On energy exchanges in hypersonic flows
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We present a new framework to quantitatively describe energy exchange in high-speed turbulent
flows, also including the hypersonic regime. Governing equations are introduced which control the
transport of the mean-field kinetic energy (k.. ), the turbulence kinetic energy (k:), the mean-field
internal energy (e, ), and the turbulence internal energy (e;). The common terms in the transport
equations are found to represent energy exchanges and interactions among k,, k¢, em, and e;. The
routes of energy exchange are then highlighted and quantified in hypersonic boundary-layer flow,
with special attention paid to effects of wall cooling.

Introduction.—Energy, which is a fundamental property in nature, may exist in different sensible forms within
a perfect heat-conducting gas, such as kinetic and internal energy. Energy exchanges between kinetic and internal
energy are known to play a leading role in aerodynamics and thermodynamics [1-3].

Several studies have investigated the transport of kinetic energy in incompressible turbulent flows [4-6], in which
the internal energy is a constant and the conversion between the kinetic and internal energy is only attributed to the
viscous work. In compressible flows processes of energy transformation are more complicated [1, 2], on account of
density variation and finite dilatation, and especially in hypersonic boundary layers, where the wall temperature is
usually lower than the recovery temperature of the free-stream flow. A growing body of studies has investigated the
flow dynamics of hypersonic boundary layers over cold walls [7-10], and the results have shown that both flow speed (as
expressed by the Mach number) and wall cooling can affect the mean and fluctuation properties significantly [11, 12].
In particular, it is known that the mean temperature gradient flips its sign over cold walls, which challenges the
validity of traditional modeling approaches based on mapping to an equivalent incompressible flow [13-16]. Wall
cooling acts to strengthen energy exchanges between kinetic and internal energy [17], which are associated with the
action of pressure. To date, very few studies have focused on energy exchanges in hypersonic turbulent boundary
layers and shed light on the underlying physical processes.

This letter reports on a full set of transport equations for describing routes of energy exchanges in compressible
flows, which we use to scrutinize hypersonic turbulent boundary layers with/without wall-cooling.

The Database.—Two direct numerical simulations (DNS) of spatially-developing zero-pressure-gradient hypersonic
turbulent boundary layers have been performed, with common free-stream Mach number My = 5.86, and with wall-to-
recovery temperature ratio T, /7T, set to 1.0 and 0.25, signifying adiabatic and cold wall conditions, respectively. A well
validated solver [18] of the three-dimensional compressible Navier-Stokes equations for a perfect heat-conducting gas
has been used for the purpose. The convective and viscous terms are discretized with a fifth-order weighted essentially
non-oscillatory (WENO) scheme and a sixth-order central difference scheme, respectively. A three-stage, third-order
Runge-Kutta scheme is adopted for time advancing. The convergence of all the flow statistics has been carefully
checked. Flow stations at approximately the same value of the friction Reynolds number Re, = 420 are hereafter
considered for comparison, where Re, = py,u 099/t with py, and g, denoting density and dynamic viscosity at the
wall, dgg the 99% boundary-layer thickness and u, the friction velocity.

Governing equations.—A full set of transport equations to describe energy exchanges in compressible turbulent
flows is herein derived. The transport equations of mean kinetic energy and turbulence kinetic energy, namely
km = % (p) {uiH{u;}, ke = L (pu/u}), are widely acknowledged [19] and expressed as
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where D - /Dt = 0 - /0t + 0 - {uy}/0xy. In (1), P accounts for production, Dy, for mean-flow convection, D} and
D} account for pressure and viscous diffusion of k,,, respectively, E for mean viscous work, II"™ for mean pressure-
dilatation, and ¢™P and ¢M" are associated with pressure and viscous actions, respectively. In (2), the terms Py,
#™MP and ¢pMV are the same as in (1), hence they are interpreted as yielding transfer energy between k,, and k;; Dy
is the turbulent convection, D, and D, account for pressure and viscous diffusion of k., respectively, € is the viscous
dissipation, and II? is the so-called pressure-strain term [3].

These expressions of the various terms are as follows
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where (-) and {-} denote Reynolds- and Favre-averaging operators (e.g. for an arbitrary variable &, {} = (p€) / (p))
respectively, and single and double primes denote fluctuations thereof. x; (i = 1,2, 3) is used to denote the streamwise,
wall-normal and spanwise direction, respectively, u; denotes the corresponding velocity components, ¢ is time, p is
the fluid density, p is the pressure, and 7;; is the viscous stress, expressed as p[(Ou;/dz; + Ou,;/0x;) — géijauk /0],
with p the dynamic viscosity and d;; the Kronecker delta.

In order to derive governing equations for mean and turbulence internal energy, we find it convenient to introduce
a new diagnostic variable ¢ = (C,T)/2? = ¢/ ((y — 1)7)1/2, where T is the absolute temperature, C, is the specific
heat at constant volume,  is the specific heat ratio, and ¢ = (7RT)1/ 2 is the sound speed. This formalism bears
the clear advantage that the internal energy becomes e = pg?, with obvious formal similarity with the expression of
the turbulence kinetic energy (k = 1/2pu?), thus allowing to draw clearer similarities and differences in terms of the
mechanisms underlying their exchanges. As a result of this definition, the expressions of the mean and turbulence
internal energies are as follows, e,,, = (p) {¢p}{¢} and e; = (pg” ¢"),

With e = pg?, the energy equation is rewritten as
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where ¢ is the heat flux vector. Let f = —0qx/0x, — pOuy/Oxy, + Ti;0u;/0x;, using mass conservation (4) can be
reformulated as
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Applying the Reynolds averaging procedure to (5) yields
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which, making use of average mass balance yields
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With help of the ideal gas state equation p = pRT, pressure is replaced with (7 — 1)p¢?, with its average value (p)
split into mean and turbulent contributions, namely (p,,) = (v — 1) {p) {¢o}H{ @}, (p:) = (v — 1) {pe'¢").
Using ({¢} - (6) + (p) {¢} - (7)), we obtain the transport equation for mean internal energy
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where P, accounts for turbulence internal energy production, D" for convection of mean internal energy, @) for heat
conduction, ITP™ is the mean flow contribution to pressure-dilatation, ¢, 7% and ¢ account for heat-conduction,



velocity-dilatation and viscous actions due to temperature variation, respectively. E and e are the same as those
in (1) and (2), thus representing energy exchanges between mean internal energy and mean and turbulence kinetic
energy, respectively. The expressions for the various terms in (8) are as follows
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By subtracting (7) from (5), a transport equation for fluctuation of ¢ is obtained,
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which we recast in divergence form
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Similarly, by taking (p¢” - (10) + ¢” - (11)), we obtain a transport equation for the turbulence internal energy
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where P., ¢4, ¢T¢, and ¢ are common to (8), and IIP is common to (2). Here, D! denotes turbulent convection
of e;, ITP* is the turbulent component of the pressure-dilatation, such that II"™ = TIP™ + IIP* (see (1), (8)),
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A similar attempt to derive evolution equations for mean and turbulence internal energy was made in the pioneering
work of Mittal and Girimaji [2]. However, their derivation was based on introduction of a pressure-like variable
(namely, (p/(y —1))'/?), rather than the sound-speed-based variable (¢) introduced in this study. As a consequence,
given that the turbulence Mach number and pressure fluctuations are small also in hypersonic boundary layers, the
budget terms in their pressure-based turbulence internal equations are vanishingly small as compared to the magnitude
of the kinetic contributions [17]. This is not the case in the present formalism, with major advantage in terms of
interpretation. Quantitative differences of the two approaches as regards the matching exchange terms will be referred
to below.

The transport equations (1), (2), (8), (12), constitute a comprehensive framework for the study of energy exchanges
between kinetic and internal energy modes, as expressed in their common terms. Note that the sum of these four
equations consequently recovers the average of the total energy equation. The overall possible pathways for energy
exchanges are outlined in figure 1. As one can see, the production terms of kinetic and internal energy (Py and P.)
transfer energy from the mean flow field to the fluctuating field, with additional k,, — k; transfer terms associated with
pressure work (¢P) and viscous action (¢?), and e,, — e; transfer terms associated with heat conduction (¢7?),
velocity dilatation (¢7?), and viscous action (¢7"). Energy exchanges between kinetic (k,,, and k;) and internal energy
(em and e;), are controlled by five interaction terms (E, ITP™, TIP*, € and I17). Based on the sketch reported in figure 1,
we now proceed to examine all possible routes of energy exchange by mining the DNS database.

Results and discussion.— The energy exchanges are quantified on the basis of equations (1), (2), (8), (12), with the
spatial derivatives calculated by a second-order central difference of the corresponding DNS data for the internal grid
points and the order of accuracy reduces to first order at the boundaries. Balance of each equation is well achieved,
reconfirming the accuracy of the derived transport equations.

The distributions of exchange terms are hereafter reported in wall units, namely using the friction velocity u, =
(Tw/ pw)l/ 2 as velocity scale, and §, = p/(pwt,) as length scale, where 7, is the wall friction. Wall units are
hereafter denoted with the 4+ superscript. This classical representation has been retained here, although alternative
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FIG. 1: Pathways for energy exchanges among mean and turbulence kinetic and internal energy. Solid arrows denote one-way
exchanges, while dashed arrows denote two-way (reversible) exchanges.
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FIG. 2: k., — k: exchanges: profiles of turbulence kinetic energy production and sum of pressure and viscous action associated
with density variation.

scalings [e.g. 9, 14] can yield greater universality of the distributions. Furthermore, the distributions of all quantities
as a function of the inner-scales wall distance (y*) are shown in semi-logarithmic scale, and in pre-multiplied form
(namely, each term is multiplied by ), in such a way that equal areas underneath the graphs correspond to equal
integrated contributions.

(a) Ky, — k; exchanges: The energy transfer between k,, and k; is determined by terms Py, ¢*? and ¢™v. Their
profiles are shown in figure 2. Positive value of the P,j term throughout the wall layer suggests that, in agreement
with classical interpretation, production withdraws energy from the mean flow field to feed turbulent fluctuations.
Under adiabatic wall conditions (black lines), a large amount of energy is transferred in the inner region (y* < 30),
with a primary peak at y™ ~ 12. A secondary peak is also present in the outer region, peaking at y* & 200, signifying
the generation of large-scale energy-containing turbulent motions [20, 21]. In the presence of wall cooling (blue lines),
the peaks of y*P,j become higher, as a direct result of mean thermodynamic properties variation, the influence of
which would be eliminated with application of a semi-local normalization [9], and the primary peak moves away from
the wall (in terms of wall units), whereas the second peak is barely affected. This result confirms that inner- to
outer-layer separation tends to be reduced from wall cooling [22].

The pressure work term ¢P and the viscous term ¢V are due to difference of Reynolds and Favre averages, as
a result of density variations. Since their magnitudes are 1-2 orders smaller than Py, their sum is plotted in figure
2. This is found to be negative in the inner region and positive in the outer region under adiabatic wall condition.
However, when the wall is cooled, positive values are also found in the near-wall region, indicating energy transfer
from k; to ky,. This switch is related to the change of sign of the net mass flux, (ul).

(b) e, — e exchanges: Figure 3 shows profiles of P., ¢7% ¢7? and ¢, which determine energy transfer between
em and e;. In figure 3, P is large and it remains positive across the whole boundary layer, indicating that internal
production withdraws energy from e,, to e;. This observation is physically reasonable, but quite different from what
is found in a pressure-based framework [2], in which the values of internal production are negligible and somehow
negative, even at Mach number as high as eight [17]. Different from P,j , a prominent peak of P is observed in the

€
outer region, which is mitigated by wall cooling. To explain this feature, we have checked the variations of two terms



| —A—y+P:, adiabatic

| -e—y+P:, cold

| <t y+¢Tq+, adiabatic
- y+¢Tq+, cold

A | '0'y+¢Td+, adiabatic
._. 1 "*"y+¢Td+, cold
">'y+¢5Tv+, adiabatic
..+..y+¢Tv+’ cold

FIG. 3: e,, — e; exchanges: profiles of turbulence internal energy production, heat-conduction, velocity-dilatation and viscous
action associated with temperature variation.
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FIG. 4: km — em exchanges: profiles of mean viscous work and mean-flow pressure-dilatation.

contributing to P, namely 0{¢}/0y and (pul¢”), which account for the wall-normal conductive and turbulent heat
flux, respectively. We find that generation of P. in the outer layer is primarily related to turbulent heat flux, whose
reduction in the cold case causes P, attenuation (not shown). Since the wall-normal motions from higher-temperature
to lower-temperature regions communicate positive ¢ fluctuations [23], these two terms are always opposite in sign,
in such a way that P, stays positive throughout the wall layer, regardless of the wall conditions.

The heat conduction term ¢ is found to mainly transfer energy from e; to e,,, whereas the velocity dilatation term
»T? plays a competing role. In the presence of wall cooling, both terms are weakened, except in the viscous sublayer
(say, y* < 5), where heat conduction is relatively dominant. In contrast, viscous work ¢ yields slight redistribution
of energy from e; to e, for y= < 9, with reversal at larger wall distance, in the adiabatic case. With wall cooling, this
term always draws energy from mean flow to turbulence. In general, we find that wall cooling introduces remarkable
modification of the energy transfer mechanisms in the very-near-wall region.

(¢) km —em exchanges: Two factors, namely mean viscous work E and mean flow contribution to pressure-dilatation
IIP™ control the energy exchange between k,, and e,,, as depicted in figure 4. Both terms withdraw energy from
km to e, primarily in the inner wall layer. Wall cooling shifts their peaks farther from the wall, with the E+ peak
increasing, and the II?™* peak decreasing. The energy transfer via IIP™ vanishes near the wall, and it tends to be
more concentrated in the outer region at Ty, /T, = 0.25, which is mainly associated with the variation of 9 (ug)/dxy
(see (9)).

(d) km — e; exchanges: The turbulent contribution to mean pressure-dilatation IIP¢ transfers energy from e; to kyy,.
Its profile is not shown as its magnitude is very small, and it can be safely ignored, at least at the Mach number and
wall temperatures under scrutiny.

(e) ki — e exchanges: The viscous dissipation € converts turbulence kinetic energy into heat [24]. Its profile is
shown in figure 5, which clarifies that wall cooling enhances transfer significantly. The viscous dissipation e can be split
into contributions along the streamwise, wall-normal and spanwise directions, namely ¢;; = (7], 0u} /0xy) i =1,2,3.
Figure 5 shows that the streamwise contribution £1; dominates over the others, and all contributions are amplified
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FIG. 5: ki — e, exchanges: profiles of viscous dissipation and its contributions along the streamwise, wall-normal, and spanwise
directions.
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directions.

and shifted away from the wall by wall cooling.

(f) kt — e; exchanges: The interaction between k; and e; is controlled by the pressure-strain term IT?, as displayed
in figure 6. This term is exclusive to compressible flows owing to non-zero dilatation, and it has been applied as
an explicit indicator to measure genuine compressibility effects [25]. Pressure-strain is mainly confined to y* < 10,
converting k; into e;. When the wall is cooled, higher values of II? are observed, which corroborates the idea that
wall cooling promotes compressibility effects, consistent with observation made by Duan et al. [11] and Chu et al.
[26]. Nonetheless, its magnitude is still quite small, as its integrated value throughout the boundary layer is less than
2% of the energy transfer from k,, to k;.

Similar to viscous dissipation, the pressure-strain term can be split into components associated with coordinate
directions, namely IT¥, = (p'Ou} /dz;) ,i = 1,2,3, which act to exchange energy between different velocity components,
and whose profiles are shown in figure 6. Negative values of I, and positive values of IT5, and IT;; suggest that energy
is primarily transfered from k1 to k; o and k3 (here, ki ; = 1/2 (puju),i = 1,2,3). Due to wall impermeability,
34*1’[’2’2+ is negative near the wall, and it mainly redistributes k; 2 to k; 3, owing to the effect of quasi-streamwise
vortices [5]. Wall cooling causes the energy exchange to take place farther from the wall in terms of 4™, and the peak
magnitude to increase.

Summary.—In this letter, we have presented a novel theoretical framework to analyze energy exchanges in com-
pressible flows, which we have used to analyze the effects of wall cooling in hypersonic turbulent boundary layers,
based on a high-fidelity numerical database. Formulation of suitable transport equations for mean and turbulent con-
tributions to kinetic and internal energy leads us to clearly identify multiple routes of energy exchange, as outlined in
figure 1. Especially meaningful in this respect is the formulation of the internal energy transport equations in terms of
a sound-speed-like variable, which has the clear advantage of yielding full structural similarity with the kinetic energy
transport equations, thus allowing to illuminate more neatly the mechanisms of energy exchange. For the specific
case of hypersonic turbulent boundary layers, we find dominant energy interactions to be production (Py in k,, — k;
and P, in e,, — e;), heat conduction (®79 in e, — e;), mean pressure-dilatation (II?™ in k,, — e,,), and dissipation (E



in ky, — e, and € in k; — e,,). The occurrence of wall cooling yields significant variations in energy exchanges, with
common tendency for leading mechanisms to take place farther from the wall, in terms of wall units. We anticipate
that the formalism herein established can facilitate more systematic and in-depth studies on compressible flows within
an energetic framework, not limited to the case of wall-bounded flows which we have considered as an example. We
also expect that the present study can help the development of physics-informed models for compressible turbulence
in the class of RANS (Reynolds-averaged Navier-Stokes) [27], and LES (large-eddy-simulation) [28], which currently
heavily hinge on variable-density extrapolation of their incompressible counterparts.
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China.
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