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Preface

This volume contains the papers presented at CSR2022, the 17th International Computer
Science Symposium in Russia, held online during June 29 – July 1, 2022. CSR covers
a wide range of areas in theoretical computer science and its applications. Initially,
CSR 2022 was planned as a satellite event for the International Congress of Mathemati-
cians (ICM) in St. Petersburg, Russia. However, as the Program Committee (PC) was
starting its deliberations after completing submission reviews, Russia attacked Ukraine.
As a result, ICM and CSR 2022 were moved online. Many PC members expressed dis-
may at the attack and three PC members resigned. Others chose to continue their work,
but many wanted to emphasize that they did not support or condone the actions of the
Russian government against Ukrainian people.

We received 51 submissions, and out of these the Program Committee selected 21
papers for presentation at the symposium and for publication in the proceedings. Each
submission was reviewed by at least three Program Committee members. Submissions
by Program Committee members were reviewed by at least four other members of the
Program Committee.

The opening lecture at CSR 2022 was given by Umesh Vazirani (University of
California at Berkeley), the closing lecture was given by Mark Braverman (Princeton
University). Three invited plenary lectures were given by Irit Dinur (Weizmann Institute
of Science), Jelani Nelson (University of California at Berkeley), and Mary Wootters
(Stanford University).

Many people and organizations contributed to the smooth running and the success
of CSR 2022. In particular, our thanks go to

– all authors who submitted their work to CSR;
– themembers of the ProgramCommittee who graciously devoted their time and energy
to the evaluation process;

– the expert reviewers who helped us evaluate the papers;
– the invited speakers; and
– the members of the local Organizing Committee who made the conference possible.

May 2022 Alexander S. Kulikov
Organizing Committee Chair

Sofya Raskhodnikova
Program Committee Chair
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Abstract. Given a set of terminal pairs on the external face of an undi-
rected unweighted planar graph, we give a linear-time algorithm for com-
puting the union of non-crossing shortest paths joining each terminal
pair, if such paths exist. This allows us to compute distances between
each terminal pair, within the same time bound.

We also give a novel concept of incremental shortest path subgraph of
a planar graph, i.e., a partition of the planar embedding in subregions
that preserve distances, that can be of interest itself.

Keywords: planar graphs · non-crossing paths · shortest paths ·
undirected unweighted graphs · multiple pairs · external face

1 Introduction

The problem of computing shortest paths in planar graphs arises in application
fields such as intelligent transportation system (ITS) and geographic information
system (GIS) [22,36], route planning [6,16,30], logistic [27], traffic simulations [3]
and robotics [23]. In particular, non-crossing paths in a planar graph are studied
to optimize VLSI layout [7], where two non-crossing paths may share edges and
vertices, but they do not cross each other in the plane.

We are given a planar graph G = (V,E), where V is a set of n vertices and
E is a set of edges, with |E| = O(n). The graph has a fixed embedding, and we
are also given a set of k terminal pairs (s1, t1), (s2 , t2 ), . . . , (sk, tk) lying on the
external face of G. The non-crossing shortest paths problem (NCSP problem)
consists in computing the union of k non-crossing shortest paths in G, each
joining a terminal pair (si, ti), provided that such non-crossing paths exist (they
exist if and only if the terminal pairs are well-formed, see Subsect. 2.2).

c⃝ Springer Nature Switzerland AG 2022
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State of the Art. Takahashi et al. [33] solved the NCSP problem in a non-negative
edge-weighted planar graph in O(n log k) time (actually, in their paper the time
complexity is O(n log n), that can easily reduced to O(n log k) by applying the
planar single source shortest path algorithm by Henzinger et al. [20]). Their
result is improved by Steiger in O(n log log k) time [32], exploiting the algorithm
by Italiano et al. [21]. These two algorithms maintain the same time complexity
also in the unweighted case.

Our Results. In this paper, we solve the NCSP problem on unweighted planar
graphs in O(n) time. We improve, in the unweighted case, the results in [32,33].
By applying the technique in [4] we can compute distances between all terminal
pairs in linear time.

Our algorithm relies on two main results:

– an algorithm due to Eisenstat and Klein [11], that gives in O(n) time an
implicit representation of a sequence of shortest-path trees in an undirected
unweighted planar graph G, where each tree is rooted in a vertex of the
external face of G. Note that, if we want to compute shortest paths from
the implicit representation of shortest path trees given in [11], then we spend
Θ(kn) time; this happens when all k shortest paths share a subpath of Θ(n)
edges.

– the novel concept of incremental shortest paths (ISP) subgraph of a graph
G, introduced in Sect. 3, that is a subgraph incrementally built by adding
a sequence of shortest paths in G starting from the infinite face of G. We
show that an ISP subgraph of G partitions the embedding of G into distance
preserving regions, i.e., for any two vertices a, b in G lying in the same region
R it is always possible to find a shortest path in G joining a and b that is
contained in R.

Related Work. Our article fits into a wider context of computing many distances
in planar graphs. In the positive weighted case, the all pairs shortest paths
(APSP) problem is solved by Frederickson in O(n2 ) time [14], while the single
source shortest paths (SSSP) problem is solved in linear time by Henzinger
et al. [20]. The best known algorithm for computing many distances in planar
graphs is due to Gawrychowski et al. [15] and it allows us to compute the distance
between any two vertices in O(log n) time after a preprocessing requiring O(n3/2 )
time. In the planar unweighted case, SSSP trees rooted at vertices in the external
face can be computed in linear time as in [11]. More results on many distances
problem can be found in [8–10,13,28,29].

If we are interested in distances from any vertex in the external face to any
other vertex, then we can use Klein’s algorithm [24] that, with a preprocessing
of O(n log n) time, answers to each distance query in O(log n) time.

Kowalik and Kurowski [25] deal with the problem of deciding whether any
two query vertices of an unweighted planar graph are closer than a fixed constant
k. After a preprocessing of O(n) time, their algorithm answers in O(1) time, and,
if so, a shortest path between them is returned.
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Non-crossing shortest paths are also used to compute max-flow in undirected
planar graphs [18,19,31]. In particular, they are used to compute the vitality of
edges and vertices with respect to the max-flow [1,2,5].

Balzotti and Franciosa [4] show that, given the union of a set of non-crossing
shortest paths in a planar graph, the lengths of each shortest path can be com-
puted in linear time. This improves the result of [33], that can only be applied
when the union of the shortest paths is a forest.

Wagner and Weihe [35] present an O(n) time algorithm for finding edge-
disjoint (not necessarily shortest) paths in a undirected planar graph such that
each path connects two specified vertices on the infinite face of the graph.

Improved Results. We specialize the problem of finding k non-crossing short-
est paths in [33] to the unweighted case, decreasing the time complexity from
O(n log k) to O(n) (for every k). Therefore, in the case of unweighted graphs we
improve the results in [12,26,34].

Erickson and Nayyeri [12] generalized the work in [33] to the case in which
the k terminal pairs lie on h face boundaries. They prove that k non-crossing
paths, if they exists, can be found in 2O(h2)n log k time. Applying our results, if
the graph is unweighted, then the time complexity decreases to 2O(h2)n.

The same authors of [33] used their algorithm to compute k non-crossing
rectilinear paths with minimum total length in a plane with r obstacles [34].
They found such paths in O(n log n) time, where n = r + k, which reduces to
O(n) time if the graph is unweighted by using our results.

Kusakari et al. [26] showed that a set of non-crossing forests in a planar graph
can be found in O(n log n) time, where two forest F1 and F2 are non-crossing if
for any pair of paths p1 ⊆ F1 and p2 ⊆ F2 , p1 and p2 are non-crossing. With our
results, if the graph is unweighted, then the time complexity becomes linear.

Our Approach. We represent the structure of terminal pairs by a partial order
called genealogy tree. We introduce a new class of graphs, ISP subgraphs, that
partition a planar graph into regions that preserve distances. Our algorithm is
split in two parts.

In the first part we use Eisenstat and Klein’s algorithm that gives a sequence
of shortest path trees rooted in the vertices of the external face. We choose some
specific shortest paths from each tree to obtain a sequence of ISP subgraphs
X1, . . . Xk. By using the distance preserving property of regions generated by ISP
subgraphs’, we prove that Xi contains a shortest si-ti path, for all i ∈ {1, . . . , k}.

In the second part of our algorithm, we extract from each Xi a shortest si-ti
path and we obtain a set of non-crossing shortest paths that is our goal. In this
part we strongly use the partial order given by the genealogy tree.

Structure of the Paper. After giving some definitions in Sect. 2, in Sect. 3 we
explain the main theoretical novelty. In Sect. 4 first we resume Eisenstat and
Klein’s algorithm in Subsect. 4.1, then in Subsects. 4.2 and 4.3 we show the
two parts of our algorithm, and we prove the whole computational complexity.
Conclusions are given in Sect. 5.
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2 Definitions

Let G be a plane graph, i.e., a planar graph with a fixed planar embedding. We
denote by f∞

G (or simply f∞) its unique infinite face, it will be also referred to
as the external face of G. Given a face f of G we denote by ∂f its boundary
cycle. Topological and combinatorial definitions of planar graph, embedding and
face can be found in [17].

We recall standard union and intersection operators on graphs, for conve-
nience we define the empty graph as a graph without edges.

Definition 1. Given two undirected (or directed) graphs G = (V (G), E(G)) and
H = (V (H), E(H)), we define the following operations and relations:

– G ∪ H = (V (G) ∪ V (H), E(G) ∪ E(H)),
– G ∩ H = (V (G) ∩ V (H), E(G) ∩ E(H)),
– G ⊆ H ⇐⇒ V (G) ⊆ V (H) and E(G) ⊆ E(H),
– G \H = (V (G), E(G) \ E(H)).

Given an undirected (resp., directed) graph G = (V (G), E(G)), given an edge
(resp., dart) e and a vertex v we write, for short, e ∈ G in place of e ∈ E(G)
and v ∈ G in place of v ∈ V (G).

We denote by uv the edge whose endpoints are u and v and we denote
by −→uv the dart from u to v. For every dart −→uv we define rev[−→uv] = −→vu and
head[−→uv] = v. For every vertex v ∈ V (G) we define the degree of v as deg(v) =
|{e ∈ E(G) | v is an endpoint of e}|.

For each ℓ ∈ N we denote by [ℓ] the set {1, . . . , ℓ}.
Given a (possibly not simple) cycle C, we define the region bounded by C,

denoted by RC , as the maximal subgraph of G whose external face has C as
boundary.

2.1 Paths and Non-crossing Paths

Given a directed path p we denote by p its undirected version, in which each
dart

−→
ab is replaced by edge ab; moreover, we denote by rev[p] its reverse version,

in which each dart
−→
ab is replaced by dart

−→
ba.

We say that a path p is an a-b path if its extremal vertices are a and b; clearly,
if p is a directed path, then p starts in a and it ends in b. Moreover, given i ∈ [k],
we denote by i-path an si-ti path, where si, ti is one of the terminal pairs on the
external face.

Given an a-b path p and a b-c path q, we define p ◦ q as the (possibly not
simple) a-c path obtained by the union of p and q.

Let p be a simple path and let a, b ∈ V (p). We denote by p[a, b] the subpath
of p with extremal vertices a and b.

We denote by w(p) the length of a path p of a general positive weighted
graph G. If G is unweighted, then we denote the length of p as |p|, that is the
number of edges.
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We say that two paths in a plane graph G are non-crossing if the (undi-
rected) curves they describe in the graph embedding do not cross each other,
non-crossing paths may share vertices and/or edges or darts. This property obvi-
ously depends on the embedding of the graph; a combinatorial definition of
non-crossing paths can be based on the Heffter-Edmonds-Ringel rotation prin-
ciple [17]. Crossing and non-crossing paths are given in Fig. 1.

Fig. 1. paths in (a) and (b) are crossing, while paths in (c) and (d) are non-crossing.

2.2 Genealogy Tree

W.l.o.g., we assume that terminal pairs are distinct, i.e., there is no pair i, j ∈ [k]
such that {si, ti} = {sj , tj}. Let γi be the path in f∞

G that goes clockwise from
si to ti, for i ∈ [k]. We also assume that pairs {(si, ti)}i∈[k] are well-formed,
i.e., for all j, ℓ ∈ [k] either γj ⊂ γℓ or γj ⊃ γℓ or γj and γℓ have no common
edges; otherwise it can be easily seen that it is not possible to find a set of k
non-crossing paths joining terminal pairs. This property can be easily verified
in linear time, since it corresponds to checking that a string of parentheses is
balanced, and it can be done by a sequential scan of the string.

We define here a partial ordering as in [4,33] that represents the inclusion
relation between γi’s. This relation intuitively corresponds to an adjacency rela-
tion between non-crossing shortest paths joining each pair. Choose an arbitrary
i∗ such that there are neither sj nor tj , with j ̸= i∗, walking on f∞ from si∗
to ti∗ (either clockwise or counterclockwise), and let e∗ be an arbitrary edge on
that walk. For each j ∈ [k], we can assume that e∗ ̸∈ γj , indeed if it is not true,
then it suffices to switch sj with tj . We say that i ≺ j if γi ⊂ γj . We define
the genealogy tree TG of a set of well-formed terminal pairs as the transitive
reduction of poset ([k], ≺ ). W.l.o.g., we assume that i∗ = 1, hence the root of
TG is 1.

If i ≺ j, then we say that i is a descendant of j and j is an ancestor of i.
Moreover, we say that j is the parent of i, and we write p(i) = j, if i ≺ j and
there is no r such that i ≺ r and r ≺ j. Figure 2 shows a set of well-formed
terminal pairs, and the corresponding genealogy tree for i∗ = 1.

From now on, in all figures we draw f∞
G by a solid light grey line. W.l.o.g.,

we assume that the external face is a simple cycle, hence, G is a biconnected
graph. Indeed, if not, it suffices to solve the NCSP problem in each biconnected
component.
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Fig. 2. on the left a set of well-formed terminal pairs. Any value in {1, 3, 5, 7} can be
chosen as i∗. If we choose i∗ = 1, then we obtain the genealogy tree on the right.

3 ISP Subgraphs

In this section we introduce the concept of incremental shortest paths (ISP) sub-
graph of a graph G, that is a subgraph incrementally built by adding a sequence
of shortest paths in G starting from f∞

G (see Definition 2). The interest towards
ISP subgraphs is due to the fact that for any two vertices a, b in G lying in a
same face f of the ISP subgraph there is always a shortest path in G joining a
and b contained in f (boundary included). All the results of this section hold for
positive weighted graphs, where the length of a path is the sum of edge weights
instead of the number of edges.

This is the main novel result of this paper, that allows us to prove that, in
order to build the union of shortest paths joining terminal pairs, we can start
from the union of some of the shortest paths computed by the algorithm in [11].

Definition 2. A graph X is an incremental shortest paths (ISP) subgraph of
a positive weighted graph G if X = Xr, where X0, X1, . . . , Xr is a sequence of
subgraphs of G built in the following way: X0 = f∞

G and Xi = Xi−1 ∪ pi, where
pi is a shortest xi-yi path in G with xi, yi ∈ Xi−1.

Remark 1. All degree one vertices of an ISP subgraph of G are in f∞
G .

We define now operator ↓, that given a path π and a cycle C, in case π crosses
C, replaces some subpaths of π by some portions of C, as depicted in Fig. 3(b).
We observe that π ↓ ∂f could be not a simple path even if π is.

Definition 3. Let C be a cycle in a positive weighted graph G. Let a, b be two
vertices in RC and let π be a simple a-b path. In case π ⊆ RC we define
π ↓ C = π. Otherwise, let (v1, v2 , . . . , v2r) be the ordered subset of vertices of π
that satisfies the following: π[a, v1] ⊆ RC , π[v2r, b] ⊆ RC , π[v2 i−1, v2 i] and RC

have no common edges and π[v2 i, v2 i−1] ⊆ RC , for all i ∈ [r]. For every i ∈ [r],
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let µi be the v2 i−1-v2 i path on C such that the region bounded by µi ◦π[v2 i−1, v2 i]
does not contain RC . We define π ↓ C = π[a, v1] ◦ µ1 ◦ π[v2 , v3] ◦ µ2 . . . ◦
π[v2r−2 , v2r−1] ◦ µr ◦ π[v2r, b].

Definition 2 and Definition 3 are depicted in Fig. 3.

Fig. 3. (a) an ISP subgraph X of G; extremal vertices xi, yi of pi are drawn, for i ∈ [5].
Different faces of X have different colors. An example of Definition 3 is given in (b).

In the following theorem we show that, given any face f of an ISP subgraph
X of G, every path π in G whose extremal vertices are in R∂f is not shorter
than π ↓ ∂f .

Theorem 1. Let X be an ISP subgraph of a positive weighted graph G. Let f
be any face of X, and let a, b be two distinct vertices in R∂f . For any a-b path
π we have w(π ↓ ∂f) ≤ w(π).

Proof. Let {Xi}i∈[r] be the sequence of ISP subgraphs such that X = Xr, and
let pi be the path that builds Xi from Xi−1. We assume that pi has no vertices in
Xi−1 other than its endpoints xi and yi, otherwise we can split pi on intersections
with Xi−1 and repeatedly apply the same proof to each portion of pi. We prove
the thesis by induction on j for every choice of a face f of Xj , a, b ∈ R∂f and
a-b path π.

In the base case, where j = 1, there are exactly two faces A and B in X1

other than f∞
G . Let a, b ∈ V (R∂A) (the same argument holds for B) and let π

be any a-b path. In case π ⊆ R∂A we have π ↓ ∂A = π, hence the thesis trivially
holds. In case π ̸⊆ R∂A, then π ↓ ∂A is not longer than π because some subpaths
of π have been replaced by subpaths of p1 with the same extremal vertices and
p1 is a shortest path.

We assume that the thesis holds for all i < j and we prove it for j. Let f be
a face of Xj and let f ′ be the unique face of Xj−1 such that f ⊂ f ′ (Fig. 4(a)
and Fig. 4(b) show faces f and f ′, respectively). Let a, b ∈ V (R∂f ) and let π be
an a-b path. Three cases may occur:
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case π ⊆ R∂f : the thesis trivial holds, since π ↓ ∂f = π;
case π ⊆ R∂f ′ and π ̸⊆ R∂f : since π ⊆ R∂f ′ and π ̸⊆ R∂f , then π crosses pj an

even number of times, thus π ↓ ∂f is not longer than π, since some subpaths
of π have been replaced by subpaths of pj with the same extremal vertices
and pj is a shortest path (see Fig. 4(c) where π is the red and dashed path);

case π ̸⊆ R∂f ′ : since f ⊆ f ′, it is easy to see that π ↓ ∂f = (π ↓ ∂f ′) ↓ ∂f .
Let us consider π′ = π ↓ ∂f ′. By induction, it holds that w(π′) ≤ w(π). We
observe now that π′ ⊆ R∂f ′ and π′ ̸⊆ R∂f , hence the previous case applies,
showing that w(π′ ↓ ∂f) ≤ w(π′). Finally, the two previous inequalities
imply w(π ↓ ∂f) ≤ w(π ↓ ∂f ′) ≤ w(π) (see Fig. 4(c) where π is the green
and continue path). ⊓1

Fig. 4. in (a) and (b) faces f and f ′ build on the ISP graph in Fig. 3(a). In (c) we
depict the second and third case of the proof of Theorem 1.

We can state now the main property of ISP subgraphs.

Corollary 1. Let X be an ISP subgraph of G and let f be any face of X. For
every a, b ∈ R∂f there exists a shortest a-b path of G contained in R∂f .
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4 Our Algorithm

We summarize in Subsect. 4.1 the result of Eisenstat and Klein’s paper [11], that
deals with the multiple-source shortest paths problem. For the sake of clarity,
we split our algorithm in two parts:

– in Subsect. 4.2 we introduce algorithm NCSPsupergraph, that builds a
sequence {Xi}i∈[k] of subgraphs ofG such thatXk contains a shortest path for
each terminal pair, and it possibly contains some extra edges. We anticipate
that Xi ∪ f∞

G is an ISP subgraph of G, for all i ∈ [k].
– in Subsect. 4.3 we present algorithm NCSPunion that, by using the sequence
of graphs {Xi}i∈[k] found by algorithm NCSPsupergraph, builds a directed
graph that is exactly the union of the shortest directed paths joining each
terminal pair contained in the output of algorithm NCSPsupergraph.

4.1 Eisenstat and Klein’s Result

The algorithm in [11] takes as input an undirected unweighted planar graph
G, where v1, v2 , . . . , vr is the sequence of vertices in the external face of G in
clockwise order, and returns an implicit representation of a sequence of shortest
path trees Ti, for i ∈ [r], where each Ti is rooted in vi.

The sequence of trees Ti, for i ∈ [r], is represented by explicitly listing the
darts in T1, and listing the darts that are added to transform Ti into Ti+1, for
1 < i ≤ r (for each added dart from x to y, the unique dart that goes to y
in Ti is deleted; with the only two exceptions of the added dart leading to vi,
and the deleted dart leading to vi+1). Hence, the output of their algorithm is
T1 and a sequence of sets of darts. A key result in [11] shows that if a dart d
appears in Ti+1 \ Ti, then d cannot appear in any Tj+1 \ Tj , for j > i. Thus the
implicit representation of the sequence of shortest path trees has size O(n). This
representation can be computed in O(n) time.

4.2 Algorithm NCSPsupergraph

Algorithm NCSPsupergraph builds a sequence {Xi}i∈[k] of subgraphs of G by
using the sequence of shortest path trees given by Eisenstat and Klein’s algo-
rithm. We point out that we are not interested in the shortest path trees rooted
at every vertex of f∞

G , but we only need the shortest path trees rooted in si’s.
So, we define Ti as the shortest path tree rooted in si, for i ∈ [k], i.e., Ti = Tsi .
We denote by Ti[v] the path in Ti from si to v.

The algorithm starts by computing the first subgraph X1, that is just the
undirected 1-path in T1, i.e., T1[t1] (we recall that all Ti’s trees given by algorithm
in [11] are rooted directed tree, thus T1[t1] is the undirected version of T1). Then
the sequence of subgraphs Xi, for i = 2, . . . , k is computed by adding some
undirected paths extracted from the shortest path trees Ti’s defined by Eisenstat
and Klein’s algorithm.
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We define the set Hi ⊆ Xi of vertices h such that at least one dart d is added
while passing from Ti−1 to Ti such that head[d] = h. Hence, Hi is the set of
vertices of Xi whose parent in Ti differs from the parent in Ti−1. At iteration i,
we add path Ti[h] to Xi, for each h in Hi.

Algorithm NCSPsupergraph:
Input: an undirected unweighted planar embedded graph G and k well-formed

terminal pairs of vertices (si, ti), for i ∈ [k], on the external face of G
Output: an undirected graph Xk that contains a set of non-crossing paths

P = {π1, . . . ,πk}, where πi is a shortest si-ti path, for i ∈ [k]
1 Compute a shortest path tree T1 rooted in s1;

2 X1 = T1[t1];
3 for i = 2, . . . , k do
4 Xi = Xi−1;
5 Compute Ti from Ti−1 by the algorithm of Eisenstat and Klein [11];
6 Compute the set Hi of vertices of Xi whose parent in Ti differs from the

parent in Ti−1;

7 For all h ∈ Hi, Xi = Xi ∪ Ti[h];
8 Let ηi be the undirected path on Ti that starts in ti and walks backwards

until a vertex in Xi is reached;
9 Xi = Xi ∪ ηi;

Lemma 1. Algorithm NCSPsupergraph has O(n) time complexity.

Proof. Eisenstat and Klein’s algorithm requires O(n) time, implying that the
Hi’s and the Ti’s can be found in O(n) time. Algorithm NCSPsupergraph visits
each edge of G at most O(1) times (in Line 7, Ti[h] can be found by starting
in h and by walking backwards on Ti until a vertex of Xi is found). The thesis
follows. ⊓1

Figure 5 shows how algorithm NCSPsupergraph builds X4 starting from X3.
Starting from X3 in Fig. 5(a), Fig. 5(b) shows the darts whose head is in H4.
Consider the unique dart d whose head is the vertex x: we observe that d is
already in X3, this happens because rev[d] ∈ T3[t3]. Indeed, it is possible that
at iteration i some portions of some undirected paths that we add in Line 7 are
already in Xi−1. Figure 5(c) highlights

⋃
h∈H4

T4[h] and η4, while in Fig. 5(d) X4

is drawn.
Subgraphs {Xi}i∈[k] built by algorithm NCSPsupergraph, together with f∞

G ,
satisfy all the hypothesis of Theorem 1. Indeed, paths added in Line 7 and Line 9
are shortest paths in G joining vertices in Xi−1, thus fulfilling Definition 2. So,
we exploit Theorem 1 to prove that Xi contains an i-path, for i ∈ [k], and, in
particular, Xk contains a set of non-crossing paths P = {π1, . . . ,πk}, where πi

is a shortest i-path, for i ∈ [k]. The main idea is to show that Xi contains an
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Fig. 5. algorithm NCSPsupergraph: graph X4 is built starting from X3.

undirected path that has the same length as the shortest i-path found by the
algorithm by Eisenstat and Klein. This is proved in Theorem 2.

Given a subgraph X of G, we say that an i-path p is the leftmost i-path in
X if for every i-path q ⊆ X it holds Rp◦γi ⊆ Rq◦γi .

We say that an undirected path p always turns left if p chooses the leftmost
edge, w.r.t. the fixed embedding, in each vertex going from a to b, where a
and b are the extremal vertices of p. Note that not the leftmost a-b path is not
necessarily the path that starts in a and always turns left until b is reached.

Theorem 2. Let πi be the undirected leftmost i-path in Xi, for i ∈ [k]. The
following statements hold:

2.(1) πi is the si-ti path in Xi that always turns left, for i ∈ [k],
2.(2) πi is a shortest i-path, for i ∈ [k],
2.(3) for all i, j ∈ [k], πi and πj are non-crossing.

Proof. We prove all the statements separately.

2.(1) For convenience, for every i ∈ [k], let λ i be the undirected path on Xi

that starts in si and always turns left until it reaches either ti or a vertex
x of degree one in Xi; we observe that λ i is well defined and, by Remark 1,
x ∈ f∞

G . We have to prove that λ i = πi.
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Let i ∈ [k]. First, we observe that si ∈ Xi because si−1 ∈ Hi, thus, by Line 7,
Ti[si−1] ⊆ Xi. This implies si ∈ Xi as we have claimed.
Let x be the extremal vertex of λ i other than si. Assume by contradiction that
x ̸= ti. Two cases are possible: either x ∈ V (f∞

G ) \ V (γi) or x ∈ V (γi) \ {ti}.
The first case cannot occur because Line 7 and Line 9 imply Ti[ti] ⊆ Xi, thus
λ i would cross ηi, absurdum. In the second case, let us assume by contradiction
thatx ∈ V (γi)\{ti}. Let d ∈ λ i be the dart such that head[d] = x. By definition
of λ i, vertex x has degree one in Xi. By Line 2, Line 7 and Line 9, all vertices
with degree one are equal to either sℓ or tℓ, for some ℓ ∈ [k], and this implies
that there exists j < i such that x ∈ {sj , tj}. This is absurdum because there
is not sj or tj in V (γi) \ {si, ti} such that j < i. Hence λ i is an i-path, and, by
its definition, λ i is the leftmost i-path in Xi. Therefore λ i = πi.

2.(2) We prove that πi is a shortest i-path by using Theorem 1, indeed, Xi∪f∞
G

is an ISP subgraph ofG by construction. LetG′ be the graph obtained fromG
by adding a dummy path q from si to ti in f∞

G with high length (for example,
|q| = |E(G)|). Let C be the cycle πi ◦ q. We observe that Ti[ti] ↓ C = πi and
C is the boundary of a face of G′. Thus, by Theorem 1, |πi| ≤ |Ti[ti]|. Since
Ti[ti] is a shortest path, then πi is a shortest path in G′, hence it also is a
shortest path in G.

2.(3) Let us assume by contradiction that there exist i, j ∈ [k] such that πi

and πj are crossing, with i < j. Thus πj has not turned always left in Xj ,
absurdum. ⊓1

4.3 Algorithm NCSPunion

The graph Xk given by the algorithm NCSPsupergraph contains a shortest path
for each terminal pair, but Xk may also contain edges that do not belong to any
shortest path. To overcome this problem we apply algorithm NCSPunion, that
builds a directed graph Yk =

⋃
i∈[k] ρi, where ρi is a directed shortest i-path, for

i ∈ [k]. Moreover, we prove that Yk can be built in linear time. This implies that,
by using the results in [4], we can compute the length of all shortest i-paths, for
i ∈ [k], in O(n) time (see Theorem 4).

We use the sequence of subgraphs {Xi}i∈[k]. By Theorem 2, we know that
Xi contains a shortest undirected i-path πi and we can list its edges in O(|πi|)
time. But if an edge e is shared by many πi’s, then e is visited many times. Thus
obtaining

⋃
i∈[k] πi by this easy procedure requires O(kn) time. To overcome this

problem, we should visit every edge in
⋃

i∈[k] πi only a constant number of times.
Now we introduce two useful lemmata the will be used later. The first lemma

shows that two uncomparable directed paths πi and πj (i.e., such that i ̸≺ j and
j ̸≺ i) in the genealogy tree TG cannot share a dart, although it is possible
that

−→
ab ∈ πi and

−→
ba ∈ πj . The second lemma deals with the intersection of

non-crossing paths joining comparable pairs.

Lemma 2. Let πi be a shortest directed i-path and let πj be a shortest directed
j-path, for some i, j ∈ [k]. If j is not an ancestor neither a descendant of i in
TG, then πi and πj have no common darts.



Non-crossing Shortest Paths 89

Proof. Let us assume by contradiction that πi and πj have at least one common
dart, and let d be the dart in πi ∩πj that appears first in πi. Let R be the region
bounded by πj [sj , tail(d)], πi[si, tail(d)] and the clockwise undirected si−sj path
in f∞ (Fig. 6(a) shows πi, πj and R). Being πj a simple path, then πj crosses πi

in at least one vertex in πi[si, tail(d)]. Let x be the first vertex in πi[si, tail(d)]
after head(d) in πj . Now by looking to the cycle πi[x,head(d)] ◦ πj [head(d), x],
it follows that πi and πj can be both shortest paths, absurdum (Fig. 6(b) shows
this cycle). ⊓1

Lemma 3. Let {πi}i∈[k] be a set of non-crossing directed paths. Let i, j ∈ [k], if
i is a descendant of j, then πi ∩ πj ⊆ πℓ, for all ℓ ∈ [k] such that i ≺ ℓ ≺ j.

Proof. Let us assume πi and πj have at least one common vertex and choose
ℓ ∈ [k] such that i ≺ ℓ ≺ j. Let v be a vertex in πi ∩ πj and let Q be the region
bounded by πj [sj , v], πi[si, v] and the clockwise undirected sj −si path in f∞

(region Q and vertex v are shown in Fig. 6(c)). It is clear that if v ̸∈ πℓ, then
{πi,πj ,πℓ} is not a set of non-crossing paths, absurdum. ⊓1

Fig. 6. in (a) and (b) paths πj and πi, dart d, region R and vertex x used in the proof
of Lemma 2. In (c) region Q and vertex v used in the proof of Lemma 3.

Now we show how to use these two lemmata for our goals. Let ρi be a shortest
directed i-path and let ρj be a shortest directed j-path, for some i, j ∈ [k], i ̸= j.
By Lemma 2, if i and j are not comparable in TG, then ρi and ρj have no common
darts. Moreover, by Lemma 3, if i is an ancestor of j in TG, then ρi ∩ ρj ⊆ ρp(j).
By using these two facts, in order to list darts in ρi, then it suffices to find darts
in ρi \ρp(i), for all i ∈ [k] \ {1} (we remind that 1 is the root of TG). To this goal
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we use algorithm NCSPunion, that builds a sequence of directed graphs {Yi}i∈[k]

such that Yk is equal to
⋃

i∈[k] ρi, where ρi is a shortest directed i-path, for
i ∈ [k].

We prove the correctness of algorithm NCSPunion in Theorem 3. At iteration
i we compute ρi \ ρp(i), showing that ρi \ ρp(i) = σi ∪ rev[τi], where σi and τi
are computed in Line 5 and Line 6, respectively. We observe that if ρi and ρp(i)
have no common darts, then σi = rev[τi] = ρi.

To better understand Line 2 of algorithm NCSPunion, we recall that X1 is an
undirected 1-path, hence Y1 is the directed version of this path.

Algorithm NCSPunion:
Input: an undirected unweighted planar embedded graph G and k well-formed

terminal pairs of vertices (si, ti), for i ∈ [k], on the external face of G
Output: a directed graph Yk formed by the union of directed non-crossing

shortest paths from si to ti, for i ∈ [k]
1 Compute X1 as in algorithm NCSPsupergraph;
2 Y1 is the directed version of X1 oriented from s1 to t1;
3 for i = 2, . . . , k do
4 Compute Xi as in algorithm NCSPsupergraph;
5 σi is the directed path that starts in si and always turns left in Xi until

either σi reaches ti or the next dart di of σi satisfies di ∈ Yi−1;
6 τi is the directed path that starts in ti and always turns right in Xi until

either τi reaches si or the next dart d′
i of τi satisfies rev[d

′
i] ∈ Yi−1;

7 Yi = Yi−1 ∪ σi ∪ rev[τi];

Lemma 4. Algorithm NCSPunion has O(n) time complexity.

Proof. Algorithm NCSPunion uses algorithm NCSPsupergraph, that has O(n)
time complexity by Lemma 1. Moreover, algorithm NCSPunion visits each dart
of the “directed version” of Xk at most O(1) times, where the directed version
of Xk is the directed graph built from Xk by replacing each edge ab by the pair
of darts

−→
ab and

−→
ba. Thus, algorithm NCSPunion requires O(n) time, since Xk is

a subgraph of G. ⊓1

Theorem 3. Graph Yk computed by algorithm NCSPunion is the union of k
shortest directed non-crossing i-paths, for i ∈ [k].

Proof. Let {πi}i∈[k] be the set of paths defined in Theorem 2. For all i ∈ [k], we
denote by −→πi the directed version of πi, oriented from si to ti.

First we define ρ1 = −→π1 and for all i ∈ [k] \ {1} we define

ρi =

{−→πi [si, ui] ◦ ρp(i)[ui, vi] ◦ −→πi [vi, ti], if −→πi and ρp(i) share no darts,
−→πi , otherwise,

(1)
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where we assume that if V (−→πi ∩ ρp(i)) ̸= ∅, then ui and vi are the vertices in
V (−→πi ∩ ρp(i)) that appear first and last in −→πi , respectively; the definition of ρi as
in (1) is shown in Fig. 7. Now we split the proof into three parts: first we prove
that {ρi}i∈[k] is a set of shortest paths (we need it to apply Lemma 2); second we
prove that {ρi}i∈[k] is a set of non-crossing paths (we need it to apply Lemma 3);
third we prove that Y =

⋃
i∈[k] ρi (we prove it by Lemma 2 and Lemma 3).

{ρi}i∈[k] is a set of shortest paths: we proceed by induction on i. The base
case is trivial because π1 is a shortest path by definition. Let us assume that
ρj is a shortest j-path, for j < i, we have to prove that ρi is a shortest i-path.
If −→πi and ρp(i) have no common darts, then ρi = −→πi by (1), thus the thesis
holds because {πi}i∈[k] a set of shortest paths. Hence let us assume that −→πi

and ρp(i) have at least one common dart, then it suffices, by definition of ρi,
that |πi[ui, vi]| = |ρp(i)[ui, vi]|. It is true by induction.

{ρi}i∈[k] is a set of non-crossing paths: we proceed by induction on i. The base
case is trivial because there is only one path. Let us assume that {ρj}j∈[i−1]

is a set of non-crossing paths, we have to prove that ρi does not cross ρj , for
any j < i.
If ρi and ρj are crossing and j is not an ancestor of i, then, by construction of
ρi, either ρp(i) and ρj are crossing or πi and πj are crossing; that is absurdum
in both cases by induction and Theorem 2. Moreover, by definition, ρi does
not cross ρp(i), and by induction, if ℓ is an ancestor of i such that ℓ ̸= p(i),
then ρi does not cross ρℓ, indeed, if not, then ρℓ would cross ρp(i), absurdum.
Hence {ρi}i∈[k] is a set of non-crossing paths.

Y is the union of ρi’s: now we prove that Y =
⋃

i∈[k] ρi. In particular we show
that ρ1 = −→π1 and for all i ∈ [k] \ {1}

ρi =

{
σi ◦ ρp(i)[ui, vi] ◦ rev[τi], if −→πi and ρp(i) share no darts,
−→πi , otherwise.

(2)

Again, we proceed by induction on i. The base case is trivial, thus we assume
that (1) is equivalent to (2) for all i < ℓ. We have to prove that (1) is equivalent
to (2) for i = ℓ.
If −→πℓ does not intersect any dart of ρp(ℓ), then (1) is equivalent to (2). Thus
we assume that −→πℓ and ρp(ℓ) have at least one common dart. By (1) and (2)
and by definition of σi and τi in Line 5 and Line 6, respectively, it suffices to
prove that di ∈ ρp(i) and rev[d′

i] ∈ ρp(i).
Now, by induction we know that di ∈ ρℓ for some ℓ < i, we have to show that
di ∈ ρp(i). By Lemma 2 and being {ρj}j∈[k] a set of shortest paths, it holds
that ℓ is an ancestor or a descendant of i. Being the sj ’s visited clockwise
by starting from s1, then ℓ is an ancestor of i. Finally, by Lemma 3 and
being {ρj}j∈[k] a set of non-crossing path, it holds that ρi ∩ ρℓ ⊆ ρp(i). Being
p(i) < i, then di ∈ ρp(i) as we claimed. By a similar argument, it holds that
rev[d′

i] ∈ ρp(i). ⊓1
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Fig. 7. Proof of Theorem 3, explanation of (1).

It is proved in [4] that, starting from the union of a set of shortest (not
necessarily non-crossing) paths between well-formed terminal pairs, distances
between terminal pairs can be computed in linear time. Thus we can give the
following main theorem.

Theorem 4. Given an undirected unweighted plane graph G and a set of well-
formed terminal pairs {(si, ti)} on the external face f∞ of G we can compute
U =

⋃
i∈[k] pi and the lengths of all pi, for i ∈ [k], where pi is a shortest i-path

and {pi}i∈[k] is a set of non-crossing paths, in O(n) time.

Proof. By Theorem 3, the required graph U is the undirected version Yk of the
graph computed by algorithm NCSPunion, that has O(n) time complexity by
Lemma 4. Moreover, we compute the length of pi, for all i ∈ [k], in O(n) time
by using the results in [4]. ⊓1

Remark 2. For graphs with small integer weights, we can obtain all the previous
results in O(n+L) time, where L is the sum of all edge weights, by splitting an
edge of weight r in r unweighted edges.

5 Conclusions

In this paper we have shown a linear time algorithm to compute the union of
non-crossing shortest paths whose extremal vertices are in the external face of
an undirected unweighted planar graph.

The algorithm relies on the algorithm by Eisenstat and Klein for computing
SSSP trees rooted on the vertices of the external face and on the novel concept of
ISP subgraph of a planar graph, that can be of interest itself. The same approach
cannot be extended to weighted graphs, because the algorithm of Eisenstat and
Klein works only in the unweighted case.

As stated in [12] our results may be applied in the case of terminal pairs
lying on h face boundaries.

We wish to investigate the non-crossing shortest paths problem when each
terminal pair contains only one vertex on the external face.
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