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Abstract In spacecraft health management a large number of time series is acquired
and used for on-board units surveillance and for historical data analysis. The early de-
tection of abnormal behaviors in telemetry data can prevent failures in the spacecraft
equipment. In this paper we present an advanced monitoring system that was carried
out in partnership with Thales Alenia Space Italia S.p.A, a leading industry in the
field of spacecraft manufacturing. In particular, we developed an anomaly detection
algorithm based on Generative Adversarial Networks, that thanks to their ability to
model arbitrary distributions in high dimensional spaces, allow to capture complex
anomalies avoiding the burden of hand crafted feature extraction. We applied this
method to detect anomalies in telemetry data collected from a simulator of a Low
Earth Orbit satellite. One of the strengths of the proposed approach is that it does not
require any previous knowledge on the signal. This is particular useful in the context
of anomaly detection where we do not have a model of the anomaly. Hence the only
assumption we made is that an anomaly is a pattern that lives in a lower probability
region of the data space.
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1 Introduction

Satellites in orbit are monitored by a network of sensors which produce a huge
stream of telemetry data. When the amount of data is huge and it needs to be
processed in very short time, a solution to extract meaningful information (that in our
case consists in anomalous patterns) must be based on fully automatized processes.
Anomaly detection in time series data is a well studied problem in both the data
mining and machine learning communities. Since it always happens that normal
data samples outnumber the anomalous ones, anomaly detection is considered a
semi-supervised (where anomalous data is used only for testing) or unsupervised
(with no information about normal or anomalous data) problem. An exhaustive
review of the most common approaches can be found in [1]. In particular a general
approach consists in transforming the sequences into a feature space and then use a
point anomaly detection technique in the new space to detect anomalies. However
this approach depends both on the anomaly detection technique and the properties
of the feature space. For example clustering based methods [10][13][19] require that
the anomalies do not aggregate into clusters; nearest neighbour and density based
methods [6] require that the anomalies do not form dense regions in the feature space;
spectral methods [7][3] assume that a projection into a different space exists such
that normal and anomalous points can be clearly distinguished. Another approach
consists in training a model to predict the signal in the future and then compare
the predicted and observed signals to detect anomalies, like in [14]. In this paper
we propose the application of the Generative Adversarial Networks (GANs) for the
anomaly detection in spacecraft telemetry data. The GANs provide a deep latent
representation of data that can be used directly for the assessment. In particular they
implicitly extract meaningful features that can be exploited to discriminate between
normal and abnormal samples through the assignment of an anomaly score. The rest
of the paper is structured as follows: Section 2 briefly describes the GANs framework
focusing on its application on anomaly detection; Section 3 reviews the approaches
used so far to tackle the problem of anomaly detection in spacecraft telemetries;
Section 4 describes our dataset while Section 5 illustrates our method along with
all the implementation details; Section 6 discusses the results and the conclusion is
drawn in Section 7.

2 GANs and Anomaly Detection

The GANs Framework, firstly introduced in [5], is composed of two networks: a
generator and a discriminator, often referred as G and D. The generator learns a
mapping from the latent space ®,, usually the set of k-dimensional standard normal
vectors, to the data space © 44, and the discriminator learns a categorical probability
distribution over the generated and real samples to discriminate between real and fake
samples. G and D optimize the same criterion in opposite directions, following a two
player minimax game. The general idea behind the application of GANs to anomaly



A GAN approach for Anomaly Detection in Spacecraft Telemetries 3

detection consists in using the output of the discriminator and the reconstruction
error to assign an anomaly score to a data sample x. The output of the discriminator
is the probability that a sample is “real”, hence its inverse can be directly interpreted
as an anomaly score. The second part is less obvious and its justification relies on
the structure of the latent space. It was shown [17] that the space learned by the
generator has smooth transitions, because walking on the learned manifold results
in semantic changes to the generated image. This encouraged the usage of the GANs
framework as an unsupervised features extractor through an inverse mapping from
data space to the latent space. The reconstruction error is the distance between a data
point x and its reconstruction G(z,) where z, is the inverse mapping of x into the
latent space.

3 Related Works

Still nowadays the most widely used approaches for anomaly detection in space-
craft telemetries are based on simple Out of Limit (OOL) checks [11], meaning
that, when the signal exceeded some predefined upper and lower bounds, an alarm
is triggered. More advanced solutions introduced clustering techniques on multidi-
mensional vectors obtained by manually extracted features, like the Inductive System
Health Monitoring developed at NASA [9] and the Automated Telemetry Health
Monitoring System (ATHMoS) developed at the German Space Operation Center
(GSOC) [16]. Recent works propose the introduction of deep learning. For example
[15] proposes the introduction of deep autoencoders to extend the manually ex-
tracted features, [12] proposes a deep autoencoder to model the normal behavior of
the telemetries and a thresholding technique on the reconstruction errors to detect
anomalies and it suggests the introduction of a recurrent architecture to take into
account the temporal evolution. In this direction [8] proposes a Long Short-Term
Memory (LSTM) recurrent network to predict the future signal under normal condi-
tions, then, at test time, the predicted values are compared with the observed values
and anomalies are computed using thresholding techniques. In this paper we pro-
pose the application of the GANs framework for the spacecraft telemetries anomaly
detection. The GANs have already been used for finding anomalies in complex data.
In particular [18] introduced the AnoGAN architecture for the marker discovery
in tomography images of the retina. A more efficient version of AnoGAN called
Efficient GAN-Based Anomaly Detection (EGBAD) was introduced in [20]. It uses
the Bidirectional GANs architecture [4] to learn at training time an inverse mapping
from data space to latent space. In this paper we present our implementation of the
EGBAD framework along with an analysis of the anomaly scores that employs a
histogram for the detection and the temporal evolution of the anomaly score for the
localization of the anomaly.
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4 Data

We have at our disposal simulated data that emulate the operation of a LEO (Low
Earth Orbit) satellite. In particular we studied the sensors monitoring a Reaction
Wheel (RW), which is a type of flywheel used primarily by spacecrafts for three-axis
attitude control. The RW has a high pointing accuracy and it is particularly useful
when the spacecraft must be rotated by very small amounts, for example for keeping
a telescope pointed at a star. The Reaction Wheel was equipped with four sensors
monitoring: the current absorbed,the temperature, the velocity and the commanded
torque (see Figure la). TAS-Italia industry ! provided us the simulation of four
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[ (b) Graphical representation of the Bi-
RS AL AN A B AR GAN architecture. g and d are respec-
‘ = tively the generator and the discrimina-
tor, while E is the encoder (the novel
component that characterizes the Bi-
GAN model). x is a data sample from
the data distribution and z’ is a sample
from the known latent distribution.

(a) A sample of telemetry data. Each
line corresponds to a sensor: motor cur-
rent (blue line), temperature (orange
line) and angular speed (green line)

Fig. 1

months of observation data, one of those with an anomalous behavior.

5 Method

In this paper we propose an implementation of the EGBAD framework (represented
in Figure 1b). In particular we split the stream of telemetries into fixed length
sequences and implemented both the Generator, the Encoder and the Discriminator
as multilayer perceptrons. The networks are trained adversarially with the original
BiGAN loss. The generator G learns the mapping from samples from the latent
distribution p,(z) to samples from the data distribution p, (x) while the encoder E
learns the inverse mapping. The discriminator D discriminates jointly in data and
latent space. Even though it is not explicit, the Encoder and the Generator are proven
to be one the inverse of the other at the optimum [4]. The three networks were
implemented as reported in table 1. Both in the univariate and multivariate case we

! https://www.thalesgroup.com/it/global/activities/space
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split the input into fixed length windows. The input shape of the Encoder changes
in the univariate and multivariate cases. In the former it equals the sequence length
while in the latter it is the sequence length multiplied by four, that is the number of
channels, since the input is flattened.

”Network Layer Units Non Linearity Dropout”
E(x) Dense 64 LeakyReLU 0.0

Dense 64 Linear 0.0
G(x) Dense 64 ReLU 0.0
Dense 128 ReLU 0.0
Dense 121 Linear 0.0

D(x) Dense 128 Leaky ReLU 0.2

D(z) Dense 128 Leaky ReLU 0.2

D(x,z) Dense 128 Leaky ReLU 0.2
Dense 1 Linear 0.0

Table 1: BiGAN architecture.

We trained the model with Adam optimizer with learning rate of le — 5 and betas
equal to 0.5. We used a batch size of 512 samples, while the latent dimension was
equal to 32. All the weights and biases of the encoder and discriminator layers are
initialized with the Xavier initializer, while the weights and biases of the generator
are initialized with the He initializer. We trained the network for 5 epochs for each
experiments.

Once the model is trained, the anomaly score A(x) is computed as a convex
combination of the reconstruction loss L and the discriminator-based loss Lp:

A(x) =aLg(x) + (1 -a)Lp(x) 1)
where Lg and Lp are defined as follows:

Lg(x) = |x = G(E(x))I ()
Lp(x) = |fp(x,E(x)) = fp(G(E(x)), E(x))l1 (3)

In particular the Lp term is called feature matching loss [21] and fp is the output
of the discriminator layer that precedes the final classification layer. The anomaly
score A(x) is not bounded, hence, in order to be interpreted, it must be compared
with some reference values, that in our case are the anomalies scores computed on
the normal data.

6 Results

The proposed method was introduced to solve a complex anomaly detection task.
Figure 2 shows some samples taken from the normal data distribution and from
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Fig. 2: Sequences sampled from the current sensor, in particular the sequences in
the first row are sampled from the normal distribution, while the ones in the second
row comes from the anomalous distribution.

the anomalous data distribution. Also from a human analysis the anomaly is not
easily identifiable. In such a complex scenario, approaches based on clustering and
k nearest neighbour, that are the most frequently mentioned in literature [2], failed
to identify the known anomaly. Figure 3 shows the principal components of some

Fig. 3: First two principal components of the data samples (from the current sensor).
The blue and red points represent respectively the normal and anomalous data points.

points sampled from the normal and the anomalous distributions and it shows that
normal and anomalous points are not separable in the feature space. Despite points
in figure 3 are just represented with the two principal components we also tried to
cluster normal versus anomalous points using more than two principal components,
but the results remained almost unchanged. We also tried density estimation with
Dynamic Time Warp (DTW): we fixed a threshold for the DTW distance and for
each sample we counted the number of normal neighbours (with the DTW below the
threshold). We tried different thresholds but the expected number of neighbours was
approximately the same both for normal and anomalous samples. Figure 4 shows the
1-NN (taken from the normal samples) of a normal and an anomalous sample and the
respective warping curve. We can see that they are very similar and the anomalous
vs normal nearest neighbour warping curve is actually closer to a straight line with
respect to the normal vs normal nearest neighbour warping curve. The failures of the
classical approaches led us to the proposed method based on Generative Adversarial
Networks, which results will be detailed in the rest of this section. In particular we
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Fig. 4: Warping curve between the query sample (at the bottom of the curve) and its
closes neighbours in the normal samples (at the left of the curve). In the left figure
the query is a normal sample, while in the right figure the query is an anomalous
sample. In both cases the query refers to the current sensor.

carried both a univariate and multivariate analysis. In the former case the network
is trained independently on each sensor, therefore the correlation between sensors
is not considered. In the latter the network is trained once for all sensors, hence the
input of the network is a multivariate time series in which each channel corresponds
to a particular sensor. In both configurations we analyzed the anomaly scores varying
the temporal granularity. We compared two observation periods that were not used
for training. The first one, referred in the following as Normal Period, contains
only normal data while the second, referred as Anomalous Period contains a known
anomaly. For the sake of clarity let us specify that not every sample in the anomalous
period is affected by an anomaly but rather there is just a single anomaly and its
time localization is known. First we plotted an histogram of the anomaly score for
each period: the range of the anomaly score is split into bins on the horizontal
axis and the bars on the vertical axis are proportional to the frequency of each
bin. The histograms of the two periods for the univariate and multivariate case are

© ()

Fig. 5: Histograms counting the frequencies of the anomaly scores in a given obser-
vation period. In particular the first column (figures 5a and 5c) refers to the period
without anomalies while the second column (figures 5b and 5d) to the one with
the known anomaly. The First row (figures 5a and 5b) shows the histograms for the
univariate case and in particular they refer to the current sensor, while the second
row (figures 5c and 5d) illustrates the histogram for the multivariate case.



8 Authors Suppressed Due to Excessive Length

depicted in Figure 5. It is important to notice that the anomaly is detected by both
the univariate and multivariate approaches even though the plots are significantly
different. In particular in the univariate case (top row in the Figure 5) the curves
outlined by the histograms have the shape of a unimodal distribution for the normal
period and a bimodal distribution for the anomalous period. The peaks correspond
to the anomaly scores with higher frequency. We can observe that the smaller peak
in the anomalous period and the one in the normal period correspond to the same
amount of anomaly score, hence they can be interpreted as the normal samples, while
the bigger peak in the anomalous period matches a larger anomaly score, therefore
it is probably caused by the anomalous sequences. The picture is different for the
multivariate case in which we have unimodal distributions in both the normal and
anomalous observation period. However the latter has higher mean and standard
deviation, which are both indications of abnormal behavior. Although these graphs
allow to individualize an anomaly they do not allow to individualize the instant,
within the observation period, in which the anomaly has occurred. At this purpose
we also plotted the evolution of the anomaly score with respect to time for both
the normal and anomalous periods. It worth noting that the plots corresponding to
different sensors do not always agree. For example Figure 6 represents the evolution

(@) (b) (© (d)

Fig. 6: The figures show the temporal evolution of the anomaly score in different
observation periods and different sensors. In particular figures 6a and 6b refers to
the current sensor while figures 6¢ and 6d to the speed sensor. Figures 6a and 6¢
refers to the normal period while figures 6b and 6d to the anomalous one.

of the anomaly score for the current and speed sensors. In the former plot we can
see a pulse that can be associated with the known anomaly while the latter is very
noisy and it does not allow to identify an anomalous event. In the multivariate case
(Figure 7) the plot is more noisy, since some sensors were affected by the anomaly

(2) (d)

Fig. 7: The figures show the temporal evolution of the anomaly score in the multi-
variate case for the normal (Figure 7a) and anomalous (Figure 7b) periods.
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while others do not. Also in this case however there is a sudden increment in the
anomaly score that corresponds to the known anomaly.

7 Conclusion

In this paper we applied the Generative Adversarial Networks, and in particular the
BiGAN architecture, to the problem of anomaly detection in spacecraft telemetry data
and compared the results with those of some classical algorithms. In our experiment
the proposed method was the only one capable of identifying the known anomaly.
Moreover the complexity of the model with respect to the dataset is drastically reduce
with respect to methods based on KNN, since once the model is trained, the execution
is very fast and do not depends on the size of the dataset. From the univariate and
multivariate analisys emerged that there is no strong correlation between sensors
and in particular some sensors seem not to be affected by the anomaly, while others
showed a sudden increment of the anomaly score when the anomaly is happening.
This fact is positive from an implementation point of view because the model scales
well with the input. In particular we considered only four sensors connected to a
reaction wheel but the system could be easily expanded for the monitoring of all
the sensors in the spacecraft. This is not the case in the multivariate case, because
the number of parameters is quadratic with respect to the input size. It could be the
case however that the identification of more complex anomalies could depend on
the complex relations between different sensor readings. At this purpose it would
be interesting for a future work to test the model with more anomalies and different
configurations of the input sources.
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