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Abstract

Weather forecasting is a critical factor for aerodrome and enroute flight operations. Airport decision-makers
rely on assessments made by forecasters to ensure operations safety and optimize flight schedule despite
potential adverse weather conditions. This manuscript suggests a novel methodology based on Machine
Learning to detect forecasting anomalies in historic data, and to rely on them for anticipating potential threats
in aerodrome future forecasts. The methodology is fed with historic bulletins from radars and with previous
forecasts, which are then processed via an anomaly detection algorithm, and a hierarchical clustering
algorithm. While the former algorithm spots anomalous data points, the latter is used to group sets of similar
forecasts. The joint usage of the results allows calculating an error propensity metric, which can predict the
expected tendency of a certain forecast to be inaccurate. The methodology is meant to enhance decision makers

in managing aerodrome weather forecasting, understanding criticalities related to their accuracy levels.
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Acronyms

ANSP Air Navigation Service Provider

Al Artificial Intelligence

AIRMET AIRman's METeorological Information

ANN Artificial Neural Network

BECMG BECoMinG indicator for change group in TAF
CNN Convolutional Neural Network

CSI Critical Success Index

DL-FC Deep Learning Fully-Connected

ETL Extraction Transformation Loading

FAR False Alarm Ratio

FBI Frequency Bias Index

M FroM indicator for change group in TAF

HC Hierarchical Clustering

ICAO International Civil Aviation Organization

KPI Key Performance Indicator

J48 Decision Tree classification

METAR METeorological Aerodrome Report

ML Machine Learning

MLP MultiLayer Perceptron classifier

NsNsNs Cloud type (i.e. cloudiness) weather element
PC Proportion Correct

POD Probability of Detection

PROB PROBability indicator for change group in TAF
RBF Radial Basis Function classifier

RF Random. Forest

SGD Stochastic Gradient Descendent

SIGMET Significant Meteorological Information

SPECI Special meteorological aerodrome Report

SR Spectral Residual

TAF Terminal Aerodrome Forecast

TEMPO TEMPOrary indicator for change group in TAF
TT Temperature weather element

VVVV Visibility weather element

ddd Wind direction weather element

tf Wind intensity (or velocity) weather element
nsnsns Cloud celing (i.e. height) weather element
ww Weather phenomena and precipitations weather element
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Notation

A Set of anomalous TAFs

AD Set of AD aerodromes

AT Time step for accuracy analysis

AT’ Time step for anomaly detection algorithm

F(x) Fourier transform operator of a function x

F1(x) Inverse Fourier transform operator of a function x

ac, B,y Parameters for Lance-Williams recursive algorithm referred to a cluster C

o Scale factor to obtain AT’ from AT

Ul Error propensity metric for TAFs belonging to cluster C
Angle between two observation vectors

7 Mean value of time series points included in the sliding window of the anomaly
detection algorithm

o Variance of time series points included in the sliding window of the anomaly
detection algorithm

@ Silhouette score of a cluster

7 Average silhouette score of a set of clusters

A, Mean distance between an observation o and.other observations in its cluster

AD Aerodrome referred to TAFs

ALA(f) Averaged logarithmic amplitude spectrum operator for a function f

B, Mean distance between an observation o0 and other observation in other clusters

C Cluster obtained from hierarchical clustering algorithm

Hcorr Number of AT in which the TAF is correct during TEMPO group validity

Hy Number of AT in which the main forecast is correct during TEMPO group validity

Hr Number of AT in which the TEMPO forecast is correct during TEMPO group
validity

Hrnotm Number of AT in which the TEMPO forecast is correct, and the main forecast is not

correct during TEMPO group validity

LA(f) Logaritmic amplitude spectrum operator for a function f

M Total observation features

Nc Totalnumber of clusters

Ny Total number of AT time steps within TAF validity

P(f) Phase operator for a function f

POD Average POD value time series for a single aerodrome

POD Average POD value time series for a set of aerodromes

R TAF richness, i.e., how many analyzed weather attributes it contains
S(f) Saliency function of a function f

SR(f) Spectral residual for a function f

T Analysis end time

T* Sets of anomalous time steps identified by anomaly detection algorithm
TAF u-th element of the set of TAF
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U Set of TAFs, whose time includes t

ve TAF validity end time

Vs TAF validity start time

a Hit score

b Correct rejection score

c Miss score

d False alarm score

ds5; Distance between generic observation i and generic observation j
dec, Distance between generic cluster I and generic cluster |

f Fourier transform of time series x

h,(f) Convolution matrix of a function f

m Index for m-th observation feature, m =1, ...,M

n Index for n-th TAF validity time step, n = 1, ..., N,

0 Observation vector for hierarchical clustering algorithm

T Index for r-th TAF element,r =1, ...,R

Sc Size of a cluster C

t Time index for POD aggregation referred to accuracy analysis, t = 0, ..., T with

increment AT

t' Time index for anomaly detection time series, t' = 0, ..., T with increment AT’
t* Anomalous time step contained in T*

u Index for u-th TAF

x Input time series for anomaly detection algorithm of length T

X Average of time series point for time series x

y Output of anomaly detection algorithm of length T
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1. Introduction

The economic growth of the aviation sector is largely determined on the optimization of flights schedule
(Atay et al., 2021). For example, adverse weather conditions nearby airports, or enroute, may lead to the
interruption of the scheduled plan, i.e., unpredictable flight delays, on-air holding, or even flight diversions.
There is also an increasing probability of incidents if weather conditions are not correctly anticipated and
managed (Schultz et al., 2021; Zhang & Mahadevan, 2019). These events have the potential to jeopardize both
safety and efficiency. Weather forecasting represents a fundamental aspect both for airlines and Air
Navigation Service Providers (ANSPs), being these latter responsible for ensuring a safe.and smooth air traffic
management. A correct functioning of airport-related meteorological services allows optimizing airports daily
operations as well as supporting decision-making regarding flight routing and planning. These statements are
well documented in literature. For example, Von Gruenigen, Willemse, & Frei (2014) proposed a case study at
Zurich Airport about the economic benefits of accurate weather forecasting for airlines. Klein et al. (2009)
suggested a metric to measure the Weather Impacted Traffic Index Forecast Accuracy (WITI-FA) which was
used to evaluate the impact of weather forecasts on the scheduling of an air traffic system from the ANSP
perspective.

The International Civil Aviation Organization (ICAO) standards for air navigation meteorological services
(ICAO, 2018) are the baseline for airport-related weather management. The use of two main drivers is
suggested: observations of actual weather scenarios;and forecasts for future weather conditions. Observations
(or measures) are taken with a fixed frequency and called METereological Aerodrome Reports (METARs).
METARs are complemented by SPECIs, i.e., special reports that can be emitted at any time. For example,
METARs can report weather elements on an hourly basis, but a SPECI can be emitted in between if some
weather elements are considered worth to be reported. The notion of weather elements is used to refer to those
variables that can be observed (or measured) and can be used to represent weather conditions. Accordingly,
METARs and (SPECIs can carry information about wind, visibility, meteorological phenomena, clouding,
temperature, and pressure, among others. These data are then used to produce the Terminal Aerodrome
Forecasts (TAFs) which are previsions for future weather conditions. A TAF shall be issued at a specified time,
and it shall consist of a concise statement of the expected meteorological conditions for a specified period (e.g.,
4 hours, 8 hours, or even 24 hours), where this latter represents the TAF validity time. The TAFs accuracy,
expressed by Key Performance Indicators (KPIs) is a critical measure to assess aerodrome systems
performance in making weather forecasting. A KPI compares a TAF (i.e., expected weather) with the actual
weather registered during its validity period (i.e., corresponding METARs). These KPIs shall be monitored
continuously to gain aerodromes performance. Considering increasing digitalization and turbulent market
conditions, KPI monitoring becomes paramount to support decision-makers at addressing both operational

and tactical actions.
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Besides descriptive historic data analysis, KPIs can be further used to reveal hidden patterns related to the

ability of an aerodrome system to forecast accurately weather conditions. While the usage of Artificial
Intelligence (Al) techniques has raised an increasing interest over recent years for weather forecasting, limited
evidence is available on the usage of Al techniques to support decision-making based on systematic weather
KPIs analysis (Gujanatti et al., 2021).

On this path, a novel methodology is presented in this paper, integrating two Machine Learning (ML)
algorithms that take advantage of KPIs data. The proposed methodology aims to identify common sets of
weather data, to isolate negative performance dynamically through an anomaly detection algorithm, and to
inform decision-makers on future estimated accuracy levels basing upon the calculation of an error propensity
metric related to clusters of TAFs.

The remainder of this paper is organized as follows. Section 2 reviews available approaches related to the
usage of ML for weather forecasting and approaches for the calculation of TAF accuracy and weather KPIs.
Section 3 presents the ML methodology, which is then tested into a real operating scenario, described in
Section 4. Section 5 adds discussion on obtained results and comments on the methodology application for

decision-making. Inherent limitations and perspectives for future research are finally suggested in Section 6.

2. Background

ML benefits are nowadays widespread in multiple domains with impactful consequences. Nonetheless, the
literature review of this paper aims to explore research contributions in weather forecasting mainly about the
usage of ML techniques in meteorological services. The retrieved contributions are twofold: (i) firstly,
documents proposing the usage of ML in the generation of weather elements; (ii) secondly, contributions
detailing the usage of ML to assess the impact of weather forecasts at aerodromes in terms of their accuracy
and the related losses on airport operations. In addition, considering the scope of the paper, a review of
different approaches for forecast accuracy assessment is provided, even if not directly linked to ML.
Accordingly, this section contains four subsections detailing the different streams of research in the field of
weather forecasting: Section 2.1 identifies relevant ML approaches used to predict weather elements; Section
2.2 reports previous research on assessing the impact of forecasts at aerodromes; Section 2.3 reviews different
approaches to evaluate forecast accuracy; Section 2.4. locates this work in previously identified literature.

This manuscript promotes the usage of ML into weather accuracy analysis. The contribution advances an
under-developed stream of literature about the implementation of ML decision support systems for accuracy

analysis in meteorological services (Gujanatti et al., 2021).
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2.1. ML to generate weather elements

The usage of ML solutions for weather forecasting can be categorized in terms of algorithms to be applied, or
based upon the set of weather elements to be considered (Jaseena & Kovoor, 2020). Applications can be mainly
found in the generation of forecasts: automated systems generate previsions which are subsequently validated
by forecasters (or decision makers at different levels) who then emit a weather bulletin (i.e., a TAF). Forecast
generators mostly rely on numerical methods that have been integrated recently with ML solutions (Weyn et
al., 2021). These approaches constitute the major stream of ML research in weather related problems. Some
examples are provided in the following lines concerning the usage of ML to improve specific elements
forecasting. Murugan Bhagavathi et al. (2021) suggested a short-term forecast model to integrate numerical
weather predictions with ML decision tree and clustering algorithms. Similarly, an hourly temperature
prediction tool based on Artificial Neural Network (ANN) was presented by Astsatryan et al.(2021). The ANN
is fed with measures from meteorological stations. Combined satellite, lighting, and radar observations were
used instead as inputs for a random forest model to predict severe storms by Mecikalski et al. (2021). Another
application of random forests was proposed by A. Wang et al. (2021) who used a ML algorithm to adjust
numerical wind predictions. A Multiple Discriminant Analysis:prediction tool to interpret METARs and
generate more accurate TAFs was proposed by Montpetit et al. (2002), yet in very short-range intervals.
Almeida, Franca, & Campos Velho (2020) tested six ML algorithms (i.e. Random Forest (RF); Decision Tree
(J48); Multilayer Perceptron (MLP) classifier; Radial Basis Function (RBF) classifier; ensemble of RF, J48, and
custom MLP plus RDF classifiers; Deep Learning fully-connected (DL-FC)) to predict storms occurrence and
severity from atmospheric discharge data. A deep learning dense algorithm turned out to be the most effective
one in terms of weather KPlIs, yet for one location at a time. An algorithm to nowcast the occurrence or absence
of certain visibility levels and cloud ceiling values for the next hour was presented by Cordeiro, Franga, Neto,
& Gultepe (2021), being trained on Rio de Janeiro airport data. All these examples confirm the benefits in terms
of forecasting accuracy: numerical methods are not sufficient to predict weather conditions since they have

highest chances to miss complicated patterns and non-linear behaviours (Hennayake et al., 2021).

2.2. ML to assess the impact of forecasts at aerodromes

A second stream of ML research for weather elements refers to the development of methodologies to support
the forecaster in deciding about the reliability of the numerical (or ML-driven) bulletins, providing decision
support systems to perform the forecasts with higher confidence. When coming to this stream of research, i.e.
decision support methodologies, ML has been used so far only to a minor extent. For example, Cristani,
Domenichini, Olivieri, Tomazzoli, & Zorzi, (2018) presented a software that updates its output dynamically

based on historic data to support decision makers in TAF bulletin generation. Complementarily, ML has been

9
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used to classify impacts of weather forecasting on aerodrome performance (Schultz et al., 2021) in terms of

losses related to airport operations. A similar logic has been applied via ML regression trees to predict
disruption on airport’s arrivals with respect to adverse weather conditions (Y. Wang, 2017). A ML technique
based on ANN in conjunction with existing numerical models has been proposed to assist detecting
turbulences and weather anomalies (Cai et al., 2019). In a larger management context, Mangortey et al. (2020)
proposed a ML based solution to support airport operations management: the approach relies on the
prediction of airlines ground stops due to adverse weather and investigation of key factors which contribute

to their occurrence.

2.3. Accuracy assessment of weather forecasts

In parallel to the recent introduction of ML, other weather-related research refersto the development of refined
performance analysis systems to compare TAFs over their related METAREs (i.e., expected weather vs. actual
weather). Starting from ICAO directives (ICAQO, 2018), several approaches exist in this regard (Sladek, 2021).
A relevant example is the work from Austro Control (Mahringer, 2008), who proposed a method based on a
twofold verification: the most favourable and the most adverse observed values should be used to assess TAF's
score through certain fixed intervals. Starting from there, Sharpe et al. (2016) defined a novel reliability table
to measure TAF performance including probabilistic information, and compare it with the deterministic
multicategory approach by Mahringer (2008), only for visibility values. Recently, Sladek (2021) focused on
setting criteria to enhance previous methods on TAFs weather and cloudiness. A larger scope review on TAFs
accuracy assessment and directives for weather forecasting is provided by Sladek (2019).

Nevertheless, in order to measure systemic forecasting performance, it is necessary to move the scope of
analysis from the difference between a single TAF and its corresponding set of METARSs, to the accuracy of a
set of TAFs. For example, Karel Dejmal, Novotny, & Hudec (2015) evaluated the TAF accuracy looking at the
values of TAF wind speed, wind direction and some selected meteorological phenomena on a 24 hours
interval. The results showed correlation between the successfulness of predictions performance and time, also
highlighting theroccurrence of many formal errors in TAF strings at specific hours of the day. Similarly,
Novotny et al. (2021) instantiated data pre-processing and accuracy calculation on 5 Czech airports. Analysing
weather performance in Czech Republic, K. Dejmal & Novotny (2018) developed an algorithm to assess TAF
reliability based on the numerosity of errors and their main features (e.g., which weather element is not correct,
TAF structure, time discrepancy). The study was not limited to a single day of operations, but TAFs emitted
in Czech stations from 2011 to 2017 were considered, showing major criticalities and hidden correlations

between errors made in TAF and the period of emission.

10
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2.4. Locating this study

Figure 1 summarizes the discussed literature, and places the contribution of this work into a simplified
functional mapping of the weather forecasting process. Traditionally, an automatic forecast generator system
uses METARs and SPECIs to propose previsions for future weather. These previsions are directed to a
forecaster who has to decide whether the proposed TAF can be emitted or not, possibly modifying it.
Aerodrome operations are planned based on these forecast bulletins. The three main streams of research
previously documented from literature (see Section 2.1-2.3) aim to improve this traditional process in different
ways. Some works propose to integrate or substitute numerical forecasting generation-approaches with ML
solutions (blue path in Figure 1, discussed in Section 2.1). Consequently, the process improves by limiting
errors of the decision maker delivering an already precise prevision. The second research stream instead
focuses on the development of decision support systems to use weather information strategically for
supporting TAF bulletin generation (green path in Figure 1, Section 2.2). The third group of papers suggests
innovative methods to evaluate forecasts accuracy and guide their redaction by improving the knowledge on
overall system performances (block with red border in Figure 1, Section 2.3).

The current manuscript aims to contribute to the definition of decision support systems for weather forecasts
which are based on performance evaluations metrics by designing a ML-based methodology that leverages

on historical data and provide systematic indexes for decision making at forecaster level.

Weather radar METAR
station report

Performance
-
To airport
LI Proposed TAF Forecaster TAF bulletin operations
generator
planning

’

v
Decision
% ML-based

support
system forecasting

Figure 1. Summary of traditional process for weather forecasting, and improvements suggested in literature: blue elements refer to ML used to
support elements generation, green elements refer to ML used to support decision-making through a supporting reasoner, and orange elements refer
to approaches used to improve accuracy calculation. The contribution in this manuscript suggests a novel decision support system based on ML to
improve forecaster decision capacities, marked with the (*).
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3. Materials and methods

ML focuses mainly on three main approaches: (i) descriptive analyses to transform data into information,
(ii) predictive analyses to transform information into decisions, (iii) prescriptive analyses to transform decision
into actions (Nakhal A et al., 2021a). The proposed methodology spans over descriptive and predictive
analytics, as summarized in Figure 2.

Historic data are firstly pre-processed in order to enable descriptive analysis: METARs and TAFs must be
prepared to be comparable for subsequent accuracy evaluation. These processed data constitute a data mart
which serves as an input for ML algorithms. Two ML algorithms are applied in the methodology. At first, the
time series of a selected KPI feeds an anomaly detection algorithm to spot abnormal-performance. Secondly,
a parallel study on TAF records is conducted to define clusters them via a dedicated ML algorithm considering
forecasted weather elements as clustering features. At a final stage, the anomalies are used to predict the
potential for forecasting mishaps via the definition of an error propensity metric that consider clusters. The
comparison between the results of the anomaly detection and the clustering algorithm suggests the propensity
of certain types of TAF (both historic, and future) to be characterized by performance anomalies. These results

can be used in a predictive perspective to support the forecasting process.

Weather data

EIE]
pre-processing

Hierarchical Anomaly
clustering detection

TAF Anomalous
clusters. time ranges
TAF error
ssessmen! mm
] L ]
]
[— i My
= (XX |_ (i A
Data preparation Descriptive ML Predictive ML

Figure 2. Decision support methodology for aerodrome weather forecasting.
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3.1. Data Pre-Processing

The final goal of the descriptive step is to extract information from available data and store them into a
data model, which is the core for all the subsequent analyses. The resulting data model comprehends data
relationships, dimensions, and measures within the processed data, obtained via Extraction-Transformation-

Loading (ETL) (Nakhal A et al., 2021b).

Historic data

Extraction

Data pre-processing

Find errors Find errors

Parse strings Transformation

Accuracy analysis

Figure 3. Data pre-processing steps (ETL).

3.1.1.Extraction

Extraction refers to the actions to acquire data from the systems that collect them, e.g. sensors on
aerodrome measuring stations and forecast bulletins collection. The weather forecasting process makes use of
data taken from measuring stations to produce TAFs. METARs are produced on an hourly or semi-hourly
base and made available to forecasters in addition to SPECI, i.e., reports emitted under special circumstances.
On the other hand, TAFs can be produced at different time steps, (e.g.) every 4 hours or 8 hours. Both METARs
and TAFs are stored in a dedicated database, whose main fields are reported in Table 1. With reference to

Figure 3, DBorepresents the database obtained after the extraction of data from the historic records.
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Table 1. Weather database structure.

Field Description

ID Unique identification code for the record

KIND Type of record (METAR, SPECI, TAF)

AD Location at which the record was registered (aerodrome)

TEXT Alphanumerical string coded as (ICAO, 2018) to carry information about

weather
TIME STAMP Date and time at which the record is stored in the database
NOTE Optional additional notes

3.1.2. Transformation

Transformation refers to all the actions to transform data through queries. These can involve: (e.g.) re-
organizing data in a new format, remove duplicate records, joining data from multiple sources, aggregating
or disaggregating records, etc. The data mart is obtained through a set of queries applied to DBo database (cf.
Figure 3). Since METARs and TAFs contain all weather information into a single string field, parsing actions
are needed to split each string and isolate the relevant elements. In Figure 4 an exemplary parsed string is
shown along with the input and output data structures of the pre-processing step. The parsing process allows
obtaining two subsets of DBo (Figure 3): DBorar containing forecasts; DBomerar containing observations (both
METARs and SPECIs). Custom queries are developed to spot syntactical errors (Dejmal & Novotny, 2018) of
reports in both DBotar and DBomerarand isolate the corresponding strings, then stored in Etar and Emerar.
These latter are subtracted respectively from DBorarand DBomerar to obtain the TAF data and the METAR data
to be used for further analyses, which contain only data with no errors. After the data pre-processing stage,
the data table has a structure as the one presented in Figure 4. Specifically, every record in the input table
(among the ones which have not been detected as errors) contain the “TEXT” field split to isolate information
inside it consisting of observed/forecasted weather elements and additional information (e.g., record type,
airport of collection). In this regard, some important fields to be discussed are the ones related to the validity
time of both observations (METARs and SPECIs) and forecasts (TAFs): through the “From day”, “From hour”,
“To date”, and “To hour” fields each row from the data table can be decomposed at a fixed time granularity

enabling comparison between records.
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ID KIND AD TEXT TIME STAMP NOTE

Minute

00
Hour Wind speed
s T

Type Day Wind angle

TAF 25 20 - Extra information

TAF LIRF 251100Z 2512/2618 OZOOBKT. l SCT020 BKNO40 BECMG 2514/2516 32012KT

Airport From Day To Day Cloud 1 Ceiling 1
LIRF 25 26 SCT 20
FromHour  To Hour Cloud 2 Ceiling 2
25 26 BKN 40

Parse string

Cloud n Ceiling n

Type Airport Extra information

Figure 4. Example of a string data parser for an exemplary TAF.

3.1.3.Loading
Loading consists in importing the data mart into the target system to proceed with reporting and advanced
analytics. Pre-processed data are loaded into the data mart which represents the starting point for following

analyses.

3.2, Accuracy analysis

The accuracy analysis is used to define and compute KPIs to compare TAFs over METARs and SPECls.
ICAO recommends seven TAF elements to be compared with corresponding METARs and SPECIs ones
(ICAO, 2018): wind direction (ddd), wind speed (ff), visibility (VVVV), precipitations and weather phenomena
(ww) clouds’ type (NsNsNs), clouds’ ceiling (nsnsns), and air temperature (TT). The KPIs rely on diverse binary

contingency matrices (i.e., presence or not presence, in or out a fixed threshold) as in Table 2.
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Table 2. Contingency table for binary weather elements.

Event observed
Yes No Marginal totals
]
i Yes a b a+b
g
&
NS
§ No c d ct+d
2
Marginal totals a+c b+d atb+c+d

With reference to Table 2, a represents the occurrences in which a forecasted event has been observed (Hit), b

the ones in which an event has been forecasted but not observed (False alarm), ¢ the ones in which an event

has been observed but not forecasted (Miss), and d the ones in which an event has not been observed neither

forecasted (Correct rejection). When contextualizing contingency matrices for weather KPlIs, it is not necessary

meaningful to consider all combinations sketched in Table 2, (e.g.) false alarm and correct rejection make no

sense for wind direction or wind speed evaluations (ICAO, 2018). The individual contingency criteria recall

ICAO Annex 3 regulation and are described in depth in Annex A of this manuscript, Table 1A, whose main

aspects are reported below:

Wind direction accuracy is calculated based on the difference between the forecasted direction and
the observed one compared to a certain threshold (20°).

Wind intensity accuracy is calculated based on the difference between the forecasted intensity and the
observed one compared to a certain threshold (5 kt).

Horizontal visibility values are categorized in two classes. The accuracy control differs depending on
the horizontal visibility: if is less than 800 m or above.

Weather:phenomena and precipitations are reported through codes (e.g., RA for rain or TS for
thunderstorm) and then evaluated only by their occurrence or not.

Predictions on clouds are evaluated by considering the height of the bottom clouds layer. Moreover,
this latter has to refer to broken clouds (5 to 7 okta) or overcast clouds (equal or more than 8 okta) with
a ceiling less than 1500 m. If the forecast does not satisfy these hypotheses, it is always considered
correct. In all other cases, the predicted value is controlled through its occurrence or not.

Clouds ceiling (i.e., height) is evaluated, as for visibility, in two classes. The accuracy control differs

depending on the weather forecasted ceiling: if is less than 300 m or above.
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Temperature evaluation is based on the difference between its forecasted value and the observed one.
Temperature KPIs rely on binary contingency matrices with a threshold of +1° admitted variation.
Temperature accuracy verification is suggested only for very long-term previsions (Chan & Li, 2003),

and it will not be considered in this paper in following KPIs analyses.

3.2.1.Management of TAF change groups

KPIs are calculated by reporting METAR, SPECI, and TAF data at a certain time resolution related to a

specific time step AT. This discretization allows comparing forecasted weather elements against observations

(METARs and SPECIs). From an operational perspective, TAF elements remain valid for the declared overall

time validity of the TAF itself. Nevertheless, these elements can be further refined, adding extra forecasting

group(s) in a TAF string to document expected significant changes. These groups are called “change groups”

and they can be of four different types (World Meteorological Organization, 2017):

From group (FM): it is used to set a change in weather element acting from a specific time moment,
until the end of the TAF validity. A change in elements inserted in the FM group completely substitute
the ones in the main forecast.

Becoming group (BECMQG): it is used to insert a transition period within the TAF. The change in one
element inserted in the BECMG group coexists with the ones in the main forecast. Once the validity
of the BECMG group expires, the elements.in the BECMG group substitute the ones in the main
forecast.

Temporary group (TEMPO): it is used to indicate temporary fluctuations in the TAF. Elements in the
TEMPO group.are valid together with the ones in the main forecast only for the time validity of the
TEMPO period.

Probability group (PROB): it is used to assign probabilities of a change in weather elements. The PROB

indicator is considered out of scope in this work.

Further information about the management of TAF change groups are available in Annex B.

3.2.2.KPI definition

KPIs are calculated relying on g, b, ¢, d frequency as obtained from binary and multi-variate contingency

matrixes. Common KPIs that are widely used to evaluate aerodrome forecasts are summarized in Table 3

(Roebber, 2009).
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Table 3. Main KPIs for weather forecasting accuracy.

KPI Acronym Analytical expression
. a+b
Frequency Bias Index FBI FBI = 1)
a+c
Proportion Correct PC PC = atd (2)
P T a+b+cH+d
a
Critical Success Index CSI CSl= —— 3)
a+b+c
Probability Of a
POD POD = 4)
Detection a+c
. b
False Alarm Ratio FAR FAR = (5)
a+b

KPIs in Table 3 can be calculated referring at any contingency matrix since they are not dependent from the
weather element under analysis, and also they can be updated following changes related to change groups.
The Frequency Bias Index (FBI) is the ratio between the total number of events forecasted (2 + b) over total
number of events observed (a + c). FBI evaluates whether an event has been overestimated or underestimated:
FBI =1 is the perfect score, FBI < 1 depicts underestimation, FBI > 1 depicts overestimation.

The Proportion Correct (PC) is the ratio between total number of correct forecasted events (also considering
correct rejections) over total number of events observed and forecasted. It ranges between 0 to 1 and PC =1
represents the perfect score. It is highly affected by the presence of a non-forecasted/non-observed common
event.

The Critical SuccessIndex (CSI) is the ratio between the number of correct forecasted events over total number
of events observed and forecasted (without considering correct rejections). It ranges between 0 to 1 with CSI =

1 perfect score.

The Probability of Detection (POD) is the ratio between the number of correct forecasted events over the total
numbet of events observed. False alarms are not considered in POD. POD ranges between 0 to 1 with POD =
1 perfect score.

The False Alarm Ratio (FAR) is the ratio between the number of forecasted events that are not observed (false
alarms) over total number of events being forecasted. It ranges between 0 to 1 with FAR = 0 perfect score.
The KPIs calculated at atomic level (i.e., for each time step AT) are loaded into the data mart increasing the

pool of data to be used in the subsequent ML-driven analysis (cf. Figure 1).
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3.3. ML solutions for the calculation of the TAFs error propensity metric

As per the aim of this paper, two ML algorithms are involved to support aerodrome weather forecasting
decision-making: anomaly detection (section 3.3.1), and clustering (section 3.3.2). The algorithms have been
selected to reproduce the functional workflow of a systemic accuracy analysis: firstly, to detect anomalies in
historic forecast accuracy levels, then to find commonalities in the data contributing to these anomalies, and

lastly, to integrate these findings for anticipating future anomalies.

3.3.1.Anomaly detection

An anomaly detection algorithm permits to isolate abnormal values within a time series. Given a
sequence of real values x = x;, = (%o, Xy, ... ,x7) with t' € [0, T]; an anomaly detection algorithm aims to
produce an output sequence of corresponding values y = y;, = (Vo, Y1, - »Yr) with each y;, € [0,1] that
denotes whether the corresponding x;, is an anomaly point or not (Ren etal., 2019),i.e. y;, = 1 denotes anomaly
in x;,, y;, = 0 depicts non-anomaly in x,,. As real-world data can'generate many different types of time series
with different characteristics (e.g. seasonal, stable, etc.), it is hard to develop a generalized algorithm that deals
with all these situations efficiently (Ren et al., 2019). Saliency, i.e.,.the property by which something stands
out, can represent a potential solution for these problems. Accordingly, the proposed algorithm makes use of
Spectral Residual (SR) to quantify the difference between data points in the frequency domain, and
subsequently it provides a function for saliency in the spatial domain (Hou & Zhang, 2007). A convolutional
neural network (CNN) is then applied on the results produced by the SR to dynamically define a threshold
rule to decide whether a point should be considered anomalous of not (Zhao et al., 2015). The input of the
algorithm is a time series x. While the time series to feed the algorithm can be any of the KPIs, the POD is
selected since it is the only KPI that can be calculated for any weather elements (for example, ddd and ff only
have Hit and Misswvalues from their respective accuracy rules, cf. Annex A).

The KPI represents a key point to apply the proposed methodology as it permits to spot time frames in which
anomalous operations happened. In this regard, the following lines presents some steps to aggregate the KPI
values of multiple weather elements in a unique time series to be processed by the anomaly detection
algorithm.

Every TAF can be defined by four dimensions:

TAF(V*,V¢,R,AD) (6)

where V?® and V¢ are respectively TAF validity start time and TAF validity end time, R represents the richness
of the string in terms of how many different types of weather elements it contains, and AD is TAF emission

location, i.e., the aerodrome for which the forecast applies. TAF, , Tepresents a TAF referred to a time step ¢

AD

included in a period of analysis T, from an emission location AD.
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A time resolution AT’ for the time series represents the time period between two recorded points of x. Notice

that AT’ can be set equal to AT, or differs from it, since AT represents the time resolution of the accuracy
analysis:

AT' =6-AT, §E€R %)

For example, a yearly analysis will imply setting T =365 days = 8,760 hours. In this case, one may want to have
a daily anomaly detection analysis (AT’ = 1 day = 24 hours) even though METAR and TAF data are collected
with an hourly frequency (AT = 1 hour). Accordingly, § =24 so that the desired time series has 365 data points
rather than 8760. All calculations for accuracy analysis are firstly run on the more granular time step, i.e., AT,

and eventually aggregated to follow the larger time step, i.e., AT".

Once set the time resolution AT’, It is possible to define the number of time units TAF,, 4, COVers as:
e _ S
N - [Véso, = Vian,] ®)
Uuap, — AT

Note that Ny, is expressed in terms of how many AT the TAF covers. Accordingly, for each of the N time

UAD;
step of extension AT, a METAR will be valid, too, permitting the calculation of the KPI (POD in this case).

Consequently, N is a measure of how many values have been obtained from the accuracy analysis. The

UAD,

POD index of a TAF can be indicated in formal terms (left), and with simplified notation (right) as:

UuAD,

PODADt,uADt, - PODAD,u,r,n (9)

Tupp, nr“ADt
where:

- AD, identifies an aerodrome location. It is a time dependent index since the number of TAFs, their
elements, and their validity change over time with a time resolution equal to AT (¢ increments every
AT). In the simplified notation, hereafter it will be referred as AD.

- Uyp, identifies a TAF for a time ¢ (t increments every AT), among the ones emitted per a certain AD. In
the simplified notation, hereafter it will be referred as u.

- Tup, identifies one of TAF weather elements. This index depends on the TAF to be examined and,
obviously, on the corresponding AD and time ¢. In the simplified notation, hereafter it will be referred
asr.

- n,

,p. identifies a time step within a certain TAF,, ,, validity. This index depends on each TAF element
t

to be examined within a TAF.

uap, for a time £, among the ones emitted per a certain AD. In the simplified

notation, hereafter it will be referred as n.

The average value of POD of each element for a time interval N,, covered by a TAF, can be computed as:
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Ny
anl PODAD,u,r,n (10)

PODypyr = N.
u

Six POD4p 4 can be calculated with reference to ddd, ff, VVVV, ww, NsNsNs, and nsnsns. POD of an entire TAF
forecast can be computed as their average value:

R_,POD
PODAD_u — Zr—l R AD,u,r (11)

Since ww, NsNsNs and nsnsns are not mandatory information to be contained in a TAF, R € {3, 4, 5, 6}. In this
paper, TAF accuracy is calculated through mandatory elements, i.e., R =3.

A graphical representation of POD,p, ,, is presented in Figure 5a. Notice that multiple TAFs can co-exist at the
same time, as they are progressively released by the forecaster without any prescription on the emission
frequency. Accordingly, the POD index for a given time interval (based on fixed time granularity AT)

aggregating multiple POD,p, ,, is defined as:

POD
PODAD — ZuEUTZJ | AD,u .
AD

Upp i{t [t 2VE A e <VE} (12)
where U, represents a set of TAFs that are valid.in any given time step t, |Uyp| is the cardinality of the set,

and V; and V; represent the simplified notation forrespectively Vy,, and Vi,

. An exemplary representation
of POD,j, is proposed in Figure 5bfor t € [0, T]. Notice that both Uy, and |Uyp| change over time but they are
referred to a time resolution AT. A final step.is needed to transform POD, to the time scale desired for the

anomaly detection analysis AT".

S(tr+AT)-1

1
POD, = Z POD,,, t' €[0,T]
t=6tr—1

(13)

This last step enables a wider view of the anomaly occurrence by reporting the anomalous time moment and
labelling as.anomalous also nearest POD values. POD timeseries (cf. Figure 5c) represents the input time series

x for the anomaly detection algorithm.
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Figure 5 a) POD value for multiple TAFs over time. b) Exemplary aggregated POD time series with accuracy analysis time resolution. c) Exemplary

aggregated POD time series with anomaly detection algorithm time resolution.

On the input time series POD,, , SR is applied by: (i) computing the Fourier Transform F of the series to then
get the logarithmic amplitude spectrum LA(f), and the averaged logarithmic spectrum ALA(f); (ii) calculating
the spectral residual SR(f), (iii) computing the Inverse Fourier Transform F~* to return the sequence back to

spatial domain and to obtain the saliency function S(x). The following variables are defined to proceed with

the algorithm:
f=F) (14)
LA(f) = log (Amplitude(f)) (15)
P(f) = Phase(f) (16)
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ALA(f) = ha(f) - A(F) (17)

where h,(f) is a T X T matrix (T is the length of x, i.e., POD,,) to convolute the input sequence x and it is

defined as:

1 1
h,(f) = F[ l (18)
1 - 1
Then the spectral residual is calculated:
SR(f) = LA(f) — ALA(f) (19)

Finally, the saliency function is computed:
SG) = |77 (exp (SR() + V=T-B(M))] (20)

The obtained transformed time series shows more_significant.anomaly points since the input is now
normalized to behave as a stable variable. At this stage, by fixing a threshold-based rule, it is possible to
compute the output sequence in terms of the time series.y. The rule is verified within a sliding window of the
time series comparing points with their neighbours. The rule remains however fixed for the entire time series,
ignoring potential localized trends. To enhance this process, a CNN is applied on the saliency function to
dynamically establish a more sophisticated decision rule to modify the traditional single threshold adopted
by the SR solution. A discriminative model is trained on synthetic data that are generated by injecting new
anomaly points (not included in the evaluated data) into the saliency map of PODy, (i.e., S(x) ). The injected
points are labelled as anomalies while the others are labelled as normal, resolving the problem of the
availability of large-scale labelled data. In practice, the CNN model selects a set of points within the time series.
Based on them, it calculates the injection value, and then it gets the saliency function. The values of anomaly

points are calculated by:
Xy = X+ A +0()) 1 +xy

where X is the average of the points preceding the generic point x;,, 4 and o(x) are respectively the mean and
the variance of all the points within the sliding window, and r is a randomly sampled value that can be equal
to 0 or equal to 1. This approach permits the anomaly detector to be adaptive to the changes in time series
distribution, without needing any manually labelled data. The CNN architecture consists of: (i) two 1-D
convolutional layers with filter size equal to the size of the sliding window, and channel size equal to the size

of the sliding window (for the first layer) and the double of the size of the sliding window (for the second
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layer); (ii) two fully connected layers stacked before the Sigmoid output. As loss function to be minimized to

improve model accuracy, it has been used the cross entropy. The training process is based on a Stochastic

Gradient Descendent (SGD) optimizer (Sun et al., 2010).

3.3.2.Hierarchical clustering

Hierarchical Clustering (HC) is a method to compute clusters of data following a hierarchical

representation. Data to be clustered can be seen as a set of M-dimensional observation vectors 0,

0= EL‘ = (0y1, Oz, -+ Oumr)

where 0y, ... , 0,y represent the M coordinates (i.e. TAF weather elements) of each-observation o, (i.e. a TAF)
used to cluster multiple 0,,u € Uyp,. , where Uyp,. represents the total number.of TAFs emitted in a location
AD for the whole period of analysis T.

In this work, M = 10 to map the weather elements described in Annex C, Table 1C. It is worth noticing that
some coordinates 0, ,m € [1, M] can be null, since (e.g.) wind gust, precipitations, or clouds can be omitted
in a TAF (World Meteorological Organization, 2017). These null values are filled with zeros for numerical
values (e.g., fmfin) and with “N/A” for categorical ones. (e.g., ww). These substitutions are actioned to allow
clustering data also in case of no information. For example, if no weather phenomena ww has been reported
in the TAF, it is implicitly said that weather is.expected to be calm (e.g. no thunderstorm, snow, rain), and this
information becomes a valuable feature to consider when clustering TAFs by similarity.

Subsequently, categorical variables are pre-processed with one-hot encoding to make them continuous. Data
are normalized to improve efficiency of the clustering algorithm (Ah-Pine, 2010).

The hierarchy dendrogram'is obtained computing the matrix of distances between normalized observations
in terms of cosine distance. This latter is equal to the complement of the angle cosine between observations

vectors in the M-dimensional space. With normalized vectors:

—_ = M
0, 0] _ Zm:l Oim ij

- =1
llo:1 |[o | \/Z%zloimz XM O (1)

day] =1 - cos (97[@) =1
Lj1{i,)} € Uspp, i # j

Clusters have been agglomerated following a bottom-up approach: every data is initially put in its own cluster,
and then clusters are merged progressively moving up into the hierarchy. To achieve this target, once the
distance matrix is computed, the distance between two or more observations is calculated through the Ward
linkage criterion which is a popular yet general criterion to perform hierarchical clustering (Horne et al., 2020).
The Ward linkage criterion is implemented via the Lance-Williams recursive algorithm (Murtagh & Legendre,

2014). At the first iteration, the two clusters characterized by minimum distance are merged (C;, ;). Then, at
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each subsequent iteration the algorithm’s goal is to minimize the distance variance within clusters. Setting Cx

as a third cluster to be merged, the updated cluster distance between C; U C; and Cy is computed recursively

through:

d(C[UC])CK = aCIdCICK + aC]dC]CK + ﬁdCIC] +y dCICK - dC]CK (22)

with:

ao = —atS oo _SeFSa g TS g 23)
cr sCI+sC]+sCK’ O scl+scj+sCK' sCI+sC]+ka'

where s¢, , s¢ ; and sc, refer to the respective number of observations included in clusters [, | and K, i.e. their
size.

A critical parameter for HC is the number of clusters to be used as a'stop criterion. The average silhouette
score is frequently used for this purpose (Lin et al., 2022; Nakhal A et al., 2021b). This latter is a measure of
how much an object is resembling in its own cluster in comparison with the others. Silhouette score ranges
between -1 and +1 (being this latter the optimal value) and itis computed as:

1_ACTL/B0—L’ ifAO—l<BO—l

9@) =1 0 if A5, = B, (24)
Bo—l/Ao—l — 1, lf Ao—l > Bo—l

with Ag; being the mean distance between observation 0, and all other observations in its own cluster C;:

1
Ay = E -
o SCI - 1 do" 9 (25)

JECi#]

and Bj; being the minimum of the mean distances between observation o, and all other observations in each

cluster except its.own:

1
Bo—lz min Z do—lo—] vI'#1 (26)
The optimal number of clusters Nc is the one that maximizes @(Nc), which is the average of the silhouette
score ¢(0,) of all observations o, for a given number of clusters Nc.

The obtained clusters permit to classify (as per the calculated likelihood) past and future TAFs on the basis of
their weather elements. This classification enables to identify groups of similar TAFs in terms of structure and

content.
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3.4. TAF clusters anomaly assessment

The two ML outputs (i.e., anomalous time steps, and clusters of similar TAFs) are combined to assess the
tendency which characterizes a TAF to generate an anomaly in the POD index.
Specifically, from the anomaly detection algorithm (cf. Section 3.3.1), the set of anomalous time steps of the

POD time series can be identified as:
T ={t"| y. = 1} (27)
Accordingly, the set of all TAF, valid in anomalous time steps can be isolated:
A ={TAE, tu=u,,t" | Vi <t" <V} (28)

In parallel, the hierarchical clustering algorithm (cf. Section 3.3.2) defines specific ranges of weather elements
to differentiate TAFs according to their belonging cluster. This information allows defining a number of A
subsets, which ranges between 1 (in case all TAFs referred to an.anomalous t* belong to a single TAF cluster)

and Nc (in case at least one TAF referred to an anomalous t™is assigned to each cluster).

Ac, ={TAF, | TAFE, € A A TAFE, is classified in C; } i=1,..,Nc (29)

Figure 6 sketches the outcome of this process. For exemplary purposes, only two anomalous time steps are
defined in T*, i.e,, t;" and ¢t,*, which refer to seven TAFs constituting A. This latter is then re-organized in

three sub-sets.

An error propensity metric to assess the tendency of TAFs to generate an anomalous value of POD can be
calculated for each cluster as:
|‘ACL'|

Ng, = —4 i=1,..,Nc (30)

S¢;

where |c/qci| is the cardinality of C (i.e., number of anomalous TAFs in the i-th cluster); and s, is the size of (;

based on the whole set of historic TAFs directly obtained from the HC algorithm.

The metric ¢, ranges between 0 and 1 and can be interpreted as the propensity of future TAFs respecting the
inclusion criteria in C; to generate anomalies in POD: the higher 7, the higher the chances a TAF belonging
to the C; cluster might be inaccurate. For example, TAFs belonging to a generic cluster C; with n¢, = 0.20 will

have double the chances to be incorrect with respect to TAFs belonging to another cluster ¢; with ¢, = 0.10.
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Figure 6. Schematic representation of anomalous TAFs clustering.

Considering the sample size in terms of numerosity of records and respective dimensions, the ML models are
usually trained on 70% of the data mart and then tested with the remaining 30%, where samples are randomly
chosen to avoid seasonality issues (Boutaba et al., 2018). The testing is performed based on 7,, with the aim
to ensure |n¢," —1¢,°| < 5%, where ¢,* is error propensity for training dataset, and 7¢,° is the error propensity

metric for testing dataset.
4. Results

The proposed approach has been instantiated over a yearly dataset including METARs, SPECIs and TAFs.
The input database counts for about 500,000 METARs/SPECIs, and about 50,000 TAFs. The records are referred
to 40 aerodromes. The two set of data (i.e., observations and forecasts) have different size since observation
are usually made on an hourly base, while forecasts instead have longer time validity. Section 4.1 shows

sample results of the descriptive ML solution, complemented with the predictive one presented in Section 4.2.
4.1. Descriptive ML results

Following the theoretical approach described in Section 3.3, the anomaly detection and the hierarchical
clustering algorithms is instantiated for a single airport, from now on referred as Airport 1. Data for Airport 1
contains 16,620 METARs/SPECIs and 1,517 TAFs.

Similar results for two additional airports are provided in Annex D, i.e., Airport 2 and Airport 3.
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4.1.1. Anomaly detection results

Figure 7 presents the exemplary POD anomalies at Airport 1. Time resolutions are set as AT = 0.5 hours
and AT’ = 24 hours. A threshold accuracy of 95% between actual and expected POD values is established,

subsequently minimum and maximum expected values are identified. Data covers a year of forecasts and

observations at a fixed airport, during the analysed period 19 anomalous time frames are highlighted. Table 4
presents numerical results for the 19 anomalous points out of the 365 under consideration.
Table 4. Anomaly detection algorithm outputs.
AII;(::;IY POD Expected POD Min POD Max POD Loss on expected
1 0.67 0.72 0.68 0.76 6.94%
2 0.67 0.76 0.72 0.80 11.84%
3 0.66 0.71 0.67 0.75 7.04%
4 0.54 0.59 0.56 0.62 8.47%
5 0.60 0.64 0.61 0.67 6.25%
6 0.73 0.77 0.73 0.81 5.19%
7 0.65 0.98 0.93 1.00 33.67%
8 0.66 0.74 0.70 0.78 10.81%
9 0.65 0.73 0.69 0.77 10.96%
10 0.64 0.74 0.70 0.78 13.51%
11 0.53 0.57 0.54 0.60 7.02%
12 0.65 0.69 0.66 0.72 5.80%
13 0.65 0.75 0.71 0.79 13.33%
14 0.57 0.64 0.61 0.67 10.94%
15 0:66 0.73 0.69 0.77 9.59%
16 0.69 0.73 0.69 0.77 5.48%
17 0.67 0.74 0.70 0.78 9.46%
18 0.56 0.59 0.56 0.62 5.08%
19 0.61 0.65 0.62 0.68 6.15%
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Figure 7. POD timeseries for Airport 1 (exemplary) with highlighted anomalies time steps. Sensitive data have been removed.

In the provided examples, anomalies have different aetiologies, which have been reconstructed ex post, once
the ML pipeline emphasized them. Some days referred ‘to.anomalous.functioning of sensors, (e.g.) days
referred to Point 8-9 presented low POD values due to the malfunctioning of an anemometer; others referred
to unexpected transient weather conditions, (e.g.) Point 18 was linked to unexpected, localised clouds and

precipitation phenomena, caused by smaller-scale weather features difficult to anticipate.

4.1.2.Hierarchical clustering results

For exemplary purposes, hierarchical clustering algorithm has been applied on the same number of
TAFs described in 4.1.1, where data have been normalized replacing weather elements values with their
standardized values (i.e., subtracting the average and dividing by the standard deviation). To set the optimal
number of clusters, an ayerage silhouette score @(Nc) for Nc =2 to Nc =10 has been calculated, identifying the

number of clusters which results in the maximum values of (Nc), i.e.,, Nc =3 as shown in Figure 8.
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659  Figure 9 shows the exact silhouette values for all TAFs reorganized in the three identified clusters. Only few
660  elements of C; register a slightly negative silhouette score, guaranteeing an overall good quality. Overlapping
661  between clusters is shown to be minimum, this will permit to classify new emitted TAFs in a specific cluster
662 without excessive uncertainty. Computed sizes for each cluster are: s¢, = 870, i.e., 33% of data; s¢, = 580, i.e.,

663 22% of data; Sc, = 1,166, i.e., 45% of data.
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Figure 9 Silhouette scores for observations with Nc = 3.

4.2. Predictive ML results

The anomalous time frames highlighted in4.1.1 are investigated by analysing all the TAFs emitted in their
intervals. Each cluster identified in 4.1.2 will count a certain amount of anomaly-generating TAFs, as per the

results summarized in Table 5:

Table 5. Number of anomaly-generating TAFs per each cluster.

Anomaly point Cqy C, C;
1 2 5 0
2 8 0 0
3 0 8 0
4 0 6 1
5 2 5 0
6 0 0 7
7 1 7 0
8 0 8 0
9 4 4 0
10 4 4 0
11 1 7 0
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At this stage, these results can be combined with clusters’ size information to compute the metric ng, with i =

1, 2, 3 as described in 3.4:
e, = % = ;—;) = 0.049 - 4.9% (31)
Ne, = % = 5% = 0.145 - 145% (32)
e, = % = 1,11_566 =0.043 - 1.3% (33)

These results depict the tendency of each TAF clusters to include TAFs that may generate anomalous POD
values, as summarized graphically in Figure 10. Cluster C, is the most critical with an error propensity score
equal to 14.5%, i.e., there is an expected anomaly in about one TAF every seven among them which are
described by the weather elements values characterizing this cluster. More reassuring results are obtained for
the remaining two clusters: a forecast failure every fifty forecasts are expected for C;; almost a forecast failure

for a hundred forecasts is expected for Cs.
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Figure 10. Error propensity of the three clusters linked to Airport 1.

This assessment has practical implications for predictive capacities related to TAFs emission. Every time a new
TAF is emitted, its elements can be checked over each cluster typical weather elements to assess where the
new TAF belongs. This assessment implies that the new TAF has an error propensity, which is based on the
inaccuracy similar TAFs (i.e., belonging to the same cluster) historically had. The interpretation of these results

from a decision-making perspective is provided in Section 5.

5. Discussion

Forecasters use data collected by METARs to make prevision on future weather, but no expertise can avoid
errors at all. The proposed approach aims to minimize errors on aerodrome forecasting processes through a
ML analysis based on historic weather data and weather KPIs.

Section 4 instantiated the proposed approach with historic data from an exemplary airport. Obtained results
demonstrate the feasibility of the methodological solution to assess a TAF error propensity in terms of POD
index. To.confirm reproducibility, the ML pipeline has been tested for two additional cases (c.f. Annex D),
showing its validity even for different settings. Finer results are expected to be obtained by implementing a
system with incremental refresh of data, considering that n¢, indexes will then depict updated forecasting
ability of the aerodrome system. This updating frequency should not be too short to avoid being biased by
temporary or seasonal phenomena, i.e., a yearly update can be recommended.

The methodology outputs can be of interest for diverse management perspectives. Decision-makers can
benefit of prepared data (cf. Section 3.1) to monitor system’s performance at different granularity levels and
in terms of different KPIs (cf. Section 3.2). Setting up the data mart opens almost limitless possibilities for BA
reporting using knowledge extracted from strings of METARs, SPECIs and TAFs. The obtained scores can

support punctual improvement interventions or sharing of best practices among diverse forecasters. At more
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operational level, data from the data mart can also support the forecasts generation phase enabling visualizing

information in a clearer and more user-friendly way. Forecasters can retrieve historic data and compare it with
current status, (e.g.) historical temperature ranges in a specific period and associated TAFs accuracy. Similarly,
the anomaly detection output (cf. Section 3.3.1) has been demonstrated to be capable of highlighting time
frames with lower performance, motivating deeper investigations. For example, anomalous KPIs could be
linked to an erratic failure of a radar system, or to more systematic management errors of certain elements.

The method used to calculate POD among records with different validity, and the aggregation of different
POD values, represents an insight for future development. Finest method may be experimented, and the
different results can be compared to find the most effective solution. Also, in this paper, both descriptive and
predictive ML have been instantiated into one airport at a time. However, the same steps remain significant

for a set of selected aerodromes AD. Accordingly, Equation (11) can be generalized at regional level:

_ YapeanPOD,,

POD,, = AD] (34)

where |AD| represent the numerosity in terms of aerodromes which belong to the region under analysis.

Accordingly, POD indexes from multiple locations covered by the ANSP can be aggregated to show the mean

POD,, to gain overall understanding of company performance. Locations which majorly contributes at lower
values of POD can be then identified to successfully proceed with the analysis in Section 4.

Furthermore, the error propensity metric ¢, (cf. Section 3.4) becomes a support to refine procedures in certain
locations. More specifically, any new TAF generated by a numerical or ML-driven forecast generator, and then
assigned to a TAF cluster, shall be subjected to a formal verification of its associated error propensity value. If
the propensity is larger than a certain threshold, then it should be recommended to reduce the time interval
of such TAF and emit new ones with higher frequency. From a decision-making perspective, these localized
actions support resource allocation via the increment of forecasting resolution (and efforts) only when
necessary. The error propensity can become a decision support tool for forecasters themselves, who may be
more cautious when dealing with generated TAFs with lower values.

The methodology has been tested with an input database containing records of one year of observations and
forecasts, but it can be enlarged to longer time intervals and larger sets of airports. The steps of the
methodology can be customized for different elements, or KPIs, even custom, or for different bulletin types.
A wider experimentation should be made to confirm the positive performance of the proposed solution over
other alternative methods to document their pros and cons, and to spot possible areas of improvement (e.g.,
experimenting various ways of isolating anomalies, or different linkage criteria in hierarchical clustering
encompassing time-dependent analyses).

The proposed methodology can be further specialized also considering the management of changes in weather

elements, as introduced by group of type PROB (ICAO, 2018). These probability indicators (PROB) outline the
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probability of occurrence of alternative values for defined weather elements. Even if out of the scope of this

paper, these forecasts can be integrated through specific rules, as previously defined by Sharpe et al. (2016).
Similarly, other types of bulletins can be implemented through dedicated pre-processing and ML logic, as
needed for (e.g.) SIGMET and AIRMET.

6. Conclusion

In this paper a ML-driven methodology has been presented to support decision making in aerodrome
systems with respect to weather forecasting. The proposed approach to deal with such under-investigated
research area, required the development of a data pre-processing logic and the design of a specific descriptive
and predictive ML pipeline based on anomaly detection and data clustering. This pipeline allowed the
definition of an error propensity metric for TAFs to be used both at tactical and operational level based on two
ML algorithms: anomaly detection trough spectral residual, and hierarchical clustering.

The definition of this metric, as the outcome of a systematic ML approach, represents the main contribution of
this work to the literature. The novelty of the approach is indeed the capability of encompassing systematically
historic data to augment the ability of a weather forecast expert.in identifying anomalous behaviour and
anticipating error-prone forecasts. While it has been acknowledged the absence one-size-fits-all ML
algorithms, from a computational perspective, the selection of the anomaly detection algorithm (X. Xu et al.,
2019) and the clustering algorithm (R. Xu & Wunsch II, 2005) could be further refined assessing the
performance of other approaches. Specifically in terms of clustering, an additional time-based clustering to
encompass a time dependent dimension in the generation of TAFs clusters (Paparrizos & Gravano, 2015).
Future studies may investigate the application of the proposed decision support system in other domains. For
example, in industrial operations, a warehouse management system may benefit of similar solutions by
analysing warehouse picking operations to spot anomalous behaviours, then building clusters for picking
orders, and finally compute the error propensity metric to highlight critical orders and re-organizing the
facility to/better respond,to customer needs (e.g., by designing a new layout to better allocate critical products).
Given the early development of this type of studies, a further perspective of improvement should evaluate the
cost effectiveness of such solution (Schultz et al., 2018). An assessment of the savings should at least consider:
(i) meteorological services operators which would spend fewer working hours in evaluating forecasts
accuracy, (ii) resources saved for unnecessary aircraft trajectory deviation or turnarounds, and (iii) intangible
assets in the short run, such as higher safety levels.

Overall, the promising results obtained in the study foster the design and development of a real-time
automated tool to make the application of this methodology feasible.

Declaration of Interest: None
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898 Annex A

Table 1A. Criteria for TAF elements accuracy evaluation with respect to corresponding METAR elements. The proposed elements refer to ICAO

899
900 Annex 3 (ICAO, 2018).

Weather

Element Symbol | Rule

Wind Jdd if |dddTAp - dddMETARl > 20° - Miss

direCtiOn else |dddTAF - dddMETARl < 200 - Hit

Wind speed if |f frar — ffuerarl = 5 kt > Miss

. K
(intensity) elseif |ffrar — ffurrarl <5kt - Hit
if VVVVyip < 800 m — {ifIVVVVT'AF — VVVWWygrar| < 200m — Hit
else - Miss
Visibility VVVV
else lf VVVVTAF > 800 m — {lf 07 " V"/VVTAF S VVVVMETAR S 13 " VVVVTAF d Hlt
else > Miss
WWyMETAR
Yes No
Weather Yes | Hit False alarm
ww &
phenomena £
= | No | Miss Correct rejection
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if NsNsNsrar < 5 okta and nsnsnsr,r = 1'500 m > Hit

else if NsNsNsr,r = 5 okta —

Ceiling nsnsmns

NsNSNS yerar
Yes No
Clouds type | NsNsNs
%| Yes | Hit False alarm
%y
=
=
2 No | Miss Correct rejection
) _ < )
if nsnsnsyay < 300m - {1f|nsnsnsTAF nsnsnSygrarl < 30m — Hit

else » Miss

else if nsnsnspyr > 300m

R {if 0.7 - nsnsnSryr S NSNSNSyprap < 1.3 ' nsnsnsrp — Hit
else - Miss

Temperature | TT

lf |TTTAF - TTMETAR' 2 10 4 MlSS

else |TTTAF - TTMETAR' < 10 d Hit
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Annex B
This annex reports information about how TAF change groups are managed in this work:

- From indicator (FEM)

The FM indicator describes changes in one or more weather elements that apply from a specific time moment
until the end of TAF validity. The values introduced after the FM indicator overwrite the ones declared in the
main part of a TAF.

For example, if the main TAF forecasts no rain phenomenon, and in the FM group there is a mention to it, then
rain is expected starting from the FM start validity time, i.e., the time from which the FM groups is valid. A
TAF containing the FM change group is represented in Figure 1Ba. The FM validity time starts at 07:00 of the
1st of January, while the main forecast is valid from 01:00 to 12:00. It is possible to notice that at 07:00 the FM

forecast (which predicts rain) completely substitutes the main one.

- Becoming indicator (BECMG)

The BECMG indicator describes intervals where weather elements are expected to reach or pass through
specified thresholds. The validity interval of a BECMG is interpreted as a transition period, during which both
the main and the BECMG weather elements are considered valid. Afterwards, i.e. outside the BECMG validity,

the BECMG elements overwrite the ones declared in the main part of a TAF.

Imagine a string where the main TAF does not forecast rain phenomena, but rain is indicated in the BECMG
group: in this case during the transition time, the presence or absence of rain are both allowed; at the end of
BECMG validity, rain occurrence is considered to be forecasted since the BECMG group overwrite the main
TAF forecast. A TAF containing the BECMG change group is represented in Figure 1Bb. The BECMG validity
time starts at 07:00 of the 1 of January and ends at 08:00, while the main forecast is valid from 01:00 to 12:00.
Accordingly, from 07:00 to 08:00 both rain and no rain are considered to be correct, while from 08:00 the

BECMG prevision completely substitutes the main one expecting rain.

- Temporary.indicator (TEMPO)

The TEMPO indicator describes temporary fluctuations of certain weather elements. During the TEMPO
validity, both the main and the extra elements are considered valid. Outside the TEMPO interval, the main
elements apply. Note however that the expected fluctuations should last less than one half of the time period
of the TEMPO group, as per ICAO recommendations (ICAQ, 2018). This situation differs from BECMG, where

during the extra group validity, both elements are always considered valid.

In terms of KPIs, the number of time steps correctly forecasted in a TEMPO group cannot exceed the half of
the total TEMPO interval. A penalty is imposed if the TEMPO condition is not observed at all; the non-

occurrence lowers the score up to one-third of the total number of AT time steps in the TEMPO interval. In
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terms of accuracy, the contribution of a TEMPO group which lasts 7 time steps can be resumed as (Chan & Li,

2003):

Hy + min(t/2, Hrnoem) if Hr >0

I%”Rz{anQHM—TB) if Hy = 0 (35)

where H¢ggp is the number of time steps in which the TAF is considered correct; Hy, is the number of time
steps in which the main forecast is correct; Hy is the number of time steps in which the TEMPO forecast
condition is correct; Hypoep is the number of time steps in which the TEMPO forecast condition is correct and
the main forecast is not correct.

For example, if considering a string where the main TAF forecast any rain phenomenon, but rain is indicated
in a TEMPO group, the accuracy analysis has to be made as follows. During the TEMPO validity, both rain
and no rain must occur to obtain the highest score (1). Even though the presence and absence of rain are both
allowed, they may generate penalties on final accuracy scoring. At the end of the TEMPO validity, no rain is
expected since the TEMPO group indicates a temporary phenomenon, after which the main TAF forecast
returns to be effective. A TAF containing the TEMPO change group is represented in Figure 1Bc. The TEMPO
validity time starts at 07:00 of the 1% of January and ends at 08:00, while the main forecast is valid from 01:00
to 12:00. Accordingly, from 07:00 to 08:00 both rain and no rain are considered correct for accuracy analysis

following the corrections in (35). From 08:00 the main TAF forecast return to be effective.
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TAF ...0101/0112... FM 0107 RA ...

a) 01 January
01:00 | 02:00 | 03:00 | 04:00 | 05:00 | 06:00 | 07:00 | 08:00 | 09:00 | 10:00 | 11:00 | 12:00

TAF... 0101/0112 ... BECMG 0107/0108 RA ...

b) 01 January
01:00 | 02:00 | 03:00 | 04:00 | 05:00 | 06:00 | 07:00 | 08:00 | 09:00 | 10:00 | 11:00 | 12:00

TAF ...0101/0112 ... TEMPO 0107/0108 RA ...

c) 01 January
01:00 | 02:00 | 03:00 | 04:00 | 05:00 | 06:00 | 07:00 | 08:00 | 09:00 | 10:00 | 11:00 | 12:00

No rain

Figure 1B. a) Representation of forecast containing a change in rain acting from 1 January at 07:00 of type FM; b) Representation of forecast
containing a change in rain acting from 1 January at 07:00 to 1 January at 08:00 of type BECMG; c) Representation of forecast containing a change
in rain.acting from 1 January at 07:00 to 1 January at 08:00 of type TEMPO.
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Annex C

Table 1C. TAF features used for clustering.

Feature

Description

Variable type

TAF validity duration

Difference between V¢ and V* in hours.
Mandatory value, no need to fill voids.

Numeric

Wind direction

Value of ddd. Mandatory element, no
need to fill voids.

Numeric

Wind speed

Value of ff. Mandatory element, no need
to fill voids.

Numeric

Wind gust

Value of fmfm. Voids are filled setting
value to zero, i.e. no gust.

Numeric

Visibility

Value of VVVV. Mandatory element, no
need to fill voids.

Numeric

Weather phenomena

Value of ww. Up to three weather
phenomena groups can be available.
They are treated as .three different
features. Voids are filled by “N/A”
feature in one-hot encoding.

Categorical

Cloud type and ceiling (up to
four)

Value of NsNsNs concatenated to value
of nsnsns: Up to four clouds groups can
be available. They are treated as four
different features. Voids are filled by
“N/A” feature in one-hot encoding.

Categorical

Pressure

Value of pressure indicated in TAF (no
notation is used in this work). Voids are
filled with weighted average value of
pressure.

Numeric

Temperature

Value of TT. Voids are filled with
weighted average value of temperature.

Numeric

Change groups number

Count of change groups reported in the
TAF string. Zero value depicts no extra
group in TAF, no need to fill voids.

Numeric
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Annex D

Note that Airport 2 data include 15470 METARs/SPECIs and 1,495 TAFs while Airport 3 data include 16,450
METARs/SPECIs and 1,489 TAFs.
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Figure 1D. a) POD timeseries for Airport 2 with highlighted anomalies time steps. Algorithm accuracy at 90%: 12 anomalous points out of 365 are
identified. b) POD timeseries for Airport 3 with highlighted anomalies time steps. Algorithm accuracy at 85%: 35 anomalous points out of 365 are

identified. Sensitive data have been removed.
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Table 1D. Anomaly detection algorithm outputs for Airport 2.
Apzi(ﬁl?g POD Expected POD Min POD Max POD Loss on expected
1 0.67 0.75 0.68 0.81 10.67%
2 0.33 0.98 0.91 1.00 66.33%
3 0.67 0.75 0.68 0.81 10.67%
4 0.67 0.74 0.68 0.80 9.46%
5 0.65 0.74 0.68 0.80 12.16%
6 0.64 0.73 0.66 0.79 12.33%
7 0.63 0.72 0.65 0.78 12.50%
8 0.66 0.73 0.67 0.80 9.59%
9 0.64 0.71 0.64 0.77 9.86%
10 0.67 0.77 0.71 0.84 12.99%
11 0.67 0.76 0.69 0.82 11.84%
12 0.67 0.75 0.68 0.81 10.67%
Table 2D. Anomaly detection algorithm outputs for Airport 3.
Anomaly - S e —
point (b) POD Expected POD Min POD Max POD Loss on expected
1 0.67 0.98 0.87 1.00 31.63%
2 0.67 0.94 0.83 1.00 28.72%
3 0.67 091 0.80 1.00 26.37%
4 0.67 0.94 0.83 1.00 28.72%
5 0.75 0.99 0.88 1.00 24.24%
6 0.71 1.00 0.89 1.00 29.00%
7 0.67 0.98 0.87 1.00 31.63%
8 0.67 0.98 0.87 1.00 31.63%
9 0.67 0.91 0.87 1.00 26.37%
10 0.67 0.94 0.80 1.00 28.72%
11 0.67 0.99 0.83 1.00 32.32%
12 0.66 0.98 0.88 1.00 32.65%
13 0.66 0.99 0.87 1.00 33.33%
14 0.66 0.97 0.86 1.00 31.96%
15 0.63 0.98 0.87 1.00 35.71%
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16 0.66 0.98 0.87 1.00 32.65%
17 0.66 0.98 0.86 1.00 32.65%
18 0.83 0.99 0.88 1.00 16.16%
19 0.67 0.94 0.83 1.00 28.72%
20 0.63 0.98 0.87 1.00 35.71%
21 0.67 0.99 0.88 1.00 32.32%
22 0.67 0.99 0.87 1.00 32.32%
23 0.67 0.97 0.86 1.00 30.93%
24 0.67 0.94 0.83 1.00 28.72%
25 0.67 0.99 0.88 1.00 32.32%
26 0.66 0.99 0.87 1.00 33.33%
27 0.67 0.99 0.88 1.00 32.32%
28 0.80 0.99 0.88 1.00 19.19%
29 0.67 0.98 0.87 1.00 31.63%
30 0.72 0.99 0.88 1.00 27.27%
31 0.75 0.96 0.85 1.00 21.88%
32 0.74 0.94 0.83 1.00 21.28%
33 0.67 0.98 0.87 1.00 31.63%
34 0.67 0.99 0.88 1.00 32.32%
35 0.72 0.99 0.88 1.00 27.27%
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Figure 2D. a) Average silhouette score § per number of clusters Nc for Airport 2. b) Average silhouette score @ per number of clusters Nc for
Airport 3.
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Table 3D. Number of anomaly-generating TAFs per each cluster for Airport 2.

Anomaly point Cy C, C;
1 3 0 4
2 0 1 6
3 0 1 5
4 0 4 3
5 1 2 4
6 0 5 0
7 1 5 1
8 2 5 0
9 0 5 2
10 6 0 1
11 1 6 0
12 1 3 2

Table 4D. Number of anomaly-generating TAFs per each cluster for Airport 3.
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