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ABSTRACT
We introduce two classes of point processes: a fractional non-homo-
geneous Poisson process of order k and a fractional non-homoge-
neous P�olya-Aeppli process of order k. We characterize these
processes by deriving their non-local governing equations. We fur-
ther study the covariance structure of the processes and investigate
the long-range dependence property.

ARTICLE HISTORY
Received 26 August 2020
Accepted 16 July 2021

KEYWORDS
non-homogeneous frac-
tional Poisson process of
order k non-homogeneous
fractional P�olya-Aeppli
process of order k long
range dependence; Caputo
fractional derivative;
a-stable L�evy subordinators;
fractional integro-
differential differ-
ence equations

AMS CLASSIFICATION
60G55; 26A33;
60G05; 60G51

1. Introduction

Fractional Poisson processes (FPP) enjoy the property of non-stationarity and long
range dependence, which makes them an attractive modeling tool. These processes are
widely used in statistics, finance, meteorology, physics and network science, see for
instance (Baleanu et al. 2012) p. 332, and (Kumar, Leonenko, and Pichler 2020).
Fractional Poisson processes were introduced as renewal processes in Mainardi, Gorenflo,

and Scalas (2004). The authors generalized the characterization of the Poisson process as the
counting process for epochs defined as sum of independent non-negative exponential ran-
dom variables, and, instead of the exponential, the authors used a Mittag-Leffler distribution.
The theory of FPP was further developed by Beghin and Orsingher (2009, 2010) and by
Meerschaert, Nane, and Vellaisamy (2011).
In particular, Meerschaert, Nane, and Vellaisamy (2011) defined FPP by means of a

time-change for the Poisson process N(t), where the time variable t is replaced by the
inverse a-stable subordinator YaðtÞ: Remarkably, they could prove the equality in

CONTACT Enrico Scalas E.Scalas@sussex.ac.uk University of Sussex, Department of Mathematics, UK.
� 2021 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS
https://doi.org/10.1080/03610926.2021.1958228

http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2021.1958228&domain=pdf&date_stamp=2021-09-14
http://orcid.org/0000-0003-1932-4091
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com


distribution between NðYaðtÞÞ and the counting process defined by (Mainardi,
Gorenflo, and Scalas 2004).
Leonenko, Scalas, and Trinh (2017) used the same time-change technique to intro-

duce a non-homogeneous fractional Poisson process (NFPP) by replacing the time vari-
able in the FPP with an appropriate function of time.
In a recent paper, Gupta, Kumar, and Leonenko (2020) and Gupta and Kumar

(2021) generalize the results available on fractional Poisson processes using the z-trans-
form technique.
Kostadinova and Minkova (2019) introduced a Poisson process of order k with insur-

ance modeling in mind. This process models the claim arrival in groups of size k, where
the number of arrivals in a group is uniformly distributed over k points.
The P�olya-Aeppli process of order k was studied in Chukova and Minkova (2015) and

later by Kostadinova and Lazarova (2019). In this process, the uniform distribution on the
integers 1, :::, k is replaced by the truncated geometric distribution of parameter q.
To deal with dependent inter-arrival times, a generalization of Poisson processes of

order k was proposed by Sengar, Maheshwari, and Upadhye (2020). These authors
extended the Poisson process of order k by means of time change with a general L�evy
subordinator as well as an inverse L�evy subordinator.
Here, we combine the compound Poisson processes of order k and fractional Poisson

processes, namely we study a fractional non-homogeneous Poisson process of order k
and a fractional non-homogeneous P�olya-Aeppli process of order k (see the definitions
below). First, we generalize the results of Kostadinova and Minkova (2019) by consider-
ing a non-homogeneous Poisson process of order k. Then, we generalize the results of
Sengar, Maheshwari, and Upadhye (2020) by introducing the time non-homogeneity in
the fractional Poisson process of order k. Finally, we study a non-homogeneous frac-
tional P�olya-Aeppli process of order k.
This paper is organized as follows. Section 2 collects some known results from the the-

ory of subordinators and provides the definition of the compound distributions of order k.
In Section 3, we consider a non-homogeneous fractional Poisson process of order k. We
obtain the governing equations and calculate the moments and the covariance function of
the process. Section 4 is devoted to a non-homogeneous fractional P�olya-Aeppli process
of order k. We derive the non-local governing equations for the marginal distributions of
these processes, using non-local operators known as Caputo derivatives. The moments and
the covariance structure of the processes are derived, as well.

2. Preliminaries

This section presents known results in the theory of subordinators and provides the def-
inition of the compound distributions of order k.

2.1. Compound distributions of order k

Consider a random variable that can be represented as a random sum N ¼ X1 þ X2 þ
:::þ XY , where fXig1i¼1 is a sequence of independent identically distributed random
variables (i.i.d. r.v’s), independent of a non-negative integer-valued random variable Y.
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The probability distribution of N is called compound distribution and the distribution
of X1 is called compounding distribution.
A well-known and widely used example is the compound Poisson distribution, where

Y has a Poisson distribution. If Xi 2 f1, 2, :::, kg, then the random variable N has a
compound discrete distribution of order k.
Compound discrete distributions of order k were studied by Philippou (1983) and

Philippou, Georghiou, and Philippou (1983).
As mentioned previously, in this paper we deal with two types of compounding dis-

tributions: the discrete uniform distribution and the truncated geometric distribution.
They respectively induce the Poisson distribution of order k and the P�olya-Aeppli distri-
bution of order k as will be shown in the following. We say that the random variable X
is uniformly distributed over k points if its probability mass function (pmf) is of the
form

P X ¼ m½ � ¼ 1
k
, m ¼ 1, :::, k: (1)

Its probability generating function (pgf) is

GXðuÞ ¼ E uX½ � ¼ 1
k
ðuþ u2 þ :::þ ukÞ ¼ u

k
� 1� uk

1� u
, u 2 ð0, 1Þ:

The random variable X has a truncated geometric distribution with parameter q and
with success probability 1� q if

P X ¼ m½ � ¼ 1� q
1� qk

qm�1, m ¼ 1, 2, :::, k, q 2 0, 1Þ:½ (2)

Consequently, the pgf of X is given by

GXðuÞ ¼ E uX½ � ¼ ð1� qÞu
1� qk

1� qkuk

1� qu
, u 2 ð0, 1Þ: (3)

Note, that for k ! 1, the truncated geometric distribution asymptotically coincides
with the geometric distribution with parameter 1� q:
We can now define the Poisson distribution of order k.

Definition 1 (Poisson distribution of order k). The random variable N has Poisson dis-
tribution of order k with parameter K if N ¼ X1 þ X2 þ :::þ XY , where:
(1) fXigi�1 are the i.i.d. r.v’s with the uniform distribution; (2) Y has Poisson distri-

bution with parameter K > 0; (3) Y and fXigi�1 are independent.
Note that

P N ¼ m½ � ¼ e�Kk
X

ðn1, :::nkÞ2Xðk,mÞ

Kn1þ:::þnk

n1! � ::: � nk! ¼ e�Kk
X

Xðk,mÞ

Kzk

Pk!
,

where zk ¼ n1 þ n2 þ :::þ nk, Pk! ¼ n1! � n2! � ::: � nk!, and
Xðk,mÞ ¼ fðn1, :::nkÞ : n1 þ 2n2 þ :::knk ¼ mg: (4)
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The pgf of the Poisson distribution of order k is

GNðuÞ ¼ E uN½ � ¼ exp �K k�
Xk
j¼1

uj

0
@

1
A

8<
:

9=
;: (5)

Note that N¼dPk
j¼1 jYj, where Yj, j ¼ 1, :::, k are independent copies of Poisson ran-

dom variable Y with parameter K, and “¼d“stands for equality in distributions. We now
introduce the P�olya-Aeppli distribution of order k as a compound Poisson distribution
(see (Minkova 2010)).

Definition 2 (P�olya-Aeppli distribution of order k). The random variable N has P�olya-
Aeppli distribution of order k with parameter 1� q if N ¼ X1 þ X2 þ :::þ XY , where:
(i) fXigi�1 are the i.i.d. r.v’s with the truncated geometric distribution with parameter
1� q, given by (2); (ii) Y has Poisson distribution with parameter K; (iii) Y and
fXigi�1 are independent.

Note that the probability generating function of N is GNðuÞ ¼ e�Kð1�GX1 ðuÞÞ, where
GX1 is given by (3).
The probability mass function of P�olya-Aeppli distribution of order k is defined by

(see Minkova 2010, Theorem 3.1):

P N ¼ m½ � ¼ qmðKÞ,m ¼ 0, 1, 2, :::, (6)

where

q0ðKÞ ¼ e�K

qmðKÞ ¼ e�K
Xm
j¼1

m� 1

j� 1

 !
QJ

j!
qm�j,m ¼ 1, 2, :::, k

qmðKÞ ¼ e�K

"Xm
j¼1

m� 1

j� 1

 !
QJ

j!
qm�j �

Xl
n¼1

ð�1Þn�1 ðQqkÞn
n!

�

�
Xm�nðkþ1Þ

j¼0

m� nðkþ 1Þ þ n� 1

jþ n� 1

 !
QJ

j!
qm�j�nðkþ1Þ

#
,

and

Q ¼ Kð1� qÞ
1� qk

,m ¼ lðkþ 1Þ þ r, r ¼ 0, 1, ::, k, l ¼ 1, 2, ::::

2.2. Inverse a-stable subordinator

Let La ¼ fLaðtÞ; t � 0g be a a-stable L�evy subordinator, that is L�evy process with
Laplace transform:

E e�sLaðtÞ½ � ¼ e�tsa , 0 < a < 1, s � 0:

Then the inverse a-stable subordinator fYaðtÞ; t � 0g (see e.g., Meerschaert and
Sikorskii 2019, 103) is defined as the first passage time of La :
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YaðtÞ ¼ inffu > 0 : LaðuÞ > tg, t � 0: (7)

We will use the following properties of the inverse a-stable subordinator:

i. The density of YaðtÞ is of the form (see (Meerschaert and Sikorskii 2019)
p.113):

haðt, xÞ ¼ d
dx

P YaðtÞ � x½ � ¼ t
a
x�1�1

aga tx�
1
að Þ, x > 0, t > 0, (8)

where

gaðxÞ ¼ 1
p

X1
k¼1

ð�1Þkþ1 Cðakþ 1Þ
k!

1
xakþ1

sin ðpkaÞ

is the density of Lað1Þ (see e.g. (Kataria and Vellaisamy 2018)).
ii. The Laplace transform

~haðs, xÞ ¼
ð1
0

e�sthaðt, xÞdt ¼ sa�1e�xsa , s � 0: (9)

iii. The moments of the inverse a-stable subordinator are as follows:

E Y�
a ðtÞ

� � ¼ Cð� þ 1Þ
Cða� þ 1Þ t

a� , � > 0, Var YaðtÞ½ � ¼ t2a
2

Cð2aþ 1Þ �
1

ðCðaþ 1ÞÞ2
� �

:

(10)

(see e.g. (Kataria and Vellaisamy 2018, 1640).
iv. The covariance function (see (Leonenko et al. 2014; Leonenko, Scalas, and

Trinh 2017)) is

Cov YaðtÞ,YaðsÞ½ � ¼ 1
Cð1þ aÞCðaÞ

ðminðt, sÞ

0

ððt � sÞa þ ðs� sÞaÞsa�1ds� ðstÞa
C2ð1þ aÞ :

(11)

3. Poisson processes of order k

The Poisson process of order k was introduced in Kostadinova and Minkova (2019), see
also (Sengar, Maheshwari, and Upadhye 2020).

Definition 3. The Poisson process of order k (PPk) N ¼ fNðtÞ; t � 0g is defined as a
compound Poisson process with the compounding discrete uniform distribution:

NðtÞ ¼ X1 þ :::þ XN1ðtÞ, (12)

where (1) Xi are independent copies of a discrete uniform random variable distributed
over k points given by (1); (2) N1 ¼ fN1ðtÞ; t � 0g is the Poisson process with param-
eter kk; (3) N1 and fXigi�1 are independent.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5



The following Kolmogorov forward equations are valid for pmðtÞ ¼ P½NðtÞ ¼ m� :
d
dt

p0ðtÞ ¼ �kkp0ðtÞ (13)

d
dt

pmðtÞ ¼ �kkpmðtÞ þ k
Xm� k

j¼1

pm�jðtÞ, m ¼ 1, 2, ::: (14)

with the initial condition p0ð0Þ ¼ 1, : pmð0Þ ¼ 0,m � 1, and m�k ¼ minðm, kÞ: The pgf
is of the form:

GNðtÞðuÞ ¼ E uNðtÞ½ � ¼ exp fktðuþ :::þ uk � kÞg,

and the first two moments are given by

E NðtÞ½ � ¼ kðkþ 1Þ
2

kt, Cov NðtÞ,NðsÞ½ � ¼ kðkþ 1Þð2kþ 1Þ
6

kminðs, tÞ: (15)

3.1. Fractional Poisson process of order k

In this sub-section we shall derive governing equations for a fractional Poisson process
of order k and we shall investigate its long-range dependence properties. It is worth
noting that Sengar, Maheshwari, and Upadhye (2020) studied the Poisson process of
order k time-changed by a general L�evy subordinator and its inverse. However, among
their examples, they did not explicitly consider the governing equations for the inverse
a-stable subordinator (this particular process is studied in Gupta and Kumar (2021)).
That is why we specify some formulae of Sengar, Maheshwari, and Upadhye (2020) that
will be used in the following sub-sections. In particular, below, we use Equation (10) to
derive the marginal distributions of the fractional Poisson process of order k.

Definition 4. (Fractional Poisson process of order k). The process NaðtÞ is called frac-
tional Poisson process of order k (FPPk) if

NaðtÞ ¼ NðYaðtÞÞ, 0 < a < 1, (16)

where (1) YaðtÞ is the inverse a-stable subordinator, given by (7); (2) N is the Poisson
process of order k, given by (12); (3) YaðtÞ and N are independent.
The marginal distributions of the FPPk process is given by

pamðtÞ ¼ P NaðtÞ ¼ m½ � ¼
X

Xðk,mÞ

kzk

Pk!

X1
n¼0

ð�kkÞn
n!

E ðYaðtÞÞzkþn
� �

¼

¼
X

Xðk,mÞ

kzk

Pk!

X1
n¼0

ð�kkÞn
n!

Cðzk þ nþ 1Þ
Cðaðzk þ nÞ þ 1Þ t

aðzkþnÞ,m ¼ 0, 1, ::

where zk ¼ n1 þ n2 þ :::þ nk, Pk! ¼ n1!n2!:::nk!, and Xðk,mÞ is defined in (4).
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Also

E NaðtÞ½ � ¼ kk
ðkþ 1Þ

2
E YaðtÞ½ �,

Var NaðtÞ½ � ¼ kk
ðkþ 1Þð2kþ 1Þ

6
E YaðtÞ½ � þ kk

ðkþ 1Þ
2

� �2

VarðYaðtÞÞ,

Cov NaðtÞ,NaðsÞ½ � ¼ kðkþ 1Þð2kþ 1Þkðminðt, sÞÞa
6Cð1þ aÞ þ kkðkþ 1Þ

2

� �2

CovðYaðsÞ,YaðtÞÞ,

where the variance and covariance of the process YaðtÞ are given by (10) and (11).

3.1.1. Correlation structure and long-range dependence
There exist many definitions of the long-range dependence property. Here, we shall use
the definition given in Biard and Saussereau (2014).

Definition 5. The process fXðtÞ; t � 0g has a long-range dependence property (LRD) if
for fixed s and some c(s) and a 2 ð0, 1Þ : limt!1½CorrðXðsÞ,XðtÞÞ=t�a� ¼ cðsÞ, where
Corr is the correlation function of the process X:
We now investigate the asymptotic behavior of the correlation function of the FPPk

process defined by (16).

Theorem 3.1. The process NaðtÞ has the LRD property.

Proof. Using the result of Leonenko et al. (2014) we have that for a fixed s> 0

Corr NaðtÞ,NaðsÞ½ � � t�aCða, sÞ t ! 1,

where Cða, sÞ ¼ ð 1
Cð2aÞ � 1

aðCðaÞÞ2Þ
�1 aVar½Nð1Þ�

Cð1þaÞðE½Nð1Þ�Þ2 þ asa
Cð1þ2aÞ

h i
, and E½Nð1Þ� and Var½Nð1Þ�

are given by (15).

3.1.2. Governing equations
In the sequel we will employ the fractional Caputo (or Caputo-Djrbashian) derivative
which is defined as follows (see e.g., (Meerschaert and Sikorskii 2019, 30)

Da
t f ðtÞ ¼

1
CðaÞ

ðt
0

df ðuÞ
du

du
ðt � uÞa , 0 < a < 1,

df ðuÞ
du

, a ¼ 1:

8>>>><
>>>>:

(17)

Theorem 3.2. The governing fractional difference-differential equations for
pamðtÞ, t � 0 are given by

Da
t p

a
0ðtÞ ¼ �kkpa0ðtÞ (18)

Da
t p

a
mðtÞ ¼ �kkpamðtÞ þ k

Xm� k

j¼1

pam�jðtÞ, m ¼ 1, 2, ::: (19)
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with the initial condition

pamð0Þ ¼ dm, 0 ¼ 1, m ¼ 0
0, m � 1:

�

Note, that by setting a ¼ 1, we get the governing equations of the Poisson process of
order k given in Equation (13).

Proof. Note that

Da
t haðt, uÞ ¼ � @

@u
haðt, uÞ (20)

and remember that

panðtÞ ¼
ð1
0

pnðuÞhaðt, uÞdu n ¼ 0, 1, 2::: (21)

We first consider the case n � 1: By taking the fractional Caputo derivative of both
sides (21) and using property (20), we get

Da
t p

a
mðtÞ ¼ �

ð1
0

pmðuÞ @

@u
haðt, uÞdu ¼

¼
ð1
0

�kkpmðuÞ þ k
Xm� k

j¼1

pm�jðuÞ
2
4

3
5haðt, uÞdu� pmðuÞhaðt, uÞj10 ¼

¼� kkpamðtÞ þ k
Xm� k

j¼1

pam�jðtÞ:

For n¼ 0 we have

Da
t p

a
0ðtÞ ¼ �

ð1
0

p0ðuÞ @

@u
haðt, uÞdu ¼

ð1
0

�kkp0ðuÞ
� �

haðt, uÞdu ¼ �kkpa0ðtÞ:

Remark 1. Note that Sengar, Maheshwari, and Upadhye (2020) derived governing equa-
tions in which the Caputo derivative is replaced by a more general non-local operator.
We present the proof of Theorem 3.2 for the sake of completeness.

3.2. Non-homogeneous fractional Poisson process of order k

We now generalize the fractional Poisson process of order k by introducing a determin-
istic, time dependent intensity or rate function kðtÞ : ½0,1Þ ! ½0,1Þ, such that for
every fixed t > 0, the cumulative rate function follows the following equation

8 T. KADANKOVA ET AL.



KðtÞ ¼
ðt
0

kðuÞdu < 1

Denote Kðs, tÞ ¼ Ð ts kðuÞdu ¼ KðtÞ � KðsÞ, 0 � s < t: Let N1
1ðtÞ; t � 0 be a homoge-

neous Poisson process (HPP) of unit intensity, and N1
1ðKðtÞÞ, t � 0, be a non-homoge-

neous Poisson process (NPP) with rate function kðtÞ, then
NnðtÞ ¼ X1 þ :::þ XN1

1 ðkKðtÞÞ, t � 0,

is non-homogeneous Poisson process of order k (NPPk), with rate function kðtÞ, t � 0,
where fXigi�1 are the i.i.d.r.v’s with the uniform distribution on f1, 2, :::, kg, independ-

ent of N1
1ðKðtÞÞ: The mgf of the process Nn is of the form:

GNnðtÞðuÞ ¼ E uN
nðtÞ½ � ¼ exp fKðtÞðuþ :::þ uk � kÞg:

The process Nn has the following distributions of its increments:

pnmðt, uÞ ¼ P Nnðt þ uÞ � NnðuÞ ¼ m½ � ¼

¼ e�kKðu, tþuÞ X
Xðk,mÞ

Kðu, uþ tÞ½ �n1þ:::þnk

n1!:::nk!
, m ¼ 0, 1, :::

(22)

Incidentally, this model includes Weibull’s rate function: KðtÞ :¼ Kð0, tÞ ¼
ðtbÞc, kðtÞ ¼ c

b ðtbÞc�1, c � 0, b > 0; Makeham’s rate function: KðtÞ ¼ c
b e

bt � c
b þ

lt, kðtÞ ¼ cebt þ l, c > 0, b > 0, l � 0, and many others.
We define a non-homogeneous fractional Poisson process of order k (FNPPk) as

N	
aðtÞ ¼ NnðYaðtÞÞ, t � 0, 0 < a < 1, (23)

where YaðtÞ is the inverse a-stable subordinator (7), independent of the NPPk pro-
cess Nn:

3.2.1. Marginal distributions
Define the increment process: Iaðt, vÞ ¼ NðKðYaðtÞ þ vÞÞ � NðKðvÞÞ: Its marginal distri-
butions can be written as follows:

p	mðt, vÞ ¼ P Iaðt, vÞ ¼ m½ � ¼
ð1
0

pnmðu, vÞhaðt, uÞdu, (24)

where haðt, uÞ is the density of the inverse a-stable subordinator (8) and pnxðu, vÞ is
given by (22). Consequently the marginal distributions of N	

aðtÞ are given by

P N	
aðtÞ ¼ m

� � ¼ p	mðt, 0Þ ¼
ð1
0

pnmðu, 0Þhaðt, uÞdu:

For the NFPP N1
1ðKðYaðtÞÞ; t � 0, of order k ¼ 1, Leonenko et al. (Leonenko, Scalas,

and Trinh 2017) derived the governing equations for the marginal distributions
P½I1aðt, vÞ ¼ m� of the corresponding increment process I1aðt, vÞ ¼ N1

1ðKðYaðtÞ þ vÞÞ �

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 9



N1ðKðvÞÞ of NFPP (of order k¼ 1), where N1
1 is the homogeneous Poisson process of

intensity 1. We shall derive the governing equations for the marginal distributions
p	xðt, vÞ of FNPPk.
Theorem 3.3. The marginal distributions p	xðt, vÞ satisfy the following fractional differ-
ential-difference integral equations

Da
t p

	
0ðu, vÞ ¼ �k

ð1
0

kðuþ vÞpn0ðu, vÞhaðt, uÞdu 0 � v < u

Da
t p

	
mðu, vÞ ¼

ð1
0

�kkðuþ vÞpnmðu, vÞ þ kðuþ vÞ
Xm� k

j¼1

pnm�jðu, vÞ
2
4

3
5haðt, uÞdu, m ¼ 1, 2, :::

(25)

with the initial condition: p	mð0, vÞ ¼ dm, 0, where pnmðu, vÞ is given by (22).

Proof. Note that the mgf of pnmðu, vÞ is of the form

p̂ns ðu, vÞ ¼ E sN
nðvþuÞ�NnðvÞ½ � ¼ exp fKðv, uþ vÞðsþ :::þ sk � kÞg,

while the Laplace transform with respect to t of haðt, uÞ is given by (9). Taking both the
mgf and the Laplace transform in (24) as above, we have

�p	s ðr, vÞ ¼
ð1
0

p̂sðu, vÞ~haðr, uÞdu ¼ ra�1
ð1
0

exp fKðv, uþ vÞðsþ :::þ sk � kÞge�uradu: (26)

Note that for UðuÞ ¼ exp fKðv, uþ vÞðsþ :::þ sk � kÞg, we have

d
du

UðuÞ ¼ ðsþ s2 þ :::þ sk � kÞkðuþ vÞ exp fKðv, uþ vÞðsþ s2 þ :::þ sk � kÞg: (27)

Thus, integrating (26) by parts with U as above, and V ¼ �e�ura=ra, we get

�p	s ðr, vÞ ¼ ra�1

(
� 1
ra
ðe�uraeKðv, uþvÞðsþ:::sk�kÞj10

� �
þ

þ 1
ra
ðsþ s2 þ :::þ sk � kÞ

ð1
0

kkðv, uþ vÞ exp fKðv, uþ vÞðsþ s2 þ :::þ sk � kÞge�uradu

)
¼

¼ 1
ra

ra�1 þ ðsþ s2 þ :::þ sk � kÞ
ð1
0

kðuþ vÞ exp fKðv, uþ vÞðsþ s2 þ :::þ sk � kÞgra�1e�uradu

2
64

3
75:

(28)

We shall use the following property of the Caputo derivative:

LrfDa
t f gðrÞ ¼ raLff gðrÞ � ra�1f ð0þÞ,

where Lfðf ÞgðrÞ stands for the Laplace transform of function f : Note that p	yð0þ, vÞ ¼
1, since Yað0Þ ¼ 0 a.s. Hence, by (28)
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ra�p	s ðr, vÞ � ra�1�p	s ð0, vÞ ¼ LrfDa
t �p

	
s ðr, vÞgðrÞ ¼

¼ ðsþ s2 þ :::þ sk � kÞ
ð1
0

kðuþ vÞ exp fKðv, uþ vÞðsþ s2 þ :::þ sk � kÞgra�1e�uradu:

Inverting the Laplace transform yields

Da
t p̂

	
s ðt, vÞ ¼ ðsþ s2 þ :::þ sk � kÞ

ð1
0

kðuþ vÞ exp fKðv, uþ vÞðsþ s2 þ :::þ sk � kÞghaðt, uÞdu ¼

¼
ð1
0

kðuþ vÞðsþ s2 þ :::þ sk � kÞp̂sðu, vÞhaðt, uÞdu,

where the mgf

p̂sðu, vÞ ¼
X
m

smpmðu, vÞ:

Finally, by inverting the mgf ðsþ s2 þ :::þ sk � kÞp̂sðu, vÞ, we obtain:

Da
t p

	
mðu, vÞ ¼

ð1
0

kðuþ vÞ �kpmðu, vÞ þ
Xm� k

j¼1

pm�jðu, vÞ
2
4

3
5haðt, uÞdu,

since the mgf of

�kpmðu, vÞ þ
Xm� k

j¼1

pm�jðu, vÞ

is equal to

X
m

sm �kpmðu, vÞ þ
Xm� k

j¼1

pm�jðu, vÞ
2
4

3
5 ¼ ðsþ s2 þ :::þ sk � kÞp̂sðu, vÞ:

3.2.2. Covariance structure

One can show that for NPPk E½NnðtÞ� ¼ kðkþ1Þ
2 KðtÞ, and its covariance function is

Cov NnðtÞ,NnðsÞ½ � ¼ kðkþ 1Þð2kþ 1Þ
6

Kðminðs, tÞÞ:

Then the mean and covariance function of FNPPk are given by

E N	
aðtÞ

� � ¼ kðkþ 1Þ
2

E KðYaðtÞ½ �
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Cov N	
aðtÞ,N	

aðsÞ
� � ¼ kðkþ 1Þð2kþ 1Þ

6
E

�
KðYaðminðs, tÞÞ

þ kðkþ 1Þ
2

� �2

Cov½KðYaðtÞÞ,KðNaðsÞÞ
�
:

4. P�olya-Aeppli process of order k

The P�olya-Aeppli process of order k was defined and studied in the context of ruin
problems in Chukova and Minkova (2015) and later by Kostadinova and Lazarova
(2019). Related pure fractional birth processes were studied in Orsingher and
Polito (2010).

Definition 6. The process NPAkðtÞ is said to be the P�olya-Aeppli process of order k
(PAk) if

NPAkðtÞ ¼ X1 þ :::þ XN1ðtÞ,

where (i) the random variables Xi are i.i.d with the truncated geometric distribution of
parameter q 2 ½0, 1Þ, given by (2); (ii) N ¼ fNðtÞ; t � 0g is a homogeneous Poisson
process (HPP) with intensity k > 0, independent of fXig1i¼1:

The following Kolmogorov forward equations are valid for the marginal distributions
pmðtÞ ¼ P½NPAkðtÞ ¼ m� :

d
dt

p0ðtÞ ¼ �kp0ðtÞ

d
dt

pmðtÞ ¼ �kpmðtÞ þ k
1� q
1� qk

Xm� k

j¼1

qj�1pm�jðtÞ,
(29)

where pmð0Þ ¼ dm, 0:

The marginal distributions of the PAk process are given by

pmðtÞ :¼ P NPAkðtÞ ¼ m½ � ¼ qmðktÞ,m ¼ 0, 1, 2, ::, (30)

where qm are given by (6).
More explicit expressions for pmðtÞ can be found in Minkova (2010). The expectation

ad variance are as follows:

E NPAkðtÞ½ � ¼ kt
1þ qþ :::þ qk�1 � kqk

1� qk
,

Var NPAkðtÞ½ � ¼ kt
1� qk

1þ 3qþ 5q2 þ :::þ ð2k� 1Þqk�1 � k2qk
� �

:

(31)

Note that PAk process is a compound Poisson process with the pgf

GNPAkðtÞðuÞ ¼ E uNPAkðtÞ½ � ¼ P NPAkðtÞ ¼ m½ � ¼ e�ktð1�GXðuÞÞ,

where GXðuÞ ¼ E uX½ � is given by (3).
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4.1. Non-homogeneous P�olya-Aeppli process of order k

We now consider a non-homogeneous version by introducing a deterministic time
dependent intensity function kðtÞ as above, and Kðs, sþ tÞ ¼ Kðsþ tÞ�
KðsÞ, KðtÞ ¼ Ð t0 kðuÞdu:
Definition 7. (Non-homogeneous P�olya-Aeppli process of order k). We define a non-
homogeneous P�olya-Aeppli process of order k with cumulative rate function KðtÞ and
parameter q as

Nn
PAkðtÞ ¼ X1 þ :::þ XNn

1 ðtÞ, (32)

where (i) fNn
1 ðtÞ; t � 0g is a non-homogeneous Poisson process (NPP) with cumulative

rate function KðtÞ; (ii) Xi are i.i.d. r.v’s following the truncated geometric distribution
with parameter q, given by (3); (iii) fNn

1 ðtÞ; t � 0g is independent from Xi, i ¼ 1, 2, :::
Note, that the random variable Nn

PAkðt þ sÞ � Nn
PAkðsÞ, : s, : t � 0 has the P�olya-

Aeppli distribution of order k with parameters Kðs, tÞ, q, that is
f nmðt, uÞ ¼ P Nn

PAkðt þ uÞ � Nn
PAkðuÞ ¼ m

� � ¼ qmðKðu, uþ tÞÞ,m ¼ 0, 1, 2, :::, (33)

where qm are given by (6).
Then the marginal distributions of the process Nn

PAkðtÞ are P½Nn
PAkðtÞ ¼ m� ¼ f nmðt, 0Þ:

An alternative definition can be given in terms of transition probabilities.

Definition 8. The counting process Nn
PAkðtÞ is said to be a non-homogeneous P�olya

-Aeppli process of order k with the rate function kðtÞ and parameter q 2 ½0, 1Þ if (1)
Nn

PAkð0Þ ¼ 0; (2) Nn
PAkðtÞ has independent increments; (3) for all t � 0

P Nn
PAkðt þ hÞ ¼ n jNn

PAkðtÞ ¼ m
� � ¼ 1� kðt þ hÞhþ oðhÞ, n ¼ m

1� q
1� qk

qi�1kðt þ hÞhþ oðhÞ, n ¼ mþ i, i ¼ 1, 2, :::, k

8<
:

(34)

It is easy to verify that the previous two definitions are equivalent.

4.1.1. Marginal distributions of the process
The following theorem holds.

Theorem 4.1. The functions fmðt, uÞ, m ¼ 0, 1, 2, ::: satisfy the differential equation:

d
dt

fmðt, uÞ ¼ �kðt þ uÞfmðt, uÞ þ kðt þ uÞ 1� q
1� qk

Xm� k

j¼1

qj�1fx�jðt, uÞ: (35)
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Proof. We first consider the case m ¼ 0: By fixing u and taking a small h we can write

f0ðt þ h, uÞ ¼ P Iðt þ hÞ ¼ 0½ � ¼ P Nn
PAkðt þ uþ hÞ � Nn

PAkðuÞ ¼ 0
� � ¼

P½no events in ðu, uþ t� \ no events in ðuþ t, uþ t þ h�� ¼
P no events in ðu, uþ t þ h½ ��P no events in ðuþ t, uþ t þ h½ �� ¼
f0ðt þ hÞ 1� kðt þ uÞhþ oðhÞ½ �

Thus

f0ðt þ h, uÞ � f0ðt, uÞ
h

¼ �kðt þ uÞf0ðt, uÞ þ oðhÞ
h

:

Letting h ! 0 yields

d
dt

f0ðt, uÞ ¼ �kðt þ uÞf0ðt, uÞ:

For m � 1 we have

fmðt þ h, uÞ ¼ P½fm events in ðu, uþ t þ h�g \ fno events in ðuþ t, uþ t þ h�g
[ fm� 1 events in ðu, uþ t�g \ f1 event inðuþ t, uþ t þ h�g [ :::

[ f 0 events in ðu, uþ t�g \ fm events in ðuþ t, uþ t þ h�g� ¼
fmðt þ h, uÞ 1� kðt þ uÞhþ oðhÞ½ � þ fm�1ðt þ h, uÞ 1� q

1� qk
kðt þ uÞhq1�1 þ oðhÞ

� �
þ :::

þ f0ðt þ h, uÞ 1� q
1� qk

kðt þ uÞhqm� k�1 þ oðhÞ
� �

¼

¼ kðt þ uÞfmðt þ h, uÞ þ kðt þ uÞ 1� q
1� qk

Xm� k

j¼1

qj�1fm�jðt, uÞ:

Letting h ! 0 yields

d
dt

fmðt, uÞ ¼ �kðt þ uÞfmðt, uÞ þ kðt þ uÞ 1� q
1� qk

Xm� k

j¼1

qj�1fm�jðt, uÞ,

which was the statement of the theorem. w

Note that in case k ! 1, the P�olya-Aeppli process Nn
PAkðtÞ coincides with the non-

homogeneous P�olya-Aeppli process defined in Chukova and Minkova (2019), but for
fixed k the P�olya-Aeppli process Nn

PAkðtÞ is new.

4.2. Fractional P�olya-Aeppli process of order k

To the best of our knowledge, fractional versions of PAk processes have not been con-
sidered yet. We define a fractional P�olya-Aeppli process of order k as a P�olya-Aeppli
process of order k time-changed by the process fYaðtÞ; t � 0g, such that

Nh
aðtÞ ¼ NPAkðYaðtÞÞ, 0 < a < 1, (36)

where (i) N1 ¼ fN1ðtÞ; t � 0g is the homogeneous Poisson process with intensity k; (ii)
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NPAkðtÞ ¼ X1 þ :::þ XN1ðtÞ; (iii) fYaðtÞ; t � 0g, 0 < a < 1 is the inverse a-stable subor-
dinator, defined in (7) and independent of N1ðtÞ:

4.2.1. Marginal distributions
We shall now obtain governing equations for the marginal distributions of the fractional
PAk process

paxðtÞ ¼ P NPAkðYaðtÞÞ ¼ m½ � ¼
ð1
0

pmðuÞhaðt, uÞdu, m ¼ 0, 1, :::,

where pmðuÞ is given by (30).

Theorem 4.2. The probabilities paxðtÞ, x ¼ 0, 1, ::: satisfy the fractional differential-dif-
ference equations:

Da
t p

a
0ðtÞ ¼ �kpa0ðtÞ (37)

Da
t p

a
xðtÞ ¼ �kpaxðtÞ þ k

1� q
1� qk

Xx� k

j¼1

qj�1pax�jðtÞ, (38)

where Da
t f ðtÞ is the fractional Caputo derivative of the function f given by (17).

Proof. We first consider the case m � 1: By taking the fractional Caputo derivative of
both sides in (29) and using the property (20), we get

Da
t p

a
mðtÞ ¼ �

ð1
0

pmðuÞ @

@u
haðt, uÞdu ¼

¼
ð1
0

�kpmðuÞ þ k
1� q
1� qk

Xx� k

j¼1

qj�1pm�jðtÞ
2
4

3
5haðt, uÞdu� pmðuÞhaðt, uÞj10 ¼

¼� kpamðtÞ þ k
1� q
1� qk

Xx� k

j¼1

qj�1pam�jðtÞ:

For m¼ 0 we have

Da
t p

a
0ðtÞ ¼ �

ð1
0

p0ðuÞ @

@u
haðt, uÞdu ¼

¼
ð1
0

�kp0ðuÞ
� �

haðt, uÞdu ¼ �kpa0ðtÞ:

4.3. Correlation structure and long-range dependence property

In this sub-section we shall obtain several important characteristics of the fractional
P�olya-Aeppli process of order k such as its expectation, variance and covariance. After
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that, we are able to study the correlation structure of the process. For the fractional
P�olya-Aeppli process of order k, Nh

aðtÞ ¼ NPAkðYaðtÞÞ, we can use the property of the
conditional expectation to write (see (Leonenko et al. 2014))

E Nh
aðtÞ

h i
¼ E E Nh

aðtÞ jYaðtÞ
h i

jYaðtÞ
h i

¼
ð1
0

E NPAkðuÞ½ �haðt, uÞdu ¼

¼ kE NPAkð1Þ½ � ta

Cðaþ 1Þ ,

Var Nh
aðtÞ

h i
¼ taVar NPAkð1Þ½ �

Cðaþ 1Þ þ t2aðE NPAkð1Þ½ �Þ2
a

1
Cð2aÞ �

1

aCðaÞ2
� �

:

The covariance function can be calculated via the formula:

Cov Nh
aðtÞ,Nh

aðsÞ
h i

¼ Var NPAkð1Þ½ �minðt, sÞa
Cð1þ aÞ þ ðE NPAkð1Þ½ �Þ2Cov YaðtÞ,YaðsÞ½ �,

where the covariance of the process YaðtÞ is given by Equation (11).

Theorem 4.3. The process Nh
aðtÞ has the LRD property.

Proof. Using the results from (Leonenko et al. 2014) similarly to the previous section,
we get

Corr Nh
a ðtÞ,Nh

a ðsÞ
h i

� t�aCða, sÞ t ! 1,

where Cða, sÞ ¼ ð 1
Cð2aÞ � 1

aðCðaÞÞ2Þ
�1 aVar½NPAkð1Þ�

Cð1þaÞðE½NPAkð1Þ�Þ2 þ
asa

Cð1þ2aÞ
h i

, and E½NPAkð1Þ�,
Var½NPAkð1Þ� are given by (31). Thus the correlation function of FPAk process decays
at rate t�a, a 2 ð0, 1Þ and satisfies the LRD property. w

4.4. Non-homogeneous fractional PAk process

As we did before, we can now define a non-homogeneous fractional P�olya-Aeppli pro-
cess of order k as

Nn
a ðtÞ ¼ NPAkðKðYaðtÞÞÞ, t � 0, 0 < a < 1,

where all the symbols have the usual meaning defined above. We assume that the
inverse subordinator Ya is independent of the process NPAk: In this sub-section, we shall
derive governing equations for the probabilities

p		m ðt, vÞ ¼ P NPAkðKðYaðtÞ þ vÞÞ � NPAkðKðvÞÞ ¼ m½ �:

Theorem 4.4. The marginal distributions p		x ðt, vÞ satisfy the following fractional differ-
ential-difference integral equations

Da
t p

		
0 ðu, vÞ ¼ �

ð1
0

kðuþ vÞf n0 ðu, vÞhaðt, uÞdu (39)
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Da
t p

		
m ðu, vÞ ¼

ð1
0

kðuþ vÞ �f nmðu, vÞÞ þ
1� q
1� qk

Xm� k

j¼1

qj�1f nm�jðu, vÞ
2
4

3
5haðt, uÞdu m ¼ 1, 2, :::

(40)

with the initial condition p		m ð0, vÞ ¼ dm, 0, where f nmðu, vÞ is given by (33).

Proof. Using (9), the mgf of f nmðu, vÞ can be written in the form:

f̂
n

s ðu, vÞ ¼ E sN
nðvþuÞ�NnðvÞ½ � ¼ exp Kðv, uþ vÞ 1� q

1� qk
Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;,

while the Laplace transform with respect to t of haðt, uÞ is given by (9). Taking both the
mgf and the Laplace transform in (24) as above, we have

�p		s ðu, vÞ ¼ ra�1
ð1
0

f̂
n

s ðu, vÞ~haðr, uÞdu ¼

ð1
0

exp Kðv, uþ vÞ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;

2
64

3
75e�uradu:

(41)

Note that for UðuÞ ¼ exp Kðv, uþ vÞ 1�q
1�qk

Pk
j¼1 q

j�1ðsj � 1Þ
n o

one can take derivative

in u as follows:

d
du

UðuÞ ¼ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ kðv, uþ vÞ½ � exp Kðv, uþ vÞ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;:

(42)

Thus, integrating (41) by parts with

U ¼ exp Kðv, uþ vÞ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;, V ¼ � 1

ra
e�ura ,

we get

�p		s ðu, vÞ ¼ 1
ra

"
ra�1 þ 1� q

1� qk
ðs� 1Þ þ qðs2 � 1Þ þ :::þ qk�1ðsk � 1Þ
� �

�

�
ð1
0

kðv, uþ vÞ exp Kðv, uþ vÞ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;e�urara�1du

(43)

where p		s ð0þ, vÞ ¼ 1, since Yað0Þ ¼ 0 a.s. Hence, by (43)
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ra�p		s ðr, vÞ � ra�1�p		s ð0, vÞ ¼ LrfDa
t �p

		
s ðr, vÞgðrÞ ¼

¼ 1� q
1� qk

ðs� 1Þ þ qðs2 � 1Þ þ :::þ qk�1ðsk � 1Þ
� �

�

�
ð1
0

kðuþ vÞ exp Kðv, uþ vÞ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;ra�1e�uradu:

Inverting the Laplace transform yields

Da
t p̂

		
s ðt, vÞ ¼ 1� q

1� qk
ðs� 1Þ þ qðs2 � 1Þ þ :::þ qk�1ðsk � 1Þ
� �

�

�
ð1
0

kðuþ vÞ exp Kðv, uþ vÞ 1� q
1� qk

Xk
j¼1

qj�1ðsj � 1Þ
8<
:

9=
;haðt, uÞdu ¼

¼
ð1
0

kðuþ vÞ 1� q
1� qk

ðs� 1Þ þ qðs2 � 1Þ þ :::þ qk�1ðsk � 1Þ
� �

f̂
n

s ðu, vÞhaðt, uÞdu,
�

where the mgf is

f̂
n

s ðu, vÞ ¼
X
m

smf nmðu, vÞ:

Finally, by inverting the mgf

1� q
1� qk

½ðs� 1Þ þ qðs2 � 1Þ þ :::þ qk�1ðsk � 1Þ
#
f̂
n

s ðu, vÞ,
2
4

we obtain:

Da
t p

	
mðu, vÞ ¼

ð1
0

kðuþ vÞ �f nmðu, vÞ þ
1� q
1� qk

Xm� k

j¼1

qj�1f nm�jðu, vÞ
2
4

3
5haðt, uÞdu:

w

5. Final notes

The counting processes of order k that we have discussed in this paper have this general
form

NðtÞ ¼
XNðtÞ

i¼1

Xi, (44)

where fXig1i¼1 is a sequence of i.i.d. integer random variables assuming values in 1, :::, k
and NðtÞ is a counting process independent from the sequence. One further assumes
that Nð0Þ ¼ 0: A simple algorithm in R is given in arXiv:2008.09421 [math.PR] when
NðtÞ is the fractional Poisson process of renewal type used above and discussed by
Mainardi, Gorenflo, and Scalas (2004) and when X1 is uniformly distributed in 1, :::, k:
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