
Information Systems 114 (2023) 102180

a
i
c
a
r

s
t
t
c
b
i
c
t
e
t
f

c
m

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Processminingmeetsmodel learning: Discovering deterministic finite
state automata from event logs for business process analysis
Simone Agostinelli a, Francesco Chiariello a, Fabrizio Maria Maggi b, Andrea Marrella a,∗,
Fabio Patrizi a
a Sapienza Università di Roma, via Ariosto 25, 00185 Roma, Italy
b Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

a r t i c l e i n f o

Article history:
Received 30 March 2022
Received in revised form30 September 2022
Accepted 22 January 2023
Available online xxxx
Recommended by Gottfried Vossen

Keywords:
Model learning
Deterministic finite state automata
Process mining quality metrics

a b s t r a c t

Within the process mining field, Deterministic Finite State Automata (DFAs) are largely employed as
foundation mechanisms to perform formal reasoning tasks over the information contained in the event
logs, such as conformance checking, compliance monitoring and cross-organization process analysis,
just to name a few. To support the above use cases, in this paper, we investigate how to leverage Model
Learning (ML) algorithms for the automated discovery of DFAs from event logs. DFAs can be used as a
fundamental building block to support not only the development of process analysis techniques, but
also the implementation of instruments to support other phases of the Business Process Management
(BPM) lifecycle such as business process design and enactment. The quality of the discovered DFAs is
assessed wrt customized definitions of fitness, precision, generalization, and a standard notion of DFA
simplicity. Finally, we use these metrics to benchmark ML algorithms against real-life and synthetically
generated datasets, with the aim of studying their performance and investigate their suitability to be
used for the development of BPM tools.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Process mining [1] is a research area of Business Process Man-
gement (BPM) concerned with analyzing process data recorded
n the so-called event logs, to gain insights into business pro-
esses. Within the process mining field, deterministic finite state
utomata (DFAs) have been largely employed to perform formal
easoning over the information contained in the logs [2].

For instance, DFAs have been used as an instrument to select,
tarting from a list of candidate temporal process constraints,
he ones that are the most frequently satisfied in an event log,
hus allowing for the selection, among those candidates, of the
onstraints that are the most suitable to represent the process
ehavior [3]. DFAs are also the foundation mechanism underly-
ng the development of well-known techniques for conformance
hecking and compliance monitoring. They allow, indeed, for
he verification of temporal properties over completed process
xecutions in an event log for conformance checking [4,5], but
hey can also be used to formalize run-time verification semantics
or compliance monitoring, i.e., for verifying, at run-time, the

∗ Corresponding author.
E-mail addresses: agostinelli@diag.uniroma1.it (S. Agostinelli),

hiariello@diag.uniroma1.it (F. Chiariello), maggi@inf.unibz.it (F.M. Maggi),
arrella@diag.uniroma1.it (A. Marrella), patrizi@diag.uniroma1.it (F. Patrizi).
https://doi.org/10.1016/j.is.2023.102180
0306-4379/© 2023 Elsevier Ltd. All rights reserved.
compliance of ongoing process executions with respect to some
expected de-jure behavior [6,7].

Using the aforementioned approaches, it is possible, using
DFAs, to carry on process analysis within a single organization,
but also for cross-organizational analysis [8,9], e.g., to compare
how processes are executed in different organizations that record
their process executions into process data. To this aim, the be-
havior of a process within an organization can be discovered and
represented as a DFA that can be then used to check if the process
behavior recorded in a different log by another organization
deviates from the behavior of the first one. The process behavior
discovered from an event log in the form of a DFA (and recognized
to be a gold standard for a given process) can also be used at
run-time to recommend or even enforce the process participants
to execute the process following that behavior. More in general,
DFAs have been used in the enactment phase of the BPM lifecycle
to support the execution of business processes according to some
predefined constraints [10,11].

To support all the above BPM use cases, techniques for dis-
covering DFAs from event logs would be very valuable. A first at-
tempt in this direction was performed in our previous work [12],
where we investigated how the use of a well-known Model
Learning (ML) algorithm, namely (RPNI-)MDL, enables the gen-
eration of DFAs representing the behavior of declarative business
process models from logs. ML is a group of algorithms conceived

https://doi.org/10.1016/j.is.2023.102180
https://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2023.102180&domain=pdf
mailto:agostinelli@diag.uniroma1.it
mailto:chiariello@diag.uniroma1.it
mailto:maggi@inf.unibz.it
mailto:marrella@diag.uniroma1.it
mailto:patrizi@diag.uniroma1.it
https://doi.org/10.1016/j.is.2023.102180

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

f
w
d
i
c
a

n
t
t
O
n
w
t
b
d
l
t
k
o

t
M
c

r

w
f
q
σ

w
F

2

s
(
t
a
d
W
t
w
w
w

or constructing black-box finite-state diagram models of soft-
are and hardware systems relying on observed input–output
ata of their runs [13]. Differently from Model Checking, which
s widely used for analyzing finite-state models [14], ML is a
omplementary technique for building such models from the
vailable observations of the system behavior.
Recently, much progress has been made in the design of

ovel ML algorithms relying on advanced abstraction techniques
hat make them applicable to complex systems in areas such as
elecommunication, network protocols, and control software [15].
ver the years, two main categories of ML algorithms emerged,
amely active and passive algorithms. Active learning algorithms
ork by posing queries to the System Under Learning (SUL);
hen, based on the received responses, they infer the run-time
ehavioral model of the target system in the form of a state
iagram [16]. On the other hand, passive learning algorithms
earn the behavioral model of the SUL from a pre-defined set of
raining data, consisting of positive and negative traces, which are
nown to belong (or to not belong, respectively) to the language
f the SUL [17].
In this paper, we extend the work presented in [12] by inves-

igating the effectiveness of the best-known active and passive
L algorithms for the discovery of DFAs underlying the pro-
ess behavior as observed in an event log.1 In addition to using
positive traces as it is common in process mining, we assume
available also negative traces, collected in negative logs. The use
of negative logs is, in principle, greatly beneficial in improving
the quality of the learnt process, as they prevent including not
only behaviors that are explicitly undesired (i.e., occurring in the
negative log), but also those similar to them. The learning process,
indeed, generalizes over negative traces in the same way as it
does over the positive ones.

To assess the quality of the discovered DFAs, we use cus-
tomized definitions of standard process mining quality metrics,
namely fitness, precision, generalization, and a standard notion of
DFA simplicity. In particular, for precision and fitness, we adopt
the definition introduced in [18], which is based on the notion
of Markovian Abstraction of logs and processes. On the other
hand, the notion of generalization is based on the one presented
in [19], where the main idea is to simulate the missing behavior
of a process model by: (i) removing some traces from the log,
(ii) re-discovering a process model using the log without such
behaviors, and (iii) testing the capabilities of the discovery algo-
rithm to come up with a model that fits also the removed traces.
We use these metrics to perform an evaluation with 5 real-life
event logs to assess the ‘‘DFAs’ construction performance’’ of any
tested ML algorithms against the Declare Miner tool [20], which
is nowadays recognized among the best declarative process dis-
covery techniques available in the literature [21]. In addition, we
employed 17 synthetic event logs of increasing complexity to
evaluate the scalability of ML algorithms.

The results show that active learning algorithms are not suit-
able to generate DFAs from real-life event logs available in pro-
cess mining literature, because of their computational issues in
the presence of inputs including a large amount of different
behaviors. Conversely, Declare Miner and passive learning al-
gorithms are able to construct DFAs having similar values of
generalization and precision, even if passive learning algorithms
tend to generate DFAs that are extremely simpler (in terms of
the amount of nodes/arcs discovered) than the ones discovered by
the Declare Miner tool, thus being not only more understandable,
but also potentially more efficient when used in the context of
automatic verification tasks.

1 For readability purposes, the details of the additional contributions with
espect to our previous work [12] are explained at the end of Section 6.
2

Since different passive ML algorithms provide different learn-
ing mechanisms, they can be used for different types of process
analysis. In particular, MDL can be used for standard process
discovery, since it requires as input an unlabeled event log. On
the other hand, passive learning algorithms that use positive and
negative traces to build a DFA (such as RPNI and EDSM, presented
in Section 2.3) are more suitable to be used for deviance analy-
sis, namely for the implementation of techniques for extracting
relevant patterns discriminating between positive and negative
(i.e., deviant and non-deviant) traces [22,23].

The rest of the paper is organized as follows. In Section 2,
after providing the relevant background on event logs and DFAs,
we present an overview of the ML algorithms available in the
literature, focusing on the main features of the active and passive
learning algorithms investigated in this paper. In Section 3, we
discuss the state-of-the-art BPM techniques that could exploit
our ML-based approach to build DFAs. In Section 4, we define
our working assumptions and present the novel definitions of
the standard process mining quality metrics for DFAs. Then, in
Section 5, we use these metrics to benchmark ML algorithms
against real-life and synthetically generated datasets. Last, in
Section 6, we draw our final conclusions and spell out directions
for future work.

2. Background

In this section, we introduce some preliminary notions on
DFAs (Section 2.1), event logs (Section 2.2) and active and passive
ML algorithms (Section 2.3), which are needed to understand the
rest of the paper.

2.1. Deterministic Finite State Automata

We start by recalling the notion of Deterministic Finite State
Automaton (DFA), a well-known structure used in language the-
ory to model and recognize regular languages.

Definition 1 (Deterministic Finite State Automaton (DFA)). A DFA
is a tuple A = ⟨Σ,Q , q0, δ, F⟩, where: (i) Σ is the finite input
alphabet; (ii) Q is the finite set of automaton states; (iii) q0 ∈ Q
is the initial state; (iv) δ : Q × Σ → Q is the transition function;
and (v) F ⊆ Q is the set of final states.

Let t = e1 · · · en be a sequence of input symbols, called word,
such that ei ∈ Σ (i = 1 . . . n), and A a DFA. A path of A on a
ord σ is a sequence π = q0

e1
−→ q1 · · · qn−1

en
−→ qn such that,

or i = 0, . . . , n − 1, it is the case that δ(qi, ei+1) = qi+1, written

i
ei+1
−−→ qi+1. Notice that, A being deterministic, for every word

, the corresponding path π is unique. We say that A accepts a
ord σ if the last state of the path π on σ is final, i.e., belongs to
.

.2. Events, traces and event logs

A business process is a set of activities executed in a given
etting to achieve predefined business objectives [24]. An activity
signature) is an expression of the form A(a1, . . . , anA), where A is
he activity name and each ai is an attribute name. We call nA the
rity of A. The attribute names of an activity are all distinct, but
ifferent activities may contain attributes with matching names.
e assume a finite set Act of activities, all with distinct names;

hus, activities can be identified by their name, instead of by the
hole tuple. Every attribute (name) a of an activity A is associated
ith a type DA(a), i.e., the set of values that can be assigned to a
hen the activity is executed.

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

t
d
t

Fig. 1. Active Learning within the MAT framework.

An event is the execution of an activity (at some time) and is
formally captured by an expression of the form e = A(v1, . . . , vnA),
where A ∈ Act is an activity name and vi ∈ DA(ai). The properties
of interest in this work concern (log) traces, formally defined as
finite sequences of events τ = e1 · · · en, with ei = Ai(v1, . . . , vnAi

).
Traces model process executions, i.e., the sequences of activities
performed by a process instance. A finite collection of executions
into a set L of traces is called an event log. In this paper, a word
(introduced in the previous section) and a log trace represent the
same concept that, in the rest of the paper, we refer to as a trace.

2.3. Model Learning

Model Learning (ML) refers to a group of test-based and
counterexample-driven algorithms conceived for learning the
models (in the form of state diagrams) of black-box hardware
(HW) and software (SW) systems from observed input–output
data. Examples of learned models are DFAs, state charts and
Mealy machines, among others [13]. The challenge of black-
box learning of state diagrams was originally investigated by
Moore in 1956 [25], who proved that the problem is inherently
exponential. Over the years, the same challenge was also studied
under different names, namely active automata learning [26],
regular extrapolation [27], regular inference [28] and grammatical
inference [29]. In ML, two classes of algorithms exist, namely
active and passive algorithms.

2.3.1. Active learning
Active learning (also called on-line learning) is based on the

so-called Minimally Adequate Teacher (MAT) framework, devel-
oped by Dana Angluin [30] in 1987, where the construction of
a state diagram involves a ‘‘learner’’ and a ‘‘teacher’’. In the MAT
framework, learning is considered as a game in which the learner
asks queries to the teacher to infer the behavior of the System
Under Learning (SUL), whose anatomy (represented in the form
of a state diagram) is known by the teacher but not by the learner.
The general approach underlying active learning within the MAT
framework is shown in Fig. 1.

The learner, which only knows the input/output alphabet of
the SUL, asks the teacher whether a specific trace belongs to
the SUL through a Membership Query (MQ). The teacher can an-
swer ‘‘Yes’’ or ‘‘No’’. Based on the observed response, the learner
tries to iteratively construct a model whose behavior aims at
matching the model of the SUL. Once a model hypothesis is
ready, the learner asks the teacher whether the model is correct
or not via an Equivalence Query (EQ). EQ is implemented using
a conformance checking (CT) tool via a finite number of Test
Queries (TQs) [31] targeted at the SUL. If one of the TQs exhibits a
counterexample, then the answer to the TQ is ‘‘No’’, otherwise the
answer is ‘‘Yes’’. The counterexample is returned to the learner,
3

which can use it to build new traces to be verified through
MQs. By iterative applications of this procedure, a model can
be eventually obtained which correctly represents the complete
behavior of the SUL [15].

The basic active learning algorithm from the literature is called
L∗, where a Mealy machine is used to describe the behavior of
the SUL [30]. One inefficiency of the original L∗ algorithm is that
it incrementally constructs an observation table that keeps track
of the counterexamples obtained via TQs. Then, the observation
table is used to build a new MQ for each new recorded en-
try. However, this is often redundant, because all prefixes of a
counterexample are added as rows to the table. Counterexam-
ples obtained through CT may be extremely long and are rarely
minimal, which results in numerous redundant MQs. According
to [13], while the required number of MQs posed by L∗ grows
linearly with the number of inputs and quadratically with the
number of states (meaning that it scales rather well when the
number of inputs grows), CT quickly becomes a bottleneck for
larger numbers of inputs, making it hard to apply the algorithm
for more than 100 inputs [31]. This issue is mitigated by the
recent TTT variant of L∗ [32], which replaced the observation
able with discrimination trees enabling the filtering of redun-
ant long counterexamples for determining state equivalences,
hus improving the performance of L∗. The TTT variant, which
is currently the most efficient one for active learning, is the one
used in Section 5 to perform our experiments where the inputs
are (possibly large) event logs.

2.3.2. Passive learning
There is also an extensive body of work on passive learning

(also called off-line learning), where models are constructed from
runs (i.e., available pre-recorded traces) of the SW/HW systems.
In passive learning, there is no interaction between the learner
and the SUL. Passive learning algorithms learn the models of the
SUL from the available set of positive and negative traces (training
data) stored in a log file [17,33,34]. Positive traces are those
that belong to the language of the SUL, while negative traces
represent behaviors not belonging to the language. If compared
with active learning algorithms, which aim at inferring the full
behavior of the SUL, the weakness of passive learning relies in
the ‘‘completeness assumption’’ made on the runs used for the
generation of the model. In a nutshell, the focus is exclusively on
the specific runs that have occurred during the actual operations
of the SW/HW system under analysis, meaning that potentially
relevant behaviors of the SUL are not captured by the model
(because they are not recorded in the runs).

In this paper, we have analyzed the best-performing pas-
sive learning algorithm available in the literature [15], namely
RPNI, and two optimizations developed over it: (RPNI-)EDSM and
(RPNI-)MDL.

• RPNI (Regular Positive and Negative Inference) is an algo-
rithm for DFA inference that merges states into an automa-
ton representation of observations until a local minimum
is reached [35]. Specifically, RPNI starts with a prefix tree
acceptor, namely a tree-like DFA built from the learning
examples by taking all the prefixes of the examples as states,
and then performs a breadth-first search trying to merge a
newly encountered state with states already explored. This
enables to greedily create clusters of states to come up with
a DFA that is always consistent with the examples.

• EDSM (Evidence Driven State Merging) is an algorithm for
RPNI that can be employed to optimize the state merg-
ing step performed by RPNI. Specifically, EDSM selects the
pair of states to merge based on a function that evalu-
ates their evidence of equivalence. Only states having the
greatest evidence of equivalence are selected for merging.
The algorithm ends when all mergeable states have been
considered [36].

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

3

l
b
s
f
c
t
a

o
a
t
c
T
f
s
s
s
t
o
O
r
p
p
e
o
t
T

a
f
l
t
t
d
m
(
l
t
c
u

m
w
a
t
t
w
4
f
t
s
t
h
s

w
f
s
n
t
t
u

4

a
n

l
t
t
(

• While the basic RPNI approach merges the very first pair
of nodes that resemble a valid merge, the MDL (Minimum
Description Length) algorithm computes an additional score
and only commits to a merge if the resulting hypothesis will
yield a better score. This passive approach to state-merging
works better in scenarios where only positive training data
is available. Hence, in contrast to the majority of passive
learning algorithms that require as input a set of negative
training data, MDL only expects positive traces [33].

. Related work

In this section, we introduce the techniques existing in the
iterature to support different phases of the BPM lifecycle and
ased on DFAs. Several of these works have been developed to
upport the analysis phase in the context of the process mining
ield [1] and, in particular, for process discovery and conformance
hecking. Other approaches provide instruments for log genera-
ion, for checking process models with respect to temporal rules,
nd for building workflow execution engines.
Process discovery aims at producing a process model based

n example executions in an event log and without using any
priori information. [3] first proposed a two-phase approach for
he discovery of declarative process models expressed using De-
lare [37], whose semantics can be formally defined using DFAs.
he first phase is based on an apriori algorithm used to identify
requent sets of correlated activities. A list of candidate con-
traints is built on the basis of the correlated activity sets. In the
econd phase, the constraints are checked by replaying the log on
pecific DFAs, each accepting only those traces that are compliant
o one constraint. Those constraints satisfied by a percentage
f traces higher than a user-defined threshold, are discovered.
ther studies have been conducted to remove inconsistencies and
edundancies from discovered declarative models [38,39]. The
roposed solutions resort on the language-inclusion and cross-
roduct of the DFAs underlying the constraints. Approaches for
nsuring the relevance of a set of ltlf (Linear Temporal Logic
n finite traces) [40] constraints discovered from an event log in
erms of non-vacuity to the log have been presented in [41,42].
hese approaches fully resort on DFAs underlying ltlf semantics.
Since DFAs are focused on ruling out forbidden behavior, they

re very suitable for defining compliance models that are used
or checking that the process behavior as recorded in an event
og complies certain regulations. The compliance model defines
he rules related to a single instance of a process, and the expec-
ation is that all the instances follow the model. Processes can be
iagnosed for compliance violations in an a posteriori or offline
anner, i.e., after process instance execution has been finished

conformance checking). However, the progress of a potentially
arge number of process instances can be monitored at runtime
o detect or even predict compliance violations. For this, typi-
ally, terms such as compliance monitoring or online auditing are
sed [6,7].
The work described in [4,5] consists of converting a Declare

odel into a DFA and perform conformance checking of a log
ith respect to the generated DFA. The conformance checking
pproach is based on the concept of alignment and as a result of
he analysis each trace is converted into the most similar trace
hat the model accepts. Other approaches for trace alignment
ith respect to DFA specifications have been presented in [43–
5]. In [43,44], automated planning is used to improve the per-
ormance of the alignment task. In [45], a DFA-based approach for
race alignment with respect to data-aware constraints (i.e., con-
traints involving activity attributes) is presented. In addition
o conformance checking approaches based on Declare, DFAs
ave also been used for process conformance wrt procedural
pecifications, like in [46,47].
4

Several DFA-based approaches have been presented for com-
pliance monitoring of business processes with respect to a set
of compliance rules. For example, in [48,49], the authors present
a compliance monitoring tool implemented as a provider of the
operational support in ProM [50–52]. The tool takes as input a
reference model expressed in the form of ltlf rules. At runtime,
a stream of events can be sent by an external workflow man-
agement system to ProM through the operational support. The
provider returns rich diagnostics about the status of each rule
in the reference model with respect to the traces included in
the stream. This approach has been extended in [53] to monitor
data-aware constraints and in [54] to cover a larger set of rules
expressed using ldl [55]. Recently, DFAs have also been used
for the ‘‘multi-model’’ monitoring of business processes [56], in
which process executions are monitored wrt hybrid specifica-
tions including both procedural and declarative models. All these
approaches use run-time verification semantics based on DFAs.

Some approaches based on DFAs provide instruments to sim-
ulate process models and generate event logs from them. For
example, in [57], the authors present a DFA-based approach to
generate logs starting from a Declare model. In [58], the DFA
semantics is encoded using Answer Set Programming (ASP) thus
providing an approach for generating event logs from data-aware
constraint specifications. Other DFA-based approaches, like the
one presented in [59], can be used to identify which process
paths in a process model may lead to violations with respect to
predefined regulations expressed as temporal rules. The approach
presented in [59] allows the user to understand how the pro-
cess model should be changed to solve temporal rule violations.
In addition, DFAs are also used for noise filtering from event
logs [60] and for encoding background knowledge used to guide
predictive models in predicting future developments of a business
process [61].

Finally, some works have been developed for business process
enactment based on DFAs. In [10], the authors propose a DFA
generation algorithm from ltlf tailored for the BPM context,
here one single event at a time can be executed (differently

rom standard ltlf allowing for the execution of multiple events
imultaneously). The generated DFAs are used as a basis for busi-
ess process enactment. Similarly, in [11], the authors present a
ool to model workflows with DCR Graphs [62] and supporting
heir enactment. The semantics of DCR graphs can be expressed
sing DFAs as described in [62].

. Quality metrics for DFAs

To evaluate the quality of the DFAs discovered via ML, we
dapt the standard quality metrics available in process mining,
amely fitness, precision, generalization and simplicity [1], tradi-

tionally defined for Petri nets, to DFAs. Before providing their
formal definitions, we briefly describe their intuitive meaning:

• Precision is used to assess the degree to which the behav-
iors allowed by the process model are observed in the event
log;

• Fitness quantifies the extent to which the discovered model
accurately reproduces the traces recorded in the log;

• Generalization estimates how well a model inferred from
a given log will reproduce future behaviors not seen in the
log;

• Simplicity corresponds to the size of the model.

Different formalizations of these concepts can be found in the
iterature. For precision and fitness, we follow [18], which defines
hem based on the notion of Markovian Abstraction. In particular,
he Markovian Abstractions of the log and of the process model
expressed using BPMN, or Petri nets) under examination are

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

c
m
i
p
a
u
s
t
v
f

r
r
t
r
t
M
d

f
c

i
s

a

i
t
p

a
v
L

t
l
o
i

D
l

omputed. To build the Markovian Abstraction of the process
odel, the model is first transformed into its respective Behav-

oral Automaton, which is a particular graph modeling all the
rocess executions allowed by the model. Since we use a DFA
s a process specification, we can directly take advantage of its
nderlying graph-like structure to compute the Markovian Ab-
traction without producing the Behavioral Automaton first. Once
he Markovian Abstractions have been computed, we refer to the
ery same definitions provided in [18] to compute precision and
itness.

Based on these considerations, we now first describe the met-
ics for positive event logs, i.e., logs containing positive traces
epresenting the process behavior, and then we adapt them to
he case of negative logs, i.e., logs containing negative traces
epresenting the process behaviors that must not be covered by
he discovered model. We start by recalling the definition of
arkovian Abstraction (referring to [18] for full details) and then
escribe its computation for the case of DFAs.
A k-th order Markovian abstraction is a structure built starting

rom a set of traces β . The purpose of such a structure is to
haracterize all the strings σ indistinguishable from those in β
when a memory of size k is used to compare σ against the traces
in β . In other words, σ is considered as a possible trace of β if
t is obtained by combining only subtraces of length k from β , in
uch a way that when a k-length sliding window W is used to
scan σ , only subtraces from β are observed through W . Notice
that this is different from requiring σ to be obtained by simple
concatenation of subtraces.

Formally, a kth order Markovian Abstraction (Mk-abstraction,
for short) over a set β of traces is a finite graph Mk

= (S, E), with
nodes S and edges E ⊆ S × S, such that:

• S = {−} ∪ S1 ∪ S2 ∪ S3 ∪ S4, where:

– ‘‘-’’ is a special state;
– S1 = {σ ∈ β : |σ | ≤ k} is the set of traces of β having

length up to k;
– S2 = {σ [i, k] : σ ∈ β, i = 1, |σ | > k}, with σ [i, k]

denoting the k-length subtrace of σ starting at position
i, is the set of k-length prefixes of some trace in β (with
length greater than k);

– S3 = {σ [i, k] : σ ∈ β, |σ | > k, i = |σ | − k + 1} is the
set of k-length suffixes of some trace in β (with length
greater than k);

– S4 = {σ [i, k] : σ ∈ β, |σ | > k, 1 < i < |σ | − k + 1} is
the set of k-length subtraces of some trace in β (with
length greater than k), excluding prefixes and suffixes;

• E = {(−, σ) : σ ∈ S1 ∪ S2}∪{(σ , −) : σ ∈ S1 ∪ S3}∪{(σ , σ ′) :

σ , σ ′
∈ S2 ∪ S3 ∪ S4, ∃σ̂ , i s.t. σ̂ ∈ β, |σ̂ | > k, 1 ≤ i ≤

|σ̂ | − k, σ = σ̂ [i, k], σ ′
= σ̂ [i + 1, k]}.

We define the kth order Markovian Abstraction over a DFA GM
ssociated to a model M as the kth order Markovian Abstraction

over the language L[GM] of the traces accepted by GM. Observe
that, due to possible loops, such a language is in general infinite,
thus the computation of Mk is not as straightforward as in the
case of a finite set of traces β , where one can exhaustively
consider all the traces. However, we are only interested in traces
of length up to k and in subtraces of length k + 1 which are
obviously finitely many for a finite alphabet, and can be obtained
by simply visiting the paths and the subpaths of GM up to length
k + 1 (recall that the length of a path in a DFA is the number of
edges in the path). In details, to compute Mk

= (S, E) for a DFA
GM = ⟨Σ,Q , q0, δ, F⟩, we proceed as follows:

• we trim GM, i.e., we remove all its unreachable states and

all the states that do not lead to an accepting state, in such a b

5

way that every subpath (and corresponding subtrace) in the
automaton is part of an accepting path (and corresponding
accepting trace);

• we compute all the (finitely many) paths π = q0
e1
−→

q2 · · · qm−1
em−1
−−→ qm of length m ≤ k, and check whether

qm ∈ F , in order to obtain all the accepted traces σ =

e1 · · · em of length ≤ k, for each of which we then add (−, σ)
and (σ , −) to E;

• we compute all the (finitely many) subpaths π = q1
e1
−→

q2 · · · qk
ek+1
−−→ qk+1 of length k+ 1, extract their correspond-

ing subtrace σ = e1 · · · ek+1, split them into two subtraces
σp = e1 · · · ek and σs = e2 · · · ek+1 of length k and, for each
so-obtained pair:

– if q1 = q0 (i.e., σp is prefix of some accepted trace), we
add the edge (−, σp) to E;

– if qk+1 ∈ F (i.e., σs is a suffix of some accepted trace),
we add the edge (σs, −) to E;

– we add the edge (σp, σs) to E;

• S = {σ : ∃σ ′ s.t. (σ , σ ′) ∈ E or (σ ′, σ) ∈ E}.

We thus have a method to compute the Mk-abstraction for
both a log (set of traces) ℓ and a DFA GM for a model M. We
can then proceed as in [18] and compare the two abstractions. To
define precision, a matrix C is first constructed with rows labeled
by edges of the Mk-abstraction of GM, columns labeled by edges
of the log abstraction, and entries containing the Levenshtein
distance (as a similarity measure) between the labeling subtraces,
normalized to [0, 1]. Then, a mapping µC is defined from row
labels (i.e., edges of the Mk-abstraction of GM) to column labels
(i.e., edges of the Mk-abstraction of ℓ), which minimizes the
overall sum of the entries C(e, µC (e)), regarded as costs. Such
assignment problem can be solved using, e.g., the Hungarian
algorithm [63,64]. In case there are more rows than columns, the
maximum cost 1 is given to unmapped rows.

Definition 2 ((Markovian-Abstraction-Based) Precision [18]). Given
a log ℓ and a DFA GM, let Mk

ℓ = (Sℓ, Eℓ) and Mk
GM = (SGM , EGM)

be their respective Mk-abstractions, C the Levenshtein-distance-
based cost matrix, and let µC : EGM → Eℓ be a partial func-
tion, solution of the assignment problem represented by C . The
(Markovian-abstraction-based) kth order precision of GM wrt ℓ

is defined as:

MAPk(ℓ,GM) = 1 −
Σe∈EGM

C(e, µC (e))

|EGM |
,

by taking C(e, µC (e)) = 1, if µC (e) is undefined.

Intuitively, the precision of a DFA GM wrt a (positive) log ℓ

s a measure of how probable it is that a subtrace of a generic
race accepted by GM is also a subtrace of some trace from ℓ. If
recision equals 0, no subtrace from L[GM] comes from the log,

while if precision is 1, all the (k-length) subtraces of L[GM] are
lso subtraces of some trace from ℓ. Thus, an increased precision
alue corresponds to an increased probability that a trace from
[GM] is found in ℓ.
The definition of fitness is similar, except that now: log sub-

races (row labels) are mapped into process subtraces (column
abels), a Boolean function checking whether the labels are equal
r not is used as a cost function, and the cost of each assignment
s weighted by the frequency of the edge in the log.

efinition 3 ((Markovian-Abstraction-Based) Fitness [18]). Given a
og ℓ and a DFA GM, let Mk

ℓ = (Sℓ, Eℓ) and Mk
GM = (SGM , EGM)

k
e their respective M -abstractions, C the Boolean cost matrix,

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

a

b

M

w

1
I
f
n
t
v
a

D
I
g

G

G
|

t
a
i
a
l
i

5

i
a
M
M
l
v
(
a
m
p
d
l
f
(
n
o
w
i
e

f
e
s
g
w
c

p
p
s
u
l
t
w
s
t
o
t

i
t

nd let µC : Eℓ → EGM be a partial function, solution of the as-
signment problem represented by C . The (Markovian-abstraction-
ased) kth order fitness of GM wrt ℓ is defined as:

AF k(ℓ,GM) = 1 −
Σe∈Eℓ

C(e, µC (e))Fe∑
e∈Eℓ

Fe
,

here Fe stands for the frequency of edge e in Eℓ and taking
C(e, µC (e)) = 1, if µC (e) is undefined.

Intuitively, the fitness of a DFA GM wrt a (positive) log ℓ is
a measure of how probable it is that a subtrace of a generic
trace from ℓ is also a subtrace of some trace accepted by GM.
If fitness equals 0 then no subtrace from the log is a subtrace
from the language L[GM] of GM, whereas if fitness is 1, all the
(k-length) subtraces from ℓ are also subtraces from L[GM]. Thus,
a higher fitness value yields a higher probability that a log trace
is accepted by GM.

The notion of generalization is based on that presented in [19].
Generalization is meant to measure the ability of the DFA to
correctly accept a behavior not seen before, i.e., not present in
the log used for discovering the process. The idea is to simulate
new behaviors of a process model by: removing some traces
from the log, discovering a process model using the log without
such behaviors, and then testing the capabilities of the discovery
algorithm to come up with a model that fits also the removed
traces. This is detailed next.

The generalization power of a model inference algorithm I
with respect to a log ℓ can be assessed with a cross-validation
approach. To this end, we partition the log ℓ as ℓ = {ℓ1, . . . , ℓh},
in such a way that, for all ℓi’s, |ℓi| ≈

|ℓ|

h . Then, for every i =

, . . . , h, we infer a DFA GMi using sublog ℓ − ℓi, via algorithm
. Finally, for every such DFA, we compute the corresponding
itness MAF k(ℓi,GM i), and average these fitness values over the
umber of sublogs. Observe that fitness is computed wrt the
races not used to discover the model; as a result, increasing
alues of this measure imply an increasing ability to correctly
ccept new behaviors.

efinition 4 (Generalization). Given a model inference algorithm
, a log ℓ, and a partition ℓ = {ℓ1, . . . , ℓh}, the kth order
eneralization of I is defined as follows:

{ℓ1,...,ℓh}(I) =
1
h

h∑
i=1

MAF k(ℓi, I(ℓ − ℓi)).

Generalization values close to 1 imply that the inference al-
gorithm has high fitness over logs including unseen traces, thus
indicating that the discovered DFA is a reliable model of the
(unknown) process that generated the logs.

So far, we have considered the definition of precision, fitness,
and generalization of a DFA wrt to a log of traces representing the
desired behaviors (positive log). We now define also the negative
versions of these metrics. In particular, given a (negative) log and
a DFA GM, the negative precision of GM is defined as the precision
of the complement DFA of GM wrt the log, i.e., the DFA accepting
all and only the log traces not accepted by GM. Analogously, the
negative fitness GM is defined as the fitness of the complement
DFA of GM wrt the log. Negative generalization is analogous to
generalization, once fitness is replaced by negative fitness.

The negative versions of each metric account for features that
are dual wrt their positive counterpart. More intuitively: the
negative variant of precision increases with the probability that a
generic trace not accepted by the DFA occurs in the negative log,
while negative fitness increases with the probability that a trace
from the negative log is rejected by the DFA. Thus, the negative
versions of the quality metrics provide additional valuable infor-
mation to evaluate the performance of the discovered DFA wrt
 l

6

discarding behaviors not supposed to be covered by the process
under analysis.

Finally, we introduce the definition of DFA simplicity, a mea-
sure used to quantify the complexity of a DFA:

Definition 5 (Simplicity). Given a DFA GM = ⟨Σ,Q , q0, δ, F⟩,
the simplicity of GM is defined as S(˜GM) = (|Q̃ |, |δ̃|), where
˜M = ⟨Σ̃, Q̃ , q̃0, δ̃, F̃⟩ is the DFA obtained by trimming GM and
δ̃| = |{(s, c) ∈ Q̃ × Σ̃ s.t. δ(s, c) is defined}|.

Intuitively, simplicity accounts for the number of states and
ransitions in the trimmed DFA. Trimming is needed in order to
void measuring redundant features of the DFA (such as bisim-
lar states). DFAs with larger number of states and transitions
re considered more complex. This captures the intuition that a
arger number of states and transitions provides the DFA with an
ncreased power of discerning among different traces.

. Experiments

To compare the effectiveness of the ML algorithms in generat-
ng DFAs from event logs, we have developed an interactive tool2
s a standard Python application that employs four well-known
L algorithms, namely L∗ (in its TTT variant, cf. Section 2.3), RPNI,
DL and EDSM. The tool extends LearnLib [26], an open-source

ibrary implemented in Java and developed at the Dortmund Uni-
ersity of Technology. LearnLib consists of three main modules:
i) the automata learning module, (ii) the infrastructure module,
nd (iii) the equivalence queries module. The automata learning
odule includes different learning algorithms and their sup-
orted modeling structures. It also provides algorithms for han-
ling data structures efficiently that enable learning techniques to
earn large-scale systems. The infrastructure module is targeted
or query optimization providing utilities for statistical analysis
e.g., number of MQs, number of EQs, memory consumption, run-
ing time, etc.). One of the goals of this module is the reduction
f MQs so that ML algorithms can be effectively applied to real-
orld complex systems. Finally, the equivalence queries module

mplements search-based techniques, conformance testing, and
quivalence tests [26,65,66].
Our tool can be run interactively using a command-line inter-

ace, and allows the user to load existing (positive and negative)
vent logs formatted with the XES (eXtensible Event Stream)
tandard [67]. After choosing the ML algorithm to run, the tool
enerates as output the DFA discovered from the logs, together
ith the precision, fitness, generalization, and simplicity values,
omputed based on the definitions introduced in Section 4.
To guarantee the reproducibility of our experiments, we em-

loyed publicly available real-life [68–72] and synthetic3 logs. To
roperly run (and fairly compare) the investigated algorithms, we
plit each tested log into a positive and a negative counterpart
sing the following procedure: (i) we computed the average trace
ength (corresponding to the number of events in a trace) within
he log; (ii) we created a positive sublog including the traces
ith a length below the average; (iii) we created a negative
ublog including the traces with a length greater than or equal
o the average. The discovered DFAs should allow the behaviors
bserved in the positive sublog and reject the ones observed in
he negative sublog.

To compare the effectiveness of the ML algorithms in generat-
ng DFAs from the event logs against traditional process discovery
echniques, we also ran the experiments with the real-life logs

2 https://github.com/bpm-diag/DECMOL
3 The synthetic logs are available for download at: https://tinyurl.com/synth-

ogs.

https://github.com/bpm-diag/DECMOL
https://drive.google.com/drive/folders/1LaFZVrbqKZRVNsdI3NPKfbkaOGA5w1hj?usp=sharing
https://drive.google.com/drive/folders/1LaFZVrbqKZRVNsdI3NPKfbkaOGA5w1hj?usp=sharing

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

t
n
D
a
w
c
c
c
a
a
t
t

C

5

Table 1
Descriptive statistics of real-life logs.
Log Total Total+ Total− Distinct Total Activity Trace length

name traces traces traces traces (%) events types min avg max

LOAN 13087 8164 4923 33.4 262200 36 3 20 175
ROAD 150370 82737 67633 0.2 561470 11 2 4 20
SEPSIS 1050 838 212 80.6 15214 16 3 14 185
REIMB 6449 4248 2201 11.7 72151 34 3 11 27
TRAVEL 7065 4249 2816 20.9 86581 51 3 12 90
using the Declare Miner tool [20]. For MDL and the Declare Miner,
we provided as input only the positive sublogs. On the other
hand, to simulate the interactive behavior of L∗, we relied on
he implementation presented in [32] employing the positive and
egative sublogs to build the knowledge of the teacher about the
FA and to properly answer the MQs and EQs. Specifically, when
MQ related to a candidate trace is asked, the teacher’s answer
ill be ‘‘Yes’’ if the trace belongs to the positive sublog (and,
onsequently, does not belong to the negative sublog). When a
andidate DFA is built and the EQ is asked, a CT is performed
hecking that the DFA accepts all the traces in the positive sublog
nd none in the negative sublog. If the candidate DFA does not
ccept a trace included the positive sublog or accepts one from
he negative sublog, that trace is returned as a counterexample
o refine the DFA under construction.

We performed the experiments on a machine with an Intel
ore i7 Quad-Core CPU 1.90 GHz and 16 GB RAM.

.1. Experiments with real-life logs

We employed 5 real-life logs: (i) a log pertaining to a loan
application process (LOAN) [68]; (ii) a log pertaining to a road
traffic fines management process (ROAD) [69]; (iii) a log keeping
track of incoming patients with sepsis in a hospital (SEPSIS) [70];
(iv) a log pertaining to a reimbursement process (REIMB) [71]; (v)
a log keeping track of travel permit applications (TRAVEL) [72].

Table 1 reports the characteristics of the real-life logs. These
logs are widely heterogeneous ranging from simple to very com-
plex, with a log size from 1050 traces (for the SEPSIS log) to
150370 traces (for the ROAD log). A similar variety can be ob-
served in the percentage of distinct traces, ranging from 0,2%
to 80,6%, and the number of activity types (i.e., the size of the
activity alphabet), ranging from 11 to 51. Finally, the trace length
also varies from very short traces (containing only two events), to
very long traces (with 185 events). Note that the columns Total+
traces and Total− traces indicate the amount of traces selected
from a log and moved into the positive/negative sublog according
to the splitting policy defined in the previous section.

For the discovery of DFAs with the Declare Miner, we made
use of RuM4 [73], a desktop application that provides a compre-
hensive set of declarative process mining tools in a single uni-
fied package, including an implementation of the Declare Miner.
Specifically, to perform the process discovery task, we instructed
RuM to use all the Declare constraint patterns implemented in
the tool and we set the minimum constraint support to 100%
for including in the output model all those constraints satisfied
in all the log traces. Finally, we used a dedicated functionality
provided by RuM to translate the discovered Declare model into
a minimized DFA.

The results of the experiments involving the computation of
precision and generalization on the DFAs discovered from the
real-life logs are reported in Tables 2–7. First of all, we notice that
L∗ was not able to compute any DFA starting from the real-life
logs thus preventing the computation of all the quality metrics

4 https://rulemining.org/
7

Table 2
Precision+@k of the DFAs generated with MDL and Declare Miner.
(a) Precision+@k (MDL)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 0.395 8.94 s 0.088 16.98 s 0.014 105.86 s
ROAD 0.593 3.58 s 0.185 3.71 s 0.038 14.76 s
SEPSIS 0.672 4.06 s 0.216 6.80 s 0.046 1 m 42 s
REIMB 0.284 6.48 s 0.035 27.11 s 0.003 17 m 56 s
TRAVEL 0.214 11.91 s 0.013 10 m 54 s / Timeout

(b) Precision+@k (Declare Miner)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 0.191 9.91 s 0.020 12.99 s 0.001 17.82 s
ROAD 0.412 3.02 s 0.077 3.17 s 0.010 4.45 s
SEPSIS 0.358 9.97 s 0.063 12.90 s 0.008 49.24 s
REIMB 0.139 43.98 s 0.009 56.70 s 0.0004 1 m 39 s
TRAVEL / Timeout / Timeout / Timeout

for this algorithm. This can be explained with the fact that active
learning algorithms are very sensitive to inputs consisting of
many different behaviors (cf. Section 2.3). This allows us to state
that L∗ is not suitable for the discovery of DFAs from complex
event logs.

On the other hand, for passive ML algorithms, all the generated
DFAs have a perfect fitness value with respect to the event logs
used for their generation. This is a consequence of the fact that
the considered ML algorithms, at least in the variants used here,
cannot cope with noisy data and require positive and negative
logs to be consistent, i.e., no trace may exist which occurs in both.
While this might appear as a limitation, we observe that log con-
sistency can be easily checked (in quadratic time, in general, in
linear time if logs are sorted) and that noise-filtering approaches,
possibly based on statistical criteria, can be adopted to clean the
datasets before starting the learning phase. This can be applied, in
general, to rule out outlier traces or to smooth their effect. While
interesting, however, this issue is not in the scope of the present
work.

As an example of learnt DFA, in Fig. 2, we show the DFA
discovered from the ROAD log using MDL. As reported in Table 8,
this DFA has been computed in 249 ms and includes 8 states
and 33 transitions. Before analyzing and discussing the entire
collection of experimental results, we immediately notice that
MDL can generate simpler DFAs than the ones generated by the
other passive ML algorithms and by the Declare Miner. This is
witnessed by all the tested real-life logs.

In Tables 2, 3, and 4, we show the results obtained by assessing
both positive and negative k-th order precision (indicated as
Precision+@k and Precision−@k, respectively) for k ∈ {1, 2, 3}
(except for MDL and Declare Miner that only work with positive
sublogs and for which we only provide Precision+@k). Analyzing
the results, we notice that, for k = 1, all the algorithms exhibit
reasonable precision values between 0.139 and 0.672, which can
be considered as a good trade-off range of values for precision,
since the output DFA does not underfit nor overfit the log. The
EDSM algorithm failed to compute the DFA for the LOAN log

https://rulemining.org/

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

h
o
a
s
t

Fig. 2. The DFA discovered from the ROAD event log through MDL.
Table 3
Precision+@k and Precision−@k of the DFAs generated with RPNI.
(a) Precision+@k (RPNI)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 0.222 17.37 s 0.022 47.37 s 0.002 16 m 40 s
ROAD 0.492 3.82 s 0.115 4.84 s 0.017 20.25 s
SEPSIS 0.457 5.44 s 0.101 13.95 s 0.015 4 m 4 s
REIMB 0.156 3.75 s 0.010 88.38 s 0.0005 62 m 46 s
TRAVEL 0.185 12.37 s 0.009 9 m 24 s / Timeout

(b) Precision−@k (RPNI)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 0.191 16.97 s 0.020 1 m 3 s 0.001 40 m 5 s
ROAD 0.412 6.56 s 0.077 4.99 s 0.010 92 m 30 s
SEPSIS 0.358 3.07 s 0.063 6.89 s 0.008 169.18 s
REIMB 0.139 3.73 s 0.009 1 m 1 s 0.0004 62 m 13 s
TRAVEL 0.156 11.08 s 0.007 9 m 19 s / Timeout

Table 4
Precision+@k and Precision−@k of the DFAs generated with EDSM.
(a) Precision+@k (EDSM)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN N/A DFA N/A DFA N/A DFA
ROAD 0.489 2.47 s 0.117 2.73 s 0.018 13.35 s
SEPSIS 0.448 3.29 s 0.096 9.22 s 0.014 4 m 20 s
REIMB 0.160 3.66 s 0.011 59.62 s 0.001 47 m 7 s
TRAVEL 0.187 10.14 s 0.010 8 m 7 s / Timeout

(b) Precision−@k (EDSM)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN N/A DFA N/A DFA N/A DFA
ROAD 0.413 2.14 s 0.077 2.58 s 0.010 13.63 s
SEPSIS 0.358 2.87 s 0.063 7.26 s 0.008 3 m 7 s
REIMB 0.139 3.92 s 0.009 1 m 40 s 0.0004 87 m 27 s
TRAVEL 0.157 16.68 s 0.007 10 m 9 s / Timeout

(within a timeout of 24 h, indicated as ‘‘N/A DFA’’), thus pre-
venting the computation of all the quality metrics for this log. In
addition, the Declare Miner exceeded the 24 h timeout threshold
for the computation of the precision of the DFA (for any value of
k, indicated as ‘‘timeout’’) discovered from the TRAVEL dataset.
Similarly, all the passive algorithms exceeded the same timeout
for the computation of the precision with k = 3. We can notice
ow the values for precision decrease while increasing the order k
f the Markovian abstraction. This behavior is, however, expected
nd is due to the fact that the number of the considered sub-
trings increases significantly faster for the automaton language
han for the log.
8

Table 5
Generalization+@k of the DFAs generated with MDL and Declare Miner.
(a) Generalization+@k (MDL)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 0.999 2 m 50 s 0.999 3 m 9 s 0.999 3 m 35 s
ROAD 0.997 19 s 0.992 18 s 0.988 23 s
SEPSIS 0.999 21 s 0.999 22 s 0.998 55 s
REIMB 0.998 22 s 0.997 30 s 0.994 6 m 57 s
TRAVEL 0.998 33 s 0.997 3 m 42 s / Timeout

(b) Generalization+@k (Declare Miner)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 0.999 53 s 0.999 57 s 0.999 1 m 20 s
ROAD 0.994 20 s 0.987 21 s 0.978 21 s
SEPSIS 0,998 58 s 0.997 1 m 12 s 0.996 2 m 48 s
REIMB 0.992 6 m 36 s 0.984 3 m 56 s 0.975 6 m 8 s
TRAVEL / Timeout / Timeout / Timeout

Tables 5, 6, and 7 show the generalization values obtained
with the passive ML algorithms by splitting each log into sublogs
of around 50 traces each. We assessed both positive and negative
k-th order generalization (indicated as Generalization+@k and
Generalization−@k, respectively) for k ∈ {1, 2, 3} (except for MDL
and Declare Miner for which we only provide Generalization+@k).
Also in this case, with the Declare Miner (for any value of k)
and the passive ML algorithms (for k = 3), we were not able to
compute the generalization values for the TRAVEL dataset. The
results show that all algorithms generate DFAs that tend to have
generalization values very close to 1, making them potentially
more suitable to represent less prescriptive behaviors, such as the
ones characterizing declarative processes (where many behaviors
not explicitly visible in the event logs may be allowed). The
slightly different values between positive and negative k-th order
generalization are related to the fact that the amount of traces in
the positive sublogs is always greater than the amount of traces
in the negative sublogs.

Finally, in Table 8, we provide the simplicity values of the
discovered DFAs and the time required for their generation. From
the results, it is evident that the DFAs discovered with MDL are
much simpler than the ones generated with the Declare Miner.
This can be explained by the fact that the DFAs generated with
the Declare Miner are computed as the product of the DFAs
representing the individual Declare constraints composing the
output Declare model. As a consequence, the Declare Miner
produces ‘‘spaghetti-like’’ DFAs that are not only impossible to
be analyzed manually, but also very complex to be verified using
formal techniques, given their size.

From a time perspective, the results in Table 8 show that
the performance of the passive ML algorithms and of the De-

clare Miner decreases exponentially when the logs include a high

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

t
c
c
c
p
e
a
p
u
b

5

c
a
u

t
s
d

Table 6
Generalization+@k and Generalization−@k of the DFAs generated with RPNI.
(a) Generalization+@k (RPNI)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 1.0 55 s 1.0 1 m 52 s 0.999 21 m 2 s
ROAD 0.999 18 s 0.998 21.58 s 0.968 27 s
SEPSIS 1.0 24 s 1.0 31 s 1.0 3 m 25 s
REIMB 0.999 19 s 0.999 1 m 9 s 0.999 50 m 57 s
TRAVEL 0.999 49 s 0.999 7 m 7 s / Timeout

(b) Generalization−@k (RPNI)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN 1.0 1 m 29 s 1.0 4 m 27 s 1.0 1 h 38 m
ROAD 1.0 23 s 1.0 24 s 1.0 32 s
SEPSIS 1.0 22 s 1.0 34 s 1.0 3 m 28 s
REIMB 1.0 29 s 1.0 1 m 32 s 1.0 1 h 20 s
TRAVEL 1.0 40 s 1.0 7 m 4 s / Timeout

Table 7
Generalization+@k and Generalization−@k of the DFAs generated with EDSM.
(a) Generalization+@k (EDSM)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN N/A DFA N/A DFA N/A DFA
ROAD 0.999 31 s 0.998 32 s 0.989 39 s
SEPSIS 1.0 11 m 17 s 0.999 16 m 18 s 0.999 17 m 39 s
REIMB 0.999 50 m 20 s 0.999 57 m 39 s 0.998 1 h 24 m
TRAVEL 0.999 7 h 23 m 0.998 15 h 50 m / Timeout

(b) Generalization−@k (EDSM)

Log (ℓ) k = 1 t k = 2 t k = 3 t

LOAN N/A DFA N/A DFA N/A DFA
ROAD 1.0 29 s 1.0 35 s 1.0 45 s
SEPSIS 1.0 23 m 31 s 1.0 31 m 50 s 1.0 37 m 3 s
REIMB 1.0 1 h 11 m 1.0 48 m 35 s 1.0 2 h 1 m
TRAVEL 1.0 10 h 8 m 1.0 17 h 28 m / Timeout

number of activity types. For example, by looking at the time
required to compute the DFAs for the TRAVEL log, which includes
51 activity types, it is clear the worsening of the performance. A
similar consideration can be done by analyzing the time required
for computing precision and generalization for this log. This con-
firms the observation that large DFAs are not only difficult to
understand for humans, but also inconvenient to be verified using
automatic tools.

Our experiments also show that MDL produces simpler DFAs
han the other tested ML passive algorithms. However, as dis-
ussed before, the learning algorithms experimented in this paper
an be used orthogonally to support different process mining use
ases, or even different phases of the BPM lifecycle. From this
oint of view, since RPNI and EDSM learn the DFAs based on
xplicit negative behaviors, they guarantee that the output DFAs
re able to better discriminate between allowed and disallowed
rocess behaviors and are more suitable to be used to support
se cases that aim at characterizing different classes of process
ehaviors (like deviance analysis).

.2. Experiments with synthetic logs

In order to have an idea of the performance of L∗ that we
ould not evaluate on real-life logs and, also, to test the passive
lgorithms in a controlled setting, we applied the algorithms
nder evaluation to 17 synthetic logs of increasing complexity.
For the generation of the synthetic event logs, we relied on

he log generator presented in [57], which enables to synthe-
ize logs whose behavior is compliant with respect to an input
eclarative process model. The declarative models were created
9

Table 8
Simplicity of the DFAs generated with MDL, RPNI, EDSM,
and Declare Miner.
(a) MDL

Log (ℓ) S(M) t

LOAN (42, 123) 23344 ms
ROAD (8, 33) 249 ms
SEPSIS (4, 19) 360 ms
REIMB (8, 53) 393 ms
TRAVEL (8, 107) 2352 ms

(b) RPNI

Log (ℓ) S(M) t

LOAN (185, 2442) 723 ms
ROAD (23, 99) 462 ms
SEPSIS (39, 313) 274 ms
REIMB (39, 568) 261 ms
TRAVEL (51, 1057) 1380 ms

(c) EDSM

Log (ℓ) S(M) t

LOAN / /
ROAD (21, 97) 2164 ms
SEPSIS (55, 398) 947039 ms
REIMB (38, 521) 3489343 ms
TRAVEL (59, 1088) 21105718 ms

(d) DeclareMiner

Log (ℓ) S(M) t

LOAN (435, 1673) 21732 ms
ROAD (121, 433) 710 ms
SEPSIS (631, 3259) 2409 ms
REIMB (3565, 13168) 4182 ms
TRAVEL (182763, 1424349) 38752548 ms

using the Declare language introduced in [37]. Specifically, a
Declare model consists of a set of activities and a collection of
constraints defined over such activities. Declare constraints have
a formal semantics based on ltlf , and are instantiations of tem-
plates, i.e., patterns that define parameterized classes of temporal
properties. We defined 4 different Declare models having the
same alphabet of activities and containing 3, 5, 7 and 10 Declare
constraints, respectively. Each model was used to generate from
3 to 5 different logs (on the basis of the amount of constraints
employed) containing traces (1000 traces per log) of different
lengths, i.e., of 10, 15, 20, 25 and 30 events.

The Tables describing the values of precision and generaliza-
tion computed for the DFAs discovered using both active (in this
case, L∗ was able to compute the DFAs) and passive algorithms
are shown in an online appendix available at http://dx.doi.org/10.
5281/zenodo.7591758, and confirm the results obtained for the
real-life logs, i.e., the synthesized DFAs tend to have generaliza-
tion values close to 1, independently of the characteristics of the
log, thus confirming their suitability to represent the behavior of
declarative processes. From the results obtained by computing
the simplicity (see Table 9) of the discovered DFAs, we can see
that MDL still produces the simplest automata and that L∗, in-
stead, produces significantly larger DFAs with respect to the ones
produced by the passive algorithms.

Finally, from a time perspective, the results in Table 9 suggest
that the passive ML algorithms scale very well when the length
and the number of the distinct log traces increase.

6. Concluding remarks

In this paper, we have investigated how to leverage active and
passive ML algorithms for the discovery of a DFA, representing the

http://dx.doi.org/10.5281/zenodo.7591758
http://dx.doi.org/10.5281/zenodo.7591758
http://dx.doi.org/10.5281/zenodo.7591758

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180
Table 9
Simplicity of the DFAs generated with MDL, RPNI,
EDSM and L∗ .
(a) MDL

Log (ℓ) S(M) t

log_3_10 (3, 11) 728 ms
log_3_15 (2, 16) 435 ms
log_3_20 (2, 17) 343 ms
log_3_25 (2, 15) 466 ms
log_3_30 (2, 16) 457 ms
log_5_10 (3, 19) 387 ms
log_5_15 (5, 27) 472 ms
log_5_20 (4, 28) 432 ms
log_5_25 (2, 18) 434 ms
log_5_30 (3, 20) 507 ms
log_7_15 (3, 17) 388 ms
log_7_20 (2, 17) 428 ms
log_7_25 (2, 18) 452 ms
log_7_30 (2, 17) 489 ms
log_10_20 (3, 19) 373 ms
log_10_25 (2, 18) 455 ms
log_10_30 (2, 18) 421 ms

(b) RPNI

Log (ℓ) S(M) t

log_3_10 (7, 27) 202 ms
log_3_15 (6, 45) 278 ms
log_3_20 (7, 53) 222 ms
log_3_25 (11, 73) 206 ms
log_3_30 (11, 66) 211 ms
log_5_10 (5, 37) 206 ms
log_5_15 (6, 53) 238 ms
log_5_20 (6, 58) 218 ms
log_5_25 (11, 70) 209 ms
log_5_30 (9, 92) 215 ms
log_7_15 (5, 40) 241 ms
log_7_20 (7, 65) 210 ms
log_7_25 (8, 83) 213 ms
log_7_30 (8, 71) 224 ms
log_10_20 (6, 56) 268 ms
log_10_25 (7, 73) 219 ms
log_10_30 (7, 73) 255 ms

(c) EDSM

Log (ℓ) S(M) t

log_3_10 (6, 22) 218 ms
log_3_15 (5, 42) 303 ms
log_3_20 (5, 52) 277 ms
log_3_25 (10, 88) 406 ms
log_3_30 (5, 52) 354 ms
log_5_10 (5, 36) 326 ms
log_5_15 (7, 53) 346 ms
log_5_20 (8, 73) 363 ms
log_5_25 (8, 85) 430 ms
log_5_30 (11, 123) 714 ms
log_7_15 (6, 47) 370 ms
log_7_20 (8, 77) 478 ms
log_7_25 (7, 70) 460 ms
log_7_30 (9, 94) 427 ms
log_10_20 (6, 58) 303 ms
log_10_25 (7, 79) 455 ms
log_10_30 (7, 71) 457 ms

(continued on next page)

behavior of a business process, from a log. To assess the quality of
the generated DFAs, we have introduced novel definitions of the
standard process mining quality metrics, i.e., precision, fitness,
generalization and simplicity, tailored to DFAs.

We have performed an evaluation with real-life and synthetic
logs. The results of the evaluation showed that, among the tested
ML algorithms, the active ML algorithm L∗ is not suitable to be
10
Table 9 (continued).
(d) L*

Log (ℓ) S(M) t

log_3_10 (24, 277) 373 ms
log_3_15 (77, 1217) 462 ms
log_3_20 (124, 2092) 709 ms
log_3_25 (262, 3916) 1780 ms
log_3_30 (256, 4081) 2215 ms
log_5_10 (46, 631) 436 ms
log_5_15 (101, 1601) 670 ms
log_5_20 (174, 2942) 890 ms
log_5_25 (300, 5084) 2584 ms
log_5_30 (407, 6903) 3768 ms
log_7_15 (99, 1569) 483 ms
log_7_20 (180, 3044) 846 ms
log_7_25 (382, 6478) 3541 ms
log_7_30 (361, 6121) 3050 ms
log_10_20 (152, 2568) 867 ms
log_10_25 (347, 5883) 3199 ms
log_10_30 (429, 7277) 4703 ms

applied to complex real-life logs since, for all the considered
real-life logs, the algorithm was not able to generate a DFA in a
reasonable amount of time. In addition, when applied to simpler
synthetic logs, L∗ generates DFAs that are significantly more
complex than the ones generated with the tested passive ML
algorithms. However, we have to notice that, in our experiments,
we adapted L∗ to be used for the automated learning of DFAs,
while the algorithm was, instead, originally developed to involve
humans in the loop. In the future, we plan to investigate the
use of this type of algorithms in their original version (i.e., with
users) for process analysis. Moreover, we will perform further
experiments to compute precise threshold values (in terms of
number of total traces/distinct traces / activity types in the input
event log) enabling L* to properly compute the DFAs

Our evaluation also pointed out that MDL generates much sim-
pler (and, therefore, more understandable) DFAs than the other
passive algorithms, keeping similar values of precision and gen-
eralization. However, since RPNI and EDSM learn the DFAs from
explicit negative behaviors, they produce DFAs that are able to
better discriminate between positive and negative behaviors. This
can represent an advantage wrt state-of-the-art process discovery
algorithms that work with event logs including (non-labeled)
positive and negative behaviors. For these algorithms, the de-
cision to include (or exclude) a certain behavior underlying an
execution trace into (from) the process being discovered depends
on the noise filtering mechanisms embedded in the algorithms
themselves, which cannot be easily customized.

From a time perspective, we can conclude that the perfor-
mance of the passive ML algorithms decreases exponentially
for logs including a large activity alphabet. Nonetheless, pas-
sive ML algorithms seem to scale very well for logs including
a large number of distinct traces and/or traces including many
events.

The main limitation of the ML algorithms relies in their lim-
ited robustness to noise, in particular, when positive and nega-
tive logs are inconsistent (i.e., they are not disjoint). Traditional
process discovery techniques, instead, implement noise-filtering
mechanisms that make them more robust to noise. One possible
approach to mitigate this problem could be to make the logs
consistent by applying suitable noise-filtering mechanisms before
starting the learning phase with the ML algorithms.

Since, from our experimentation, it was clear that ML algo-
rithms, being able to generalize well the behavior recorded in
an event log, are suitable to represent processes that better fit
in an open-world assumption representation such as declara-

tive models, in the future, we would like to go a step forward

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180

t
c

owards the development of a new approach for declarative pro-
ess discovery and use alternate automata [74] to extract ltlf -
based temporal rules out of the DFAs generated with ML algo-
rithms. In addition, since DFAs can formalize data-aware seman-
tics via the propositionalization of data-aware constraints, we
would like to investigate how ML algorithms can be employed
in the context of ‘‘multi-perspective’’ process mining. Finally, we
would like to introduce and evaluate, for the ML algorithms lever-
aging both positive and negative information, alternative quality
metrics inspired by Machine Learning accuracy metrics (such
as precision and recall) based on the evaluation of a confusion
matrix.

This paper extends previous work in [12] in several directions
and includes many new elements that were previously neglected:

• A revised introduction that makes immediately clear for the
reader the research problem to be tackled and its signifi-
cance in the process mining field;

• A new section that makes the background and the relevant
preliminary concepts more explicit;

• A completely new related work section, targeted to describe
the relevant works in process mining that employ DFAs to
perform reasoning tasks over event logs;

• A revised section on ML algorithms that has been edited and
refined to present the material more thoroughly;

• A novel section presenting a revised and thoroughly for-
malized version of the quality metrics. If compared with
the ones proposed in [12], the novel metrics introduced in
this paper are obtained adapting the state-of-the-art met-
rics presented in [18] (based on the notion of Markovian
Abstraction of logs and processes) to DFAs.

• A novel evaluation section to investigate the extent to which
the analyzed ML algorithms are suitable to be used in the
context of process mining. Suitability is measured employ-
ing the novel quality metrics. Moreover, in addition to the
real-life logs adopted in [12], we have generated 17 syn-
thetic logs of increasing complexity to test the ML algo-
rithms in a controlled setting and provide more robust find-
ings.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The work of S. Agostinelli and A. Marrella has been supported
by the H2020 project DataCloud, Italy (Grant number 101016835)
and the Sapienza grant DISPIPE, Italy. The work of F. M. Maggi
has been supported by the UNIBZ, Italy project CAT. The work
of F. Patrizi has been supported by the project ‘‘Data-awaRe Au-
tomatic Process Execution’’ (DRAPE), by the ERC Advanced Grant
WhiteMech, Italy (No. 834228) and by the EU ICT-48 2020 project
TAILOR, Italy (No. 952215).

References

[1] W.M.P. van der Aalst, Process Mining - Data Science in Action, second ed.,
Springer, 2016.

[2] G. De Giacomo, M.Y. Vardi, Synthesis for LTL and LDL on finite traces, in: Q.
Yang, M.J. Wooldridge (Eds.), Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, AAAI Press, 2015, pp. 1558–1564.
11
[3] F.M. Maggi, R.P.J.C. Bose, W.M.P. van der Aalst, Efficient discovery of
understandable declarative process models from event logs, in: 24th
International Conference on Advanced Information Systems Engineering,
CAiSE 2012, 2012, pp. 270–285.

[4] M. de Leoni, F.M. Maggi, W.M.P. van der Aalst, Aligning event logs and
declarative process models for conformance checking, in: 10th Interna-
tional Conference on Business Process Management, BPM 2012, 2012, pp.
82–97.

[5] M. de Leoni, F.M. Maggi, W.M.P. van der Aalst, An alignment-based
framework to check the conformance of declarative process models and
to preprocess event-log data, Inf. Syst. 47 (2014) 258–277.

[6] L.T. Ly, F.M. Maggi, M. Montali, S. Rinderle-Ma, W.M.P. van der Aalst, A
framework for the systematic comparison and evaluation of compliance
monitoring approaches, in: 17th International Conference on Enterprise
Distributed Object Computing, EDOC 2013, IEEE, 2013, pp. 7–16.

[7] L.T. Ly, F.M. Maggi, M. Montali, S. Rinderle-Ma, W.M.P. van der Aalst,
Compliance monitoring in business processes: Functionalities, application,
and tool-support, Inf. Syst. 54 (2015) 209–234.

[8] J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der Aalst, Towards cross-
organizational process mining in collections of process models and their
executions, in: Business Process Management International Workshops,
Springer, 2011, pp. 2–13.

[9] M.L. Bernardi, M. Cimitile, F.M. Maggi, Discovering cross-organizational
business rules from the cloud, in: 2014 IEEE Symposium on Computational
Intelligence and Data Mining, CIDM 2014, 2014, pp. 389–396.

[10] M. Pesic, D. Bosnacki, W.M.P. van der Aalst, Enacting declarative languages
using LTL: avoiding errors and improving performance, in: 17th Interna-
tional SPIN Workshop on Model Checking Software, Springer, 2010, pp.
146–161.

[11] T. Slaats, R.R. Mukkamala, T.T. Hildebrandt, M. Marquard, Exformat-
ics declarative case management workflows as DCR graphs, in: 11th
International Conference on Business Process Management, BPM 2013.

[12] S. Agostinelli, G. Bergami, A. Fiorenza, F.M. Maggi, A. Marrella, F. Patrizi,
Discovering declarative process model behavior from event logs via model
learning, in: 3rd International Conference on Process Mining, ICPM 2021,
IEEE, 2021, pp. 48–55.

[13] F. Vaandrager, Model learning, Commun. ACM 60 (2) (2017) 86–95.
[14] E.M. Clarke, Model checking, in: International Conference on Foundations

of Software Technology and Theoretical Computer Science, Springer, 1997,
pp. 54–56.

[15] S. Ali, H. Sun, Y. Zhao, Model learning: A survey on foundation, tools and
applications, 2018, arXiv:1901.01910.

[16] H. Raffelt, B. Steffen, T. Berg, T. Margaria, LearnLib: A framework for
extrapolating behavioral models, Int. J. Doftw. Tools Technol. Transfer 11
(5) (2009) 393–407.

[17] A.W. Biermann, R. Krishnaswamy, Constructing programs from example
computations, IEEE Trans. Softw. Eng. 2 (3) (1976) 141–153.

[18] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La Rosa, Mea-
suring fitness and precision of automatically discovered process models:
A principled and scalable approach, IEEE Trans. Knowl. Data Eng. 34 (4)
(2022) 1870–1888.

[19] A.F. Syring, N. Tax, W.M.P. van der Aalst, Evaluating conformance measures
in process mining using conformance propositions, in: Transactions on
Petri Nets and Other Models of Concurrency XIV, Springer, 2019, pp.
192–221.

[20] F.M. Maggi, C. Di Ciccio, C. Di Francescomarino, T. Kala, Parallel algorithms
for the automated discovery of declarative process models, Inf. Syst. (2018)
http://dx.doi.org/10.1016/j.is.2017.12.002.

[21] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F.M. Maggi, A. Marrella,
M. Mecella, A. Soo, Automated discovery of process models from event
logs: Review and benchmark, IEEE Trans. Knowl. Data Eng. 31 (4) (2019)
686–705.

[22] F. Taymouri, M. La Rosa, M. Dumas, F.M. Maggi, Business process variant
analysis: Survey and classification, Knowl.-Based Syst. 211 (2021).

[23] G. Bergami, C. Di Francescomarino, C. Ghidini, F.M. Maggi, J. Puura, Explor-
ing business process deviance with sequential and declarative patterns,
2021, CoRR, arXiv:2111.12454.

[24] M. Dumas, M. La Rosa, J. Mendling, H.A. Reijers, Fundamentals of Business
Process Management, second ed., Springer, 2018.

[25] E.F. Moore, et al., Gedanken-experiments on sequential machines,
Automata Stud. 34 (1956) 129–153.

[26] M. Isberner, F. Howar, B. Steffen, The open-source LearnLib, in: Inter-
national Conference on Computer Aided Verification, Springer, 2015, pp.
487–495.

[27] A. Hagerer, H. Hungar, O. Niese, B. Steffen, Model generation by moder-
ated regular extrapolation, in: International Conference on Fundamental
Approaches to Software Engineering, Springer, 2002, pp. 80–95.

[28] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, B. Steffen, On
the correspondence between conformance testing and regular inference,
in: International Conference on Fundamental Approaches to Software
Engineering, Springer, 2005, pp. 175–189.

http://refhub.elsevier.com/S0306-4379(23)00016-9/sb1
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb1
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb1
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb2
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb2
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb2
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb2
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb2
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb3
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb4
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb5
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb5
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb5
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb5
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb5
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb6
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb7
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb7
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb7
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb7
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb7
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb8
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb9
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb9
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb9
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb9
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb9
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb10
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb11
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb11
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb11
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb11
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb11
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb12
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb13
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb14
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb14
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb14
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb14
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb14
http://arxiv.org/abs/1901.01910
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb16
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb16
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb16
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb16
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb16
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb17
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb17
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb17
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb18
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb19
http://dx.doi.org/10.1016/j.is.2017.12.002
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb21
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb22
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb22
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb22
http://arxiv.org/abs/2111.12454
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb24
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb24
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb24
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb25
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb25
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb25
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb26
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb26
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb26
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb26
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb26
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb27
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb27
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb27
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb27
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb27
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb28

S. Agostinelli, F. Chiariello, F.M. Maggi et al. Information Systems 114 (2023) 102180
[29] H. Hungar, O. Niese, B. Steffen, Domain-specific optimization in automata
learning, in: International Conference on Computer Aided Verification,
Springer, 2003, pp. 315–327.

[30] D. Angluin, Learning regular sets from queries and counterexamples,
Inform. and Comput. 75 (2) (1987) 87–106.

[31] D. Lee, M. Yannakakis, Principles and methods of testing finite state
machines-a survey, Proc. IEEE 84 (8) (1996) 1090–1123.

[32] M. Isberner, F. Howar, B. Steffen, The TTT algorithm: a redundancy-free
approach to active automata learning, in: International Conference on
Runtime Verification, Springer, 2014, pp. 307–322.

[33] W. Daelemans, Colin de la Higuera: Grammatical inference: learning
automata and grammars - Cambridge University Press, Mach. Transl. 24
(3–4) (2010) 291–293.

[34] D. Lorenzoli, L. Mariani, M. Pezzè, Automatic generation of software behav-
ioral models, in: 30th International Conference on Software Engineering,
ICSE’08, 2008, pp. 501–510.

[35] J. Oncina, P. Garcia, Inferring regular languages in polynomial updated
time, in: Pattern Recognition and Image Analysis: Selected Papers from
the IVth Spanish Symposium, World Scientific, 1992, pp. 49–61.

[36] O. Cicchello, S.C. Kremer, Beyond edsm, in: International Colloquium on
Grammatical Inference, Springer, 2002, pp. 37–48.

[37] M. Pesic, H. Schonenberg, W.M.P. van der Aalst, Declare: Full support
for loosely-structured processes, in: 11th IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2007, IEEE, 2007, p. 287.

[38] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, Ensuring model con-
sistency in declarative process discovery, in: BPM, Springer, 2015, pp.
144–159, http://dx.doi.org/10.1007/978-3-319-23063-4_9.

[39] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, Resolving inconsistencies
and redundancies in declarative process models, Inf. Syst. 64 (2017)
425–446.

[40] A. Pnueli, The temporal logic of programs, in: Foundations of Computer
Science, Annual IEEE Symposium on, 1977, pp. 46–57.

[41] F.M. Maggi, M. Montali, C. Di Ciccio, J. Mendling, Semantical vacuity
detection in declarative process mining, in: BPM, 2016, pp. 158–175.

[42] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, On the relevance of a
business constraint to an event log, Inf. Syst. (2018).

[43] G. De Giacomo, F.M. Maggi, A. Marrella, S. Sardiña, Computing trace align-
ment against declarative process models through planning, in: Twenty-
Sixth International Conference on Automated Planning and Scheduling,
ICAPS 2016, 2016, pp. 367–375.

[44] G. De Giacomo, F.M. Maggi, A. Marrella, F. Patrizi, On the disruptive
effectiveness of automated planning for LTLf -based trace alignment, in:
Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, 2017, pp.
3555–3561.

[45] G. Bergami, F.M. Maggi, A. Marrella, M. Montali, Aligning data-aware
declarative process models and event logs, in: Business Process Manage-
ment - 19th International Conference, BPM 2021, Rome, Italy, September
06-10, 2021, Proceedings, 2021, pp. 235–251.

[46] J. Munoz-Gama, J. Carmona, Enhancing precision in process conformance:
Stability, confidence and severity, in: Proceedings of the IEEE Symposium
on Computational Intelligence and Data Mining, CIDM 2011, Part of the
IEEE Symposium Series on Computational Intelligence 2011, April 11-15,
2011, Paris, France, IEEE, 2011, pp. 184–191.

[47] S.J.J. Leemans, W.M.P. van der Aalst, T. Brockhoff, A. Polyvyanyy, Stochastic
process mining: Earth movers’ stochastic conformance, Inf. Syst. 102 (2021)
101724, URL https://doi.org/10.1016/j.is.2021.101724.

[48] F.M. Maggi, M. Montali, M. Westergaard, W.M.P. van der Aalst, Monitoring
business constraints with linear temporal logic: An approach based on
colored automata, in: BPM, 2011, pp. 132–147.

[49] F.M. Maggi, M. Westergaard, M. Montali, W.M.P. van der Aalst, Runtime
verification of LTL-based declarative process models, in: Runtime Verifica-
tion - Second International Conference, RV 2011, San Francisco, CA, USA,
September 27-30, 2011, Revised Selected Papers, 2011, pp. 131–146.

[50] M. Westergaard, F.M. Maggi, Modeling and verification of a protocol for
operational support using coloured Petri nets, in: PETRI NETS, 2011, pp.
169–188.

[51] F.M. Maggi, M. Westergaard, Designing software for operational decision
support through coloured Petri nets, Enterp. IS 11 (5) (2017) 576–596.

[52] F.M. Maggi, M. Montali, W.M.P. van der Aalst, An operational decision
support framework for monitoring business constraints, in: Fundamental
Approaches To Software Engineering - 15th International Conference, FASE
2012, Held As Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,
2012. Proceedings, 2012, pp. 146–162.

[53] R. De Masellis, F.M. Maggi, M. Montali, Monitoring data-aware business
constraints with finite state automata, in: ICSSP, 2014, pp. 134–143.
12
[54] G. De Giacomo, R. De Masellis, M. Grasso, F.M. Maggi, M. Montali,
Monitoring business metaconstraints based on LTL and LDL for finite traces,
in: BPM, 2014, pp. 1–17.

[55] G. De Giacomo, M.Y. Vardi, Linear temporal logic and linear dynamic logic
on finite traces, in: International Joint Conference on Artificial Intelligence,
2013, pp. 854–860.

[56] A. Alman, F.M. Maggi, M. Montali, F. Patrizi, A. Rivkin, Multi-model
monitoring framework for hybrid process specifications, in: Advanced
Information Systems Engineering - 34th International Conference, CAiSE
2022, Leuven, Belgium, June 6-10, 2022, Proceedings, 2022, pp. 319–335.

[57] C. Di Ciccio, M.L. Bernardi, M. Cimitile, F.M. Maggi, Generating event logs
through the simulation of declare models, in: Enterprise and Organiza-
tional Modeling and Simulation - 11th International Workshop, EOMAS
2015, Held At CAiSE 2015, Stockholm, Sweden, June 8-9, 2015, Selected
Papers, 2015, pp. 20–36.

[58] F. Chiariello, F.M. Maggi, F. Patrizi, ASP-based declarative process mining,
in: Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI’22), 2022.

[59] F.M. Maggi, A. Marrella, G. Capezzuto, A. Armas-Cervantes, Explaining non-
compliance of business process models through automated planning, in:
Service-Oriented Computing - 16th International Conference, ICSOC 2018,
Hangzhou, China, November 12-15, 2018, Proceedings, 2018, pp. 181–197.

[60] R. Conforti, M. La Rosa, A.H.M. ter Hofstede, Filtering out infrequent
behavior from business process event logs, IEEE Trans. Knowl. Data Eng.
29 (2) (2017) 300–314.

[61] C. Di Francescomarino, C. Ghidini, F.M. Maggi, G. Petrucci, A. Yeshchenko,
An eye into the future: Leveraging A-priori knowledge in predictive
business process monitoring, in: Business Process Management - 15th
International Conference, BPM 2017, Barcelona, Spain, September 10-15,
2017, Proceedings, 2017, pp. 252–268.

[62] T.T. Hildebrandt, R.R. Mukkamala, T. Slaats, Nested dynamic condition
response graphs, in: F. Arbab, M. Sirjani (Eds.), Fundamentals of Software
Engineering - 4th IPM International Conference, FSEN 2011, Tehran, Iran,
April 20-22, 2011, Revised Selected Papers, in: Lecture Notes in Computer
Science, vol. 7141, 2011, pp. 343–350.

[63] H.W. Kuhn, The hungarian method for the assignment problem, Nav. Res.
Logist. Q. 2 (1–2) (1955) 83–97.

[64] F. Bourgeois, J. Lassalle, An extension of the munkres algorithm for the
assignment problem to rectangular matrices, Commun. ACM 14 (12) (1971)
802–804, http://dx.doi.org/10.1145/362919.362945, URL https://doi.org/10.
1145/362919.362945.

[65] H. Raffelt, B. Steffen, T. Berg, Learnlib: A library for automata learning and
experimentation, in: Proceedings of the 10th International Workshop on
Formal Methods for Industrial Critical Systems, 2005, pp. 62–71.

[66] M. Isberner, F. Howar, B. Steffen, Inferring automata with state-local
alphabet abstractions, in: NASA Formal Methods Symposium, Springer,
2013, pp. 124–138.

[67] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der Aalst,
XES, XESame, and ProM 6, in: P. Soffer, E. Proper (Eds.), Information
Systems Evolution - CAiSE Forum 2010, Hammamet, Tunisia, June 7-9,
2010, Selected Extended Papers, in: Lecture Notes in Business Information
Processing, vol. 72, Springer, 2010, pp. 60–75.

[68] B. van Dongen, BPI Challenge 2012, 4TU.ResearchData, 2012, http://dx.doi.
org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f, URL https://
data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1.

[69] M. de Leoni, F. Mannhardt, Road Traffic Fine Management Process,
4TU.ResearchData, 2015, http://dx.doi.org/10.4121/uuid:270fd440-1057-
4fb9-89a9-b699b47990f5, URL https://data.4tu.nl/articles/dataset/Road_
Traffic_Fine_Management_Process/12683249/1.

[70] F. Mannhardt, Sepsis Cases - Event Log, 4TU.ResearchData, 2016, http:
//dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460, URL
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1.

[71] B. van Dongen, International Declarations Log. BPI Challenge 2020,
4TU.ResearchData, 2020, http://dx.doi.org/10.4121/uuid:52fb97d4-4588-
43c9-9d04-3604d4613b51, URL http://icpmconference.org/2020/wp-
content/uploads/sites/4/2020/03/InternationalDeclarations.xes_.gz.

[72] B. van Dongen, Travel Permits Log. BPI Challenge 2020, 4TU.ResearchData,
2020, http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-
3604d4613b51, URL http://icpmconference.org/2020/wp-content/uploads/
sites/4/2020/03/PermitLog.xes_.gz.

[73] A. Alman, C. Di Ciccio, D. Haas, F.M. Maggi, A. Nolte, Rule mining with RuM,
in: 2nd International Conference on Process Mining, ICPM 2020, Padua,
Italy, October 4-9, 2020, 2020, pp. 121–128.

[74] A. Camacho, E. Triantafillou, C. Muise, J.A. Baier, S.A. McIlraith, Non-
deterministic planning with temporally extended goals: LTL over finite and
infinite traces, in: Thirty-First AAAI Conference on Artificial Intelligence,
AAAI 2017, 2017.

http://refhub.elsevier.com/S0306-4379(23)00016-9/sb29
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb29
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb29
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb29
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb29
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb30
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb30
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb30
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb31
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb31
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb31
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb32
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb32
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb32
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb32
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb32
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb33
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb33
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb33
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb33
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb33
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb34
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb34
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb34
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb34
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb34
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb35
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb35
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb35
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb35
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb35
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb36
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb36
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb36
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb37
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb37
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb37
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb37
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb37
http://dx.doi.org/10.1007/978-3-319-23063-4_9
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb39
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb39
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb39
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb39
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb39
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb40
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb40
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb40
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb41
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb41
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb41
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb42
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb42
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb42
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb43
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb44
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb45
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb46
https://doi.org/10.1016/j.is.2021.101724
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb48
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb48
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb48
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb48
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb48
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb49
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb50
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb50
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb50
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb50
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb50
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb51
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb51
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb51
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb52
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb53
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb53
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb53
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb54
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb54
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb54
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb54
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb54
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb55
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb55
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb55
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb55
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb55
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb56
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb57
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb58
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb58
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb58
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb59
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb60
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb60
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb60
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb60
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb60
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb61
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb62
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb63
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb63
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb63
http://dx.doi.org/10.1145/362919.362945
https://doi.org/10.1145/362919.362945
https://doi.org/10.1145/362919.362945
https://doi.org/10.1145/362919.362945
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb65
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb65
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb65
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb65
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb65
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb66
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb66
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb66
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb66
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb66
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb67
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249/1
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/InternationalDeclarations.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/InternationalDeclarations.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/InternationalDeclarations.xes_.gz
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://dx.doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/PermitLog.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/PermitLog.xes_.gz
http://icpmconference.org/2020/wp-content/uploads/sites/4/2020/03/PermitLog.xes_.gz
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb73
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb73
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb73
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb73
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb73
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74
http://refhub.elsevier.com/S0306-4379(23)00016-9/sb74

	Process mining meets model learning: Discovering deterministic finite state automata from event logs for business process analysis
	Introduction
	Background
	Deterministic Finite State Automata
	Events, Traces and Event Logs
	Model Learning
	Active Learning
	Passive Learning

	Related Work
	Quality metrics for DFAs
	Experiments
	Experiments with Real-life Logs
	Experiments with Synthetic Logs

	Concluding Remarks
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

