Context-Aware Trace Alignment
with Automated Planning

Giacomo Acitelli*, Marco Angelini*, Silvia Bonomi*, Fabrizio M. MaggiT, Andrea Marrella®, Alessandro Palma*
*Sapienza Universitd di Roma, Rome, Italy
Email: {acitelli, angelini, bonomi, marrella, palma}@diag.uniromal..it
"Free University of Bozen-Bolzano, Bozen, Italy
Email: maggi@inf.unibz.it

Abstract—Trace alignment is the problem of finding the best
possible execution sequence of a business process (BP) model
that reproduces an (observed) execution trace of the same BP
by pinpointing where it deviates. One limiting assumption that
governs the state-of-the-art alignment algorithms relies in a
static cost function assigning fixed costs to all the possible
types of deviations related to a BP activity, thus neglecting the
specific context in which the deviation takes place and flattening
the analysis of its potential impact. In this paper, we relax
this assumption by providing a technique based on theoretic
manipulations of deterministic finite state automata (DFAs) to
build optimal alignments driven by dedicated cost models that
assign context-dependent variable costs to the deviations. We show
how the algorithm can be implemented relying on automated
planning in Artificial Intelligence (AI), which is proven to be an
effective tool to address the alignment task in the case of BP
models and event logs of remarkable size. Finally, we report on
the results of experiments conducted in a real-life case study on
incident management and on larger synthetic ones performed
through three well-known planning systems to showcase the
performance, scalability and versatility of our technique.

I. INTRODUCTION

Conformance checking is an active area of research in the field
of process mining that aims at verifying whether the observed
behavior of a business process (BP), which is stored in a log,
matches the intended behavior represented as a BP model [1].
Trace alignment is considered to be the most effective family of
algorithms for this purpose [2]], since it finds the best execution
sequence of a BP model (i.e., the optimal alignment) that
reproduces an execution trace of the same BP by pinpointing
where it deviates. Computing alignments is often the starting
point to enhance a BP model with the evidences found in the
data, e.g., to distinguish the BP frequent behavior from the
exceptional one [3].

Many existing works illustrate that trace alignment has a strong
practical relevance as a diagnostic tool in several application
domains, such as healthcare [4] and security auditing [5]], just
to name a few. However, as recently observed by Boltenhagen
et al. in [|6], one limiting assumption that governs the state-of-
the-art trace alignment algorithms relies in a static cost function
assigning fixed costs to all the possible types of deviations
related to a BP activity, thus neglecting the context, i.e., the
specific position in the trace, in which the deviations take place.
For instance, in a loan process, while it is possible to specify

that approving a loan when it is not supposed to be approved
is more severe than asking for additional information when
unnecessary, it is not possible to quantify that approving a
loan before assessing the applicant is more problematic than
approving a loan before asking for additional information. In
both cases, activity “Approve Loan” is executed when not
allowed, but in the first case the deviation is more severe and
it might be useful to associate it with a higher deviation cost
for better interpreting the impact of the misalignment.

In this paper, we tackle this issue by providing a trace alignment
technique to synthesize optimal alignments driven by dedicated
cost models associating context-dependent variable costs to
the potential deviations that may occur during the alignment
task. For the formal representation of a BP model and its
associated cost models, we opted for deterministic finite state
automata (DFAs), which have a clear semantics and can
be employed to perform formal reasoning over the original
BP model. In addition, DFAs are not directly tied to the
prescriptive or declarative nature of the BP model to analyze,
allowing us to capture both modeling perspectives. Note that
the process mining literature is plenty of solutions to convert
a BP model represented as a Petri net or as a collection of
Declare constraints in the form of a DFA, cf. [7], [8].

We implement our alignment technique in two steps. First, we
provide an algorithm, based on DFA-theoretic manipulations, to
synthesize the alignment instructions and customize the severity
of the deviations based on the context in which BP activities
are executed. Then, inspired by our previous works [9]], [10],
we show how the algorithm can be implemented relying on
automated planning technology in Artificial Intelligence (AI),
which was proven to be very effective to tackle the alignment
problem in case of BP models and event logs of remarkable
size [11]]. Specifically, we resort to cost-optimal planning [[12],
a form of deterministic planning where actions have costs, and
where a successful plan of minimal cost (defined as the sum
of the costs of the component actions) has to be found. The
intuition behind our solution is that planning actions capture
alignment steps in the form of synchronous moves (having
no cost) and deviations (additions and deletions) to the input
trace, with non-zero costs. The goal is to make the input trace
conforming with the BP model at a minimal cost.

Pre-print copy of the manuscript published by IEEE (available at: https://ieeexplore.ieee.org/document/9980649)
and identified by doi: 10.1109/ICPM57379.2022.9980649

We evaluate the performance and scalability of our technique
through an extensive experimentation performed over a real
incident management use case and synthetically generated
event logs and DFAs of increasing complexity. Notably, three
well-known planning systems are employed in the experiments
to showcase the versatility of our technique, which allows the
process analyst to plug in new planners at no cost.

The paper is organized as follows. In Section |lI, we overview
the state-of-the-art algorithms to compute alignments. In
Section we discuss the background necessary to understand
the paper. In Section [TV] we introduce a use case on incident
management that is used to explain the advantages of context-
aware trace alignment. Section presents our alignment
technique and shows how to reduce it to a planning problem.
Finally, in Section@] we evaluate our technique and, in Section
\VII} we conclude the paper by outlining future work.

II. RELATED WORK

Alignment-based conformance checking is primarily used as
an artifact to pinpoint and document deviations. The seminal
work of Adriansyah [[13]] provides an ad-hoc implementation
of the A* algorithm to compute optimal alignments for a
particular class of BP models. It points out that the worst-case
complexity for computing optimal alignments is exponential
wrt. the amount of behavior allowed by BP models and the
length of the log traces. Thus, even improving the computation,
there will always be a BP model for which the computation
of alignments for certain traces becomes intractable.

The computation of alignments can be fastened by using
divide-and-conquer approaches. In [14], [[15[], a decomposition
technique is proposed that guarantees the model to be decom-
posed in fragments such that, if sub-traces fit the individual
fragments, then they can be composed into a larger trace that
fits the overall BP model. Similarly, in [|16], a Single-Entry
Single-Exit decomposition technique is presented that partitions
large BP models and event logs into smaller parts that can be
analyzed independently. In [17]], the computation of alignments
is performed through a set of concurrency-free automata, called
S-components, representing the behavior of the BP model. Each
S-component is aligned separately against a projected version
of the log, leading to one product automaton per S-component.
The resulting product automata are then recomposed into a
single automaton capturing all the differences between the BP
model and the log, but without minimality guarantees. In [18]],
the notion of approximate alignment is introduced through a
recursive paradigm based on the structural theory of Petri nets.
In [19], a local search framework is applied to improve the
alignment until no further improvement is possible.

The aforementioned works focus on alleviating the computa-
tional demand of trace alignment by using a standard (i.e.,
context-agnostic) cost function that assigns fixed costs to
deviations. Conversely, a couple of recent works [6]], [20] rely
on a variable cost function to improve the performance of trace
alignment. In [|6], a prefix-first alignment heuristic based on a

discounted cost function that penalizes deviations appearing
at early stage of the BP execution is proposed. Although this
approach does not guarantee the optimality of the alignments,
this is compensated by a reduced computation time of the
alignments. In [20], an approach that maximizes the number of
synchronous moves in the alignment is proposed. It relies on
milestone (i.e., unskippable) activities and on a cost function
that dynamically changes to penalize log moves.

We notice that both [6] and [20] do not build their cost
function based on the context in which the BP execution takes
place. Conversely, in this paper, we present a planning-based
alignment technique that relies on context-aware cost models
for the construction of optimal alignments, where the cost of
a deviation dynamically changes based on where the deviation
occurs within the trace.

III. BACKGROUND

Given a BP model represented as a DFA and a collection
of log traces, the problem we want to address is to build an
optimal alignment of each trace wrt. the model using a cost
function that quantifies the severity of a deviation based on
the context in which the deviation takes place. The context is
determined by the position in the trace in which the deviation
occurs and, more specifically, by the activities or sequence
of activities that occur before or after the deviation. The
notion of “context” is expressed through a dedicated cost
model, which will be introduced in Section together with a
reformulation of the trace alignment problem in the form of
a DFA-theoretic manipulation. The alignment will be built by
relying on automated planning technology.

A. Log Traces and Deterministic Finite State Automata

Event logs are the starting point for performing trace alignment.
An event log is a multiset of log traces describing the life-cycle
of a BP instance in terms of the activities executed.

Definition 1 (Event Log and Traces). Let.A be a set of activities.
We define a log L as a finite multiset of sequences t € A*, which
we refer to as log traces.

A Deterministic Finite State Automaton (DFA) is a finite-state
machine that accepts or rejects a given log trace, by running it
through a state sequence uniquely determined by the sequence
of activities included in the trace. Deterministic refers to the
uniqueness of the computation run.

Definition 2 (Deterministic Finite State Automaton). A DFA is
atuple N = (A, Q, qo, 0, F), where: (i) A is the input alphabet;
(ii) @ is the (non-empty) finite set of automaton states; (iii)
qo € Q is the initial state; (iv) 6 € Q x A x @ is the transition
relation; and (v) F' ¢ Q) is the set of final states.

Definition 3 (Computation of a trace on a DFA). Lett = e;---e,
be a log trace such thate; € A (with 1 <i <n) and N the DFA
representing a BP model. A computation of N ont is a sequence

Det Act
start >@ @

Fig. 1: The DFA representing the IM process

P =qo0 o q1°Qn-1 -, qn such that, fori =0,...,n -1, there

. .. €i+1
exists a transition (q;, e;11,qi41) € 0, denoted as q; —— g4 1.

Since ¢ is a function, it behaves deterministically. That is, at
any step of a computation, the DFA has only one “choice” for
its next transition, depending on its current state and the input
activity. Note that we consider DFAs that are complete, i.e.,
they define from each state a transition for each activity in
A. Finally, we say that N accepts t (t £ N) if there exists a
computation p on ¢t whose last state is final.

B. Automated Planning

Planning systems are problem-solving algorithms that operate
on explicit representations of states and actions [[12]. PDDL [21]]
is the standard Planning Domain Definition Language; it allows
us to formulate a planning problem with the description of
the initial state of the world, the desired goal state, and the
planning domain. A planning domain is built from a set of
propositions describing the state of the world (i.e., the set
of propositions that are true) and a set of operators) (i.e.,
actions) that can be executed. An action schema a €) defines
the list of input parameters for a, the preconditions under
which a can be executed, and the effects of a on the state of
the world. Both preconditions and effects are stated in terms
of propositions in the planning domain, represented as boolean
predicates and numeric fluents.

In recent years, the planning community has developed a
plethora of planners that embed very effective (i.e., scaling
up to large problems) search heuristics, which have been
employed to solve collections of challenging problems from
several Computer Science domains [[11]], [22], [23]. There
exist several forms of planning in the Al literature. In this
paper, we focus on cost-optimal classical planning techniques
characterized by fully observable and static domains. A solution
for a cost-optimal planning problem is a sequence of operators—
a plan—whose execution transforms the initial state into a state
satisfying the goal by optimizing a pre-specified metric.

IV. A USE CASE ON INCIDENT MANAGEMENT

According to the ISO/IEC 27035 standard, a security incident
is an unwanted or unexpected set of events that have a
significant probability of compromising business operations and
threatening security. In this context, Incident Management (IM)
is the process of detecting, reporting, assessing, responding to,
and dealing with security incidents [24].

del Aw/2 del_ Aw/3

*

Fig. 2: The cost model related to the IM process, with the
character **’ meaning any activity in the input alphabet A

In Fig. [it is shown a DFA representation of the BP
model underlying ISO/IEC 27035. The BP starts when a
new incident is detected by the IT team (activity DET) and
reported to the security team that is in charge to proceed
with the incident registration (e.g., the opening of a ticket,
activity ACT). Then, many different paths are possible. In
the best case, the incident is quickly resolved by the security
team (activity RES). However, before resolution, it could be
necessary to wait for a second assessment made by third party
security companies (activity AW) and/or to reactivate the ticket
associated to the incident (activity REACT). Once resolved, a
resolution notification is sent to the IT team (activity NOT) and
the ticket is closed (activity CL). For the sake of readability,
we are reporting in the DFA of Fig. [T] only the “prescriptive”
view with the expected paths of the IM process, i.e., we are
neglecting the transitions with non-allowed activities that would
be connected to a sink non-accepting state of the DFA.

Nowadays, to assess that the IM process is enacted by organi-
zations in compliance with ISO/IEC 27035, a manual analysis
is performed by expert auditors that detect misalignments and
quantify their degree of severity to support the delivery of
focused decisions. In principle, trace alignment techniques
would be a suitable tool to increase the automation and quality
of the incident analysis task [25]. However, since state-of-the-
art alignment techniques rely on a static cost function that
assigns fixed costs to the deviations (independently of the
context in which they arise), the risk is to provide unreliable
diagnostics for non-conforming behaviors.

For example, consider the following execution traces of
the IM: t; = (ACT,AW,AwW,Aw RES,CL) and ty =
(AcT, ACT, ACT, AW, RES, CL). Both traces are misaligned
with the DFA in Fig. [T] Specifically, for both traces DET is
missing before the activation of the incident. Then, for ¢;
and ?3, AW and ACT are unnecessarily repeated three times,
respectively. By employing a static cost function that assigns
a unitary cost to any deviation, the alignment of both traces
would have a cost equal to 3, meaning that the two situations
are considered equally problematic. However, this is far to be
a realistic analysis. Indeed, the recording of many repeated
AW means that the execution of the BP has been stuck for a
quite long time. On the other hand, even if many repeated ACT
are observed, it is guaranteed that the security team continued
to work for resolving the security incident. Therefore, the
first misalignment represents a more severe situation than the

second one. In addition, the cost of repeating AW several times
should increase at any occurrence, since it critically delays the
incident resolution. In this paper, we will employ dedicated
cost models in the form of DFAs, like the one in Fig. @, to
capture the variability of the cost of deviations based on the
context in which they are captured. This will allow us, for
example, to assign a different cost to the execution of AW
depending on whether it occurs after that AW has already been
executed once, twice, or three times.

V. CONTEXT-AWARE TRACE ALIGNMENT AS PLANNING

In this section, after providing a formulation of the context-
aware trace alignment problem (Section [V-A)), we discuss how
it can be solved with a technique based on DFA manipulations
(Section [V-B). Finally, we show how this technique can be
reduced to a planning problem in AI (Section [V-C).

A. Context-Aware Trace Alignment

Consider a log trace t = {eq,...,e,) over A and a DFA N/
representing a BP model such that ¢t ¥ A/. We are interested
in “transforming” ¢ into a new trace t such that f = N, ie., ¢
is aligned wrt. /. We assume that traces can be aligned by
executing the following operations: skip an activity, i.e., leave
the activity unchanged; delete an activity from a position; add
a new activity at a certain position. In particular, we extend the
set of activities A with two new activities del_e and add_e for
every activity e € A. We call them repair activities, denote the
obtained set as A, and call the traces over A, repair traces.
In a repair trace, e € A stands for the synching e, del_e for
the deletion of e, and add_e for the addition of e.

A repair trace ¢* represents a set of modifications that transform,
when successfully executed, a trace ¢ into a new trace £. We say
that a repair trace t* is applicable to a log trace t, if t* can be
obtained from ¢ by: (i) inserting any arbitrarily long sequence
of activities add_» (where * matches any activity from .A)
before the first activity, after the last activity, or between any
two consecutive activities of ¢; (ii) replacing any activity e
of t by either the activity itself or by del_e. For instance,
t* = (a,del_b,add_c,c,add_a) is applicable to t; = {a,b,c)
but not to to = {(a, b, b), because t* prescribes the synching of
¢, which is not present in 5.

We formally capture the result of performing the operations of
a repair trace by defining the trace induced by t*, i.e., the trace
t over A obtained from t* by: (i) deleting every occurrence
of del_e; and (ii) replacing every occurrence of add_e with
activity e. For instance, in the case of ¢; = (a, b, ¢}, the trace
induced by the repair trace t* = (a,del_b, add_c,c,add_a) is
t=(a,c,c,a). When t* is applicable to a trace ¢ and induces
t, we say that t* transforms t into t.

Finally, we define the cost of a repair trace t*, denoted with
cost(t*), as the sum of the cost of modifications (expressed
as add and del activities) occurring in t*. We observe that,
in the case of a static cost function, it is sufficient to assign
(non-negative) fixed costs to additions or deletions of a specific
activity. Rather than implementing a static cost function, in

this paper, we introduce a cost model C (as a DFA) to associate
repair activities with variable costs that depend on the context
in which they occur during the construction of t*, i.e., on
the activities that occur before or after them. Consequently,
cost(t*) will be a function of C.

Definition 4 (Context-Aware Trace Alignment). Let ¢t be a
log trace, N the DFA representing a BP model and C the DFA
representing a cost model. Context-Aware Trace Alignment is
the problem of finding a repair trace t* that transforms t into t,
such that t = N, by minimizing cost(t").

B. A DFA Manipulation Technique for Trace Alignment

In this section, we present a DFA-based formalization of the
context-aware trace alignment problem. Let ¢t = e;---e,, be a
log trace over A, and N = (A4, Q, qo, d, F') a DFA representing
a BP model.

We start by defining the so-called trace automaton of t, i.e.,
the automaton 7 = (A, Q¢, ¢b, 64, F;), where:

« A; CA;
° Qt:{Q67...

o g} is the initial state;

,q } is a set of n + 1 states;

o 0y = Ui:O,...,n—l(‘ﬂ‘:v€i+1,Qf+1);
. Ft = {q; }

We denote the set of traces accepted by T, i.e., the language
of T, as L7. An example of trace automaton, for ¢ = (¢, a, b),
ol)% (g2

is illustrated in Fig. [3]
start —(o0 (1)—(=) @

Fig. 3: Trace automaton associated with trace ¢ = (c, a, b)

Then, we augment 7 and N as follows. From 7, we define
automaton 7+ = (A;,Qy, ¢, 07, Fy), where &; contains all
transitions in dg, plus:

« a transition (g, del_p,q’), for all transitions (g, p,q’) € d;;
« a loop transition (g, add_x, q), for each q € Q.

We call T the repair automaton of t. Notice that 7+ accepts
repair traces. We denote the set of repair traces accepted by
T+ as Ly+. The repair automaton of trace ¢ = (c,a,b) over
A={a,b,c,d} is shown in Fig.

add_x*

c a b
s >(ao (X ()
del_c del_a del_b

Fig. 4: Repair automaton of trace ¢ = {(a, b, c)

add_* add_x* add_x

Then, from N = (A, Q,qo,d, F), we derive the augmented
automaton of N, ie., N* = (A;,Q,qo,0", F), where 6*
contains all transitions in 4, plus:

b,c,d
a,b,d

start —> ‘

Fig. 5: A DFA over A = {a,b,c,d} and its augmented version

a a,add_a

« a transition {q,add_e,q"), for each (q,¢e,q’) € J;
« a loop transition (g, del_x, g}, for each ¢ € Q.

Notice that the above definition implies that £xr € L+, where
L and L+ denote the languages of AV and N'™.

Fig. |5| shows a sample DFA N defined over A = {a,b,c,d}
and its augmented version N'*. Intuitively, N* accepts all the
repair traces t* (including those not applicable to t) that induce
a trace t* accepted by V.

Finally, we introduce a cost model C in the form of a DFA
C =(A;,Qc,q5,dc, Fe) that is used to capture the costs of
deviations in certain points of the execution of N'*. C is a
traditional DFA accepting the same input alphabet of 7+ and
N. The unique characteristics of C are that: (i) all its states
are final. This is due to the fact that the paths allowed by C do
not affect the validity of an alignment, but are just used to keep
track of the cost of repair activities that will be included in a
repair trace; and (ii) each repair activity used for labeling a
transition is associated with a non-negative cost, i.e., transitions
in 0¢ have the form: (q,e/cost(e),q’), with ¢,¢' € Qc. We
denote with L¢ the language accepted by C.

In Fig. [2 we have already shown an example of a cost model
for the IM use case. We note that it assigns a cost equal to 2
when a first unnecessary occurrence of AW is captured, a cost
equal to 3 for the second occurrence of AW and a cost equal
to 1 for any other further occurrence of AW in the trace. When
repair activities in the cost model are not explicitly related to
any cost, we assume that they are associated with the fixed
cost captured by the static cost function. In a nutshell, in the
presence of a static cost function, our cost model overrides the
cost to be assigned to certain repair activities in C.

Based on the above formulation, we can conclude that, given
t, N and C, the context-aware trace alignment of t wrt. N'
is equivalent to searching for a repair trace ¢t* (over A,) that
is accepted by both N'* and 7" and has a cost determined
by the occurrence of the repair activities in C. Indeed, the
acceptance by 7+ and Nt guarantees that we are considering
all (and only) the repair traces t* that are (i) applicable to ¢,
and (ii) induce a log trace ¢ satisfying . t* is said to be an
optimal alignment if cost(t*) is minimal. In other words, the

search space of our problem is the language L7+ N L+ N Le.

In the next section, we show how the search can be actually
performed by resorting to planning technology.

C. Context-Aware Trace Alignment as Planning

In this section, based on the formalization presented above, we
show how we can reduce trace alignment to a deterministic
cost-optimal planning problem.

The idea behind the reduction is to model activities from A,
as planning actions whose execution triggers state changes in
both 7+, N*, and C, according to their respective transition
function. The current state of 7, N and C is modeled through
suitable fluents. Planning actions are executable based on the
current state of the automata: an action a can be executed
only if the current states of 7+, N* and C have an outgoing
transition labelled with a. The problem then consists in finding
a deterministic plan that takes such DFAs from their initial state
to a final state at a minimum cost, where actions corresponding
to add and del are assigned a cost depending on the occurrence
of their respective repair activities in C, while skip actions are
assigned a 0 cost. The obtained plan is a representation of
the repair trace that solves the problem, i.e., a trace that says
how each activity from the input trace must be modified (or
left unchanged), in order to satisfy A/ with minimum cost. We
provide the details of this reduction below.

A deterministic planning domain with action costs over a
set of propositional fluents F is a tuple D = (S, cost, T),
where:

e S c 27 is the finite set of domain states, with each
state s = { f1,...,fn } representing the propositional
interpretation that assigns true to a fluent f if and only
if fes;

o) is the finite set of domain actions;

e cost: Q)+~ Ny is a cost function, assigning a non-negative
cost to each planning action;

e 7:5 xS is the domain transition function.

A plan for D is a finite sequence 7 = a;---a,, € 2* of actions,
which is said to be executable in D from a state sy € .S, if
there exists a sequence of states o = sg---s,, such that, for
1 =0,...,n—1, it is the case that s;11 = 7(8;,a;11); if o
exists, it is said to be the (domain) trace induced by 7. Notice
that, since D is deterministic, every plan 7 induces a unique
domain trace. The cost of a plan 7 is defined as cost(rw) =

Yiz1,... ncost(a;).

A cost-optimal planning problem is a tuple P = (D, s, G),
where:

o D is a planning domain with action costs;
e So €8 is the initial state of the problem;
o G, the problem goal, is a propositional formula over F.

A plan 7 is a solution of P if the last state s,, of the trace
induced by 7 is such that s,, = G. A solution 7 of P is said
to be optimal if, for all other solutions 7/, it is the case that
cost(m) < cost(w").

We encode the context-aware trace alignment problem into
cost-optimal planning as follows. Consider an instance of the
trace alignment problem, i.e., a trace ¢ and a DFA N, and
let 7% = (A, Qr, 46, 6; , Fi), N* = (A+,Q,q0,6", F) and C =
(A4, Qc, qg ,0c, Fc) be the repair, the augmented and the cost
automaton. We start by defining the planning domain D =
(S,Q,cost,) over F = Q; UQUQ¢ (automata states are used
as fluents; @, @ and Q¢ are disjoint), where:

D Sc{{atu{qtu{g}|aeQqeQ,qceQc};

2) Q = A, ie., we use activities from A, as planning
actions, in particular, an activity e € A models a skip
action on e, whereas activity add_e and del_e model the
addition/deletion of activity e;

3) For all e € A, cost(e) = 0. Then, cost(add_e) and
cost(del_e) depend on the specific combination of tran-
sitions in N'*, T+ and C, labeled with add_e or del_e,
which is encoded in the i-th planning action;

4) for a € Q, q1,q; € Q1. q,4" € Q, qc, 90 € Qe T({ gt } U
{q}u{qc},a)={q£}u{q'}u{qé} if and only if:

a) <qt7a7q1€> € 62—’
b) (q,a,q') €*;
¢) {gc,a/cost(a),q.) € dc.

We call D the context-aware trace alignment planning domain
of ¢ wrt. N and C. D models the synchronous product of 7,
N and C, where fluents represent the states in which each
DFA is. Since we are working with DFAs, each state of the
planning domain contains exactly one state from @, (and
Q¢ and one (unique) successor state wrt. action a and the
current states of 7, A'* and C. Requirements @ @] and
capture executability: action a can be executed only if the
corresponding activity is accepted by 7+, N'* and C in their
current state. Notice that the so-defined transition function 7
of the planning domain D is deterministic. In addition, since
Q =A,, every plan for D is also a repair trace.

Now, we define the cost-optimal planning problem P =
(D, s0, G), where:

* S0 = {%#16»‘]3 }’

« G=(Vger @) A}, with g} the (unique) final state of 7
(remind that all the states of C are final by default).

We call P the context-aware trace alignment planning problem
of ¢ wrt. N and C. A solution of this problem is a minimal-cost
plan inducing a domain trace that ends in a state satisfying G.
As said above, plans are, in fact, repair traces.

Thus, to actually solve the trace alignment problem, we can
resort to automated planning. As discussed before, this can be
done by searching for a repair trace that is accepted by the
augmented automaton and the DFA representing the cost model.
In the planning setting, this amounts to adding new fluents
in the domain states, each modeling a state of the augmented

automaton and the cost model, and then defining the transition
function in such a way that a state transition in the domain
accounts for all the state transitions of each DFA. The goal is
to reach a state where all DFAs are in a final state.

VI. EXPERIMENTS

We have developed a planning-based alignment tool as a
standard Java applicatiorﬂ that implements the technique
discussed in Sections The tool can be run interactively
using a GUI interface, and allows the process analyst to load
existing logs formatted with the XES (eXtensible Event Stream)
standard and to import BP models defined as DFAs in DOT
(graph description language) format. In order to find cost-
minimal alignments, our tool makes use of three well-known
planning systems, namely, FAST-DOWNWARD [26], SYMBA *-
2 [27] and COMPLEMENTARY1 [28]]. To produce optimal
alignments, FAST-DOWNWARD uses a best-first search in the
first iteration to find a plan and a weighted A* search to
iteratively decreasing the plan weights, while SYMBA*-2,
winner of the sequential optimizing track at the 2014 Int.
Planning Competition (IPC) performs a bidirectional A* search.
Finally, COMPLEMENTARY is a recent cost-optimal planner
using a heuristic function driven by a lookup table that estimates
the distance from the achievement of an optimal plan. We tested
our approach on the grounded version of the problem presented
in Section [V-C| Specifically, to find a plan, we represented the
planning problems by making use of the STRIPS fragment
of PDDL 2.1 [21] enhanced with the features provided by
the same language for keeping track of the costs of planning
actions and synthesizing plans yielding minimal overall cost.
We used both a real-life log and synthetic logs. We performed
our experiments with an Intel Core 17-4770S CPU 3.10GHz
Quad Core and 8GB RAM.

Real-life Log. The real-life log refers to an incident manage-
ment process and was extracted from a dataset available in
the UCI Machine Learning Repository, cf. http://archive.ics.uci
edu/ml/index.php. The log contains 141,712 events organized in
24,918 traces with various lengths. We ran our technique using
the DFA in Fig. [I] and as cost model the DFA in Fig. 2] We
employed the FAST-DOWNWARD planner to build the optimal
alignments. The results (that do not include duplicate traces)
are shown in Table and show that the performance of the
planner when computing the alignment of one trace is near
real-time, but decreases when the trace size increases. Notice
that all the optimal alignments include many deviations.

Synthetic Logs. To have a sense of the scalability with respect
to the “size” of the model and the “noise” in the traces, we
have also tested the approach with synthetic logs of different
complexity. Specifically, to generate synthetic logs, we exploit
the well-known equivalence between (regular) languages and
DFAs, which states that any LTL; formula ¢ can be associated
with a DFA N that accepts exactly all traces satisfying ¢ [8].

I'The tool is available for testing and experiments repeatability at |https:
//github.com/bpm-diag/PL_DEC_ALIGNER,

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://github.com/bpm-diag/PL_DEC_ALIGNER
https://github.com/bpm-diag/PL_DEC_ALIGNER

Trace length SymbA-2#* SymbA-2#* SymbA-2*# Compl 1 Compl yl Compl yl Fast-Downward Fast-Downward Fast-Downward
Preprocessing Searching Steps Preprocessing Searching Steps Preprocessing Searching Steps
3 form. modified | 2242 states & 56026 transitions |
1-50 0.16 0.59 46 2.11 1-1073 46 0.33 0.48 46
51-100 0.17 1.33 81 3.1 3-1073 81 0.47 33.48 81
101-150 0.21 3.45 128 5.11 5-1072 128 0.71 15.75 127
151-200 0.29 8.43 170 8.68 7-1073 170 0.82 63.6 164
4 form. modified | 2242 states & 56026 transitions
1-50 0.15 0.49 47 2.33 2.1073 46 0.32 12.6 47
51-100 0.17 1.37 83 3.28 3-1073 83 0.49 83.06 83
101-150 0.2 2.82 125 5.25 6-1073 125 0.68 373.28 119
151-200 0.25 5.92 167 7.54 7-1073 166 0.76 537.72 138
6 form. modified | 2242 states & 56026 transitions
1-50 0.14 0.55 53 2.84 21073 54 0.35 29.54 52
51-100 0.14 0.85 69 3.41 3.1073 69 0.44 173.28 64
101-150 0.18 2.31 123 6.1 7-1073 124 0.63 647.64 120
151-200 0.28 5.7 181 8.97 8-1073 182 - - -

TABLE I: Experimental results for the synthetic logs. The time (in seconds) is the average per trace

Trace length SymbA-2*# SymbA-2% SymbA-2* Compl 1 G yl C 1 yl Fast-Downward Fast-Downward Fast-Downward
Preprocessing Searching Steps Preprocessing Searching Steps Preprocessing Searching Steps
3 form. modified | 29182 states & 729526 transitions |
1-50 0.24 0.92 51 3.14 2.1073 50 1.62 0.14 50
51-100 0.24 2.44 84 4.79 4-1073 84 14 35.48 87
101-150 0.28 5.36 127 7.46 6-1073 127 2.13 146.76 130
151-200 0.37 14.23 183 14.76 9.1073 182 - - -
4 form. modified | 29182 states & 729526 transitions
1-50 0.3 1.36 48 3.93 2-1073 48 1.61 30.9 51
51-100 0.24 2.09 77 452 3-1078 77 2.05 140.86 89
101-150 0.3 6.41 132 10.13 7-1073 132 - - -
151-200 0.36 12.45 177 16.12 9-1078 177 -
6 form. modified \ 29182 states & 729526 transitions
1-50 0.22 1.25 50 3.72 2.1073 50 - - -
51-100 0.23 2.57 78 5.76 4.1073 79 - =
101-150 0.33 7.63 150 10.2 8-1073 151 - - -
151-200 0.35 12.09 184 17.07 1.1-1072 185 - - -
TABLE II: Experimental results for the synthetic logs. The time (in seconds) is the average per trace
15-20 formulas (3 form. modified) 15-20 formulas (4 form. modified) 15-20 formulas (6 form. modified)
18 18 18
17 + [—@» complementaryt (15 form) 17 1 —@> complementaryt 15 form) 17 [—e> complementaryt (15 form)
16 | —0» complementuryt 20 form) 16 | o> Complementury 20 form) 16 | —o» Complementayt 20 form)
_ 15 1| —A> symbA2* (15 form) . 15 1| —a> symbA2* 15 form) _ 15 1| —a> SymbA2e (15 form)
4 14 1+ —> symba2+ @0 fom) 4 14 1+ < symba2r @0 fom) 3 14 1| —> symba2+ 20 fom)
s 13t s 137 s 137
g 121 2 12+ 2 12+
2 11+ 5 11+ 5 11 +
g 10| £ 10| g 10
: 8y 2 8t i s
5 7 5 71 5 11
Cl 6 Cl 6 l 61
° r ° t 3 [
Ry Y Y
21 21 2+
1+ 1+ 1+
1-50 51-100 101-150 151-200 1-50 51-100 101-150 151-200 1-50 51-100 101-150 151-200
Length of the trace Length of the trace Length of the trace
Fig. 6: Execution time for computing optimal alignments for the synthetic logs
Trace Number Average Average Average Number . ..
Length | of Traces | Preprocessing Time | Searching Time of Deviations with the Orlglnal DFAs, we replaced 3,4, and 6 LTL f formulas
1-10 388 0.90 s 0.05 s 6 : : : :
TR a——— oo TR T with their negative countc?rparts fand generated noisy logs from
21-30 176 1735 0.071 s 20 them. The logs were obtained using the log generator presented
31-40 25 1.98 s 0.075 s 31 .
150 5 336 5 007 s 10 in [29]. For any of the 2 DFAs, we generated 4 logs of 100
51-60 2 283 s 0.078 s 56 traces containing traces of different lengths, i.e., from 1 to 50

TABLE III: Experimental results for the real-life log

Having this in mind, we created 2 BP models in the form of
DFAs having the same alphabet of activities and obtained by
the conjunction of 15 and 20 LTL; formulas, respectively. The
models were both associated with a cost model that assigned a
variable cost to the repetition of some specific activities. Then,
to create logs containing noise, i.e., behaviors non-compliant

events, from 51 to 100 events, from 101 to 150 events, and
from 151 to 200 events, resp. (see Tables [[and [II).

Results. The results of the experiments can be seen in Tables
[and [I] and in Fig. [] Note that columns “Alignment Cost”
and “Context-Aware Alignment Cost” indicate, respectively,
the cost of an optimal alignment in the case of a static cost
function and in the presence of the employed cost model.
The results suggest that the performance of the forward A*
search of FAST-DOWNWARD decreases exponentially when the

tested DFA contains a higher number of states and transitions.
Sometimes, FAST-DOWNWARD was not able to complete the
computation of the alignment due to the excessive resource
computation requested. On the other hand, both SYMBA*-2
and COMPLEMENTARY scale very well when the complexity
of the DFA and the length of the log traces increases. Notably,
both planners enact around the same number of alignment steps
for alignments of the same cost (see column “Context-Aware
Alignment Cost”). In addition, they seem not to suffer the
presence of noisy logs. Indeed, the plots in Fig. [6] suggest
that the computation of the alignment is feasible also in the
case of traces requiring a large number of alignment actions.
The only visible difference between the two planners is that
COMPLEMENTARY requires a higher preprocessing time wrt.
SYMBA*-2 to process the planning domains and problems
generated by our technique.

Therefore, SYMBA*-2 performs slightly better than COM-
PLEMENTARY to resolve the context-aware trace alignment
problem, but both perform significantly better than FAST-
DOWNWARD. Such results can be explained with the ob-
servation that the heuristics adopted by SYMBA*-2 and
COMPLEMENTARY1 are able to efficiently cope with the size
of the state space, which is exponential wrt. the size of the
model, the amount of noise and the trace length.

VII. CONCLUDING REMARKS

Alignments establish the best possible connection between
an observed trace and a BP model, exhibiting the model run
closest to the given observed trace. The literature approaches
for trace alignment are context-agnostic and only support static
cost models with fixed costs. In this paper, we have presented
a technique that allows end users to define sophisticated cost
models that assign costs to alignment operations depending
on the context in which the operation is applied within a
trace. From a formal perspective, our technique is based
on a manipulation of DFAs to reformulate context-aware
trace alignment into a cost-optimal planning problem that
can be efficiently solved by state-of-the-art planning systems.
The approach has been proven to be feasible through an
extensive experimentation employing three state-of-the-art
planners against a real-life and many synthetic logs. For future
work, we plan to extend the current definition of context
depending on the (bounded) sequences of activities executed
before or after a deviation, to the unbounded case (e.g., the
cost of a deviation indefinitely increases with the number of
occurrences of a certain activity). In addition, the costs of the
repair actions could also be defined as dependent on the value
of trace data attributes or on the occurrence of specific values
for some event data attributes (commonly available in the
event logs). Given the complexity of these sophisticated cost
models, we plan to define a number of patterns for recurrent
cost models, mitigating the burden related to their definition,
which is, at the moment, in charge of the BP designer.

Acknowledgments. This work was supported by the the H2020
project DataCloud and the Sapienza grant BPbots.

[1]

[2]

[3]
[4]

[5

=

[6

=

[7]
[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

(17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]
[27]

(28]

[29]

REFERENCES

J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking - Relating Processes and Models, 2018.

L. Padr6 and J. Carmona, “Computation of alignments of business
processes through relaxation labeling and local optimal search,” Inf. Syst.,
vol. 104, 2022.

R. J. C. Bose and W. M. van der Aalst, “Process diagnostics using trace
alignment: opportunities, issues, and challenges,” Inf. Syst., vol. 37, 2012.
A. Guzzo, A. Rullo, and E. Vocaturo, “Process mining applications in the
healthcare domain: A comprehensive review,” Wiley Interd. Rev.: Data
Mining and Kn. Disc., vol. 12, no. 2, 2022.

S. Coltellese, F. M. Maggi, A. Marrella, L. Massarelli, and L. Querzoni,
“Triage of IoT attacks through process mining,” in COOPIS, 2019.

M. Boltenhagen, T. Chatain, and J. Carmona, “A Discounted Cost
Function for Fast Alignments of Business Processes,” in BPM, 2021.
P. Bouvier and others, “Automatic decomposition of Petri nets into
automata networks - A synthetic account,” in PETRI NETS, 2020.

G. De Giacomo and M. Y. Vardi, “Synthesis for LTL and LDL on finite
traces.” in IJCAI, 2015, pp. 1558-1564.

M. de Leoni and A. Marrella, “Aligning real process executions and
prescriptive process models through automated planning,” Expert Syst.
Appl., vol. 82, pp. 162-183, 2017.

G. De Giacomo, F. M. Maggi, A. Marrella, and F. Patrizi, “On the
Disruptive Effectiveness of Automated Planning for LTLf-Based Trace
Alignment,” in AAAI, 2017.

A. Marrella, “Automated planning for business process management,” J.
Data Semant., vol. 8, no. 2, 2019.

H. Geffner and B. Bonet, “A Concise Introduction to Models and Methods
for Automated Planning,” Synth.Lect. on Al and ML, vol. 8, no. 1, 2013.
A. Adriansyah, N. Sidorova, and B. F. van Dongen, “Cost-Based Fitness
in Conformance Checking,” in ACSD 2011. 1IEEE, 2011.

W. M. P. van der Aalst, “Decomposing Petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, 2013.
H. M. W. Verbeek and W. M. P. van der Aalst, “Merging alignments
for decomposed replay,” in Application and Theory of Petri Nets and
Concurrency. Springer International Publishing, 2016, pp. 219-239.
J. Munoz-Gama, J. Carmona, and W. M. P. van der Aalst, “Single-entry
single-exit decomposed conformance checking,” Inf. Syst., vol. 46, 2014.
D. ReiBiner, A. A-Cervantes, R. Conforti, M. Dumas, D. Fahland, and
M. La Rosa, “Scalable alignment of process models and event logs: An
approach based on automata and s-components,” Inf. Syst., vol. 94, 2020.
F. Taymouri and J. Carmona, “A recursive paradigm for aligning observed
behavior of large structured process models,” in BPM 2016, 2016.
——, “Computing alignments of well-formed process models using local
search,” ACM TOSEM, vol. 29, no. 3, 2020.

V. Bloemen, S. van Zelst, W. van der Aalst, B. van Dongen, and J. van
de Pol, “Aligning observed and modelled behaviour by maximizing
synchronous moves and using milestones,” Inf. Syst., vol. 103, 2022.
M. Fox and D. Long, “PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains,” JAIR, vol. 20, 2003.

A. Marrella and Y. Lespérance, “A planning approach to the automated
synthesis of template-based process models,” Serv. Oriented Comput.
Appl., vol. 11, no. 4, 2017.

G. D. Giacomo, F. M. Maggi, A. Marrella, and S. Sardina, “Computing
Trace Alignment against Declarative Process Models through Planning,”
in ICAPS’16. AAAI Press, 2016.

N. Shinde and P. Kulkarni, “Cyber incident response and planning: a
flexible approach,” Computer Fraud & Security, 2021.

R. Accorsi and T. Stocker, “On the exploitation of process mining for
security audits: the conformance checking case,” in SAC, 2012.

M. Helmert, “The Fast Down. Planning System,” JAIR, vol. 26, 2006.
A. Torralba and et al., “Symba: A symbolic bidirectional a planner,” in
International Planning Competition, 2014, pp. 105-108.

S. Edelkamp, “Cost-Optimal Planning in the IPC 2018: Symbolic Search
and Planning Pattern Databases vs. Portfolio Planning,” 2019.

C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating
event logs through the simulation of Declare models,” in (EOMAS), 2015.

	Introduction
	Related Work
	Background
	Log Traces and Deterministic Finite State Automata
	Automated Planning

	A Use Case on Incident Management
	Context-Aware Trace Alignment as Planning
	Context-Aware Trace Alignment
	A DFA Manipulation Technique for Trace Alignment
	Context-Aware Trace Alignment as Planning

	Experiments
	Concluding Remarks
	References

