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Extended Abstract

Business Processes (BPs) are nowadays an integral part of mid-size and large
organizations that aim to ensure consistent business outcomes and take advantage
of improvement opportunities to remain competitive [75]. Examples of traditional
BPs include insurance claim processing, order handling, and sales management.
Business Process Management (BPM) is the discipline that oversees how BPs are
performed in an organization, providing concepts and tools to support the design,

administration, enactment, and analysis of BPs.

Since the late 1990s, a new generation of information systems, called Business
Process Management Systems (BPMSs), have become increasingly popular to au-
tomate running BPs involving people, applications, and information sources on
the basis of BP specifications (i.e., process models) pre-defined at design-time [88].
BPMSs seek to improve the efficiency of BPs by streamlining their execution through
the orchestrated distribution of work items to process participants and software

services, thus reducing the time required to run the everyday operations [29].

However, automating a BP specification using a BPMS requires a not negligible
development effort that involves dedicated technical resources, which are in charge
to specify the execution properties (many of them are vendor-specific) of each BP
element and the connectors to the Application Programming Interfaces (API) of the
various applications that realize the behaviour of the BP. In addition, due to an
acceleration of the digital transformation process enacted by many organizations,
the number of BPs to manage and execute in organizations through a BPMS is
constantly growing over the years [29, 39, 86]. For this reason, BPMSs are turning
out to be too inflexible for fast and lightweight automation projects, where the
investment to implement and maintain the automated BPs may exceed the manual

costs of operation [37].

To mitigate this issue, Robotic Process Automation (RPA) is an emerging
automation technology in the field of BPM that creates software (SW) robots to
partially or fully automate rule-based and repetitive tasks (or simply routines)
performed by human users in their applications’ user interfaces (Uls) [86]. RPA

is thought to provide the shortest route to business process (BP) automation by
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accessing only to the Ul layer of IT systems rather than going deeply into the
application code or databases sitting behind them [72].

In recent years, much progress has been made both in terms of research and
technical development on RPA| resulting in many industry-specific deployments for
industrial-oriented services [48, 8, 10, 46, 78, 79, 49]. Moreover, the market of RPA
solutions has developed rapidly and today includes more than 50 vendors developing
tools that provide SW robots with advanced functionalities for automating office
tasks of different complexity [9]. Nonetheless, when considering state-of-the-art RPA
technology, it becomes apparent that the current generation of RPA tools is driven
by predefined rules and manual configurations made by expert users rather than
automated techniques [5, 6, 20].

To be more specific, the traditional workflow to conduct an RPA project can be

summarized as follows [42]:
1. Determine which routines are good candidates to be automated.

2. Record the mouse/key events that happen on the UI of the SW applications

involved in a routine execution, i.e., the UT logs.

3. Model the selected routines in the form of flowchart diagrams, which involve
the specification of the actions, routing constructs (e.g., parallel and alternative
branches), data flow, etc. that define the behaviour of a SW robot.

4. Develop each modeled routine by generating the SW code required to concretely

enact the associated SW robot on a target computer system.
5. Deploy the SW robots in their environment to perform their actions.
6. Monitor the performance of SW robots to detect bottlenecks and exceptions.

7. Maintain the routines, which takes into account the SW robots performance

and error cases to eventually enhance their behaviour.

The majority of the previous steps, particularly the ones involved in the early stages
of the RPA life-cycle, require the support of skilled human experts, which need
to: (i) understand the anatomy of the candidate routines to automate by means
of interviews, walk-troughs, and detailed observation of workers conducting their
daily work (cf. step 1); and (%) define manually the flowchart diagrams representing
the structure of such routines (cf. step 3), which will drive the development of the
SW code, often in form of executable scripts (also called RPA scripts), allowing the
concrete enactment of SW robots at run-time (cf. step 4). While this approach is
effective to execute simple rules-based logic in situations where there is no room for

interpretation, it becomes time-consuming and error-prone in presence of routines



Xv

human-in-the-loop

Segmentation of Ul Logs

Figure 1. Overview of the adopted approach

that are less predictable or require some level of human judgment [66, 6]. Indeed,
the designer should have a global vision of all possible variants of the routines to
define the appropriate behaviours of the SW robot, which becomes complicated
when the number of variants increases. The issue is that in case where the flowchart
diagram does not contain a suitable response for a specific situation, e.g., because
of a shallow modeling activity, then the associated RPA scripts would not properly
reflect the behaviour of the potential routine variant, forcing SW robots to escalate

to a human supervisor at run-time, in contrast with the RPA philosophy.

To address the above issues, and mitigate the involvement of skilled human
experts in steps 1, 3 and 4, the research underlying this thesis is targeted to: (i)
automatically understand which user actions contribute to which routines inside a Ul
log (this issue is known as segmentation) and (ii) automatically generate executable
RPA scripts directly from the Ul logs that record the user interactions with the SW
applications involved in a routine execution, thus skipping completely the (manual)
modeling activity of the flowchart diagrams.

Although RPA is generally considered an easy to implement technology, an in-
depth knowledge is necessary to create reliable and scalable SW robots, particularly
when the intervention of human experts is required to properly progress the execution
of a routine. As a result, between 30% and 50% of initial RPA implementations are
estimated to fail [74, 49]. Consequently, an approach that simplifies the realization
of an RPA project towards the automated identification of user actions belonging to
a specific routine inside a Ul log, with the subsequent generation and enactment of
the associated SW robot, can be considered a relevant artefact to investigate.

To achieve these goals, as shown in Figure 1, starting from an unsegmented Ul log
previously recorded with an RPA tool, the first stage of this research is to inject into
the Ul log the end-delimiters of the routines under examination. An end-delimiter
is a dummy action added to the Ul log immediately after the user action that is
known to complete a routine execution. The knowledge of such end-delimiters is

crucial to make the approach works, as discussed later in the thesis.

The second step of the approach is to automatically discover the most frequent

observed segments of the routines as recorded into the Ul log with the end-delimiters.
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Routine segments describe the different behaviours of the routine(s) under analysis,
in terms of repeated patterns of performed user actions. An unsegmented Ul log
consists of sequential data of user actions performed on the Ul of a computer system
during many routines’ executions. To automatically identify the routine segments
from the UI log, we rely on a frequent-pattern identification technique [22], which
we customized on a ad-hoc basis. In this phase, the risk exists that some wrong
routine segments are discovered, i.e., not allowed from the real-world routines that
are known to be valid at the outset.

To address this issue, a human-in-the-loop interaction that enables human experts
to visualize the declarative constraints inferred by the discovered routine segments is
required. Such constraints describe the temporally extended relations between user
actions that must be satisfied throughout a routine segment (e.g., an action a; must
be eventually followed by an action az). In a nutshell, they collectively determine
the observed behaviours of the routine segments from the Ul log. This knowledge
allows human experts to identify and remove those constraints that should not be
compliant with any real-world routine behaviour, thus filtering out the not valid
(i.e., wrongly discovered) routine segments.

Finally, starting from any of the remaining (valid) routine segments, a customized
version of a trace alignment technique in Process Mining [2, 25] is employed to
automatically detect and extract the routine traces by the original Ul log. A routine
trace represents an execution instance of a routine within a Ul log. By identifying
the routine traces, it is also possible to filter out those actions in the UI log that
are not part of the routine under observation and hence are redundant or represent
noise. Such traces are finally stored in a dedicated routine-based log, which captures
exactly all the user actions happened during many different executions of the routine,
thus achieving the segmentation task (cf. step 1). Therefore, the final outcome of
our segmentation approach will be a collection of as many routine-based logs as are
the number of valid routine segments.

The customized version of the trace alignment technique can also be used as a
supervised segmentation technique [7]. The supervised assumption, which consists
of knowing a priori the structure of routines, may ease the segmentation task. Still,
as a side effect, it may strongly constrain the discovery of routine traces only to
the “paths” allowed by the routines’ structure, thus neglecting that some valid yet
infrequent routine variants may exist in the Ul log. For this reason, the novelty of
the proposed approach to the segmentation of UI logs [3] is to semi-automatically
discover such structures in the form of routine segments and then use them as input
for the supervised segmentation technique [7].

Most state-of-the-art segmentation approaches can properly extract routine

segments from unsegmented UI logs when the routine executions are not interleaved
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from each other. Only a few works are able to partially untangle unsegmented Ul logs
of many interleaved routine executions, but with the assumption that any routine
provides its own, separate universe of user actions. This is a relevant limitation
since it is quite common that real-world routines may share the same user actions
(e.g., copy/paste data across cells of a spreadsheet) to achieve their objectives. In
this thesis, we propose an interactive approach to the segmentation of Ul logs [3]
that aims to mitigate the issues mentioned above, showing its ability to outperform
existing literature approaches in terms of supported segmentation variants and to
which extent the human-in-the-loop interaction can filter out the wrongly discovered
segments. In particular, we evaluated the robustness of the proposed approach to
(re)discover the valid routine segments from synthetic UI logs of increasing complexity.
Then, we also investigated the degree of effectiveness, robustness, and usability of
the tool implementing the human-in-the-loop interaction step.

It is worth noticing that commercial RPA tools can eventually employ routine-
based logs to synthesize executable scripts in the form of SW robots that will emulate
the routine behaviour on the UI without the manual modeling of the routines (cf.
steps 3 and 4). In this direction, a cross-platform software tool called smartRPA'
was developed, which is able to generate executable RPA scripts, necessary to enact
the SW robot that implements the selected routine variant directly from a segmented
UT log (i.e., a routine-based log). A routine variant is a specific execution of a routine
that differs from the other executions (i.e., instances) of the same routine in at
least one user action. Differently from the literature approaches to automated RPA
scripts generation from UI logs, which enable to automate straightforward routines
that have essentially no variance and do not require any human intervention, the SW
robots generated by SmartRPA are obtained to handle the intermediate user inputs
that are required during the routine execution, thus enabling to emulate the most
suitable routine variant for any specific combination of user inputs as observed in the
UI log. This makes the synthesis of SW robots performed by SmartRPA reactive to
any user decision found during a routine execution. “Reactivity” highlights the fact
that the behaviour of SW robots is determined immediately before their enactment,
as it is driven by the specific user inputs required to execute the routine. This also
means that reactivity enables the potential run-time generation of as many SW
robots as the routine variants to be emulated.

SmartRPA has been validated on four non-functional requirements to measure the
quality of the underlying approach. Specifically, we first performed many synthetic
experiments employing Ul logs of increasing complexity to assess the robustness and
feasibility of SmartRPA to the identification of routine variants and variation points

for the reactive synthesis of SW robots. A wariation point is a point in the routine

'smartRPA is available at: https://github.com/bpm-diag/smartRPA
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execution where a user choice needs to be made between multiple possible routine
variants. Then, we performed a controlled experiment involving real users exploiting
our RPA use case to investigate the effectiveness of the SmartRPA approach when
compared to a traditional model-based approach for the generation of SW robots.
Finally, we quantify the usability of the UI provided by the tool implementing the
SmartRPA approach.

In summary, the research underlying this thesis tries to mitigate the involvement
of skilled human experts in steps 1, 3, and 4, throughout the development of:
(i) an interactive approach to the automated segmentation of UI logs, and (i)
the SmartRPA approach to the automated identification of the variation points
of a routine, to enable the selection of the most suitable routine variants to be

implemented with a SW robot directly from a routine-based log.

Research Contributions
During the realization of this thesis, the following publications have been produced:

e Agostinelli S., Lupia M., Marrella A., Mecella M., Reactive Synthesis
of Software Robots in RPA from User Interface Logs. Accepted at Computers
in Industry (Elsevier), 2022.

e Agostinelli S., Leotta F., Marrella A., Interactive Segmentation of User In-
terface Logs. 19th Int. Conference on Service-Oriented Computing (ICSOC’21).
Dubai, 22-25 November 2021.

e Agostinelli S., Bergami G., Fiorenza A., Maggi F.M., Marrella A.,
Patrizi F., Discovering Declarative Process Model Behavior from Event Logs
via Model Learning. 3rd Int. Conference on Process Mining (ICPM’21).
Eindhoven, Netherlands, 31 October - 4 November 2021.

e Agostinelli S., Benvenuti D., De Luzi F., Marrella A., Big Data Pipeline
Discovery through Process Mining: Challenges and Research Directions. 1st
ITalian forum on Business Process Management (ITBPM’21) held in conjuction
with the 19th Int. Conference on Business Process Management (BPM’21).
Rome, Italy, 6-10 September 2021.

e Agostinelli S., Lupia M., Marrella A., Mecella M., SmartRPA: A
Tool to Reactively Synthesize Software Robots from User Interface Logs. 33rd
Int. Conference on Advanced Information Systems Engineering (CAiSE’21) -
CAiSE Forum. Melbourne, Australia, 28 June - 2 July, 2021



xix

Agostinelli S., Marrella A., Mecella M., Ezploring the Challenge of
Automated Segmentation in Robotic Process Automation. 15th Int. Conference

on Research Challenges in Information Science. Cyprus, 11-14 May 2021.

Agostinelli S., Marrella A., Mecella M., Robotic Process Automation:
Automated Segmentation of User Interface Logs. De Gruyter STEM, 2021.

Agostinelli S., Covino F., D’Agnese G., De Crea C., Leotta F.,
Marrella A., Supporting Governance in Healthcare through Process Mining:
a Case Study. Accepted at IEEE Access, 2020.

Agostinelli S., Automated Segmentation of User Interface Logs Using Trace
Alignment Techniques. 2nd Int. Conference on Process Mining (ICPM’20)
Doctoral Consortium. Padua, Italy, 4-9 October 2020.

Agostinelli S., Lupia M., Marrella A., Mecella M., Automated Genera-
tion of Executable RPA Scripts from User Interface Logs. 18th Int. Conference
on Business Process Management (BPM’20). Seville, Spain, 13-18 September
2020. Selected among the best papers of the RPA Forum and invited

to submit an extension to the Special Issue on RPA in Computers in Industry.

Agostinelli S., Marrella A., Mecella M., Towards Intelligent Robotic Pro-
cess Automation for BPMers. The AAAI-20 Workshop on Intelligent Process
Automation (IPA’20), held in conjuction with the 34th AAAT Conference on
Artificial Intelligence (AAAI'20). New York, U.S.A., 7-12 February 2020.

Agostinelli S., Maggi F.M., Marrella A., Milani F., A User Evaluation
of Process Discovery Algorithms in a Software Engineering Company. 23rd
IEEE Int. Conference on Enterprise Computing (EDOC’19). Paris, France,
28-31 October 2019.

Agostinelli S., Maggi F.M., Marrella A., Mecella M., Verifying Petri
Net-Based Process Models using Automated Planning. Workshop on Strategic
Modeling and Reasoning meets Process Mining (SMRPM’19), held in conjuc-
tion with the 23rd IEEE Int. Conference on Enterprise Computing (EDOC’19).
Paris, France, 28 October 2019.

Agostinelli S., Battaglini F., Catarci T., Dal Falco F., Marrella
A. Generating Personalized Narrative Experiences in Interactive Storytelling
through Automated Planning. 13th Biannual Conference of the Italian SIGCHI
Chapter (CHItaly’19). Padova, Italy, 23-25 September 2019.

Agostinelli S., Marrella A., Mecella M., Research Challenges for Intel-

ligent Robotic Process Automation. Workshop on Artificial Intelligence for



XX

Extended Abstract

Business Process Management (AI4BPM’19), held in conjuction with the 17th
Int. Conference on Business Process Management (BPM’19). Vienna, Austria,
2 September 2019.

Agostinelli S., Maggi F.M., Marrella A., Sapio F., Achieving GDPR
Compliance of BPMN Process Models. 31st Int. Conference on Advanced
Information Systems Engineering (CAiSE’19). Rome, Italy, 3-7 June 2019.
Winner of the Best Forum Paper Award

Agostinelli S., Synthesis of Strategies for Robotic Process Automation. 27th
Italian Symposium on Advanced Database System (SEBD’19) Doctoral Con-
sortium. Castiglione della Pescaia, Italy, 16-19 June 2019.

Thesis Outline

Chapter 1 reports an introduction that makes immediately clear for the
reader the research problem addressed, its significance in the RPA field, and
the proposed contribution to solve the problems, driven by specific research
challenges. This serves as the basis for positioning the performed work and

summarizing the author’s research activities.

Chapter 2 analyzes the background notions about RPA. Specifically, it outlines
the preliminaries on routines, SW robots, Ul logs, and Petri nets. Furthermore,
it presents a real-life RPA use case to illustrate the relevance of the research

challenges being investigated.

Chapter 3 focuses on the issue of segmentation of Ul logs, identifying all its
potential variants and presenting an up-to-date overview that discusses to

what extent existing literature approaches support such variants.

Chapter 4 presents the employed technique for discovering routine segments
directly from unsegmented Ul logs, that is, a frequent-pattern identification
technique (properly customized for our purposes) to automatically derive the
routine segments as recorded into a Ul log. We evaluated the robustness of
this technique in presence of synthetic Ul logs of a growing size that provide an
increasing amount of routine variants to measure to what extent our approach

is able to (re)discover the valid routine segments from such UT logs.

Chapter 5 implements the human-in-the-loop interaction step to filter out
those segments not allowed (i.e., wrongly discovered from the UI log) by any
real-world routine under analysis. We have also evaluated the implemented

technique by measuring its degree of effectiveness, robustness, and usability.



xxi

e Chapter 6 presents the routine traces detection component which exploits
trace alignment in Process Mining to extract from a Ul log all those user
actions belonging to a specific (valid) routine segment and cluster them into
well-bounded routine traces, thus achieving the segmentation task. It is worth
noticing that this component can also be employed as a stand-alone supervised
segmentation technique, under the assumption to know a priori the structure
(i.e., the flowchart diagrams) of the routines to identify in the UI log, thus

neglecting the semi-automated discovery of the routine segments.

o Chapter 7 leverages a design science research method [43] to develop an
approach, called SmartRPA, which is able to interpret the Ul logs keeping
track of many routine executions and automatically synthesize SW robots
that emulate the most suitable routine variant for any specific intermediate
user input that is required during the routine execution. Specifically, it is
focused on (i) discussing the relevant state-of-the-art approaches that attempt
to mitigate the research challenges, (7i) deriving a set of technical requirements
to realize our SmartRPA approach, (i) proposing the SmartRPA approach
and describing its stages to address the technical requirements, and finally
(iv) presenting the details of an algorithm to automatically identify routine
variants and variation points from UI logs, necessary for the reactive synthesis
of SW robots.

e Chapter 8 shows the technical steps enacted to develop the SmartRPA ap-
proach as a real implemented tool and presents the results of a multi-step
evaluation performed on SmartRPA to investigate the extent to which the ap-
proach satisfies four relevant non-functional requirements, namely robustness,
feasibility, effectiveness and usability employing both synthetic and real-world

datasets;

e Chapter 9 concludes the thesis by discussing limitations and future develop-
ments. Moreover, it shows results, impacts and benefits addressed by this

thesis.






Chapter 1

Introduction

Business Processes (BPs) are nowadays an integral part of mid-size and large
organizations that aim to ensure consistent business outcomes and take advantage
of improvement opportunities to remain competitive [75]. Traditional BPs include
insurance claim processing, order handling, and sales management. Business Process
Management (BPM) is the discipline that oversees how BPs are performed in an
organization, providing concepts and tools to support the design, administration,
enactment, and analysis of BPs.

Since the late 1990s, a new generation of information systems called Business
Process Management Systems (BPMSs) has become increasingly popular to automate
running BPs involving people, applications, and information sources based on BP
specifications (i.e., process models) pre-defined at design time [88]. BPMSs seek to
improve the efficiency of BPs by streamlining their execution through the orchestrated
distribution of work items to process participants and software services, thus reducing
the time required to run the everyday operations [29].

However, automating a BP specification using a BPMS requires a not negligible
development effort that usually involves dedicated technical resources, which are
in charge to specify the execution properties (many of them are vendor-specific) of
each BP element and the connectors to the Application Programming Interfaces
(API) of the various applications that realize the behaviour of the BP. The fact is
that the number of BPs to manage and execute in organizations through a BPMS
is constantly growing over the years [29, 39, 86], and BPMSs are turning out to be
too inflexible for fast and lightweight automation projects, where the investment to
implement the automated BPs may exceed the manual costs of operation [37].

To mitigate this issue, Robotic Process Automation (RPA) is an emerging
automation technology in the BPM domain [45] that creates software (SW) robots
to partially or fully automate rule-based and repetitive tasks (or simply routines)

performed by human users in their applications’ user interfaces (Uls) [86]. While
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conducting a BPM project is often considered too expensive because its “top-down”
approach that forces to develop the PMS from scratch (and system integration is
costly), RPA promises to rely on an approach where, instead of redesigning existing
information systems (that remain unchanged), humans are replaced by SW robots in
the execution of those BPs involving routine work. This allows knowledge workers
to have more time for value-added tasks.

In the research literature, many case studies have shown that RPA technology
can concretely lead to improvements in efficiency for BPs involving routine work
in large companies, such as O2 and Vodafone [48, 8, 34]. Indeed, in recent years,
much progress has been made both in terms of research and technical development
on RPA, resulting in many industry-specific deployments for industrial-oriented
services [48, 8, 10, 46, 78, 79, 49]. Moreover, the market of RPA solutions has
developed rapidly. Today includes more than 50 vendors developing tools that
provide SW robots with advanced functionalities for automating office tasks of
different complexity [9].

However, despite this growing attention around RPA, to achieve more widespread
adoption in the BPM domain, RPA needs to become “smarter” [86], i.e., RPA tools
can adapt and learn how to handle non-standard cases by observing human problem
resolving unexpected system behaviour (e.g., in case of system errors, changing
forms, etc.). In fact, when considering the state-of-the-art technology, it becomes
apparent that the current generation of RPA tools is driven by predefined rules and
manual configurations made by expert users rather than by automated intelligent
techniques [5, 6, 20]. Consequently, more complex and less defined BPs could be
fully supported by the RPA technology. To be more specific, the traditional workflow

to conduct an RPA project can be summarized as follows [42]:

1. Determine which process steps (also called routines) are good candidates to

be automated.

2. Model the selected routines in the form of flowchart diagrams (i.e., the interac-
tion models), which involve the specification of the actions, routing constructs
(e.g., parallel and alternative branches), data flow, etc. that define the be-
haviour of a SW robot.

3. Record the mouse/key events that happen on the UI of the user’s computer
system. This information is associated with a routine’s actions, enabling it to

emulate the recorded human activities through a SW robot.

4. Develop each modeled routine by generating the software code required to

concretely enact the associated SW robot on a target computer system.

5. Deploy the SW robots in their environment to perform their actions.



6. Monitor the performance of SW robots to detect bottlenecks and exceptions.

7. Maintenance of the routines, which takes into account each SW robot’s perfor-
mance and error cases. The outcomes of this phase enable a new analysis and

design cycle to enhance the SW robots.

The majority of the previous steps, particularly the ones involved in the early
stages of the RPA life-cycle, require the support of skilled human experts, which
need to: (i) understand the anatomy of the candidate routines to automate through
interviews, walk-troughs, and detailed observation of workers conducting their daily
work (cf. step 1); and (%) define manually the flowchart diagrams representing the
structure of such routines (cf. step 3), which will drive the development of the SW
code, often in the form of executable scripts (also called RPA scripts), allowing the
concrete enactment of SW robots at run-time (cf. step 4).

Towards this direction, two research challenges necessary to inject intelligence
into the current RPA technology towards better support to BPM can be derived, as

discussed in [5, 6, 54]:

1. C1 - Automated Segmentation of UI Logs.

Description: Ul logs recorded by RPA tools are characterized by long sequences
of user actions that reflect many routine executions. A UI log can record
information about several routines whose actions are mixed in some order that
reflects the particular order of their execution by the user [17]. In addition,
the same routine can be spread across multiple logs, interleaved with other
actions that are not part of the routine under analysis (and potentially shared
by many routines), making the automated identification of routines far from

being trivial.

Objective: Automatically identify and understand which user actions contribute
to a particular routine inside a UTI log (that keeps track of the user actions
taking place during a run of the system) and cluster them into well-bounded
routine traces (i.e., complete execution instances of a routine). This issue is

known as “segmentation” (cf. step 1).

2. C2 - Automated Generation of SW Robots.

Description: In RPA tools, there is a lacking of testing environments. As a
consequence, SW robots are developed through a trial-and-error approach
consisting of three steps that are repeated until success [53]: (%) First, a human
designer produces a flowchart diagram (or an executable RPA script) that
includes the actions to be performed by the SW robot on a target computer

system at run-time; (4i) Second, SW robots are typically deployed in production
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human-in-the-loop

Segmentation of Ul Logs

Figure 1.1. Overview of the envisioned approach required to tackle C1 and C2

environments, where they interact with information systems, with a high risk
of errors due to inaccurate modeling of flowcharts; (%) Third, if SW robots are
not able to reproduce the behaviour of the users for a specific routine, then the
designer adjusts the flowchart diagrams to fix the identified gap. While this
approach is proven effective in executing simple rules-based logic in situations
where there is no room for interpretation, it becomes time-consuming and
error-prone in the presence of routines that are less predictable or require some
level of human judgment. Indeed, the designer should have a global vision
of all possible variants of the routines to define the appropriate behaviours
of the SW robots, which becomes complicated when the number of variants
increases. The issue is that in case where the flowchart diagram does not
contain a suitable response for a specific situation, e.g., because of an inaccurate
modeling activity, then the associated RPA scripts would not properly reflect
the behaviour of the potential routine variant, forcing SW robots to escalate

to a human supervisor at run-time, in contrast with the RPA philosophy.

Objective: Once the routines to be automated and the user actions that consti-
tute them (i.e., the routine-based logs) have been identified, the target is to
automatically generate the flowchart diagrams (or/and the executable RPA
scripts) describing the behaviours of the SW robots required to successfully
execute the routines, rather than manually specify their conceptual and tech-
nical structure by means of interviews, walkthroughs and direct observation of

workers (cf. steps 3 and 4).

To mitigate the involvement of skilled human experts in steps 1, 3, and 4
by tackling C1 and C2, the research underlying this thesis is targeted to: (i)
automatically understand which user actions contribute to which routines inside a
UI log and (%) automatically generate executable RPA scripts directly from the UI
logs that record the user interactions with the SW applications involved in a routine
execution, thus skipping the (manual) modeling activity of the flowchart diagrams.

To achieve these goals, as shown in Figure 1.1, starting from an unsegmented

U log previously recorded with an RPA tool, the first stage of this research is to



inject into the Ul log the end-delimiters of the routines under examination. An
end-delimiter is a dummy action added to the Ul log immediately after the user
action that is known to complete a routine execution. The knowledge of such
end-delimiters is crucial to make the approach works, as discussed later in the thesis.

The second step of the approach is to automatically discover the most frequent
observed segments of the routines as recorded into the Ul log with the end-delimiters.
Routine segments describe the different behaviours of the routine(s) under analysis
in terms repeated patterns of performed user actions. An unsegmented Ul log
consists of sequential data of user actions performed on the Ul of a computer system
during many routines’ executions. To achieve the segmentation task, we rely on a
frequent-pattern identification technique [22] (which has been properly customized
for this purpose) to automatically discover the observed segments of the routines as
recorded into the Ul log. In this phase, the risk exists that some wrong segments
are discovered, i.e., not allowed from the real-world routines known to be valid at
the outset.

To address this issue, a human-in-the-loop interaction that enables human experts
to visualize the declarative constraints inferred by the discovered routine segments
is required. Such rules describe the temporally extended relations between user
actions that must be satisfied throughout a routine segment (e.g., an action a; must
be eventually followed by an action agz). In a nutshell, they collectively determine
the observed behaviours of the routine segments from the Ul log. This knowledge
allows human experts to identify and remove those constraints that should not be
compliant with any real-world routine behaviour, thus filtering out the not valid
(i.e., wrongly discovered) routine segments;

Finally, starting from any of the remaining (valid) routine segments, a customized
version of a trace alignment technique in Process Mining [2, 25] is employed to
automatically detect and extract the routine traces by the original Ul log. A routine
trace represents an execution instance of a routine within a Ul log. By identifying
the routine traces, it is also possible to filter out those actions in the Ul log that
are not part of the routine under observation and hence are redundant or represent
noise. Such traces are finally stored in a dedicated routine-based log, which captures
precisely all the user actions that happened during many different executions of the
routine, thus achieving the segmentation task (C1). Therefore, the outcome of our
segmentation approach will be a collection of as many routine-based logs as are the
number of valid routine segments.

The majority of state-of-the-art segmentation approaches can properly extract
routine segments from unsegmented Ul logs when the routine executions are not
interleaved from each other. Only a few works are able to partially untangle

unsegmented Ul logs consisting of many interleaved routine executions, but with
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the assumption that any routine provides its own, separate universe of user actions.
This is a relevant limitation since it is quite common that real-world routines may
share the same user actions (e.g., copy and paste data across cells of a spreadsheet)
to achieve their objectives. In this thesis, we propose a novel approach to the
segmentation of UT logs [3] that aims to mitigate the issues as mentioned above,
showing its ability to outperform existing literature approaches in terms of supported
segmentation variants and to which extent the human-in-the-loop interaction is able
to filter out the wrongly discovered routine segments. In particular, we evaluated
the robustness of the frequent-pattern identification technique in (re)discovering the
valid routine segments against synthetic Ul logs of increasing complexity. Then, we
also investigated the degree of effectiveness, robustness, and usability of the tool
implementing the human-in-the-loop interaction step.

It is worth noticing that the commercial RPA tools can eventually employ routine-
based logs to synthesize executable scripts in the form of SW robots that will emulate
the routine behaviour on the UI without the manual modeling of the routines (C2).
In this direction, a cross-platform software tool called smartRPA! was developed,
which is able to generate executable RPA scripts, necessary to enact the SW robot
that implements the selected routine variant directly from a segmented Ul log (i.e.,
a routine-based log). A routine variant is a specific execution of a routine that
differs from the other executions (i.e., instances) of the same routine in at least one
user action. Differently from the literature approaches to automated RPA scripts
generation from Ul logs, which enable to automate straightforward routines that
have essentially no variance and do not require any human intervention, the SW
robots generated by SmartRPA are obtained to handle the intermediate user inputs
that are required during the routine execution, thus enabling to emulate the most
suitable routine variant for any specific combination of user inputs as observed in the
UI log. This makes the synthesis of SW robots performed by SmartRPA reactive to
any user decision found during a routine execution. “Reactivity” highlights the fact
that the behaviour of SW robots is determined immediately before their enactment,
as it is driven by the specific user inputs required to execute the routine. This also
means that reactivity enables the potential run-time generation of as many SW
robots as the routine variants to be emulated.

SmartRPA has been validated on four non-functional requirements to measure
the quality of the underlying approach. Specifically, we first perform many synthetic
experiments employing Ul logs of increasing complexity to assess the robustness and
feasibility of SmartRPA to the identification of routine variants and variation points
for the reactive synthesis of SW robots. A wariation point is a point in the routine

execution where a user choice needs to be made between multiple possible routine

'smartRPA is available at: https://github.com/bpm-diag/smartRPA
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variants. Then, we performed a controlled experiment involving real users exploiting
our RPA use case to investigate the effectiveness of the SmartRPA approach when
compared to a traditional model-based approach for the generation of SW robots.
Finally, we quantify the usability of the Ul provided by the tool implementing the
SmartRPA approach.

While this Chapter serves as the basis for summarizing the performed author’s
research activities, the rest of the thesis is organized as follows. Chapter 2 presents
the relevant background and preliminary concepts integrated with a real-life RPA
use case useful to explain the proposed approaches to tackle C1 and C2. Chapter
3 discusses the related work solutions to tackle the segmentation issue. Then,
starting from the related work analysis, we derived an interactive approach to
the automated segmentation of Ul logs [3], which relies on: (i) a frequent-pattern
identification technique (customized on a ad-hoc basis) to automatically derive the
routine segments as recorded into a Ul log (cf. Chapter 4), (i) a human-in-the-loop
interaction to filter out those segments not allowed (i.e., wrongly discovered from the
UI log) by any real-world routine under analysis (cf. Chapter 5), and (%) a routine
traces detection component that leverages trace alignment in Process Mining to
cluster all those user actions belonging to a specific segment into routine traces (cf.
Chapter 6). The routine traces detection component can also be used as a supervised
segmentation technique [7]. The supervised assumption, which consists of knowing
a priori the structure of routines, may ease the segmentation task. Still, as a side
effect, it may strongly constrain the discovery of routine traces only to the “paths”
allowed by the routines’ structure, thus neglecting that some valid yet infrequent
routine variants may exist in the Ul log. For this reason, the novelty of the proposed
approach to the segmentation of Ul logs [3] is to semi-automatically discover such
structures in the form of routine segments and then use them as input for the
supervised segmentation technique [7]. Then, Chapter 7 focuses on the design of the
SmartRPA approach, presenting an algorithm to the automated identification of the
variation points from many routine executions, to enable the selection of the most
suitable routine variants to be implemented with a SW robot. Chapter 8 analyzes
the architecture and the technical aspects of the tool implementing SmartRPA,
describing also how the generated scripts can be automatically encoded in a format
readable by the commercial RPA tool UiPath. Finally, Chapter 9 draws conclusions

and traces future works.






Chapter 2
Background

In this Chapter, we present some preliminary concepts used throughout the thesis.
Section 2.1 outlines the definition of routines and SW robots while Section 2.2 places
routines within the spectrum of BPs. Section 2.3 introduces a real-life RPA use case
to illustrate the relevance of the research challenges being investigated. Section 2.4
describes the Petri net modeling language, which will be used to formally specify
the interaction models required to represent the structure of the routines of interest

explained in case study, while Section 2.5 introduces the notion of UI log.

2.1 Routines and SW Robots

RPA moves around the concept of replacing routine work with automation. According
to [26], a routine can be classified as a structured process that reflects highly predictable
and repetitive work with low flexibility requirements (i.e., the amount of variants
to the expected process path is limited) and controlled interactions among process
participants.

As there is no unique definition of routines, we identify a key reference definition
that, in our view, best represents the concept of routine in relation to the focus
of this thesis. While many overlapping definitions of RPA can be found in the
research literature, we adopt the one proposed by Gartner in 2017 [83], which defines
RPA as a class of tools that enable users to specify routines involving [if, then, else]
statements on structured data, rules, user interface interactions, and operations
accessible via APIs. Such routines are encoded as scripts that are executed by SW
robots, operated via control dashboards.

Depending on how the control dashboard is exploited, it is possible to distinguish

among unattended and attended SW robots.

e Unattended SW robots are able to fully automate routines without any in-

termediate human intervention. This happens when all execution paths are
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always the same independently by the specific inputs provided to the routine
executions. For example, for insurance claims management (when claims are
received in a structured form), unattended SW robots offer an efficient solution
for their automated processing and validation. However, any variant to the
routine’s expected behaviour is considered an exception and, thus, redirected

to human supervision.

e Attended SW robots work alongside humans and are suitable for routines where
some decisions or checks need to be made that require human judgment during
the routines’ execution. Therefore, attended SW robots may require data from
a user to properly progress the routine’s enactment. For example, a document-
driven routine lends itself to attended automation because a human is entering
information via a document, and different values of the provided information
may potentially trigger the execution of different variants of the routine. Let’s
consider the case of insurance claims rather than redirect routine variants to
human supervision after the initial inspection in an insurance exception flow.
An agent might feed claims to a SW robot that would collect different data
points surrounding each claim. The SW robot would automatically validate
and automate claims that fit the status quo, and return unusual claims to an

agent for another level of review.

In a nutshell, unattended SW robots represent the simplest case of the attended
perspective [54], since user inputs are not required for driving the routine’s execution.
On the other hand, attended SW robots are suitable in presence of routine variants
recorded in the Ul log. We define a routine variant as a specific execution of a
routine that differs from the other executions (i.e., instances) of the same routine by
at least one event. An event refers to the enactment of a user action (coupled with
some execution data, like the name of the application where the action occurred,
etc.) within a specific routine execution recorded in a Ul log at a specific moment in
time. The presence of different events in many routine executions may potentially
determine alternative behaviours of the routine itself. This is particularly true when
some events are triggered only by specific user inputs (and not by others) provided
at the time of the routine execution. These events act as a variation point of the
routine, where a user choice needs to be made between multiple possible variants.

We will show an example of routine variants and variation points in Section 2.4.

2.2 RPA in the Spectrum of BPM

To better understand the types of processes that are best suited for RPA, a classifi-

cation of BPs along a spectrum is presented in Figure 2.1. The distinction among
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different types of BPs is made along the basis of the degree of structuring and
predictability they exhibit, which directly influence the level of automation, control
and support that can be provided, as well as the degree of flexibility that is required

[26]. Along the spectrum, five different structuring levels can be identified:

e Structured.

Structured with ad hoc exceptions.

Unstructured with pre-defined segments.

Loosely structured.

Unstructured.

HIGHLY PREDICTABLE
AND REPEATABLE

LOW FLEXIBILITY

Unattended
SW Robots

Structured Attended
" ende
with ad hoc - SW Robots

exceptions

MODELING,

CONTROL AND AUTOMATION

E—| =ac) Unstructured
v : with
. .{2},@) pre-defined
segments

UNPREDICTABLE AND
NON REPEATABLE

HIGH FLEXIBILITY

Figure 2.1. The Spectrum of BPs

At the top of the spectrum, there are Structured processes, which are characterized
by complete high predictability but the lowest level of flexibility. They can be
described as a rigorously defined process with an end-to-end model that takes into
account all the process instance permutations. It means that all possible paths of
the process are well-understood. Structured processes are usually very repetitive,

including routine tasks and work that must be done regularly or at specified intervals.
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In addition, structured processes also feature low flexibility requirements, with no
need to change or adjust, and controlled interactions among process participants.
Typical examples of structured processes are production and administrative processes.
In terms of the activities to be executed, their dependencies, and the resources
performing the activities, the processing logic of this type of process is known in
advance and can be predeterminate. As a consequence, all possible options and
decisions that can be made during process enactment are captured in a process
model, defined a priori. A process model is a representation of a BP consisting of a
set of activities (a piece of work) and execution constraints between them, criteria to
indicate the start and termination of the process, and information about participants,
associated IT applications and data, etc. The distinctiveness of the process model
of a structured process is that it can be repeatedly instantiated in a predictable and
controlled manner. In this domain, the inputs and outputs are precise. Most process
instances follow the same path. The process is expected to proceed through a high

volume, producing millions of nearly identical outcomes with no exceptions.

The second class of BPs presented in the spectrum is the Structured processes with
ad hoc exceptions. These processes share some characteristics with the structured
processes, as they are both structured and reflect operational activities that typically
comply with a predefined plan. Still, there is a significant difference in flexibility.
The occurrence of external events and exceptions can make the process less rigid,
thus requiring these processes to be adapted according to changing circumstances
during the execution. Indeed, there is the possibility that the actual course of
action may deviate from the predefined reference work practices, and this would
consequently require process adaption strategies. In the presence of anticipated
exceptions, possible deviations that can be encountered are predictable and defined
in advance via exception handlers, typically pre-specified into the process model.
The encountered exceptions are pretty predictable in advance, and the process can
be modeled so that at every step, the user has the option of indicating that one of
the prepared lists of exceptions occurred and some specific handling logic for each
exception can be implemented. Contrarily, unanticipated exceptions can be only
detected during the execution of a process instance, and their handling typically

requires ad-hoc process changes at run-time.

In the middle of the spectrum, as the third presented BPs class, there are the
Unstructured processes with predefined segments where work practices are somewhat
unstructured and proceed on an ad-hoc basis. The overall process logic is not
explicitly defined, but the existence of policies and regulations allows for identifying
pre-definable, structured fragments. These fragments can refer to detailed, prescrip-
tive procedures or may take the form of underspecified templates and guidelines

(ambiguous because not sufficiently clear). Predefined process fragments need to be
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selected and adequately collected according to the features relating to each situation,
case by case. Likewise, process parts that are undefined or uncertain can only be
specified and incorporated in the range of the existing process model as the process
evolves, and decisions regarding the specification of the process or parts of it have
to be deferred.

The fourth class of BPs presented in the spectrum includes the Loosely structured
processes, characterized by a higher level of flexibility and at the same time a lower
level of predictability concerning the upper classes. The possible activities included in
the process may be known and predefined, but their execution ordering is not entirely
foreseeable as many possible execution alternatives are allowed. In particular, these
processes can be made up of tasks that are not subject to fixed reference procedures.
Nevertheless, there are constraints given by business rules that implicitly outline the
scope of action of process participants, limiting their execution procedures. These
constraints are used to describe processes defining the alternatives by prohibiting
undesired execution behaviour.

Finally, at the bottom of the spectrum, the last class of BPs presented is
the Unstructured processes characterized by the lowest level of predictability and
contemporarily the highest level of flexibility. Furthermore, they can be stated that as
unstructured, differently from a structured process where the frame is predeterminate,
and the workflow must stick to it, here the structure of the process dynamically
evolves with the process execution. Process participants, indeed, actively decide on
the activities to be executed and their execution order based on their work knowledge
and background. Knowledge workers rely on their experience to perform ad-hoc tasks
on a case-by-case basis and handle unexpected changes in the operational context.
For processes with these characteristics, only their goal is known a priori and reflect
both workers know-how and collaboration activities driven by rules and events. No
predefined models can be specified, and little automation can be provided.

An important element of the spectrum is the classification method presented
on the left of Figure 2.1: the triangle labelled “modelling, control and automation”
depicts the direction towards automation potential increase. It is clear that the
more the process is structured, the more it can be automated, and the less human
intervention is needed. In other words, the higher the process is predictable and
repeatable, the higher it can be automated, given its clear structure and predeter-
mined process execution. On the other hand, the higher flexibility of a process you
have, the less chance to be automated due to the process adaptability to different
situations and the need to manage with non-predictable exceptions.

Based on this interpretation, we can position routines between the spectrum of
Structured processes and Structured processes with ad hoc-exceptions, thus making

the processes best suited for RPA the ones that meet the following characteristics:
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e Rule-based: the logic of its workflow is defined utilizing if-then-else constructs.

o Well-structured: all possible execution paths are defined at design time, and

exceptions and deviations are known and predictable.

e Repetitive: the execution flow is highly repeatable with low flexibility require-

ment.

This is exactly the case of the RPA use case explained in the following section,
where the decision logic of the routines examined is expressed in terms of business
constructs such as loops, parallel, and alternative branches, thus characterized by
a low-level of flexibility (in terms of alternative behaviours to execute the routines

under examination) and a high-level of predictability.

2.3 An RPA Use Case

In this section, we describe an RPA use case inspired by a real-life scenario at the
Department of Computer, Control and Management Engineering (DIAG) of Sapienza
Universita di Roma. The scenario concerns the filling the travel authorization request
form made by professors, researchers, and PhD students of DIAG for travel requiring
prior approval. The request applicant must fill a well-structured Excel spreadsheet
(cf. Figure 2.2(a)) providing some personal information, such as her /his bio-data and
the email address, together with further information related to the travel, including
the destination, the starting/ending date/time, the means of transport to be used,
the travel purpose, and the envisioned amount of travel expenses, associated with the
possibility to request an anticipation of the expenses already incurred (e.g., to request
in advance a visa). When ready, the spreadsheet is sent via email to an employee of
the Administration Office of DIAG, which is in charge of approving and elaborating
the request. Concretely, for each row in the spreadsheet, the employee manually
copies every cell in that row and pastes that into the corresponding text field in a
dedicated Google form (cf. Figure 2.2(b)), accessible just by the Administration
staff. Once the data transfer for a given travel authorization request has been
completed, the employee presses the “Submit” button to submit the data into an
internal database.

In addition, if the request applicant declares that s/he would like to use her/his
personal car as one of the means of transport for the travel, then s/he has to fill
a dedicated (simple) web form required for activating a special insurance for the
part of the travel that will be performed with the car. This further request will
be delivered to the Administration staff via email, and the employee in charge of
processing it can either approve or reject such request. In the end, the applicant

will be automatically notified via email of the approval/rejection of the request.
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Figure 2.2. Uls involved in the RPA use case

The above procedure, which involves two main routines (in the following, we
will denote them as Ry and Ry), is performed manually by an employee of the
Administration Office of DIAG, and it should be repeated for any new travel request.
Routines such as these are good candidates to be encoded with executable scripts
and enacted through a SW robot within a commercial RPA tool. However, unless
there is complete a priori knowledge of the specific routines that are enacted on the
UT and of their concrete composition (this may happen only if the exact sequence of
user actions required to achieve the routines’ targets on the Ul is recorded in the
context of controlled training sessions), their automated identification from an UI
log is challenging, since the associated user actions may be scattered across the log,
interleaved with other actions that are not part of the routine under analysis, and

potentially shared by many routines.

2.4 Interaction Models as Petri Nets

The research literature is rich of notations for expressing human-computer dialogues
as interaction models that allow seeing at a glance the structure of user interactions
with a UI [71, 28]. Existing notations can be categorized in two main classes:
diagrammatic and textual. Diagrammatic notations include (among the others)
various forms of state transition networks (STNs) [87], Petri nets [82], Harel state
charts [36], flow charts [28], JSD diagrams [81] and ConcurTaskTrees (CTT) [69].
Textual notations include regular expressions [84], Linear Temporal Logic (LTL)
[73], Communicating Sequential Processes (CSPs) [27], GOMS [44], modal action



16 2. Background

accessMail download
Attachment

openGoogleForm

getCell copy clickTextField paste

formSubmit

Figure 2.3. Interaction model for Ry

start Pl P2 p3 approveRequest end

loginMail accessMail clickLink

rejectRequest
Inv3

Figure 2.4. Interaction model for Ry

logic [19], BNF and production rules [31].

While there are major differences in expressive power between different notations,
increased expressive power is not always desirable as it may suggest a harder to
understand description, i.e., the dialogue of a Ul can become unmanageable [28].
To guarantee a good trade-off between expressive power and understandability of
the models, we decided to use Petri nets for their specification. Petri nets have
proven to be adequate for defining interaction models [28, 70, 65]. They may contain
exclusive choices, parallel branches and loops, allowing the representation of highly
complex behaviours in a very compact way. Last but not least, Petri nets provide
formal semantics, which helps to interpret the meaning of an interaction model
unambiguously.

From a formal point of view, a Petri net W = (P, T, S) is a directed graph with a
set P of nodes called places and a set T of transitions. The nodes are connected via
directed arcs S C (P x T) U (T x P) . Connections between two nodes of the same
type are not allowed. Places are represented by circles and transitions by rectangles.
Figures 2.3 and 2.4 illustrate the Petri nets used to represent the interaction models
of Ry and Ry. Transitions are associated with labels reflecting the user actions (e.g.,
system commands executed, buttons clicked, etc.) required to accomplish a routine

on the Ul For example, a proper execution of R; requires a path on the Ul made
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by the following user actions:
e loginMail, to access the client email;
e accessMail, to access the specific email with the travel request;
o downloadAttachment, to download the Excel file including the travel request;
o openWorkbook, to open the Excel spreadsheet;
o openGoogleForm, to access the Google Form to be filled;
o getCell, to select the cell in the i-th row of the Excel spreadsheet;
e copy, to copy the content of the selected cell;

o clickTextField, to select the specific text field of the Google form where the
content of the cell should be pasted;

e paste, to paste the content of the cell into the corresponding text field of the

Google form;

e formSubmit, to press the button to finally submit the Google Form to the

internal database.

Note that, as shown in Figure 2.3, the user actions openWorkbook and openGoogleForm
can be performed in any order. Moreover, the sequence of actions (getCell, copy,
clickTextField, paste) will be repeated for any travel information to be moved from
the Excel spreadsheet to the Google form. On the other hand, the path of user

actions in the UI to properly enact Ro is as follows:

e loginMail, to access the client email;
e accessMail, to access the specific email with the request for travel insurance;

e clickLink, to activate in the Google form the dialog box for approving or

rejecting the car request;

o approveRequest, to press the button on the Google form that approves the

request;

o rejectRequest, to press the button on the Google form that rejects the request.

Then, in the interaction models of R; and Rg, there are transitions that do not
represent user actions but are needed to represent the structure of such models
correctly. These transitions, drawn with a black-filled rectangle, are said to be

“invisible”, and are not recorded in the UI logs (cf. Invl, Inv2 and Inv3).
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Finally, in case of a car request to be evaluated (clickLink), the execution of
approveRequest or rejectRequest is exclusive. Depending on the choice of the above
user actions, two different variants of Ry can be potentially emulated. However, the
behaviour implied by Ry semantically changes only after the enactment of the action
clickLink, which requires an explicit user decision between the possibility of accepting
or rejecting the personal car request. Therefore, the actions approveRequest and
rejectRequest represent a wvariation point of the routine, that forks its execution flow
into two well-distinguished exclusive branches.

To understand trace alignment in Process Mining (cf. Chapter 6), we also need to
briefly illustrate the dynamic behaviour of a Petri net, i.e., its operational semantics.
Given a transition t € T, *t is used to indicate the set of input places of t, which
are the places p with a directed arc from p to ¢ (i.e., such that (p,t) € S). Similarly,
t® indicates the set of output places, namely the places p with a direct arc from ¢
to p. At any time, a place can contain zero or more tokens, drawn as black dots.
The state of a Petri net, i.e., its marking, is determined by the number of tokens in
places. Therefore, a marking m is a function m : P — IN. In any run of a Petri net,
the number of tokens in places may change, i.e., the Petri net marking. A transition
t is enabled at a marking m iff each input place contains at least one token, i.e., V
p € *t, m(p) > 0. A transition ¢ can fire at a marking m if and only if it is enabled.
As result of firing a transition ¢, one token is “consumed” from each input place
and one is “produced” in each output place. This is denoted as m Lo m’. In the
remainder, given a sequence of transition firing o = (t,...,t,) € T*, mg = m,, is
used to indicate my h, mi LN My, 1.€., My is reachable from my.

Since the executions of a routine have a start and an end, the interaction models
represented through Petri nets need to be associated with an initial and final marking.
For example, in both routines of Figures 2.3 and 2.4, the markings with respectively
one token in place start or in place end are the initial and final marking (and no
tokens in any other place). In the remainder of this thesis, we assume all Petri nets
to be 1-bounded. A Petri net is 1-bounded if no place ever contains more than one
token in any reachable marking from the initial marking. One-boundness is not a
big limitation as the behaviour allowed by interaction models can be represented as
1-bounded Petri nets [28, 65].

2.5 User Interface Logs

In its raw form, a single UI log consists of a long sequence of user actions recorded

during one user session.! Such actions include all the steps required to accomplish

We interpret a user session as a group of interactions that a single user takes within a given

time frame on the UI of a specific computer system.
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relevant routines using the UT of one or many SW application/s. For instance, in
Figure 2.5, we show a snapshot of a Ul log captured using a dedicated action logger?

(that we will discuss in Chapter 8) during the execution of Ry and Ra.

A B c D E F G H | J
1 [timestamp user category application event_type event src_path clipboard content  workbook worksheet cell content
2 2020-04-06 13:47 Simone  Mail Qutlook loginMail
3 J2020-04-06 13:47 Simone Mail Outlook accessMail
4 12020-04-06 13:47 Simone  Mail Outlook downloadAttachment
5 |2020-04-06 13:47 Simone MicrosoftOffice Microsoft Excel openWorkbook _ C:\Users\Simone'\Desktoplrichiesta missione acrichiesta missione.xlsx_Fogliol
6 12020-04-06 13:47 Simone MicrosoftOffice  Microsoft Excel openWindow C:\Users\Simone\Desktop richiesta missione.xlsx Foglio1
7 |2020-04-06 13:47 Simone MicrosoftOffice  Microsoft Excel afterCalculate
8 |2020-04-06 13-47 Simone MicrosoftOffice Microsoft Excel resizeWindow C-\Users\Simone'\Desktop richiesta missione xlsx_Foglio1
9 12020-04-06 13:47 Simone Browser Chrome openGoogleForm
10 [2020-04-06 13:47 Simone MicrosoftOffice  Microsoft Excel getCell richiesta missione xlsx Foglio1 Simone Agostinelli
11 [2020-04-06 13:47 Simone  Clipboard Clipboard copy Simone Agostinelli
12 [2020-04-06 13:47 Simone_ Browser Chrome clickTextField
13 J2020-04-06 13-4 Simone _Mail Outlook clicklink
14 |2020-04-06 13:48 Simone Browser Chrome paste Simone Agostinelli
15 |2020-04-06 13:48 Simone Browser Chrome changeField
16 J2020-04-06 13:48 Simone Browser Chrome approveRequest
17 12020-04-06 13:48 Simone MicrosoftOffice  Microsoft Excel getCell richiesta missione xlsx Foglio1 Dottorando
18 2020-04-06 13:48 Simone  Clipboard Clipboard copy Dottorando
19 |2020-04-06 13:48 Simone_ MicrosoftOffice_ Microsoft Excel resizeWindow C-\Users\Simone\Deskto richiesta missione xlsx_Foglio1
20 |2020-04-06 1348 Simone  Browser Chrome clickTextField
21 |2020-04-06 13-48 Simone_ Browser Chrome paste Dottorando

Figure 2.5. Snapshot of a Ul log captured during the executions of R; and Rg

The employed action logger enables recording the events that happened on the
UI, enriched with several data fields describing their “anatomy”. For a given event,
such fields are helpful to keep track of the name and the timestamp of the user action
performed on the UI, the involved SW application or web page, the human/SW
resource that performed the action, etc.

For the sake of understandability, we assume here that any user action associated
to each event recorded in the Ul log is mapped at most with one (and only one)
Petri net transition, and that the collection of labels associated to the Petri net
transitions is defined over the same alphabet as the user actions in the UI log, i.e.,
the alphabet of user actions in the Ul log is a superset of that used for defining the
labels of Petri net transitions.

In the RPA use case, we can recognize in Ry and Ry a universe of user actions of
interest Z = {A,B,C,D,E,F,G,H,I,L,M,N,O}, such that: A = loginMail, B =
accessMail, C' = downloadAttachment, D = openWorkbook, E = openGoogleForm, I’
= getCell, G = copy, H = clickTextField, I = paste, L = formSubmit, M = clickLink,
N = approveRequest, O = rejectRequest.

As shown in Figure 2.5, a Ul log is not specifically recorded to capture pre-
identified routines. A UI log may contain multiple and interleaved executions of
one/many routine/s (cf. in Figure 2.5 the blue/red boxes that group the user actions

belonging to R; and Rg, respectively), as well as redundant behaviour and noise.

2The dedicated action logger is integrated within SmartRPA, a self-developed RPA tool down-

loadable from this link: https://github.com/bpm-diag/smartRPA
3In [25], it is shown how these assumptions can be removed.
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We consider as redundant any user action that is unnecessary repeated during the
execution of a routine, e.g., a text value that is first pasted in a wrong field by
mistake and then is moved in the right place through a corrective action on the UI.
On the other hand, we consider as noise all those user actions that do not contribute
to the achievement of any routine target, e.g., a window that is resized. In Figure
2.5, the sequences of user actions that are not surrounded by a blue/red box can be
safely labelled as noise.

Based on the foregoing, our segmentation approach, whose main steps are
extensively examined in chapters 4, 5 and 6 aims at identifying the most frequent
observed routine segments from a Ul log and then extracting all those user actions
that match a distinguishable pattern as represented by the interaction model of a
valid routine segment R (i.e., the output of the human-in-the-loop interaction step),
thus filtering out redundant actions and noise. To be more specific, any sequence of
user actions in the Ul log that can be replayed from the initial to the final marking
of the Petri net-based interaction model of R is said to be a routine trace of R, i.e.,
a complete execution instance of R within the Ul log. For example, a valid routine
trace of Ry is (A, B, C', D, E, F\, G, H, I, L). The interaction model of Ry suggests
that valid routine traces are also those ones where: (7) A is skipped (if the user is
already logged in the client email); (i) the pair of actions (D, F) is performed in
reverse order; (7ii) the sequence of actions (F', GG, H, I) is executed several time
before submitting the Google form. On the other hand, two main routine traces can
be extracted from Rg: (A, B, M, N) and (A, B, M, O), again with the possibility
to skip A, i.e., the access to the client email. Note that, within a routine trace, the
concept of time is usually defined in a way that user actions in a trace are sorted
according to the timestamp of their occurrence.

By analyzing the log, it can be noted that: A and B are shared by Ry and Ra,
as they are included in the interaction models of both routines. A is potentially
involved in the enactment of any execution of Ry and Ry, while B is required by
all executions of Ry and Ry, but it is not clear the association between the single
executions of B and the routine executions they belong to. The complexity of the
segmentation task here lies in understanding to which routine traces the execution
of A and B belong.

We conclude this section by introducing the concept of routine-based log as
a special container that stores all the routine traces extracted by a UI log and
associated to a generic interaction model. Thus, the final outcome of the envisioned
approach to the segmentation of UI logs will be a collection of as many routine-based

logs as are the interaction models of interest.
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Chapter 3
Segmentation in RPA

This thesis aims to explore the issue of automated segmentation in RPA (C1)

through the evaluation of two research questions:

e RQ1.1: what are the variants of a segmentation solution needed to properly
deal with different kinds of UI logs?

« RQ1.2: to what extent such variants are supported by literature approaches?

To answer these research questions, Section 3.1 first introduces the problem.
Then, starting from the concrete RPA use case in the administrative sector (cf.
Section 2.3) Section 3.2 explains how a segmentation technique should behave in
presence of three different (and relevant) forms of UI logs, which may consist of:
(i) several executions of the same routine, (7i) several executions of many routines
without the possibility to have user actions in common, and (7ii) several executions of
many routines with the possibility to have user actions in common. Finally, Section
3.3 investigates how and if the current state-of-the-art segmentation approaches

tackle such forms of UI logs.

3.1 The Segmentation Issue

Commercial RPA tools allow SW robots to automate a wide range of routines
in a record-and-replay fashion and capture in dedicated UI logs the execution of
high-volume routines previously performed by a human user on the interface of a
computer system. As reported in [42], in the early stages of the RPA life-cycle it is
required the support of skilled human experts to: (%) identify the candidate routines
to automate by means of interviews and observation of workers conducting their
daily work, (7i) record the interactions that take place during routines’ enactment

on the UI of software applications into dedicated UI logs, and (%ii) manually specify
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their conceptual and technical structure (often in the form of flowchart diagrams)
for defining the behaviour of SW robots.

This approach is ineffective in the case of Ul logs that keep track of many routines
executions, since the designer should have a global vision of all possible variants
of the routines to define the appropriate behaviours of SW robots, which becomes
complicated when the number of variants increases. Indeed, in the presence of Ul
logs that collect information about several routines, the recorded actions are mixed
in some order that reflects the particular order of their execution by the user, making
the identification of candidate routines in a Ul log a time-consuming and error-prone
task. The issue to automatically understand which user actions contribute to a
particular routine segment inside a Ul log and cluster them into well-bounded routine
traces (i.e., complete execution instances of a routine) is known as segmentation
[5, 55].

A first approach proposed by Bosco et al. [17] makes this identification less
time-consuming and error-prone, as it enables to automatically extract from a Ul log,
which records the Ul interactions during a routine enactment, those routine steps to
be automated with a SW robot. While this approach is effective in case of Ul logs
that keep track of single routine executions, i.e., there is an exact 1:1 mapping among
a recorded user action and the specific routine it belongs to, it becomes inadequate
when the Ul log records information about several routines whose actions are mixed
in some order that reflects the particular order of their execution by the user. In
addition, since the same user action may belong to different routines, the automated
identification of those user actions belonging to a specific routine is far from trivial.

Towards this direction, in their Robotic Process Mining framework [55], Leno
et al. propose to exploit the User Interface (UI) logs recorded by RPA tools to
automatically discover the candidate routines that can be later automated with SW
robots. To date, when considering state-of-the-art RPA technology, it is evident that
the RPA tools available in the market are not able to learn how to automate routines
by only interpreting the user actions stored into Ul logs [5]. The majority of state-of-
the-art segmentation approaches can properly extract routine segments (i.e., repeated
routine behaviours) from unsegmented UT logs when routines are not interleaved
from each other. Only a few works are able to partially untangle unsegmented UI logs
consisting of many interleaved routines, but with the assumption that any routine
provides its own, separate universe of user actions. This is a relevant limitation since
it is quite common that real-world routines may share the same user actions (e.g.,
copy and paste data across cells of a spreadsheet) to achieve their objectives.

To address the limitations as mentioned above, in this thesis, we have proposed
an interactive approach to the discovery of routine traces from unsegmented Ul logs

[3], that is able to segment a UI log that records in an interleaved fashion many
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different routines with shared user actions but not the routine executions, thus losing

in accuracy when there is the presence of interleaving executions of the same routine.

3.2 Identifying the Segmentation Variants

Given a Ul log that consists of events including user actions with the same granularity'
and potentially belonging to different routines, in the RPA domain segmentation is
the task of clustering parts of the log together which belong to the same routine. In a
nutshell, the challenge is to automatically understand which user actions contribute
to which routines and organize such user actions in well-bounded routine traces
[5, 55].

As shown in Section 2.5, in general, a Ul log stores information about several
routines enacted in an interleaved fashion, with the possibility that a specific user
action is shared by different routines. Furthermore, actions providing redundant
behaviour or not belonging to any of the routines under observation may be recorded
in the log, generating noise that should be filtered out by a segmentation technique.
Based on the above considerations, and on a concrete analysis of real Ul logs
recorded during the enactment of the routines presented in Section 2.3, i.e. Ry and
Ro, to address RQ1.1 we have identified three main forms of UI logs, which can
be categorized according to the fact that: (%) any user action in the log exclusively
belongs to a specific routine (Case 1); (i) the log records the execution of many
routines that do not have any user action in common (Case 2); (7) the log records
the execution of many routines, and the possibility exists that some performed user
actions are shared by many routines at the same time (Case 3). In the following,
we analyze the three cases’ characteristics and their variants. For the sake of
understandability, we use a numerical subscript ¢j associated with any user action
to indicate that it belongs to the j — th execution of the ¢ — th routine under study.
Of course, this information is not recorded in the UI log, and discovering it (i.e.,
identifying the subscripts) is one of the “implicit” effects of segmentation when

routine traces are built.

Case 1. This is the case when a Ul log captures many executions of the same
routine. Of course, in this scenario it is impossible to distinguish between shared
and non-shared user actions by different routines since the Ul log keeps track only

of executions associated with a single routine. Two main variants exist:

e Case 1.1. Starting from the use case in Section 2.3, let us consider the case

of a Ul log that records a sequence of user actions resulting from many non-

!The UI logs created by generic action loggers usually consist of low-level events associated

one-by-one to a recorded user action on the UI (e.g., mouse clicks, etc.).
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Ul log Segmented Ul log Ul log Segmented Ul log

loginMail loginMail, loginMail loginMail,

accessMail accessMail;, accessMail accessMail;

downloadAttachment, downloadAttachment,; downloadAttachment, downloadAttachment,;

openWorkbook,, openWorkbook, openWorkbook, , openWorkbook,;

openGoogleForm, openGoogleForm,, accessMail loginMail,,

getCell, getCell,, downloadAttachment,, accessMail,,

copy,, copy,, openWorkbook;, downloadAttachment,,

copyy; clickTextField,, openGoogleForm;, openWorkbook;,

clickTextField,; paste,; getCell,, openGoogleForm,,

paste,; formSubmit,, copys, getCell,,

formSubmit,, loginMail,, clickTextField,, copy;,

Yy accessMail,, paste;, clickTextField,,

accessMail downloadAttachment,, paste,, paste,,

downloadAttachment,, openWorkbook,, formSubmit,, formSubmit,,

openWorkbook,, openGoogleForm,, Y, openGoogleForm,,;

openGoogleForm,, getCell,, openGoogleForm,, getCell,

getCell, copy;, getCell,; COpYy;

copy;, clickTextField,, copy;; clickTextField,;

clickTextField,, paste,, [ole] V2% paste,;

paste,, formSubmit,, clickTextField,; formSubmit,

paste,, paste,;

formSubmit,, formSubmit,;

Y, Y,

(a) Case 1.1 (b) Case 1.2

Figure 3.1. Variants for Case 1

interleaved executions of R; (cf. Figure 3.1(a)). We also have the presence of
some user actions that potentially belong at the same time to many executions
of the routine itself. This is the case of loginMail, which can be performed
exactly once at the beginning of a user session and can be “shared” by many
executions of the same routine. Applying a segmentation technique to the
above Ul log would trivially produce a segmented Ul log where the (already
well-bounded) executions of R; are organized as different routine traces: the
blue and grey vertical lines outline the routine traces, while the light blue line

outlines Ry itself.

e Case 1.2. The same segmented Ul log is obtained when the executions of Ry
are recorded in an interleaved fashion in the original UI log (cf. Figure 3.1(b)).
Here, the segmentation task is more challenging because the user actions of
different executions of the same routine are interleaved among each others,

and it is not known a priori which execution they belong to.

Both variants of Case 1 are affected by noise or redundant actions. The logs
contain elements of noise, i.e., user actions Yye(1,n) € Z (remind that Z is the
universe of user actions allowed by a UI log, as introduced in Section 2.5) that are
not allowed by Ri, and redundant actions like copy and paste that are unnecessary

repeated multiple times. Noise and redundant actions need to be filtered out during
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Ul log

Segmented Ul log

downloadAttachment,;
openWorkbook,
openGoogleForm,;
getCell;

downloadAttachment,
openWorkbook, ,
openGoogleForm,,;
getCell,

Ul log

Segmented Ul log

downloadAttachment,;
openWorkbook,
openGoogleForm,;
downloadAttachment,,

downloadAttachment,
openWorkbook, ,
openGoogleForm,,;
downloadAttachment,,

copy;; copyy; openWorkbook;, openWorkbook,,
clickTextField,, clickTextField,; getCell; getCell,,

paste;; paste;; Copyy, €opyy;
formSubmit,, formSubmit,, clickTextField,, clickTextField,
downloadAttachment,, downloadAttachment,, paste,; paste,;

openWorkbook;, openWorkbook;, formSubmit,, formSubmit,,
openGoogleForm,, openGoogleForm,, openGoogleForm,, openGoogleForm,,
getCell, getCell,, getCell, getCell,,
Copyy, Copy1;, copys, Copy;,
clickTextField,, clickTextField,, clickTextField,, clickTextField,,
paste,, paste;, paste,, paste;,
formSubmit,, formSubmit,, formSubmit,, formSubmit,,
clickLink,, clickLink,, clickLink,, clickLink,,
approveRequest,, approveRequest,, clickLink,, clickLink,,
clickLink,, clickLink,, approveRequest,; approveRequest,;
rejectRequest,, rejectRequest,, rejectRequest,, rejectRequest,,
(a) Case 2.1 (b) Case 2.2

Ul log Segmented Ul log Ul log Segmented Ul log
downloadAttachment,; downloadAttachment, downloadAttachment,; downloadAttachment,
openWorkbook, openWorkbook,, openWorkbook; openWorkbook,,
openGoogleForm,, openGoogleForm, openGoogleForm,, openGoogleForm,
getCell,; getCelly; downloadAttachment,, downloadAttachment,,
copy;; copyy; openWorkbook;, openWorkbook;,
clickTextField,, clickTextField,; getCell, getCell,
paste;; paste,; Copyq; copyy,
formSubmit,, formSubmit,, clickTextField,, clickTextField,
clickLink,, clickLink,, paste,; paste;
approveRequest,, approveRequest,; formSubmit, formSubmit,,
downloadAttachment,, downloadAttachment,, clickLink,, | clickLink,,
openWorkbook,, openWorkbook;, openGoogleForm;,, openGoogleForm,,
openGoogleForm,, openGoogleForm,, getCell,, getCell,,
getCell, getCell,, copy,, copy;,
Copy;; copys, clickTextField,, clickTextField,,
clickTextField,, clickTextField,, paste;, paste;,
paste,, paste,, formSubmit,, formSubmit,,
formSubmit,, formSubmit,, clickLink,, clickLink,,
clickLink,, clickLink,, approveRequest,, approveRequest,,
rejectRequest,, | rejectRequest,, rejectRequest,, rejectRequest,,

(c) Case 2.3 (d) Case 2.4

Figure 3.2. Variants for Case 2

the segmentation task because they do not contribute to achieving the routine’s
target. In the following analysis, we do not consider the presence of noise and

redundant actions anymore since their handling is similar for all the cases.

Case 2. In this case, a Ul log captures many executions of different routines,
assuming that the interaction models of such routines include only transitions
associated with user actions that are exclusive for those routines. To comply with

the latter constraint, let us suppose that in both interaction models of R; and Re
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the transitions loginMail and accessMail are not required. Four main variants of Case
2 can be identified:

o Case 2.1. Let us consider the Ul log in Figure 3.2(a). The output of the
segmentation task would consist of a segmented log where the (already well-
bounded) executions of Ry and Ry are organized as different routine traces:
(i) the blue and grey vertical lines outline the routine traces of Ry, (i) the
yellow and orange vertical lines outline the routine traces of Ry, while (%) the
outer light blue and red lines outline respectively the routines R; and Rs. In

the following, the colouring scheme will be kept the same.

e Case 2.2. Similarly to what already seen in Case 1.2, many executions of the
same routine may be interleaved among each other (cf. Figure 3.2(b)), e.g.,
the first execution of R; is interleaved with the second execution of R, the

first execution of Ry is interleaved with the second execution of Rs, and so on.

e Case 2.3. Another variant is when the UI log records in an interleaved fashion
many different routines but not the routine executions (cf. Figure 3.2(c)), e.g.,
the first execution of Ry follows the first execution of Ry, the second execution

of Ry follows the second execution of Ry, and so on.

e Case 2.4. The complexity of the segmentation task becomes more challenging
in presence of both interleaved routines and routine executions (cf. Figure
3.2(d)), e.g., the first execution of Ry is interleaved with the second execution
of R1, the second execution of R; is interleaved with the first execution of Re,

the first execution of Ry is interleaved with the second execution of Rs.

Case 3. In this case, a Ul log captures many executions of different routines, and
such routines may share some user actions. This case perfectly reflects what happens
in the use case of Section 2.3. In particular, loginMail and accessMail are shared by
R; and Re, as they are included in the interaction models of both routines. Four

variants can be distinguished:

o Case 3.1. Let us consider the Ul log depicted in Figure 3.3(a). loginMail is
potentially involved in the enactment of any execution of Ry and Rs, while
accessMail is required by all executions of Ry and Re, but it is not clear
the association between the single executions of accessMail and the routine
executions they belong to. The complexity of the segmentation task here lies in
understanding to which routine traces the execution of loginMail and accessMail
belong to. The outcome of the segmentation task will be a segmented log
where the executions of Ry and Ry are organized as different routine traces

according to the colouring scheme explained in Case 2.1.
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Ul log Segmented Ul log
loginMail loginMail;
accessMail accessMail,
downloadAttachment, downloadAttachment,;
openWorkbook, openWorkbook,;
openGoogleForm,,; openGoogleForm,;
accessMail loginMail,,
openWorkbook,, accessMail,,
openGoogleForm,, openWorkbook,,
getCell , openGoogleForm,,
copy,,; getCell,,
clickTextField, (] )%
paste;; clickTextField,;
formSubmit,; paste;;

downloadAttachment,,

formSubmit,,

Ul log Segmented Ul log
loginMail loginMail;
accessMail accessMail
downloadAttachment,; downloadAttachment,;
openWorkbook,, openWorkbook,;
openGoogleForm,,; openGoogleForm,,
getCell,, getCell,,
€opYy, €opY1,
clickTextField, clickTextField,;
paste; paste;;
formSubmit,, formSubmit,,
accessMail loginMail,,
downloadAttachment,, accessMail;,
openWorkbook, downloadAttachment,,
openGoogleForm,, openWorkbook,,
getCell,, openGoogleForm,,
copy;, getCell,
clickTextField,, copy;,
paste;, clickTextField,,
formSubmit,, paste;,
accessMail formSubmit,,
clickLinky, loginMail,
approveRequest,, accessMail,,
accessMail clickLinky,
clickLink,, approveRequest,,
rejectRequest,, loginMail,,

accessMail,,

clickLink,,

rejectRequest,,
(a) Case 3.1

Ul log Segmented Ul log
loginMail loginMaily,
accessMail accessMail,
downloadAttachment,, downloadAttachment,;
openWorkbook, openWorkbook,,
openGoogleForm,, openGoogleForm,,;
getCell, getCell,

Copy;; €opy;y
clickTextField,; clickTextField,;
paste;; paste;;
formSubmit,, formSubmit,,
accessMail loginMail,;
clickLink,, accessMail,,
approveRequest,, clickLink,,
accessMail approveRequest,,
downloadAttachment,, loginMail,,
openWorkbook,, accessMail,,
openGoogleForm,, downloadAttachment,,
getCell, openWorkbook,,
copy,, openGoogleForm,,
clickTextField,, getCell,
paste;, copyy,
formSubmit,, clickTextField,,
accessMail paste;,
clickLink,, formSubmit,,
rejectRequest,, | loginMail,,
accessMail,
clickLink,,
rejectRequest,,
(c) Case 3.3

Figure 3.3.

getCell,, downloadAttachment,,
copy;, getCell;,
clickTextField,, Copy;,
paste;, clickTextField,,
formSubmit,, paste;,
accessMail formSubmit,,
accessMail loginMail,
clickLink,, accessMaily,
approveRequest,, loginMail,,
clickLink,, } accessMail,
rejectRequest,, clickLink,,
approveRequest,,
clickLink,,
rejectRequest,,
(b) Case 3.2
Ul log Segmented Ul log
loginMail loginMail;
accessMail accessMail,
downloadAttachment, downloadAttachment,;
openWorkbook, openWorkbook,;
openGoogleForm,,; openGoogleForm,,
accessMail loginMail,,
openWorkbook,, accessMail,,
openGoogleForm,, openWorkbook,,
getCell,, openGoogleForm,,
copy,,; getCell,,
clickTextField, CopY;;
paste;; clickTextField,;
formSubmit,; paste;;
accessMail formSubmit,,
downloadAttachment,, loginMail,,
getCell,, accessMail,;
copy;, downloadAttachment,,
clickTextField,, getCell,,
paste;, copy;,
formSubmit,, clickTextField,,
accessMail paste;,
clickLinks, formSubmit,,
approveRequest,, | loginMail,,
clickLink,, accessMail,
rejectRequest,, clickLinky,
approveRequest,,
clickLink,,
] rejectRequest,,
(d) Case 3.4

Variants for Case 3
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e Case 3.2. This is the case when the Ul log records interleaved executions of
the same routine in the presence of shared user actions (cf. Figure 3.3(b)),
e.g., the first execution of R; is interleaved with the second execution of Ry,

and the first execution of Ry is interleaved with the second execution of Ro.

e Case 3.3. Another variant is when the Ul log records in an interleaved fashion
many different routines but not the routine executions in the presence of shared
user actions (cf. Figure 3.3(c)), e.g.: the first execution of Ry follows the first
execution of Ry and the second execution of Ry follows the second execution
of Ry.

e Case 3.4. The segmentation task becomes more challenging in the presence
of more complex Ul logs consisting of both interleaved routines and routine
executions with shared user actions (cf. Figure 3.3(d)), e.g., the first execution
of Ry is interleaved with the second execution of R, the second execution of
R; is interleaved with the first execution of Ro, and the first execution of Ro

is interleaved with the second execution of Rs.

The above three cases and their variants have in common that all the user
actions are stored within a single Ul log. It may happen that the same routine is
spread across multiple Ul logs, particularly when multiple users are involved in the
execution of the routine on different computer systems. This case can be tackled by
“merging” the Ul logs where the routine execution is distributed into a single UI log,
reducing the segmentation issue to one already analysed case. It is worth noticing
that although the classification of cases and variants was illustrated with only two
routines (interleaving or not), the classification is defined generically and applies to

any number of routines.

3.3 State of the Art

In RPA, segmentation is still not so explored since the current practice adopted by
commercial RPA tools for identifying the routine steps often consists of detailed
observations of workers conducting their daily work. Such observations are then
“converted” in explicit flowchart diagrams [42], which are manually modeled by
expert RPA analysts to depict all the potential behaviours (i.e., the traces) of a
specific routine. As the routine traces have already been (implicitly) identified in
this setting, segmentation can be neglected.

On the other hand, following a similar trend that has been occurring in the BPM
domain [64], the research on RPA is moving towards the application of intelligent

techniques to automate all the steps of an RPA project, as proven by many recent
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Table 3.1. Literature approaches to tackle segmentation variants

Papers Case 1 Case 2 Case 3
11 || 12| 21 || 22 || 23] 24 | 31| 32 33 34

v v v v v
v v v

Agostinelli et al. [7]
Agostinelli et al. [3]
Baier et al. [13]
Bayomie et al. [14]
Bosco et al. [17]
Kumar et al. [47]
Leno et al. [51]
Liu [60]
Fazzinga et al. [30]
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Ferreira et al. [32]
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Srivastava et al. [80]
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works in this direction (see below). In this context, segmentation can be considered
as one of the “hot” key research efforts to investigate [5, 55].

To answer RQ1.2, Table 3.1 summarizes the current literature techniques that
could be leveraged to tackle the different variants of the segmentation issue. We will
use v to denote the full ability of an approach to deal with a specific Ul log variant,
while ~ denotes that the approach is only partially able to deal with a specific Ul
log variant (i.e., under certain conditions). In the following, we discuss to what
extent existing literature approaches can support such variants. It is worth noticing
that the assessment of the literature approaches is based on what was reported in
the associated papers.

Concerning RPA-related techniques, Bosco et al. [17] provide a method that
exploits rule mining and data transformation techniques, able to discover routines
that are fully deterministic and thus amenable for automation directly from UI logs.
This approach is effective in the case of Ul logs that keep track of well-bounded
routine executions (Case 1.1 and Case 2.1) and becomes inadequate when the UI log
records information about several routines whose actions are potentially interleaved.
In this direction, Leno et al. [51] propose a technique to identify execution traces of a
specific routine relying on the automated synthesis of a control-flow graph, describing
the observed directly-follow relations between the user actions. The technique in
[51] is able to achieve cases 1.1, 1.2 and 2.1, and partially cases 2.2, 2.3 and 2.4, but
(for the latter) it loses in accuracy in the presence of recurrent noise and interleaved
routine executions. However, they are not able to handle Ul logs that record in an
interleaved fashion shared user actions of many different routines.

To tackle the main limitation of the above techniques, in this thesis we have

presented an approach [3] that tackles the segmentation challenge relying on three
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main steps: (i) an ad-hoc frequent-pattern identification technique to automatically
derive the observed routine segments from a Ul log (cf. Chapter 4), (77) a human-
in-the-loop interaction to filter out those segments not allowed by any real-world
routine execution (cf. Chapter 5), and (%ii) a routine traces detection component
that exploits trace alignment in Process Mining to cluster all user actions belonging
to a specific routine segment into well-bounded routine traces (cf. Chapter 6). The
approach is able to extract routine traces from unsegmented Ul logs that record in
an interleaved fashion many different routines but not the routine executions, thus
losing in accuracy when there is the presence of interleaving executions of the same
routine. In addition, it is also able to properly deal with shared user actions required
by all routine executions in the Ul log, thus achieving the cases 1.1, 2.1, 2.3, 3.1,
and 3.3. It is worth noticing that the routine traces detection component can be
employed as a supervised segmentation technique [7] able to achieve all variants of
cases 1, 2, and (partially) 3, except when there are interleaved executions of shared
user actions of many routines. In that case, the risk exists that a shared user action
is associated with a wrong routine execution (i.e., Case 3.3 and Case 3.4 are not
covered). While in [7], to make the technique works, it is required to know at the
outset the structure (i.e., the interaction models) of the routines to identify in the
UT log, in [3] this assumption has been mitigated by semi-automatically discovering
such structures in the form of routine segments, and then used them as input for

the routine traces detection component [7].

Even if more focused on traditional business processes in BPM rather than on
RPA routines, Bayomie et al. [14] address the problem of correlating uncorrelated
event logs in process mining in which they assume the model of the routine is known.
Since event logs allow to store traces of one process model only, this technique is
able to achieve Case 1.1 only. In the field of process discovery, Maruster et al. [67]
propose an empirical method for inducing rule sets from event logs containing the
execution of one process only. Therefore, as in [14], this method is able to achieve
Case 1.1 only, thus making the technique ineffective in the presence of interleaved
and shared user actions. A more robust approach, developed by Fazzinga et al. [30],
employs predefined behavioural models to establish which process activities belong
to which process model. The technique works well when there are no interleaved
user actions belonging to one or more routines since it cannot discriminate which
event instance (but just the event type) belongs to which process model. This
makes [30] effective to tackle Case 1.1, Case 2.1, and Case 3.1. Closely related to
[30], there is the work of Liu [60]. The author proposes a probabilistic approach to
learn workflow models from interleaved event logs, dealing with noises in the log
data. Since each workflow is assigned with a disjoint set of operations, it means the

proposed approach is able to achieve both cases 1.1 and 2.1, but partially cases 2.2,
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2.3, and 2.4 (the approach can lose accuracy in assigning operations to workflows).

Differently from the previous works, Time-Aware Partitioning (TAP) techniques
cut event logs based on the temporal distance between two events [80, 47]. The main
limitation of TAP approaches is that they rely only on the time gap between events
without considering any process/routine context. For this reason, such techniques
cannot handle neither interleaved user actions of different routine executions nor
interleaved user actions of different routines. As a consequence, TAP techniques are
able to achieve cases 1.1 and 2.1.

There exist other approaches whose target is not to exactly resolve the segmen-
tation issue. Many research works exist that analyze Ul logs at different abstraction
levels, which can be potentially valuable for realizing segmentation techniques. With
the term “abstraction” we mean that groups of user actions to be interpreted as
executions of high-level activities. Baier et al. [13] propose a method to find a global
one-to-one mapping between the user actions that appear in the Ul log and the
high-level activities of a given interaction model. This method leverages constraint-
satisfaction techniques to reduce the set of candidate mappings. Similarly, Ferreira
et al. [32], starting from a state-machine model describing the routine of interest
in terms of high-level activities, employ heuristic techniques to find a mapping
from a “micro-sequence” of user actions to the “macro-sequence” of activities in the
state-machine model. Finally, Mannhardt et al. [62] present a technique that maps
low-level event types to multiple high-level activities (while the event instances, i.e.,
with a specific timestamp in the log, can be coupled with a single high-level activity).
However, segmentation techniques in RPA must enable to associate low-level event
instances (corresponding to user actions) to multiple routines, making abstractions
techniques ineffective to tackle all those cases where is the presence of interleaving
user actions of the same (or different) routine(s). Consequently, all abstraction
techniques are effective to achieve Case 1.1 and Case 2.1 only.

The analysis of the related work has pointed out that the majority of literature
approaches are able to properly extract routine traces from unsegmented Ul logs
when the routine executions are not interleaved from each others, which is far from
being a realistic assumption. Only a few works [30, 7, 51, 60] have demonstrated the
full or partial ability to untangle unsegmented Ul logs consisting of many interleaved
routine executions, but with any routine providing its own, separate universe of user
actions. However, we did not find any literature work able to properly deal with
user actions potentially shared by many routine executions in the Ul log. This is
a relevant limitation since it is quite common that a user interaction with the Ul
corresponds to the executions of many routine steps at once.

Moreover, it is worth noticing the majority of the literature works rely on the

so-called supervised assumption, which consists of some a priori knowledge of the
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structure of routines. Of course, this knowledge may ease the task of segmenting
a Ul log. But, as a side effect, it may strongly constrain the discovery of routine
traces only to the “paths” allowed by the routines’ structure, thus neglecting that
some valid yet infrequent routine variants may exist in the Ul log.

Finally, we want to underline that process discovery techniques [11] can also play
a relevant role in tackling the segmentation issue, as demonstrated by some literature
works [60, 30, 14]. However, the problem is that most discovery techniques work with
event logs containing behaviours related to the execution of a single process model
only. And, more importantly, event logs are already segmented into traces, i.e., with
clear starting and ending points that delimitate any recorded process execution.
Conversely, a Ul log consists of a long sequence of user actions belonging to different
routines without any clear starting/ending point. Thus, a UI log is more similar to
a unique (long) trace consisting of thousands of fine-grained user actions. With a
UI log as input, the application of traditional discovery algorithms seems unsuited
to discover routine traces and associate them to some routine models, even if more

research is needed in this area.
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Chapter 4

Segments Discovery through
Frequent-Pattern Identification

The results of the investigation conducted in the previous chapter, allow us to derive

a new research question required to properly tackle C1:

« RQ1.3: Which steps are required to make the automated segmentation of Ul

logs less dependent by the intervention of RPA human experts?

To properly address RQ1.3, we envision an interactive approach to the automated
segmentation of UTI logs [3] that allows to automatically understand which user
actions contribute to which routines inside a UI log and cluster them into well-
bounded routine traces. To be more precise, as shown in Figure 4.1, starting from an
unsegmented Ul log previously recorded by an RPA tool, the first step is to inject into
the Ul log the end-delimiters of the routines under examination. An end-delimiter
is a dummy action added to the Ul log immediately after the user action that is
known to complete a routine execution. If we consider the case study of Section
2.3, an end-delimiter is always required after the final action of Ry, i.e., formSubmit,
and after one of the final actions or Ro, i.e., approveRequest or rejectRequest. Here,
we assumed that the knowledge of the final action(s) of a routine is given at the
outset rather than to know a priori the structure (i.e., the interaction models) of the
routines to identify in the UI log. Such information can be obtained, for example,
by interviewing the users that are in charge to execute the routines of interest.

The second step of the approach automatically extracts the observed routines’
behaviours (i.e., the routine segments) directly from the UI log with the end-
delimiters. To this aim, we employ a frequent-pattern identification technique [22],
which has been properly customized for this purpose.

Since from the previous step there is the possibility that some (not allowed)

segments are identified as if they would be valid, the third step of the approach
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human-in-the-loop

Segmentation of Ul Logs

Figure 4.1. Overview of our interactive approach to the segmentation of Ul logs

involves a human-in-the-loop interaction to filter out these segments (cf. Chapter
5). Specifically, we infer the declarative constraints (i.e., the temporally extended
relations between user actions) that must be satisfied throughout a routine segment.
In this way, we enable human experts to identify and remove those constraints that
should not be compliant with any real-world routine behaviour, thus removing the
wrongly discovered routine segments from the Ul log.

Finally, starting from any of the remaining (valid) routine segments, we employ
a customized version of a trace alignment technique in Process Mining [2], (cf.
Algorithm 1, Chapter 6) to automatically detect and extract the routine traces
by the original Ul log. Such traces will be stored in a dedicated routine-based log.
Therefore, the outcome of our segmentation approach will be a collection of as many
routine-based logs as are the number of valid routine segments discovered by the
approach itself. By identifying the routine traces, we are also able to filter out those
actions in the Ul log that are not part of the routine under observation and hence are
redundant or represent noise. The implementation of our interactive approach to the
segmentation of Ul logs is available at: https://github.com/bpm-diag/AutSeg.

The overall approach can be considered as semi-supervised, since we know a priori
the end-delimiters to be associated to any user action that ends a routine execution.
On the other hand, the approach is not aware of the concrete behaviour of the
routines of interest, which will be discovered by the approach itself, thus integrating
the usage of automated techniques with the intervention of human experts in some
specific points of the approach.

In the following section, we discuss in detail the frequent-pattern identification
step (cf. Section 4.1), instantiating it over the RPA use case of Section 2.3. Then,
we conclude the Chapter by showing its ability to outperform existing literature

approaches in terms of supported segmentation variants (cf. Section 4.2).

4.1 Frequent-Pattern Identification

Pattern identification is a common task in data sequences analysis. As an example,

in the field of smart spaces, patterns are identified in sensor logs representing human
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Figure 4.2. A dataset compression step in segments discovery

routines [58]. These patterns are then used to learn models of human behaviour
that can be used at runtime for activity recognition or anomaly detection. In such a
scenario, authors in [22] proposed an approach based on the minimum description
length (MDL) principle. In this thesis, we have customized the technique presented
in [22] for automatically identifying the routine segments from UI logs with the
end-delimiters properly converted into ad-hoc datasets.

The algorithm takes a dataset of a sequence of sensor events witnessing human
interactions with the environment as input. At each step, the algorithm looks for
patterns that best compress the dataset. A pattern consists of a specific sequence of
sensor events and all of their occurrences in the dataset. In our RPA application
scenario, the sensor events represent the user actions involved in each routine(s)
execution(s), and the frequent patterns are the discovered routine segments.

Starting from a single pattern for each different sensor event, the algorithm at
each step tries to extend patterns aiming at the best compression possible. Every
instance of the pattern, in particular, is replaced by a symbol associated with
the pattern. The compression of a dataset D given a pattern P is given by the
formula W&DAL(P), where DL(D) represent the description length, measured
for example in bits of the dataset with the current patterns, DL(D|P) represents
the description length of D if all of the occurrences of P are replaced with a symbol,
and DL(P) represents the description length of the pattern, which must be taken
into account in compression evaluation. The algorithm stops as soon as no further
compression is possible, returning all the patterns found (i.e., all the discovered
routine segments). Figure 4.2 shows a compression step where a pattern P of
repeating events (for simplicity, colours have been used instead of labels) is identified
and the dataset is compressed accordingly. Noteworthy, for certain parts of the
dataset, no pattern is found whose definition improves compression (except the
initial patterns of length one).

We show now how an execution instance of the above algorithm can be applied
to the following UI log (that already includes the end-delimiters) generated from
the case study of Section 2.3: U = {A, B, Cy1, D11, E11, Fi, G, Hiy, Iy, L,
X, B, May, Na1, Z, B, C12, D12, Er2, Fi2, Gi2, Hia, I12, L12, X, B, Maa, Oz, Z,
.y A, B, G-y, Y1, Dig—1)s Ei-1)s Fii-1), Gig-1)s Gig-1), Gi-1), Hig-1),
Lii—1y, Ligi—1y, X, By, Mai_1y, Nogi—1y, Z, B, Yn—1, Cii, Diiy Eviy Y, Fii, G,
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Hyiy iy gy Iy Laiy X, B, Moy, Ogy Z}. For the sake of understandability, we use
a numerical subscript j¢ associated with any user action to indicate that it belongs
to the i — th execution of the j — th routine under study. This information is not
recorded into the UT log, and discovering it (i.e., identifying the subscripts) is one of
the “implicit” effects of segmentation when routine traces are built. Note that A and
B are not decorated with subscripts since they can potentially belong to executions
of Ry or Ra. The log contains elements of noise, i.e., user actions Yie(1,,) that are
not allowed by R; and R, and redundant actions like G and I that are unnecessary
repeated multiple times. X and Z are the end-delimiters for the executions of Ry
and RQ.

The delimiters injection stage is crucial to drive the discovery of the largest
possible set of valid routine segments. Otherwise, the technique would detect only a
small subset of them. For example, let us suppose that the Ul log includes only user
actions related to two routines, A and B, without the presence of any end-delimiter.
In this case, the Ul log will likely include different sequences of consecutive routine
segments of the kind A*, B* or AB*. In this condition, any compression algorithm
will likely merge multiple routine segments into cumulative symbols (e.g., AAA, BB,
ABAB) rather than highlighting single routine executions. This issue becomes less
relevant when there are no repetitive actions between the execution of two separate
routines. However, while the latter assumption is reasonable in recording human
habits, it is far from being realistic in the case of Ul logs recording low-level user
actions performed during the interaction with a computer system.

Based on the foregoing, the output of the segments discovery stage is represented
by a set of identified frequent segments (some of them may not be compliant with

the real-world routine behaviours, see the next section), as follows:

« {(F, &), {(C,D, EY,(H, I, L), {(C,D,E,F,G, H, I, L), (B,C, D, E, F,
G, H,I,L),{A B,C,D, E F,G, H,I, L)}

« {({A,B), (B,M), (B,M,0), (B,M,N)}

4.2 Assessing the Robustness of the Segments Discovery
Stage

In this section, we evaluate the robustness of our approach in the presence of Ul logs
of a growing size that provide an increasing amount of routine variants. Specifically,
we assessed to what extent the approach is able to (re)discover routine segments that
are known to be recorded into the input Ul logs. We have synthetically generated
144 different Ul logs in a way that each Ul log consists of 1000 routine executions

and is characterized by a unique configuration by varying the following inputs:
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Table 4.1. Experiments’ results. For each segmentation case the number of actions is 28,
21 and 20 (resp.). Ounly logs with 20 different allowed segments are shown here, and the
number of valid routine behaviours is the 70% of the 1000s that were introduced in the
UI logs, while the other 30% may be affected by noise.

Case 1 | # discovered segments (valid/wrong)
Noise | 0% 10% 20%
no repetitive actions 20/2 20/88 20/118
repetitive actions 20/11 16/161 16/179
Case 2 | # discovered segments (valid/wrong)
Noise | 0% 10% 20%
no repetitive actions 20/2 20/59 20/69
repetitive actions 20/10 20/132 20/136
Case 3 | # discovered segments (valid/wrong)
Noise | 0% 10% 20%
no repetitive actions 20/6 20/53 20/67
repetitive actions 20/13 20/146 20/170

o walid_routine__segments: number of different routines segments (5/10/15/20),

in terms of allowed behaviours, included in the Ul log.

e alphabet_size: size of the alphabet of user actions for each segmentation case:
Case 1 (13/18/23/28); Case 2 (15/16/18/21); Case 3 (13/15/17/20).

o walid_traces: percentage of allowed behaviours recorded into the UI log (50%/
70%/100%). The remaining portion of the UI log (50%/30%) may be dirty,

i.e., it contains routine executions potentially affected by noise.

e percentage of noise in the remaining (dirty) portion of the UI log (10%/20%).

The synthetic Ul logs generated for the test and the complete list of results can
be analyzed at: http://tinyurl.com/icsoc2021. Due to the long list of results
we present in Table 8.1 only a view in one of the most complex cases to tackle. The
results indicate that the approach scales very well in case of an increasing number of
different routine segments to be discovered and with an alphabet of user actions of
growing size. The computation time is not shown since it ranges from milliseconds
for UI logs with 5 different routine segments up to a few seconds for Ul logs with 20
segments. This result was expected since more segments in a Ul log means more

executions to analyze and interpret.
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By analyzing the results, we can infer that the approach is able to discover the
same allowed routine segments that were synthetically introduced in the routine
executions recorded in the UI logs, achieving the following segmentation cases:
1.1, 2.1, 2.3, 3.1 and 3.3. On the other hand, our approach seems to lack in the
computation of valid routine segments in the presence of repetitive user actions
(i.e., user actions that are repeated in a loop) when there are several routine
segments generated by different executions of the same routine. This is because
similar sequences of user actions tend to be compressed together, and since they are
generated from the same routine, the risk exists that different sequences are wrongly
recognized as the same and bounded together, thus leading to a number of routine

segments lower than ones that were synthetically introduced.
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Chapter 5

Human-in-the-loop Interaction
through SCAN

Once the routine segments have been discovered, the possibility exists that many
of them represent not allowed routine behaviours. This happens because a Ul log
combines the execution of several routines that are usually interleaved from each
others. In addition, in case of routines that make use of the same kinds of user
actions to achieve their goals, it may happen that new patterns of repeated user
actions, which represent potential not allowed routine segments, are rather detected
as valid ones within the Ul log. Towards this direction we realized a self-developed
tool, called SCAN (Segments Compliance ANalisys), that concretely implement
the human-in-the-loop interaction step allowing users to filter out those routines’
segments not compliant with any real-world routine behaviours. In the following
section, we discuss in detail the required steps to enact the human-in-the-loop
interaction step through SCAN, instantiating it over the RPA use case of Section 2.3.
Then, we measured the impact of the human-in-the-loop interaction to filter out the
wrongly discovered routine segments. Specifically, we present the results of SCAN
to investigate to which extent it satisfies three relevant non-functional requirements,
namely effectiveness (cf. Section 5.2), robustness (cf. Section 5.3) and usability (cf.
Section 5.4). The target is to understand if SCAN can potentially complement the
traditional solutions provided by open-source Process Mining tools for helping users

to perform the segmentation task in RPA.

5.1 Leveraging the human-in-the-loop

On the basis of the experiments performed in Section 4.2, it becomes clear that the
employed frequent-pattern identification algorithm is able to (re)discover the allowed

routine segments that are known to be recorded in the input UI logs. However,
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since there is the possibility that some (not allowed) segments are identified as if
they would be valid, a human-in-the-loop interaction is required to filter out all
those routine segments representing behaviours that should not be allowed by any
real-world routine of interest.

To address this issue, we developed a stand-alone web application called SCAN'
(Segments Compliance ANalysis), which allows to support human experts in per-
forming the human-in-the-loop step. The tool enables to visualize the declarative
constraints (i.e., the temporally extended relations between user actions) that must
be satisfied throughout the discovered routine segments from the Ul log. The con-
straints are represented using Declare, a well-known declarative process modeling
language introduced in [85]. This knowledge allows human experts to identify and
remove those constraints that should not be compliant with any real-world routine
behaviour. Detecting and removing these constraints means to filter out all the
not allowed (i.e., wrongly discovered) routine segments. Declare constraints can be
divided into four main groups: existence, relation, mutual and negative constraints.
We notice that the use of declarative notations has been already demonstrated as
an effective tool to visually support expert users in the analysis of event logs [76].

For example, if we consider the discovered segment (C', D, F), the following
(simple) Declare constraints (among the others) hold: Init(C') and End(FE), meaning
that routines’ executions starting with C' or ending with £ have been discovered into
the UT log. An expert user that is aware of the behaviour of the real-world routines
under analysis can immediately understand that the above Declare constraints should
not hold in reality, since R; and Ry can start only with A or B and end with L,
O or N. For this reason, the above Declare constraints can be considered both as
wrongly representative of the routines under analysis. As a consequence, all the
discovered segments for which one of the above Declare constraints hold can be
immediately discarded. For the sake of space, we do not show here all the Declare
constraints that hold for any of the discovered segments. However, we point out that
the iterative analysis of the Declare constraints associated to the discovered segments
will support the human experts to easily detect and filter out those segments that
must not be later emulated by SW robots. The list of valid routine segments for our

case study is the following:
« Wi =(A,B,C,D,E,F,G, H,I, L)
e Wo=(B,C,D,E,F,G, H, I, L)
e W3 =(B,M,0)

« Wy = (B,M,N)

https://github.com/bpm-diag/SCAN
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5.2 Evaluating the Effectiveness of SCAN

An approach that simplifies the segmentation task in RPA, and in particular the
inspection of routine segments required to filter out the not allowed ones in presence
of many routine variants, can be considered as a relevant artefact to investigate.
Consequently, the research question (RQ1.4) we aim to investigate is the following
one: “What is the effectiveness of employing an approach that semi-automatically
filters out the not allowed routine segments, thus neglecting the (manual) identification
stage of the not allowed real-word routine behaviour, through declarative constraints?".

In order to address RQ1.4 we enacted a controlled experiment involving a sample
of 18 Master students of the course of Process Management and Mining (PMM)
held at Sapienza University of Rome, to investigate the effectiveness of employing
SCAN to perform the segmentation task when compared to DISCO?. Specifically,
we selected DISCO as target Process Mining tool since it provides user-friendly
functionalities, integrated with filtering facilities that allows to filter out the not
allowed routine segments as stored into event logs.

The user study was conducted as follows. Two case studies of increasing complex-
ity were submitted to two different user groups of PMM students. The provided case
studies are inspired by the one presented in Section 2.3 and we refer to them as Case
Study #1 and Case Study #2. A first group of 9 PMM students were instructed to
perform the case studies #1 and #2 exclusively with DISCO. We denote with p 41
this first group of users. In parallel, a second group of 9 PMM students received
the same instructions of group p4; but they are asked to use SCAN rather than
DISCO. We denote with p49 this second group of users. It is worth noticing that
all the PMM students involved in the user study can be considered expert users in
business process modelling and automation.

To assess the effectiveness of SCAN in filtering out the not allowed routine
segments, we investigated the following experimental hypothesis H 41: Employing
SCAN, thus neglecting the manual identification stage of the not allowed real-word
routine behaviour through declarative constraints, is more effective than employing
traditional approaches (e.g. DISCO) that require to manually identify and filter
out the not allowed routine segments. To validate Ha1, a between-subject approach
was used, i.e., each user in pa; (pa2, respectively) was assigned to a different
experimental condition, related to the exclusive use of SCAN (c41) or DISCO (c42)
to perform the required steps for accomplishing both the case studies. Any user in
pA1 was preliminarily instructed about the functionalities of SCAN throughout a
short training session, while the users in p 4o already know how to use DISCO.

We evaluated the validity of H 41 by asking any user expert that completed the

Zhttps://fluxicon.com/disco/


https://fluxicon.com/disco/

42 5. Human-in-the-loop Interaction through SCAN

Table 5.1. Effectiveness of SCAN: p-values associated to each question

Qa1 QA2 Q43
DISCO | SCAN | DISCO | SCAN | DISCO | SCAN
5 4 5 4 4 5
4 4 5 3 4 5
4 3 5 3 3 5
4 2 5 3 3 5
4 2 4 2 2 5
3 2 4 2 2 4
3 2 4 1 1 4
2 2 3 1 1 4
1 2 2 1 1 4
p-value: 0.1443957 | p-value: 0.0018155 | p-value: 0.0005373

user study the following three questions:

e Qa1: The segment’s filtering process required to filter out the not allowed

routine segments is a complex task. Do you agree?
o Qao: The inspection of the routine segments is a complex task. Do you agree?

o Quas: SCAN (DISCO, respectively) makes the segmentation task feasible. Do

you agree?

Questions are rated with a 5-point Likert scale ranging from 1 (“strongly disagree")
to 5 (“strongly agree"). To validate Q a1, Qa2 and Q43 we performed a comparison
of the rates obtained from the questionnaire, respectively in the cases of c41 and cao.
Specifically, for each question, we employed a 2-Sample t-test with a 95% confidence
level to determine whether the means between the two distinct populations (i.e.,
pa1 and py2) involved in c4; and cyo differ. We measured the level of statistical
significance by analyzing the resulting p-value. We remind that a p — value < 0.05
is considered to be statistically significant, while a p — value < 0.01 indicates that
there is substantial evidence in favour of the experimental hypothesis. The results of
the analysis are summarized in Table 5.1 that shows the values sorted in descending

order, assigned to the responses of each user.

It appears evident that the experimental hypothesis H 41 is statistically supported
by the results obtained for Q42 and @ 43, while it is rejected for (41. Concerning
Qa1, it seems that the segment’s filtering process was relatively easier in SCAN
with respect to DISCO. Still, there is no statistical difference among the two distinct
populations since for @ 41, the p-value obtained is 0.1443957, which is greater than
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0.05, and this means that hypothesis H4; is rejected on Q) 41. On the other hand,
the inspection of routine segments in DISCO seems to be more complex than SCAN
since, for Q) 42, the p-value obtained is 0.0018155, which is less than 0.05, and this
means that the hypothesis H4; is accepted on Qas. Finally, for Qa3, we got a
p-value equal to 0.0005373, which is less than 0.05, and this means the hypothesis
H 41 is accepted on @ a3. In particular, this value is less than 0.01, meaning that
there is a substantial difference between the means of the two distinct populations.
This is reflected in higher values associated with SCAN and lower values associated
with DISCO, thus making the segmentation task more feasible in SCAN with respect
to DISCO. Therefore, H 41 can be considered partially accepted since it is validated
for both Q42 and Qa3 but rejected for Q) 41, where there is no statistical evidence
that the use of SCAN is more effective than traditional process mining solutions

(e.g., DISCO) in the process of segment’s filtering.

5.3 Assessing the Robustness of SCAN

To investigate the robustness of SCAN to the achievement of user tasks specified in
both Case Study #1 and Case Study #2, we collected the event logs resulting as an
output of the user study, and then we compared them with the ground truth event
logs (i.e., we computed a priori the event logs as results of the case studies). Precisely,
the robustness is measured as the ratio between the number of logs compliant with
the ground truth logs and the total number of logs, both for p4; (i.e., SCAN) and
pa2 (i-e., DISCO) grouped by Case (i.e., Case Study #1 and Case Study #2).

In the following, we will show the results obtained both for Case Study #1 and
for Case Study #2. Note that both the populations p4; and pgs first executed Case
Study #1 in a limited time of 10 minutes and then Case Study #2, considered more

complex, in 20 minutes.

e Case Study #1. Both p4; and pao had 10 minutes to read the assigned track
and run the task either on DISCO (i.e., paa) or SCAN (i.e., pa1) respectively.
For pao, it is important to remember that users already know how to use the
tool. The results obtained in this case is that 8 people out of 9 have executed
the task arriving at the right event log, while 1 has obtained a wrong result.

Thus, the robustness in case of p42 is as follows Robustnessy,, = g = 0.88.

On the other hand, for p41, we remind the reader that the users experienced
SCAN for the first time during this experiments session. In this case, the
number of users who achieved the right result is 6 out of 9, while 3 have reached
a wrong event log. Therefore, the robustness in case of p4; is Robustness,,, =
5 =0.66
g = 0.66.
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e Case Study #2. This case was executed immediately after the first one.

The time allowed for achieving the task was 20 minutes due to the major
complexity with respect to the previous one. For the class of users belonging
to pas, the result obtained was that 4 out of 9 people have computed the right
result while 5 the wrong one. It follows that the robustness in case of p4o is

Robustness, ,, = % = 0.44.

On the contrary, users assigned to p4; performs much better. Indeed, 7 users
among 9 computed the right result, while 2 the wrong one. As a consequence,
the correctness for the users that used SCAN is Robustnessy,, = g = 0.77.

If we make a comparison between the degree of robustness for both SCAN and

DISCO in each case study, it can be stated that:

e For Case Study #1, better results are achieved with DISCO. This is because

the original log contains solely 8 routine variants, and among these only 4 were
correct. For this reason, they were easily identifiable and therefore easy to
be manually filtered. Regarding SCAN, we can say that since this was the
first time the users experienced the tool, it is possible that the limited time
of 10 minutes was not enough for completing the task. In addition, it is also
possible that users had not yet settled into using SCAN even if they had been

instructed during the short training session, thus before the user experiments.

On the other hand, for Case Study #2, better results are achieved with SCAN.
Since the original log presents more than 80 variants, the manual identification
stage of the wrong routine segments makes the filtering steps even more
challenging with DISCO (that required the users to filter the wrong routine
segments one by one) rather than with SCAN. Indeed, through SCAN; it is
possible to apply a limited number of declarative constraints to filter out a large
number of wrong routine segments, thus neglecting the manual identification
stage of DISCO. In addition, the learning effective plays an essential role in
the achievement of good results since users trained their-self while completing
the task outlined in Case Study #1. This learning experience is thus reflected
in the accomplishment of Case Study #2.

5.4 Quantifying the Usability of the Ul of SCAN

We investigated the degree of usability of the Ul developed for SCAN through
the administration of the SUS (Software Usability Scale) questionnaire (which is

one of the most widely used methodologies to measure the users’ perception of the
usability of a tool [77]) to the 9 PMM students that were involved in the experimental
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condition ¢y, i.e., that used SCAN. The questionnaire consists of 10 statements,
adapted to SCAN and, evaluated with a Likert scale that ranges from 1 (“strongly
disagree") to 5 (“strongly agree"):

e [ think that I would like to use SCAN frequently.

I found SCAN unnecessary complex.

e [ thought SCAN was easy to use.

I think that I would need the support of a technical person to be able to use
SCAN.

e [ found the various functions in SCAN well integrated.

I thought there was too much inconsistency in SCAN.

e I would imagine that most people would learn to use SCAN very quickly.

I found SCAN very awkward to use.

o [ felt very confident using SCAN.

I needed to learn a lot of things before I could get going with SCAN.

|SUS Calculation

|Participant q1 q2 q3 qd g5 g6 q7 q8 q9 q10 SUS Score Average
|p1 5 1 5 1 5 1 5 1 5 1 100,0 82,5
p2 5 2 4 1 4 2 5 2 3 3 75

:pa 5 1 4 1 4 2 2 1 4 2 80,0

p4 4 3 4 3 3 2 4 2 4 2 67,5

|p5 4 1 4 3 4 2 5 1 4 3 775

p6 4 2 3 2 4 2 5 1 4 2 82,5

|p7 5 4 5 2 5 1 5 4 5 1 825

|p8 4 2 5 1 4 2 5 2 5 2 85,0

p9 5 1 5 1 4 2 4 2 5 1 90,0

Figure 5.1. Computation of the SUS overall score

At the end of the questionnaire, an overall score is assigned to the questionnaire.
To compute the SUS score for each PMM student, we need to determine each item’s
score contribution, which will range from 0 to 4. For odd items the score contribution
is the scale position minus 1 (x; — 1). While for even items, the score contribution is
5 minus the scale position (5 — x;). To get the overall SUS score, multiply the sum
of the item score contributions by 2.5. Thus, overall SUS scores range from 0 to 100
in 2.5-point increments. The score contributions can range from 0 to 40 (10 items
with five scale steps ranging from 0 to 4). So, to obtain the multiplier necessary to

increase the apparent range of the scale added to 100, divide 100 by the maximum
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sum of 40, equal to 2.5. Finally, to obtain the final SUS score, it is necessary to
compute the average of those obtained by individual users. Figure 5.1 represents
all the values associated with the responses of the questions, the SUS score of each

user, and the final SUS score.

Table 8.6 Curved Grading Scale Interpretation of
SUS Scores

SUS Score Range Grade Percentile Range
84.1-100 A+ 96-100
80.8-84 A 90-95
78.9-80.7 A— 85-89
77.2-78.8 B+ 80-84
741-77.1 B 70-79
T26-74 B- 65-69
711725 C+ 60-64
65-71 C 41-59
62.7-64.9 C— 35-40
51.7-62.6 D 15-34
0-51.7 F 0-14

Figure 5.2. Curved Grading Scale Interpretation of final SUS Scores

The final SUS score can be compared with several benchmarks presented in the
research literature to determine the degree of usability of the tool being evaluated.
In our test, we made use of the benchmark given in [77], which associates to each
range of the final SUS score a percentile ranking varying from 0 to 100, indicating
how well it compares to other 5,000 SUS observations performed in the literature.
The collection of the ranks associated with any statement of the SUS is reported in
Figure 5.1, calculated following the steps discussed in [77]. Since the final SUS score
obtained by the tool was 82.5, according to the selected benchmark (see Figure 5.2
taken from [77]), the usability of the tool corresponds to a rank of A, which indicates
a degree of usability almost excellent.

The result shows that the UI implemented has been comprehensive and straight-
forward since the first use of the tool. And also that the use of the tool has been

found effective and performing in achieving the required tasks.
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Chapter 6

Routine Traces Detection

through Trace Alignment

In this chapter, we present the last component of our approach to the automated
segmentation of Ul logs which exploits trace alignment in Process Mining to detect
from a Ul log all those user actions belonging to a valid routine segment (i.e., as
output of the human-in-the-loop interaction step) and cluster them into well-bounded
routine traces, thus achieving the segmentation task (C1).

The chapter is organized as follows. In Section 6.1, we first provide the relevant
background on trace alignment. Then, in Section 6.2, we present an overview of the
general approach to the routine traces detection depicting its main steps, and we
describe the technical details of the algorithm that implements it over the RPA use

case of Section 2.3.

6.1 Alignment between Ul Logs and Interaction Models
as Petri Nets

Trace alignment [2, 25, 24] is a conformance checking technique within Process
Mining that is employed to replay the content of any trace of an event log against a
process model represented as a Petri net, one event at a time. For each trace in the
log, the technique identifies the closest corresponding trace that can be parsed by
the model, i.e., an alignment, together with a fitness value, which quantifies how
much the trace adheres to the process model. The fitness value can vary from 0 to 1.
A value equals to 1 means a perfect matching between the trace and the model.
We perform trace alignment by constructing an alignment of a Ul log U (note
that we can consider the entire content of the UI log as a single trace) and an
interaction model W (representing a valid routine segment) as a Petri Net, which

allows us to exactly pinpoint where deviations occur. To this aim, the events in
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U need to be related to transitions in the model, and vice versa. Building this
alignment is far from trivial, since the log may deviate from the model at an arbitrary
number of places. To be more specific, we need to relate “moves” in the log to
“moves” in the model in order to establish an alignment between an interaction
model and a Ul log. However, it may be that some of the moves in the log cannot
be mimicked by the model and vice versa. We explicitly denote such “no moves” by
>. In particular, we are interested in synchronous moves between U and W. If they
exist, the user actions involved in such synchronous moves are extracted and stored

into a routine-based log.

Definition 6.1.1 (Alignment Moves). Let W = (P,T,S) be a Petri net and U be
a Ul log. A legal alignment move for W and U is represented by a pair (qu, qw)
e (TU{>}xTU{>})\{(>,>)} such that:

e (qu,qw) is a move in log if qu # > and qw = >,
o (qu,qw) is a move in model if qy => and q € T,
e (qu,qw) is a synchronous move if qu = qw .

An alignment is a sequence of alignment moves:

Definition 6.1.2 (Alignment). Let W = (P,T,S) be a Petri net with an initial
marking and final marking denoted with m; and my. Let also U be a Ul log. Let
'y be the universe of all alignment moves for W and U. Sequence v € I'};, is an
alignment of W and U if, ignoring all occurrences of >, the projection on the first
element yields U and the projection on the second yields a sequence o’ € T* such

that m; 2= my.

A move in log for a transition ¢ indicates that ¢ occurred when not allowed; a move
in model for a visible transition ¢ indicates that ¢ did not occur, when, conversely,
expected. Many alignments are possible for the same UI log and a Petri net.
For example, Figure 6.1 shows two possible align-

A|B|M|N
"= 7‘?‘?‘7‘» ments for a Ul log consisting of the following se-

quence of user actions (A, B, M, N) and the Petri

_|Al > [B|M|N] o . . .
2=y [Tno3 | B| M| N | net in Figure 2.4, representing the interaction
model of Ry. Note how moves are represented
Figure 6.1. Alignments of

vertically. For example, as shown in Figure 6.1,
(A,B,M,N) and the Petri net

in Figure 2.4. the first move of v is (A, A), i.e., a synchronous

move of A, while the first and second move of
are a move in log and model, respectively. We aim at finding a complete alignment

of U and W with minimal number of deviations (i.e., of moves in log/model) for
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Figure 6.2. Overview of the general approach underlying the routine traces detection

component

visible transitions, also known in literature as optimal alignments. With reference to
the alignments in Figure 6.1, y; have four synchronous moves and 2 have one move
in log for visible transitions and one move in model for the invisible transition Inv3
(that does not count for the computation of the fitness value). As a consequence, 1
is an optimal alignment and can be returned. Note that its fitness value is exactly
equal to 1, since it is consists only of synchronous moves enabling U to be completely
replayed from the initial to the final marking of W. For the sake of simplicity, we are
assuming here that all the deviations have the same severity. However, the severity

of a deviation can be customized on a ad-hoc basis [25].

6.2 The General Approach and the Routine Traces De-
tection Algorithm

The general approach to the routine traces detection consists of two methodological
phases, filtering and trace alignment, to be applied in sequence, as shown in Figure 6.2.
Algorithm 1 shows the technical details of the algorithm that concretely implements
such phases'.

The algorithm takes in input a Ul log U, a set of interaction models W and

returns a set of routine-based logs Ug;. For each interaction model w € Wy, (one

https://github.com/bpm-diag/SupSeg
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Algorithm 1: Algorithm implementing the routine traces detection com-

ponent
Parameters:a Ul log U, a set of interaction models W

Result: A set U of routine-based logs
1 Uset — ®;
2 forall w € Wy do

3 U"Y < duplicate(U);

4 Uy <+ filter(U");

5 | Up « 0

6 repeat

7 VPt < trace alignment (UY w);

8 oDt « extract(yoPt);

9 if YLt is not empty then

10 create a trace Ty, from 2P

11 create a temporary Ul log U from 7gp,;

12 fitness < compute fitness from trace alignment (U, w);
13 if fitness is I then

14 | add am to U

15 else

16 ‘ discard 7gm,;

17 end

18 remove the events associated to 74, from U g;”;
19 end
20 until P! is not empty;
21 add Up to Uset;

22 end

23 return Uy,

for each valid routine segment of interest) represented as Petri nets, the algorithm

performs the following steps:

1. Filtering: The filtering phase is used to filter out noisy actions from the Ul
log. Specifically, for each interaction model w € Wy, a local copy of the Ul
log UY is created (line 3). Then, all user actions that appear in U™ but
that can not be replayed by any transition of w are removed from U". The
output of this step is a model-based filtered Ul log Uy’ (1ine 4). Working with
U;;” rather than with U" will allow us to apply the trace alignment technique
neglecting all the potential moves in log with user actions that could never

be replayed by w. As a consequence, this will drastically reduce the number
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of alignment steps required to find optimal alignments, and at the same time
optimize the performance of the algorithm. Before moving to the next step, a

new routine-based log U} is initialized (1ine 5).

2. Trace Alignment: The second step consists of applying the trace alignment
technique discussed in Section 6.1 for any interaction model w € W and its
associated model-based filtered Ul log Ug . This enables to extract from Uy
all those user actions that match a distinguishable pattern with w in the form
of an optimal alignment v°P* (1ine 7). Trace alignment allows to pinpoint the
synchronous moves between Uy’ and w. If they exist, the user actions involved
in synchronous moves are extracted and stored into y%?! (line 8). Note that
focusing just on synchronous moves allows us to exclude all redundant user

actions from the analysis. Then, the algorithm:

(a) creates a trace Ty, consisting of the user actions associated with the

synchronous moves stored in v%?! (line 10);

(b) creates a (temporary) Ul log UY containing only the trace 7, (line

11), which is required to properly run (again) trace alignment;

(c) performs a new alignment between U and w with the goal to compute
the fitness value (1ine 12).

In case the fitness value is equal to 1, this means that the UY, (and, conse-
quently, 7sm,) can be replayed from the start to the final marking of w, making
Tem a valid routine trace of w. In such a case, 7qy, is stored into U (1ine 14)
and all the events associated to the synchronous moves in 7g,, are removed
by Uy (1ine 18). On the contrary, a fitness value lower than 1 indicates the
presence of at least one move in the model in 74, with respect to w, i.e., Tgm
can not be completely replayed by w and is not a valid routine trace, meaning
that we can discard it (1ine 16).

The above two steps can be repeated until 422 is not empty (1ine 20), i.e.,
until there are synchronous moves in the computed alignment. At the end of the
iteration, the routine-based log U} is stored into Uge; (1ine 21), and the algorithm
starts to analyze the next interaction model into Wye;. In conclusion, the algorithm
computes a number of routine-based logs equal to the number of interaction models
under study (associated to the valid routine segments).

It is worth to notice that: (i) for the computation of the trace alignment,
the algorithm relies on the highly-scalable planning-based alignment technique
implemented in [25]; and (%) the routine traces detection component that exploits

trace alignment in Process Mining can also be employed as a stand-alone supervised
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segmentation technique as described in [7], under the assumption to know a priori
the interaction models of the routines to identify in the UI log (cf. [63]). In this
setting, the technique is able to achieve all variants of cases 1, 2, and (partially)
3, except when there are interleaved executions of shared user actions of many
routines. In that case, the risk exists that a shared user action is associated with
a wrong routine execution (i.e., Case 3.3 and Case 3.4 are not covered). While in
[7], to make the technique works, it is required to know at the outset the structure
(i.e., the interaction models) of the routines to identify in the UI log, in [3] we
have mitigated this assumption by semi-automatically discovering such structures in
the form of routine segments, and then used them as input for the routine traces
detection component, since the approach is not aware of the concrete behaviour of
the routines of interest, which the approach itself will discover, but instead exploits

the end-delimiters associated to any user action that end