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Extended Abstract

Business Processes (BPs) are nowadays an integral part of mid-size and large
organizations that aim to ensure consistent business outcomes and take advantage
of improvement opportunities to remain competitive [75]. Examples of traditional
BPs include insurance claim processing, order handling, and sales management.
Business Process Management (BPM) is the discipline that oversees how BPs are
performed in an organization, providing concepts and tools to support the design,
administration, enactment, and analysis of BPs.

Since the late 1990s, a new generation of information systems, called Business
Process Management Systems (BPMSs), have become increasingly popular to au-
tomate running BPs involving people, applications, and information sources on
the basis of BP specifications (i.e., process models) pre-defined at design-time [88].
BPMSs seek to improve the efficiency of BPs by streamlining their execution through
the orchestrated distribution of work items to process participants and software
services, thus reducing the time required to run the everyday operations [29].

However, automating a BP specification using a BPMS requires a not negligible
development effort that involves dedicated technical resources, which are in charge
to specify the execution properties (many of them are vendor-specific) of each BP
element and the connectors to the Application Programming Interfaces (API) of the
various applications that realize the behaviour of the BP. In addition, due to an
acceleration of the digital transformation process enacted by many organizations,
the number of BPs to manage and execute in organizations through a BPMS is
constantly growing over the years [29, 39, 86]. For this reason, BPMSs are turning
out to be too inflexible for fast and lightweight automation projects, where the
investment to implement and maintain the automated BPs may exceed the manual
costs of operation [37].

To mitigate this issue, Robotic Process Automation (RPA) is an emerging
automation technology in the field of BPM that creates software (SW) robots to
partially or fully automate rule-based and repetitive tasks (or simply routines)
performed by human users in their applications’ user interfaces (UIs) [86]. RPA
is thought to provide the shortest route to business process (BP) automation by
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accessing only to the UI layer of IT systems rather than going deeply into the
application code or databases sitting behind them [72].

In recent years, much progress has been made both in terms of research and
technical development on RPA, resulting in many industry-specific deployments for
industrial-oriented services [48, 8, 10, 46, 78, 79, 49]. Moreover, the market of RPA
solutions has developed rapidly and today includes more than 50 vendors developing
tools that provide SW robots with advanced functionalities for automating office
tasks of different complexity [9]. Nonetheless, when considering state-of-the-art RPA
technology, it becomes apparent that the current generation of RPA tools is driven
by predefined rules and manual configurations made by expert users rather than
automated techniques [5, 6, 20].

To be more specific, the traditional workflow to conduct an RPA project can be
summarized as follows [42]:

1. Determine which routines are good candidates to be automated.

2. Record the mouse/key events that happen on the UI of the SW applications
involved in a routine execution, i.e., the UI logs.

3. Model the selected routines in the form of flowchart diagrams, which involve
the specification of the actions, routing constructs (e.g., parallel and alternative
branches), data flow, etc. that define the behaviour of a SW robot.

4. Develop each modeled routine by generating the SW code required to concretely
enact the associated SW robot on a target computer system.

5. Deploy the SW robots in their environment to perform their actions.

6. Monitor the performance of SW robots to detect bottlenecks and exceptions.

7. Maintain the routines, which takes into account the SW robots performance
and error cases to eventually enhance their behaviour.

The majority of the previous steps, particularly the ones involved in the early stages
of the RPA life-cycle, require the support of skilled human experts, which need
to: (i) understand the anatomy of the candidate routines to automate by means
of interviews, walk-troughs, and detailed observation of workers conducting their
daily work (cf. step 1); and (ii) define manually the flowchart diagrams representing
the structure of such routines (cf. step 3), which will drive the development of the
SW code, often in form of executable scripts (also called RPA scripts), allowing the
concrete enactment of SW robots at run-time (cf. step 4). While this approach is
effective to execute simple rules-based logic in situations where there is no room for
interpretation, it becomes time-consuming and error-prone in presence of routines
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Figure 1. Overview of the adopted approach

that are less predictable or require some level of human judgment [66, 6]. Indeed,
the designer should have a global vision of all possible variants of the routines to
define the appropriate behaviours of the SW robot, which becomes complicated
when the number of variants increases. The issue is that in case where the flowchart
diagram does not contain a suitable response for a specific situation, e.g., because
of a shallow modeling activity, then the associated RPA scripts would not properly
reflect the behaviour of the potential routine variant, forcing SW robots to escalate
to a human supervisor at run-time, in contrast with the RPA philosophy.

To address the above issues, and mitigate the involvement of skilled human
experts in steps 1, 3 and 4, the research underlying this thesis is targeted to: (i)
automatically understand which user actions contribute to which routines inside a UI
log (this issue is known as segmentation) and (ii) automatically generate executable
RPA scripts directly from the UI logs that record the user interactions with the SW
applications involved in a routine execution, thus skipping completely the (manual)
modeling activity of the flowchart diagrams.

Although RPA is generally considered an easy to implement technology, an in-
depth knowledge is necessary to create reliable and scalable SW robots, particularly
when the intervention of human experts is required to properly progress the execution
of a routine. As a result, between 30% and 50% of initial RPA implementations are
estimated to fail [74, 49]. Consequently, an approach that simplifies the realization
of an RPA project towards the automated identification of user actions belonging to
a specific routine inside a UI log, with the subsequent generation and enactment of
the associated SW robot, can be considered a relevant artefact to investigate.

To achieve these goals, as shown in Figure 1, starting from an unsegmented UI log
previously recorded with an RPA tool, the first stage of this research is to inject into
the UI log the end-delimiters of the routines under examination. An end-delimiter
is a dummy action added to the UI log immediately after the user action that is
known to complete a routine execution. The knowledge of such end-delimiters is
crucial to make the approach works, as discussed later in the thesis.

The second step of the approach is to automatically discover the most frequent
observed segments of the routines as recorded into the UI log with the end-delimiters.
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Routine segments describe the different behaviours of the routine(s) under analysis,
in terms of repeated patterns of performed user actions. An unsegmented UI log
consists of sequential data of user actions performed on the UI of a computer system
during many routines’ executions. To automatically identify the routine segments
from the UI log, we rely on a frequent-pattern identification technique [22], which
we customized on a ad-hoc basis. In this phase, the risk exists that some wrong
routine segments are discovered, i.e., not allowed from the real-world routines that
are known to be valid at the outset.

To address this issue, a human-in-the-loop interaction that enables human experts
to visualize the declarative constraints inferred by the discovered routine segments is
required. Such constraints describe the temporally extended relations between user
actions that must be satisfied throughout a routine segment (e.g., an action a1 must
be eventually followed by an action a2). In a nutshell, they collectively determine
the observed behaviours of the routine segments from the UI log. This knowledge
allows human experts to identify and remove those constraints that should not be
compliant with any real-world routine behaviour, thus filtering out the not valid
(i.e., wrongly discovered) routine segments.

Finally, starting from any of the remaining (valid) routine segments, a customized
version of a trace alignment technique in Process Mining [2, 25] is employed to
automatically detect and extract the routine traces by the original UI log. A routine
trace represents an execution instance of a routine within a UI log. By identifying
the routine traces, it is also possible to filter out those actions in the UI log that
are not part of the routine under observation and hence are redundant or represent
noise. Such traces are finally stored in a dedicated routine-based log, which captures
exactly all the user actions happened during many different executions of the routine,
thus achieving the segmentation task (cf. step 1). Therefore, the final outcome of
our segmentation approach will be a collection of as many routine-based logs as are
the number of valid routine segments.

The customized version of the trace alignment technique can also be used as a
supervised segmentation technique [7]. The supervised assumption, which consists
of knowing a priori the structure of routines, may ease the segmentation task. Still,
as a side effect, it may strongly constrain the discovery of routine traces only to
the “paths” allowed by the routines’ structure, thus neglecting that some valid yet
infrequent routine variants may exist in the UI log. For this reason, the novelty of
the proposed approach to the segmentation of UI logs [3] is to semi-automatically
discover such structures in the form of routine segments and then use them as input
for the supervised segmentation technique [7].

Most state-of-the-art segmentation approaches can properly extract routine
segments from unsegmented UI logs when the routine executions are not interleaved
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from each other. Only a few works are able to partially untangle unsegmented UI logs
of many interleaved routine executions, but with the assumption that any routine
provides its own, separate universe of user actions. This is a relevant limitation
since it is quite common that real-world routines may share the same user actions
(e.g., copy/paste data across cells of a spreadsheet) to achieve their objectives. In
this thesis, we propose an interactive approach to the segmentation of UI logs [3]
that aims to mitigate the issues mentioned above, showing its ability to outperform
existing literature approaches in terms of supported segmentation variants and to
which extent the human-in-the-loop interaction can filter out the wrongly discovered
segments. In particular, we evaluated the robustness of the proposed approach to
(re)discover the valid routine segments from synthetic UI logs of increasing complexity.
Then, we also investigated the degree of effectiveness, robustness, and usability of
the tool implementing the human-in-the-loop interaction step.

It is worth noticing that commercial RPA tools can eventually employ routine-
based logs to synthesize executable scripts in the form of SW robots that will emulate
the routine behaviour on the UI without the manual modeling of the routines (cf.
steps 3 and 4). In this direction, a cross-platform software tool called smartRPA1

was developed, which is able to generate executable RPA scripts, necessary to enact
the SW robot that implements the selected routine variant directly from a segmented
UI log (i.e., a routine-based log). A routine variant is a specific execution of a routine
that differs from the other executions (i.e., instances) of the same routine in at
least one user action. Differently from the literature approaches to automated RPA
scripts generation from UI logs, which enable to automate straightforward routines
that have essentially no variance and do not require any human intervention, the SW
robots generated by SmartRPA are obtained to handle the intermediate user inputs
that are required during the routine execution, thus enabling to emulate the most
suitable routine variant for any specific combination of user inputs as observed in the
UI log. This makes the synthesis of SW robots performed by SmartRPA reactive to
any user decision found during a routine execution. “Reactivity” highlights the fact
that the behaviour of SW robots is determined immediately before their enactment,
as it is driven by the specific user inputs required to execute the routine. This also
means that reactivity enables the potential run-time generation of as many SW
robots as the routine variants to be emulated.

SmartRPA has been validated on four non-functional requirements to measure the
quality of the underlying approach. Specifically, we first performed many synthetic
experiments employing UI logs of increasing complexity to assess the robustness and
feasibility of SmartRPA to the identification of routine variants and variation points
for the reactive synthesis of SW robots. A variation point is a point in the routine

1smartRPA is available at: https://github.com/bpm-diag/smartRPA

https://github.com/bpm-diag/smartRPA
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execution where a user choice needs to be made between multiple possible routine
variants. Then, we performed a controlled experiment involving real users exploiting
our RPA use case to investigate the effectiveness of the SmartRPA approach when
compared to a traditional model-based approach for the generation of SW robots.
Finally, we quantify the usability of the UI provided by the tool implementing the
SmartRPA approach.

In summary, the research underlying this thesis tries to mitigate the involvement
of skilled human experts in steps 1, 3, and 4, throughout the development of:
(i) an interactive approach to the automated segmentation of UI logs, and (ii)
the SmartRPA approach to the automated identification of the variation points
of a routine, to enable the selection of the most suitable routine variants to be
implemented with a SW robot directly from a routine-based log.
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Thesis Outline

• Chapter 1 reports an introduction that makes immediately clear for the
reader the research problem addressed, its significance in the RPA field, and
the proposed contribution to solve the problems, driven by specific research
challenges. This serves as the basis for positioning the performed work and
summarizing the author’s research activities.

• Chapter 2 analyzes the background notions about RPA. Specifically, it outlines
the preliminaries on routines, SW robots, UI logs, and Petri nets. Furthermore,
it presents a real-life RPA use case to illustrate the relevance of the research
challenges being investigated.

• Chapter 3 focuses on the issue of segmentation of UI logs, identifying all its
potential variants and presenting an up-to-date overview that discusses to
what extent existing literature approaches support such variants.

• Chapter 4 presents the employed technique for discovering routine segments
directly from unsegmented UI logs, that is, a frequent-pattern identification
technique (properly customized for our purposes) to automatically derive the
routine segments as recorded into a UI log. We evaluated the robustness of
this technique in presence of synthetic UI logs of a growing size that provide an
increasing amount of routine variants to measure to what extent our approach
is able to (re)discover the valid routine segments from such UI logs.

• Chapter 5 implements the human-in-the-loop interaction step to filter out
those segments not allowed (i.e., wrongly discovered from the UI log) by any
real-world routine under analysis. We have also evaluated the implemented
technique by measuring its degree of effectiveness, robustness, and usability.
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• Chapter 6 presents the routine traces detection component which exploits
trace alignment in Process Mining to extract from a UI log all those user
actions belonging to a specific (valid) routine segment and cluster them into
well-bounded routine traces, thus achieving the segmentation task. It is worth
noticing that this component can also be employed as a stand-alone supervised
segmentation technique, under the assumption to know a priori the structure
(i.e., the flowchart diagrams) of the routines to identify in the UI log, thus
neglecting the semi-automated discovery of the routine segments.

• Chapter 7 leverages a design science research method [43] to develop an
approach, called SmartRPA, which is able to interpret the UI logs keeping
track of many routine executions and automatically synthesize SW robots
that emulate the most suitable routine variant for any specific intermediate
user input that is required during the routine execution. Specifically, it is
focused on (i) discussing the relevant state-of-the-art approaches that attempt
to mitigate the research challenges, (ii) deriving a set of technical requirements
to realize our SmartRPA approach, (iii) proposing the SmartRPA approach
and describing its stages to address the technical requirements, and finally
(iv) presenting the details of an algorithm to automatically identify routine
variants and variation points from UI logs, necessary for the reactive synthesis
of SW robots.

• Chapter 8 shows the technical steps enacted to develop the SmartRPA ap-
proach as a real implemented tool and presents the results of a multi-step
evaluation performed on SmartRPA to investigate the extent to which the ap-
proach satisfies four relevant non-functional requirements, namely robustness,
feasibility, effectiveness and usability employing both synthetic and real-world
datasets;

• Chapter 9 concludes the thesis by discussing limitations and future develop-
ments. Moreover, it shows results, impacts and benefits addressed by this
thesis.
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Chapter 1

Introduction

Business Processes (BPs) are nowadays an integral part of mid-size and large
organizations that aim to ensure consistent business outcomes and take advantage
of improvement opportunities to remain competitive [75]. Traditional BPs include
insurance claim processing, order handling, and sales management. Business Process
Management (BPM) is the discipline that oversees how BPs are performed in an
organization, providing concepts and tools to support the design, administration,
enactment, and analysis of BPs.

Since the late 1990s, a new generation of information systems called Business
Process Management Systems (BPMSs) has become increasingly popular to automate
running BPs involving people, applications, and information sources based on BP
specifications (i.e., process models) pre-defined at design time [88]. BPMSs seek to
improve the efficiency of BPs by streamlining their execution through the orchestrated
distribution of work items to process participants and software services, thus reducing
the time required to run the everyday operations [29].

However, automating a BP specification using a BPMS requires a not negligible
development effort that usually involves dedicated technical resources, which are
in charge to specify the execution properties (many of them are vendor-specific) of
each BP element and the connectors to the Application Programming Interfaces
(API) of the various applications that realize the behaviour of the BP. The fact is
that the number of BPs to manage and execute in organizations through a BPMS
is constantly growing over the years [29, 39, 86], and BPMSs are turning out to be
too inflexible for fast and lightweight automation projects, where the investment to
implement the automated BPs may exceed the manual costs of operation [37].

To mitigate this issue, Robotic Process Automation (RPA) is an emerging
automation technology in the BPM domain [45] that creates software (SW) robots
to partially or fully automate rule-based and repetitive tasks (or simply routines)
performed by human users in their applications’ user interfaces (UIs) [86]. While
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conducting a BPM project is often considered too expensive because its “top-down”
approach that forces to develop the PMS from scratch (and system integration is
costly), RPA promises to rely on an approach where, instead of redesigning existing
information systems (that remain unchanged), humans are replaced by SW robots in
the execution of those BPs involving routine work. This allows knowledge workers
to have more time for value-added tasks.

In the research literature, many case studies have shown that RPA technology
can concretely lead to improvements in efficiency for BPs involving routine work
in large companies, such as O2 and Vodafone [48, 8, 34]. Indeed, in recent years,
much progress has been made both in terms of research and technical development
on RPA, resulting in many industry-specific deployments for industrial-oriented
services [48, 8, 10, 46, 78, 79, 49]. Moreover, the market of RPA solutions has
developed rapidly. Today includes more than 50 vendors developing tools that
provide SW robots with advanced functionalities for automating office tasks of
different complexity [9].

However, despite this growing attention around RPA, to achieve more widespread
adoption in the BPM domain, RPA needs to become “smarter” [86], i.e., RPA tools
can adapt and learn how to handle non-standard cases by observing human problem
resolving unexpected system behaviour (e.g., in case of system errors, changing
forms, etc.). In fact, when considering the state-of-the-art technology, it becomes
apparent that the current generation of RPA tools is driven by predefined rules and
manual configurations made by expert users rather than by automated intelligent
techniques [5, 6, 20]. Consequently, more complex and less defined BPs could be
fully supported by the RPA technology. To be more specific, the traditional workflow
to conduct an RPA project can be summarized as follows [42]:

1. Determine which process steps (also called routines) are good candidates to
be automated.

2. Model the selected routines in the form of flowchart diagrams (i.e., the interac-
tion models), which involve the specification of the actions, routing constructs
(e.g., parallel and alternative branches), data flow, etc. that define the be-
haviour of a SW robot.

3. Record the mouse/key events that happen on the UI of the user’s computer
system. This information is associated with a routine’s actions, enabling it to
emulate the recorded human activities through a SW robot.

4. Develop each modeled routine by generating the software code required to
concretely enact the associated SW robot on a target computer system.

5. Deploy the SW robots in their environment to perform their actions.
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6. Monitor the performance of SW robots to detect bottlenecks and exceptions.

7. Maintenance of the routines, which takes into account each SW robot’s perfor-
mance and error cases. The outcomes of this phase enable a new analysis and
design cycle to enhance the SW robots.

The majority of the previous steps, particularly the ones involved in the early
stages of the RPA life-cycle, require the support of skilled human experts, which
need to: (i) understand the anatomy of the candidate routines to automate through
interviews, walk-troughs, and detailed observation of workers conducting their daily
work (cf. step 1); and (ii) define manually the flowchart diagrams representing the
structure of such routines (cf. step 3), which will drive the development of the SW
code, often in the form of executable scripts (also called RPA scripts), allowing the
concrete enactment of SW robots at run-time (cf. step 4).

Towards this direction, two research challenges necessary to inject intelligence
into the current RPA technology towards better support to BPM can be derived, as
discussed in [5, 6, 54]:

1. C1 - Automated Segmentation of UI Logs.

Description: UI logs recorded by RPA tools are characterized by long sequences
of user actions that reflect many routine executions. A UI log can record
information about several routines whose actions are mixed in some order that
reflects the particular order of their execution by the user [17]. In addition,
the same routine can be spread across multiple logs, interleaved with other
actions that are not part of the routine under analysis (and potentially shared
by many routines), making the automated identification of routines far from
being trivial.

Objective: Automatically identify and understand which user actions contribute
to a particular routine inside a UI log (that keeps track of the user actions
taking place during a run of the system) and cluster them into well-bounded
routine traces (i.e., complete execution instances of a routine). This issue is
known as “segmentation” (cf. step 1).

2. C2 - Automated Generation of SW Robots.

Description: In RPA tools, there is a lacking of testing environments. As a
consequence, SW robots are developed through a trial-and-error approach
consisting of three steps that are repeated until success [53]: (i) First, a human
designer produces a flowchart diagram (or an executable RPA script) that
includes the actions to be performed by the SW robot on a target computer
system at run-time; (ii) Second, SW robots are typically deployed in production
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Figure 1.1. Overview of the envisioned approach required to tackle C1 and C2

environments, where they interact with information systems, with a high risk
of errors due to inaccurate modeling of flowcharts; (iii) Third, if SW robots are
not able to reproduce the behaviour of the users for a specific routine, then the
designer adjusts the flowchart diagrams to fix the identified gap. While this
approach is proven effective in executing simple rules-based logic in situations
where there is no room for interpretation, it becomes time-consuming and
error-prone in the presence of routines that are less predictable or require some
level of human judgment. Indeed, the designer should have a global vision
of all possible variants of the routines to define the appropriate behaviours
of the SW robots, which becomes complicated when the number of variants
increases. The issue is that in case where the flowchart diagram does not
contain a suitable response for a specific situation, e.g., because of an inaccurate
modeling activity, then the associated RPA scripts would not properly reflect
the behaviour of the potential routine variant, forcing SW robots to escalate
to a human supervisor at run-time, in contrast with the RPA philosophy.

Objective: Once the routines to be automated and the user actions that consti-
tute them (i.e., the routine-based logs) have been identified, the target is to
automatically generate the flowchart diagrams (or/and the executable RPA
scripts) describing the behaviours of the SW robots required to successfully
execute the routines, rather than manually specify their conceptual and tech-
nical structure by means of interviews, walkthroughs and direct observation of
workers (cf. steps 3 and 4).

To mitigate the involvement of skilled human experts in steps 1, 3, and 4
by tackling C1 and C2, the research underlying this thesis is targeted to: (i)
automatically understand which user actions contribute to which routines inside a
UI log and (ii) automatically generate executable RPA scripts directly from the UI
logs that record the user interactions with the SW applications involved in a routine
execution, thus skipping the (manual) modeling activity of the flowchart diagrams.

To achieve these goals, as shown in Figure 1.1, starting from an unsegmented
UI log previously recorded with an RPA tool, the first stage of this research is to
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inject into the UI log the end-delimiters of the routines under examination. An
end-delimiter is a dummy action added to the UI log immediately after the user
action that is known to complete a routine execution. The knowledge of such
end-delimiters is crucial to make the approach works, as discussed later in the thesis.

The second step of the approach is to automatically discover the most frequent
observed segments of the routines as recorded into the UI log with the end-delimiters.
Routine segments describe the different behaviours of the routine(s) under analysis
in terms repeated patterns of performed user actions. An unsegmented UI log
consists of sequential data of user actions performed on the UI of a computer system
during many routines’ executions. To achieve the segmentation task, we rely on a
frequent-pattern identification technique [22] (which has been properly customized
for this purpose) to automatically discover the observed segments of the routines as
recorded into the UI log. In this phase, the risk exists that some wrong segments
are discovered, i.e., not allowed from the real-world routines known to be valid at
the outset.

To address this issue, a human-in-the-loop interaction that enables human experts
to visualize the declarative constraints inferred by the discovered routine segments
is required. Such rules describe the temporally extended relations between user
actions that must be satisfied throughout a routine segment (e.g., an action a1 must
be eventually followed by an action a2). In a nutshell, they collectively determine
the observed behaviours of the routine segments from the UI log. This knowledge
allows human experts to identify and remove those constraints that should not be
compliant with any real-world routine behaviour, thus filtering out the not valid
(i.e., wrongly discovered) routine segments;

Finally, starting from any of the remaining (valid) routine segments, a customized
version of a trace alignment technique in Process Mining [2, 25] is employed to
automatically detect and extract the routine traces by the original UI log. A routine
trace represents an execution instance of a routine within a UI log. By identifying
the routine traces, it is also possible to filter out those actions in the UI log that
are not part of the routine under observation and hence are redundant or represent
noise. Such traces are finally stored in a dedicated routine-based log, which captures
precisely all the user actions that happened during many different executions of the
routine, thus achieving the segmentation task (C1). Therefore, the outcome of our
segmentation approach will be a collection of as many routine-based logs as are the
number of valid routine segments.

The majority of state-of-the-art segmentation approaches can properly extract
routine segments from unsegmented UI logs when the routine executions are not
interleaved from each other. Only a few works are able to partially untangle
unsegmented UI logs consisting of many interleaved routine executions, but with
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the assumption that any routine provides its own, separate universe of user actions.
This is a relevant limitation since it is quite common that real-world routines may
share the same user actions (e.g., copy and paste data across cells of a spreadsheet)
to achieve their objectives. In this thesis, we propose a novel approach to the
segmentation of UI logs [3] that aims to mitigate the issues as mentioned above,
showing its ability to outperform existing literature approaches in terms of supported
segmentation variants and to which extent the human-in-the-loop interaction is able
to filter out the wrongly discovered routine segments. In particular, we evaluated
the robustness of the frequent-pattern identification technique in (re)discovering the
valid routine segments against synthetic UI logs of increasing complexity. Then, we
also investigated the degree of effectiveness, robustness, and usability of the tool
implementing the human-in-the-loop interaction step.

It is worth noticing that the commercial RPA tools can eventually employ routine-
based logs to synthesize executable scripts in the form of SW robots that will emulate
the routine behaviour on the UI without the manual modeling of the routines (C2).
In this direction, a cross-platform software tool called smartRPA1 was developed,
which is able to generate executable RPA scripts, necessary to enact the SW robot
that implements the selected routine variant directly from a segmented UI log (i.e.,
a routine-based log). A routine variant is a specific execution of a routine that
differs from the other executions (i.e., instances) of the same routine in at least one
user action. Differently from the literature approaches to automated RPA scripts
generation from UI logs, which enable to automate straightforward routines that
have essentially no variance and do not require any human intervention, the SW
robots generated by SmartRPA are obtained to handle the intermediate user inputs
that are required during the routine execution, thus enabling to emulate the most
suitable routine variant for any specific combination of user inputs as observed in the
UI log. This makes the synthesis of SW robots performed by SmartRPA reactive to
any user decision found during a routine execution. “Reactivity” highlights the fact
that the behaviour of SW robots is determined immediately before their enactment,
as it is driven by the specific user inputs required to execute the routine. This also
means that reactivity enables the potential run-time generation of as many SW
robots as the routine variants to be emulated.

SmartRPA has been validated on four non-functional requirements to measure
the quality of the underlying approach. Specifically, we first perform many synthetic
experiments employing UI logs of increasing complexity to assess the robustness and
feasibility of SmartRPA to the identification of routine variants and variation points
for the reactive synthesis of SW robots. A variation point is a point in the routine
execution where a user choice needs to be made between multiple possible routine

1smartRPA is available at: https://github.com/bpm-diag/smartRPA

https://github.com/bpm-diag/smartRPA
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variants. Then, we performed a controlled experiment involving real users exploiting
our RPA use case to investigate the effectiveness of the SmartRPA approach when
compared to a traditional model-based approach for the generation of SW robots.
Finally, we quantify the usability of the UI provided by the tool implementing the
SmartRPA approach.

While this Chapter serves as the basis for summarizing the performed author’s
research activities, the rest of the thesis is organized as follows. Chapter 2 presents
the relevant background and preliminary concepts integrated with a real-life RPA
use case useful to explain the proposed approaches to tackle C1 and C2. Chapter
3 discusses the related work solutions to tackle the segmentation issue. Then,
starting from the related work analysis, we derived an interactive approach to
the automated segmentation of UI logs [3], which relies on: (i) a frequent-pattern
identification technique (customized on a ad-hoc basis) to automatically derive the
routine segments as recorded into a UI log (cf. Chapter 4), (ii) a human-in-the-loop
interaction to filter out those segments not allowed (i.e., wrongly discovered from the
UI log) by any real-world routine under analysis (cf. Chapter 5), and (iii) a routine
traces detection component that leverages trace alignment in Process Mining to
cluster all those user actions belonging to a specific segment into routine traces (cf.
Chapter 6). The routine traces detection component can also be used as a supervised
segmentation technique [7]. The supervised assumption, which consists of knowing
a priori the structure of routines, may ease the segmentation task. Still, as a side
effect, it may strongly constrain the discovery of routine traces only to the “paths”
allowed by the routines’ structure, thus neglecting that some valid yet infrequent
routine variants may exist in the UI log. For this reason, the novelty of the proposed
approach to the segmentation of UI logs [3] is to semi-automatically discover such
structures in the form of routine segments and then use them as input for the
supervised segmentation technique [7]. Then, Chapter 7 focuses on the design of the
SmartRPA approach, presenting an algorithm to the automated identification of the
variation points from many routine executions, to enable the selection of the most
suitable routine variants to be implemented with a SW robot. Chapter 8 analyzes
the architecture and the technical aspects of the tool implementing SmartRPA,
describing also how the generated scripts can be automatically encoded in a format
readable by the commercial RPA tool UiPath. Finally, Chapter 9 draws conclusions
and traces future works.
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Chapter 2

Background

In this Chapter, we present some preliminary concepts used throughout the thesis.
Section 2.1 outlines the definition of routines and SW robots while Section 2.2 places
routines within the spectrum of BPs. Section 2.3 introduces a real-life RPA use case
to illustrate the relevance of the research challenges being investigated. Section 2.4
describes the Petri net modeling language, which will be used to formally specify
the interaction models required to represent the structure of the routines of interest
explained in case study, while Section 2.5 introduces the notion of UI log.

2.1 Routines and SW Robots

RPA moves around the concept of replacing routine work with automation. According
to [26], a routine can be classified as a structured process that reflects highly predictable
and repetitive work with low flexibility requirements (i.e., the amount of variants
to the expected process path is limited) and controlled interactions among process
participants.

As there is no unique definition of routines, we identify a key reference definition
that, in our view, best represents the concept of routine in relation to the focus
of this thesis. While many overlapping definitions of RPA can be found in the
research literature, we adopt the one proposed by Gartner in 2017 [83], which defines
RPA as a class of tools that enable users to specify routines involving [if, then, else]
statements on structured data, rules, user interface interactions, and operations
accessible via APIs. Such routines are encoded as scripts that are executed by SW
robots, operated via control dashboards.

Depending on how the control dashboard is exploited, it is possible to distinguish
among unattended and attended SW robots.

• Unattended SW robots are able to fully automate routines without any in-
termediate human intervention. This happens when all execution paths are
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always the same independently by the specific inputs provided to the routine
executions. For example, for insurance claims management (when claims are
received in a structured form), unattended SW robots offer an efficient solution
for their automated processing and validation. However, any variant to the
routine’s expected behaviour is considered an exception and, thus, redirected
to human supervision.

• Attended SW robots work alongside humans and are suitable for routines where
some decisions or checks need to be made that require human judgment during
the routines’ execution. Therefore, attended SW robots may require data from
a user to properly progress the routine’s enactment. For example, a document-
driven routine lends itself to attended automation because a human is entering
information via a document, and different values of the provided information
may potentially trigger the execution of different variants of the routine. Let’s
consider the case of insurance claims rather than redirect routine variants to
human supervision after the initial inspection in an insurance exception flow.
An agent might feed claims to a SW robot that would collect different data
points surrounding each claim. The SW robot would automatically validate
and automate claims that fit the status quo, and return unusual claims to an
agent for another level of review.

In a nutshell, unattended SW robots represent the simplest case of the attended
perspective [54], since user inputs are not required for driving the routine’s execution.
On the other hand, attended SW robots are suitable in presence of routine variants
recorded in the UI log. We define a routine variant as a specific execution of a
routine that differs from the other executions (i.e., instances) of the same routine by
at least one event. An event refers to the enactment of a user action (coupled with
some execution data, like the name of the application where the action occurred,
etc.) within a specific routine execution recorded in a UI log at a specific moment in
time. The presence of different events in many routine executions may potentially
determine alternative behaviours of the routine itself. This is particularly true when
some events are triggered only by specific user inputs (and not by others) provided
at the time of the routine execution. These events act as a variation point of the
routine, where a user choice needs to be made between multiple possible variants.
We will show an example of routine variants and variation points in Section 2.4.

2.2 RPA in the Spectrum of BPM

To better understand the types of processes that are best suited for RPA, a classifi-
cation of BPs along a spectrum is presented in Figure 2.1. The distinction among
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different types of BPs is made along the basis of the degree of structuring and
predictability they exhibit, which directly influence the level of automation, control
and support that can be provided, as well as the degree of flexibility that is required
[26]. Along the spectrum, five different structuring levels can be identified:

• Structured.

• Structured with ad hoc exceptions.

• Unstructured with pre-defined segments.

• Loosely structured.

• Unstructured.

Figure 2.1. The Spectrum of BPs

At the top of the spectrum, there are Structured processes, which are characterized
by complete high predictability but the lowest level of flexibility. They can be
described as a rigorously defined process with an end-to-end model that takes into
account all the process instance permutations. It means that all possible paths of
the process are well-understood. Structured processes are usually very repetitive,
including routine tasks and work that must be done regularly or at specified intervals.
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In addition, structured processes also feature low flexibility requirements, with no
need to change or adjust, and controlled interactions among process participants.
Typical examples of structured processes are production and administrative processes.
In terms of the activities to be executed, their dependencies, and the resources
performing the activities, the processing logic of this type of process is known in
advance and can be predeterminate. As a consequence, all possible options and
decisions that can be made during process enactment are captured in a process
model, defined a priori. A process model is a representation of a BP consisting of a
set of activities (a piece of work) and execution constraints between them, criteria to
indicate the start and termination of the process, and information about participants,
associated IT applications and data, etc. The distinctiveness of the process model
of a structured process is that it can be repeatedly instantiated in a predictable and
controlled manner. In this domain, the inputs and outputs are precise. Most process
instances follow the same path. The process is expected to proceed through a high
volume, producing millions of nearly identical outcomes with no exceptions.

The second class of BPs presented in the spectrum is the Structured processes with
ad hoc exceptions. These processes share some characteristics with the structured
processes, as they are both structured and reflect operational activities that typically
comply with a predefined plan. Still, there is a significant difference in flexibility.
The occurrence of external events and exceptions can make the process less rigid,
thus requiring these processes to be adapted according to changing circumstances
during the execution. Indeed, there is the possibility that the actual course of
action may deviate from the predefined reference work practices, and this would
consequently require process adaption strategies. In the presence of anticipated
exceptions, possible deviations that can be encountered are predictable and defined
in advance via exception handlers, typically pre-specified into the process model.
The encountered exceptions are pretty predictable in advance, and the process can
be modeled so that at every step, the user has the option of indicating that one of
the prepared lists of exceptions occurred and some specific handling logic for each
exception can be implemented. Contrarily, unanticipated exceptions can be only
detected during the execution of a process instance, and their handling typically
requires ad-hoc process changes at run-time.

In the middle of the spectrum, as the third presented BPs class, there are the
Unstructured processes with predefined segments where work practices are somewhat
unstructured and proceed on an ad-hoc basis. The overall process logic is not
explicitly defined, but the existence of policies and regulations allows for identifying
pre-definable, structured fragments. These fragments can refer to detailed, prescrip-
tive procedures or may take the form of underspecified templates and guidelines
(ambiguous because not sufficiently clear). Predefined process fragments need to be
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selected and adequately collected according to the features relating to each situation,
case by case. Likewise, process parts that are undefined or uncertain can only be
specified and incorporated in the range of the existing process model as the process
evolves, and decisions regarding the specification of the process or parts of it have
to be deferred.

The fourth class of BPs presented in the spectrum includes the Loosely structured
processes, characterized by a higher level of flexibility and at the same time a lower
level of predictability concerning the upper classes. The possible activities included in
the process may be known and predefined, but their execution ordering is not entirely
foreseeable as many possible execution alternatives are allowed. In particular, these
processes can be made up of tasks that are not subject to fixed reference procedures.
Nevertheless, there are constraints given by business rules that implicitly outline the
scope of action of process participants, limiting their execution procedures. These
constraints are used to describe processes defining the alternatives by prohibiting
undesired execution behaviour.

Finally, at the bottom of the spectrum, the last class of BPs presented is
the Unstructured processes characterized by the lowest level of predictability and
contemporarily the highest level of flexibility. Furthermore, they can be stated that as
unstructured, differently from a structured process where the frame is predeterminate,
and the workflow must stick to it, here the structure of the process dynamically
evolves with the process execution. Process participants, indeed, actively decide on
the activities to be executed and their execution order based on their work knowledge
and background. Knowledge workers rely on their experience to perform ad-hoc tasks
on a case-by-case basis and handle unexpected changes in the operational context.
For processes with these characteristics, only their goal is known a priori and reflect
both workers know-how and collaboration activities driven by rules and events. No
predefined models can be specified, and little automation can be provided.

An important element of the spectrum is the classification method presented
on the left of Figure 2.1: the triangle labelled “modelling, control and automation”
depicts the direction towards automation potential increase. It is clear that the
more the process is structured, the more it can be automated, and the less human
intervention is needed. In other words, the higher the process is predictable and
repeatable, the higher it can be automated, given its clear structure and predeter-
mined process execution. On the other hand, the higher flexibility of a process you
have, the less chance to be automated due to the process adaptability to different
situations and the need to manage with non-predictable exceptions.

Based on this interpretation, we can position routines between the spectrum of
Structured processes and Structured processes with ad hoc-exceptions, thus making
the processes best suited for RPA the ones that meet the following characteristics:
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• Rule-based: the logic of its workflow is defined utilizing if-then-else constructs.

• Well-structured: all possible execution paths are defined at design time, and
exceptions and deviations are known and predictable.

• Repetitive: the execution flow is highly repeatable with low flexibility require-
ment.

This is exactly the case of the RPA use case explained in the following section,
where the decision logic of the routines examined is expressed in terms of business
constructs such as loops, parallel, and alternative branches, thus characterized by
a low-level of flexibility (in terms of alternative behaviours to execute the routines
under examination) and a high-level of predictability.

2.3 An RPA Use Case

In this section, we describe an RPA use case inspired by a real-life scenario at the
Department of Computer, Control and Management Engineering (DIAG) of Sapienza
Università di Roma. The scenario concerns the filling the travel authorization request
form made by professors, researchers, and PhD students of DIAG for travel requiring
prior approval. The request applicant must fill a well-structured Excel spreadsheet
(cf. Figure 2.2(a)) providing some personal information, such as her/his bio-data and
the email address, together with further information related to the travel, including
the destination, the starting/ending date/time, the means of transport to be used,
the travel purpose, and the envisioned amount of travel expenses, associated with the
possibility to request an anticipation of the expenses already incurred (e.g., to request
in advance a visa). When ready, the spreadsheet is sent via email to an employee of
the Administration Office of DIAG, which is in charge of approving and elaborating
the request. Concretely, for each row in the spreadsheet, the employee manually
copies every cell in that row and pastes that into the corresponding text field in a
dedicated Google form (cf. Figure 2.2(b)), accessible just by the Administration
staff. Once the data transfer for a given travel authorization request has been
completed, the employee presses the “Submit” button to submit the data into an
internal database.

In addition, if the request applicant declares that s/he would like to use her/his
personal car as one of the means of transport for the travel, then s/he has to fill
a dedicated (simple) web form required for activating a special insurance for the
part of the travel that will be performed with the car. This further request will
be delivered to the Administration staff via email, and the employee in charge of
processing it can either approve or reject such request. In the end, the applicant
will be automatically notified via email of the approval/rejection of the request.
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(a) (b)

Figure 2.2. UIs involved in the RPA use case

The above procedure, which involves two main routines (in the following, we
will denote them as R1 and R2), is performed manually by an employee of the
Administration Office of DIAG, and it should be repeated for any new travel request.
Routines such as these are good candidates to be encoded with executable scripts
and enacted through a SW robot within a commercial RPA tool. However, unless
there is complete a priori knowledge of the specific routines that are enacted on the
UI and of their concrete composition (this may happen only if the exact sequence of
user actions required to achieve the routines’ targets on the UI is recorded in the
context of controlled training sessions), their automated identification from an UI
log is challenging, since the associated user actions may be scattered across the log,
interleaved with other actions that are not part of the routine under analysis, and
potentially shared by many routines.

2.4 Interaction Models as Petri Nets

The research literature is rich of notations for expressing human-computer dialogues
as interaction models that allow seeing at a glance the structure of user interactions
with a UI [71, 28]. Existing notations can be categorized in two main classes:
diagrammatic and textual. Diagrammatic notations include (among the others)
various forms of state transition networks (STNs) [87], Petri nets [82], Harel state
charts [36], flow charts [28], JSD diagrams [81] and ConcurTaskTrees (CTT) [69].
Textual notations include regular expressions [84], Linear Temporal Logic (LTL)
[73], Communicating Sequential Processes (CSPs) [27], GOMS [44], modal action
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Figure 2.3. Interaction model for R1

Figure 2.4. Interaction model for R2

logic [19], BNF and production rules [31].
While there are major differences in expressive power between different notations,

increased expressive power is not always desirable as it may suggest a harder to
understand description, i.e., the dialogue of a UI can become unmanageable [28].
To guarantee a good trade-off between expressive power and understandability of
the models, we decided to use Petri nets for their specification. Petri nets have
proven to be adequate for defining interaction models [28, 70, 65]. They may contain
exclusive choices, parallel branches and loops, allowing the representation of highly
complex behaviours in a very compact way. Last but not least, Petri nets provide
formal semantics, which helps to interpret the meaning of an interaction model
unambiguously.

From a formal point of view, a Petri net W = (P, T, S) is a directed graph with a
set P of nodes called places and a set T of transitions. The nodes are connected via
directed arcs S ⊆ (P × T ) ∪ (T × P ) . Connections between two nodes of the same
type are not allowed. Places are represented by circles and transitions by rectangles.
Figures 2.3 and 2.4 illustrate the Petri nets used to represent the interaction models
of R1 and R2. Transitions are associated with labels reflecting the user actions (e.g.,
system commands executed, buttons clicked, etc.) required to accomplish a routine
on the UI. For example, a proper execution of R1 requires a path on the UI made
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by the following user actions:

• loginMail, to access the client email;

• accessMail, to access the specific email with the travel request;

• downloadAttachment, to download the Excel file including the travel request;

• openWorkbook, to open the Excel spreadsheet;

• openGoogleForm, to access the Google Form to be filled;

• getCell, to select the cell in the i-th row of the Excel spreadsheet;

• copy, to copy the content of the selected cell;

• clickTextField, to select the specific text field of the Google form where the
content of the cell should be pasted;

• paste, to paste the content of the cell into the corresponding text field of the
Google form;

• formSubmit, to press the button to finally submit the Google Form to the
internal database.

Note that, as shown in Figure 2.3, the user actions openWorkbook and openGoogleForm
can be performed in any order. Moreover, the sequence of actions ⟨getCell, copy,

clickTextField, paste⟩ will be repeated for any travel information to be moved from
the Excel spreadsheet to the Google form. On the other hand, the path of user
actions in the UI to properly enact R2 is as follows:

• loginMail, to access the client email;

• accessMail, to access the specific email with the request for travel insurance;

• clickLink, to activate in the Google form the dialog box for approving or
rejecting the car request;

• approveRequest, to press the button on the Google form that approves the
request;

• rejectRequest, to press the button on the Google form that rejects the request.

Then, in the interaction models of R1 and R2, there are transitions that do not
represent user actions but are needed to represent the structure of such models
correctly. These transitions, drawn with a black-filled rectangle, are said to be
“invisible”, and are not recorded in the UI logs (cf. Inv1, Inv2 and Inv3).
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Finally, in case of a car request to be evaluated (clickLink), the execution of
approveRequest or rejectRequest is exclusive. Depending on the choice of the above
user actions, two different variants of R2 can be potentially emulated. However, the
behaviour implied by R2 semantically changes only after the enactment of the action
clickLink, which requires an explicit user decision between the possibility of accepting
or rejecting the personal car request. Therefore, the actions approveRequest and
rejectRequest represent a variation point of the routine, that forks its execution flow
into two well-distinguished exclusive branches.

To understand trace alignment in Process Mining (cf. Chapter 6), we also need to
briefly illustrate the dynamic behaviour of a Petri net, i.e., its operational semantics.
Given a transition t ∈ T , •t is used to indicate the set of input places of t, which
are the places p with a directed arc from p to t (i.e., such that (p, t) ∈ S). Similarly,
t• indicates the set of output places, namely the places p with a direct arc from t

to p. At any time, a place can contain zero or more tokens, drawn as black dots.
The state of a Petri net, i.e., its marking, is determined by the number of tokens in
places. Therefore, a marking m is a function m : P → N. In any run of a Petri net,
the number of tokens in places may change, i.e., the Petri net marking. A transition
t is enabled at a marking m iff each input place contains at least one token, i.e., ∀
p ∈ •t, m(p) > 0. A transition t can fire at a marking m if and only if it is enabled.
As result of firing a transition t, one token is “consumed” from each input place
and one is “produced” in each output place. This is denoted as m

t−→ m′. In the
remainder, given a sequence of transition firing σ = ⟨t1, . . . , tn⟩ ∈ T ∗, m0

σ−→ mn is
used to indicate m0

t1−→ m1
t2−→ . . .

tn−→ mn, i.e., mn is reachable from m0.
Since the executions of a routine have a start and an end, the interaction models

represented through Petri nets need to be associated with an initial and final marking.
For example, in both routines of Figures 2.3 and 2.4, the markings with respectively
one token in place start or in place end are the initial and final marking (and no
tokens in any other place). In the remainder of this thesis, we assume all Petri nets
to be 1-bounded. A Petri net is 1-bounded if no place ever contains more than one
token in any reachable marking from the initial marking. One-boundness is not a
big limitation as the behaviour allowed by interaction models can be represented as
1-bounded Petri nets [28, 65].

2.5 User Interface Logs

In its raw form, a single UI log consists of a long sequence of user actions recorded
during one user session.1 Such actions include all the steps required to accomplish

1We interpret a user session as a group of interactions that a single user takes within a given
time frame on the UI of a specific computer system.



2.5 User Interface Logs 19

relevant routines using the UI of one or many SW application/s. For instance, in
Figure 2.5, we show a snapshot of a UI log captured using a dedicated action logger2

(that we will discuss in Chapter 8) during the execution of R1 and R2.

Figure 2.5. Snapshot of a UI log captured during the executions of R1 and R2

The employed action logger enables recording the events that happened on the
UI, enriched with several data fields describing their “anatomy”. For a given event,
such fields are helpful to keep track of the name and the timestamp of the user action
performed on the UI, the involved SW application or web page, the human/SW
resource that performed the action, etc.

For the sake of understandability, we assume here that any user action associated
to each event recorded in the UI log is mapped at most with one (and only one)
Petri net transition, and that the collection of labels associated to the Petri net
transitions is defined over the same alphabet as the user actions in the UI log,3 i.e.,
the alphabet of user actions in the UI log is a superset of that used for defining the
labels of Petri net transitions.

In the RPA use case, we can recognize in R1 and R2 a universe of user actions of
interest Z = {A, B, C, D, E, F, G, H, I, L, M, N, O}, such that: A = loginMail, B =
accessMail, C = downloadAttachment, D = openWorkbook, E = openGoogleForm, F

= getCell, G = copy, H = clickTextField, I = paste, L = formSubmit, M = clickLink,
N = approveRequest, O = rejectRequest.

As shown in Figure 2.5, a UI log is not specifically recorded to capture pre-
identified routines. A UI log may contain multiple and interleaved executions of
one/many routine/s (cf. in Figure 2.5 the blue/red boxes that group the user actions
belonging to R1 and R2, respectively), as well as redundant behaviour and noise.

2The dedicated action logger is integrated within SmartRPA, a self-developed RPA tool down-
loadable from this link: https://github.com/bpm-diag/smartRPA

3In [25], it is shown how these assumptions can be removed.

https://github.com/bpm-diag/smartRPA
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We consider as redundant any user action that is unnecessary repeated during the
execution of a routine, e.g., a text value that is first pasted in a wrong field by
mistake and then is moved in the right place through a corrective action on the UI.
On the other hand, we consider as noise all those user actions that do not contribute
to the achievement of any routine target, e.g., a window that is resized. In Figure
2.5, the sequences of user actions that are not surrounded by a blue/red box can be
safely labelled as noise.

Based on the foregoing, our segmentation approach, whose main steps are
extensively examined in chapters 4, 5 and 6 aims at identifying the most frequent
observed routine segments from a UI log and then extracting all those user actions
that match a distinguishable pattern as represented by the interaction model of a
valid routine segment R (i.e., the output of the human-in-the-loop interaction step),
thus filtering out redundant actions and noise. To be more specific, any sequence of
user actions in the UI log that can be replayed from the initial to the final marking
of the Petri net-based interaction model of R is said to be a routine trace of R, i.e.,
a complete execution instance of R within the UI log. For example, a valid routine
trace of R1 is ⟨A, B, C, D, E, F , G, H, I, L⟩. The interaction model of R1 suggests
that valid routine traces are also those ones where: (i) A is skipped (if the user is
already logged in the client email); (ii) the pair of actions ⟨D, E⟩ is performed in
reverse order; (iii) the sequence of actions ⟨F , G, H, I⟩ is executed several time
before submitting the Google form. On the other hand, two main routine traces can
be extracted from R2: ⟨A, B, M, N⟩ and ⟨A, B, M, O⟩, again with the possibility
to skip A, i.e., the access to the client email. Note that, within a routine trace, the
concept of time is usually defined in a way that user actions in a trace are sorted
according to the timestamp of their occurrence.

By analyzing the log, it can be noted that: A and B are shared by R1 and R2,
as they are included in the interaction models of both routines. A is potentially
involved in the enactment of any execution of R1 and R2, while B is required by
all executions of R1 and R2, but it is not clear the association between the single
executions of B and the routine executions they belong to. The complexity of the
segmentation task here lies in understanding to which routine traces the execution
of A and B belong.

We conclude this section by introducing the concept of routine-based log as
a special container that stores all the routine traces extracted by a UI log and
associated to a generic interaction model. Thus, the final outcome of the envisioned
approach to the segmentation of UI logs will be a collection of as many routine-based
logs as are the interaction models of interest.
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Chapter 3

Segmentation in RPA

This thesis aims to explore the issue of automated segmentation in RPA (C1)
through the evaluation of two research questions:

• RQ1.1: what are the variants of a segmentation solution needed to properly
deal with different kinds of UI logs?

• RQ1.2: to what extent such variants are supported by literature approaches?

To answer these research questions, Section 3.1 first introduces the problem.
Then, starting from the concrete RPA use case in the administrative sector (cf.
Section 2.3) Section 3.2 explains how a segmentation technique should behave in
presence of three different (and relevant) forms of UI logs, which may consist of:
(i) several executions of the same routine, (ii) several executions of many routines
without the possibility to have user actions in common, and (iii) several executions of
many routines with the possibility to have user actions in common. Finally, Section
3.3 investigates how and if the current state-of-the-art segmentation approaches
tackle such forms of UI logs.

3.1 The Segmentation Issue

Commercial RPA tools allow SW robots to automate a wide range of routines
in a record-and-replay fashion and capture in dedicated UI logs the execution of
high-volume routines previously performed by a human user on the interface of a
computer system. As reported in [42], in the early stages of the RPA life-cycle it is
required the support of skilled human experts to: (i) identify the candidate routines
to automate by means of interviews and observation of workers conducting their
daily work, (ii) record the interactions that take place during routines’ enactment
on the UI of software applications into dedicated UI logs, and (iii) manually specify
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their conceptual and technical structure (often in the form of flowchart diagrams)
for defining the behaviour of SW robots.

This approach is ineffective in the case of UI logs that keep track of many routines
executions, since the designer should have a global vision of all possible variants
of the routines to define the appropriate behaviours of SW robots, which becomes
complicated when the number of variants increases. Indeed, in the presence of UI
logs that collect information about several routines, the recorded actions are mixed
in some order that reflects the particular order of their execution by the user, making
the identification of candidate routines in a UI log a time-consuming and error-prone
task. The issue to automatically understand which user actions contribute to a
particular routine segment inside a UI log and cluster them into well-bounded routine
traces (i.e., complete execution instances of a routine) is known as segmentation
[5, 55].

A first approach proposed by Bosco et al. [17] makes this identification less
time-consuming and error-prone, as it enables to automatically extract from a UI log,
which records the UI interactions during a routine enactment, those routine steps to
be automated with a SW robot. While this approach is effective in case of UI logs
that keep track of single routine executions, i.e., there is an exact 1:1 mapping among
a recorded user action and the specific routine it belongs to, it becomes inadequate
when the UI log records information about several routines whose actions are mixed
in some order that reflects the particular order of their execution by the user. In
addition, since the same user action may belong to different routines, the automated
identification of those user actions belonging to a specific routine is far from trivial.

Towards this direction, in their Robotic Process Mining framework [55], Leno
et al. propose to exploit the User Interface (UI) logs recorded by RPA tools to
automatically discover the candidate routines that can be later automated with SW
robots. To date, when considering state-of-the-art RPA technology, it is evident that
the RPA tools available in the market are not able to learn how to automate routines
by only interpreting the user actions stored into UI logs [5]. The majority of state-of-
the-art segmentation approaches can properly extract routine segments (i.e., repeated
routine behaviours) from unsegmented UI logs when routines are not interleaved
from each other. Only a few works are able to partially untangle unsegmented UI logs
consisting of many interleaved routines, but with the assumption that any routine
provides its own, separate universe of user actions. This is a relevant limitation since
it is quite common that real-world routines may share the same user actions (e.g.,
copy and paste data across cells of a spreadsheet) to achieve their objectives.

To address the limitations as mentioned above, in this thesis, we have proposed
an interactive approach to the discovery of routine traces from unsegmented UI logs
[3], that is able to segment a UI log that records in an interleaved fashion many
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different routines with shared user actions but not the routine executions, thus losing
in accuracy when there is the presence of interleaving executions of the same routine.

3.2 Identifying the Segmentation Variants

Given a UI log that consists of events including user actions with the same granularity1

and potentially belonging to different routines, in the RPA domain segmentation is
the task of clustering parts of the log together which belong to the same routine. In a
nutshell, the challenge is to automatically understand which user actions contribute
to which routines and organize such user actions in well-bounded routine traces
[5, 55].

As shown in Section 2.5, in general, a UI log stores information about several
routines enacted in an interleaved fashion, with the possibility that a specific user
action is shared by different routines. Furthermore, actions providing redundant
behaviour or not belonging to any of the routines under observation may be recorded
in the log, generating noise that should be filtered out by a segmentation technique.
Based on the above considerations, and on a concrete analysis of real UI logs
recorded during the enactment of the routines presented in Section 2.3, i.e. R1 and
R2, to address RQ1.1 we have identified three main forms of UI logs, which can
be categorized according to the fact that: (i) any user action in the log exclusively
belongs to a specific routine (Case 1); (ii) the log records the execution of many
routines that do not have any user action in common (Case 2); (iii) the log records
the execution of many routines, and the possibility exists that some performed user
actions are shared by many routines at the same time (Case 3). In the following,
we analyze the three cases’ characteristics and their variants. For the sake of
understandability, we use a numerical subscript ij associated with any user action
to indicate that it belongs to the j − th execution of the i− th routine under study.
Of course, this information is not recorded in the UI log, and discovering it (i.e.,
identifying the subscripts) is one of the “implicit” effects of segmentation when
routine traces are built.

Case 1. This is the case when a UI log captures many executions of the same
routine. Of course, in this scenario it is impossible to distinguish between shared
and non-shared user actions by different routines since the UI log keeps track only
of executions associated with a single routine. Two main variants exist:

• Case 1.1. Starting from the use case in Section 2.3, let us consider the case
of a UI log that records a sequence of user actions resulting from many non-

1The UI logs created by generic action loggers usually consist of low-level events associated
one-by-one to a recorded user action on the UI (e.g., mouse clicks, etc.).
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(a) Case 1.1 (b) Case 1.2

Figure 3.1. Variants for Case 1

interleaved executions of R1 (cf. Figure 3.1(a)). We also have the presence of
some user actions that potentially belong at the same time to many executions
of the routine itself. This is the case of loginMail, which can be performed
exactly once at the beginning of a user session and can be “shared” by many
executions of the same routine. Applying a segmentation technique to the
above UI log would trivially produce a segmented UI log where the (already
well-bounded) executions of R1 are organized as different routine traces: the
blue and grey vertical lines outline the routine traces, while the light blue line
outlines R1 itself.

• Case 1.2. The same segmented UI log is obtained when the executions of R1

are recorded in an interleaved fashion in the original UI log (cf. Figure 3.1(b)).
Here, the segmentation task is more challenging because the user actions of
different executions of the same routine are interleaved among each others,
and it is not known a priori which execution they belong to.

Both variants of Case 1 are affected by noise or redundant actions. The logs
contain elements of noise, i.e., user actions Yk∈{1,n} ∈ Z (remind that Z is the
universe of user actions allowed by a UI log, as introduced in Section 2.5) that are
not allowed by R1, and redundant actions like copy and paste that are unnecessary
repeated multiple times. Noise and redundant actions need to be filtered out during
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(a) Case 2.1 (b) Case 2.2

(c) Case 2.3 (d) Case 2.4

Figure 3.2. Variants for Case 2

the segmentation task because they do not contribute to achieving the routine’s
target. In the following analysis, we do not consider the presence of noise and
redundant actions anymore since their handling is similar for all the cases.

Case 2. In this case, a UI log captures many executions of different routines,
assuming that the interaction models of such routines include only transitions
associated with user actions that are exclusive for those routines. To comply with
the latter constraint, let us suppose that in both interaction models of R1 and R2
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the transitions loginMail and accessMail are not required. Four main variants of Case
2 can be identified:

• Case 2.1. Let us consider the UI log in Figure 3.2(a). The output of the
segmentation task would consist of a segmented log where the (already well-
bounded) executions of R1 and R2 are organized as different routine traces:
(i) the blue and grey vertical lines outline the routine traces of R1, (ii) the
yellow and orange vertical lines outline the routine traces of R2, while (iii) the
outer light blue and red lines outline respectively the routines R1 and R2. In
the following, the colouring scheme will be kept the same.

• Case 2.2. Similarly to what already seen in Case 1.2, many executions of the
same routine may be interleaved among each other (cf. Figure 3.2(b)), e.g.,
the first execution of R1 is interleaved with the second execution of R1, the
first execution of R2 is interleaved with the second execution of R2, and so on.

• Case 2.3. Another variant is when the UI log records in an interleaved fashion
many different routines but not the routine executions (cf. Figure 3.2(c)), e.g.,
the first execution of R2 follows the first execution of R1, the second execution
of R2 follows the second execution of R1, and so on.

• Case 2.4. The complexity of the segmentation task becomes more challenging
in presence of both interleaved routines and routine executions (cf. Figure
3.2(d)), e.g., the first execution of R1 is interleaved with the second execution
of R1, the second execution of R1 is interleaved with the first execution of R2,
the first execution of R2 is interleaved with the second execution of R2.

Case 3. In this case, a UI log captures many executions of different routines, and
such routines may share some user actions. This case perfectly reflects what happens
in the use case of Section 2.3. In particular, loginMail and accessMail are shared by
R1 and R2, as they are included in the interaction models of both routines. Four
variants can be distinguished:

• Case 3.1. Let us consider the UI log depicted in Figure 3.3(a). loginMail is
potentially involved in the enactment of any execution of R1 and R2, while
accessMail is required by all executions of R1 and R2, but it is not clear
the association between the single executions of accessMail and the routine
executions they belong to. The complexity of the segmentation task here lies in
understanding to which routine traces the execution of loginMail and accessMail
belong to. The outcome of the segmentation task will be a segmented log
where the executions of R1 and R2 are organized as different routine traces
according to the colouring scheme explained in Case 2.1.
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(a) Case 3.1 (b) Case 3.2

(c) Case 3.3 (d) Case 3.4

Figure 3.3. Variants for Case 3
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• Case 3.2. This is the case when the UI log records interleaved executions of
the same routine in the presence of shared user actions (cf. Figure 3.3(b)),
e.g., the first execution of R1 is interleaved with the second execution of R1,
and the first execution of R2 is interleaved with the second execution of R2.

• Case 3.3. Another variant is when the UI log records in an interleaved fashion
many different routines but not the routine executions in the presence of shared
user actions (cf. Figure 3.3(c)), e.g.: the first execution of R2 follows the first
execution of R1 and the second execution of R2 follows the second execution
of R1.

• Case 3.4. The segmentation task becomes more challenging in the presence
of more complex UI logs consisting of both interleaved routines and routine
executions with shared user actions (cf. Figure 3.3(d)), e.g., the first execution
of R1 is interleaved with the second execution of R1, the second execution of
R1 is interleaved with the first execution of R2, and the first execution of R2

is interleaved with the second execution of R2.

The above three cases and their variants have in common that all the user
actions are stored within a single UI log. It may happen that the same routine is
spread across multiple UI logs, particularly when multiple users are involved in the
execution of the routine on different computer systems. This case can be tackled by
“merging” the UI logs where the routine execution is distributed into a single UI log,
reducing the segmentation issue to one already analysed case. It is worth noticing
that although the classification of cases and variants was illustrated with only two
routines (interleaving or not), the classification is defined generically and applies to
any number of routines.

3.3 State of the Art

In RPA, segmentation is still not so explored since the current practice adopted by
commercial RPA tools for identifying the routine steps often consists of detailed
observations of workers conducting their daily work. Such observations are then
“converted” in explicit flowchart diagrams [42], which are manually modeled by
expert RPA analysts to depict all the potential behaviours (i.e., the traces) of a
specific routine. As the routine traces have already been (implicitly) identified in
this setting, segmentation can be neglected.

On the other hand, following a similar trend that has been occurring in the BPM
domain [64], the research on RPA is moving towards the application of intelligent
techniques to automate all the steps of an RPA project, as proven by many recent
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Table 3.1. Literature approaches to tackle segmentation variants

Papers Case 1 Case 2 Case 3
1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

Agostinelli et al. [7] ✓ ✓ ✓ ✓ ✓ ✓ ∼ ∼
Agostinelli et al. [3] ✓ ✓ ✓ ✓ ✓

Baier et al. [13] ✓ ✓

Bayomie et al. [14] ✓

Bosco et al. [17] ✓ ✓

Kumar et al. [47] ✓ ✓

Leno et al. [51] ✓ ∼ ✓ ∼ ∼ ∼
Liu [60] ✓ ✓ ∼ ∼ ∼

Fazzinga et al. [30] ✓ ✓ ✓

Ferreira et al. [32] ✓ ✓

Mannhardt et al. [62] ✓ ✓

Măruşter et al. [67] ✓

Srivastava et al. [80] ✓ ✓

works in this direction (see below). In this context, segmentation can be considered
as one of the “hot” key research efforts to investigate [5, 55].

To answer RQ1.2, Table 3.1 summarizes the current literature techniques that
could be leveraged to tackle the different variants of the segmentation issue. We will
use ✓ to denote the full ability of an approach to deal with a specific UI log variant,
while ∼ denotes that the approach is only partially able to deal with a specific UI
log variant (i.e., under certain conditions). In the following, we discuss to what
extent existing literature approaches can support such variants. It is worth noticing
that the assessment of the literature approaches is based on what was reported in
the associated papers.

Concerning RPA-related techniques, Bosco et al. [17] provide a method that
exploits rule mining and data transformation techniques, able to discover routines
that are fully deterministic and thus amenable for automation directly from UI logs.
This approach is effective in the case of UI logs that keep track of well-bounded
routine executions (Case 1.1 and Case 2.1) and becomes inadequate when the UI log
records information about several routines whose actions are potentially interleaved.
In this direction, Leno et al. [51] propose a technique to identify execution traces of a
specific routine relying on the automated synthesis of a control-flow graph, describing
the observed directly-follow relations between the user actions. The technique in
[51] is able to achieve cases 1.1, 1.2 and 2.1, and partially cases 2.2, 2.3 and 2.4, but
(for the latter) it loses in accuracy in the presence of recurrent noise and interleaved
routine executions. However, they are not able to handle UI logs that record in an
interleaved fashion shared user actions of many different routines.

To tackle the main limitation of the above techniques, in this thesis we have
presented an approach [3] that tackles the segmentation challenge relying on three
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main steps: (i) an ad-hoc frequent-pattern identification technique to automatically
derive the observed routine segments from a UI log (cf. Chapter 4), (ii) a human-
in-the-loop interaction to filter out those segments not allowed by any real-world
routine execution (cf. Chapter 5), and (iii) a routine traces detection component
that exploits trace alignment in Process Mining to cluster all user actions belonging
to a specific routine segment into well-bounded routine traces (cf. Chapter 6). The
approach is able to extract routine traces from unsegmented UI logs that record in
an interleaved fashion many different routines but not the routine executions, thus
losing in accuracy when there is the presence of interleaving executions of the same
routine. In addition, it is also able to properly deal with shared user actions required
by all routine executions in the UI log, thus achieving the cases 1.1, 2.1, 2.3, 3.1,
and 3.3. It is worth noticing that the routine traces detection component can be
employed as a supervised segmentation technique [7] able to achieve all variants of
cases 1, 2, and (partially) 3, except when there are interleaved executions of shared
user actions of many routines. In that case, the risk exists that a shared user action
is associated with a wrong routine execution (i.e., Case 3.3 and Case 3.4 are not
covered). While in [7], to make the technique works, it is required to know at the
outset the structure (i.e., the interaction models) of the routines to identify in the
UI log, in [3] this assumption has been mitigated by semi-automatically discovering
such structures in the form of routine segments, and then used them as input for
the routine traces detection component [7].

Even if more focused on traditional business processes in BPM rather than on
RPA routines, Bayomie et al. [14] address the problem of correlating uncorrelated
event logs in process mining in which they assume the model of the routine is known.
Since event logs allow to store traces of one process model only, this technique is
able to achieve Case 1.1 only. In the field of process discovery, Măruşter et al. [67]
propose an empirical method for inducing rule sets from event logs containing the
execution of one process only. Therefore, as in [14], this method is able to achieve
Case 1.1 only, thus making the technique ineffective in the presence of interleaved
and shared user actions. A more robust approach, developed by Fazzinga et al. [30],
employs predefined behavioural models to establish which process activities belong
to which process model. The technique works well when there are no interleaved
user actions belonging to one or more routines since it cannot discriminate which
event instance (but just the event type) belongs to which process model. This
makes [30] effective to tackle Case 1.1, Case 2.1, and Case 3.1. Closely related to
[30], there is the work of Liu [60]. The author proposes a probabilistic approach to
learn workflow models from interleaved event logs, dealing with noises in the log
data. Since each workflow is assigned with a disjoint set of operations, it means the
proposed approach is able to achieve both cases 1.1 and 2.1, but partially cases 2.2,
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2.3, and 2.4 (the approach can lose accuracy in assigning operations to workflows).
Differently from the previous works, Time-Aware Partitioning (TAP) techniques

cut event logs based on the temporal distance between two events [80, 47]. The main
limitation of TAP approaches is that they rely only on the time gap between events
without considering any process/routine context. For this reason, such techniques
cannot handle neither interleaved user actions of different routine executions nor
interleaved user actions of different routines. As a consequence, TAP techniques are
able to achieve cases 1.1 and 2.1.

There exist other approaches whose target is not to exactly resolve the segmen-
tation issue. Many research works exist that analyze UI logs at different abstraction
levels, which can be potentially valuable for realizing segmentation techniques. With
the term “abstraction” we mean that groups of user actions to be interpreted as
executions of high-level activities. Baier et al. [13] propose a method to find a global
one-to-one mapping between the user actions that appear in the UI log and the
high-level activities of a given interaction model. This method leverages constraint-
satisfaction techniques to reduce the set of candidate mappings. Similarly, Ferreira
et al. [32], starting from a state-machine model describing the routine of interest
in terms of high-level activities, employ heuristic techniques to find a mapping
from a “micro-sequence” of user actions to the “macro-sequence” of activities in the
state-machine model. Finally, Mannhardt et al. [62] present a technique that maps
low-level event types to multiple high-level activities (while the event instances, i.e.,
with a specific timestamp in the log, can be coupled with a single high-level activity).
However, segmentation techniques in RPA must enable to associate low-level event
instances (corresponding to user actions) to multiple routines, making abstractions
techniques ineffective to tackle all those cases where is the presence of interleaving
user actions of the same (or different) routine(s). Consequently, all abstraction
techniques are effective to achieve Case 1.1 and Case 2.1 only.

The analysis of the related work has pointed out that the majority of literature
approaches are able to properly extract routine traces from unsegmented UI logs
when the routine executions are not interleaved from each others, which is far from
being a realistic assumption. Only a few works [30, 7, 51, 60] have demonstrated the
full or partial ability to untangle unsegmented UI logs consisting of many interleaved
routine executions, but with any routine providing its own, separate universe of user
actions. However, we did not find any literature work able to properly deal with
user actions potentially shared by many routine executions in the UI log. This is
a relevant limitation since it is quite common that a user interaction with the UI
corresponds to the executions of many routine steps at once.

Moreover, it is worth noticing the majority of the literature works rely on the
so-called supervised assumption, which consists of some a priori knowledge of the
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structure of routines. Of course, this knowledge may ease the task of segmenting
a UI log. But, as a side effect, it may strongly constrain the discovery of routine
traces only to the “paths” allowed by the routines’ structure, thus neglecting that
some valid yet infrequent routine variants may exist in the UI log.

Finally, we want to underline that process discovery techniques [11] can also play
a relevant role in tackling the segmentation issue, as demonstrated by some literature
works [60, 30, 14]. However, the problem is that most discovery techniques work with
event logs containing behaviours related to the execution of a single process model
only. And, more importantly, event logs are already segmented into traces, i.e., with
clear starting and ending points that delimitate any recorded process execution.
Conversely, a UI log consists of a long sequence of user actions belonging to different
routines without any clear starting/ending point. Thus, a UI log is more similar to
a unique (long) trace consisting of thousands of fine-grained user actions. With a
UI log as input, the application of traditional discovery algorithms seems unsuited
to discover routine traces and associate them to some routine models, even if more
research is needed in this area.
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Chapter 4

Segments Discovery through
Frequent-Pattern Identification

The results of the investigation conducted in the previous chapter, allow us to derive
a new research question required to properly tackle C1:

• RQ1.3: Which steps are required to make the automated segmentation of UI
logs less dependent by the intervention of RPA human experts?

To properly address RQ1.3, we envision an interactive approach to the automated
segmentation of UI logs [3] that allows to automatically understand which user
actions contribute to which routines inside a UI log and cluster them into well-
bounded routine traces. To be more precise, as shown in Figure 4.1, starting from an
unsegmented UI log previously recorded by an RPA tool, the first step is to inject into
the UI log the end-delimiters of the routines under examination. An end-delimiter
is a dummy action added to the UI log immediately after the user action that is
known to complete a routine execution. If we consider the case study of Section
2.3, an end-delimiter is always required after the final action of R1, i.e., formSubmit,
and after one of the final actions or R2, i.e., approveRequest or rejectRequest. Here,
we assumed that the knowledge of the final action(s) of a routine is given at the
outset rather than to know a priori the structure (i.e., the interaction models) of the
routines to identify in the UI log. Such information can be obtained, for example,
by interviewing the users that are in charge to execute the routines of interest.

The second step of the approach automatically extracts the observed routines’
behaviours (i.e., the routine segments) directly from the UI log with the end-
delimiters. To this aim, we employ a frequent-pattern identification technique [22],
which has been properly customized for this purpose.

Since from the previous step there is the possibility that some (not allowed)
segments are identified as if they would be valid, the third step of the approach
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Figure 4.1. Overview of our interactive approach to the segmentation of UI logs

involves a human-in-the-loop interaction to filter out these segments (cf. Chapter
5). Specifically, we infer the declarative constraints (i.e., the temporally extended
relations between user actions) that must be satisfied throughout a routine segment.
In this way, we enable human experts to identify and remove those constraints that
should not be compliant with any real-world routine behaviour, thus removing the
wrongly discovered routine segments from the UI log.

Finally, starting from any of the remaining (valid) routine segments, we employ
a customized version of a trace alignment technique in Process Mining [2], (cf.
Algorithm 1, Chapter 6) to automatically detect and extract the routine traces
by the original UI log. Such traces will be stored in a dedicated routine-based log.
Therefore, the outcome of our segmentation approach will be a collection of as many
routine-based logs as are the number of valid routine segments discovered by the
approach itself. By identifying the routine traces, we are also able to filter out those
actions in the UI log that are not part of the routine under observation and hence are
redundant or represent noise. The implementation of our interactive approach to the
segmentation of UI logs is available at: https://github.com/bpm-diag/AutSeg.

The overall approach can be considered as semi-supervised, since we know a priori
the end-delimiters to be associated to any user action that ends a routine execution.
On the other hand, the approach is not aware of the concrete behaviour of the
routines of interest, which will be discovered by the approach itself, thus integrating
the usage of automated techniques with the intervention of human experts in some
specific points of the approach.

In the following section, we discuss in detail the frequent-pattern identification
step (cf. Section 4.1), instantiating it over the RPA use case of Section 2.3. Then,
we conclude the Chapter by showing its ability to outperform existing literature
approaches in terms of supported segmentation variants (cf. Section 4.2).

4.1 Frequent-Pattern Identification

Pattern identification is a common task in data sequences analysis. As an example,
in the field of smart spaces, patterns are identified in sensor logs representing human

https://github.com/bpm-diag/AutSeg
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Figure 4.2. A dataset compression step in segments discovery

routines [58]. These patterns are then used to learn models of human behaviour
that can be used at runtime for activity recognition or anomaly detection. In such a
scenario, authors in [22] proposed an approach based on the minimum description
length (MDL) principle. In this thesis, we have customized the technique presented
in [22] for automatically identifying the routine segments from UI logs with the
end-delimiters properly converted into ad-hoc datasets.

The algorithm takes a dataset of a sequence of sensor events witnessing human
interactions with the environment as input. At each step, the algorithm looks for
patterns that best compress the dataset. A pattern consists of a specific sequence of
sensor events and all of their occurrences in the dataset. In our RPA application
scenario, the sensor events represent the user actions involved in each routine(s)
execution(s), and the frequent patterns are the discovered routine segments.

Starting from a single pattern for each different sensor event, the algorithm at
each step tries to extend patterns aiming at the best compression possible. Every
instance of the pattern, in particular, is replaced by a symbol associated with
the pattern. The compression of a dataset D given a pattern P is given by the
formula DL(D)

DL(D|P )+DL(P ) , where DL(D) represent the description length, measured
for example in bits of the dataset with the current patterns, DL(D|P ) represents
the description length of D if all of the occurrences of P are replaced with a symbol,
and DL(P ) represents the description length of the pattern, which must be taken
into account in compression evaluation. The algorithm stops as soon as no further
compression is possible, returning all the patterns found (i.e., all the discovered
routine segments). Figure 4.2 shows a compression step where a pattern P of
repeating events (for simplicity, colours have been used instead of labels) is identified
and the dataset is compressed accordingly. Noteworthy, for certain parts of the
dataset, no pattern is found whose definition improves compression (except the
initial patterns of length one).

We show now how an execution instance of the above algorithm can be applied
to the following UI log (that already includes the end-delimiters) generated from
the case study of Section 2.3: U = {A, B, C11, D11, E11, F11, G11, H11, I11, L11,

X, B, M21, N21, Z, B, C12, D12, E12, F12, G12, H12, I12, L12, X, B, M22, O22, Z,

. . . , A, B, C1(i−1), Y1, D1(i−1), E1(i−1), F1(i−1), G1(i−1), G1(i−1), G1(i−1), H1(i−1),

I1(i−1), L1(i−1), X, B, M2(i−1), N2(i−1), Z, B, Yn−1, C1i, D1i, E1i, Yn, F1i, G1i,
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H1i, I1i, I1i, I1i, L1i, X, B, M2i, O2i, Z}. For the sake of understandability, we use
a numerical subscript ji associated with any user action to indicate that it belongs
to the i− th execution of the j − th routine under study. This information is not
recorded into the UI log, and discovering it (i.e., identifying the subscripts) is one of
the “implicit” effects of segmentation when routine traces are built. Note that A and
B are not decorated with subscripts since they can potentially belong to executions
of R1 or R2. The log contains elements of noise, i.e., user actions Yk∈{1,n} that are
not allowed by R1 and R2, and redundant actions like G and I that are unnecessary
repeated multiple times. X and Z are the end-delimiters for the executions of R1

and R2.
The delimiters injection stage is crucial to drive the discovery of the largest

possible set of valid routine segments. Otherwise, the technique would detect only a
small subset of them. For example, let us suppose that the UI log includes only user
actions related to two routines, A and B, without the presence of any end-delimiter.
In this case, the UI log will likely include different sequences of consecutive routine
segments of the kind A*, B* or AB*. In this condition, any compression algorithm
will likely merge multiple routine segments into cumulative symbols (e.g., AAA, BB,
ABAB) rather than highlighting single routine executions. This issue becomes less
relevant when there are no repetitive actions between the execution of two separate
routines. However, while the latter assumption is reasonable in recording human
habits, it is far from being realistic in the case of UI logs recording low-level user
actions performed during the interaction with a computer system.

Based on the foregoing, the output of the segments discovery stage is represented
by a set of identified frequent segments (some of them may not be compliant with
the real-world routine behaviours, see the next section), as follows:

• {⟨F , G⟩, ⟨C, D, E⟩, ⟨H, I, L⟩, ⟨C, D, E, F , G, H, I, L⟩, ⟨B, C, D, E, F ,

G, H, I, L⟩, ⟨A, B, C, D, E, F , G, H, I, L⟩}

• {⟨A, B⟩, ⟨B, M⟩, ⟨B, M, O⟩, ⟨B, M, N⟩}

4.2 Assessing the Robustness of the Segments Discovery
Stage

In this section, we evaluate the robustness of our approach in the presence of UI logs
of a growing size that provide an increasing amount of routine variants. Specifically,
we assessed to what extent the approach is able to (re)discover routine segments that
are known to be recorded into the input UI logs. We have synthetically generated
144 different UI logs in a way that each UI log consists of 1000 routine executions
and is characterized by a unique configuration by varying the following inputs:
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Table 4.1. Experiments’ results. For each segmentation case the number of actions is 28,
21 and 20 (resp.). Only logs with 20 different allowed segments are shown here, and the
number of valid routine behaviours is the 70% of the 1000s that were introduced in the
UI logs, while the other 30% may be affected by noise.

Case 1 # discovered segments (valid/wrong)

Noise 0% 10% 20%

no repetitive actions 20/2 20/88 20/118
repetitive actions 20/11 16/161 16/179

Case 2 # discovered segments (valid/wrong)

Noise 0% 10% 20%

no repetitive actions 20/2 20/59 20/69
repetitive actions 20/10 20/132 20/136

Case 3 # discovered segments (valid/wrong)

Noise 0% 10% 20%

no repetitive actions 20/6 20/53 20/67
repetitive actions 20/13 20/146 20/170

• valid_routine_segments: number of different routines segments (5/10/15/20),
in terms of allowed behaviours, included in the UI log.

• alphabet_size: size of the alphabet of user actions for each segmentation case:
Case 1 (13/18/23/28); Case 2 (15/16/18/21); Case 3 (13/15/17/20).

• valid_traces: percentage of allowed behaviours recorded into the UI log (50%/
70%/100%). The remaining portion of the UI log (50%/30%) may be dirty,
i.e., it contains routine executions potentially affected by noise.

• percentage of noise in the remaining (dirty) portion of the UI log (10%/20%).

The synthetic UI logs generated for the test and the complete list of results can
be analyzed at: http://tinyurl.com/icsoc2021. Due to the long list of results
we present in Table 8.1 only a view in one of the most complex cases to tackle. The
results indicate that the approach scales very well in case of an increasing number of
different routine segments to be discovered and with an alphabet of user actions of
growing size. The computation time is not shown since it ranges from milliseconds
for UI logs with 5 different routine segments up to a few seconds for UI logs with 20
segments. This result was expected since more segments in a UI log means more
executions to analyze and interpret.

http://tinyurl.com/icsoc2021
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By analyzing the results, we can infer that the approach is able to discover the
same allowed routine segments that were synthetically introduced in the routine
executions recorded in the UI logs, achieving the following segmentation cases:
1.1, 2.1, 2.3, 3.1 and 3.3. On the other hand, our approach seems to lack in the
computation of valid routine segments in the presence of repetitive user actions
(i.e., user actions that are repeated in a loop) when there are several routine
segments generated by different executions of the same routine. This is because
similar sequences of user actions tend to be compressed together, and since they are
generated from the same routine, the risk exists that different sequences are wrongly
recognized as the same and bounded together, thus leading to a number of routine
segments lower than ones that were synthetically introduced.
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Chapter 5

Human-in-the-loop Interaction
through SCAN

Once the routine segments have been discovered, the possibility exists that many
of them represent not allowed routine behaviours. This happens because a UI log
combines the execution of several routines that are usually interleaved from each
others. In addition, in case of routines that make use of the same kinds of user
actions to achieve their goals, it may happen that new patterns of repeated user
actions, which represent potential not allowed routine segments, are rather detected
as valid ones within the UI log. Towards this direction we realized a self-developed
tool, called SCAN (Segments Compliance ANalisys), that concretely implement
the human-in-the-loop interaction step allowing users to filter out those routines’
segments not compliant with any real-world routine behaviours. In the following
section, we discuss in detail the required steps to enact the human-in-the-loop
interaction step through SCAN, instantiating it over the RPA use case of Section 2.3.
Then, we measured the impact of the human-in-the-loop interaction to filter out the
wrongly discovered routine segments. Specifically, we present the results of SCAN
to investigate to which extent it satisfies three relevant non-functional requirements,
namely effectiveness (cf. Section 5.2), robustness (cf. Section 5.3) and usability (cf.
Section 5.4). The target is to understand if SCAN can potentially complement the
traditional solutions provided by open-source Process Mining tools for helping users
to perform the segmentation task in RPA.

5.1 Leveraging the human-in-the-loop

On the basis of the experiments performed in Section 4.2, it becomes clear that the
employed frequent-pattern identification algorithm is able to (re)discover the allowed
routine segments that are known to be recorded in the input UI logs. However,
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since there is the possibility that some (not allowed) segments are identified as if
they would be valid, a human-in-the-loop interaction is required to filter out all
those routine segments representing behaviours that should not be allowed by any
real-world routine of interest.

To address this issue, we developed a stand-alone web application called SCAN1

(Segments Compliance ANalysis), which allows to support human experts in per-
forming the human-in-the-loop step. The tool enables to visualize the declarative
constraints (i.e., the temporally extended relations between user actions) that must
be satisfied throughout the discovered routine segments from the UI log. The con-
straints are represented using Declare, a well-known declarative process modeling
language introduced in [85]. This knowledge allows human experts to identify and
remove those constraints that should not be compliant with any real-world routine
behaviour. Detecting and removing these constraints means to filter out all the
not allowed (i.e., wrongly discovered) routine segments. Declare constraints can be
divided into four main groups: existence, relation, mutual and negative constraints.
We notice that the use of declarative notations has been already demonstrated as
an effective tool to visually support expert users in the analysis of event logs [76].

For example, if we consider the discovered segment ⟨C, D, E⟩, the following
(simple) Declare constraints (among the others) hold: Init(C) and End(E), meaning
that routines’ executions starting with C or ending with E have been discovered into
the UI log. An expert user that is aware of the behaviour of the real-world routines
under analysis can immediately understand that the above Declare constraints should
not hold in reality, since R1 and R2 can start only with A or B and end with L,
O or N . For this reason, the above Declare constraints can be considered both as
wrongly representative of the routines under analysis. As a consequence, all the
discovered segments for which one of the above Declare constraints hold can be
immediately discarded. For the sake of space, we do not show here all the Declare
constraints that hold for any of the discovered segments. However, we point out that
the iterative analysis of the Declare constraints associated to the discovered segments
will support the human experts to easily detect and filter out those segments that
must not be later emulated by SW robots. The list of valid routine segments for our
case study is the following:

• W1 = ⟨A, B, C, D, E, F , G, H, I, L⟩

• W2 = ⟨B, C, D, E, F , G, H, I, L⟩

• W3 = ⟨B, M, O⟩

• W4 = ⟨B, M, N⟩
1https://github.com/bpm-diag/SCAN

https://github.com/bpm-diag/SCAN
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5.2 Evaluating the Effectiveness of SCAN

An approach that simplifies the segmentation task in RPA, and in particular the
inspection of routine segments required to filter out the not allowed ones in presence
of many routine variants, can be considered as a relevant artefact to investigate.
Consequently, the research question (RQ1.4) we aim to investigate is the following
one: “What is the effectiveness of employing an approach that semi-automatically
filters out the not allowed routine segments, thus neglecting the (manual) identification
stage of the not allowed real-word routine behaviour, through declarative constraints?".

In order to address RQ1.4 we enacted a controlled experiment involving a sample
of 18 Master students of the course of Process Management and Mining (PMM)
held at Sapienza University of Rome, to investigate the effectiveness of employing
SCAN to perform the segmentation task when compared to DISCO2. Specifically,
we selected DISCO as target Process Mining tool since it provides user-friendly
functionalities, integrated with filtering facilities that allows to filter out the not
allowed routine segments as stored into event logs.

The user study was conducted as follows. Two case studies of increasing complex-
ity were submitted to two different user groups of PMM students. The provided case
studies are inspired by the one presented in Section 2.3 and we refer to them as Case
Study #1 and Case Study #2. A first group of 9 PMM students were instructed to
perform the case studies #1 and #2 exclusively with DISCO. We denote with pA1

this first group of users. In parallel, a second group of 9 PMM students received
the same instructions of group pA1 but they are asked to use SCAN rather than
DISCO. We denote with pA2 this second group of users. It is worth noticing that
all the PMM students involved in the user study can be considered expert users in
business process modelling and automation.

To assess the effectiveness of SCAN in filtering out the not allowed routine
segments, we investigated the following experimental hypothesis HA1: Employing
SCAN, thus neglecting the manual identification stage of the not allowed real-word
routine behaviour through declarative constraints, is more effective than employing
traditional approaches (e.g. DISCO) that require to manually identify and filter
out the not allowed routine segments. To validate HA1, a between-subject approach
was used, i.e., each user in pA1 (pA2, respectively) was assigned to a different
experimental condition, related to the exclusive use of SCAN (cA1) or DISCO (cA2)
to perform the required steps for accomplishing both the case studies. Any user in
pA1 was preliminarily instructed about the functionalities of SCAN throughout a
short training session, while the users in pA2 already know how to use DISCO.

We evaluated the validity of HA1 by asking any user expert that completed the

2https://fluxicon.com/disco/

https://fluxicon.com/disco/
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Table 5.1. Effectiveness of SCAN: p-values associated to each question

QA1 QA2 QA3

DISCO SCAN DISCO SCAN DISCO SCAN
5 4 5 4 4 5
4 4 5 3 4 5
4 3 5 3 3 5
4 2 5 3 3 5
4 2 4 2 2 5
3 2 4 2 2 4
3 2 4 1 1 4
2 2 3 1 1 4
1 2 2 1 1 4

p-value: 0.1443957 p-value: 0.0018155 p-value: 0.0005373

user study the following three questions:

• QA1: The segment’s filtering process required to filter out the not allowed
routine segments is a complex task. Do you agree?

• QA2: The inspection of the routine segments is a complex task. Do you agree?

• QA3: SCAN (DISCO, respectively) makes the segmentation task feasible. Do
you agree?

Questions are rated with a 5-point Likert scale ranging from 1 (“strongly disagree")
to 5 (“strongly agree"). To validate QA1, QA2 and QA3 we performed a comparison
of the rates obtained from the questionnaire, respectively in the cases of cA1 and cA2.
Specifically, for each question, we employed a 2-Sample t-test with a 95% confidence
level to determine whether the means between the two distinct populations (i.e.,
pA1 and pA2) involved in cA1 and cA2 differ. We measured the level of statistical
significance by analyzing the resulting p-value. We remind that a p− value ≤ 0.05
is considered to be statistically significant, while a p− value ≤ 0.01 indicates that
there is substantial evidence in favour of the experimental hypothesis. The results of
the analysis are summarized in Table 5.1 that shows the values sorted in descending
order, assigned to the responses of each user.

It appears evident that the experimental hypothesis HA1 is statistically supported
by the results obtained for QA2 and QA3, while it is rejected for QA1. Concerning
QA1, it seems that the segment’s filtering process was relatively easier in SCAN
with respect to DISCO. Still, there is no statistical difference among the two distinct
populations since for QA1, the p-value obtained is 0.1443957, which is greater than
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0.05, and this means that hypothesis HA1 is rejected on QA1. On the other hand,
the inspection of routine segments in DISCO seems to be more complex than SCAN
since, for QA2, the p-value obtained is 0.0018155, which is less than 0.05, and this
means that the hypothesis HA1 is accepted on QA2. Finally, for QA3, we got a
p-value equal to 0.0005373, which is less than 0.05, and this means the hypothesis
HA1 is accepted on QA3. In particular, this value is less than 0.01, meaning that
there is a substantial difference between the means of the two distinct populations.
This is reflected in higher values associated with SCAN and lower values associated
with DISCO, thus making the segmentation task more feasible in SCAN with respect
to DISCO. Therefore, HA1 can be considered partially accepted since it is validated
for both QA2 and QA3 but rejected for QA1, where there is no statistical evidence
that the use of SCAN is more effective than traditional process mining solutions
(e.g., DISCO) in the process of segment’s filtering.

5.3 Assessing the Robustness of SCAN

To investigate the robustness of SCAN to the achievement of user tasks specified in
both Case Study #1 and Case Study #2, we collected the event logs resulting as an
output of the user study, and then we compared them with the ground truth event
logs (i.e., we computed a priori the event logs as results of the case studies). Precisely,
the robustness is measured as the ratio between the number of logs compliant with
the ground truth logs and the total number of logs, both for pA1 (i.e., SCAN) and
pA2 (i.e., DISCO) grouped by Case (i.e., Case Study #1 and Case Study #2).

In the following, we will show the results obtained both for Case Study #1 and
for Case Study #2. Note that both the populations pA1 and pA2 first executed Case
Study #1 in a limited time of 10 minutes and then Case Study #2, considered more
complex, in 20 minutes.

• Case Study #1. Both pA1 and pA2 had 10 minutes to read the assigned track
and run the task either on DISCO (i.e., pA2) or SCAN (i.e., pA1) respectively.
For pA2, it is important to remember that users already know how to use the
tool. The results obtained in this case is that 8 people out of 9 have executed
the task arriving at the right event log, while 1 has obtained a wrong result.
Thus, the robustness in case of pA2 is as follows RobustnesspA2 = 8

9 = 0.88.

On the other hand, for pA1, we remind the reader that the users experienced
SCAN for the first time during this experiments session. In this case, the
number of users who achieved the right result is 6 out of 9, while 3 have reached
a wrong event log. Therefore, the robustness in case of pA1 is RobustnesspA1 =
6
9 = 0.66.
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• Case Study #2. This case was executed immediately after the first one.
The time allowed for achieving the task was 20 minutes due to the major
complexity with respect to the previous one. For the class of users belonging
to pA2, the result obtained was that 4 out of 9 people have computed the right
result while 5 the wrong one. It follows that the robustness in case of pA2 is
RobustnesspA2 = 4

9 = 0.44.

On the contrary, users assigned to pA1 performs much better. Indeed, 7 users
among 9 computed the right result, while 2 the wrong one. As a consequence,
the correctness for the users that used SCAN is RobustnesspA1 = 7

9 = 0.77.

If we make a comparison between the degree of robustness for both SCAN and
DISCO in each case study, it can be stated that:

• For Case Study #1, better results are achieved with DISCO. This is because
the original log contains solely 8 routine variants, and among these only 4 were
correct. For this reason, they were easily identifiable and therefore easy to
be manually filtered. Regarding SCAN, we can say that since this was the
first time the users experienced the tool, it is possible that the limited time
of 10 minutes was not enough for completing the task. In addition, it is also
possible that users had not yet settled into using SCAN even if they had been
instructed during the short training session, thus before the user experiments.

• On the other hand, for Case Study #2, better results are achieved with SCAN.
Since the original log presents more than 80 variants, the manual identification
stage of the wrong routine segments makes the filtering steps even more
challenging with DISCO (that required the users to filter the wrong routine
segments one by one) rather than with SCAN. Indeed, through SCAN, it is
possible to apply a limited number of declarative constraints to filter out a large
number of wrong routine segments, thus neglecting the manual identification
stage of DISCO. In addition, the learning effective plays an essential role in
the achievement of good results since users trained their-self while completing
the task outlined in Case Study #1. This learning experience is thus reflected
in the accomplishment of Case Study #2.

5.4 Quantifying the Usability of the UI of SCAN

We investigated the degree of usability of the UI developed for SCAN through
the administration of the SUS (Software Usability Scale) questionnaire (which is
one of the most widely used methodologies to measure the users’ perception of the
usability of a tool [77]) to the 9 PMM students that were involved in the experimental
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condition c1, i.e., that used SCAN. The questionnaire consists of 10 statements,
adapted to SCAN and, evaluated with a Likert scale that ranges from 1 (“strongly
disagree") to 5 (“strongly agree"):

• I think that I would like to use SCAN frequently.

• I found SCAN unnecessary complex.

• I thought SCAN was easy to use.

• I think that I would need the support of a technical person to be able to use
SCAN.

• I found the various functions in SCAN well integrated.

• I thought there was too much inconsistency in SCAN.

• I would imagine that most people would learn to use SCAN very quickly.

• I found SCAN very awkward to use.

• I felt very confident using SCAN.

• I needed to learn a lot of things before I could get going with SCAN.

Figure 5.1. Computation of the SUS overall score

At the end of the questionnaire, an overall score is assigned to the questionnaire.
To compute the SUS score for each PMM student, we need to determine each item’s
score contribution, which will range from 0 to 4. For odd items the score contribution
is the scale position minus 1 (xi− 1). While for even items, the score contribution is
5 minus the scale position (5− xi). To get the overall SUS score, multiply the sum
of the item score contributions by 2.5. Thus, overall SUS scores range from 0 to 100
in 2.5-point increments. The score contributions can range from 0 to 40 (10 items
with five scale steps ranging from 0 to 4). So, to obtain the multiplier necessary to
increase the apparent range of the scale added to 100, divide 100 by the maximum
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sum of 40, equal to 2.5. Finally, to obtain the final SUS score, it is necessary to
compute the average of those obtained by individual users. Figure 5.1 represents
all the values associated with the responses of the questions, the SUS score of each
user, and the final SUS score.

Figure 5.2. Curved Grading Scale Interpretation of final SUS Scores

The final SUS score can be compared with several benchmarks presented in the
research literature to determine the degree of usability of the tool being evaluated.
In our test, we made use of the benchmark given in [77], which associates to each
range of the final SUS score a percentile ranking varying from 0 to 100, indicating
how well it compares to other 5,000 SUS observations performed in the literature.
The collection of the ranks associated with any statement of the SUS is reported in
Figure 5.1, calculated following the steps discussed in [77]. Since the final SUS score
obtained by the tool was 82.5, according to the selected benchmark (see Figure 5.2
taken from [77]), the usability of the tool corresponds to a rank of A, which indicates
a degree of usability almost excellent.

The result shows that the UI implemented has been comprehensive and straight-
forward since the first use of the tool. And also that the use of the tool has been
found effective and performing in achieving the required tasks.
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Chapter 6

Routine Traces Detection
through Trace Alignment

In this chapter, we present the last component of our approach to the automated
segmentation of UI logs which exploits trace alignment in Process Mining to detect
from a UI log all those user actions belonging to a valid routine segment (i.e., as
output of the human-in-the-loop interaction step) and cluster them into well-bounded
routine traces, thus achieving the segmentation task (C1).

The chapter is organized as follows. In Section 6.1, we first provide the relevant
background on trace alignment. Then, in Section 6.2, we present an overview of the
general approach to the routine traces detection depicting its main steps, and we
describe the technical details of the algorithm that implements it over the RPA use
case of Section 2.3.

6.1 Alignment between UI Logs and Interaction Models
as Petri Nets

Trace alignment [2, 25, 24] is a conformance checking technique within Process
Mining that is employed to replay the content of any trace of an event log against a
process model represented as a Petri net, one event at a time. For each trace in the
log, the technique identifies the closest corresponding trace that can be parsed by
the model, i.e., an alignment, together with a fitness value, which quantifies how
much the trace adheres to the process model. The fitness value can vary from 0 to 1.
A value equals to 1 means a perfect matching between the trace and the model.

We perform trace alignment by constructing an alignment of a UI log U (note
that we can consider the entire content of the UI log as a single trace) and an
interaction model W (representing a valid routine segment) as a Petri Net, which
allows us to exactly pinpoint where deviations occur. To this aim, the events in
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U need to be related to transitions in the model, and vice versa. Building this
alignment is far from trivial, since the log may deviate from the model at an arbitrary
number of places. To be more specific, we need to relate “moves” in the log to
“moves” in the model in order to establish an alignment between an interaction
model and a UI log. However, it may be that some of the moves in the log cannot
be mimicked by the model and vice versa. We explicitly denote such “no moves” by
≫. In particular, we are interested in synchronous moves between U and W . If they
exist, the user actions involved in such synchronous moves are extracted and stored
into a routine-based log.

Definition 6.1.1 (Alignment Moves). Let W = (P, T, S) be a Petri net and U be
a UI log. A legal alignment move for W and U is represented by a pair (qU , qW )
∈ (T ∪ {≫} × T ∪ {≫}) \ {(≫,≫)} such that:

• (qU , qW ) is a move in log if qU ̸= ≫ and qW = ≫,

• (qU , qW ) is a move in model if qU =≫ and qW ∈ T ,

• (qU , qW ) is a synchronous move if qU = qW .

An alignment is a sequence of alignment moves:

Definition 6.1.2 (Alignment). Let W = (P, T, S) be a Petri net with an initial
marking and final marking denoted with mi and mf . Let also U be a UI log. Let
ΓW be the universe of all alignment moves for W and U . Sequence γ ∈ Γ∗

W is an
alignment of W and U if, ignoring all occurrences of ≫, the projection on the first
element yields U and the projection on the second yields a sequence σ′′ ∈ T ∗ such
that mi

σ′′
−→ mf .

A move in log for a transition t indicates that t occurred when not allowed; a move
in model for a visible transition t indicates that t did not occur, when, conversely,
expected. Many alignments are possible for the same UI log and a Petri net.

γ1 =
A B M N

A B M N

γ2 =
A ≫ B M N

≫ Inv3 B M N

Figure 6.1. Alignments of
⟨A, B, M, N⟩ and the Petri net
in Figure 2.4.

For example, Figure 6.1 shows two possible align-
ments for a UI log consisting of the following se-
quence of user actions ⟨A, B, M, N⟩ and the Petri
net in Figure 2.4, representing the interaction
model of R2. Note how moves are represented
vertically. For example, as shown in Figure 6.1,
the first move of γ1 is (A, A), i.e., a synchronous
move of A, while the first and second move of γ2

are a move in log and model, respectively. We aim at finding a complete alignment
of U and W with minimal number of deviations (i.e., of moves in log/model) for
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Figure 6.2. Overview of the general approach underlying the routine traces detection
component

visible transitions, also known in literature as optimal alignments. With reference to
the alignments in Figure 6.1, γ1 have four synchronous moves and γ2 have one move
in log for visible transitions and one move in model for the invisible transition Inv3
(that does not count for the computation of the fitness value). As a consequence, γ1

is an optimal alignment and can be returned. Note that its fitness value is exactly
equal to 1, since it is consists only of synchronous moves enabling U to be completely
replayed from the initial to the final marking of W . For the sake of simplicity, we are
assuming here that all the deviations have the same severity. However, the severity
of a deviation can be customized on a ad-hoc basis [25].

6.2 The General Approach and the Routine Traces De-
tection Algorithm

The general approach to the routine traces detection consists of two methodological
phases, filtering and trace alignment, to be applied in sequence, as shown in Figure 6.2.
Algorithm 1 shows the technical details of the algorithm that concretely implements
such phases1.

The algorithm takes in input a UI log U , a set of interaction models Wset and
returns a set of routine-based logs Uset. For each interaction model w ∈Wset (one

1https://github.com/bpm-diag/SupSeg

https://github.com/bpm-diag/SupSeg
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Algorithm 1: Algorithm implementing the routine traces detection com-
ponent

Parameters : a UI log U , a set of interaction models Wset

Result: A set Uset of routine-based logs
1 Uset ← ∅;
2 forall w ∈ Wset do
3 Uw ← duplicate(U);
4 Uw

ϕ ← filter(Uw);
5 Uw

R ← ∅;
6 repeat
7 γopt ← trace alignment (Uw

ϕ ,w);
8 γopt

sm ← extract(γopt);
9 if γopt

sm is not empty then
10 create a trace τsm from γopt

sm ;
11 create a temporary UI log Uw

sm from τsm;
12 fitness ← compute fitness from trace alignment (Uw

sm,w);
13 if fitness is 1 then
14 add τsm to Uw

R ;
15 else
16 discard τsm;
17 end
18 remove the events associated to τsm from Uw

ϕ ;
19 end
20 until γopt

sm is not empty;
21 add Uw

R to Uset;
22 end
23 return Uset

for each valid routine segment of interest) represented as Petri nets, the algorithm
performs the following steps:

1. Filtering: The filtering phase is used to filter out noisy actions from the UI
log. Specifically, for each interaction model w ∈Wset, a local copy of the UI
log Uw is created (line 3). Then, all user actions that appear in Uw but
that can not be replayed by any transition of w are removed from Uw. The
output of this step is a model-based filtered UI log Uw

ϕ (line 4). Working with
Uw

ϕ rather than with Uw will allow us to apply the trace alignment technique
neglecting all the potential moves in log with user actions that could never
be replayed by w. As a consequence, this will drastically reduce the number
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of alignment steps required to find optimal alignments, and at the same time
optimize the performance of the algorithm. Before moving to the next step, a
new routine-based log Uw

R is initialized (line 5).

2. Trace Alignment: The second step consists of applying the trace alignment
technique discussed in Section 6.1 for any interaction model w ∈Wset and its
associated model-based filtered UI log Uw

ϕ . This enables to extract from Uw
ϕ

all those user actions that match a distinguishable pattern with w in the form
of an optimal alignment γopt (line 7). Trace alignment allows to pinpoint the
synchronous moves between Uw

ϕ and w. If they exist, the user actions involved
in synchronous moves are extracted and stored into γopt

sm (line 8). Note that
focusing just on synchronous moves allows us to exclude all redundant user
actions from the analysis. Then, the algorithm:

(a) creates a trace τsm consisting of the user actions associated with the
synchronous moves stored in γopt

sm (line 10);

(b) creates a (temporary) UI log Uw
sm containing only the trace τsm (line

11), which is required to properly run (again) trace alignment;

(c) performs a new alignment between Uw
sm and w with the goal to compute

the fitness value (line 12).

In case the fitness value is equal to 1, this means that the Uw
sm (and, conse-

quently, τsm) can be replayed from the start to the final marking of w, making
τsm a valid routine trace of w. In such a case, τsm is stored into Uw

R (line 14)
and all the events associated to the synchronous moves in τsm are removed
by Uw

ϕ (line 18). On the contrary, a fitness value lower than 1 indicates the
presence of at least one move in the model in τsm with respect to w, i.e., τsm

can not be completely replayed by w and is not a valid routine trace, meaning
that we can discard it (line 16).

The above two steps can be repeated until γopt
sm is not empty (line 20), i.e.,

until there are synchronous moves in the computed alignment. At the end of the
iteration, the routine-based log Uw

R is stored into Uset (line 21), and the algorithm
starts to analyze the next interaction model into Wset. In conclusion, the algorithm
computes a number of routine-based logs equal to the number of interaction models
under study (associated to the valid routine segments).

It is worth to notice that: (i) for the computation of the trace alignment,
the algorithm relies on the highly-scalable planning-based alignment technique
implemented in [25]; and (ii) the routine traces detection component that exploits
trace alignment in Process Mining can also be employed as a stand-alone supervised
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segmentation technique as described in [7], under the assumption to know a priori
the interaction models of the routines to identify in the UI log (cf. [63]). In this
setting, the technique is able to achieve all variants of cases 1, 2, and (partially)
3, except when there are interleaved executions of shared user actions of many
routines. In that case, the risk exists that a shared user action is associated with
a wrong routine execution (i.e., Case 3.3 and Case 3.4 are not covered). While in
[7], to make the technique works, it is required to know at the outset the structure
(i.e., the interaction models) of the routines to identify in the UI log, in [3] we
have mitigated this assumption by semi-automatically discovering such structures in
the form of routine segments, and then used them as input for the routine traces
detection component, since the approach is not aware of the concrete behaviour of
the routines of interest, which the approach itself will discover, but instead exploits
the end-delimiters associated to any user action that ends a routine execution.

6.3 An Execution Instance of the Routine Traces De-
tection Algorithm

We show now an execution instance of Algorithm 1 applied to the original UI log
generated from the case study of Section 2.3:

U = {A, B, C11, D11, E11, F11, G11, H11, I11, L11, B, M21, N21, B, C12, D12,

E12, F12, G12, H12, I12, L12, B, M22, O22, . . . , A, B, C1(i−1), Y1, D1(i−1), E1(i−1),

F1(i−1), G1(i−1), G1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), B, M2(i−1), N2(i−1), B,

Yn−1, C1i, D1i, E1i, Yn, F1i, G1i, H1i, I1i, I1i, I1i, L1i, B, M2i, O2i}. The log
contains elements of noise, i.e., user actions Yk∈{1,n} that are not allowed by routine
segments W1, W2, W3 and W4, and redundant actions like G and I that are
unnecessary repeated multiple times. In addition, A and B are shared user actions,
as they are included in the interaction models of both R1 and R2. In particular, A

is potentially involved in the enactment of any execution of R1 and R2, while B is
required by all executions of R1 and R2.

The algorithm takes in input: (i) the UI log U and (ii) the interaction models of
W1, W2, W3 and W4, and computes a set of routine-based logs Uset by executing
the following steps:

• (line 1): initializes the set of interaction models Uset;

• (line 2): iterates on the interaction models of W1, W2, W3 and W4. For the
sake of space, we focus only on the steps computed in the case of W1;

• (line 3): creates a local copy of U , namely Uw;
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• (line 4): filters Uw from noise, so Uw
ϕ = {A, B, C11, D11, E11, F11, G11, H11,

I11, L11, B, B, C12, D12, E12, F12, G12, H12, I12, L12, B, . . . , A, B, C1(i−1),

D1(i−1), E1(i−1), F1(i−1), G1(i−1), G1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), B,
B, C1i, D1i, E1i, F1i, G1i, H1i, I1i, I1i, I1i, L1i, B}.

In this step, the user actions Yk∈{1,n} and M, N, O (being exclusively related
to W3 and W4) are filtered out by the log. On the other hand, redundant
actions still remain in the log;

• (line 5): initializes the routine-based log Uw
R ;

• (line 7): computes the trace alignment between Uw
ϕ and the interaction model

of W1, namely w.

A B C11 D11 E11 F11 G11 H11 I11 L11 B ...

A B C D E F G H I L ≫ ...

• (line 8): extracts the synchronous moves from γopt into γopt
sm .

• (line 9): evaluates to True, as γopt
sm is not empty;

• (line 10): computes the trace τsm starting from γopt
sm . So τsm = ⟨A, B, C11,

D11, E11, F11, G11, H11, I11, L11⟩;

• (line 11): adds the trace τsm in Uw
sm;

• (line 12): computes trace alignment between Uw
sm and w.

A B C11 D11 E11 F11 G11 H11 I11 L11

A B C D E F G H I L

Uw
sm can be replayed without deviations from the start to the final marking of

w, meaning a perfect fitness between the log and the interaction model;

• (line 13): evaluates to True, as the fitness of the alignment (cf. line 12) is
equal to 1;

• (line 14): adds τsm in Uw
R , i.e., τsm is recognized as a valid routine trace;

• (line 18): removes all the events associated with the synchronous moves in
τsm from Uw

ϕ . Thus, Uw
ϕ = {B, B, C12, D12, E12, F12, G12, H12, I12, L12, B,

. . . , A, B, C1(i−1), D1(i−1), E1(i−1), F1(i−1), G1(i−1), G1(i−1), G1(i−1), H1(i−1),

I1(i−1), L1(i−1), B, B, C1i, D1i, E1i, F1i, G1i, H1i, I1i, I1i, I1i, L1i, B};

• (line 20): Since γopt
sm is not empty, the algorithm comes back to line 6. After

repeating the above steps from line 7 to line 14, the algorithm computes
the following alignment:
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... B A B C1(i−1) D1(i−1) E1(i−1) F1(i−1) G1(i−1) G1(i−1) G1(i−1) H1(i−1) I1(i−1) L1(i−1) B ...

... ≫ A B C D E F G ≫ ≫ H I L ≫ ...

and discovers a second routine trace τsm = ⟨A, B, C1(i−1), D1(i−1), E1(i−1),

F1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1)⟩ and adds it in Uw
R . Like before, all

the events associated with the synchronous moves in τsm are removed from Uw
ϕ .

Thus, Uw
ϕ = {B, B, C12, D12, E12, F12, G12, H12, I12, L12, B, . . . , G1(i−1),

G1(i−1), B, B, C1i, D1i, E1i, F1i, G1i, H1i, I1i, I1i, I1i, L1i, B}.

The subsequents iterations of the algorithm do not discover new routine traces
for W1. In particular, the alignment steps between w and Uw

ϕ are all moves
in the log since all the As are already extracted. It is worth to notice that
redundant user actions G and I are removed from Uw

ϕ during these iterations.
The algorithm ends to iterate when γopt

sm is empty, that is, when there are no
more synchronous moves to extract;

• (line 21): After the last iteration ends, the routine-based log Uw
R is stored

into Uset, and the algorithm starts to analyze the interaction model of W2.

The outcome of the segmentation task will be a set of routine-based logs Uset (in
this case four, since the number of interaction models under study is four) generated
as follows:

• UW1 = {⟨A11, B11, C11, D11, E11, F11, G11, H11, I11, L11 ⟩, . . . , ⟨A1(i−1),

B1(i−1), C1(i−1), D1(i−1), E1(i−1), F1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), ⟩}

• UW2 = {⟨B12, C12, D12, E12, F12, G12, H12, I12, L12, ⟩, . . . , ⟨B1i, C1i, D1i,

E1i, F1i, G1i, H1i, I1i, L1i ⟩}

• UW3 = {⟨B21, M21, N21⟩, . . . , ⟨B2(i−1), M2(i−1), N2(i−1)⟩}

• UW4 = {⟨B22, M22, O22⟩, . . . , ⟨B2i, M2i, O2i⟩}
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Chapter 7

SmartRPA: Automated
Generation of SW Robots

RPA solutions access the UI layer of software (SW) applications and provide a virtual
workforce of SW robots that can mimic human keyboard and mouse interactions with
a UI as if a real person was doing them. To take full advantage of this technology,
organizations leverage the support of skilled human experts that preliminarily
observe how routines are executed on the UI of the involved SW applications
and then implement the executable RPA scripts required to automate the routines
enactment by SW robots on a target computer system. However, the current practice
is time-consuming and error-prone, as it strongly relies on the ability of the human
experts to correctly interpret the routines (and their variants) to automate.

Although RPA is generally considered an easy to implement technology, in-depth
knowledge is necessary to create reliable and scalable SW robots, particularly when
intermediate user inputs are required to progress the execution of a routine properly.
As a result, between 30% and 50% of initial RPA implementations are estimated to
fail [74, 49]. Consequently, an approach that simplifies the realization of an RPA
project, particularly the generation of SW robots in the presence of many routine
variants, can be considered a relevant artefact to investigate. This leads to the
following research questions:

• RQ2.1: Which steps are required to make the generation of SW robots less
dependent by the intervention of RPA human experts?

• RQ2.2: How can the detection of variants (and related variation points) in a
routine be automatically achieved?

• RQ2.3: What is the effectiveness of employing an approach that synthesizes
SW robots neglecting the (manual) specification stage of the routines’ behaviour
through flowchart models?
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In answering these questions, we contribute to three recent challenges related
to C2 that were put forward in [5, 6, 20, 54], namely: (C2.1) the automated
identification of the routine steps to robotize from a UI log, (C2.2) the automated
detection of all the routine variants that require some user input to proceed with
their execution, and (C2.3) the automated synthesis of executable RPA scripts for
enacting SW robots at run-time. The result is an approach and an implemented tool,
called SmartRPA, which is able to (i) interpret the UI logs recording the mouse/key
events that happen on the UI of the SW applications involved in many routine
executions, (ii) discover all the variants (and variation points) of the routine under
observation, and (iii) automatically combine them into an executable RPA script,
which can be reactively synthesized into a single SW robot.

Differently from the literature approaches to automated RPA scripts generation
from UI logs (cf. Section 7.2), which enable to automate straightforward routines
that have essentially no variance and do not require any human intervention, the SW
robots generated by SmartRPA are obtained to handle the intermediate user inputs
that are required during the routine execution, thus enabling to emulate the most
suitable routine variant for any specific combination of user inputs as observed in the
UI log. This makes the synthesis of SW robots performed by SmartRPA reactive to
any user decision found during a routine execution. “Reactivity” highlights the fact
that the behaviour of SW robots is determined immediately before their enactment,
as it is driven by the specific user inputs required to execute the routine. This also
means that reactivity enable the potential run-time generation of as many SW robots
as are the different variants of the routine to be emulated. Therefore, SmartRPA
acknowledges the benefit of human involvement at multiple points of the routine
execution, leveraging the “human-in-the-loop” model for the automated execution
of routines that are less static and require variable decisioning [20].

We structure this Chapter according to the activities suggested by Johannesson
and Perjons in [43] for delivering a design science artefact. Specifically, Section 7.1
describes our research methodology. Section 7.2 discusses the related work solutions
to the research challenges, with the aim to derive the technical requirements for the
design of the SmartRPA approach, whose main steps are examined in Section 7.3.
Section 7.4 outlines the algorithm for the automated detection of variation points
from many routine executions.

7.1 Research Methodology

Our research methodology is inspired to the Design Science approach described
by Johannesson and Perjons in [43]. The methodology is applied in four distinct
sequential phases: problem formulation and objectives, requirements definition,
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design and development, and demonstration and evaluation. See Figure 7.1 for an
overview.

Figure 7.1. Research methodology based on Johannesson and Perjons [43]

Problem Formulation and Objectives. In this phase, which is already tackled
at the beginning of the Chapter, we first identify and specify the research problem
to be tackled, i.e., the reactive synthesis of SW robots in an automated way from UI
logs. Then, we justify its significance in the RPA field. The relevance of the problem
is also supported by the presence of three related research challenges, i.e., C2.1,
C2.2 and C2.3, taken from previous works [5, 6, 20, 54]. Finally, we elaborate
three main research questions, i.e., RQ2.1, RQ2.2 and RQ2.3, for guiding our
research towards the definition of an artefact to solve the problem. Such an artefact
is represented by an approach and an implemented tool, called SmartRPA, which
is able to interpret the UI logs keeping track of many routine executions, and
automatically and reactively synthesize SW robots that emulate the most suitable
routine variant for any specific intermediate user input that is required during the
routine execution.

Requirements Definition. The second phase consists of eliciting the requirements
on the outlined artefact. After providing the required background concepts on
routines, SW robots, and UI logs, together with a real-life RPA use case (cf. Chapter
2) we investigate the related work, including documented solutions to similar research
challenges, to extract the technical requirements needed to support the design and
development of SmartRPA.

Design and Development. Based on the analysis of the related work and the
derived technical requirements, in the third phase, we make design decisions explicit,
discussing the SmartRPA approach and describing its stages to answer RQ2.1.
Moreover, we present in detail a novel algorithm to automatically identify routine
variants and variation points from UI logs, thus addressing RQ2.2 and enabling a
reactive synthesis of the SW robots. Lastly, we show the technical steps enacted to
develop the SmartRPA approach as a real implemented tool.

Demonstration and Evaluation. In the fourth phase, to understand the general
quality of SmartRPA to tackle the research challenges, we analyze four non-functional
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requirements on the artefact. Specifically, we first perform many synthetic exper-
iments employing UI logs of increasing complexity to assess the robustness and
feasibility of our approach to the identification of routine variants and variation
points for the reactive synthesis of SW robots. Then, to answer RQ2.3, we perform
a controlled experiment involving real users exploiting the RPA use case of Section
2.3 to investigate the effectiveness of the SmartRPA approach when compared to
a traditional model-based approach for the generation of SW robots. Finally, we
quantify the usability of the UI provided by the tool implementing the SmartRPA
approach.

7.2 Related Work Analysis and Requirements Specifica-
tion

Most commercial RPA tools enable RPA user experts to tag the variation points
directly in the flowchart model of the routine under study. That is, it can be modeled
and properly emulated by a SW robot if an in-depth knowledge of the anatomy
and working of the routine is available during the modeling task. But without
such knowledge, which is based on careful observation sessions of human users that
perform routine tasks in their computer systems, it becomes extremely complex
both to identify the candidate steps of the routine to specify in the flowchart model
(cf. C2.1) and the detection of those variants that would require some user inputs
to proceed with their execution (cf. C2.2). In a nutshell, the ability of commercial
RPA tools to emulate all the possible behaviours of the routine depends on the
correctness of the modeling task, without which it is not possible to automatically
generate the executable RPA scripts to be embedded into the SW robots (cf. C2.3).

In this direction, this section presents the relevant approaches from the research
literature that are able to mitigate the above challenges by skipping the modeling
activity of the flowchart diagram. Then, in an attempt to fully address them, we
derive a set of technical requirements from realizing our SmartRPA approach.

Specifically, the research literature proposes many approaches that are targeted
to automatically discover and implement the behaviour of SW robots by interpreting
the working of the routines stored into previously recorded UI logs. Towards
the addressing of C2.1, the works [56, 17] provide an approach, coupled with an
implemented tool, that leverages process mining techniques to (i) keep track of
UI actions performed within Excel and Google Chrome into an event log, and (ii)
extract the fragments of a routine that can be eventually automated by a third-party
RPA tool. Similarly, in [59] it is presented the Desktop Activity Mining tool, which is
able to record the user actions performed during an office-based routine task on a UI
and to discover a process model describing the behaviour of such routine. Note that
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the proposed tool is based on recording the mouse click coordinates on the screen
and storing them in a dedicated UI log. Thus it can not replicate the same user’s
observed behaviour performed in different computer systems, lacking portability.

Even if the works [56, 17, 59] do not tackle the issue of synthesizing executable
RPA scripts from the identified candidate routines, they had the vision that the
behaviour of a routine can be inferred by observing and interpreting the footprint of
the routine itself from a UI log that keeps track of its user actions. This directly
leads to three technical requirements that need to be met to tackle C2.1:

Req1 - Recording UI Logs: A feature to record the low-level user actions executed
during one (or many) routine(s) enactment on the UI in the form of a UI log
is strongly needed to keep track of its behaviour.

Req2 - Extraction of Routine-based Logs from a UI Log: A UI log may
contain interleaved executions of one/many routine/s. As the target is to
reason on the behaviour of a single routine per time, it is needed to pre-process
the UI log to: (i) identify which user actions contribute to which routines
inside the UI log; (ii) organize such actions into well-bounded routine traces
and (iii) store them into a dedicated routine-based log.

Req3 - Events Abstraction: A routine-based log is characterized by low-level
user actions, and thus may contain noise and redundant actions that must be
filtered out from the log itself.

With the aim to tackle C2.2, in [33], the authors propose a self-learning approach
to detect high-level RPA-rules from historical low-level behaviour logs automatically.
An if-then-else deduction logic is used to infer rules from behaviour logs by learning
relations between the different routines performed in the past. Then, such rules are
employed to facilitate the SW robots’ instantiation. A similar approach is adopted
in [50], where the FlashExtract framework is presented. FlashExtract allows for
the extraction of relevant data from semi-structured documents using input-output
examples, from which one can derive the relations underlying the working of a
routine. Finally, in [68] the authors identify repetitive edits to text documents by
keeping track of a graph of edits and suggest automation rules for SW robots.

The above works have provided a relevant contribution for the semi-automatically
detection of variation points of a routine, with the aim to support the manual
development of SW code by RPA expert users. In the direction of realizing a fully
automated approach to the detection of routine variants and variation points, we
can derive the following requirement:

Req4 - Automated Detection of Variation Points: An algorithm that is able
to automatically detect the variation points of a routine from a routine-based
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log is required to reactively generate SW robots that correctly emulate the
routine’s behaviour.

Concerning C2.3, the literature proposes only a relevant solution, called Robid-
ium [52], that tackles this challenge. Robidium is an approach and an open-source
tool that enables to generate executable scripts (by only interpreting UI logs) that
the commercial RPA tool UI Path1 can enact.

The main feature of Robidium is that it automates only the most frequent
routine variant among the ones discovered in the UI log. This is because Robidium
synthesizes RPA scripts that do not require intermediate user inputs during their
execution, i.e., it is focused on the generation of unattended SW robots. On the
other hand, to synthesize attended SW robots, the following requirement is needed:

Req5 - Automated and Reactive Generation of SW Robots: A solution that
is able to automatically and reactively synthesize RPA scripts is required for
the generation of attended SW robots able to enact the most suitable routine
variant depending on the specific input conditions at hand.

It is worth noticing that another group of approaches exists towards SW robots
automation, which focuses on learning the structure of a routine from natural
language descriptions of the procedure underlying the routine itself. In this direction,
the work [40] defines a new grammar for complex workflows with chaining machine-
executable meaning representations for semantic parsing. In [57], the authors provide
an approach to learn activities from text documents employing supervised machine
learning techniques such as feature extraction and support vector machine training.
Similarly, in [35] the authors adopt a deep learning approach based on Long Short-
Term Memory (LSTM) recurrent neural networks to learn the relationship between
activities of a routine task. The above works assume the availability of textual
documentation of suitable quality and completeness at the outset, and neglect the
fact that users can perform steps in a routine that are not fully documented to deal
with variations and exceptions. This may potentially lead to imprecise results in
describing the routine’s anatomy. Therefore, these works seem to be particularly
suitable for discovering the desired structure of a routine, in contrast with the
observed one, like happens in all the log-based approaches discussed so far.

Finally, a third group of approaches exist that aim to eliminate human-dependent
training [12, 41]. They rely on probabilistic and machine learning algorithms to
automatically train SW robots to avoid any manual effort. These approaches
are currently the least mature if compared with the others discussed above, but
potentially with the best promises for realizing fully, automated intelligent RPA
approaches.

1www.uipath.com

www.uipath.com
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7.3 Design of the SmartRPA Approach

From a methodological perspective, SmartRPA has been conceptualized and designed
towards addressing the five technical requirements discussed in Section 7.2. In
addition, the approach underlying SmartRPA takes inspiration from the RPM
(Robotic Process Mining) framework presented by Leno et al. in [54]. RPM aims
to support analysts in producing executable specifications of routines in the form
of SW robots, interpreting the routine executions stored in a UI log. Specifically,
RPM envisions a pipeline of three main stages that consist of: (i) collecting and
pre-processing UI logs corresponding to executions of one or more routine executions;
(ii) identifying and discovering candidate routines to be automated with RPA tools;
and (iii) synthesizing executable RPA scripts. Robidium [52] is a concrete example
of how to realize the RPM approach.

To address the technical requirements, SmartRPA incorporates the three main
stages of the RPM framework within a larger approach that includes five operational
steps to be applied in sequence: (i) Log Recording, (ii) Log Processing, (iii)
Event Abstraction, (iv) Process Discovery, and (v) Script Generation, as shown in
Figure 7.2. Note that such methodological steps are useful not only to tackle the
technical requirements, but also serve as our answer to RQ2.1.

Log
Recording

Log
Processing

Event
Abstraction

Process
Discovery

Script
Generation

Figure 7.2. Overview of the SmartRPA approach

Log Recording. SmartRPA belongs to those approaches that learn how to automate
routines “by examples”. Therefore, a UI log that keeps track of the low-level user
actions generated during the interaction with the UIs of multiple SW applications
within the execution of a routine is required to derive its structure. To this end, a
training session in which several users perform the same routine to be automated
is necessary to record the specific UI actions involved in its execution correctly.
While there exist many monitoring and recording solution in the Human-Computer
Interaction field [28] that keep track of the actions that a user is doing on the screen
of a computer system (recorded as mouse click coordinates) during a controlled
experiment, in SmartRPA we need dedicated recording features to produce a raw
UI log corresponding to many executions of the same routine during a pre-defined
period of time (cf. Req1). At the end of the training session, the outcome of this
step will consist of as many UI logs as the users who performed the routine under
analysis from the start to the end.



62 7. SmartRPA: Automated Generation of SW Robots

Log Processing. It comes into play to pre-process the recorded UI logs and make
them suitable for being correctly interpreted. Since any UI log obtained from the
previous step keeps track of single, independent execution of the observed routine, a
merging activity is needed to combine them into a single, larger UI log. In a nutshell,
the content of any recorded UI log obtained after a training session will be considered
as a single trace of the (larger) UI log being generated. Thus, if compared with the
description of UI logs performed in Section 7.1, we can say that SmartRPA enables
to interpret UI logs that are routine-based, i.e., logs that can be already considered
as well segmented since the enactment of any training session will be represented by
a specific routine trace in the log (cf. Req2). Of course, this does not prevent noise
and redundant user actions in the recorded routine traces, whose presence will be
reduced in the next steps.

Event Abstraction. This step is targeted to convert the routine-based UI log
(that will be later employed to generate the executable RPA scripts), which contains
the low-level user actions recorded during the interaction with the UI, into a high-
level version. Such a high-level version can be used for diagnostic and analysis
purposes by expert RPA analysts to (i) filter out noise, i.e., irrelevant events for the
routine execution. For instance, applications related to the operating system such as
Windows Updater may start automatically while the UI log is being recorded, and
they may dirty the recording phase of the users during their training session, thus
they need to be filtered out; (ii) group similar events, mitigating noise (cf. Req3).

Moreover, the high-level routine-based UI log will be used to derive the flowchart
representing the abstract workflow describing the routine behaviour, employing
dedicated high-level descriptive labels to define the high-level activities. We notice
that the Event Abstraction step is an addition with respect to the RPM framework,
which instead focuses on discovering the anatomy of a routine only for execution
purposes.

Process Discovery. This step has a twofold objective:

• It takes in input the high-level routine-based log generated by the Event
Abstraction component to derive the workflow describing the users’ observed
behaviour in the UI. An RPA analyst can analyze this workflow to look at the
high-level structure of the routine under analysis.

• Moreover, the knowledge of the workflow underlying the routine, coupled with
the low-level version of the routine-based UI log, will be used to detect the most
suitable routine variant according to the intermediate user inputs observed
into the UI log and its encoding into a SW robot. In Section 7.4, it is reported
a detailed discussion about the algorithm implemented to the identification of
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the routine variants and the related variation points (cf. Req4), necessary to
obtain a reactive synthesis of the SW robot.

It is worth noticing that in the RPM framework, the Process Discovery step shown
above is (in part) realized through the second stage of the framework, targeted to
the identification and discovering of the candidate routines to be automated. In
SmartRPA, the knowledge about which routine has to be automated is already
embedded into the UI logs obtained by performing the training session at the outset.
Moreover, during the Event Abstraction step, the routine is further cleaned from
noise and redundancies, keeping just the events in the UI that can contribute to the
routine automation.

Script Generation. First of all, this step allows an RPA analyst to personalize
the values stored in the events of the most suitable routine variant detected in the
previous step before the generation and enactment of the SW robot. Finally, taking
into account the edits made, SmartRPA can generate the required executable RPA
script to run the SW robot that emulates the most suitable routine execution on
the UI, by scanning the recorded low-level events stored in the routine-based UI log
and converting them into executable pieces of SW code (cf. Req5).

7.4 Automated Detection of Variation Points of a Rou-
tine

To properly address RQ2.2, in this section, we present an algorithm to identify
different variation points of a routine by inspecting multiple executions of the routine
itself inside the low-level routine-based log obtained as the outcome of the Event
Abstraction step. We remind the reader that variation point is a point in the routine
execution where a user choice needs to be made between multiple possible variants
(cf. Section 2.4). Identifying variation points is fundamental to synthesize SW robots
that emulate the most suitable routine variants in relation to the intermediate user
inputs provided during the routine enactment. To be more specific, Algorithm 2 takes
in input the low-level routine-based log and builds in output a new routine-based
log that categorizes the user actions that contribute to the identification of a new
routine variant, distinguishing them from the (other) actions that are common to
any routine trace recorded in the UI log. In the following, we discuss the main steps
of Algorithm 2 relying on the RPA use case explained in Section 2.3. In particular,
we will refer with Rexample the interaction model of the routine procedure obtained
from connecting with an invisible transition the place “end” of R1 to the place “start”
of R2 (cf. Figures 2.3 and 2.4).
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Algorithm 2: Reactive Synthesis of SW Robots
Parameters : A DataFrame df
Result: A DataFrame resultDF

1 df ← align rows; // Aligning step
2 df[“duplicated"] ← mark duplicated rows; // Marking step
3 resultDF = None; // store final groups
4 previousDecidedDF = None;
5 groups ← group rows of df; // Grouping step
6 for groupDF in groups do // Iterating step
7 if groupDF.duplicated == True then // No decision to take
8 rows ← get the rows of the first trace from groupDF;
9 resultDF.append(rows);

10 end
11 else // variation point
12 if previousDecidedDF then
13 IDs ← IDs of traces compliant with previousDecidedDF;
14 filteredDF ← rows with case ID in IDs from groupDF;
15 decisionDF ← remove redundant rows from filteredDF;
16 end
17 else
18 decisionDF ← remove redundant rows from groupDF;
19 end
20 decisionDialog ← show decision dialog built from decisionDF;

decidedDF ← rows of decisionDF selected in decisionDialog;
resultDF.append(decidedDF); // append rows from decidedDF

21 previousDecidedDF ← decidedDF; // save current decision

22 end
23 end
24 return resultDF

Aligning (line 2) The first step of the algorithm consists of aligning the different
executions recorded in the routine-based log to make them more similar from each
other, when possible. This means, on the one hand, removing user actions that are
irrelevant for the execution of the SW robot, such as special URLs like about:blank
or chrome://newtab/ or low-level events such as enableBrowserExtension or
afterCalculate. And, on the other hand, identifying and moving in the same
point of any trace of the log those sequences of events underlying exactly the same
behaviour in different traces (e.g., copy/paste activities from a specific cell to a
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specific text field) but originally located in different points among the various traces.

Marking (line 3) It is crucial to identify which variation points must be con-
sidered within many routine executions to enact the most suitable routine variant.
To this end, the very first step consists of marking as “duplicated” those rows that
underly exactly the same event performed on the UI in different routine traces of
the log. In a nutshell, the it-h row of a routine trace is considered as duplicated if it
includes an event that is the same in the it-h row of all the other routine traces. We
evaluate two events as identical if the following data fields have the same value for
the event in the it-h row in all the recorded routine traces:

• category: represents the category of the user action, e.g., Browser, Operat-
ingSystem, Clipboard, and MicrosoftOffice;

• application: name of the application where the user action occurred, e.g.,
Google Chrome, Microsoft Excel, etc.;

• concept:name: name of the user action recorded by the Action Logger compo-
nent;

• event_src_path: source path in the operating system related to a user action.
It could indicate the path of a file or folder opened, modified, created or deleted.
It could also denote the path of an executable program that has been opened
or closed;

• event_dest_path: destination path in the operating system related to a user
action. If a file or folder is renamed, the new path name is present in this
column;

• browser_url_hostname: hostname of the url recorded within a routine-based
log. Two rows could have different URLs but the same hostname (e.g.,
www.uniroma1.it/students and www.uniroma1.it/contacts both have uniroma1.it
as hostname);

• xpath: XML Path Language is a query language for selecting nodes in a page.
It is used to uniquely identify a HTML element in a webpage.

Only the above subset of data fields associated with an event in the UI log is
evaluated to detect duplicate rows, because some data fields are always different
among the several executions of a routine. For example, the case ID of a routine
trace or its timestamp is unique and would always lead to false results if they were
considered because all the rows would always result different (i.e., not duplicated),
leading to the identification of many wrong variation points.
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Figure 7.3. Excerpt of the routine-based log describing 3 out of 50 routine traces of
Rexample

To sum up, if an event appears in all the routine traces of a routine-based log
and the rows associated with that event have the same values for all the data fields
discussed above, it means the users consistently executed the same user action on
the UI at a specific point of the routine execution during their training session.
Consequently, such “duplicated” events would not lead to any variation point of the
routine.

On the other hand, if there exists at least a user that performed an action on
the UI in the i-th step of a routine trace that differs (according to the data fields
listed above) from the actions performed at the same i-th step of the other routine
executions, then it means that the associated event only appears in certain routine
traces and not in others, thus identifying a variation point. As a consequence, we
mark as “not duplicated” all the i-th rows of any routine trace under analysis. From
a technical point of view, a new column accepting boolean values called duplicated
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is added to the routine-based log. Figure 7.3 shows a fragment of the user actions
belonging to 3 different routine traces of Rexample identifying a variation point that
leads to three different routine variants. For each row, if the corresponding duplicated
field is set to True, it means the user action associated with that row is present
in all the routine traces of the routine-based log, and the values contained in the
data fields mentioned above are the same across all the routine traces. Otherwise,
duplicated is set to False.

Grouping (line 6) Once all the rows of the low-level routine-based log have been
marked, for each routine trace, the algorithm evaluates them sequentially (following
the timestamped ordering of events in the trace) and creates different groups of
events according to the following conditions:

1. all the sequential rows having the column duplicated set to False, that precede
(but are not preceded by) a row with the column duplicated set to True, are
added to a new group. It is worth noticing this condition is satisfied only when
a routine trace starts with a sequence of rows having the column duplicated
set to False;

2. all the sequential rows having the column duplicated set to False that precede
a row with the column duplicated set to True (and for which condition 1 does
not hold), are added to a new group;

3. all the sequential rows having the column duplicated set to True are added to
a new group.

In a nutshell, a new group of events will be created for any different sequence of
events in a routine trace having the column duplicated set to True or False. When
the above three steps have been applied for any routine trace in the UI log, the i-th
groups of each trace will be merged in a larger i-th group associated with the UI
log. To better understand the rationale of the grouping procedure, let’s analyze the
routine-based log depicted in Figure 7.3:

• the sequence of rows [0,4] has the column duplicated equals to True, since
the user actions associated with that rows are present in all the 3 recorded
routine traces, and the values contained in the columns mentioned above are
the same across all the routine traces. They violate grouping conditions 1 and
2 but satisfy condition 3. Then, they are added to a group, namely A (cf.
Figure 7.4);

• row 5 has the column duplicated equals to False and it follows grouping
condition 2, thus it is added to a new group, namely B (cf. Figure 7.4);
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Figure 7.4. Grouping rows of the low-level routine-based log

• the sequence of rows [6,8] has the column duplicated equals to True for the
same reason of the first item. It violates grouping conditions 1 and 2 but
satisfies condition 3, thus it is added to a new group, namely C (cf. Figure 7.4).

The same reasoning can be performed for the other routine traces of the routine-based
log. Indeed:

• the sequences of rows [9,13] and [19,23] are added to group A;

• the sequences of rows [14,15] and [24,25] are added to group B;
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• the sequences of rows [16,18] and [26,28] are added to group C.

Iterating groups (lines 7-25) Once all groups have been identified, they are
analyzed one by one in a cycle. For each identified group, namely groupDF (line
7), if the corresponding column duplicated is True for all the rows contained in it
(line 8), it means that all the routine traces in that group contain the same user
actions. In this case, since that group does not identify a variation point, the rows
of the routine trace appearing first in the group (line 9) are directly added to
resultDF (line 10). Note that choosing the rows of another trace rather than the
first one recorded in the group would lead to the same effect. Conversely, if the
column duplicated is False, it means that we have detected a variation point to be
considered.

When the algorithm detects a variation point, it is important to ensure that it
is consistent with the routine path executed until that point. Indeed, during each
iteration, the rows associated with the previously decided user actions (i.e., those
actions selected when a variation point is identified) are saved in previousDecidedDF
(line 22). A custom routine-based log called decisionDF is created to store the
rows of the current decision about which user actions enact in the presence of a
variation point. In the first cycle iteration, no decision has been made, so decisionDF
is generated only from the rows of the group that is currently processed (line 17).
In the subsequent iterations, the current group and the previous decision are taken
into account to find the next possible variation point. The case IDs of the routine
traces that have rows in common with the previous decision are selected (line
13). Then, the rows of the routine traces having those case IDs are picked from
the current group groupDF and stored in filteredDF (line 14). This step ensures
that the next possible variation point is in the routine path that starts from the
previously detected variation point.

Finally, decisionDF is generated from the rows in filteredDF (line 15). In this
step, redundant rows are filtered out. Two or more rows of different routine traces
are considered as redundant if the associated user actions store the same values for
the columns mentioned in the step “Marking”. At this point, the user can choose
which user actions to enact in the range of any identified variation point through a
custom dialog (e.g., see Figure 7.5) that is launched just before the script generation
step of the approach.

The custom dialog displays data from decisionDF (line 19), which is used to
bound together all the rows of a routine trace into a single line when a variation
point is detected. To better understand this, consider the group of rows with column
duplicated equals to False in Figure 7.4 containing 5 rows belonging to 3 different
routine traces. The user has to decide which user actions of which routine trace
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Figure 7.5. Custom dialog window to enact the user actions of 3 routine traces of Rexample

in the presence of a variation point

enact, so these 5 rows are grouped together by their ID, and the names of the user
actions related to each routine trace are flattened into a single line. Indeed, the
dialog in Figure 7.5 shows a variation point that contains 3 different user inputs
that led to 3 different execution variants of Rexample: each line represents a routine
trace because it has a unique case ID, and all the user actions names of each routine
trace are flattened into the same line.

Once the user decides which user actions to execute (line 20), the corresponding
rows are appended to the output routine-based log resultDF (line 21). It contains
all the rows related to user decisions as well as rows with column duplicated equals
True (common to every routine trace). Note that resultDF will be the input of the
Script Generation step of the SmartRPA approach.
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Chapter 8

Realizing and Evaluating
SmartRPA

This Chapter is structured as follows. Section 8.1 analyzes the architecture and
the technical aspects of the tool implementing the SmartRPA approach. Then, we
present the results of a multi-step evaluation performed on SmartRPA to investigate
the extent to which the proposed approach (and its implemented tool) satisfies four
relevant non-functional requirements, namely robustness/feasibility (cf. Section 8.2),
effectiveness (cf. Section 8.3) and usability (cf. Section 8.4) employing both synthetic
and real-world datasets. The target is to understand if SmartRPA can potentially
complement the traditional model-based solutions provided by commercial RPA
tools. Section 8.5 concludes the Chapter.

8.1 Architecture and Development of SmartRPA

Starting from the approach outlined in Figure 7.2, the architecture of SmartRPA
integrates five main SW components developed in Python that enable the reactive
synthesis of SW robots according to the intermediate user inputs recorded in the UI
logs, thus emulating the most suitable routine variant for any recorded combination of
user inputs. An overview of the SmartRPA architecture is shown in Figure 8.1. The
tool can be downloaded and tested at: https://github.com/bpm-diag/smartRPA.

The first SW component of the architecture is an Action Logger that concretely
implement the Log Recording step. The Action Logger provides a Graphical User
Interface (GUI) that allows users to select which SW applications s/he wants to
record user actions on. All the applications that are not available in the host
operating system of the user’s computer are disabled by default. Then, the user
can start the training session by clicking on the “Start logger” button, as shown in
Figure 8.2. The Action Logger provides three categories of logging modules:

https://github.com/bpm-diag/smartRPA
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Figure 8.1. SmartRPA architecture

• System Logger : It detects those user actions not related to specific SW ap-
plications, i.e.: creation, renaming, movement and deletion of files/folders;
copy/paste of files/folders; opening/closing of applications; usage of double-
click and hotkeys; insertion/remotion of USB drives.

• Office Logger : It detects the user actions performed within Microsoft Office
applications, i.e.: Excel, Word, and PowerPoint.

• Browser Logger : It detects the user actions performed on web browsers, i.e.:
Google Chrome, Mozilla Firefox, Microsoft Edge, and Opera.

Of course, multiple users can run the Action Logger on their computer system
many times, performing the same routine in different training sessions. When a
training session is completed, i.e., when the routine of interest has been executed from
the start to the end, the user can push the “Stop logger” button to stop the recording
of user actions. The logging modules interact with a Logging Server implemented
with the Flask framework,1 which is in charge to store the user actions captured by

1https://palletsprojects.com/p/flask

https://palletsprojects.com/p/flask
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(Win) (MacOS)

Figure 8.2. GUI of SmartRPA both on Windows and MacOS

the logging modules and organize them as events into several CSV2 routine-based
logs. Each CSV routine-based log contains exactly one (long) trace of user actions
performed in a single training session by a single user. From a technical point
of view, (i) system events are recorded using different Python modules, including
PythonCOM (to access the Windows APIs and COM objects like the Microsoft
Office suite), and MacFSEvents for MacOS; (ii) events generated by Microsoft Office
applications are recorded using the Office JavaScript APIs; and (iii) browser events
are recorded using dedicated JavaScript web extensions developed for each supported
web browser. In Figure 8.3, we show a snapshot of a CSV routine-based log recorded
in one training session involving the execution of Rexample.

The second SW component of the architecture implements the Log Processing
step. Specifically, after n training sessions, the Logging Server will deliver the
n created CSV routine-based logs to the Log Processing component, which uses
Algorithm 3 to import them into a single Pandas dataframe.3 A dataframe is a two-
dimensional size-mutable and heterogeneous tabular data structure with labeled axes
(rows and columns), which is used as the main artefact to represent routine-based
logs in SmartRPA. Of course, SmartRPA also produces an XES4 (eXtensible Event
Stream) version of the datastream that will contain exactly n traces, one for each
recorded CSV routine-based log and can be inspected using the most popular process

2CSV files are file formats that contain plain text values separated by commas. CSV files can
be opened by any spreadsheet program, such as Microsoft Excel, Google Sheets, etc. CSV is only
capable of storing a single sheet in a file, without any formatting and formulas.

3https://pandas.pydata.org/
4XES is the standard for the storage, interchange, and analysis of event logs [38]

https://pandas.pydata.org/
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Figure 8.3. Snapshot of the routine-based log captured during an execution of Rexample

mining tools, such as ProM,5 Disco6 or Apromore.7 The dataframe created by
Algorithm 3 consists of low-level events with fine granularity associated one-by-one
to a recorded user action (e.g., mouse clicks, file selections, etc.). Each row of the
dataframe includes 45 columns with relevant data about the recorded event, i.e.,
its payload, such as: the timestamp, the application that generated the event, the
resources involved, etc., cf. Figure 8.3.

Algorithm 3: Processing CSV routine-based logs
Parameters : A list of logs fileList
Result: A DataFrame combinedDF, A XES file logXES

1 createDirectories(); // where files will be saved
2 dfs ← list(); // list of dataframes
3 for any CSV log in fileList do
4 df ← import CSV log into a DataFrame;
5 df ← rename columns to match XES standard;
6 df ← sort rows by timestamp;
7 df ← create case:concept:name column based on the first timestamp;
8 dfs.append(df);
9 end

10 combinedDF ← combine all dataframes in dfs into a single one;
11 logXES ← export(combinedDF); // exported as XES file
12 return (combinedDF, logXES)

At this point, an Event Abstraction component is used to produce a high-level
routine-based log from the low-level one, by performing the following steps:

5http://www.promtools.org/
6https://fluxicon.com/disco/
7https://apromore.org/

http://www.promtools.org/
https://fluxicon.com/disco/
https://apromore.org/
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Algorithm 4: Event Abstraction
Parameters : A DataFrame df
Result: A DataFrame HighLevelDF

1 HighLevelDF = None;
2 df ← filter irrelevant rows from df;
3 df ← group similar events in df;
4 for row in df do
5 descriptiveRow ← create descriptive string from row;
6 HighLevelDF.append(descriptiveRow);
7 end
8 return HighLevelDF

1. Filtering noise/irrelevant events. The Action Logger records many low-level
events in the dataframe-based routine-based log, such as the interaction with
the browser windows (e.g., user actions “resize”, “open”, “close”), tabs (e.g.,
user actions “move”, “open”, “close”) and content (page zoom, installing
extensions). From a workflow perspective, these events are not relevant for
any RPA analyst that aims to understand the general behaviour of the routine.
For this reason, they are filtered out by the high-level routine-based log under
construction.

2. Grouping similar events. Within a dataframe-based routine-based log, different
low-level events can refer to the same high-level concept. For example, in a web
page, the Action Logger can capture 7 different types of clicks, based on the
element that’s being clicked (“clickButton”, “clickTextField”, “doubleClick”,
“clickTextField”, “mouseClick”, “clickCheckboxButton”, “clickRadioButton”).
All these events just indicate that the user, during the training session, has
clicked on an interactive element on the UI, thus the high-level workflow of the
routine may just show the action “Click on button”, because from the RPA
analyst perspective, it is not relevant what kind of click was performed.

3. Creating descriptive labels. Any recorded event provides a low-level description
of the nature of the user action performed. For example, if the user edits a
cell in Excel, the Action Logger records one of these events: “editCellSheet”,
“editCell”, or “editRange”. From the RPA analyst perspective, all such events
refer to the same concept of “Editing a cell”. To this aim, to make the user
action underlying an event more descriptive for the RPA analyst, further
information (stored in the low-level dataframe-based routine-based log) can
be added to its label, such as the cell and the sheet edited, the value inserted,
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etc. This allows us to create a (more) descriptive label for any event in the
high-level routine-based log, e.g., “Edit cell B3 on Sheet 1 with value ‘x’”.

Concretely, the Event Abstraction component is realized enacting the above
steps through Algorithm 4, and the outcome will be a high-level routine-based log
to be used by the next component of the architecture.
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Figure 8.4. DFG describing a portion of the high-level workflow of Rexample

At this point, the Process Discovery component of the architecture comes into
play. Starting from the high-level routine-based log generated by the Event Abstrac-
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Figure 8.5. Custom dialog window to personalize editable fields of Rexample

tion component, it applies the heuristic miner algorithm (the decision to employ
the heuristic miner has been driven by its ability to discover highly understandable
flowcharts from a BPM analyst perspective [4]) implemented in PM4PY [16] to
derive the high-level workflow describing the overall users’ observed behaviour as a
Directly-Follows Graph (DFG). We show in Figure 8.4 a portion of the high-level
workflow discovered from the high-level routine-based log associated with Rexample.

Then, it applies Algorithm 2 (described in detail in Section 7.4) to automatically
detect the different routine variants among all the routine traces stored in the low-
level dataframe-based routine-based log, by evaluating the potential intermediate
user inputs required to emulate the most suitable version of the routine on the UI.

Finally, there is the Script Generation component. Once the routine variant
to automatize is selected, before its enactment with a SW robot, an RPA analyst
can personalize the values stored in its events through a custom dialog window (cf.
Figure 8.5).

The tool automatically detects the events that can be edited, such as typing
something on a web page, renaming a file, pasting a text, or editing an Excel
cell, and dynamically builds the GUI to let the RPA analyst edit them. After
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Algorithm 5: Python Script Generation
Parameters : A DataFrame df
Result: A Python SW Robot script

1 script ← create a Python file;
2 for row in df do
3 pythonEvent ← generatePythonEvent(row);
4 append pythonEvent to script;
5 end
6 return script

confirmation, the low-level dataframe-based routine-based log is updated. Finally,
the Python executable script based on the selected RPA routine and updated with
the RPA analyst’s edits, is generated by scanning the recorded low-level events in
the dataframe-based log and converting them into executable pieces of SW code in
Python, through Algorithm 5. To properly work the script generation algorithm
relies on Automagica,8 an Open Source framework for process automation, and
Selenium,9 a popular suite of tools for automating web browsers.

Figure 8.6. UiPath sequence

SmartRPA is also able to generate executable RPA scripts compatible with
UiPath, a tool that allows visually designing automation processes. Once the routine
variant to automate along with the RPA analyst’s edits has been generated, the

8https://github.com/automagica/automagica
9https://www.selenium.dev/

https://github.com/automagica/automagica
https://www.selenium.dev/
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Algorithm 6: UiPath Script Generation
Parameters : A DataFrame df
Result: A UiPath SW Robot mainSequence

1 mainSequence ← create main XML sequence;
2 activities ← dict(); // dictionary to store XML activities
3 lastIndex ← False; // True in the last loop iteration
4 categoryChange ← False; // True when there is a category change
5 for row in df do
6 XMLNode ← generateXMLNode(row);
7 activities[currentCategory].append(XMLNode);
8 if categoryChange or lastIndex then
9 browserSeq ← createSequence(activities[‘Browser’]);

10 mainSequence.append(browserSeq);
11 MSOfficeSeq ← createSequence(activities[‘MicrosoftOffice’]);
12 mainSequence.append(MSOfficeSeq);
13 OpSysSeq ← createSequence(activities[‘OperatingSystem’]);
14 mainSequence.append(OpSysSeq);
15 activities.clear(); // empty dictionary

16 end
17 end
18 write mainSequence to XAML file; // UiPath Project
19 return mainSequence

UiPath script is accordingly created. UiPath files are written in XAML (Extensible
Application Markup Language), a declarative language based on XML. A sample
XAML file is shown in Figure 8.6.

It is composed by a Main Sequence containing, in turn, multiple sequences, based
on the category of the user actions. For example, all the user actions related to the
browser should be wrapped by a Browser Activities sequence because they all share
the same browser. Likewise, all the user actions from Excel should go into the Excel
Activities sequence because they all refer to an Excel spreadsheet. The same thing
applies for System and Microsoft Office user actions. Every sequence contains a
series of activities. An activity is a block of XML code with a list of parameters.

In order to generate the SW robot, XML activities are generated from each
event in the low-level dataframe-based routine-based log using lxml10 Python library.
Activities are created with Python methods which take parameters as input and
return XML nodes, as shown in Algorithm 6. The algorithm describes generating a

10https://lxml.de/

https://lxml.de/
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UiPath SW robot from a given low-level dataframe-based routine-based log.
The main XML sequence that will contain all other sequences is created, along

with a dictionary to store activities based on their category (browser, office, system).
For each event in the low-level dataframe-based routine-based log, a corresponding
XML node is generated and appended to the dictionary based on its category.
When there is a change in category and in the last loop iteration, user actions are
wrapped in a sequence-specific for that category and added to the main sequence.
The activities dictionary is cleared before restarting the loop to prevent duplicate
activities in the main sequence. Finally, the generated XML sequence is written as
a XAML file that can be opened and run in UiPath.

A screencast with installation instructions showing the working of SmartRPA is
available in the Github repository of the tool at: https://github.com/bpm-diag/
smartRPA/.

8.2 Assessing the Robustness and Feasibility of the Al-
gorithm for the Automated Detection of Variation
Points

To investigate the robustness and feasibility of our approach to the reactive synthesis
of SW robots from UI logs, we performed several synthetic experiments employing
UI logs of increasing complexity. Specifically, we generated 240 different UI logs
(containing in total 150.000 different routine traces), in a way that each UI log was
characterized through a unique configuration obtained by varying the following input
settings:

• log_size: number of traces in the UI log (250/500/750/1000);

• trace_size: number of events in each routine trace (25/50/75/100);

• events_size: number of possible different events to be considered for the
creation of a trace (40/80/120);

• variation_points: number of different variation points included in the UI log
(1/2/3/4/5).

Note that the number of possible decisions to be taken in a variation point was
generated randomly, ranging from 2 to 10 possible outgoing decisions. Following our
definition of variation points explained in Section 2.1, each UI log was generated
creating log traces having a similar structure in terms of recorded events, except for
the presence of the variation points. Repeated events and concurrency are allowed
inside a UI log. However, since they have been randomly introduced in UI logs, we

https://github.com/bpm-diag/smartRPA/
https://github.com/bpm-diag/smartRPA/
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can not provide solid findings related to their impact on the identification of the
variation points. The synthetic UI logs generated for the test are available for testing
and experiments repeatability at: https://tinyurl.com/yyk68psx.

The target was to investigate if the amount and anatomy of variation points
discovered by SmartRPA are the same that was synthetically introduced in the
sample routine executions recorded in the UI logs (i.e., robustness), and to measure
the performance of the entire approach to generate a SW robot by solely using the
UI logs (i.e., feasibility).

Table 8.1. Experimental results showing the feasibility of SmartRPA to the reactive
generation of SW robots (only logs with 1000 traces are shown here). The time (in
milliseconds) is the average per trace.

Event size: 40 Time

Trace size 1 2 3 4 5

25 0.453 0.452 0.53 0.409 0.423
50 0.417 0.433 0.417 0.425 0.419
75 0.439 0.511 0.424 0.43 0.431
100 0.454 0.416 0.421 0.424 0.431

Event size: 80 Time

Trace size 1 2 3 4 5

25 0.422 0.428 0.43 0.413 0.412
50 0.427 0.425 0.444 0.417 0.428
75 0.42 0.428 0.553 0.422 0.437
100 0.442 0.434 0.428 0.438 0.432

Event size: 120 Time

Trace size 1 2 3 4 5

25 0.413 0.507 0.421 0.416 0.421
50 0.421 0.412 0.417 0.42 0.421
75 0.425 0.433 0.438 0.451 0.429
100 0.437 0.433 0.428 0.532 0.523

Concerning the robustness of the approach, for all the 240 tested logs the approach
was able to always discover the correct variation points to be considered for the
synthesis of SW robots. It is worth noticing that this result is justified by the fact
that we employed a fixed (yet large) alphabet of user actions for the generation of the
sample UI logs, in line with the assumption that a routine reflects highly predictable
and repetitive work with low flexibility requirements (and, consequently, with a low

https://tinyurl.com/yyk68psx
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number of variants) [26]. Such an assumption is remarkably realistic for SmartRPA,
as the UI logs used for the reactive synthesis of SW robots are recorded during
controlled training sessions in which many users are instructed to perform any time
the same routine. On the other hand, in the case of more flexible procedures, our
algorithm would detect a new variation point any time there are distinct user actions
(cf. Section 7.4) recorded at the same point of different executions of the same
routine. This would lead to a consistent growth of the amount of identified variation
points, which is not wrong in principle, but that could not be suitable to concisely
represent the behaviour of a routine. Therefore, we can state that our algorithm for
the detection of variation points is robust if the UI logs have the features outlined in
the experiment settings. In the absence of further experiments, we can not state
anything about the robustness of the algorithm when our working assumptions are
contradicted, i.e., when more flexible (i.e., non-repetitive) procedures are executed.
Note that the literature proposes dedicated approaches to detect the decision points
in case of less flexible processes to be analyzed, e.g., see [23], even if the granularity
of the process activities is less fine than the one of the user actions involved in a
routine execution.

The feasibility was measured in terms of the computation time required to
generate a SW robot starting from UI logs of growing complexity. The results, which
are summarized in Table 8.1, indicate that the total computation time increases
with the number of traces in the UI log,11 ranging from ∼ 100ms for UI logs with
250 traces up to ∼ 500ms for event logs with 1000 traces. This result was expected,
since more traces in a UI log mean more executions to analyze and interpret. On
the other hand, if we consider a fixed log size, it seems that the performance of
the approach scales very well in case of an increasing number of variation points to
be discovered and log traces/alphabet of events of growing size. Sometimes, it has
been also observed that SmartRPA gets faster by adding events in a trace, which
suggests that the performance of the approach does not suffer the presence of a
larger alphabet of events.

8.3 Evaluating the Effectiveness of SmartRPA

To address RQ2.3, we enacted a controlled experiment involving real users exploit-
ing the use case of Section 2.3 to investigate the effectiveness of the SmartRPA
approach when compared to UiPath, which is one of the major vendors in the RPA
market according to [9], and realizes the “traditional” model-based approach for the
generation of SW robots.

11For the sake of space, the table includes only the results related to UI logs containing 1000
traces. The complete list of results can be analyzed at: https://tinyurl.com/y55v56qa

https://tinyurl.com/y55v56qa
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To this end, we conducted a user study based on the use case presented in Section
2.3, by asking 20 different administration employees to fill the Google Form using
the data from the Excel spreadsheet containing the information to apply for a travel
request. All the user actions were enacted on distinct computer systems having
different features and operating systems. During the execution of their routine, the
employees were coupled with a first group of 20 (out of a sample of 40) Master
students of the course of Process Management and Mining (PMM) held at Sapienza
University of Rome (one student per employee), which were requested to observe the
execution steps of Rexample. We denote with pB1 this first group of users. In parallel,
a second group of 20 users was remotely connected to the employees’ computer
systems, with the target to record the user actions performed on the UI of such
systems exploiting the Action Logger component of SmartRPA, thus generating
at the end 20 different UI logs. We denote with pB2 this second group of users.
It is worth noticing that all the PMM students involved in the user study can be
considered as expert users in business process modeling and automation.

At this point, we requested any of the 20 expert users in pB1 to employ UiPath
to model a flowchart diagram associated with Rexample and generate the associated
SW robot using the functionalities of the UiPath framework. On the other hand, we
asked any of the 20 expert users in p2 to exploit the UI logs storing the executions of
Rexample as inputs to use SmartRPA for the generation of the associated SW robot.

To assess the effectiveness of SmartRPA to synthesize SW robots from UI logs, we
investigated the following experimental hypothesis HB1: Employing the SmartRPA
approach, thus neglecting the manual specification stage of the routine behaviour, is
more effective than employing traditional approaches that require to manually specify
and implement the behaviour of SW robots by means of flowchart models. To this
aim, we have first built the null hypothesis HB0: Employing the SmartRPA approach
does not provide any advantage in terms of effectiveness if compared with traditional
modeling-driven RPA approaches. Then, to support or reject HB0, a between-subject
approach was used, i.e., each user in pB1 (pB2, respectively) was assigned to a
different experimental condition, related to the exclusive use of UiPath (cB1) or
SmartRPA (cB2) to perform the required steps for the generation of the SW robot
for Rexample. Any user in pB1 (pB2, respectively) was preliminarily instructed about
the functionalities of UiPath (SmartRPA, respectively) through a short training
session. Notice that we selected users that were completely unaware about the use
of both UiPath and SmartRPA before the starting of the experiment.

We evaluated the validity of HB0 by asking any expert user that completed the
user study the following three questions:

• QB1: The development life-cycle of a SW robot (from the definition of the
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routine behaviour to the generation and execution of the associated SW robot)
is a time-consuming task. Do you agree?

• QB2: The extraction of the routine’s knowledge required for the development
and execution of a SW robot is a complex task. Do you agree?

• QB3: Once a SW robot has been generated, the monitoring of its execution
and the inspection of its behaviour is a complex task. Do you agree?

Questions are rated with a 7-point average numerical scale structured as follows:
1 (“Strongly Disagree”), 2 (“Disagree”), 3 (“Somewhat Disagree”), 4 (“Neither Agree
nor Disagree”), 5 (“Somewhat Agree”), 6 (“Agree”), 7 (“Strongly Agree”). We kept
the same difference between subsequent points of the scale, as suggested by [1]. The
choice to employ a 7-point scale (rather than a 5-point scale) is supported by the
findings of Sauro [77], which states that in case of a questionnaire consisting of few
questions “having seven points tends to be a good balance between having enough
points of discrimination without having to maintain too many response options”.

To evaluate the answers associated to QB1, QB2 and QB3 we performed a
comparison of the rates obtained from the questionnaire, respectively in the cases
of cB1 and cB2. Specifically, for each question, we employed a 2-Sample t-test with
a 95% confidence level to determine whether the means between the two distinct
populations (i.e., independent groups pB1 and pB2) involved in cB1 and cB2 differ.
Before running the 2-Sample t-test, we first exploited the Kolmogorov Smirnov
Statistic (KS Test) to establish the normality of the distribution of the collected
data [21], and then we checked that the variances and standard deviations in both
groups were approximately equal [77].

Finally, we measured the level of statistical significance by analyzing the resulting
p-value. We remind that a p-value ≤ 0.05 is considered to be statistically significant,
while a p-value ≤ 0.01 indicates that there is substantial evidence in favour of the
experimental hypothesis. In addition, because the result obtained by each question
generates its own test statistic, we applied the Benjamini-Hochberg False Discovery
Rate correction for multiple testing [15] controlling for a false discovery rate of 0.25,
which seems a reasonable cut-off given the novelty of our effectiveness experiments
in the field of RPA. The results of the analysis are summarized in Figure 8.7.

It appears evident that the null hypothesis HB0 is statistically supported by
the results obtained for QB3, while it is rejected for QB1 and QB2. Concerning
QB3, there is strong evidence that a traditional model-based approach based on
designing routines by means of flowchart diagrams (like UiPath) is more effective to
monitor the behaviour of the (running) SW robots associated with the routines and
inspecting the related RPA scripts. On the other hand, to skip the modeling task
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Figure 8.7. Effectiveness of SmartRPA: p-values associated to each question.

entirely by employing an approach based only on UI logs enables a faster generation
of SW robots (cf. QB1) requiring solely the knowledge stored in the UI logs (cf. QB2).
In summary, we can conclude that log-based approaches like SmartRPA increase
the degree of automation of the design-time steps required to generate SW robots,
reducing the intervention of human experts in this phase. Therefore, HB1 can be
considered as validated for QB1 and QB2 but rejected for QB3, where model-based
approaches appear to be more effective to monitor running SW robots.

8.4 Quantifying the Usability of the UI of SmartRPA

Last but not least, we investigated the degree of usability of the UI developed for
SmartRPA. Specifically, we administered the SUS questionnaire [18] to the 20 expert
users that were involved in the experimental condition cB2, i.e., that used SmartRPA.
The questionnaire consists of 10 statements evaluated with a Likert scale that ranges
from 1 (“strongly disagree”) to 5 (“strongly agree”). At the end of the questionnaire,
an overall score is assigned to the questionnaire. The score can be compared with
several benchmarks presented in the research literature to determine the usability of
the tool being evaluated. In our test, we made use of the benchmark given in [77],
which associates to each range of the SUS score a percentile ranking varying from 0
to 100, indicating how well it compares to other 5,000 SUS observations performed
in the literature.

The collection of the ranks associated with any statement of the SUS is reported
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in Figure 8.8, calculated following the steps discussed in [77]. Since the average
SUS score obtained by the tool was 79.3, according to the selected benchmark [77],
the usability of the tool corresponds to a rank of A-, which indicates a degree of
usability among very good and excellent.

Figure 8.8. Computation of the SUS overall score

8.5 Threats to Validity

A series of common issues may influence the results of our evaluation, such as the
(random) selection of the sample of users who performed the experiments (even
if from a well-defined population, which mitigates the issue), the selection of the
statistical tests to evaluate the collected data, etc.

Notably, while the controlled experiments employed to measure the effectiveness
of SmartRPA appears to have an high internal validity due to the control of the
experimental conditions exercised throughout the experiment, on the other hand,
this control can cause the experiment to have a questionable external validity. This is
due to the complexity to replicate the experimental conditions in real-world settings
that have many extraneous variables at play, making the findings less generalizable.
However, we observe that we do not claim that our results are representative of all
RPA literature, or to be generalizable to other fields or contexts.

Concerning the experiments’ findings, we claim that their validity is bound to
the experiments settings. For example, in the case of the experiment to measure
the effectiveness of SmartRPA, using a 2-Sample t-test with a 95% confidence level
enables us to state that we are 95% confident that the null hypothesis HB0 is partially
rejected. However, performing a further experiment that includes more users and
the application of a second confidence level (e.g., set to 99%) could support more
substantial evidence of the results.
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Chapter 9

Conclusion

RPA recently gained a lot of attention in the BPM domain [86]. Since RPA operates
at the UI level, rather than at the system level, it allows applying automation
without any changes in the underlying information system. Thus, the entry barrier
of adopting RPA in BPs that are already in place is lower compared to conventional
BPM [33]. However, the current generation of RPA tools is driven by predefined
rules and manual configurations made by expert users rather than by automated
techniques [61], preventing widespread adoption of these tools in the BPM domain.

Still, to date, a great deal of time is required to identify the routines for au-
tomation and manually program the SW robots. Even if RPA tools are able to
automate a wide range of routines, they cannot determine which routines should
be automated in the first place. Indeed, In the early stages of the RPA life-cycle it
is required to: (i) identify the candidate routines to automate through interviews
and detailed observation of workers conducting their daily work, (ii) record the
interactions that take place during the routines’ enactment on the UI of software
applications into dedicated UI logs, and (iii) manually specify their conceptual
and technical structure (often in form of flowchart diagrams) for identifying the
behaviour of SW robots. Towards this direction, the presented thesis delivers two
contributions to the RPA community. Specifically, the research underlying this
thesis tries to mitigate the involvement of skilled human experts, throughout the
development of: (i) an interactive approach to the automated segmentation of UI
logs (C1), and (ii) the SmartRPA approach to the automated identification of the
variation points of a routine, to enable the selection of the most suitable routine
variants to be implemented with a SW robot directly from a routine-based log (C2),
the output of the segmentation task.

For tackling C1, this thesis presented an approach that relies on three main
steps: (i) a frequent-pattern identification technique (customized on a ad-hoc basis)
to automatically derive the routine segments from a UI log, (ii) a human-in-the-loop
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interaction to filter out those segments not allowed (i.e., wrongly discovered from
the UI log) by any real-world routine execution, and (iii) a routine traces detection
component that leverages trace alignment in Process Mining to cluster all user
actions belonging to a specific routine segment into well-bounded routine traces.
Our approach is based on a semi-supervised assumption, since we know a priori the
end-delimiters to be associated to any user action that ends a routine execution. On
the other hand, the approach is not aware of the concrete behaviour of the routines
of interest, which will be discovered by the approach itself. For this reason, we
consider this contribution as an important step towards the development of a more
complete and unsupervised technique to the segmentation of UI logs.

The presented approach is able to extract routine traces from unsegmented
UI logs that record in an interleaved fashion many different routines but not the
routine executions, thus losing in accuracy when there is the presence of interleaving
executions of the same routine. In addition, it is also able to properly deal with
shared user actions required by all routine executions in the UI log, thus achieving
the cases 1.1, 2.1, 2.3, 3.1, and 3.3. It is worth noticing that the routine traces
detection component can be employed as a stand-alone supervised segmentation
technique [7] able to achieve all variants of cases 1, 2, and (partially) 3, except when
there are interleaved executions of shared user actions of many routines. In that case,
the risk exists that a shared user action is associated with a wrong routine execution
(i.e., Case 3.3 and Case 3.4 are not covered). The supervised assumption, which
consists of knowing a priori the structure of routines (i.e., the interaction models),
may ease the segmentation task. Still, as a side effect, it may strongly constrain the
discovery of routine traces only to the “paths” allowed by the routines’ structure,
thus neglecting that some valid yet infrequent routine variants may exist in the UI
log. For this reason, the novelty of the proposed approach to the segmentation of
UI logs [3] is to semi-automatically discover such structures in the form of routine
segments and then use them as input for the routine traces detection component [7].

As a future work, we are going to perform a more robust evaluation on real-world
case studies with heterogeneous UI logs, and we aim at relaxing the semi-supervised
assumption by employing machine learning and DNN techniques to the automated
identification of the end-delimiters. The limitation of the envisioned segmentation
approach is that it assumes every routine captured in a UI log have clear end points
(i.e., the end-delimiters of a routine). If such points do not exist, there is no strictly
defined way of performing the segmentation task, since we may discover incorrect
routine segments, thus affecting the quality of the discovered routines.

Altough RPA is currently used for automating routines and high-volume tasks
requiring a manual intervention of expert users, SmartRPA aims to automatically
develop SW robots directly from the users’ observed behaviour, thus tackling C2.
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SmartRPA offers an innovative contribution to RPA technology to mitigate some of
its core downsides. We leveraged a design science research method [43] to build the
SmartRPA approach, which is able to interpret the UI logs keeping track of many
routine executions, and to automatically synthesize SW robots that emulate the
most suitable routine variant for any specific intermediate user input that is required
during the routine execution.

Notably, using SmartRPA, all the routine executions recorded by the tool can be
automated, a high-level flowchart diagram is presented to expert users for potential
diagnosis operations, and the executable RPA scripts to drive the working of a
SW robot are generated by solely interpreting the routine executions stored in the
routine-based log, selecting step-by-step the most suitable routine variant.

From a technical perspective, the script generation algorithm takes into account
only the platform where the SW robot is going to be run, regardless of the operating
system used to capture the log. For example, if the selected routine variant was
recorded on MacOS, but the tool is being executed on Windows, the RPA script will
be generated taking into account this aspect, e.g., by converting the information
about the system paths. This guarantees cross-platform compatibility across UI logs
recorded on different platforms, as suggested by the guidelines’ principles of RPM.
Last but not least, SmartRPA creates executable RPA scripts also for UiPath, one
of the major vendors in the RPA market. These scripts can then be executed via
the interface of UiPath. In addition, the tool allows us to personalize some input
fields of the selected routine variant before executing the related RPA scripts (either
on Windows/MacOS systems or within UiPath Studio), thus supporting those steps
that require intermediate manual user inputs. As a consequence, this makes the
working of SW robots flexible and adaptable to several real-world situations. To
sum up, we consider SmartRPA as an important first step towards the intelligent
fully automated generation of SW robots.

The main weakness of the approach is correlated with the quality of information
recorded in real-world UI logs. Since a UI log is fine-grained, routines executed
with many different strategies may potentially affect the robustness of our approach
to the detection of variation points. For this reason, as future work, we are going
to perform a robust evaluation of the algorithm on further real-world case studies
including heterogeneous UI logs obtained from different application domains.

Apart from the ability of automatically generating the SW robots’ behaviour,
thanks to its Action Logger, SmartRPA aims also at improving the auditability
of RPA tools since all routines executed by human users on a UI are previously
recorded in dedicated event logs, making them auditable to external users. The logs
produced by the state-of-the-art RPA tools have usually a poor quality (actions
may be missing or not recorded properly), since they are mainly used for debugging
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purposes [6]. Conversely, SmartRPA aims at logs at the highest possible quality
level thanks to its detailed recording phase performed during the training sessions.

Finally, we also envision that the proposed thesis will provide long-term benefits
to the companies workforce. With entry-level and repetitive jobs mostly performed by
SW robots, the majority of resources can be reassigned to more rewarding activities
and, consequently, job satisfaction will increase. Furthermore, scalability will be
improved as well. Human capacity is difficult to scale in situations where demand
fluctuates, leading to inefficiencies such as backlogs or overcapacity. In contrast, SW
robots generated by SmartRPA operate at whatever speed is demanded by the work
volume.
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