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Preface

"To develop the skill of correct
thinking is in the first place to
learn what you have to
disregard. In order to go on,
you have to know what to leave
out: this is the essence of
effective thinking".

K. Goedel, Letter to Hao Wang,
15th March 1972

"I know. But I do not have the proof.
I don’t even have clues".

Pier Paolo Pasolini, Corriere
della Sera, 14th November 1974

C omplex systems are very large systems comprising millions of agents interacting
with each other and whose collective behaviour cannot be understood from the

elementary features. In this sense the brain is the complex system par excellence:
hundreds of billions of densely packed electrically excitable cells called neurons with
hundred of millions of connections each. All exchanging electrochemical signals over
short and long distances every few milliseconds and functionally interacting over
multiple scales of time. Within this apparent chaotic bundle some deep questions
arise. A single neuron is not in itself "intelligent" but a vast network of neurons can
think, perceive, remember and generate the many extraordinary phenomena that
they are collectively known as mind.
How the mind can emerge from the interconnection between different neurons? How
can single interactions between neurons organize themselves into manifestations
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collectively coherent like perception and movement? How the coordinated responses
to sensory stimuli, the realization of complex movements and the organized selection
and monitoring of goal-oriented actions are possible? Ultimately, how the set of
processes known as cognitive control of behaviour are still possible? Many theoretical
hypotheses have been put forward over the years in the form of neural network
models but despite the increase in the availability of experimental data we are still
far from finding the key of the coil.
Cognitive control is the processes by which the brain, using sensory input plus
information already stored in memory, generates most of our motor actions. How
the brain internally subdues these mechanisms and map them into the concerted
activity of neurons is one of the challenging problems of modern science and most of
the related questions are still unanswered. A vital component of cognitive control is
response inhibition. Response inhibition is the ability to select among alternatives,
suppress inappropriate, unsafe or no longer required actions, in response to changes
in internal states or changes in the environment. To clarify the concept, let’s
imagine a researcher who, working late at the department, decides to take a little
cigarette break. Being alone he decides to stay at doorstep of the lab. He then:
(1) takes the cigarette, (2) puts it in his mouth, (3) takes the lighter out of his
pocket but just a moment before lighting it, looking up, notices the no-smoking
sign. He thus promptly stops and decide to go and smoke a bit farther. Cognitive
control of motor activity hence determines subconsciously, and within seconds, which
patterns of movement will be used together to achieve a complex goal that might
itself last for many seconds. Therefore, the ability to stop actions is crucial for
flexible, adaptive, goal-directed behavior and, ultimately, decision making. While
understanding how the brain processes movement inhibition is of great scientific
interest per se, the growing attention in this research area is also due to its clinical
implications. Response inhibition is indeed impaired in various psychiatric disorders,
such as schizophrenia (Hughes et al., 2012; Thakkar et al., 2011), attention deficit
hyperactivity disorders (Lipszyc and Schachar, 2010; Oosterlaan et al., 1998; Pani
et al., 2013), obsessive-compulsive disorder (OCD; Chamberlain et al., 2005 and in
neurological diseases such as Parkinson’s Disease (Gauggel et al., 2004; for a review
see Bari and Robbins, 2013; Verbruggen and Logan, 2008) and cerebellar patients
(Olivito et al., 2017). A complete understanding of inhibitory control would hence
eventually help clinical research finding treatments for motor and cognitive disorders.
In this thesis we will show evidence further supporting the role of a specific frontal
region, the dorsal premotor cortex (PMd), in the control of arm movements, stepping
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forward the knowledge on the neuronal mechanism often derived from single units
approaches. More specifically, using a combined mathematical framework of graph
and information theory we will depict a detailed representation of the local PMd
network which will help clarify the contribution of different neuronal assemblies to
decision making. In presenting the work, we decided to adopt the following structure.
The Introduction consists of two main sections: a first section 1.1 in which we will
contextualize the work from the point of view of behavioral neurophysiology and a
second section 1.2 where we will introduce the mathematical concepts used for data
analysis of Study 1 and Study 2. The last section will be devoted to Conclusions
and a general discussion.
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Introduction

"Science is build up of facts, as
a house is with stones. But a
collection of facts is no more a
science than a heap of stones is
a house".

H. Poincare

1.1 Neurophysiological framework

The stop-signal task

One of the main scientific questions of the neurosciences is how motor decision-
making and, more in general, behavioural control are coded at the circuitry level
in the brain. One of the most used behavioural paradigms in experimental and
clical settings to investigate motor control is the countermanding or stop-signal task
(Logan and Cowan, 1984) (for general reviews see Matzke et al., 2017; Verbruggen
and Logan, 2009). The task requires subjects to promptly generate a response
(typically investigated as an eye or hand movement) after the presentation of a
Go signal (go or no-stop trials). Sporadically, the Go signal is followed by a Stop
signal after a variable and unpredictable delay (stop signal delay, SSD) instructing
subjects to withhold their ongoing response (stop trials). The performance during
stop trials is well explained by the so called race model (Logan and Cowan, 1984).
This behavioural model suggests for a race between two processes, the go process,
which is triggered by the presentation of the Go signal, and the stop process, which
is triggered by the presentation of the Stop signal. In stop trials, the movement
will be successfully inhibited (correct stop trials) only if the stop process wins over
the go process, otherwise movement will be executed (wrong stop trials) (Fig. 1.1
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A). When combining the stop-signal task and the race model, two measures of the
inhibitory performance can be extracted. One is the probability to respond with a
movement on stop trials in relation to the difficulty of the race. Indeed, the ability
to inhibit the movement is probabilistic, depending on the length of the SSD (Fig.
1.1 B). Typically, the shorter the SSD the lower (higher) the probability to respond
(inhibit), reflecting the level of motor preparation when the Stop signal occurs. The
second measure is the covert latency of the stop process: The Stop-Signal Reaction
Time (SSRT, Fig. 1.1 C), i.e the time it takes for subjects to successfully inhibit
a planned movement. The SSRT has been demonstrated being a key measure of
the behavioral and neuronal processes involved in the inhibitory control (Aron and
Poldrack, 2006; Logan and Cowan, 1984; Logan et al., 2014; van den Wildenberg
and van der Molen, 2004), in the development and decline of inhibitory ability across
the life span(Chevalier et al., 2014; Williams et al., 1999), in neurological disorders
(Brunamonti et al., 2012; Brunamonti et al., 2011; Pani et al., 2013) and impulsive
behaviours(Ersche et al., 2012; Schachar and Logan, 1990; Whelan et al., 2012).
Typically, the longer the average SSRT, the more impaired (or less developed) the
inhibitory process.

Figure 1.1. Stop Signal Task. A) Graphical representation of the race model; B)
probability of responding on stop trials as a function of the SSD duration. C) The SSRT
is estimated by setting 3 variables: the no-signal trials RTs, the probability of responding,
P (wrong), to the Stop signal, and the mean SSD (mSSD). The SSRT corresponds to
the nth no-signal RT, where n results from the mathematical product of the distribution
of ordered no-signal RTs and the overall probability of responding. The SSRT can then
be calculated by subtracting the mean SSD from the nth no-signal RT.

Where inhibition arise from?
The neural circuitry of response inhibition: what is known

Although the neural source of inhibitory control (if it exists in the strict sense) is still
unknown at the cellular level, important insights into mechanisms involved in motor
inhibition have come from studies on the oculomotor system (for a review see Ersche



1.1 Neurophysiological framework 6

et al., 2012; Schall et al., 2017). The employment of a saccade stop-signal task led
to the identification of two different neuronal populations in the frontal eye field
(FEF; Hanes et al., 1998), a prefrontal oculomotor area, and superior colliculus (SC;
Paré and Hanes, 2003) in the midbrain, whose activities control saccade generation
and inhibition. The different activity patterns of these neurons have been described
as reflecting, at the neuronal level, the go process (movement neurons) and stop
process (fixation neurons) of the race model (Boucher et al., 2007; Paré and Hanes,
2003). Movement neurons are active during saccade preparation and execution,
while fixation neurons are active while gaze is held steady. More extensively, the
stop-signal performance in the oculomotor system involves a fronto basal ganglia
and superior colliculus network (Schall et al., 2017), in which some neurons in FEF
and SC, substantia nigra pars reticulate (SNr, an output of the basal ganglia) and in
the brainstem can be considered as “inhibitory gates” for producing eye movements
(for further details about the input/output connection of this network please see
Stuphorn, 2015). Studies in the FEF and SC of monkeys performing the saccade
version of the stop-signal task has been crucial in establishing criteria that neuronal
activity must satisfy to be defined as directly involved in the inhibitory control. First,
the activities must modulate differently during movement execution (go trials) and
inhibition (stop trials). Second, the difference in the modulation must occur before
the end of the SSRT, i.e. the time required to inhibit the movement (see previous
paragraph). If a difference occurs after the SSRT, the activity it is not directly
linked to the inhibitory process, but rather to other processes, like performance
monitoring (Sajad et al., 2019; Stuphorn and Schall, 2006).
While advanced knowledge have been reached about the neuronal mechanisms
that rule eye movement and inhibition, including clearly defined input-output
connectivity patterns of single neurons, the same cannot be said for the inhibitory
processes in the skeletomotor system. This is partially due to the higher level of
bio-mechanical complexity of the skeletomotor system compared to the oculomotor
system. Indeed, eye movements are controlled by only six muscles and have limited
features variability (like speed or amplitude) while an higher muscle complexity
is required in the skeletomotor system. Just to give an idea, think about the
level of neuro-muscular synergy required to perform a correct tennis serve or the
level of coordination of a drummer playing a solo. Also everyday tasks which we
unconsciously perform, such as reaching a glass of water, writing or even talking can
only be performed via an harmonious, smooth and progressive control of a broad
spectrum of muscles (for a review see Scott et al., 2015 and Archambault et al.,
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2015). The stop-signal task applied to the arm reaching movement in humans and
monkeys, together with variations applied to rats, has provided precious insights
into the neuronal mechanisms underlying movement inhibition in the skeletomotor
system. Evidence suggest that the ability to control movements requires the integrity
of a complex cortico-basal ganglia pathway that includes frontal regions such as
the inferior frontal cortex (IFC), medial frontal areas such as supplementary (SMA)
and pre-supplementary (pre-SMA) motor areas, premotor cortex (PM), primary
motor cortex (M1)(see Battaglia-Mayer et al., 2014 for a review about the role of
cortical regions) and subcortical structures such as striatum, pallidum, thalamus
and the subtalamic nucleus (STN) (see Stuphorn, 2015 for a general review). IFC,
especially in the right hemisphere, has been proposed as one of the main frontal
lobe regions regulating this network in primates. Neuroimaging studies showed
an increased involvement of the IFC during inhibition (Aron and Poldrack, 2006;
Rubia et al., 2003). Patients with damage to the IFC showed an impairment of their
inhibitory ability proportional to the damage extension (Aron et al., 2003). In line
with this finding, the temporary inactivation of the IFC by transcranial magnetic
stimulation (TMS) impaired the ability to inhibit but not to execute the movement
(Chambers, Bellgrove, et al., n.d.; Chambers et al., 2007). Despite this evidence, the
specific function of the IFC in stopping is still debated and different roles have been
attributed to it. The direct role of IFC is debated, some argue for a direct role of
IFC in response inhibition (Aron et al., 2003), others have suggested for a role of this
region in either guiding attention to events relevant to the task goal (Corbetta and
Shulman, 2002; Sharp et al., 2010), or in encoding behaviorally task rules (Koechlin
et al., 2003). It is also possible that sub-regions of IFC are responsible for each of
the aforementioned functionalities, giving rise to its heterogeneous roles in cognitive
control of movement inhibition (Levy and Wagner, 2011). In fact, a more dorsal
and posterior region, in or near the inferior frontal junction may have more stimulus
processing and attention functions, while more ventral and anterior portions are
more likely involved in inhibiting or changing behavioral responses (Chikazoe et al.,
2009; Sebastian et al., 2017; Verbruggen and Logan, 2009). In this scenario has
been shown from Floden and Stuss (Floden and Stuss, 2006) that damages of right
superior medial frontal areas, specifically supplementary and pre-supplementary
motor areas, impairs the inhibitory control in the stop-signal task. The authors
hypothesized that the superior medial and lateral regions of the right frontal lobe
participate in response inhibition depending on task requirements: superior medial
regions are crucial for rapid inhibitory control, whereas the right lateral region allows
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for a more controlled stop signal performance (Aron et al., 2003, involving attentional
factors (Bellgrove et al., 2004; Floden and Stuss, 2006). Similar conclusions can
be drawn from the functional magnetic resonance (fMRI) study of Sharp et al.
(2010), in which healthy subjects were presented with a version of the stop-signal
task that allowed to separate the contributions of frontal regions to attentional
capture, response inhibition, and error processing. It is worth stressing that the
superior medial regions have the potential to influence the generation and control
of movement and to act as a possible inhibitory gate since directly project to the
spinal cord (Dum and Strick, 1991). The above demonstrates that the contribution
of prefrontal regions to the inhibitory functions is still debated.
Much clearer evidence instead attributes a pivotal role in arm movement inhibition
to basal ganglia structures (see Stuphorn, 2015 for a review). The most plausible
scenario is that the cortical areas implicated in response inhibition would send a
stop command to basal ganglia structures, which would interrupt the go process
(likely at the level of the internal globus pallidus, GPi), decreasing the excitability
of the thalamo-cortical projections necessary for the movement execution (Aron,
Durston, et al., 2007; Li et al., 2008) and acting on motor cortices. The resulting
hypothesis is that competing pathways within the basal ganglia would reflect the
go and stop processes of the race model (Aron, Durston, et al., 2007; Aron and
Poldrack, 2006; Schmidt et al., 2013). One of the most important component of
the basal ganglia, necessary for movement inhibition, is the subthalamic nucleus
(STN; Aron and Poldrack, 2006; Forstmann et al., 2012; Hikosaka and Isoda, 2010;
Li et al., 2008; Munakata et al., 2011). The STN receives inputs from the pre-SMA
and the IFC through the “hyperdirect” pathway (Nambu et al., 1996; Nambu et al.,
2002) and through a direct pathway as confirmed by tractography study in humans
(Aron, Behrens, et al., 2007). It has been proposed that either the right IFC or the
pre-SMA projections to the STN, would allow for fast inhibition of ongoing actions
by increasing inhibitory signals from the GPi, also receiving input from the STN,
thus suppressing basal ganglia output (Nambu et al., 2002; Coxon et al., 2006).
Moreover, fMRI and lesion studies (Aron and Poldrack, 2006; Eagle et al., 2008;
Obeso et al., 2014; Rieger et al., 2003), together with deep-brain stimulation of the
STN in patients with Parkinson’s disease (Van Den Wildenberg et al., 2006), support
the crucial role of these areas in response inhibition. Of outstanding interest are the
results observed by Schmidt et al. (Schmidt et al., 2013) in animal models. They
recorded single-unit activity from multiple basal ganglia nuclei of rats, including
STN and substantia nigra pars reticulata (SNr), which is the analogous of GPi in
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rodents for head control and a key structure for eye movement control in primates
(Hikosaka et al., 2000). In STN, neurons increased their activity quickly in response
to the Stop signal on both successful and failed stop-signal trials, confirming its
involvement in action inhibition. In contrast, SNr neurons were activated after the
Stop signals only in trials with successful inhibition, supporting the role of these
areas in motor inhibition and the race model assumption: to suppress a response,
Stop signal information must be transmitted from STN to SNr/GPi before increased
striatal inhibitory projections to SNr/GPi allow to start the movement. These
results strongly support the key role of basal ganglia in movement generation and
inhibition, as well as the hypothesis that the motor output on stop trials, i.e either
the movement execution or inhibition, relies on a competing race between the go
and stop processes.
Even it is not yet a standard view, it is undoubtedly worth spending some lines on
the role played by a structure with which the basal ganglia is densely connected:
the cerebellum (see Bostan and Strick, 2018 for a review). Recent neuroanatomical
findings using viral transneuronal tracers have indeed shown that the latter could be
involved in processes traditionally associated with the former (Bostan et al., 2013). It
is considered that the interplay between the cerebellum and the basal ganglia could
contribute to fine executive control of motor generation: frontal cortical areas send
movement-related commands both to the cerebellum and to the basal ganglia; both
of these subcortical regions send signals back to the primary motor cortex (M1) via
the thalamus, allowing the execution of the action or its suppression (Alexander and
Crutcher, 1990; Aron and Poldrack, 2006; Brunamonti et al., 2014). Only recently a
neuropsychological study administered the stop-signal task to patients with focal
cerebellar damage (Brunamonti et al., 2014). It was found that cerebellar patients
did not experience deficits in the duration of the stop process (i.e. similar SSRTs
values observed between cerebellar and control subjects). Nevertheless, they had
specific inhibitory deficits, failing more often than controls in triggering the stop
process, and requiring an increased time to adjust their behavior after the stop trial
presentation. These data suggest that the cerebellum could contribute to executive
control of voluntary actions, influencing the cortical-basal ganglia-cortical loops.

In this picture, a staple is the role of motor cortices. Indeed, it is widely accepted that
the activation of corticospinal neurons in M1 and in dorsal premotor cortex (PMd),
lead to muscle contraction (Aron, Behrens, et al., 2007; Cheney and Fetz, 1980;
Fetz and Cheney, 1980) either through the direct or indirect (through interneurons)
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Figure 1.2. Potential mechanisms through which cortico-basal ganglia in-
teractions control movement inhibition in the skeletomotor system (from
Stuphorn, 2015). Three possible mechanisms for inhibiting the movement generation.
Upper panel: The activity of the corticomotor neuron could be suppressed by direct
inhibitory connections from cortical interneurons (indicated by the dark blue neuron
1). Middle panel: The motor cortex sends connections to the basal ganglia through
the direct pathway to lift the tonic inhibition of the globus pallidus internal/substantia
nigra pars compacta (GPi/SNr) (dark blue arrow 2). Activation of neurons in the sub-
thalamic nucleus (STN) through the hyperdirect pathway could reactivate the GPi/SNr
neurons and so reduce activity in the motor cortex via recurrent connections through
the thalamus. Bottom panel: Other corticospinal neurons could activate inhibitory
interneurons in the spinal cord (dark blue arrow 1) that suppress the activity of motor
neurons.

activation of motor neurons in the spinal cord. When the movement is inhibited, the
excitability in corticospinal neurons of M1 must be modulated. This modulation can
be obtained at the cortical level by recruiting inhibitory interneurons, by targeting
interneurons at the level of the spinal cord, by involving subcortical pathways looping
back toward M1 (see Figure 1.2). Strongly connected to M1 is the area objective of
the thesis, the PMd, which has been repeatedly hinted as crucial for inhibitory control.



1.1 Neurophysiological framework 11

The injection of GABA antagonists to the PMd of monkeys reduces their ability
to inhibit movements (Sawaguchi et al., 1996), suggesting that in the PMd, also
participating to the movement execution through corticospinal neurons, GABAergic
inhibition is responsible of the movement suppression. Some TMS studies on M1 and
PMd in humans, have shown a reduction of cortical excitability when the movement
was inhibited (Coxon et al., 2006; Duque et al., 2012; Parmigiani and Cattaneo,
2018). Furthermore, patients with PMd lesions showed a reduction of their inhibitory
performance (Picton et al., 2007). All together, these studies corroborate the role
of PMd in the inhibitory process. Figure 1.3 summarizes some of the input-output
connections involving PMd, also suggesting its crucial role into movement inhibition
through its outputs. On one hand, PMd recives direct inputs from the posterior
parietal cortex (PPC) where are believed to be the sites of evidence accumulation in
decision processes and where visuospatial signals are amply represented (Gold and
Shadlen, 2007; Huk and Shadlen, 2005; Kim and Shadlen, 1999). On the other, PMd
also takes part in a prefrontal-BG network that might subserve both the inhibition
and decision-making processes. In this network, prefrontal regions would translate
visual information (in the case of the stop-signal paradigm, the stop signal) into
a decision to inhibit and, in turn, would send (directly and/or through the basal
ganglia) an inhibitory command to the PMd. The relationship between PMd and
BG is not limited to this network but these areas establish separate key interactions.
PMd receives indirect influences from different nuclei of BG such as the GPi/GPe and
the SNr, also establishing mutual connections with the STN and the striatum (see
Hoshi, 2013 for a review). Along these connections, BG could send to the PMd not
only information related to movement execution/inhibition, promoting movement
inhibition trough the indirect pathways, but they could participate in perceptual
decision-making processes. Indeed, although the BG were much earlier proposed to
be the central substrate for action selection and habit learning, growing evidences
suggest their active participation, through cortical interactions, in perceptual decision-
making (Ding and Gold, 2013; Wei et al., 2015). Thus it is legitimate to hypothesize
that PMd leads to movement control by interaction with M1 local computation,
basal ganglia structures and spinal cord interneurons.

Mirabella et al. in 2011 showed for the first time that single neurons in the PMd of
monkeys contribute to motor initiation and suppression during the stop-signal task.
The authors found the presence of two distinct neuronal populations directly related
to movement inhibition, whose activities differently modulated before the end of
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Figure 1.3. Brain network centered on the dorsal premotor cortex (PMd) po-
tentially involved in decision-making and inhibitory processes. PPC, posterior
parietal cortex; IT, inferotemporal cortex; V1, primary visual cortex; dlPFC, dorsolateral
prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; PMd, dorsal premotor cortex;
BG, basal ganglia; M1, primary motor cortex. PMd receives direct inputs from PPC,
where visuospatial signals are amply represented and where are believed to be the sites
of evidence accumulation in decision processes. PMd is also part of a prefrontal-BG
network that it thought to subserve both the inhibition and decision-making processes.
Prefrontal regions would translate visual information (in the stop-signal task: the stop
signals) into a decision to inhibit and, in turn, would send (directly and/or through the
basal ganglia) an inhibitory command to the PMd. PMd itself receives indirect influences
from different nuclei of BG such as the GPi/GPe and the SNr, also establishing mutual
connections with the STN and the striatum. Along these connections, BG could send
to the PMd not only information related to movement execution/inhibition, promoting
movement inhibition trough the indirect pathways, but they could also participate in
perceptual decision-making processes. Although the BG were much earlier proposed
to be the central substrate for action selection and habit learning, growing evidences
suggest their active participation through cortical interactions in perceptual decision-
making. Thus, we could also hypothesize that PMd activity leads to movement control
by interaction with M1 local computation, basal ganglia structures, and spinal cord
interneurons. Blue arrows represent ventral and dorsal visual streams which convey
visual information. The ventral stream conveys visual information to prefrontal cortex
through the inferotemporal cortex (IT), and it is involved with object identification and
recognition. The dorsal stream conveys visual information to the dorsolateral prefrontal
cortex (dlPFC) and the PMd through the posterior parietal cortex (PPC), and it is
involved with processing the object’s spatial location. Black arrows indicate projections
from prefrontal regions and BG to the PMd. These projections could be involved in the
processing of both inhibitory commands and decision-making-related information. Red
arrows represent interactions with the primary motor cortex (M1), BG and spinal cord
interneurons for inhibitory control.

the SSRT when the movement was generated and inhibited. One population of
neurons, following the Go signal, increased their activity up to a threshold necessary
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for the movement generation (go trials). During stop trials, the movement was
successfully inhibited only if the activity did not reach the threshold after the Stop
signal presentation. Indeed, the activity of this neuronal population decreased
after the Stop signal presentation during stop trials. The other population was
instead associated with a greater increase of activity – after the Stop signal and
before the end of SSRT – during movement inhibition (stop trials) compared to the
activity during movement execution (go trials). This finding suggested that the first
neuronal population, showing a movement-related activity negatively modulated
in stop trials, could correspond to PMd neurons targeting interneurons in M1 or
spinal cord, while the second neuronal population would represent PMd inhibitory
interneurons, controlling the activity of the first neuronal population. Following
this schema, the higher level of activity in the second neuronal population during
movement inhibition would be necessary to prevent the increase of activity in the first
neuronal population, and the corresponding movement execution. An alternative
interpretation is that the decrease of activity of the first neuronal population on motor
cancellation would correspond to the suppression of agonist muscles related to the
movement, while the increase of the second neuronal population would correspond to
the activation of the antagonist muscles. While the second interpretation is arguable,
since contrasting results have been found (Kudo and Ohtsuki, 1998; Scangos and
Stuphorn, 2010), evidence that further support the M1/PMd interaction comes
from electroencephalographic (Swann et al., 2009) and electrocorticographic (Mattia
et al., 2012) recordings from M1 and PMd cortex of epileptic patients. Hence, the
prevailing hypothesis is that motor cortices more likely represent final nodes of the
inhibitory network, in which inputs from other frontal and basal ganglia structures
are processed.

1.2 Mathematical framework

The pioneering work of Ramon y Cajal over a century ago shaped the way modern sci-
ence think about the nervous system. Indeed, since his wiring diagrams, that specified
the direction and flow of neural signals (Garcia-Lopez et al., 2010), understanding
brain functional connectivity has been a persistent ambition of neurosciences. It
should certainly not be forgotten that nineteenth and twentieth century neurosci-
entists (Ramon y Cajal, Golgi, Meynert, Wernicke, Flechsig, and Brodmann) were
well aware of the importance of connectivity and networks in understanding nervous
systems but it is over the past 25 years that these concepts has been mathematically
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formalized and that this research area has assumed a prominent place with the grow-
ing field of the so-called connectome. The term connectome was initially used to define
the identification of all possible pairwise anatomical connections between cellular
elements of the brain (Hagmann et al., 2007; Sporns and Kötter, 2004; Sporns et al.,
2005,Fornito et al., 2016). The exponential development of research in this area
combined with greater availability of data in the technological (Mahmud, Cecchetto,
et al., 2018) and biological sciences has led to the development of new tools for the
representation and investigations of a more general concept of the connectome. This
includes the study of the anatomical connections between large-scale brain areas as
well as between individual neurons, the functional interactions revealed both by the
slow fluctuations of cerebral blood oxygenation measured with functional magnetic
resonance imaging (fMRI, below 0.1Hz) and by the fast high-frequency neuronal
oscillations detectable with invasive (over 200Hz) and noninvasive (up to 200Hz)
electrophysiology. Thus, the current goal of connectomics has become quantifying,
visualizing, and understanding the brain organization across multiple scales of space
and time. The rise of connectomics can be better understood if we think of the great
growth of the interdisciplinary fields of network science in general from the 1980s to
today.
One of the first modern uses of connectomics is due to the work of White and col-
leagues that in 1986 mapped the complete nervous system of the nematode C. elegans

(White et al., 1986). Their effort, which took more than 10 years to be completed, led
to the creation of a large dataset on anatomical connectivity at a cellular scale that
has since been a benchmark for many studies allowing for a great leap forward in the
field (Chen et al., 2006; Nicosia et al., 2013; Towlson et al., 2013; Varshney et al.,
2011). Indeed, the latest mathematical conceptualizations of complex networks have
brought new tools to analyze and understand the most disparate complex systems:
from internet to transportation networks, from interconnections between financial
agents to the interaction between proteins within a cell, from microchip circuits to
social interaction networks. In the next paragraphs we will give a brief overview of
the state of the art of network science applied to the brain. We will also provide
a quick glossary of the mathematical framework used in the thesis: graph theory
coupled with information theory.

The brain as a complex network

As stated in the first sentence of the preface, all complex systems share the remarkably
feature of showing properties not deductible from the behaviour of their single
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components. They instead show signatures of a nontrivial organization, somewhere
halfway between completely random and completely regular. Distinctive features
of complex systems can be found all over the place, from the structure of societies
(Facchetti et al., 2011) and economies (Tacchella et al., 2013) to infrastructural
systems (Milanovic and Zhu, 2018) and molecular interactions occurring within
biological organisms (Albert and Barabási, 2002; Newman, 2003). Complex networks
are the most immediate mathematical representation of complex systems. Hence
the brain can be modeled as such: from the smaller scales in which the connected
elements are single neurons to the larger great specialized structures (van den Heuvel
and Hulshoff Pol, 2010). Thus, one of the biggest challenges in studying brain
networks and complex systems in general is to be able to identify an intermediate
level of dynamic organization between that of the individual units and that of the
system as a whole.
In representing the brain as a network several choices are possible, each of which
depends on which aspect of the connections between the elements one intends
to privilege. If we want to represent the synaptic junctions between individual
neurons or the anatomical pathways between populations of neurons the network
is called structural. If instead, as in the present work, the measure of interest is
the correlated dynamic activity of neurons or ensemble of neurons we speak of a
functional network. In this work we treated also another type of network, the one
obtained when measuring the information exchanged between neuronal units, which
is called effective.
The use of complex networks theory to the brain began from the large scale. Indeed,
the first representation of a cortical area as an actual connected structural network is
due to Felleman and van Essen (Felleman et al., 1991) who generated a connectivity
matrix for the macaque visual cortex collating tract tracing data from a large number
of previous studies. An year later, again from tract tracing data of macaque visual
cortex, Young provided the first conscious representation of a brain network. The
real turning point, however, came with the seminal work of Watts and Strogatz in
1998 which is the first methodological bridge between neuroscience, complex networks
science and graph theory. The authors used graph theory tools to analyse the C.

elegans connectome, suggesting the degree of universality of its properties as a complex
network. It was around 2005 that graph theory functional measures began to be
applied to studies involving humans thanks to a series of important works on humans
using functional magnetic resonance imaging (fMRI), Magnetoencephalography
(MEG), Electroencephalography (EEG) and diffusion magnetic resonance imaging
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data (Achard et al., 2006; Eguíluz et al., n.d.; Hagmann et al., 2008; M. Kaiser
and Hilgetag, 2006; Salvador et al., 2005; Sporns and Kötter, 2004; Sporns et al.,
2005; Stam, 2004). Going into the details of this line of literature is beyond the
scope of the thesis but it must be emphasized that this kind of works has both
promoted the deepening of some aspects of complex networks theory and greatly
favored its diffusion in neuroscience. Moreover, these researches have helped to
translate Watts and Strogatz quantitative results by highlighting how the brain
shares with many complex systems in nature some non-trivial network properties
that can be generalized across different species. From what has been said it is
quite clear that since the mapping of the C. elegans connectome the vast majority
of contemporary research on brain networks has focused on macro scale analyzes.
Some exceptions come from mesoscale studies on tract-tracing data from mouse,
cat and macaque that mostly focused on estimation of anatomical connectivity
(Kennedy et al., 2013; Markov et al., 2014; Oh et al., 2014; Scannell, 1997; Sporns
and Kötter, 2004; Stephan et al., 2001; Zingg et al., 2014). On the microscale the
studies have been very scarce and limited to the investigation of cellular networks of
model organisms such as the Drosophila (Chiang et al., 2011) and zebrafish (Ahrens
et al., 2013). Some progress has been made only in very recent times with the
spread of the diffusion of high-density multi-electrode arrays that made possible to
simultaneously record tens to hundreds of neurons. The aim of this thesis is precisely
to provide a contribution to fill, even if in a small part, this gap. Indeed, in addition
to representing a contribution to the study of the brain at the microscale from the
point of view of complex networks theory, this work wants to provide, for the first
time, experimental evidence of the detailed organization of a local cortical network
in vivo.

Representing the brain with graph theory

The past 25 years have seen an increasing proliferation of analytical methods to
model complex networks and to explore the quasi-universal principles of network
organization, function, growth and evolution (Fornito et al., 2016). Principal among
these general methods is graph theory. Any network built from experimental data
can be indeed considered a different realization of a mathematical object called graph.
Intuitively a graph is a way of encoding the relationship between elements of two
different finite sets. If we indicate these two sets as V (vertexes or nodes) and E

(edges, arcs, links or connections) we call graph the ordered pair G = (V,E). As can
be seen in Figure 1.4 a graph G(n,m) can be represented by drawing the vertices as



1.2 Mathematical framework 17

points and the edges as connecting lines. Once the set of vertices and edges have
been assigned, the graph is determined. We can now briefly introduce some types of
graphs without giving a rigorous mathematical definition (Caldarelli, 2010):

1 2

3

Figure 1.4. Basic example of a graph. Here G(3, 3), that is a graph of order (number
of vertices) and size (number of edges) 3.

• Binary undirected: graph in which the edges are either 0 (absent) or 1 (present)
and no direction is assigned from one vertex to another.

• Binary directed: graph in which the edges are either 0 or 1 and a direction is
assigned from one vertex to another. If a vertex is connected to itself we have
a loop. You can also have multiple edges when there are different edges between
two same vertices. In a binary directed graph the edge (i, j) is different from
the edge (j, i).

• Undirected weighted: graph in which each edge is assigned a weight w ∈ R and
no direction is assigned from one vertex to another.

• Directed weighted: graph in which each edge is assigned a weight w ∈ R and a
direction is assigned from one vertex to another. In a directed weighted graph
we have wi,j 6= wj,i.

Figure 1.5. On the left a possible realization of a directed graph and on the right of a
weighted graph with weights (3,1,5).
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In all these contexts the graph is completely determined by a matrix called Adjacency

matrix (A) . The adjacency matrix of a graph G(n,m) is a square matrix of order n
whose elements aij are 0 if the vertices i, j are not connected and 1 otherwise. In
the case of undirected graphs this matrix is symmetric, while in the case of directed
graphs the element aij can be different from the element aji. For weighted graphs,
the elements aij of the matrix take the value w of the weight of the relative edge;
in this way the adjacency matrix will be composed of real numbers for the edges
present and 0 otherwise.
In the case of our studies we analysed time series from a multielectrode array of 96
channels. Interpreting each single-channel time series as a node we obtained networks
with 96 nodes and (96x95)/2 possible edges (i.e. a graph or order N has at maximum
N(N-1)/2 edges). As stated above, we analyzed patterns of both functional (1.2) and
effective (2.5) connectivity and this corresponds to the analysis of undirected and
directed weighted graphs respectively. The reasons are the following. The most used
measure of functional connectivity exploits the Pearson correlation coefficient Cij

to estimate statistical dependencies between neural time series (Smith et al., 2011).
Therefore, to build a complete map of all functional connections one must calculate
the matrix of all pairwise correlation between the time series of interest. Since
correlation is symmetric so will the matrix. When instead one wants to investigate
patterns of information transmission, that is effective connectivity networks, a
different measure must be used. Among the many available the most solid and
well-founded for neuroscientific purposes is Transfer Entropy (TE) (Schreiber, 2000).
TE quantify the information transfer between time series by defining a driver time
series X and a target time series Y , hence establishing a direction for the information
flow. Therefore, since TE is an asymmetric measure so will the matrix. Figure 1.6
sketches the followed procedure to build the two type of graphs analyzed in this
thesis.
A concept that goes hand in hand with that of network and that will often be
referred to in this thesis is that of topology. By definition, topology is the branch of
mathematics that studies the properties of a geometric object that are preserved
under deformations. In the context of graph theory it refers to all the properties
and quantities that characterize the graph formation, structure and organization.
Hence, all the attributes that provide information in this sense are called topological.
The most basic topological quantity one could think of is the number of edges
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per node, which is called the node degree1. When analyzing graphs obtained from
brain data (i.e. brain graphs) topology is of particular interest since it allows to
reveal properties that don’t exist the physical space: i.e. the complex relationships
between the dynamic activity of neurons. One could say the topology is the fifth
dimension of analysis after the three dimensions of space (x,y,z) and time (Fornito
et al., 2016). Topological structures with strong analogies are found in different
scientific areas and it is not immediate to understand why so apparently dissimilar
systems express similar features and behaviors. Moreover, in many cases, not only
the global structure but also the dynamic evolution of the system is the result of self
organized interactions among the individual components of the network. Currently
a deep understanding of such interactions is not yet available also because in some
cases, as in most biological and brain networks, the acquisition of large amount of
experimental data is still problematic. To be able to give a satisfactory description
of these systems, the needed approach is therefore, inevitably, statistical. In this
scenario, using tools from graph theory makes possible to have a topological and
statistically detailed description of real-world networks. It is in fact possible to
describe, through a graph, network components also very different from each other
such as the individual computers connected to the Internet network (known as
WWW), economic agents or, as in the interest of the brain, neuronal ensembles ad
different scales. Graph theory provides a simple and solid theoretical framework
within which the topology of complex networks can be examined and, in the specific
case of this work, can reveal important information on the local organization of a
cortical network during a behavioural task.

1For details on the topological quantities analyzed in this work, please refer to the materials and
methods of the individual studies 2.4 and 3.5
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Figure 1.6. Bulding the cortical network Given an ensemble of M recorded (single-
channel) time series functional and effective graphs can be built, depending on the
measure used to compute the interactions. Pairwise correlation CXY is a symmetric
measure which gives the degree of synchrony between time series. Indeed it depends only
on the present values of the couple (X,Y) via the Covariance and Variance functions.
Conversely, Transfer Entropy quantifies the information transfer from a driver X to a
target Y conditioned to the remaining Zk=1,..,M−2 time series trough the variation of
the entropy function H(Yn) = −

∑
n P (Yn)logP (Yn). Thus, for each couple (X,Y) TE

depends upon the present state of Y (Yn) and the past states of X, Y and Z (X−n ,Y −n ,Z−n )
(see 3.5 for further details).
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Study 1
The small scale functional
topology of movement control:
Hierarchical organization of
local activity anticipates
movement generation in the
premotor cortex of primates

Abstract

How neurons coordinate their collective activity for behavioural control is an open
question in neuroscience. Several studies have progressively proven, on various scales,
that the patterns of neural synchronization change accordingly with behavioural
events. However, the topological features of the neural dynamics that underlie task-
based cognitive decisions on the small scale level are not understood. We analysed
the multiunit activity (MUA) from a multielectrode (96 channels) array of the dorsal
premotor cortex (PMd) in rhesus monkeys during a countermanding reaching task.
Within the framework of graph theory, we found that in the local PMd network
motor execution is preceded by the emergence of hubs of anti-correlation that are
organized in a hierarchical manner. Conversely, this organization is absent when
monkeys correctly inhibit programmed movements. Thus, we interpret the presence
of hubs as reflecting the readiness of the motor plan and the irrevocable signature of
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https://doi.org/10.1016/j.neuroimage.2019.116354
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https://doi.org/10.1016/j.neuroimage.2019.116354
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the onset of the incoming movement.

2.1 Introduction

Billions of interconnected neurons that propagate signals rapidly over short and long
distances form the brain. Their interactions have been examined by two approaches:
on a small scale, aiming to describe how relatively few individual neurons cooperate
in a given area, using in vitro or in vivo models, and a large scale, characterizing how
large populations of neurons, from different macro areas, are functionally connected.
The small-scale approach has been used, for example, to examine areas of the
cortico-subcortical network, which underlies the control and generation of skilled
arm movements. However, for many years, neural activity has been recorded from
few neurons, with limited efforts to extract a population code that can account for
the interactions between neurons (Evarts, 1968; Georgopoulos et al., 1989; Wise
et al., 1997). Recently, the diffusion of high-density multi-electrode arrays has
made it possible to adequately study local population dynamics, thanks to the
ability of simultaneously recording tens to hundreds of neurons. Using various forms
of reduction complexity, the population activity in cortical motor areas has been
described as a neural trajectory as a function of time, evolving in a multidimensional
neuronal state space (Gallego et al., 2017; Churchland et al., 2012; Shenoy et al.,
2012). These approaches, particularly when they are used to study cognitively
advanced functions, have provided valuable information on how small populations of
neurons cooperate during decisions, movement planning and execution. In parallel,
other studies have found that simultaneously recorded neurons can display functional
coupling (spike synchronization), even without undergoing any modulation in their
firing rate (Fetz, 1992). Neuronal synchronization patterns change, depending
on behavioural events (Vaadia et al., 1988; Hatsopoulos et al., 1998; Riehle et
al., 1997; Torre, 2016), even independent of the underlying oscillatory pattern of
activation (Fujisawa et al., 2008). On a larger scale, neuronal synchronization has
been analysed to examine the level of interaction between areas of the entire brain
network (Konig and Engel, 1995; Michaels et al., 2016). Several methods that focus
on human electroencephalography (EEG) and functional-MRI (fMRI) data (Shin et
al., 2013; Demuru et al., 2013; Luca et al., 2006; Liegeois et al., 2014; Bordier et al.,
2018; Nicolini et al., 2017) have been successfully applied. With these approaches,
analytical techniques that are derived from graph theory have shown that neuronal
population interactions are organized according to a highly efficient topology, with
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local and long-distance connections occasionally organised around highly functionally
coupled regions (Power et al., 2013; Lutcke et al., 2013; Eguiluz et al., 2005; Vlasov
and Bifone, 2017; Mastrandrea et al., 2017). Conversely, graph-based approaches
have been used sparingly on data from animal models, with few exceptions (Sporns
et al., 2007; Gu et al., 2019; Yu et al., 2006; Dann et al., 2016; Kiani et al., 2015;
Gerhard et al., 2011; Ferraro et al., 2018; Gal et al., 2013) and, to our knowledge,
not at all to describe the dynamics of local functional connectivity structures in
vivo on a small scale. Thus, we wanted to study the local functional connectivity
of the dorsal premotor cortex (PMd) in monkeys, preceding motor execution. We
focused on the spectral estimate of the multiunit activity (MUA) signal (Mattia
et al., 2013), obtained from a 96-channel array. To increase our understanding of
the topology of the network, we used a percolation-based approach (Bordier et al.,
2017, 2018; Nicolini et al., 2017; Vlasov and Bifone, 2017; Mastrandrea et al., 2017;
Ferraro et al., 2018; Callaway et al., 2000; Gallos et al., 2012). Percolation is a
powerful tool that is derived from statistical physics that allows one to inspect the
self-organization of networks. Our study shows that the PMd exhibits signatures of
self-organization only when the motor plan is mature, not when it is successfully
cancelled. Further, the occurrence of this phenomenon correlates with the emergence
of functional hubs in the network.

2.2 Results

2.2.1 Behavioural evaluation of the lead time to suppress a move-
ment

To examine the local functional connectivity before movement execution, we recorded
neuronal activity from the PMd of two monkeys (P, C) that were performing a
countermanding reaching task (Fig. 2.7). At the beginning of the task, the animals
were required to hold their hand over a central target that was presented on a touch
screen. Two types of randomly intermingled trials were possible: no-stop trials (67%)
and stop trials (33%). During no-stop trials, concurrent with the disappearance of
the central target (Go signal), a peripheral target appeared on the left or right. To
obtain the reward, the monkeys were instructed to reach the peripheral target. In
stop trials, after the Go signal, the central target reappeared (Stop signal) after a
variable delay, called the SSD (Stop signal Delay). The monkeys were then required
to refrain from moving to earn the reward. If the movement is withheld, the trial
is a stop-correct trial; otherwise, it is a stop-wrong trial. Generally in these trials
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Figure 2.7. Behavioural task and epochs of analysis. No-stop and stop trials were
randomly intermixed during each session. The grey horizontal rectangles under the time
scale of no-stop and stop trials represent the epochs of analysis (Go epoch, Pre-Movement
epoch, Stop signal epoch, respectively). RT reaction time; SSD Stop signal delay.

the monkeys detached the hand from the screen and then stopped the movement on
the fly avoiding to touch the peripheral target. Immediately after the error a blank
screen was displayed. Typically, in relation to the duration of the average SSD, the
stop-correct trials constituted approximately 50% of stop trials.

Monkeys RTns RTws SSD SSRT Independence test P(r)

P
769
(110)

710
(82)

557
(115)

203
P=8.44 e-5; zval
-3.9; ranksum=
7411

0.48

C
585
(92)

537
(71)

371
(110)

190
P=8.58 e-5; zval
-3.9; ranksum=
9213

0.44

Table 1. Behavioral results. For each monkey mean and standard deviation are
presented for RTs in no-stop (RTns) and stop-wrong (RTws) trials, and presented
SSDs. The estimates of SSRT were obtained after checking for the statistical
difference (Independence assumption; rank-sum test) between RTns and RTws.
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The countermanding task permits one to inspect the neuronal correlates of movement
execution by comparing trials in which movements are planned and then executed
(no-stop trials) with those in which movements are planned and then aborted (stop-
correct trials). In this comparison, it is ideal to identify the specific neuronal
signature of the movement execution and determine when it occurs. Moreover, it
allows one to establish when the neuronal signature that is specific for movement
execution must manifest. The countermanding task makes it possible to calculate a
behavioural measure that it is broadly considered an index of efficiency in movement
suppression: the stop signal reaction time or SSRT. To estimate SSRT the race model
(Logan and Cowan, 1984) must be applied. This model describes the behaviour in
the stop trials as the result of two stochastic processes racing toward a threshold: the
GO process triggered by the onset of the Go signal, which duration is represented
by the RT, and the STOP process triggered by the onset of the Stop signal, which
duration must be calculated. When the GO process wins the race the movement is
generated (stop-wrong trial), alternatively it is withheld (stop-correct trials). The
race model allows to estimate the SSRT by taking into account the duration of
the GO process, the probability to respond, and the SSDs. However to make the
race model applicable to study response inhibition, a central assumption must be
satisfied: the GO process in the stop trials must be the same as in the no-stop
trials (independence assumption). Indeed the RTs that are employed to estimate
the SSRT are obtained from the no-stop trials. To broadly validate this assumption,
stop-wrong RTs must be shorter than the no-stop trials (Logan and Cowan, 1984)
(see Table 1). To estimate the SSRT we employed the integration method because
it has been proven to be the most reliable (Band et al., 2003). It assumes that
the finishing time of the Stop process corresponds to the nth no-stop RT, where n
results from the multiplication of the ordered no-stop RTs distribution by the overall
probability of responding, p(respond). The SSRT is then obtained by subtracting
the average SSDfrom the nth no-stop RT. The SSRT can also be considered the lead
time that is required to inhibit a movement, or, simply, the time that precedes the
start of a movement when a Stop signal, if presented, halts the generation of the
same movement approximately 50% of the time. If the Stop signal is presented after
this time, it will be less effective, because the neuronal phenomena that lead to the
movement generation will have already started. If the Stop signal is presented well
before this time, it will be more effective in halting the movement. Consequently,
the neuronal activity that is related to movement generation must occur around
the time that is defined by the SSRT before the movement onset. To compute the
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SSRT, we first tested data for an assumption of independence of the race model.
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Figure 2.8. Trial-averaged single channel MUA aligned to the movement onset.
Normalized MUA (no-stop trials) for every single recording channel in the two animals.
Broken electrodes have been removed from the list in Monkey C.

2.2.2 In the PMd, certain recording sites show anti-correlated neu-
ronal activity before movement generation

We focused on no-stop trials, i.e., the trials that required movement generation—to
examine the organization of the functional network in the PMd in relation to
movement execution. Consistent with previous approaches that have shown that
important changes in single and multiunit activities and local field potentials occur
in the PMd in the time before movement onset, (Mattia et al., 2013, 2010; Kaufman
et al., 2016; Pani et al., 2014; Lara et al., 2018; Chandrasekaran et al., 2014), Fig. 2.8
shows that most of the recording sites in the arrays were modulated, demonstrating
increased or decreased MUA activity, in the 300 ms that preceded the movement
onset. We have suggested (Mattia et al., 2013) that these changes constitute a
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signature of the maturation of the motor plan, achieved in cortical modules that show
both positive (low-to-high) and negative (high-to-low) transitions in the MUA. We
examined the level of mutual interactions among various recording sites by computing
a correlation matrix between MUA time series using a sliding window approach.
We modelled the evolving interactions of the network as a sequence of snapshots
of correlation matrices, at the single-trial (single-trial network time series) and
average levels (average network time series; see 2.4 for further details). Within this
framework, each recording site can be considered a node of the functional network
in the PMd, and the connections (or links) represent the amount of interaction
(synchrony) between nodes. In our case, the weight of each connection was the
correlation coefficient between corresponding time series. Notably, certain recording
channels had a negative median value of the distribution of correlation coefficients in
the 200 ms that preceded the movement onset (supplementary Figure S1), suggesting
the presence of nodes with specific functions in the PMd network of both monkeys.
Fig. 2.9 (and supplementary Figure S2, for the other animal) shows select snapshots
of the average network time series aligned to the Go signal (top) and movement
onset (bottom) in Monkey P. We found that although nothing peculiar occurred
after the Go signal (Go epoch) as the time of movement generation approached
(Pre-Movement epoch), positive (red regions) and negative correlations (blue regions)
appeared. The marked blue lines (nodes that anti-correlate with the rest of the
network) suggest that the network is more organized in the selected snapshots and
that the anti-correlation is a determinant of this functional change.

2.2.3 In the functional network of the PMd, a hierarchy of hubs of
anti-correlation emerges before movement generation

To quantitatively assess whether the emergence of negative correlations is the
signature of the impending movement generation and to monitor the evolution of the
network configurations, we performed dynamic percolation analysis. This technique
allows one to inspect the network organization by iteratively removing links between
nodes as a function of a control parameter. As a control parameter, which quantifies
the structural characteristics of the network, we used the number of connected
clusters of nodes in the network (Bardella et al., 2016) (namely, the number of
connected components; see 2.4 for further details). The results of the percolation
are encoded in a percolation curve, in which the number of connected components
is plotted as a function of a threshold (i.e., the link weights). Thus, link weights
represent the thresholds according to which network disintegration is monitored.
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Figure 2.9. Average network series changes during RT. Snapshots of the average
network time series at four different times from the Go (Go; top) and before the movement
(Pre-mov; bottom) epochs of no-stop trials in monkey P. The scale bar indicates the
values of correlation coefficients

Moreover, because links are removed based on the value of their weights this process
reveals the presence of a hierarchical organization within the network. If the network
is randomly arranged at the time of analysis, the curve is characterized by a sharp
transition in the number of connected components for changes in threshold values.
Thus, the network disintegrates very quickly on removal of the links, and there are no
stable configurations of its constituent components. Conversely, when a hierarchical
structure is present, for certain threshold values, stable clusters of nodes (number
of connected components) exist, and the network is insensitive to the progressive
removal of links. This yields a stepwise percolation curve in which plateaus reflect
the presence of stable hierarchical configurations in the network. 2.10 shows the
percolation curves (step: 5 ms; see 2.4) for negative correlations of no-stop trials,
separately for each animal, starting from 300 ms before movement onset.
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Figure 2.10. Percolation curves before Movement onset in no-stop trials. Time
evolution of the percolation curves for 300 ms before the movement onset, for each
monkey. Times far from the movement onset are coloured in lighter shades of blue
and times close to the movement onset in darker shades of blue. Thresholds values are
correlation coefficients.
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In the early phase (light blue lines), the curves are characterized by the absence of
plateaus and by steep transitions in the number of connected components. Later (at
different times in the two animals; darker lines), the trends become more stepwise.
This pattern suggests that, approaching the movement onset, the functional network
of anti-correlations of the PMd evolves from a pseudo-random state toward a more
organized state that is endowed with signatures of hierarchy. We calculated the
slope of all percolation curves that were obtained and plotted them as a function
of time (Figure 5, A) to generate a straightforward view of the evolution from
pseudo-random to organized state in the pre-Movement epoch for both animals.
We found that at approximately 200 ms before the movement in both animals, a
transition in the average slope appeared (from roughly -600 to -200). To validate
the results of the percolation analysis statistically, we proposed a null model (see
2.4) and computed the slope of each percolation curve for the experimental data and
null model. We expected the experimental trend to be reproduced by the null model
during the early stages of the epoch and to differ significantly when approaching the
later stages. The results show that the steepness of the percolation curve did not
differ significantly from the null model for times that were far from the movement
onset (Figure 5B, top), whereas it lay well outside of the 95% confidence interval in
the late stages (Figure 5 B, bottom).

To obtain the complete picture of the network evolution, we examined its topology
in greater detail, searching for a measure of available functional connections for each
node and for the presence of hubs. In percolation, the threshold immediately prior
to the beginning of network disintegration (disintegration starts when the number
of connected components is >1 for the first time) is critical.

Indeed, recent studies (Bordier et al., 2018; Nicolini et al., 2017) have demonstrated
that at this threshold, the optimal balance between information about network
organization and statistical noise is realized (see 2.4 for further details). Thus,
we inspected the network topology at this threshold and found that nodes with
links (measured as Vertex Degree; VD; see 2.4) that greatly exceeded the average
value existed (see supplementary Figure S3), consistent with the definition of hub
nodes (Albert and Barabási, 2002). Hubs are, indeed, the most important nodes in
the network and, during percolation, preserve high VD values at high thresholds.
Inspecting the entire sequence of thresholds —– that is, climbing the ladder of the
percolation curve —– we unfolded the stable configurations of the network, and a
hierarchy of hubs was revealed. Supplementary Figure S4 shows the configuration
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Figure 2.11. Dynamics of the percolation slopes before movement onset and
comparison with null models in two sub-epochs. A) Evolution of the slope of the
percolation curves during the pre-movement epoch. B) Comparison with the null model
for the early (top) and the late (bottom) phases of the epoch. For the early stages we
averaged the matrices of the average network time series corresponding to the interval
[-300,-200] ms for monkey P and [-300, -220] ms for monkey C. For the late stages we
averaged the matrices of the average network time series corresponding to the interval
[-200, -80] ms for monkey P and [-130, -70] ms for monkey C. Histograms: null model
data. Blue dots represent the experimental slopes obtained for each interval. PDF,
probability density function.

(hubs are colour-coded) for four threshold values for Monkeys P and C before the
movement onset.

2.2.4 Network dynamics when movements are cancelled

Supplementary Figure S5 shows the percolation curves and the evolution of the
percolation slopes for stop-wrong trials in the pre-movement epoch. The comparison
with Figures 4 and 5 suggests that the network evolves very similarly in no-stop
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and stop-wrong trials. At this stage, a natural question arises: what happens to
the network functional structure during stop-correct trials? If the emergence of the
observed hubs is a mark of the incoming movement onset, it should be absent in
stop-correct trials, when the movement execution is aborted. To this end, as we did
for no-stop trials, we performed percolation analysis on the average network time
series, relative to (from 100 ms before to 100 ms after) the Stop signal, for wrong
and stop-correct trials (see supplementary Figure S6), calculating the corresponding
slopes (Figure 6, top). To determine whether a difference in the configurations of the
network between conditions existed, we computed the Euclidean distance between
all slope values. We found that the maximum distance was reached approximately
25 ms before the Stop signal presentation — as a consequence of the decreasing
slope values in stop-correct trials — for both animals.
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Figure 2.12. Percolation curves dynamics in stop trials. Top panels: evolution
of the experimental slope of the percolation curve during the epoch for stop-wrong
trials (red) and stop-correct trials (green). Bottom panels: comparison between the
observed slope (colored dots; red stop-wrong trials, green stop-correct trials) and the
corresponding null models (histograms). The red vertical line marks the Stop signal
presentation. Other conventions and symbols as in Figure 5.

Then, we confronted the network states of stop-wrong trials to those of stop-correct
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trials and found that during stop-correct trials, hubs were absent while emerged
in stop-wrong trials (supplementary Figure S7), confirming the link between the
emergence of hubs and movement generation. Moreover, the hubs channels were the
same in stop-wrong and no-stop trials. Despite the sketch suggests an intriguing
specific location for the hubs in the brain region, we avoided to link our observations
to anatomical landmarks. The issue deserves future investigation. To validate this
finding, we tested our results against the null model (Figure 6, bottom), averaging
the correlation matrices of the average network time series that corresponded to
the interval [−50,+50] ms with respect to the Stop-signal (it fully contains the point
of maximum distance between slopes). We then compared the experimental slope
with those that were obtained from the randomization. As reported in Figure 6,
the slope of the observed percolation curve for stop-wrong trials was outside of the
95% confidence interval of the null distribution for both animals. For stop-correct
trials, we found that Monkey P had a slope that was well inside of the distribution
of randomizations, thus confirming the hypothesis that the network is maintained in
a pseudo-random configuration. For Monkey C, the slope was still reproduced by
the null model but was closer to the 95% confidence interval compared with Monkey
P. However, the absence of hubs led us to conclude that the state that the network
expresses during a stop-correct trial is a sort of a quiescent configuration, in which
the motor plan is not fully mature and thus cannot become a movement, because
no hubs take the lead. If, in that window, the hubs become active, the Stop signal,
even if it is presented, is ineffective. We believe that the emergence of hubs is proof
of spontaneous self-reorganization of the network from a pseudo-random to more
organized state in light of a forthcoming cognitive decision (moving vs not moving).

2.2.5 Topology of the functional network of the PMd before exe-
cuted and cancelled movements

To complement the percolation results, we implemented an increasingly used tech-
nique in neuroscience: minimum spanning tree analysis (MST; Stam et al., 2014; see
2.4 for further details). For a given graph, MST provides a unique connected graph
without cycles or loops. MST corresponds to a subnetwork, the links of which are
the strongest within the set of all possible ones. MST identifies the core structure of
a network and, for this study, elicits the backbone of functional connectivity of the
PMd. Two extreme configurations are possible, as quantified by Leaf Number (LN;
see 2.4 for further details), for the MST (Stam et al., 2014): star-like, in which one
(or more) central node is connected to all others via one link only, and chain-like, in
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Figure 2.13. Minimun spanning tree analysis. Results fromMonkey P. MST computed
150 ms before Movement onset for no-stop trials and at the time of the Stop signal
presentation for correct and stop-wrong trials. Hubs are indicated by the green circles.
Gray circles in stop-correct trials show the location in the MST of the same recording
channels.

which all nodes (with the exception of the extremes) are connected to two others (see
2.4 for further details). In the first scenario, the central nodes are the hubs of the
network. In the latter, the MST stretches out, with hubs excluded. Figure 7 (and
supplementary Figure S 8, for Monkey C) shows the results of the MST analysis
for the average network time series for no-stop (before the Movement onset) and
wrong/stop-correct trials (at the time of the appearance of the Stop signal). To
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correctly compare no-stop trials and stop-wrong trials, an equivalent time T with
respect to the movement onset in both trials must be chosen. To this end we derived
a time T — as an estimate of the Stop signal appearance — for the no-stop trials
as: T = RTStop-SSDStop, where RTStop is the mean reaction time for the stop-wrong
trials and SSDStop is the mean Stop signal delay.

The dynamics of the MST in the Pre-mov epoch is shown in the Supplementary
Video V1 (for Monkey P) and Supplementary Video V2 (for monkey C). MST was
computed every 20 ms (in the interval -300 -60 ms before movement onset). Videos
show the gradual evolution in the configurations, from chain to star, as the movement
time is approaching.

Although multiple hubs (green circles) are evident in no-stop trials and stop-wrong
trials, they are absent in stop-correct trials where MST configuration is more chain-
like, as expected. To determine the statistical significance of the findings, we used the
corresponding null model (supplementary Figure S9). The results show that during
no-stop and stop-wrong trials (blue and red dots), the star-like topology (average
LN) of the MST was not reproduced by the null model. During stop-correct trials
(green dots), the MST configuration of Monkey P was reproduced by the ensemble of
randomizations, whereas for Monkey C, it was close to the 95% confidence interval.
In both cases, the hubs nodes that were characteristic of no-stop and stop-wrong
trials were absent, consistent with what was found by percolation analysis and
confirming that during stop-correct trials, the network lies in a meta-state at the
borders of randomness and is not fully mature (i.e., not organized).

To check for the stability of the functional structure observed we repeated the same
analysis in one of the other available sessions with similar characteristics. The
session was recorded about 9 months apart in monkey P. The results show that
the described features in MUA modulation are stable, i.e., a hierarchical organized
pattern of anticorrelation emerges before movement onset, together with the star
like topology and hubs (see supplementary Figure S10, top). Similar features have
been observed in other sessions (not shown). However, we were not able to detect
the same functional organization by analyzing single units extracted see 2.4 from
the same session (see supplementary Figure S10, bottom).
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2.2.6 Characterization of network of positive correlations

We also applied percolation analysis to the network of positive correlations, finding
that its topology was less informative than that of negative correlations because
their topology does not show presence of hubs organized in a hierarchical manner.
Except for the presence of the hubs that had already been identified in the analysis
of negative correlations, we failed to observe other specific topological signatures
(e.g., the VD distributions shows no evidence of hubs; see supplementary Figure S11).
Further, we found that the hubs of anti-correlation shared high positive correlation
values within themselves, forming the most important cluster in the network of
positive correlations. By percolation analysis, we monitored the decomposition of this
cluster (see supplementary Figure S12) concluding that the hubs of anti-correlation
form a sort of ’rich-club’ ( Colizza et al., 2006), in which the links between hubs are
positive (see supplementary Figure S13). These results show that the dynamic of
the functional network of the PMd relies on the coordinated action of a small subset
of neuronal populations that synchronously anti-synchronize with the rest of the
network. This finding also suggests that the most notable features regarding the
topological arrangement of the network are encoded in the negative weights.

2.3 Discussion

We have examined, for the first time, the premotor cortical functional network that
underlies movement generation, using graph-based algorithms that were applied to
simultaneously recorded MUAs (from up to 96 channels). We found that movement
generation is anticipated by a clear stereotypical increase in synchronization in
the form of anti-correlation between several channels and the rest of the network.
These channels act as network hubs and are organized in a hierarchical manner.
Notably, this phenomenon was not observed for successfully cancelled movements
but remained present in trials in which movements where generated despite the
command to stop. The latency of the increase in anti-correlation occurs in a window
of approximately 200 ms before movement onset. This period is in the same range
that is necessary to render a Stop signal effective (the SSRT): if a movement is going
to be made, the Stop signal must be presented roughly 200 ms ahead of movement
generation to be successful in interrupting the movement. Thus, in stop-correct
trials, the effectiveness of the Stop signal is associated with the absence of hubs of
anti-correlation.
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Our results suggest that the emergence of hubs of anti-correlation can be identified
as the neuronal computational strategy the drives the irrevocable maturation of the
motor plan. The specific signature in the network topology of the PMd that we
detected is characteristic of the pre-movement epoch. Previous studies have shown
that before a movement is made, single units, MUA, and LFP in the motor cortices
experience strong widespread modulations. They represent the largest change in
neuronal activity in delayed reaching tasks (Churchland et al., 2012; Kaufman et al.,
2016; Sussillo et al., 2015, Pani et. al, 2014) and as such are believed to correspond
to the passage from stable preparation to movement generation. Similar phenomena,
compatible with an attractor-like dynamic, have also been observed in the MUA
during the same task (Marcos; Mattia et al., 2013) In all of these studies, the latency
between the start of the population dynamic and the movement onset is 100-150 ms
in a window that is compatible with the anti-correlation patterns that we detected.

In our study, neural activity was recorded at a roughly constant depth (Utah array;
electrode length: 1.5 mm). A recent study (Chandrasekaran et al., 2017) found that
single unit activity in the PMd is organized following a gradient from superficial to
deep layers. Neurons in more superficial layers showed increasing activity during
the RT epoch, correlating with behavioural parameters and thus potentially related
to decision. Conversely, neurons in deeper layers showed stereotypical modulated
activity solely around 150 ms before movement onset. Among these neurons, a
subpopulation (approximately 15%) experienced decreased activity before movement
generation. The evidence of anti-correlation between recordings in our study suggests
that, thanks to the larger spread of MUA in the cortical layers, we have been able
to sample activity from deep layers. However, results also suggest that the location
of the tip on the electrodes array is definitively too superficial. In fact, when the
network was observed more locally by analyzing single units, the topology was lacking
of an organization based on the presence of different populations in anti-correlation.

The MST results suggest that the hubs of anti-correlation that we detected have a
function in the computation that is necessary to send the information to subcortical
structures. This possibility is supported quantitatively by several groups (Demuru
et al., 2013; Dubbelink, 2014) that have recently linked MST changes, based on
EEG and MEG data, to cognition and motor functions. Specifically, our results
agree with the widespread concept in which most of the traffic in a weighted network
flows through the MST. In this scenario, it is not surprising to observe a star-like
MST, because this is the optimal configuration for efficient, fast and integrated
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communication within a network. The cognitive decision of whether to perform
a movement is indeed a fast computation, and the command to move could be
transferred, through the star-like MST, to lower cortical, subcortical and spinal
circuits that will promote muscle activation. Consequently, the information stream
would only flow shortly through the hubs, thus helping prevent overloading issues in
the network during the ongoing computation ( Stam et al., 2014). This, however,
does not imply that the PMd is the only region that participates in this form of
control. Other cortical and subcortical structures (e.g., basal ganglia, prefrontal
cortex) are needed to finalise this process to permit movement initiation ( Battaglia-
Mayer et al., 2014). Future studies should focus on several crucial aspects: Is the
computation that we observed specific at this depth, or is it present across all layers?
Do other structures perform similar computations? Is this signature related to
specific interactions between the PMd and other brain areas?

In the neural control of movements, various computational strategies have been
proposed to define the function of the PMd and MI. In the past several years, many
studies have used a dynamical system approach with data from simultaneously
recorded neurons. Their main finding is that in motor cortices, neuronal activity
evolves smoothly across various state spaces to facilitate movement generation.
Importantly, this evolution provides insights into how an entire population of neurons
participates in generating movement. This approach gave rise to the idea that several
subspaces of neural activity correspond to different behavioural functions. These
methods, however, are based on the covariance of the simultaneously recorded
neurons and, as such, are suited to account for neuronal activity at the population
level, without distinguishing between specific contributions by single neurons (or
recording sites) to the topology of the interactions. Our approach differs, because
we provide evidence that our computational strategy is based on a hierarchy of
hubs. Indeed, this was obtained by considering the mutual interaction between
recording sites. By percolation analysis, we succeeded in identifying, without any
a priori assumption (in a totally data-driven fashion), the sites that act as hubs.
This corresponds to a complete characterization of the topological arrangement
of network dynamics, consequently marking a substantial difference from other
approaches (e.g., Chandrasekaran et al., 2017; Churchland et al., 2012; Mattia et al.,
2013). The function of hubs in driving the computation emerges spontaneously from
the collective behaviour as an intrinsic property of the system.

To the best of our knowledge, this report is one of the few studies that has performed
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graph analysis on specific cortical areas at the small scale and mesoscale levels in
vivo and during a behavioural task. Schroeter et al. (2015) examined the properties
of the primary mouse hippocampal functional network via MUA in vitro, finding
that hub neurons have a crucial function in shaping the synchronous dynamics
during development. This result confirms the importance of this complex topological
structure in coordinating the dynamics at the microcircuit level. Recently, Dann et al.
(2016) — using multielectrode depth cortical recordings — examined the functional
topology of three areas of the fronto-parietal network that are involved in grasping,
measuring the spiking activity of single units. They found that the network had a
modular topology, with hubs in all three areas. Each module was confined primarily
to a single area but could also involve neurons in the other areas. Notably, the hubs
were composed mainly of oscillatory spiking and synchronized units, whereas the
more peripheral units were non-oscillatory. The authors proposed that the oscillator
hubs allowed the coordination of functional communication between cortical areas.
Further, the topology that they described was highly similar to the that at the
whole-brain level using other techniques (EEG, fMRI).

In our study, we evaluated the functional topology of a small portion of the cortex:
the PMd. Thus, we can not account for the functional communication between
the PMd and other areas. Additional study will be necessary to test whether the
anti-correlation that we observed is a phenomenon that is limited to the premotor
cortex or whether it involves other areas that participate in the cortical reaching
network (e.g., parietal regions). In this regard, an important difference between
our study and Dann et al. (2016) is that their analysis did not distinguish between
positive and negative functional connections.

With our approach, it was possible to determine whether there was synchronization
between neural populations and what the sign of this synchrony was. These findings
represent an advance in the field, because nearly all previous studies on the motor cor-
tex have merely explored, in various forms, the nature of positive synchrony (Vaadia
et al., 1988; Riehle et al., 1997; Hatsopoulos et al., 1998; Torre, 2016). Renart et al.
(2010) and Ecker et al. (2010) provided the first evidence that positive correlations
are not the only meaningful associations in micro-neuronal networks. Renart et al.
(2010) found that recurrent neural networks can generate an asynchronous state
due to fluctuations in the activity of excitatory and inhibitory populations. The
authors proposed that the negative correlations that characterize this state prevent
uncontrolled network-wide synchrony and facilitate efficient processing of informa-
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tion. Their results were confirmed by in vivo recordings from the somatosensory
and auditory cortices of urethane-anesthetized rats. Ecker et al. (2010) analysed
neuronal recordings from the primary visual cortex of awake macaques, noting very
low spike count correlations between local neurons. They also opined that the
decorrelated state of the network might be crucial for hierarchical cortical processing
and information routing, offering substantial advantages over communication that
relies solely on positive synchrony. Our results are also supported by recent work
from Gu et al. (2019), who linked the anatomical and physiological properties of local
neural networks through the development of a novel circuit model. They found that
highly interconnected hubs neurons emerge as a key feature of the spatiotemporal
activity of local cortical circuits. As hypothesized by the authors, the presence of
hub neurons in local networks accounts for the transition between dynamic cortical
states. Moreover, it provides a solid framework in which the anatomical, functional
and dynamic features of brain networks can be integrated. Furthermore, although
the attention toward negative weighted links has grown in the past decade, most
studies on brain networks have ignored anti-correlations or left them uninterpreted.
Has topology that is characterized by strong anti-correlation (as we observed) been
reported in large-scale studies by fMRI or EEG? Greicius et al. (2003) made one of
the earliest contributions, showing a negative correlation between the default mode
network (DMN) and executive function network. Subsequently, anti-correlations
have been seen in the attentional network (Fox et al., 2003), sensorial regions (Tian
et al., 2007), parietal and medial frontal regions (Tian et al., 2007), the infralimbic
cortex (IL) and amygdala (Liang et al., 2012) and in the DMN and executive control
network (Di and Biswal, 2013). Further, recent work on fMRI data has focused on the
network of negative correlations (Gopinath et al., 2015; Parente et al., 2018; Parente
and Colosimo, 2018). Gopinath et al. (2015) examined the anti-correlation maps
of healthy patients by resting-state fMRI using a graph-based approach and found
that hubs of anti-correlations were involved in important regulatory interactions
between various regions, including reciprocal modulations, inhibition and during
neurofeedback procedures. They hypothesized that negative links in a brain correla-
tion network are more suitable for describing state-dependent signal couplings than
anatomically constrained fluctuations. Parente et al. (2018) reported that central
nodes of negative brain networks are affected in schizophrenic patients compared
with controls: specifically, patients were characterized by a reduction in centrality
measures. The authors speculated that central nodes have an important function
in the modulation of other regions that share information with low-degree nodes.
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These conclusions suggest that, also on the large-scale level, hubs of anti-correlations
are likely to be pivotal in cognitive functions.

2.4 Materials and Methods

2.4.1 Subjects

Two male rhesus macaque monkeys (Macaca mulatta, Monkeys P and C), weighing
9 and 9.5 kg, respectively, were used. Animal care, housing, surgical procedures
and experiments conformed to European (Directive 86/609/ECC and 2010/63/UE)
and Italian (D.L. 116/92 and D.L. 26/2014) laws and were approved by the Italian
Ministry of Health. Monkeys were pair-housed with cage enrichment. They were fed
daily with standard primate chow that was supplemented with nuts and fresh fruits
if necessary. During recording days, the monkeys received their daily water supply
during the experiments.

2.4.2 Apparatus and task

The monkeys were seated in front of a black isoluminant background (<0.1 cd/m2)
of a 17-inch touchscreen monitor (LCD, 800 x 600 resolution), inside a dark-
ened, acoustic-insulated room. A non-commercial software package, CORTEX
(http://www.nimh.gov.it), was used to control the presentation of the stimuli and
the behavioural responses. Figure 1 shows the scheme of the general task: a reaching
countermanding task (Mirabella et al., 2011). Each trial started with the appearance
of a central target (CT) (red circle, diameter 1.9 cm). The monkeys had to reach
and hold the CT. After a variable holding time (400-900 ms, 100-ms increments) a
peripheral target (PT) (red circle, diameter 1.9 cm) appeared randomly in one of
two possible locations, and the CT disappeared (Go signal). In no-stop trials, after
the Go signal the subjects had to reach and hold the PT for a variable time (400-800
ms, 100-ms increments) to receive juice. Reaction times (RTs) were defined as the
time between the presentation of the Go signal and the onset of the hand movement.
In Stop signal trials, the sequence of events was the same until the Go signal. Then,
after a variable delay (Stop signal delay, SSD), the CT reappeared (Stop signal),
and the monkeys had to hold the CT until the end of the trial (800-1000 ms) to
receive the reward (stop-correct trial). Conversely, removing the hand after the
Stop signal constituted a wrong response (stop-wrong trial). The same amount of
juice was delivered for stop-correct and correct no-stop trials. The intertrial interval
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was set to 800 ms. Stop trials represented the 25% of all trials in each session. To
establish the duration of the SSDs, a staircase tracking procedure was employed. If
the monkey succeeded in withholding the response, the SSD increased by one step
(100 ms) in the subsequent Stop signal trial. Conversely, if the subject failed, the
SSD decreased by one step.

2.4.3 Extraction and processing of neuronal data

A multielectrode array (Blackrock Microsystems, Salt Lake City) with 96 electrodes
(spacing 0.4 mm) was surgically implanted in the left dorsal premotor cortex (PMd;
arcuate sulcus and pre-central dimple used as references after opening of the dura;
see supplementary Figure S 7) to acquire unfiltered electric field potentials (UFP;
i.e., the raw signal), sampled at 24.4 kHz (Tucker Davis Technologies, Alachua, FL).
Neuronal activity was recorded from animals fully trained in the task. Since animals
were also trained in other motor tasks, we had different sessions with the same task
but often separated in time. For the analysis performed in this work we selected
one session for each animal were the trial number was sufficiently high and the
behaviour was in fully adherence with the expectative of the race model (see ??). As
a measure of neuronal activity at the population level, MUA was extracted offline
from the raw signal, as in Mattia et al. (Mattia et al., 2013), by computing the
time-varying power spectra P(ω, t) from the short-time Fourier transform of UFP
in 5-ms sliding windows. Relative spectra R(ω, t) were then obtained, normalizing
P(ω t) by their average Pref (ω) across a fixed window (10 to 30 minutes) for the
entire recording. The spectrally estimated MUAs are the average R(ω, t) across
the ω/2π band [0.2, 1.5] kHz. As detailed in Mattia et al. (Mattia et al., 2013), this
estimate relies on two hypotheses. The first is that high ω components of UFPs result
from the convolution of firing rates ν(t) of neurons that are close to the electrode
tip with a stereotypical single-unit waveform. R(ω, t) allows one to eliminate the
Fourier transform K(ω) of such an unknown waveform, rendering R(ω,t) a good
approximation of the ratio of firing rate spectra |ν(ω,t)|2 /|ν(ω,t)|ref

2. In the second
hypotesis, high ω power |ν(ω,t)|2 is proportional to the firing rate ν(t) itself (Mattia
and Del Giudice, 2002), such that our MUA estimate is proportional to ν(t). As a
last step, logarithmically scaled MUAs were smoothed by a moving average (40-ms
sliding window). To analyze single units correlations we represent neuronal activity
via a spike density function (SDF) obtained by convolving the spike train with an
exponential function mimicking a postsynaptic potential.
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As a convolution function we used the following kernel K(t):

K(t) = [1− exp(−t/τg)] · exp(−t/τd) (2.1)

where τg = 1ms corresponds to the growth phase of the synaptic potential, and
τd = 1ms to the decay phase Scangos and Stuphorn, 2010.

For our analysis we selected units that showed an increase/decrease of the average
firing rate before movement onset (pre-RT, from -300 ms to movement onset),
compared to the 200 ms before Go signal (pre-Go) or for at least one movement
direction (Wilcoxon rank-sum test P < 0.01).

2.4.4 Preliminary analyses

We first analysed the activity profiles of each recording site. To obtain a uniform
view of the changes in MUA levels, we normalised the activity of each channel
with respect to its maximum value (see Figure 2). To examine the local network
organization in the PMd, we constructed a functional network that represents the
synchronisation between the MUAs that were recorded by the electrodes of the array.
To this end, we used the Pearson correlation coefficient C, because it is one of the
best-known methods for calculating synchrony by cross-correlation and because we
wanted to focus on the simplest type of relationship between the signals that were
recorded from the electrodes: the linear correlation.

For two time series, Xi(t) and Xj(t), at times t, in a 0 lag condition the Cij is
calculated as follows:

C ij = Cov[X i, X j]√
V ar[X i]V ar[X j]

(2.2)

,−1 ≤ C ij ≤ 1 where high negative values indicate a high inverse linear correlation
(anti-synchronisation), whereas high positive values reflect a high linear relation
between time series (synchronisation). For our purposes, Xi(t) is represented by the
spectrally estimated MUA in a chosen time window (epoch of analysis: see Figure
1) of the task, which is usually defined in relation to the behavioural events (e.g.,
Go Signal, movement onset, etc.). The approach provides an N x N (N= recording
sites) correlation matrix, the generic entry of which is the Cij between the i-th and
j-th channel time series in the time window.
We interpreted the correlation matrix as being the adjacency matrix of an undirected
weighted graph, in which the nodes are the channels and the weighted edges are
the pairwise Cij. Because the purpose of this study was to characterize the network
organization that supports the evolution of motor decisions in relation to behavioural
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events, we needed a graph that represented the time-evolving coupling between
electrodes. The simplest route to addressing this issue was to assess the dynamical
connectivity between nodes using a sliding window approach to support the static
measure of Pearson Cij. To this end, the window width w parameter is crucial for
segmenting the time series. Because the uncertainty in the correlation measure is
given by ε = 1√

2BwW
, where Bw is the spectral bandwidth of the data and w is the

window width (O’Neill et al., 2018), we chose a w that effected a good compromise
between accurate time resolution and statistical significance. Because MUA lies in
the [0.2, 1.5] kHz band, we obtained ε ∼ 0.06, choosing w=100 ms.
Once w and a step of 5 ms were fixed, we then defined the following task epochs to
perform our analysis: for correct no-stop trials and stop-wrong trials, we defined
the Go epoch with w from -150 ms to +350 ms relative to the Go Signal and the
pre-Movement epoch from -350 ms relative to the Movement onset. For correct and
stop-wrong trials, we defined the Stop signal epoch, with w from -150 ms to +150
ms relative to the Stop signal. Our aim, while using the Stop signal epoch, was to
compare conditions in which a movement was generated (stop-wrong trials) to those
in which a movement was inhibited (stop-correct trials). This choice is due to the
objective of our analyses: inspect the state of the network at the time of the Stop
signal presentation and before. Indeed, in agreement with the race model (see ??),a
stop trial is wrong if the Stop signal is presented when the motor plan is already at
a processing state that it can no longer be inhibited. For this reason, by the time
of the Stop signal is presented we expected the network state of stop-wrong trial
to differ from the one of stop-correct trials (and comparable to the one of no-stop
trials). With our choice of w, each time point xt of the epochs had boundaries of xt

± 50 ms. Consequently, we managed to fully describe the following intervals: [-100,
+300] ms for the Go epoch, [-300, 0] ms for the Pre-Movement epoch and [-100,
+100] ms for the Stop signal epoch (see Figure 1).

To remove noise and outliers from our data, we excluded the trials for which the
MUA showed a peak with an amplitude that exceeded the average of the activity
of 2 standard deviations in the epochs of interest and for over 80% of the channels
from the analysis. Moreover, for Monkey C, damaged electrodes were excluded a
priori from the computation, such that its correlation matrix had dimensions of 79 x
79. We computed a correlation matrix for each window of every trial of our epochs
to obtain a time course of connectivity at the single-trial level (single-trial network
time series). Successively, to generate a unique average matrix for each time window,
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each coefficient of the single-trial matrices at timestep t was Fisher-transformed,
averaged over trials and then back-transformed, ensuring that the variance in Cij was
disassociated from its mean (Thompson and Fransson, 2016). As a result, we were
able to reconstruct the evolving dynamics of the network as a sequence of snapshots
at each time step, at the single-trial and average levels (average network time series).

2.4.5 Percolation and minimum spanning tree analysis

Fixing an appropriate threshold to study network properties is a common prob-
lem when studying brain connectivity matrices (structural or functional) with a
graph-based approach. To overcome this obstacle, we adopted a solid method, called
percolation. Percolation is a tool that is rooted in statistical physics and has been
applied to study phase transitions of connected subgraphs in random networks (Call-
away et al., 2000), the first application of which to brain networks was performed by
Gallos (Gallos et al., 2012). Since then, the method has been used progressively and
successfully to examine the hierarchical organization of brain networks (Nicolini et
al., 2017; Vlasov and Bifone, 2017; Mastrandrea et al., 2017; Bordier et al., 2018;
Ferraro et al., 2018). We performed percolation analysis to examine the organization
of the network without any a priori assumptions (data-driven approach). Simply,
percolation consists of the iterative removal of edges of a network and allows one
to inspect the intrinsic stability of the network and the presence of a hierarchical
organization simultaneously. The usual procedure is to monitor the disaggregation
of the network as a function of a threshold of interest (the correlation coefficient,
in our case). We used the number of connected components as a parameter to
monitor disaggregation (see also Bardella et al., 2016). A hallmark of hierarchical
organization is the presence of multiple disaggregation points (more formally, perco-
lation thresholds). At each of these thresholds, the network fractures and reveals
its self-organized internal structure, comprising connected subgraphs (Gallos et al.,
2012), corresponding to a stepped percolation curve that is endowed with plateaus.
Conversely, in a graph with random features (i.e., without organization), the number
of connected components is characterized by a sharp transition (Callaway et al.,
2000; Albert and Barabasi, 2002). Recent studies (Bordier et al., 2017; Nicolini
et al., 2017) have shown that percolation makes it possible to find a threshold
that realizes the optimal balance between the removal of spurious correlations that
are induced by noise and the loss of information that might be encoded in the
weaker links. This threshold is just above the fragmentation of the largest connected
component of the graph. Here, although the spurious links have been removed, the
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connectedness and hence, the structural fundamental characteristics of the network
is preserved. Our analysis followed several steps (Bardella et al., 2016): 1) all
experimentally determined correlation coefficients are listed in decreasing/increasing
order; 2) starting from the greatest/lowest value, each entry in the list is chosen
as a threshold; 3) all links that correspond to the correlations above/below the
threshold are removed and 4) the number of connected components that characterize
the remaining part of the network is computed. Thus, it is possible to analyse
the network of negative and positive correlations We examined the topology of the
functional network of the PMd by inspecting a well-known measure of centrality,
the vertex degree. Vertex degree is the number of links to a node i: V Di =

∑N
j=1 cij,

where cij is the generic entry of the adjacency matrix. We computed the probability
distribution of vertex degrees (i.e. the degree distribution) at the threshold just
above the fragmentation of the largest connected component for each step of the
average network time series. In the context of complex network theory, nodes that
significantly exceeds the average network degree arise as a long tail in the degree
distribution and are called hubs (Albert and Barabasi, 2002). We further studied
the topological organization of the functional connections of the PMd by computing
the minimum spanning tree (MST). Given an undirected weighted graph, the MST
is defined as a unique subgraph that includes all nodes of the original graph and
connects them, minimizing the sum of the weights of the edges without forming
cycles and minimizing the number of links that are involved. As reported in Stam
et al. (2014), in recent years, the use of spanning tree techniques has attracted the
interest of neuroscientists, as implemented in EEG (Demuru et al., 2013; Lee et
al., 2006, 2010), fMRI (Alexander-Bloch, 2010; Ciftci, 2011; Bardella et al., 2016;
Mastrandrea et al., 2017) and magnetoencephalography (MEG) source space data
studies (Gong et al., 2009; van Dellen et al., 2009; Dubbelink, 2014). The MST
(Mieghem and van Langen, 2005; Mieghem and Magdalena, 2005) provided us with
the backbone of the functional interactions in the PMd and allowed us to strengthen
the results that were yielded via percolation analysis. We obtained an MST for each
step of our average network time series for all epochs. In the MST approach, a tree
can have two extreme topologies: path (or chain) and star. In the first case, all
nodes are connected to two other nodes, apart from the nodes at either end, each of
which have only one link. In the latter, there is one central node that is connected
to every other node (leaves) via a single link only. With the star topology, the
efficiency of communication and integration of information between nodes is optimal,
harbouring the maximum possible number of leaves and the minimum average path
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length. However, in this topology, the problem of overloading the central node arises
easily; thus, the optimal configuration for an efficient tree would be halfway between
these two extremes. Between the path and star, there exists a spectrum of many
possible configurations, the characteristics of which can be described with a set of
relatively simple measures, as detailed in Stam et al. (2014). Among the various
measures, we chose the leaf number (LN). The leaf number is the number of nodes
with only one link. With the LN, it is possible to intuitively quantify the topology of
an MST. A path would have an LN of two, whereas a star of N nodes would have an
LN = N − 1 that is, the same number of available edges. Thus, an MST that more
closely resembles a path will have a lower LN than one that is more similar to a star.
A shift from a path-like to star-like configuration of the MST can be interpreted as
a change in the network from a less to more integrated state.

2.4.6 A statistical benchmark for PMd functional network

To properly assess the statistical significance of percolation and MST analyses, we
defined a null model. The choice of a suitable null model remains a complicated issue
in network and complex systems science. In this context, in addition to searching for
a model that accounts for the observations, one common practice when analysing real-
world networks is trying to identify properties that deviate from the null hypothesis,
because it is likely that the deviations themselves encode unknown information
about the network functions (for an exhaustive review on this topic see Cimini et
al., 2019). Conscious of this, the core of our null model consists of an established
numerical procedure for correlation matrices (Higham, 2016), which has been used
successfully in other studies on brain networks (Bardella et al., 2016; Mastrandrea
et al., 2017). Our procedure comprised three steps for each of the epochs under
examination: 1) Calculate the empirical probability distributions of the entries of
the empirical correlation matrices. Means and standard deviations of the fitted
distributions were estimated by maximum-of-the-likelihood procedure. 2) Generate
an ensemble of null networks by drawing correlations from the corresponding fitted
distributions. We generated an ensemble of 300 synthetic matrices for each matrix
of the average network time series. 3) Refine the procedure to compute the nearest
correlation matrices to synthetic ones on which to apply our algorithms and compare
the results. The last step is likely to be the most delicate, because it requires
the procedure from (Higham, 2016) to be implemented, wherein a fast algorithm
computes the nearest correlation matrix to a given, symmetric matrix. Indeed,
the first two steps alone do not guarantee that true correlation matrices will be
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obtained: in fact, the synthetic matrices might still have negative eigenvalues. For
this reason, most standard randomization techniques are unsuitable. Generally, to
be considered a correlation matrix, a matrix must satisfy several requirements: it
must be symmetric, with diagonal elements equal to 1, with off-diagonal elements in
the range [-1, 1], and it has to be positive semidefinite. With our procedure, we kept
the spectrum distribution of the observed correlation matrix fixed, applying random
orthogonal similarity transformation — which consisted of repeatedly projecting
onto the positive semidefinite matrices and then the unit diagonal matrices — to
the diagonal matrix of eigenvalues. This matrix was interpreted, for each epoch, as
the weighted adjacency matrix that represented the functional network of the PMd.
We then compared the observed percolation trend with those obtained running
the procedure on the synthetic matrices. The slope of the percolation curve was
computed between correlation values in correspondence of which we detected 2
and n-1 connected components respectively, where n is the number of nodes (we
excluded trivial clusters that were represented by the entire network and the single
channels/nodes). To test results from MST analysis, the test statistic employed
for comparison is the ensemble of LN obtained from the MST computed on the
randomized matrices.
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2.5 Supplementary Material

For the supplementary materials for study 1 please refer to the following links:

• Supplementary Figures S1 to S14:
https://ars.els-cdn.com/content/image/1-s2.0-S1053811919309450-mmc1.pdf

• Supplementary videos V 1 and V 2:
https://ars.els-cdn.com/content/image/1-s2.0-S1053811919309450-mmc3.mp4

https://ars.els-cdn.com/content/image/1-s2.0-S1053811919309450-mmc4.mp4

https://ars.els-cdn.com/content/image/1-s2.0-S1053811919309450-mmc1.pdf
https://ars.els-cdn.com/content/image/1-s2.0-S1053811919309450-mmc3.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S1053811919309450-mmc4.mp4
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Study 2
Changing in the hierarchical
organization of local
information dynamics during
motor decision in the premotor
cortex of primates

3.1 Abstract

Despite recent works have investigated functional and effective cortical networks in
animal models, the dynamical information transfer underneath most of the higher
brain functions is still unknown. Here we address the issue by analysing, at the
mesoscopic scale, neuronal activities from a multielectrode array in the dorsal
premotor cortex (PMd) of rhesus monkeys during a countermanding reaching task,
requiring motor decisions after visual instructions. We used multivariate Transfer
Entropy and graph theory to quantify and describe decision-related changes in the
local information patterns. We found that the highly heterogeneous activities of the
PMd network could be described by 4 classes according to the information processing
during the task. Moreover, we found that the observed network is hierarchically
organized and exhibits topological differences between movement generation and
inhibition. Interestingly, these differences were reflected in changes in the hierarchical
organization among classes and paired with a decrease in the information processed
when movement was cancelled after programmed. We thus propose that PMd
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participates to motor decisions by readjusting the local network in relation to the
contextual changes.

3.2 Introduction

The brain is a complex system formed by different interconnected modules. The
definition of a module depends on the scale of analysis. At the small scale modules
are single neurons, at the large scale they ae coincident with great-specialized brain
areas. In between, at the mesoscale level, aggregates of populations of neurons of
different dimensions (columns; single areas; etc). In the last fifty years, neuroscience
has tried to describe brain computations linking neural activities to behaviour. At
whatever scale, crucial to this purpose is the understanding of how different modules
interact and how information is shared and processed among parts. In this context,
the neurophysiological approach to brain functions with recording microelectrodes
provided invaluable advances, mainly in animal models ( Hong and Lieber, 2019).
Indeed, the high spatial resolution of the high density recordings methods proved to
be suitable for linking neurons activity to behaviour, to describe the organization of
local microcircuits and, sometimes, of the over standing larger networks (Ferraina
et al., 2001; Wurtz et al., 2001). Most of these studies referred to the analysis of
single unit (spiking) activity (SUA), others focused more on mesoscopic signals as
the local field potentials (LFP) indicating the average synaptic input to the explored
area (for review see Herreras, 2016) and, to a lesser extent, on Multiunit activity
(MUA) sampling the average spiking activity (output) of discrete populations (
Mattia et al., 2013; Stark and Abeles, 2007; Trautmann et al., 2019).

Aiming to contribute to the understanding of the role of the dorsal premotor (PMd)
cortex in arm motor control ( Cisek and Kalaska, 2010; Shenoy et al., 2013; Wise et al.,
1997) we studied the MUA derived from a multi-electrode array and implemented a
combined information-theory and topological approach to describe how the collective
activity of mesoscopic local modules is linked to motor decision-making. Indeed, it
has been shown that neurons express more their contribution to complex behavioural
functions either when observed as coordinated functional ensembles (Bardella et al.,
2020; Fetz, 1992; Georgopoulos et al., 1986; Munoz and Wurtz, 1993; Riehle et al.,
1997; Schall, 2015; Vaadia et al., 1988; Vyas et al., 2020 ) or described as common
responses to the input they receive (e.g., the visual stimulus orientation; Hubel
and Wiesel, 1962). A paradigmatic example is the interaction between fixation
and movement neurons during saccade generation (Munoz and Wurtz, 1993; Schall,
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2015). Here, we explored how information is managed among modules and how the
local PMd network is arranged during either movement execution or cancellation.
How different neuronal actors contribute to motor decisions is in fact still largely
discussed, especially for brain centres involved in reaching control (Shenoy et al.,
2013; Stuphorn, 2015).

We observed that modules segregate into different classes, organized around different
hierarchical levels, changing in relation to the behavioural outcome. Moreover,
we found the PMd network explored different configurations depending on the
behavioural decision. Indeed, during movement generation, compared to movement
inhibition, information transmission among modules was higher and required fewer
steps. This demonstrates that the level of classes coordination is different for the
two motor behaviours explored and suggests a new perspective on the view of how
the local computation evolves during action decision-making.

3.3 Results

We investigated, at the mesoscopic level, the information transfer and directed
connectivity patterns among discrete populations of neurons during the motor
decision phase for arm movements. To this aim we extracted a spectral derived
MUA (see below) from each electrode of a microelectrode array (up to 96 channels)
in the dorsal premotor cortex (PMd) of two male Rhesus monkeys (Monkey P and
Monkey C) while they performed a countermanding reaching task.

This task (Fig. 3.14) required to move (Go trials; 67%) toward a peripheral target
(either right or left) on a touch screen but to cancel the movement (Stop trials;
33%) in case of appearance of a Stop signal. The two types of trials were randomly
presented. During Go trials, after the disappearance of the central target (Go signal)
the monkeys were instructed to reach the peripheral target to obtain the reward.
In Stop trials, after the Go signal, the central target reappeared (Stop signal) after
a variable delay, called the SSD (Stop signal delay). In these trials the monkeys
were required to refrain from moving to earn the reward (correct Stop trials). If
the monkey were unable to stop, the trials were classified as wrong Stop trials, and
no reward was provided. Because the SSDs were varied according to a staircase
procedure based on the performance, correct Stop trials constituted approximately
50% of Stop trials (see Table 3.1). This task, when the behavioural performance
adheres to the race model, i.e. when wrong stop trials are faster than Go trials
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(Table 3.1), allows to estimate a time window during which the decision to move (or
to refrain) is taken. This time window is the stop signal reaction time (SSRT; see
Table 3.1 for the values observed in the present study). Hence, the SSRT can be
considered as the lead time that is required to inhibit a movement. Following the
Go signal the movement is prepared is a similar manner until the presentation of
the Stop signal in both Go and correct Stop trials. From the point of view of Go
trials, the average SSRT (SSRT , see Table 3.1) marks the time, before movement
execution, that would have corresponded to the presentation of the Stop signal2.
Consequently, when comparing time epochs between Go and correct Stop trials,
every time difference that exceeds the duration of SSRT must be accounted for. As
a clarification, let us examine the following example. Consider analyzing an epoch
of tgo ms before movement execution in Go trials and having an SSRT of t ssrt ms.
Let us assume tgo > t ssrt. The corresponding time window in correct Stop trials
would be given by the interval T = [− (tgo − t ssrt),+ t ssrt] ms with respect to the
Stop signal presentation. The amount tgo − t ssrt is precisely the excess to account
for. Note that if tgo ≤ t ssrt there is no excess to consider and tgo is fully described, in
correct Stop trials, by t ssrt. Thus, the countermanding task permits to investigate
the neuronal correlates of motor decision by comparing, in a behaviorally relevant
time window dependent from the SSRT (i.e., T), trials related to two behavioural
conditions: one in which movements are prepared and then executed (Go trials);
one in which movements are prepared and then aborted (correct Stop trials).

3.3.1 Neural Recordings can be grouped in classes providing dif-
ferent contribution to the network information dynamics

We investigated a total of 21 recording sessions (12 for monkey P and 9 for monkey
C). For each of them we preliminarily checked for the adherence of the behaviour to
the race model (Logan and Cowan, 1984; Verbruggen et al., 2019), then we estimated
the SSRT for each recording session (see Materials and Methods and Table 3.1). As
a measure of the activity of a discrete population of neurons located around the
tip of each electrode, we used a spectral measure of the multiunit activity (MUA,
Bardella et al., 2020; Mattia et al., 2013). From now on we refer for simplicity to
these discrete populations as modules.

Fig 3.15 shows for each recording electrode of one session the MUAs for Go trials
2The same obviously holds from the point of view of Stop trials: SSRT marks the time, after

the Stop signal presentation, that would have corresponded to the movement execution.



3.3 Results 54

Hold
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Figure 3.14. Sequence of behavioural event characterizing the task. Go and stop trials were
randomly intermixed during each session. Hold, holding epoch before target presentation;
RT, reaction time; SSD, Stop signal delay.

aligned to the movement onset (green lines) and Stop trials (red lines) as aligned to
the Stop signal presentation. Most MUAs display a clear difference between correct
Stop and Go trials after the Stop signal (i.e., during the specific SSRT) reflecting the
active participation of PMd in the decision to generate or inhibit reaching movements.
Several features are observable. For example, the time of divergence between the
two activities for the different channels was highly variable. Moreover, in some cases
(eg channels 25 and 43) the observed pattern was completely opposite (more intense
activity in Stop trials than in Go trials). Similar patterns have been observed in all
recording sessions. In short, the various modules seem to contribute to the control
exerted on the movement to be performed by PMd in a very heterogeneous way. Of
relevance, from these considerations nothing can be inferred about the information
transfer and the functional relationship between different modules.

To investigate directed information transfer between the network modules we used
Transfer Entropy (TE), a well-established model-free information theoretic method
(Schreiber, 2000). In a given epoch TE detects asymmetric information flows among
the modules, and hence it allows defining modules acting as drivers (or sources) or
targets of information transfer (see Materials and Methods for further details). To
evaluate whether the different behavioural conditions (moving vs withholding) were
characterized by different local information dynamics we computed TE between
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Behavioural Results
Monkey P

S RTGoRTGoRTGo RTW rRTW rRTW r SSDSSDSSD SSRTSSRTSSRT Pinhibit p-value

1 590 ms 559 ms 273 ms 317 ms 0.52 p < 0.05
2 584 ms 564 ms 277 ms 307 ms 0.50 p < 0.05
3 575 ms 503 ms 293 ms 282 ms 0.69 p < 0.05
4 618 ms 592 ms 335 ms 283 ms 0.52 p < 0.01
5 868 ms 549 ms 675 ms 193 ms 0.58 p < 0.01
6 572 ms 540 ms 293 ms 279 ms 0.50 p < 0.05
7 643 ms 622 ms 382 ms 261 ms 0.51 p < 0.05
8 600 ms 568 ms 340 ms 260 ms 0.48 p < 0.01
9 656 ms 641 ms 445 ms 211 ms 0.37 p < 0.01
10 788 ms 753 ms 528 ms 260 ms 0.54 p < 0.01
11 674 ms 619 ms 418 ms 256 ms 0.56 p < 0.01
12 765 ms 721 ms 504 ms 261 ms 0.51 p < 0.01

Monkey C

1 598 ms 523 ms 322 ms 276 ms 0.57 p < 0.01
2 539 ms 460 ms 382 ms 157 ms 0.65 p < 0.05
3 561 ms 522 ms 318 ms 243 ms 0.58 p < 0.01
4 673 ms 625 ms 424 ms 249 ms 0.60 p < 0.05
5 636 ms 608 ms 396 ms 240 ms 0.55 p < 0.05
6 575 ms 533 ms 292 ms 283 ms 0.42 p < 0.01
7 667 ms 620 ms 383 ms 284 ms 0.60 p < 0.05
8 688 ms 672 ms 413 ms 275 ms 0.43 p < 0.05
9 688 ms 657 ms 402 ms 286 ms 0.60 p < 0.01

Table 3.1. Behavioural results. S, index of the recording session. RTGo, mean reaction
time of Go trials. RTW r, mean reaction time of wrong-stop trials. SSD, mean SSD
of Stop trials. SSRT , mean Stop Signal Reaction Time. Pinhibit inhibition probability.
The p-values result from the independence test between RTGo and RTW r (Kolmogorov-
Smirnov test).

trial-averaged time series of neuronal activity separately for Go and correct Stop
trials. We considered tgo = 400ms for Go trials and then estimated the corresponding
time windows T in correct Stop trials as described in the previous paragraph. A
tgo = 400 ms ensured us to exclude from the epoch the Go signal presentation by at
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Figure 3.15. Neuronal modulation in the two behavioural conditions for all channels of
a typical recording session. Green traces show the average activity during Go trials
aligned to Movement onset (rightmost part of the plot). Red traces show the average
activity during correct Stop trials aligned to the Stop signal presentation (red vertical
line). The window between the stop signal and the movement onset is the SSRT.

least 100ms for all recording sessions for both animals. We found that some of the
modules were drivers in both Go and Stop conditions (Common_drivers); others
were drivers in one behavioural condition only (Go_drivers and Stop_drivers);
others were never drivers and just targets of information flow (Targets) (see Table
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Classes Composition
Monkey P N = 96

Class µ± SDµ± SDµ± SD
Go_drivers 6.46± 2.90
Stop_drivers 13.71± 3.22
Common_drivers 8.62± 3.60
Targets 67.20± 4.88

Monkey C N = 79
Class µ± SDµ± SDµ± SD
Go_drivers 6.78± 3.93
Stop_drivers 9.56± 3.78
Common_drivers 7.00± 2.06
Targets 55.70± 5.29

Table 3.2. Classes composition. For each monkey the composition of classes averaged
over recording sessions is reported. Composition is expressed as the average number of
nodes (µ) belonging to each class. SD, standard deviation. N , the number of channels
available.

3.2; see Materials and methods for further details). The presence of different classes
of modules straightforwardly showed that the intrinsic composition of the PMd
information network is heterogeneous, with some of the modules operating as drivers
only in relation to a specific behavioral outcome (movement vs withholding). This
hinted that the network configuration underlying information transmission changes
according to the specific decision and behavioural output.

3.3.2 Neuronal activity classes are hierarchically organized. Com-
mon_drivers act as main hubs for information transmission
within PMd. Other classes act as hubs only in relation to
specific behavioural conditions

To better understand the role of the identified classes in the PMd network we
investigated the topology of information transmission for each session and behavioural
condition examined. In this framework each entry of the TE matrix is interpreted as
a node of the network, and each link (or connection) is the information exchanged
between nodes (see Materials and methods for further details). To quantify the
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topology of information transmissions we resorted to different graph-based measures.
We first computed the vertex degree (VD), i.e. the number of connections per module.
A high value of the VD indicates that the module is connected with many others.
The opposite holds for a low value of VD. Thanks to the asymmetry of TE, which
defines drivers and targets, for each module it is possible to distinguish between the
information directed towards other modules (V Dout) and the information arriving
from other modules (V Din). We examined the V Dout and the V Din distributions
for each recording session of both monkeys and we observed that all distributions
were skewed. However, we found that only V Dout distributions were fat-tailed ( see
supplementary figures ...). The high values of V Dout associated to the tails thus
indicate modules with a number of outwards connections that greatly exceed the
average value (see Materials and Methods). These modules are network hubs (Albert
and Barabási, 2002). The VD values, together with the direction of information flow
detected by TE, allow defining a hierarchy among modules. Indeed, given a driver
and a target the driver is hierarchically above the target. The existence of hubs
means that a few modules determine the state of many others, and hence the global
configuration of the network. Fig 3.16 shows the topology of PMd network in both
behavioural conditions for an example session of Monkey P. Each module is assigned
to a class as previously obtained from the TE analysis and coloured accordingly.
The size of the dots used to identify each module (node) reflects its V Dout value, i.e.
the number of modules on which it acts as a driver. The arrow for each connection
indicates the direction (in/out) for the information path. In Go trials (top) the
topology reflected a more centralized (in terms of V Dout) organization (star-like
topology) compared to the Stop trials (bottom), confirming previous observations
(Bardella et al., 2020). Indeed, in a recent study on correlation networks during the
same task we showed that the presence of a star-like topology in the PMd network
is the hallmark of the incoming movement. However, here, by adding the insights
provided by the TE analysis, the emerging picture is of a network changing not only
in the overall organization but also in the role of the components. For example, Fig
3.16 shows that Stop_drivers emerge as information spreaders in Stop trials only.

Figure 3.17 (top panels) shows that in all of the analysed sessions the Com-
mon_drivers exhibited the highest values of V Dout (See Table 3.3 for the cor-
responding statistics) compared to other classes in both Go and correct Stop trials
thus resulting as the principal information-spreaders hubs across different behavioural
conditions. Therefore, Common_drivers are located at a higher hierarchical level in
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Stop_drivers Go_drivers Common_drivers Targets

Go trials

Stop trials

Figure 3.16. Information network of Go and Stop trials for an example session.
Each node is coded accordingly to the corresponding class (see legend in the lower part
of the figure). The size of the nodes is scaled according to the corresponding V Dout,
thus bigger nodes are the information-spreaders hubs (see text for details).

the network as they regulate information transfer whatever decision, moving or stop-
ping, is taken (see also next paragraph). Conversely, Go_drivers and Stop_drivers
displayed a different role (different V Dout values) in Go and Stop trials, suggesting
that the hierarchical organization of the network changes in relation to the motor
decision process. Indeed, Stop_drivers are never hubs in Go trials and Go_drivers
are never hubs in Stop trials. As a further measure of the organization of the PMd
network we used betweenness centrality (Freeman, 1977; White and Borgatti, 1994)
(BC). BC quantifies the influence that a given node has over the flow of information
between other nodes. Therefore, it gives a measure of how a node controls communi-
cations in a network. BC is computed as the fraction of shortest paths between all
nodes in the network that pass through a given node. Since we are dealing with an
information network, we used BC to quantify the capability of each node to mediate
and route the information traffic. An high BC value indicates that a node strongly



3.3 Results 60

mediates information flow because it lies on a considerable fraction of shortest paths.
Hence nodes with high BC values are topological central nodes. As reported in Fig
3.17 (panel A, bottom) and in Table 3.3, we found higher BC values during correct
Stop trials compared to Go trials meaning that during correct Stop trials nodes
are connected by a higher number of paths. This implies that a shift toward a less
direct (and hence less centralized in terms of V Dout) communication between nodes
occurs during Stop trials only; information is detoured through more shortest paths
resulting in a more distributed and widespread transmission. An intuition can be
gained by noticing the arrangement of the graphs during correct Stop trials which
results more “expanded” than the optimal star-like configuration of Go trials (see
Figure 3.16). Analogously to what found during the analysis of V Dout , Go_drivers
and Stop_drivers (green and red dots in Fig 3.17) displayed a different role (different
BC values) in Go and correct Stop trials respectively, confirming the specificity of
these classes in relation to the behavioural conditions. The values of BC found
for the Common_drivers (black dots in Fig.4) during both behavioural conditions
corroborate what was found via the V Dout analysis: in the PMd information network
they manage and distribute the information flow. Moreover, during movement inhi-
bition the actors that collaborate the most with the Common_drivers in rerouting
and reverberating communications are the Stop_drivers.
To have a compact view of the overall differences between the V Dout and BC measures
across behavioural conditions we computed a summarising index named centraliza-
tion index C (Freeman, 1977; White and Borgatti, 1994). C is the total average
difference between the highest value of the centrality measure inspected (V Dout and
BC in our case) and the values assumed by all the other nodes. High values of C
indicate that nodes with high centralities with respect to the other nodes in the
network exist. In this way a score with which to compare the overall organization of
networks in terms of centrality measures is obtained (see materials and methods). We
computed C for both measures for each recording session and then we averaged over
sessions. Panel A of Figure 5 reports the average centralization indexes compared
between behavioural conditions for both animals (see also supplementary figure ...).
As expected, C of V Dout (Cvd) decreases from Go to correct Stop trials while the
opposite holds for C of BC (Cbc). This confirms, at the overall level, how information
processing is based on different topologies during the two behavioural conditions.
We then calculated the total information processed during Go trials and correct Stop
trials (Figure 5, panel B and supplementary figure ... ). We found that during correct
stop trials less information was processed compared to Go trials. This means that
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overall changes in the topological arrangement of the the PMd network correspond
to overall changes in the amount of information exchanged. More specifically, the
increase in BC during correct Stop trials is accompanied by a reduction in the total
amount of information elaborated. To sum up, we demonstrated with the used
graph measures that classes are hierarchically organized in PMd during movement
planning and suppression and that information is processed differently and to a
lesser extent during correct stop trials compared to Go trials. Results revealed that
the Common_drivers as the most topological central nodes in the network with the
Go_drivers and the Stop_drivers playing a crucial supporting role in detouring the
information during movement planning and inhibition respectively.

3.3.3 Different interactions among neuronal classes characterize be-
havioural conditions

To summarize the contribution of each interaction among classes we computed the
average amount of information exchanged between the four classes during both
behavioural conditions. To this end, we constructed a 4x4 matrix whose generic
entry is given by expression (3.5.6). We then represented the matrix I as a network
in which each node is now a class. This makes possible to have a compact picture of
the differences between Go and correct Stop trials in terms of interactions between
classes. We calculated I for both behavioural conditions of each recording session
and we then averaged over sessions; results are shown in Figure 3.19 (see also Table
3.4). The Common_drivers were confirmed to be part of the high order class in the
network since they transmit to other classes without receiving. Indeed, even when
the Go_drivers and Stop_drivers emit information on their own, they receive from
the Common_drivers. This means that the first ones are hierarchically located at a
lower level. Moreover, the extent of communication of the Common_drivers with
the Targets is significantly greater than that of the Go_drivers and Stop_drivers
(see Table 3.4). This implies that the Common_drivers determine the global state
of the network with Go_drivers and Stop_drivers playing a supporting role. It is
worth noticing that the specificity of Go_drivers and Stop_drivers is confirmed by
the direction of their interactions during behavioural conditions. In fact, during Go
trials the Go_drivers transmit to the Stop_drivers helping the Common_drivers in
the control while the opposite happens during correct Stop trials. The amount of
information that the Common_drivers distribute in the network diminishes from
Go to correct Stop trials. This complement and helps to better understand what
said in the previous section: information is processed differently during correct Stop
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Figure 3.17. Measures for topology of information transmission. Top panels:
V Dout values compared across behavioural conditions for all recording session. The
Common class (black points) shows the highest values of V Dout compared to other classes
in both behavioural conditions (for both monkeys, all adjusted p-values Qs < 0.01).
Go_drivers and Stop_drivers show the second highest V Dout values during Go (for
both monkeys all Qs < 0.01) and correct Stop (for both monkeys all Qs < 0.01)
trials respectively. Lower panels: Normalized BC values compared across behavioural
conditions for all recording session. Go_drivers and Stop_drivers classes have, together
with the Common, the highest values of BC during Go and correct stop trials respectively
(for both monkeys all Qs < 0.01). The Stop_driver class is the one with the greatest
increase (∆Go−Stop ) in BC passing from Go to correct Stop trials (for both monkeys all
Qs < 0.01). Colours reflect the neuronal classes as in Figure 3. Means and standard
errors are indicated by the diamonds and related lines. Statistics is based on the adjusted
p-value (Q) obtained from Kolmogorov Smirnoff tests and false discovery rate (FDR)
correction. See Table 3.3 for the details.

trials where the network undergoes a less direct configuration due to an increased
number of shortest paths between the nodes. Network interactions are consistent
across recording sessions for both monkeys (see Table 3.4). Common_drivers
are hierarchically above the other classes and orchestrate communication: they
transmit information to other classes in both behavioural conditions without receiving
information from the other classes of the analysed PMd network. Moreover, during
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Figure 3.18. Overall network comparison between behavioural conditions.
Panel A The overall centralization index C for both V Dout (Cvd) and BC (Cbc)
measures averaged over recording sessions and compared between behavioural conditions
for both monkeys. C gives an overall topological comparison of the information network
compared between behavioural conditions. Panel B Total information processed aver-
aged over recording sessions compared between behavioural conditions. Cyan: Go trials.
Orange: correct Stop trials. Error bars are given by the standard error of the mean.

Go trials Go_drivers participate transmitting to the Targets as the Stop_drivers
class does during correct Stop trials.

Figure 3.19. Network representation of interactions between classes in the two
behavioural conditions: Colours codes for the classes are the same of the previous
figures. Uncertainties are obtained via error propagation (see materials and methods).
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V DOutV DOutV DOut

Monkey P
Go trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.005 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.01 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−97% +1326% −16% +4%

Monkey C
Go trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.01 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.01 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−97% +9828% −29% +950%
Q < 0.001 Q < 0.001 Q > 0.25 Q > 0.25
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BCBCBC

Monkey P
Go trials Go_drivers Stop_drivers Targets
Common_drivers Q > 0.05 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.001 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−89% +888% +157% +183%
Q < 0.001 Q < 0.001 Q < 0.001 Q < 0.001

Monkey C
Go trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q > 0.05 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−95% +5180% +654% +800%
Q < 0.001 Q < 0.001 Q < 0.001 Q > 0.25

Table 3.3. Graph metrics details.
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I matrix details
Monkey P

Go trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 1.3± 0.1 0 17.5± 0.3
Stop_drivers 0 0 0 0
Common_drivers 3.7± 0.1 7± 0.2 0 42.3± 0.4
Targets 0 0 0 0

Stop trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 0 0 0
Stop_drivers 2.6± 0.2 0 0 17.5± 0.6
Common_drivers 2.3± 0.2 4.7± 0.4 0 25.4± 0.6
Targets 0 0 0 0

Monkey C
Go trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 1.1± 0.1 0.3± 0.003 21± 0.5
Stop_drivers 0 0 0 0
Common_drivers 3.4± 0.07 10.7± 0.2 0 45.3± 0.6
Targets 0 0 0 0

Stop trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 0 0 0
Stop_drivers 1.9± 0.2 0 0 17± 0.6
Common_drivers 2.9± 0.2 1.4± 0.2 0 23.4± 0.5
Targets 0 0 0 0

Table 3.4. I matrix details.
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3.4 Discussion

In this work we investigated, for the first time, the patterns of information transfer
in a localized cortical network in the PMd directly involved in movement decision-
making. We used combined Transfer Entropy and graph-based approaches to analyse
simultaneously recorded MUAs (from up to 96 channels). Our results contribute
to move forward the knowledge on the neural basis of action decision making at
different levels. The first level of advancement is methodological: we employed a
graph-based approach combined with information theoretic measures (specifically
multivariate Transfer Entropy (TE)) to investigate neuronal interactions underlying
motor control. Although TE is growing in popularity in modern neuroscience its
application to invasive electrophysiological data has been so far very limited and
restricted to either single neurons or in vitro (Buehlmann and Deco, 2010; Orlandi
et al., 2014; Shimono and Beggs, 2015) and in silico studies (Ito et al., 2011).
Shimono and BeggsShimono and Beggs, 2015 used it at the single neuron level to
investigate the structure at different scale of rodent somatosensory cortex (Nigam
et al., 2016; Shimono and Beggs, 2015). Timme and colleagues (N. M. Timme et al.,
2016) recorded the activity of hundreds of neurons in cortico-hippocampal slice
cultures and used TE to study the information transfer changes therein. An early
contribution to this research topic is from Gerhard et al. (Gerhard et al., 2011). that
inspected the topology of spike trains recordings from the visual system of a rhesus
monkey during a fixation task. However, the authors used a different approach to
measure directed connectivity. Another contribution comes from the work of Honey
(Honey et al., 2007), that investigated a large-scale interregional anatomical network
of the macaque cortex trough transfer entropy. An attempt to study voluntary
action control through analysis of directed connectivity was made by Jahfari and
colleagues (Jahfari et al., 2011) but on human MRI data. Hence, to the best of
our knowledge, this report is one of the very few studies that uses graph theory to
analyse the information transfer network of a specific cortical area at the mesoscale
level in vivo and during a behavioural task. The level of description here obtained is
more detailed compared to previous works. Indeed, we were able to specify how the
decision on whether to move or to stop is implemented in PMd at the population
level and who are the (key) players that perform the computations. Notably, in our
framework neither any a priori assumption nor a specific neural modelling technique
was needed. Our completely data-driven approach, in addition to complement the
most recent models for motor generation and suppression (Boucher et al., 2007;
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Lo et al., 2009), permits to overcome their main limitation which reside in the
requirement of many biophysical parameters to be tweaked and tuned before fitting
with acceptable accuracy the experimental data. Although is still not largely used
in behavioural neurophysiological studies at the small and mesoscale, a graph-based
conceptualization of neural interactions, united with information theoretic measures,
can be very profitable also compared to other common approaches based on analysis
of covariance between neurons or mesoscopic signals (Chandrasekaran et al., 2017;
Churchland et al., 2012; Clawson et al., 2019; Kaufman et al., 2016; Mattia et al.,
2013) and should be exploited more. In fact, these methods are not straightforward
in distinguishing the specific contributions of single neurons (or discrete populations
of neurons) to the topology of network dynamics, which is indeed the strength of our
strategy. On one hand this range of methods allows for a fine temporal description of
neural variability but on the other, due to their nature, are neither capable to describe
the information flow between neuronal actors nor to provide quantitative insights on
the topology of network connections and their hierarchical organization. Without
this all spectrum of details the computational strategy underlying motor control
(and neural circuitry computation in general) would be yet elusive. Recently, some
authors have have started to follow the joint information theory-complex networks
approach but for now, to the best of our knowledge, only on cortico-hippocampal
(N. M. Timme et al., 2016), somatosensory cortex slice cultures (Shimono and Beggs,
2015) and anesthesiological (Schroeder et al., 2016) data. It is known that to fully
understand the neural mechanisms behind motor control future research should
focus on cortico-cortical and cortico-subcortical interactions through simultaneous
recordings. In this scenario a topological information-based approach would be
unquestionably necessary to gain an overall view and elicit detailed insights.

The second level of advancement concerns the novelty of our results compared to other
studies, especially those that focused on the possible interaction among different
classes of neurons during motor decision. We found, in the characterized PMd
network, that neuronal activities could be organized around four different classes
and that they actively participate, even with different roles, both in movements
execution and cancellation. This constitutes a step forward in the conceptualization
of the neural processes at the base of movement generation since all the widely
accepted models for inhibitory control of movements (Boucher et al., 2007; Lo
et al., 2009; Marcos et al., 2013; Schall et al., 2017; Verbruggen and Logan, 2008;
Wei et al., 2015) are deduced from the analysis of single unit firing rates and are
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based on the interaction of only two modules (or class of neurons) often reported
as Go and Stop units. We instead demonstrated that information is hierarchically
transferred between more than two actors with the Common class nodes acting as
network hubs. This reflects the existence of a high-order complexity in functional
communications and organization at the population level, even in small portions
of the cortex, during behavioural control regardless of which the nature of neurons
in each class might be (i.e. excitatory or inhibitory neurons etc.. ). Indeed, based
only on the information emitted by each recording site we managed to isolate both
condition-specific and nonspecific neuronal classes. It is worth stressing that we drew
our conclusion on the heterogeneity of neuronal classes in a completely data-driven
and model-free fashion, and this strengthens the result. Additionally, we showed
the details of how this transfer occurs at the population level and to what extent it
depends on behavioural conditions. Our picture substantially integrates the current
view because besides specific classes involved in the generation (Go_drivers) and
inhibition (Stop_drivers) of movements, it establishes the existence of a high order
class (Common_drivers) not proposed in other works. This highlights, for the first
time at the mesoscale resolution, the existence of a fine-grained organization of
neural assemblies at the population level that handle intra-area information flow.
It is worth pointing out that usual methods of studying neural activity profiles
are not sufficient to infer all aspects of such architecture. The Common_drivers
are higher in hierarchy with respect to the others for two reasons. The first is
because they transmit information to the whole network without receiving from
inside the same network (see Figure 3.17). From the information theoretic point of
view this indeed means that the state of the other classes can be better predicted
by the state of the Common compared to the other classes. Thus, the state of the
whole local network depends on the state of the Common_drivers. The second
one is topological, being the Common_drivers the most widespread hubs across
behavioural conditions. The found subdivision in classes, the presence of hubs and
topological central nodes deputed to the rerouting of communications reveal that
the cortical information dynamics behind motor control is extremely rich and cannot
be entirely explained by the current proposed models. The found topology also
implies that the presence of high-degree nodes is a constituent feature of neural
processing in a cortical network directly involved in cognitive control, as is the
PMd. This is consistent with our previous study (Bardella et al., 2020) in which we
pointed out how the functional PMd network organization differs between movement
generation and inhibition in terms of hierarchy and centrality of nodes. It is also in
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agreement with other works that found fat-tailed degree distributions in silico (Gu
et al., 2019), in cortical and hippocampal in vitro networks (Gal et al., 2017; Perin
et al., 2011; Schroeter et al., 2015; Shimono and Beggs, 2015; N. Timme et al., 2014),
in vivo (Dann et al., 2016) and structural networks (Honey et al., 2007). We found
that the arrangement of the PMd information network depends on the behavioural
condition, passing from a centralized star-like state during movement planning to a
different one during movement inhibition characterized by high values of betweenness
centrality and a minor transfer of information. We interpret this reorganization as
the execution in the local network of a command originating from other regions.
Indeed, as known, the PMd is part of a larger network surbserving motor control
based on frontal, parietal, subcortical and spinal structures. Is reasonable to think
that during Go trials the hubs serve to convey the command to move to other (and
possibly lower) cortical, subcortical, and spinal circuits that will eventually promote
muscle activation. In this picture, the state observed during correct stop trials could
reflect the PMd collective reaction to the incoming inhibitory thalamic input that
prevents the execution of the programmed movement. In this scenario the volition
to inhibit is locally implemented as ‘the attenuation of the movement state’, which
seems convenient ad easy to implement at the network level detouring information
flow through an higher number of shortest paths between nodes and decreasing the
amount of information involved. Future studies will be necessary to investigate to
whom the hubs project to. One weakness of this study is that we cannot account
for the information dynamic between PMd and other structures of the reaching
network. Therefore, additional research will be needed to unambiguously clarify
these interactions. Lo et al. (Lo et al., 2009) also introduced a certain degree of
hierarchical organization in the form of a top-down control regulating the activation
of the Go and Stop unit. However, as also stated in Schall et al.(Schall et al., 2017),
the control unit embodied in their model resembled an external homunculs endowed
with the ability to tune the parameters to appropriately obtain the desired results.
This marks a considerable difference with our report, in which, since our approach
is completely data-driven, we did not need to adjust any external modelling unit to
obtain the results. Conversely, we used it conceptually to contextualize our results
in a wider circuitry frame. Lastly, our findings clearly show that hierarchical control
is not only external but is also implemented locally by a specific neuronal class (the
Common_drivers) over the others. Through the years, much evidence has been
brought to support the idea that the brain is hierarchically organized both globally
and locally on a spatial (Bardella et al., 2016; Bardella et al., 2020; Felleman et al.,
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1991; C. C. Hilgetag and Kaiser, 2004; C. Hilgetag et al., 2000; M. Kaiser et al.,
2007; M. Kaiser, 2010; Sporns et al., 2007; Sporns et al., 2005; Tononi et al., 1994;
Watanabe et al., 2014; Zamora-López, 2010; Zeki and Shipp, 1988) (for a detailed
review see Hilgetag et al., 2020 C. C. Hilgetag and Goulas, 2020) and temporal scale
(Fox et al., 2005; He, 2011; Morcos and Harvey, 2016; Shine et al., 2016; Vidaurre
et al., 2017; Zalesky et al., 2014). As far as we know, this is the first work that deeply
investigates the local hierarchy of a single cortical area known to have a crucial
role in the motor system. These conclusions suggest that the collective network
organization found in this work represents the neural implementation of decision
making for the voluntary motor control at the PMd level.

3.5 Materials and methods

3.5.1 Subjects

Two male rhesus macaque monkeys (Macaca mulatta, Monkeys P and C), weighing
9 and 9.5 kg, respectively, were used. Animal care, housing, surgical procedures
and experiments conformed to European (Directive 86/609/ECC and 2010/63/UE)
and Italian (D.L. 116/92 and D.L. 26/2014) laws and were approved by the Italian
Ministry of Health. Monkeys were pair-housed with cage enrichment. They were fed
daily with standard primate chow that was supplemented with nuts and fresh fruits
if necessary. During recording days, the monkeys received their daily water supply
during the experiments.

3.5.2 Apparatus and task

The monkeys were seated in front of a black isoluminant background (< 0.1cd/m2)
of a 17-inch touchscreen monitor (LCD, 800 x 600 resolution), inside a dark-
ened, acoustic-insulated room. A non-commercial software package, CORTEX
(http://www.nimh.gov.it), was used to control the presentation of the stimuli and
the behavioural responses. Fig. 1 shows the scheme of the general task: a reaching
countermanding task (Mirabella et al., 2011). Each trial started with the appearance
of a central target (CT) (red circle, diameter 1.9 cm). The monkeys had to reach
and hold the CT. After a variable holding time (400–900 ms, 100-ms increments) a
peripheral target (PT) (red circle, diameter 1.9 cm) appeared randomly in one of two
possible locations and the CT disappeared (Go signal). In no-stop trials, after the
Go signal the subjects had to reach and hold the PT for a variable time (400˘800ms,
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100ms increments) to receive juice. Reaction times (RTs) were defined as the time
between the presentation of the Go signal and the onset of the hand movement. In
Stop signal trials, the sequence of events was the same until the Go signal. Then,
after a variable delay (Stop signal delay, SSD), the CT reappeared (Stop signal) and
the monkeys had to hold the CT until the end of the trial (800–1000 ms) to receive
the reward (correct stop trial). Conversely, removing the hand after the Stop signal
constituted a wrong response (wrong stop trial). The same amount of juice was
delivered for correct stop and correct no-stop trials. The intertrial interval was set
to 800 ms. Stop trials represented the 25% of all trials in each recording session. To
establish the duration of the SSDs, a staircase tracking procedure was employed. If
the monkey succeeded in withholding the response, the SSD increased by one step
(100 ms) in the subsequent Stop signal trial. Conversely, if the subject failed, the
SSD decreased by one step.

3.5.3 Behavioural considerations

In the countermanding task is of crucial importance the identification of the neuronal
signature of the movement execution and its time of occurrence. The task makes
possible to calculate a behavioural measure that it is broadly considered an index
of efficiency in movement suppression: the stop signal reaction time or SSRT. To
estimate SSRT the race model (Logan and Cowan, 1984) is the accepted paradigm.
This model describes the behaviour in the stop trials as the result of two stochastic
processes racing toward a threshold: the GO process triggered by the onset of the
Go signal, which duration is represented by the RT, and the STOP process triggered
by the onset of the Stop signal, which duration must be calculated. When the GO
process wins the race the movement is generated (stop-wrong trial), alternatively
it is withheld (correct Stop trials). The race model allows to estimate the SSRT
by considering the duration of the GO process, the probability to respond, and the
SSDs. However, to make the race model applicable to study response inhibition,
a central assumption must be satisfied: the GO process in the stop trials must be
the same as in the go trials (independence assumption). Indeed, the RTs that are
employed to estimate the SSRT are obtained from the Go trials. To broadly validate
this assumption, stop-wrong RTs must be shorter than the correct go trials (Logan
and Cowan, 1984). To estimate the SSRT we employed the integration method
because it has been proven to be the most reliable (Band et al., 2003). It assumes
that the finishing time of the Stop process corresponds to the nth go RT, where n

results from the multiplication of the ordered Go RTs distribution by the overall
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probability of responding p(respond). The SSRT is then obtained by subtracting
the average SSD from the nth Go RT. The SSRT can also be considered the lead
time that is required to inhibit a movement, or, simply, the time that precedes the
start of a movement when a Stop signal, if presented, halts the generation of the
same movement approximately 50% of the time. If the Stop signal is presented after
this time, it will be less effective, because the neuronal phenomena that lead to the
movement generation will have already started. If the Stop signal is presented well
before this time, it will be more effective in halting the movement. Consequently,
the neuronal activity that is related to movement generation must occur before
movement onset around the time that is defined by the SSRT. The aim of our study
was to compare conditions in which a movement was planned and then generated
(Go trials) to those in which a movement was planned and then inhibited (correct
Stop trials). To this end we defined, for each recording session, two epochs of interest:
the pre-Movement epoch for correct Go trials and the Stop signal epoch for correct
Stop trials. To correctly compare the two behavioural conditions, a time window
T equivalent for both trial types must be defined. Assuming that a time tgo ms
before movement onset is chosen and an SSRT of tssrt ms is estimated, T in correct
Stop trials is given by T = [− (tgo − t ssrt),+ t ssrt] ms with respect to the Stop signal
presentation. Notice that T accounts for any time difference with respect to the
SSRT trough the term (tgo− t ssrt). In this study we fixed tgo = 400 ms and estimated
the window to be taken in correct Stop trials trough T. MUA activities of Figure
3.14 are plotted during T. Behavioural parameters for the recording sessions of the
two monkeys analyzed in this study are reported in Table 3.1.

3.5.4 Extraction and processing of neuronal data

A multielectrode array (Blackrock Microsystems, Salt Lake City) with 96 electrodes
(spacing 0.4 mm) was surgically implanted in the left dorsal premotor cortex (PMd;
arcuate sulcus and pre-central dimple used as references after opening of the dura) to
acquire unfiltered electric field potentials (UFP; i.e., the raw signal), sampled at 24.4
kHz (Tucker Davis Technologies, Alachua, FL). As a measure of neuronal activity at
the population level, MUA was extracted offline from the raw signal, as in Mattia
et al. (Mattia et al., 2013), by computing the time-varying power spectra P(ω, t)
from the short-time Fourier transform of UFP in 5-ms sliding windows. Normalizing
P(ω, t) by their average Pref (ω) across a fixed window (30 minutes) for the entire
recording. Relative spectra R(ω, t) were then obtained. Thus, the average R(ω,
t) across the ω/2π band [0.2, 1.5] kHz represent the spectral estimated MUAs. As
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better detailed in Mattia et al. ( Mattia et al., 2013), such estimate relies on two
hypotheses. The first is that high ω components of UFPs result from the convolution
of firing rates ν(t) of neurons that are close to the electrode tip with a stereotypical
single-unit waveform. The Fourier transform K(ω) of such an unknown waveform
is canceled out in R(ω, t), which is therefore a good approximation of the ratio of
firing rate spectra |ν(ω,t)|2 /|ν(ω,t)|ref

2. The second hypothesis is that high ω power
|ν(ω,t)|2 is proportional to the firing rate ν(t) itself (Mattia and Del Giudice, 2002),
such that our MUA estimate is proportional to ν(t). As a last step, logarithmically
scaled MUAs were smoothed by a moving average (40 ms sliding window, 5ms step).

3.5.5 Quantifying information dynamic with Transfer Entropy

We first analysed the single-trials activity profiles of each recording site of each
recording session for both animals. To remove noise and outliers from our data,
we excluded from the analysis the trials for which the MUA showed peaks with an
amplitude that exceeded the average of the activity by 2 standard deviations in the
epoch of interest and for over 80% of the channels. This ensures that artifacts caused
by non-physiological oscillations are excluded from the analysis. To examine the
local information dynamic in the PMd, we then computed a trial-average time series
for each of the MUAs recorded by the electrodes of the array for each behavioural
condition of each recording session. We then constructed the information transfer
network using multivariate Transfer Entropy (TE). The choice is due to the fact
that TE is indicated (especially in its multivariate formulations) as more accurate
compared to other metrics and is known to capture non-linear interaction in the
system dynamic without assuming any particular model. Moreover, this measure is
of growing interest in neuroscience and there is a thriving literature on it (Ramos and
Macau, 2017; Vicente et al., 2011; Wibral et al., 2011; Wollstadt et al., 2014; Xiong
et al., 2017). For its computation we used the Matlab MUTE toolbox (Montalto
et al., 2014).
Given an ensemble of M time series, the multivariate information transfer from a
driver time series X to a target time series Y , conditioned to the remaining Z k=1,..,M−2

time series, can be quantified taking into account the present values of the target
and the past values of both the driver and the Z (Faes et al., 2015; Montalto et al.,
2014; Xiong et al., 2017) through:

TEX→Y | Z = H(Yn | Y −n , Z−n )− H(Yn | X−n , Y −n , Z−n ) , (3.3)
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where Yn is the vector that represent the present state n of Y, X−n = [Xn−1, Xn−2, ...],
Y −n = [Yn−1, Yn−2, ...] and Z−n = [Zn−1, Zn−2, ...] are the vectors that represent the past
of X, Y and Z respectively. The vertical bar stands for conditional probability, e.g.
H(Yn | Y −n , Z−n ) is the entropy of the present state of Y conditioned to the knowledge
of the past of Y and to the past of the remaining Z. H is the Shannon entropy
(Shannon, n.d.), which in the case of Y is given by:

H(Yn) = −
∑

n

P (Yn) logP (Yn) , (3.4)

where P indicates the probability density. Hence, using equation 3.4 expression 3.3
becomes

TEX→Y | Z = −
∑

n

P (Yn, Y
−

n , Z−n ) logP (Yn | X−n , Y −n , Z−n )
P (Yn | Y −n , Z−n )

(3.5)

In this formulation TE grows if the past of the driver increases the information about
the present of target more than the past of target itself and more than any other
series contained in Z. Since the past of the driver is used to predict the present of
the target, TE is not symmetric (i.e. TEX → Y 6= TEY → X) and defines a direction
in the information trasfer. A crucial issue in estimating TE is the approximation of
the vectors representing the past of the time series, a procedure known as embedding.
The optimal embedding would be the one that include only the components of X−n ,
Y −n and Z−n that are most informative in describing Yn. Montalto et al. (Montalto
et al., 2014) described in details both different procedures for embedding and to
evaluate the probability distribution functions needed to compute the entropy terms.
We opted for a non-uniform embedding scheme (Faes et al., 2014) paired with the
computation of H based on kernels estimators3. In few words the embedding method
we chose iteratively selects components of the systems past based on a criterion
for maximum relevance and minimum redundancy. In this context, maximum
relevance means most significant in the sense of predictive information. Non-uniform
embedding selects from the past of X, Y and Z only the components that are the
most informative for the present of the target variable Y progressively pruning non
informative terms. The maximum number of past values, or maximum lag l, to
consider for the pruning is fixed at the beginning of the procedure. Cycling through
the components of the past up to l, the statistical significance is then progressively
assessed through the comparison with an null distribution built from the empirical
values via a randomization procedure (Montalto et al., 2014). The component of the

3For the complete description of the embedding methods and estimators for computation of H,
which is beyond the scope of this study, see the works of Faes et al. (Faes et al., 2015; Faes et al.,
2014; Faes et al., 2011) and references therein.
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past of X,Y and Z are thus selected as statistical significant if they are significant
above a desired level α. In our case the null distribution was obtained by 100
random shuffling of empirical values and we fixed α = 0.01. Non-uniform embedding
represents a convenient and more reliable (Xiong et al., 2017) alternative to the
common used approach known as uniform embedding; this would indeed select the
past values X−n , Y −n and Z−n a priori and separately for each time series (Montalto
et al., 2014). The probability density P needed for the computations of H was
then calculated using kernel functions which weight the distance to the reference
point to any other point in the time series and then average across all points. Such
approach computes probabilities exploiting a local exploring of the state space and,
importantly, has been proven to be more robust against unreliable estimations
(Xiong et al., 2017). Therefore, if at least one component from the past is selected
by the non-uniform embedding procedure, the resulting TEX→Y | Z is positive and
statistically significant. When instead none of the components of the past provide
statically significant information about the target the TEX→Y | Z is exactly 0 and
assumed non significant (Montalto et al., 2014). To avoid any further bias in the
selection of the past values, we initially fixed l=50 ms, but, as expected, only a
recent past was selected by the procedure, in line with similar studies (Shimono
and Beggs, 2015; N. M. Timme et al., 2016). Indeed, for each MUA time series, a
past no older than 10ms for each n of equation 3.4 was ever selected by the optimal
embedding procedure.

3.5.6 Graph theoretical measures

In our context the time series were the MUAs recorded by the electrodes of the array.
We computed TEX → Y | Z (and TEY→X | Z) with Z k=1,..,M−2, for each pair of (X,Y)
in the epochs defined in Section 1 so to obtain a TE matrix4 for each behavioural
condition (Go trials and correct Stop trials) for both monkeys. Since the purpose
of this study was to investigate the topology of information processing within the
PMd cortical network during motor planning and inhibition, we interpreted the
asymmetric TE matrix as the adjacency matrix of a directed weighted network,
in which the nodes are the channels and the weighted edges are the TEX → Y | Z

(and TEY → X | Z) with Z k=1,..,M−2. To simplify the picture we considered only the
off-diagonal elements of the matrix and thus excluding self-loops from the networks.
Figure 3.20 reports a sketch of the construction of the local TE-based information

496x96 for all recording sessions for Monkey P; for some recording sessions of Monkey C damaged
channels were removed from the analysis and therefore a 79x79 matrix was obtained.
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Figure 3.20. Sketch of the construction of the local TE-based network given
the ensemble of the MUA time series. Panel A: key steps for the computation
of the information transfer. For each couple (X,Y) of the ensemble of M time series,
TEX→Y | Z quantifies the information transfer from a driver X to a target Y conditioned
to the remaining Z time series, with Z k=1,..,M−2 (the same holds for each (Y,X) couple
and TEY→X | Z). If TEX →Y | Z 6= 0 the past of the driver X−n gives more knowledge
about the present Yn of the target than the past of the target itself and the remaining Z
time series, i.e. give statistical significant contribution to the prediction of the present
of the target. In this sketch the past of the driver comprises 3 time steps backwards
with respect to the reference point and thus X−n = [Xn−1, Xn−2, Xn−3]. Panel B:
an asymmetric transfer matrix MxM can be built computing the terms TEX → Y | Z

and TEY →X | Z for each X and Y of the ensemble. We take the TE matrix to be the
adjacency matrix of a directed weighted graph in which the nodes are the channels and
the weighted edges are the TE values (for simplicity diagonal elements are taken to be 0
and thus self-loops are excluded).

network. As an initial skimming of the contribution of each recording site to the
exchange of information in the network we analyzed the empirical TE distributions.
We found a mean µ ∼ 10−2 for all recording sessions of both behavioural conditions for
both animals (see supplementary figure S.. ??). Subsequently, we grouped channels
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according to the trial type in which they significantly exchanged information with
respect to the others. To this end we selected from the empirical TE distribution
the values > µ+ 2σ for each behavioural condition (with σ standard deviation). This
selection identified the neuronal classes. As an example if node i drives node j with
a TE value > µ + 2σ (i.e. there is a strong link directed from i to j) in Go trials
but not in correct Stop trials, i would belong to the Go_drivers. Interestingly we
identified two peculiar classes: nodes that emitted significant amount of information
during both behavioural conditions (Common_drivers) and nodes that never emitted
information in any behavioral condition (Targets). In our framework the TE values
represented the strength of the connections between network nodes and hence the
above classes are defined based of how much and during which behavioural condition
nodes spread information trough the local PMd network.
To properly inspect the contribution of each node we needed a set of measures from
graph theory. The first was Vertex Degree (VD). Vertex degree is the number of
links to a node i:

V D(i) =
N∑

j=1
aij , (3.6)

where aij is the generic entry of the adjacency matrix and N is the number of nodes.
In directed networks one can distinguish between in-degree (the number on inward
links) and out-degree (the number of outward links). We computed the probability
distribution of both vertex degrees (i.e. the in/out degree distribution) for each
behavioural condition of each recording sessions for both animals. If the variance of
the degree distribution is significantly larger than its mean tails in the distribution
arise and network hubs are identified. Hubs are thus nodes that significantly exceeds
the average degree of the network (Albert and Barabási, 2002).
We further studied the topology of the PMd information network by computing the
Betweenness CentralityFreeman, 1977; White and Borgatti, 1994 (BC) of each node.
For each node, BC measure the proportion of shortest paths between other couple
of nodes s and t that pass through it and is defined as (Freeman, 1977):

BC(i) =
∑

s 6=v 6=t

σst(i)
σst

, (3.7)

, where σst(i) is the number of shortest paths between s and t that pass through i

and σst the the number of shortest paths between s and t. High BC scores indicate
that a node lies on a considerable fraction of shortest paths connecting pairs of
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vertices in the graph. Thus, such a node is considered topological central node since
it plays a crucial role in passing and spreading information trough the network.
As an overall measure of comparison we used the centralization index C. Given
a graph measure, C is the total average difference between the maximum of that
measure and the values taken by all other nodes in the network. I.e., the centralization
index of V Dout reads:

Cvd = 1
N − 1

N∑
i=1

[Max(V Dout)− V Dout
i] , (3.8)

where V Di
out is the vertex out degree of node i, Max(V Dout) is the maximum V Dout

value for the examined graph and N is the number of nodes. The same holds for
BC. We computed C for both V Di

out and BC for each recording session and each
behavioural condition for both animals and then averaged over sessions.
In order to compute the total magnitude of information exchanged between the
neuronal classes we constructed the following interaction measure I :

I ij = ρ

M∑
i

M∑
j

∑
(m,n)

TE Cin → Cjn , (3.9)

where C is the neuronal class, M is the number of the classes (M=4) and m and n
run over the all possible combinations of nodes within each class. ρ = dim (Ci

n → Cj
m)

dim (Cj)

is a normalization factor that accounts for the heterogeneous number of nodes within
each of the classes. Therefore, our Iij is a normalized node strength computed on
the graph formed by the 4 classes (i.e. in a weighted graph the strength of a node is
the sum of weights of links connected to the node). The higher are the number of
nodes a class transmits information to, the higher is I. Hence, high I values reflect
an high position in the hierarchy of the network communications for that class.
All the interactions described by the empirical TE matrix were thus enclosed in
a 4x4 matrix that represents a network of interactions in which now each node is
a neuronal class. We computed I for each recording session and each behavioural
condition and then we averaged over sessions for both animals. The uncertainty in
estimating each element I ij for each recording session was given by the standard
error. Thus, the sessions-averaged element I ij is estimated with an error obtained
via the error propagation formula for the average of n measures.
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A null model

To properly assess the statistical significance of the results obtained via the graph
theoretical analysis we defined a null model. As extensively detailed in a recent work
(Cimini et al., 2019), the choice of a suitable null model remains a complicated issue
in network and complex systems science. One common practice when analysing
real-world networks such the one inspected in the present work, is try to identify
properties that deviate from the null hypothesis being likely that the deviations
themselves encode information about the network functions. We proceeded by
initially using the most general constraints and then progressively tightening them.
Firstly, we tested that results were not attributable to the distribution of MUA
values. To this end we generated, for each behavioural condition and recording
session, a synthetic pool of N time series with same length of the empirical ones
(with N number of channels available for the corresponding animal and recording
session) by random sampling from the empirical MUA distribution. We then derived
a TE matrix for for each synthetic pool. This situation is the most general, since
assumptions of any kind are made on the connectivity patterns and the weight
distributions of the synthetic networks. We then compared the empirical graph
measures with the ones obtained on the ensemble of 500 randomizations As a second
null hypothesis, we tested that the topology observed in the experimental data were
not attributable to the empirical TE distribution (i.e., the weight distribution of the
network). We generated, for each behavioural condition and each recording session,
an ensemble of 1000 synthetic TE matrices with the same distribution of real data.
We then compared the empirical graph measures with the one obtained from the
ensemble of randomizations.
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Conclusions

In this work we used graph and information theory to analyse the activity of popu-
lation of neurons recorded from a multielectrode array in PMd of rhesus monkeys
during the execution and cancellation of visually guided arm movements. We ob-
served that the local PMd network is finely organized with hierarchical hubs that
emerge and with the topological arrangement of the information transmission net-
work depending on the behavioural condition. Moreover, we showed that neuronal
activities could be organized around four different classes that actively participate
with different roles both in movements planning and cancellation. This reflects the
existence of a high-order complexity in functional communications and organization
at the population level during behavioural control regardless of which the nature of
neurons in each class might be (i.e. excitatory or inhibitory neurons etc..). These
results highlight, for the first time, how motor decisions are mappable in the reorga-
nization of a local cortical network with the presence of hubs directly associabile
with the readiness of the motor plan and the irrevocable signature of the onset of
the incoming movement. Our results thus further strengthen the hypothesis that the
computations required in movement control are implemented by neuronal ensembles
at the population level. Features that cannot be deduced from the separate analysis
of individual parts but can only be considered by inspecting the system in its entirety.

From the methodological perspective, the contribution of this work is to focus atten-
tion on the state-of-the-art methods of data analysis that increasingly characterize
contemporary neuroscience, integrating them into a neurophysiological research
protocol in order to build a bridge between the two disciplines. Indeed, whilst graph
theory has been widely applied in many fields like physics, chemistry, economics, com-
puter science, machine learning and temporal pattern recognition, i.e. bioinformatics
or linguistics, its applications in neurophysiology are still surprisingly sporadic. The
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common habit in electrophysiological research, especially that on primates, is in fact
to rely on standard analysis techniques and to reuse existing analysis tools. This is
due to the fact that a lot of effort is spent on acquiring the neural recordings. This
requires a series of complex steps, such as animal training, technical management
of the recording device, definition of the experimental setup, etc. In addition, the
exploration of new data analysis paradigms requires scientific training that most of
the time is far from the experience required in the other steps. The overall result is
that a minor part of the research process is devoted to data analysis and modeling.
Even more rare are the applications of graph theory in studies at the small and
meso scale, in which an approach based on complex network theory has often (and
probably guiltily) left aside in favor of other methods. Indeed, the effectiveness of
graph theory has often been overlooked, probably because of its apparent simplicity
which makes it seem less reliable. Although graphs are a merciless abstraction of
the intricate neuronal interactions and can be represented in a surprisingly simple
way, the mathematical foundations behind the theory are extremely rigorous. And
is precisely its simplicity that makes it accessible to an interdisciplinary scientific
audience such as the one that characterizes the biological sciences, in particular
neuroscience. Although the origins of the theory behind these methods are not
recent, there are still many technical problems to be addressed when applying these
methods to local-scale datasets such as the one proposed in this thesis. This means
that there is room for contributions in this area. For example, it would be of great
scientific interest to characterize various parameters and network properties on such a
small scale from different areas in order to produce a standardize guideline for future
studies. Moreover, to fully describe the information transfer dynamics during motor
control we should account for the interactions between PMd and other structures
of the reaching network via simultaneous recordings (for further information see:
Ding and Gold, 2013; Gold and Shadlen, 2007; Hoshi, 2013; Huk and Shadlen,
2005; Kim and Shadlen, 1999; Wei et al., 2015). In this scenario, a graph-based
conceptualization of neural interactions, united with tools from information theory,
would be very profitable compared to more popular approaches based on analysis
of covariance between neurons or mesoscopic signals (e.g., Chandrasekaran et al.,
2017; Churchland et al., 2012; Clawson et al., 2019; Kaufman et al., 2016; Marcos
et al., 2013; Mattia et al., 2013) which are not straightforward in distinguishing
the specific contributions of single neurons (or discrete populations of neurons) to
the topology of network dynamics. Indeed, on one hand this range of methods
allows for a fine temporal description of neural variability but on the other, due to
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their nature, are neither capable to describe the information flow between neuronal
actors nor to provide quantitative insights on the topology of network connection
and its putative hierarchical organization. Without this all spectrum of details the
computational strategy underlying motor control (and neural circuitry computa-
tion in general) would be yet elusive. Recently some authors have have started to
follow the joint information theory-complex networks approach but for now only
on cortico-hippocampal (N. M. Timme et al., 2016) or somatosensory cortex slice
cultures data (Shimono and Beggs, 2015). However, we do not want to say that
a complex network approach is the universal panacea for neuroscience. Despite
its enormous generalizability that makes it transversal to different scientific fields,
graph theory is not entirely self-sufficient. Indeed, to reach a more detailed degree of
generalization, as well as reproducibility and predictability of experimental data as a
function of more in-depth biologically theoretical parameters, the graph-based tools
should be complemented with the historically more "classical" analytical modeling
and simulation approach (e.g. Brette et al., 2007; Chicca et al., 2003; Destexhe et al.,
1994; Mattia and Del Giudice, 2000, 2002; Moreno et al., 2002; Moreno-Bote et al.,
2007; Segev, 1998), the most recent biologically detailed models (Amsalem et al.,
2020; Gleeson et al., 2010 and references therein) and machine and deep learning
techniques (e.g. Kuzovkin et al., 2018; Mahmud, Kaiser, et al., 2018; Mazzucato
et al., 2015; Vahid et al., 2020; Yin and Zhang, 2018). One of the very few examples
in the literature in this sense is the recent work of Gu and colleagues (Gu et al.,
2019) who developed a novel circuit model and analyzed their properties through
graph theory tools linking the anatomical and physiological properties of a local
neural networks.
Notably, in a framework such as the one presented in this thesis neither any a priori
assumption nor a specific neural modelling technique is needed. Its completely
data-driven nature complements the most recent models for motor generation and
suppression (Boucher et al., 2007; Lo et al., 2009) and permits to overcome their
main limitation which reside in the requirement of many biophysical parameters
to be tweaked and tuned before fitting with acceptable accuracy the experimental
data. Given its features, the approach here presented has broad-spectrum impli-
cations, from the purely scientific side to the clinical one, via the technological
one. Indeed, alterations of connectivity in patients suffering from diseases with
motor impairment, as well as degenerative diseases such as Alzheimer’s, Autism
or Schizophrenia, have been observed in the literature using graph theory tools
(Bordier et al., 2018; Engels et al., 2018; Lynall et al., 2010; Tessitore et al., 2019 and
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references therein). Therefore, a network analysis able to identify the specific neu-
ronal actors contributing to a correct motor control and a non-pathological cognitive
condition is of great interest. This is because it can pave the way for tailor-made
translational investigations aimed at investigating the biological basis of aberrant
connectivity in pathological conditions and ultimately lead to clinical applications.
Moreover, the flexibility of the presented approach leads to the straightforward and
full characterization of network parameters and properties at all scales (from small
to large, see also Bardella et al., 2016) making it perfectly suitable for many of the
cutting-edge methods in motor control research. For example, graph-theory based
computations can be rapidly and easily integrated in the data analysis pipeline
of any optogenetic (such as in Bocchio et al., 2020) or brain-machine interface
experiment (Shanechi, 2019 for a detailed review). They would provide precious (if
not necessary) insights on the coordinated organization of neuronal assemblies, from
ensemble of single cells to network of networks. In the same way, the topological
study of the spatiotemporal patterns of neural activity would greatly facilitate
the real-time analysis of communications between cortical and spinal circuits with
direct applications in spinal cord injuries (Capogrosso et al., 2016), neuromorphic
(Chicca et al., 2007; Gupta et al., 2016) and motor prosthetics research (Kemere
et al., 2008) (for a review see Andersen et al., 2010). Furthermore, it is known
that to fully understand the neural mechanisms behind motor control future re-
search should focus on cortico-cortical and cortico-subcortical interactions through
simultaneous recordings. In this scenario a topological information-based approach
would be unquestionably necessary to gain an overall view and elicit detailed insights.

From the neurophysiological point of view this work further confirmed the key role
of PMd in movement control, highlighting the importance of in vivo recordings
from non-human primates as a fundamental benchmark for human motor system
researches. Indeed, as showed, the ability to promptly inhibit movements in response
to the environment changes relies on the concerted involvement of a wide brain
network, including both cortical and subcortical structures, in which PMd plays a
crucial role. Despite a detailed description of the single brain structures contribution
within this network, as well as a comprehensive description of the interactions among
them is still lacking, the stop-signal task has been crucial in elucidating some of
the mechanisms underlying response inhibition. Here we contributed using the
stop-signal paradigm to unpack the local, behavioural-dependent, organization of
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the PMd, which is made up of different neuronal classes and a hierarchy of neuronal
assemblies dominated by information-spreaders hubs nodes. In future studies the
attention should be thus focused in investigating the interaction between PMd and
other brain regions, in order to try describing, with the same topological accuracy,
the connectivity patterns among structures that rule movement inhibition. The
recording from multiple brain regions at the same time would be ideal to obtain a
full description of these interactions, especially in terms of a well-defined temporal
relationship between the activities of different brain regions. Through this approach,
it would be also possible to fill some limitations of the present work. Indeed,
while PMd activity clearly modulates in parallel with the behaviour under different
conditions, we cannot account for the information dynamic between PMd and other
structures of the reaching network. Another important limitation is the absence
of EMG recordings whose unavailability limits any speculation on the cause-effect
relationship between the found topological features of neural dynamics and muscle
activity. However, it should be stressed that the main goal of the work was providing
evidences for the principles of neuronal processing at the base of different behavioural
outputs, which is not necessarily linked to muscle activation in a direct manner.
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