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Chapter

Optical Soliton Neural Networks
Eugenio Fazio, Alessandro Bile and Hamed Tari

Abstract

The chapter describes the realization of photonic integrated circuits based on
photorefractive solitonic waveguides. In particular, it has been shown that X-junctions
formed by soliton waveguides can learn information by switching their state. X junc-
tions can perform both supervised and unsupervised learning. In doing so, complex
networks of interconnected waveguides behave like a biological neural network,
where information is stored as preferred trajectories within the network. In this way,
it is possible to create “episodic” psycho-memories, able to memorize information bit-
by-bit, and subsequently use it to recognize unknown data. Using optical systems, it is
also possible to create more advanced dense optical networks, capable of recognizing
keywords within information packets (procedural psycho-memory) and possibly
comparing them with the stored data (semantic psycho-memory). In this chapter, we
shall describe how Solitonic Neural Networks work, showing the close parallel
between biological and optical systems.

Keywords: Nonlinear optics, photorefractive soliton, solitonic waveguide, supervised
learning, unsupervised learning, Machine Learning, biological neural network,
Artificial Intelligence, optical psycho-memory, optical neural network, photonics

1. Introduction

Software artificial intelligence (AI) and the neuromorphic approach, both electronic
and optical, are born to reproduce the learning capacity of the biological neural system.
AI software has now proved to be fundamental in many fields, although with the limits
imposed by the tools used [1]. These represent the pretext for developing neuromorphic
hardware capable of overcoming these limitations [2]. Neuromorphic optics has shown
great versatility. However, current technologies reproduce only some aspects of neural
biology without grasping the overall view. Works such as [3] implement fundamental
units capable of reproducing excitability, or spiking properties, while others are focused
on synaptic connections [4]. An overview is missing. The biology of the brain [5]
teaches us that it is a system with local properties that can have global effects. In other
words, learning is a process that affects entire regions of the neural network and
manifests itself through a structural organization of the connections between neurons.
In this way, real neural maps are built, whose development includes learning and
memorization of information. Soliton neural networks (SNNs), exploiting the typical
plasticity of photorefractive materials, are dynamic entities capable of self-modifying to
process, learn and memorize information. Furthermore, they are able to do so selec-
tively at the information level, exactly as it happens in the human brain. By physically
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combining the processing and memory units, SNN networks functionally approach the
biological nervous system. Now learning and memorization are two events that occur at
the same time through modifications of the spatial geometries.

2. Photorefractive solitons and solitonic waveguiding

2.1 Spatial solitons

The possibility of a beam becoming self-confining and propagating without diffrac-
tion was first studied about 50 years ago by E.T. Chiao, E. Garmire, and C.T. Townes [6]
who in that year received the Nobel Prize for his studies on the maser and the laser. So
they interpreted the phenomenon: “We shall discuss here conditions under which an
electromagnetic beam can produce its dielectric waveguide and propagate without spreading.”
Eight years later, V. E. Zakharov and A. B. Shabat formulated the theory of solitons [7].

The first experimental verification of self-confined beams arrived 13 years later, in
1985, by A. Bartelemy et al. [8] exploiting the Kerr-type nonlinearity of a liquid CS2
cell and, 5 years later in 1990, within a glass planar waveguide [9].

It was immediately evident that the applicability of Kerr solitons was not simple: in
fact, the low values of the nonlinearity of the excitable Kerr type in the glass required
either very high intensity (GW/m2) or very long propagations (being cumulative),
and only planar geometries (Kerr solitons are stable only in 1D and not in 2D geome-
tries). Over the years, it has been clear that these nonlinearities could be exploited
only to realize temporal soliton behaviors (pulses without dispersion) in optical fibers
by adopting long propagations but not within the chips.

However, in those years, and in particular in 1992–1996, the very first theoretical
and experimental works on the formation of spatial solitons in photorefractive mate-
rials came out [10–21]. Only later on, at the beginning of the 2000s, bright solitons
have been observed in lithium niobate (LN) [22] the most widely used nonlinear
material for integrated devices. Since then, spatial solitons in LN have been largely
used as waveguides in devices.

However, the first use of solitons as waveguides started early: in 1991, De la Fuente
et al. [23] used Kerr solitons as waveguides. Almost 9 years later, E. Fazio et al
repeated the same experiment in a glass chip [24] and used spatial soliton interaction
for signal processing [25].

2.2 Theory of photorefractivity and solitons

A photorefractive crystal is typically a semiconductor that has a second-order
nonlinearity of the electro-optical type, that is, the possibility of varying its refractive
index as a function of an applied static electric field. Mathematically this can be
represented in terms of the nonlinear polarization intensity vector:
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which shows that the electric susceptibility, and consequently the dielectric tensor,
gets a linear dependence from the static field:

ε
$
¼ ε0 1þ χ

$ 1ð Þ
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$ 2ð Þ
∙ E
!

0ð Þ
h i

(3)

for this reason, it is also called the “linear Pockels effect.” Typically, the refractive
index of crystals is described by an ellipsoid of the type:
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and, as a consequence, its variation is expressed by the variation of
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that corresponds to a decrease of the refractive index:
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where i represents one of the crystallographic directions (x,y,z) and ni0 describes
the linear refractive index along the i-th direction.

There are two critical points in the discussion that has followed so far:

1. the local electrostatic field must give a local distribution to induce an electro-
optical variation of the refractive index capable of self-confining the laser beam
and originating spatial solitons

2.the electro-optical effect decreases the refractive index of the material (see
Eq. (6)) while to self-confine the light a waveguide must have a higher refractive
index than the surrounding environment.

For these reasons, it is necessary to follow a small procedure, a kind of small trick,
to achieve a positive variation of the refractive index capable of self-confining the
light: this can be done by applying a bias field to the whole material that lowers its
index everywhere, and screening it in a small region where the light is, in order to
raise back its value. As a consequence, the bright photorefractive spatial solitons are
usually called screening solitons. Here is how this happens.

Let us consider a photorefractive medium as a semiconductor doped by a donor
medium. Donor states (ND) are usually localized energetically within the energy gap:
which means that light can induce electron transitions from the donor states to the
conduction bands. Consequently, two charge populations are generated so far: ionized
donors, that is holes (ND

+), which are physically localized, that is, are not free of
moving because are connected to the physical position of the dopant ions, and
electrons, which instead can go everywhere being in delocalized conduction states.

The donor rate equation is:

∂nþD
∂t

¼ σFnD � γnþd ne (7)
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where σ is the absorption cross-section, F the photon flux, and γ the relaxation
rate. The electron rate equation follows the donor one, with the inclusion of the
diffusion-conduction terms:

∂ne
∂t

¼
∂nþD
∂t

� μ∇
!
∙ neE

!
þ
kBT

q
∇
!
ne

� �

(8)

where μ is the electron mobility, kB the Boltzmann constant, and T the temperature.
Electrons and holes constitute the local charge density ρ:

ρ ¼ q nþD � ne
� �

(9)

which generates, through Gauss’s theorem, a local electric field that screens the
applied bias:
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!
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!
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!
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!

SC (10)

Applying a bias field along the extraordinary ĉ the crystallographic direction of a
uniaxial photorefractive crystal, the refractive indices get the expressions

nx ¼ ny ¼ n0

nz ¼ ne �
1
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The nonlinear light propagation is then described by the nonlinearwave equation [13]:

∂

∂x
�

i

2k

∂
2

∂y2
þ

∂
2

∂z2

� �� �

A x, y, zð Þ ¼
ik

n
δn Elocalð ÞA x, y, zð Þ (12)

where the field amplitude, in the case of a self-confined solitonic solution, should be
factorized into an amplitude, independent from x, and a propagative term as follows:

A x, y, zð Þ ¼ u y, zð Þei ωt�Γxð Þ (13)

as done for every kind of soliton, not only the photorefractive ones. Many groups
have tried to solve analytically Eq. (12) without real success. Semi-analytical solutions
are indeed reported in the literature showing that such complex problems can support
bright solitons. In order to observe the soliton formation, a numerical integration
(FDTD—Finite Difference in Time Domain) is performed of all Eqs. (6)–(11). Often, an
approximated equation is considered, taking into account the saturable behavior of
the nonlinear dielectric constant:
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2.3 Experiments on photorefractive solitons

The experimental set-up for spatial solitons is shown in Figure 1 [22]. A laser beam
(soliton beam) is focused down to about 10–12 μm FWHM onto the input face of a
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sample. To generate suitable refractive index modulation, the sample must be biased
along its optical axis.

The value of the electric field to bias strongly depends on the crystal type and its
electro-optic coefficient: for example, using strontium barium niobate crystals (SBN)
which have a very high electro-optic coefficient, the electric field ranges from a few
hundred V/cm up to some kV/cm [26]; lithium niobate (LN) has a lower electro-optic
coefficient and requires several tens of kV/cm [22]; in materials with high optical
activity like Bi12SiO20 (BSO), the applied bias must be as high as 55 kV/cm or higher to
induce the light to reach a nonlinear polarization regime and to self-confine [27–29].
Chauvet et al. [30, 31] proposed an interesting innovative solution for the bias appli-
cation: induce an internal electric field by applying a thermal gradient and take
advantage of the pyroelectric effects that some crystals have, for example, LN. Indeed,
this is a major improvement in the technology, as it eliminates any conductive con-
tacts/plates, thus leaving the sample completely free and accessible from all sides for
further applications.

Background illumination can be provided also, to stabilize the solitonic beam
during propagation (i.e., prevent beam self-deflection [32–35]).

Finally, an optical imaging system is placed after the sample to monitor the output
face of the sample using a camera. The typical evolution of the soliton formation is
shown in Figure 2 where the light intensity at the output phase is shown.

A key feature of photorefractive solitons is the very low power required for their
writing. Photorefractive solitons require very low powers, of the order of microwatt in
continuous [36]. This means that they can be made both with coherent light from
continuous or pulsed lasers at the fundamental or second harmonic frequency
[37–40], even in the femtosecond regime [41, 42], and with incoherent light from
fluorescent bulbs [43] or even ion fluorescence [44].

E. Fazio et al. [22] have shown experimentally that the solitonic solution gives a
hyperbolic transverse profile which can be easily identified by plotting the transverse
intensity distribution in a semi-log scale (Figure 3). A laser beam has usually a
Gaussian profile that, in a semi-log plot, gets a negative parabolic shape. As soon as it
evolves into a soliton, the Gaussian profile rearranges into a hyperbolic one. This
transformation can be monitored in the semi-log graph, where the hyperbolic profile
gets a triangular shape (a linear rise and fall tuned together on the vertex).

Figure 1.
Experimental set-up for screening photorefractive solitons [22].
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2.4 Photorefractive soliton waveguiding

Among the possible applications of soliton beams, one of the most important is
their use as waveguides. Compared to traditional techniques, writing solitonic wave-
guides has many advantages in terms of construction costs, 3D geometries, propaga-
tion characteristics, and time durations.

Regarding costs, solitonic waveguides can be written with extremely low laser
powers and above all in continuous mode: therefore, practically at no cost, since they
can also be written by laser diodes for a few euros.

With regard to 3D geometries, a soliton guide can be written in any position within
a nonlinear substrate, allowing full exploitation of the entire available volume. This

Figure 2.
Experimental images of the soliton formation and stabilization [22].

Figure 3.
A Gaussian laser beam modifies into a hyperbolic secant beam when becomes spatial solitons [22].
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was not possible before with traditional waveguide construction techniques, which act
mainly on the surface of the substrate or at most by penetrating a few microns.

Regarding the propagative characteristics, the performances of a solitonic guide
are amazing, significantly improving the specifications of traditional waveguides.

Table 1 shows some characteristic values of a soliton guide made of lithium
niobate. As you can see, the waveguides are relatively wide and with a rather low
refractive index contrast. These factors are related to the applied bias electric field:
Low fields originate wide beams with a modest contrast; very high fields can originate
narrow beams and, consequently, high refractive index contrasts.

However, the fundamental characteristic of soliton waveguides is linked to the
propagative losses, extremely low in the order of 0.07–0.04 dB/cm (limit of measur-
ability), much lower than commercial waveguides (a guide obtained by ion exchange
typically has 1 dB/cm as propagative losses). This factor is related to the nature of
solitons: unlike traditional guides in which the index profile is made artificially, in this
case, it is precisely the light that chooses the best index profile to be able to propagate
self-confined, that is, without diffraction. This leads to ultra-very low losses and low
modal dispersion (since the guides are almost single-mode).

Another fundamental characteristic of solitonic guides is their transient, permanent
or semi-permanent character: using substrates with a very rapid dielectric relaxation
and/or using thin films, as soon as the writing light is turned off the associated guide
disappears, with times even of a few nanoseconds. By using substrates with extremely
slow dielectric relaxations [45, 46], waveguides can survive for a long time, even
months. When writing solitons with very intense femtosecond pulses, the material can
undergo permanent changes and the waveguides no longer erase.

3. Stigmergy, reinforcement learning, and photorefractive plasticity

3.1 Stigmergy

Stigmergy was first proposed by French entomologist Pierre-Paul Grassè in
the1950s when studying the activities of social insects [47]. The word Stigmergy is a

Writing powers From nW up to mW (typically μW)

Full Width Half Maximum Typically 10–18 μm (min 2–3 μm)

Propagation Measured up to 2–3 cm

Refractive index contrast Typically 10�3÷10�4

Refractive index profile Hyperbolic secant—Gaussian

Waveguide modal dispersion 0.6 � 0.2 fs/mm1

Lithium Niobate chromatic dispersion 9.9 � 0.2 fs/mm2

Waveguide propagation losses 0.07–0.04 dB/cm

Waveguide lifetime From few ns to months

1Measured at 800 nm with 75 fs pulses within waveguides written at 514 nm2Measured at 800 nm with a CW laser beam

Table 1.
Performances of typical photorefractive solitonic waveguides.
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combination of the Greek words ``stigma” (outstanding sign) and ``ergon” (work),
signifying that some activities of agents are prompted by external traces, which
themselves are generated by the agent’s activities [48]. Stigmergy allowed Grassè to
explain how insects with fractional intelligence, without obvious communications,
can collaboratively engage in complex tasks, such as building a nest simply by follow-
ing very naive rules. In general, the paradigm of social insect societies is a distributed
system that, despite the lack of sophistication of their individuals, offers a highly
structured social organization. For instance, as a result of this organization, ant colo-
nies can carry out complex assignments that in some cases are beyond the capacities of
a single ant [49]. A study of their behavior indicates that in the heart of their
commotional random movements, there can be seen the trace of a series of behaviors
that are driven by repeated stimulus-response cycles [50]. For example, when
searching for food, ants initially explore the area surrounding their nest randomly and
while moving, they leave a chemical pheromone trail on the ground (Figure 4). Once
an ant finds a food source, it evaluates the quantity and the quality of the food and
carries some of it back to the nest [52].

During the return trip, the quantity of pheromone that an ant leaves on the ground
may depend on the quantity and quality of the food. The pheromone trails will guide
other ants to the food source and subsequently, the shortest path to the food source
will be reinforced as the result of a higher probability of feedback concerning the long
paths [51]. This environment-intermediated type of communication has captivated
researchers in many dissimilar fields. For example, it can be referred to all those
protocols for the optimization of multi-variable problems known as genetic algo-
rithms, which exploit the rules of genetics to solve mathematical problems with many
independent variables, or neural networks, mathematical systems that base the calcu-
lation on a “learning” database that the system has previously prepared. All these
typical problems that would require smart signal processing, are called “reinforcement
learning” [53]. This expression is commonly used in computer science to describe
those algorithms “of machine learning inspired by behaviorist psychology, which is

Figure 4.
Basic scheme of the search for food by the ants. The system is based on the two fundamental decision-making
principles of following a trace of pheromone and of changing track when a more marked one is met [51].
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connected with how software agents ought to take actions in an environment to
amplify some impulse of cumulative reward [54].

3.2 Reinforcement learning

Reinforcement learning concerns neural networks or artificial intelligence proto-
cols that self-set by reinforcing specific information identified by feedback in the
system in order to solve complex problems. This procedure is indeed inspired by
nature, adopting its Stigmergy in order to transfer information in decentralized sys-
tems, thus realizing distributed cognitive processes through many small, simple elab-
orations [55]. The basic idea of reinforcement learning is to consider the feedback
derived from the dynamic interaction of the learning agent with the surrounding
environment. Guiding autonomous agents to act optimally through trial-and-error
interaction with the corresponding environment is the primary goal in the field of
artificial intelligence and is regarded as one of the most important objectives of
reinforcement learning [56]. During the learning process, the adaptive system tries
some actions (i.e., output values) on its environment, then, it is reinforced by receiv-
ing a scalar evaluation (the reward) of its actions feedback [57]. As a result, the
reinforcement learning algorithms selectively retain only the outputs that maximize
the received reward because of the higher repetition rate over time [53].

Unfortunately, software-based protocols need solution times that increase expo-
nentially with the size of the problem; after many years of research, no improved
algorithm has been found to solve these problems within a polynomial time using a
deterministic Turing machine. For this reason, hardware approaches have been pro-
posed in the past [58, 59]. Among all, optical solutions to supercomputing seem to win
for versatility [60] in terms of increased fan-in and fan-out, energy consumption, and
recursive preprocessing. However, the proposed optical solutions [61, 62] neither
reduce the complexity of the problem nor offer technologically efficient procedures
without exponentially increasing the demand for physical resources [63].

Very recently, an alternative approach was proposed to realize photonic hardware
able to perfectly simulate the Stigmergy processes adopted by ants searching for food.
This alternative approach was published in the paper by M. Alonzo et al. entitled “All-
Optical Reinforcement Learning in Solitonic X-Junctions [55].” In this work, the
pheromone trajectories are represented by paths of the light through a nonlinear
photorefractive material and the trajectory of the light is represented as the modified
refractive index of the host material. Such modifications behave as induced wave-
guides, that is, regions that confine optical information which can travel inside them
without being dispersed (as signals in optical fibers). The refractive contrast between
the induced channel and the surrounding medium depends on the intensity of the
writing beam. Consequently, it behaves like the pheromone quantity in the ant’s path:
it can be strengthened or weakened with the writing light intensity. This decision-
making process can be represented by a nonlinear modulation of the crossing point
between these paths. The strengthening of one path in an X-crossing point would
correspond to making it a preferential trajectory, where the light will be conveyed
more easily. It behaves as a channel of water whose banks have been made deeper and
therefore more capacious: when two channels meet, more water will flow into the
deepest channel rather than inside the shallowest one. Such addressable behavior has
been induced into a nonlinear optical X-junction. The junction has been realized by
injecting two absorbed beams that cross each other in the middle of the host
photorefractive medium. Each beam modulated the refractive index of the host
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medium according to its intensity. A signal beam (unable to modify the host medium)
is injected inside one channel and consequently reaches the X junction. It represents
the information that propagates inside the photonic structure. If the writing beams
have the same intensities, the junction is perfectly symmetrical, meaning that 50% of
the information beam emerges from one channel and 50% from the other one
(Figure 5). When the writing light is unbalanced or writing feedback is injected from
the output, the X-junction switches to an asymmetric behavior, for which 80% of the
information beam is now conveyed inside the strengthened channel and the
remaining 20% remains in the weaker one.

3.3 Photorefractive plasticity

In neuroscience, this phenomenon is the basis of the selective memorizing-
forgetting process that characterizes the memory of the events in the brain [64]:
information pieces that are no longer reinforced will gradually be lost concerning
recently reinforced ones. This capability arises owing to the considerable plasticity of
the individual building block of the nervous system which allows animals to adapt to
changing internal and external environments. During development, learning, and
ongoing behavior, individual neurons, synapses, and circuits form short-term and
long-term changes as a result of experience. This is the basis of the learning in a neural
network which governs neuroplasticity, that is the ability of a system to modify the
synaptic interconnection network according to its own needs, both to carry out “rea-
soning” and to recover unused areas (e.g., reusing regions that are inhibited due to
trauma or injury) [65]. Neuroplasticity occurs at all levels, from the behavior of a
single ionic channel to the morphology of neurons and large circuits and over

Figure 5.
Numerical simulation (top) and experimental results (below) of a stigmergic photonic x-junction [51].
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timescales ranging from milliseconds to years [66]. Each level of the elementary unit
is connected in parallel to each other, which performs simple operations of the storage
and processing of information in successive cascading levels. Similar to the perfor-
mance of the ants in the colony the information processed by a group of neurons is
sent to the next level of neurons by opening and/or closing specific synaptic intercon-
nections. In this way, the memory and subsequent reasoning consist of trajectories
within the network, the mapping of which represents the set of stored information,
which can be kept over time or deleted as needed. This is the way of “learning” and
“remembering” a biological neural network. Any further information will follow its
path: if the new path coincides with an active trajectory, then the information will be
recognized, otherwise, the signal will be blocked, sooner or later, by inactive synaptic
interconnections [67].

In this way, the neural network simultaneously remembers and processes, in a
spatial coexistence where, the traditional computers cannot do this: in fact, they are
based on the Von Neumann architecture which provides one or more processors
connected to various external, separate peripherals, including memory. Whenever the
computer needs information, it must access the memory to take and bring data back
to the processor. This operation requires machine time and costs, in terms of energy
consumption. Whereas, the neuromorphic paradigm, on the other hand, wants to
unify the two areas of processing and memory, as happens in the biological field.
However, overcoming the dichotomy between processing and memory is possible by
creating neuromorphic architectures. By exploiting the typical functional geometries
of the nervous system, information can be stored and processed in the same physical
location, unifying memory and processor. In 2011, C. David Wright introduced the
use of PCM for arithmetic and bio-inspired calculation [68], and provided the princi-
ple experimental proof of “processor” based on PCM for the first time, demonstrating
the four basic operations of addition, multiplication, division and subtraction, and
storing the results at the same time. In the same year, D. Kuzum reported new
nanoscale electronic synapses based on PCM for optical data storage and non-volatile
storage [69]. Continuous resistance transitions in PCM [70] and saturable absorber
composite materials are used to simulate the properties of biological synapses so as to
realize synaptic learning rules [71]. In 2017, Alexander N. Tait of Princeton University
published a paper referred to neuromorphic silicon photonics, introducing the world’s
first integrated photonic neural network [72], It uses a neural compiler to program a
silicon photonic neural network with 49 nodes, each node operates at a specific
wavelength, light from each node is detected and summed before it is fed into the
laser, then the output will be feedback to create a feedback loop with nonlinear
characteristics. Tait et al. simulated traditional neural networks demonstrated how
photonic neural networks can solve differential equations and found that photonic
neural networks using silicon photonic platforms can be connected to ultrafast infor-
mation processing environments for radio control and scientific computation.

It should be noted that most of the platforms that have been introduced as photonic
or electronic neural networks are fixed structures that rigidly perform the calculation
without the capability of changing the interconnections as requested [73]. This last
aspect requires the use of modifiable plastic materials and/or devices, that is, capable of
assuming different behaviors depending on the information to be stored. In these
structures, the configuration of the neurons and their interconnections are written and
predefined. So, they are only capable of doing certain limited functions, whereas the
biological neurons can dynamically modify the interconnections in the procedure of
training. They can establish new interconnections or if requires they can diminish or
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strengthen the weight of specific interconnections in synaptic points. Recently, inspired
by the biological brain, reinforcement learning methods based on the memory of past
experiences have been realized in photonic platforms via solitonic interconnections.
Thanks to the plasticity of photorefractive materials, the light beam itself is able to
locally vary the refractive index of the host material and create a channel within which
it can propagate without diffraction. This solitonic signal will change the refractive
index of the medium similar to the pheromone-mediated indirect communication.
Obviously, the repetition and intensity profile of the incoming signals will affect the
formation of the waveguide channel by exploiting the nonlinearity of the refractive
index. This channel can also be used by other beams that recognize it as a waveguide.
Also, these interconnections have a specific lifetime and their weight’s strength is
dependent on the extent of their exploitation. The interconnection’s existence and
strength is a self-driven process in which the signal itself can reconfigure its pathway by
its occurrence redundancy. Consequently, any interconnection which is not activated
for a long time will be diminished and taken out of the computation cycle, at the
expense of the highly exploited ones. Depending on the material used, this waveguide
will then cancel itself completely when the writing light is switched off (rapid dielectric
relaxation) or survive for a shorter or longer time (slow dielectric relaxation).

The solitonic guides are, therefore, completely plastic guides, which are induced
by a modification of the material and can be suitably shaped by other light passing
through them. Now there is no artificial neuroplastic hardware, that its networks be
able to reorganize themselves autonomously, although this is the only way to repro-
duce artificial systems similar to biological ones. An extremely promising way to
achieve them is represented by soliton optical neural networks, able to exploit the
plasticity of the refractive index to create circuits whose interconnections can be
activated or inhibited as required by the information to be stored or processed. In
2018, a collaboration between Sapienza and Nanyang Technological University in
Singapore demonstrated that X-junctions formed by soliton waveguides learn infor-
mation [55]. Recently, it has been shown that X-junctions can perform both super-
vised and unsupervised learning, behaving as if they were neurons that fully exploit
the plasticity of the substrate both to write the circuit and to post-modification based
on the evolution of the system [74]. By exploiting the X junctions as elementary units,
it is possible to create complex neural networks capable of storing information as
specific trajectories within the circuit network [75].

4. Solitonic X-junctions as photonic neurons: Supervised and
unsupervised learning

The solitonic neuron is a device capable of reproducing the fundamental charac-
teristics of the learning and memorization processes typical of biological neurons.
From a biological point of view, the neuron, a fundamental unit of the nervous
system, is a dynamic unit capable of self-assembling and self-modifying according to
the information that arrives. These structural changes are the mirror of the unfolding
of learning and memorization [76]. The capacity for self-organization is not local, that
is, it does not affect the individual units independently as if they were non-
communicating structures. Whenever a certain type of information presents itself at
the gates of the nervous system, through the different types of receptors of which it is
composed, an enlarged (global) mechanism is set in motion, influencing pathways
within the nerve mapping, affecting neurons through connections both in parallel and
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in series. This characteristic interconnectedness underlies the functional complexity of
the nervous system and at the same time represents its strength. This is why an event,
at a precise point on the neural map, can trigger a succession of changes culminating
in a complete reorganization of entire neural regions. One of the properties we have
already talked about previously but that needs to be brought to attention perhaps with
greater energy is the concept of plasticity. This is a key feature for various reasons. A
good approximation of the concept of plasticity can be defined through the expression
“dynamic self-organization” [44]. It is typical of systems that do not remain identical
to themselves neither at the functional nor at the structural level [77]. More precisely
plastic hardware overlaps these two nuances: function becomes synonymous with
structure. This is one of the fundamental properties of biological neural tissue. Con-
ceiving the implementation of an artificial hardware neuron that works on the bio-
logical model, there are therefore some characteristics that should be kept in mind.
First of all, it must have a dynamic structure that is able to adapt to the evolution of
the environment and provide a response to it in a nonlinear way. Furthermore, it is
necessary to keep the chronology of the information processed at the same time as the
analysis and learning operations. A schematic of the functional blocks which charac-
terize the “modus conoscendi” of a neuron is shown in Figure 6a.

We can highlight a tripartite structure: the neuron receives signals through the
dendrites, small branches acting as input channels. The information is collected
through these and conducted to the soma, the central body of the neuron which acts as
a real microprocessor. Here the signals are “read” and analyzed through weighing and
comparison operations with respect to a threshold value. A signal above the threshold
is highly informative so it must be stored and propagated along the neural mapping.
On the contrary, a sub-threshold signal is judged not important at the informational
level and, therefore, its transmission is stopped [78]. The axon is a long channel with
the task of carrying the signal out and distributing it to the neurons that follow
through special connections called synapses. These are the basis of the communication
between different units and correspond to the entities that allow the realization of
complex neural mapping. The soliton photon neuron, which the research group of the

Figure 6.
(a) Fundamental scheme of a biological neuron. (b) the solitonic neuron X-junction structure. (c) Perfectly
balanced X-junction.

13

Optical Soliton Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.107927



Smart and Neuro Photonics Lab has designed and built, has a functional geometry
very close to the one just described. A soliton neuron [55] is characterized by an X-
junction structure [79], as shown in Figure 6b obtained through the intersection of
self-written waveguides by two self-confining and non-diffracting laser beams. Using
the technology of spatial solitons obtained through the Pockels effect [13, 80], the
writing takes place through a local variation of the refractive index induced by the
incoherent laser light beams. All materials with a saturating nonlinear electro-optical
coefficient can be used. The input channels functionally represent the dendrites that
collect the input signals. The soliton soma coincides with the region in which the two
laser beams progressively approach until they overlap. It is in this region, which by
assonance with the ML models we call the solitonic node, that the nonlinear energy
transfer between the channels takes place which, as we will see shortly, allows the
learning process. The output channels, which allow a subsequent redistribution of the
propagated signal, replicate the functional action of the axon. In order for the soliton
soma to form and be active at a functional level, it is necessary that the laser beams
arrive at the input face of the crystal at an extremely small angle with respect to the
normal, between 0.8° and 1°. For different angles, the node is characterized by an area
that is too limited which determines a low coupling between the waveguides. The
soliton neuron can perform supervised and unsupervised learning tasks [55, 74]. From
a theoretical point of view, supervised learning is performed using a fundamental
truth, or in other words, there is prior knowledge of what the output values to learn
should be [81–83]. If the learning is unsupervised, on the contrary, there is no a priori
knowledge of the desired output, which is identified at the same time as learning
[84, 85]. The substantial difference lies in the way in which the already written
waveguide structure is modified. In the supervised case, indeed, it is necessary to
know the target and therefore to guide the learning. The X junction is modified using a
feedback system that locally alters the refractive index contrast, depending on the
information received, through successive cycles (Figure 7). This mechanism is fully

Figure 7.
The X-junction neuron switches from the balanced outputs (a) to the unbalanced behaviors, either due to feedback
on the alpha channel (b) or due to feedback on the beta channel (c). Learning dynamics of the solitonic junction:
starting from the initial neutral condition 50/50, the junction recognizes the input and switches accordingly.
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explained in [74], where a numerical code FDTD solving the nonlinear equation
(Eq. (1)) reported below, shows the morphological evolution of the neuron
(see Figure 7), index of learning what is happening.

∇
2Ai ¼ �

∈ NLEbias

1þ A1j j2þ A2j j2

ASATj j2

Ai (15)

where εNL is the nonlinear dielectric constant, Ebias is the electrostatic bias field

that allows the formation of photorefractive solitons and ASATj j2 the saturation inten-
sity. In this type of learning, only the A1 and A2 beams are able to excite the
nonlinearity underlying the index modification. The information signal is indeed
represented by a laser with a different wavelength, with respect to which the refrac-
tive index is not sensitive. The initial situation is represented by a perfectly balanced X
junction, as shown in Figure 7a1, which is characterized by a symmetrical structure
obtained by using two laser beams at the same power input. The injected signal,
having reached the solitonic node, “perceives” the same index and divides itself
perfectly 50% into the two output channels. By using different power ratios in the
writing phase, it is possible to build asymmetrical structures Figure 7a1 and 7b3. In
this case, the index will begin to differentiate already within the area of the soliton
soma and will result in an unequal division of the input information in the two out-
puts. However, the soliton neuron is also able to perform unsupervised learning tasks.
In this case, the refractive index of the crystal is also sensitive to the wavelength of the
signal, which, by propagating within the previously written structure, is able to
change it. The information becomes directly responsible for the asymmetrization of
the junction. For unsupervised learning, the Helmholtz equation becomes:

∇
2Ai ¼ �

∈ NLEbias

1þ
A1j j2þ A2j j2þη A3j j4 1�e�

t
γ

� �

ASATj j2

Ai (16)

where A3 represents the information signal and η an efficiency coefficient for the
nonlinear process that depends on the wavelength and the material used. These
structural variations can be the result of numerous successive propagation cycles or
single events characterized by much higher powers. This is another point of similarity
with the biological case. The biological signal, called spike, is propagated toward the
axon when the combination of input signals is above the threshold. This can occur as a
consequence of the accumulation of numerous inputs, spike trains, in a limited time
interval, or by virtue of a very intense signal.

In the solitonic case, learning is, therefore, identified with the process of changing
the refractive index and therefore has its own physical translation. What about mem-
ory? Many neuromorphic implementations, both in electronics and in optics, have
achieved remarkable results in the reproduction of a neural system, however, there is
always a great difficulty in defining a memory that is present at the same time as the
processing unit. The soliton X junction introduces a new paradigm in the field of
neuromorphic research, approaching the nature of biological neurons. The index mod-
ification is in general a semi-permanent property with times that depend on the partic-
ular material used. The input information is therefore saved in the particular
morphological structure obtained during the learning phase. In, the authors show the
possibility of building soliton neurons in bulk LiNbO3 crystals. This represents the first
supervised realization. The neuron is able to convey information, represented by a
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signal with a different wavelength, traveling within the waveguides in the directions
declared by the local refractive index. Starting from these results and integrating them
with the technology of spatial solitons in thin films in lithium niobate [86], in [87] the
possibility of implementing soliton neurons in 8 μm films of lithium niobate is demon-
strated. This technology brings with it numerous new benefits. First of all, its extreme
compactness makes them a useful tool for integration into small devices. Furthermore,
the Lithium Niobate layers show focusing dynamics of two orders of magnitude faster
than the bulk counterparts. Finally, the films offer greater control over the propagation
of the beams within the crystal, ensuring considerable precision which results in greater
coupling and, ultimately, in a more performing soliton soma. By virtue of their plastic
behavior, soliton X-junction neurons can be interfaced in more complex structures, to
give rise to complex neural mappings capable of functionally replicating biological
neural tissue. This perspective represents the great innovation of the soliton
neuromorphic, which is not limited to reproducing a unity or a connection, as in
previous neuromorphic models, but is able to reach a higher and more complete level of
complexity, through the realization of a whole neural environment.

5. Bit-to-bit data storage and recognition

Solitonic neurons can be interconnected to form complex neural maps, and soliton
neural networks (SNNs) [75]. Their functioning is based on the movement of
photogenerated electrical charges that assume the same role played by neurotrans-
mitters in biological neural networks (BNN). Both regulate the intensity with which a
synaptic connection, solitonic or biological, is built, modified, or destroyed. Further-
more, the solitonic synapse, exactly as in the biological case, is the basis of the
memorization processes. The repetition of information results in synaptic strengthen-
ing, which is synonymous with information memorization [88]. Therefore, learning
and memorization are processes that occur through structural changes. In Figure 8,
the summary diagram of the functionality of the BNNs and SNNs.

Figure 8.
Functional diagrams on the left of a BNN network and on the right of an SNN network. Both are able to self-
modify their structure according to the information signals received to process and store them in precise neural
patterns [75].
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Recently, an SNN has been studied which is able to carry out a 4-bit recognition. It
is formed by X-Junction channels written with equal power beams in order to create
50–50 junctions. SNNs are divided into successive layers as reported in Figure 9.

The first layer corresponds to the input face and is characterized by a number N of
channels corresponding to the number of information (bits) to be processed and to the
number of incoming laser sources. The SNN exploits the phenomenon of total reflec-
tion at the edge in correspondence with the even layers, which are therefore charac-
terized by N/2–2 neural units. While the odd layers are characterized by N/2
fundamental units.

This network is able to learn by switching the propagating signal between the two
outputs of each X-Junction. By appropriately increasing the size of the matrix it is
possible to obtain the representation of any SNN. Each channel, therefore, has its own
weight which is modified over time based on the information received as reported in
equation.

Y
_
¼ W EBIAS, X_

� 	

� X
_

(17)

For an in-depth analysis of the SNN, we recommend reading [75].
An SNN network, at present, is able to perform an Episodic recognition. This term

derives from psychology studies that have made it possible to identify three ways of
working with memory, episodic, procedural, and semantic [89]. Memory is of an
episodic type if it records an event photographically, that is, it fails to decontextualize
the subjects present [90]. Let us consider the picture of a dog running in the moun-
tains. The dog subject is recognized only in that environment, mountains, and in that
position, running, if moved then it will be identified as different. Procedural memory,
on the other hand, identifies a mechanism and learns its rule. Finally, semantic mem-
ory contains these mechanisms within itself, thus reaching abstraction through the
analysis of details.

Figure 9.
Structure of a 4-bit SNN network. W is the weight of the junction point. In particular, W(1) is the weight relative
to the node of the first solitonic neuron in layer 1, W(2) is the weight relative to the node of the second solitonic
neuron in layer 2, and so on. The information inputs are represented by xi while yi the processed signals [75].

17

Optical Soliton Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.107927



The solitonic technology has allowed, until now, to successfully realize an episodic
memory able to save information through precise neural mapping. As information
flows into the SNN it modifies the refractive index of the network, determining
precise paths.

Learning the SNN takes place in two stages. The first phase, defined as Training,
consists in administering the information pattern to be learned to the network several
times. The network changes morphology accordingly. Then we try to understand how
profound the changes have been, or how much the information has been learned and
memorized. This phase is called validation. The network acts as a filter letting only the
saved information propagate.

Figure 10 was realized starting from the results proposed by [75]. It shows the
learning of 1-bit in four different cases corresponding to the four input channels. In
Figure 10a, the first line shows the network training with the four 1-digit in each
channel while the others are set to 0. The images below report the SNN recognizing
process: it uses the stored information to operate the comparison. Therefore, if digit 1

Figure 10.
In (a) training and validation processes of a 4-bit SNN are reported in 1-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].

Figure 11.
In (a) training and validation processes of a 4-bit SNN are reported in 2-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].
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of the new number corresponds to digit 1 of the training number, the output of the
network is high and the information is recognized. Otherwise, the output is low,
which means no recognition. Figures 11 and 12 report the learning cases of 2-digit and
3-digit, following the scheme already illustrated in Figure 10.

The SNN recognizes through a threshold process. If the output is higher than a
threshold, determined experimentally, then the recognition has occurred. This proce-
dure can be generalized to N bits according to the equation shown below.

I
outputi
k ≥ θI

inputi
k (18)

where θ is the pure number (�0.7).
Therefore, Optical Soliton Neural Networks are systems characterized by a struc-

tural dynamism, based on the plasticity of the refractive index, which can self-modify
to recognize previously learned or new signals. Learning and memorization occur at
the same time as physical evolutions.

6. Conclusions

Artificial intelligence is marking a profound innovation in everyday life. To over-
come the limitations of AI software, research has developed the neuromorphic
approach, which consists in reproducing the functional blocks of the human brain. A
first attempt was carried out by electronics, which however suffer from a structural
rigidity that does not match neural geometries. One of the fundamental qualities that
characterize them is in fact plasticity, that is to say, the ability to self-modify one’s
units to trap, learning, and memory, in its structure. The solitonic optical approach
that we have described in this chapter bases its effectiveness precisely on the concept
of plasticity and self-assembly. Compared to other optical technologies, which focus
on single neural properties (first of all excitability), soliton networks are able to
reproduce complex behavior by exploiting the local differences in refractive indices to
build specific trajectories for each information through the propagation of solitons.
SNNs are currently able to reproduce a specific type of psycho-memory, episodic

Figure 12.
In (a) training and validation processes of a 4-bit SNN are reported in 3-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].
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memory, in a particularly effective way, that is, with small powers (nW-μW) and
with extremely low losses. SNNs capable of reproducing procedural and semantic
memories are currently being studied. Once these objectives have been achieved,
hardware that is functionally very close to biological neuronal dynamics will be avail-
able. In the biological neural system, the synaptic connections are created and deleted
following the change in neurotransmitter density, in the soliton paradigm that we
propose, the birth and modification of X-junction neurons depends on the density of
photo-excited electric charges.
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