 antibody	 which	 confirmed	
the	 detection	 of	 some	 proteins	 that	 were	 found	 glutath-
ionylated	 in	 the	 previous	 staining	 (bands	 over	 60	kDa,	
indicated	 by	 the	 arrow	 in	 Figure  2A,	 blot	 on	 the	 right).	
The	experiment	was	repeated	in	the	same	conditions,	but	
using	a	monoclonal	antibody	for	viral	HA,	that	has	a	MW	
around	 68	kDa	 and	 we	 could	 confirm	 that	 HA	 was	 glu-
tathionylated	in	PR8-	infected	epithelial	cells	(Figure 2B).

3.3	 |	 Glutaredoxin 1 expression and  
activity increase in influenza virus  
infection

The	 expression	 of	 Grx1,	 the	 main	 enzyme	 catalyz-
ing	 protein	 deglutathionylation,19	 was	 analyzed	 dur-
ing	 viral	 infection.	 Grx1	 mRNA	 levels,	 measured	 by	

F I G U R E  3  Grx1	Expression	and	activity	increase	in	influenza	virus	infection.	(A)	RT-	qPCR	analysis	of	Grx1	mRNA	level,	normalized	to	
actin	mRNA	level	in	PR8-	infected	A549	cells	(8,	16,	24	h	p.i.).	Data	are	the	mean	±	SD	of	three	replicates	(n = 3)	(B)	Western	blot	analysis	of	
Grx1	expression	in	PR8-	infected	A549	cells	24	h	p.i.	GAPDH	was	used	as	a	loading	control	and	HA	as	a	marker	of	infection.	A	representative	
Western	blot	with	two	replicates	of	three	was	shown	and	the	mean	densitometric	analysis	Grx1/GAPDH	was	reported	in	the	graph	on	the	
right	(n = 3,	*p <	.05).	(C)	Grx1	activity	was	measured	by	HED	assay	at	24	h	p.i.	Data	are	the	mean	±	SD	of	samples	from	three	experiments,	
each	analyzed	in	duplicate	(n = 3,	*p <	.05).

(A)

(B)

(C)
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RT-	qPCR,	were	similar	in	cell	lysates	from	infected	and	
non-	infected	 cells	 at	 8  h,	 while	 increased	 in	 infected	
cells	 from	 16	 to	 24	h	 p.i.	 (Figure  3A).	 Western	 blot	
analysis	showed	a	2.5-	fold	increase	in	the	expression	of	
the	enzyme	in	infected	cells	compared	to	non-	infected	
cells	 at	 24	h	 p.i.	 (Figure  3B).	 The	 deglutathionylation	
activity	of	Grx1	was	also	measured	by	the	HED	assay,34	
and	higher	activity	in	infected	cells	at	24	h	p.i.	was	con-
firmed	(Figure 3C).	These	results	suggested	that	the	ac-
tivity	of	Grx1	and	the	deglutathionylation	process	may	
be	 required	 in	 the	 late	 stages	of	 infection	 to	allow	 the	
virus	to	complete	its	life	cycle.

3.4	 |	 Glutaredoxin 1 inhibition increases 
protein glutathionylation

To	 investigate	 whether	 Grx	 and	 hence	 glutathionyla-
tion/deglutathionylation,	could	have	a	biological	role	in	
viral	replication,	we	blocked	Grx1	activity	using	a	known	
Grx1	 inhibitor,	 2-	AAPA.33	 In	 preliminary	 experiments,	
2-	AAPA	toxicity	in	A549	cells	was	evaluated	by	treating	
the	 cells	 with	 different	 concentrations	 of	 the	 chemical,	

from	 25	 to	 200	μM,	 for	 20  min;	 then	 the	 medium	 was	
changed	and	after	24	h	 the	cells	were	detached	and	 the	
viability	measured	by	Trypan	Blue	staining.	The	percent-
age	of	cell	death	(indicated	by	the	ratio	dead/dead+live	
cells)	was	less	than	10%	up	to	a	2-	AAPA	concentration	of	
100	μM,	which	was	therefore	chosen	for	the	experiment	
(Figure S2).	As	expected,	2-	AAPA	increased	protein	glu-
tathionylation	 in	A549	cells	 (Figure 4A).	Then	2-	AAPA	
pre-	treated	 cells	 were	 infected	 with	 the	 PR8	 virus	 for	
24	h.	 As	 shown	 in	 Figure  4B,	 2-	AAPA	 increased	 HA	
glutathionylation	(the	densitometric	analysis	 revealed	a	
1.5-	fold	increase)	and	the	viral	titer,	evaluated	by	the	HA	
assay	in	supernatants	24	h	p.i.	(Figure 4C),	was	lower	in	
2-	AAPA-	treated	 cells,	 showing	 that	 Grx1	 inhibition	 in-
creased	HA	glutathionylation,	and	this	correlated	with	a	
decreased	viral	titer.

3.5	 |	 Glutaredoxin 1 inhibition decreases 
influenza virus replication

Taking	 into	 account	 that	 a	 dynamic	 process	 was	 being	
evaluated,	the	second	set	of	experiments	was	performed	

F I G U R E  4  Grx1	inhibition	by	2-	AAPA	increases	the	glutathionylation	of	proteins.	(A)	Western	blot	analysis	with	streptavidin-	POD	
of	BioGEE	loaded	and	100	μM	2-	AAPA	treated	(or	not)	A549	cells,	in	non-	reducing	(DTT−)	and	reducing	conditions	(DTT+).	GAPDH	was	
shown	as	the	loading	control.	(B)	100	μM	2-	AAPA	pre-	treated	(or	not),	BioGEE-	treated,	PR8-	infected	A549	cells	were	immunoprecipitated	
with	anti-	influenza	antibody	and	analyzed	by	SDS-	PAGE	in	non-	reducing	condition	followed	by	Western	blot	with	streptavidin-	POD;	the	
membrane	was	stripped	and	reprobed	with	anti-	HA	antibody.	The	mean	densitometric	analysis	Strep-	POD/HA	was	reported	in	the	graph	
on	the	right	(n = 2).	(C)	HAU	from	supernatants	of	100	μM	2-	AAPA-	pretreated	(or	not)	and	PR8-	infected	A549	cells	24	h	p.i.,	expressed	as	
percentage	mean	of	three	experiments	in	duplicate	(n = 6,	*p <	.05).

(A) (C)

(B)
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8 of 12 |   CHECCONI et al.

during	the	first	single	replication	cycle	of	the	virus	(i.e.,	at	
high	m.o.i.	and	for	8 h	of	infection).	After	confirming	the	
increase	of	Grx1	expression	in	A549	cells	infected	with	a	
high	m.o.i.	of	PR8	virus,	at	both	mRNA	and	protein	levels	
(Figure  S3),	 we	 found	 that	 Grx1	 inhibition	 by	 2-	AAPA	
led	to	a	similar	decrease	in	HAU	at	8 h	p.i.	(Figure 5A)	
as	during	the	multicycle	infection,	at	24	h	p.i.	Moreover,	
TCID50	from	supernatants	of	2-	AAPA	pre-	treated	and	in-
fected	cells	was	lower	than	from	supernatants	of	infected	
samples	and	it	was	confirmed	by	a	lower	number	of	viral	
copies	measured	by	RT-	qPCR	assay	(Figure 5A,	graphs	in	
the	middle	and	on	the	right)	indicating	that	Grx1	inhibi-
tion	decreased	viral	replication	and	infectivity.	In	treated	
cells,	we	observed	a	decrease	in	viral	protein	expression	
at	8 h	p.i.,	considerably	for	HA	and	matrix	protein	(M1),	
while	the	mRNA	levels,	measured	for	HA	and	M2,	were	
similar	 (Figure  5B,C,	 respectively).	 Interestingly,	 IL-	6	
levels	in	the	supernatants	of	the	same	samples	were	sig-
nificantly	 lower	 when	 infected	 cells	 were	 pre-	treated	
with	 2-	AAPA,	 suggesting	 that	 the	 Grx1	 inhibition	 may	
also	have	an	anti-	inflammatory	effect	(Figure S4).

As	 a	 second	 approach,	 we	 silenced	 Grx1	 expres-
sion	 using	 a	 siRNA.	 After	 establishing	 the	 Grx1-	siRNA	

concentration,	 A549	 cells	 were	 transfected	 and,	 after	
24	h,	 infected	 with	 the	 PR8	 virus	 for	 8  h.	The	WB	 anal-
ysis	 for	 Grx1	 confirmed	 that	 the	 enzyme	 expression	 de-
creased	60%	in	siGrx1-	transfected	cells	compared	to	cells	
transfected	 with	 a	 control	 non-	targeting	 siRNA;	 to	 note	
that	 virus	 infection	 induced	 Grx1	 increase,	 as	 shown	 in	
Figures 3	and	S3,	but	the	silencing	of	Grx1	was	also	effi-
cient	 in	 infected	 cells	 (Figure  6A).	The	 immunoblotting	
with	 anti-	influenza	 and	 anti-	M2	 antibodies	 revealed	 a	
decrease	in	viral	protein	expression	in	siGrx1-	transfected	
and	 infected	 cells	 (Figure  6A)	 similar	 to	 what	 was	 ob-
served	in	2-	AAPA-	treated	 infected	cells	 (Figure 5B).	The	
TCID50	 and	 the	 viral	 copies	 from	 supernatants	 of	 the	
same	 samples	 showed	 a	 lower	 viral	 titer	 (Figure  6B,C).	
Immunofluorescence	 analysis	 was	 performed	 in	 siGrx1/
PR8-	infected	 A549	 cells,	 staining	 viral	 HA	 (red)	 and	
cell	 nuclei	 (DAPI,	 blu).	 As	 shown	 in	 confocal	 micros-
copy	 images	 (Figure  6D),	 HA	 expression	 was	 lower	 in	
cells	where	Grx1	was	silenced.	Accordingly,	 the	HAU	in	
siRNA-	treated	cells	was	12	compared	to	32	in	the	infected	
samples.	Finally,	a	WB	analysis	of	two	markers	of	endo-
plasmic	 reticulum	 (ER)	 stress,	 ATF6	 and	 IRE1	 revealed	
a	strong	activation	of	the	stress	sensors	in	infected	cells,	

F I G U R E  5  2-	AAPA	inhibits	viral	replication.	(A)	Different	techniques	of	influenza	viral	titration:	On	the	left,	HAU	from	supernatants	
of	100	μM	2-	AAPA-	pretreated	(or	not)	and	PR8-	infected	A549	cells	8	h	p.i.	expressed	as	percentage	mean	of	six	replicates	from	three	
independent	experiments	(n = 6,	*p <	.05);	in	the	middle,	TCID50	from	supernatants,	on	the	right,	viral	copies	in	supernatants	quantified	
by	RT-	qPCR	of	the	same	samples;	*p <	.05.	(B)	Western	blot	analysis	of	influenza	virus	proteins	in	cell	lysates	of	samples	as	above	with	anti-	
influenza	antibody.	GAPDH	was	used	as	a	loading	control	and	a	representative	western	blot	with	two	replicates	of	eight	(n = 8)	was	shown.	
(C)	RT-	qPCR	analysis	of	HA	and	M2	mRNA	level,	normalized	to	actin	mRNA	of	the	same	samples.

(A)

(B) (C)
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   | 9 of 12CHECCONI et al.

as	 indicated	by	 the	cleaved	 form	of	ATF6	and	 the	phos-
phorylation	of	IRE1;	interestingly,	activation	was	lower	in	
siGrx1-	transfected	and	infected	cells	(Figure S5),	as	it	was	
lower	the	accumulation	of	viral	proteins.	Therefore,	Grx1	
downmodulation	 decreased	 viral	 replication,	 suggesting	
that	 deglutathionylation	 is	 required	 for	 the	 proper	 viral	
maturation	and	budding	from	infected	cells.

4 	 | 	 DISCUSSION

In	the	present	study,	we	showed	that	(i)	influenza	viruses	
induce	 protein	 glutathionylation,	 including	 that	 of	 viral	
proteins;	 (ii)	 Grx1	 activity	 is	 important	 for	 the	 virus	 to	
complete	its	replication	cycle.

Previous	 studies	 have	 shown	 that	 different	 viruses,	
such	 as	 parainfluenza	 virus,	 HIV,	 HSV,	 and	 recently,	
SARS-	CoV-	2,20–	23	 induce	 glutathionylation	 of	 cellular	
proteins	during	infection.	Using	a	biotinylated	GSH	de-
rivative,	BioGEE,	already	used	in	our	previous	works,32	
we	 were	 able	 to	 detect	 glutathionylated	 proteins	 in	
two	 PR8-	infected	 epithelial	 cell	 lines	 and	 influenza	

virus	 strains-	infected	 macrophage	 cells.	 The	 latter,	 es-
sential	 for	 protection	 against	 influenza,	 being	 among	
the	 first	cells	 to	respond	to	 the	virus	 in	 the	respiratory	
tract35,36	have	long	been	considered	not	to	support	viral	
replication;	however,	 recent	studies	show	that	 the	rep-
licative	 efficiency	 in	 macrophage	 cells	 depends	 on	 the	
viral	 strains,37,38	 as	 we	 observed	 in	 our	 experiments.	
Interestingly,	 the	 strain	 with	 higher	 replicative	 effi-
ciency	(NWS)	induced	higher	levels	of	protein	glutathi-
onylation.	The	presence	of	glutathionylated	proteins	in	
the	 two	cell	 types	 (epithelial/macrophages),	confirmed	
by	 HPLC,	 led	 us	 to	 believe	 that	 the	 glutathionylation	
is	 a	 common	 mechanism,	 activated	 by	 different	 vi-
ruses	in	different	cells,	that	is	part	of	the	virus-	induced	
redox	 imbalance,	 whose	 relevance	 is	 only	 partially	
understood.20–	23

Other	 studies	 have	 demonstrated	 that	 viral	 proteins	
such	as	retroviral	protease,	chikungunya	virus	nsP2,	den-
gue	 and	 zika	 NS5,	 HCV	 polymerase,	 and	 SARS-	CoV-	2	
protease	 can	 undergo	 glutathionylation.24–	28	 Among	 in-
fluenza	virus	proteins,	we	found	that	HA	can	be	glutathio-
nylated.	HA	is	one	of	the	main	viral	surface	glycoproteins,	

F I G U R E  6  Grx1	downmodulation	decreases	viral	replication.	(A)	Cell	lysates	of	A549	cells	transfected	with	siRNA	specific	to	Grx1	
(siGrx1)	or	with	a	control	non-	targeting	siRNA	and	then	infected	with	PR8	virus	for	8	h	were	analyzed	by	western	blot	with	anti-	Grx1,	anti-	
influenza,	and	anti-	M2	antibodies.	GAPDH	was	used	as	a	loading	control	and	a	representative	western	blot	of	three	replicates	(n = 3)	was	
shown.	(B)	TCID50	from	supernatants	of	samples	as	in	(A),	**p <	.01	(C)	Viral	copies	in	supernatants	quantified	by	RT-	qPCR	(D)	Confocal	
images	of	viral	HA,	nuclei	(DAPI)	and	their	merge	of	the	samples	as	in	(A);	HAU	from	their	supernatants	are	indicated	on	the	right	of	the	
figure.

(A) (C)

(D)

(B)
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rich	in	cysteines,	whose	folding	starts,	with	the	formation	
of	disulfide	bonds,	in	the	ER,	before	the	entire	polypeptide	
has	 been	 synthesized.39	 During	 the	 biosynthesis	 of	 HA,	
the	first	cysteine	residue	to	enter	the	ER	lumen	could	in-
teract	with	other	cysteines,	including	that	of	GSH	through	
transient	 glutathionylation,	 before	 its	 proper	 cysteine	
partner	is	added	to	the	nascent	polypeptide.40	Therefore,	
glutathionylation	could	assist	 the	process	of	 folding	and	
maturation	of	 the	glycoprotein	along	the	secretory	path-
way	before	 its	 insertion	 into	 the	cell	membrane.	 In	 fact,	
mixed	disulfides	with	GSH	are	believed	 to	be	 important	
folding	intermediates	and	Grxs	to	have	a	role	in	facilitat-
ing	protein	folding.41,42

These	 results	 raise	 the	 question	 of	 the	 biological	 rel-
evance	 of	 glutathionylation	 during	 viral	 infection.	 To	
address	 this	point,	we	analyzed	Grx1	expression/activity	
and	the	effect	of	its	inhibition	or	silencing	on	viral	replica-
tion.	A	time	course	analysis	of	Grx1	during	viral	infection	
revealed	 an	 increase	 in	 the	 enzyme	 and	 its	 deglutathio-
nylation	activity,	evaluated	by	the	HED	assay,	at	the	late	
stages	of	the	viral	life	cycle.34	This	could	represent	a	cell	
host	 response	 to	 the	 virus	 induced-	oxidative	 stress	 with	
the	formation	of	mixed	disulfides,	but	it	could	also	have	
a	role	in	the	progression	of	the	virus	life	cycle.	Indeed,	it	
had	 already	 been	 shown	 that	 Grx	 (also	 known	 as	 thiol-
transferase)	 can	 regulate	 the	 activity	 of	 glutathionylated	
HIV-	1	protease	in	vitro.30	Interestingly,	glutathionylation	
could	 prevent	 premature	 activation	 of	 the	 protease;	 this	
would	be	activated	and	Grx-	mediated	deglutathionylation	
could	allow	its	activation	later,	at	 the	optimal	timing	for	
viral	maturation	and	release.43	Moreover,	it	was	reported	
that	human	Grx1	catalyzes	the	reduction	of	HIV-	1	gp120	
disulfides	 in	 vitro	 and	 that	 its	 inhibition	 reduces	 viral	
replication.44	In	our	experiments,	inhibition	of	Grx1	by	2-	
AAPA,33	or	its	silencing	with	a	siRNA,	increased	protein	
glutathionylation	while	decreased	virus	replication,	mea-
sured	as	a	 reduced	viral	 titer	 in	 the	supernatants,	 there-
fore,	indicating	that	Grx1	actually	supports	the	life	cycle	
of	the	virus.

Interestingly,	 treatment	 with	 2-	AAPA	 also	 decreased	
IL-	6	 secretion	 from	 infected-		 epithelial	 cells,	 suggesting	
an	anti-	inflammatory	in	addition	to	an	antiviral	effect.	An	
effect	 of	 2-	AAPA	 on	 pro-	inflammatory	 cytokine	 produc-
tion	had	been	described	in	Borrelia burgdorferi	infection,	
where	2-	AAPA	reduced	the	secretion	of	TNF	and	IL-	1β45;	
however,	IL-	6	decreased	secretion	could	be	a	consequence	
of	 the	 reduced	 viral	 production,	 and	 studies	 on	 the	 role	
of	Grx1	in	the	inflammatory	response	to	the	virus	are	in	
progress.

In	cells,	Grx1	inhibition/downmodulation	led	to	a	re-
duced	viral	proteins	accumulation	and	a	reduced	ER	stress	
markers	activation	as	 well,	while	 the	viral	mRNA	 levels	
remained	unchanged;	this	observation	suggested	that	the	

antiviral	effect	was	either	co-		or	post-	translational,	affect-
ing	the	proper	folding	and	assembly	of	viral	proteins	into	
new	 virions,	 which	 could	 thus	 undergo	 degradation46–	48	
although	 further	 studies	 will	 be	 necessary	 to	 clarify	 the	
pathways	involved.

In	conclusion,	this	study	shows	that	glutathionylation	
is	an	important	regulator	of	the	life	cycle	of	the	influenza	
virus,	highlighting	the	importance	of	Grx1	in	the	process;	
these	results	might	help	to	define	new	therapeutic	targets	
to	control	viral	infections.
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