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Abstract

Considering the increasing aging of the population, multi-device monitoring of
the activities of daily living (ADL) of older people becomes crucial to support
independent living and early detection of symptoms of mental illnesses, such
as depression and Alzheimer’s disease. Anomalies can anticipate the diagnosis
of these pathologies in the patient’s normal behavior, such as reduced hygiene,
changes in sleep habits, and fewer social interactions. These abnormalities are
often subtle and hard to detect. Especially using non-intrusive monitoring de-
vices might cause anomaly detectors to generate false alarms or ignore relevant
clues. This limitation may hinder their usage by caregivers. Furthermore, the
notion of abnormality here is context and patient-dependent, thus requiring
untrained approaches.

To reduce these problems, we propose a self-supervised model for multi-
sensor time series signals based on Hyperbolic uncertainty for Anomaly Detec-
tion, which we dub HypAD. HypAD estimates uncertainty end-to-end, thanks to
hyperbolic neural networks, and integrates it into the ”classic” notion of recon-
struction loss in anomaly detection. Based on hyperbolic uncertainty, HypAD
introduces the principle of a detectable anomaly. HypAD assesses whether it is
sure about the input signal and fails to reconstruct it because it is anomalous
or whether the high reconstruction loss is due to the model uncertainty, e.g.,
a complex but regular signal (cf. this parallels the residual model error upon
training).

The proposed solution has been incorporated into an end-to-end ADL mon-
itoring system for elderly patients in retirement homes, developed within a
funded project leveraging an interdisciplinary consortium of computer scien-
tists, engineers, and geriatricians. Healthcare professionals were involved in the
design and verification process to foster trust in the system. In addition, the
system has been equipped with explainability features.
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1. Problem Statement and Motivations
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Figure 1: Teaser: workflow of the proposed solution. a) Behavioural signals are acquired in
an AAL environment; b) A patient-dependent behavioral profile is learned; c,d) Anomalous
behaviors (w.r.t. the model learned in step b) are reliably detected using an algorithm based
on hyperbolic uncertainty, named HypAD; e) Several anomaly types are detected and shown
to the health professionals through a visual medical interface.

Ambient Assisted Living (AAL) promotes the independent living of older
adults thanks to the continuous monitoring of their Activities of Daily Living
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abnormality in these activities is of paramount importance, especially for the
elderly, since it allows prompt intervention by family members and caregivers.
With the growing elderly population, numerous studies have focused on preserv-
ing the independent living of older people. Factors like pre-existing pathologies
or difficulties in interacting with the environment determine the patient’s level
of independence and influence their quality of life. The progress of technology
(e.g., wearable sensors, cameras, smartphones, smartwatches, wireless commu-
nications) enables the development of solutions to help older adults continue
living independently in their smart homes. Knowledge extracted from these
devices can enrich the information delivered to the medical staff and facilitate
the early detection of incoming health problems, preventing, in some cases,
hospitalization.

State-of-the-art AAL architectures are made of two main components: i.e.
IoT devices, such as ambient sensors and wearable devices, and analytic data
components, often powered by machine intelligence. The former capture the
behavioral and physical signals of monitored patients. The latter process and
analyze the generated data streams to provide synthetic descriptions of patients’
health status, predict disease evolutions, and capture early signs of future risks.
As summarized hereafter, designing effective AAL solutions implies solving sev-
eral open research problems in the IoT and data analytic domains. In this paper,
we focus on the specific problem of automated detection of abnormal behaviors
and behavioral drifts that sign social isolation in the elderly.

Social isolation is a significant cause of disease in older people [11]. In other
words, loneliness and the lack of social interactions may easily lead them to suffer
from depression or other serious health problems, such as Alzheimer’s. The
recent COVID-19 pandemic has increased their discomfort since these diseases
most often affect those living in contexts with fewer chances of social contact.
Following the COVID-19 data analysis in [54, 55], the most vulnerable people
in this respect have been those over 70. As shown in [55], they had consistently
avoided daily habits that, before the pandemic, had helped them keep active
and fit (e.g., physical, well-being, and social activities). Furthermore, their sleep
quality has worsened, as reported in [56].

Gerontologists monitor and record specific indicators [15], including lethargy,
motor restlessness, reduced interactions, or personal hygiene, to detect early
signs of social isolation and depression. However, direct monitoring by health
professionals is costly in terms of time and resources and often cannot be con-
ducted systematically. In this context, machine learning, particularly anomaly
detection algorithms, may leverage data from multiple monitoring devices in
AAL environments to help predict and prevent social isolation.

Although several anomaly detection algorithms have been proposed in the
literature (see Section 2), even for the specific application domain of AAL, open
problems are related to i) the type and complexity of input devices used for
monitoring, ii) the need for customized (patient-dependent) solutions and iii)
the reliability and explainability of generated predictions. More in detail:

• Concerning the input sensors, several devices have been used to monitor
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dences. In this regard, according to [2], cameras and microphones are
excessively intrusive. However, they can automate the monitoring and
data collection phases encompassing high-performing action recognition
[18] and mood classification [16, 17]. From this point of view, ambient
sensors (such as pressure, contact switch, and water sensors) and wearable
devices are more respectful of the privacy of the elderly. Albeit, anomaly
detection from multi-sensor time series signals (rather than from images)
is a complex task because they are rare and non-linearly and temporally
correlated. Furthermore, detecting anomalies is challenging because one
needs to combine several devices to make predictions effectively. For ex-
ample, one can jointly utilize pressure sensors and smartwatches to ensure
the reliable detection of sleep quality and disorders.

• The second issue regards the subjectiveness and context dependency of
defining what an anomaly is. The term ”context” here refers to a potential
anomaly (where, when, and how often) and to the social environment since
symptoms of depression can look different depending on the person and
their cultural background. Hence, using untrained algorithms capable of
devising personalized and context-aware models is required. As remarked
in Section 2, untrained anomaly detection received much less attention in
the literature.

• Finally, concerning how the results of anomaly detection algorithms are
presented, the literature neglects to assess the quality of the predicted
outcomes, namely the uncertainty of a prediction. Specifically, automated
systems should support and simplify diagnostics and prognostics in health-
related scenarios. Hence, trusting the system predictions is crucial to favor
health professionals’ adoption of automated solutions.

In this work, we propose a novel model based on Hyperbolic uncertainty
for Anomaly Detection, which we dub HypAD. We leverage the current state-
of-the-art anomaly detection technique [40], which detects abnormal events as
those that are more arduous to reconstruct. We use hyperbolic neural networks
to map the input and the reconstructed signals into a latent hyperspace in a
self-supervised manner. The hyperspace associates each signal with an uncer-
tainty score. Here, the uncertainty tells us whether the reconstruction error is
significant because it is anomalous or because the model cannot reconstruct it
well. When the model cannot reconstruct the signal well, we can state that
the signal is regular but with high model error after training. Additionally, un-
certainty is high in this case, and the anomaly score of HypAD is down-scaled
accordingly.

The paper includes the following contributions:
1. We present a personalized and context-aware self-supervised model for

behavioral anomaly detection to identify patient and environment-specific
abnormalities.

2. We propose a novel prediction strategy that incorporates the uncertainty
of the anomaly detector. As shown in the experimental Section 4, this
considerably reduces the variance of model performances across different
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and the reliability of its predictions.
3. To favor the adoption of the proposed solution by health professionals,

we equipped HyPAD with explainability features (see Figure 11). Here,
we highlighted the patient-dependent and contextual features that con-
tributed the most to detecting the anomaly at hand.

4. Our proposal has been integrated into a fully implemented end-to-end
AAL system developed as part of a funded project, namely E-Linus. E-
Linus aims to detect early signs of social isolation of patients in residences
for the elderly and leverages an interdisciplinary consortium of computer
scientists, engineers, and geriatricians.

As previously remarked, our proposed solution pays specific attention to pro-
viding explainable and reliable predictions in three different ways: (i) we use
hyperbolic uncertainty to assess confidence in the predicted outcome; (ii) we use
explainability mechanisms to identify and present the contextual features that
mainly contributed to a detected abnormal behavior; (iii) we have developed
a visual medical interface to help to monitor patients’ behaviors and validate
detected anomalies.

The workflow of our proposed solution is shown in Figure 1, and described in
the next Sections. The paper is organized as follows. Section 2 presents a state-
of-the-art survey on several topics related to the one discussed here. Section
3 formalizes the anomaly detection model and discusses the approach details2,
including the explainability method. Section 4 describes the evaluation testbeds
(datasets, compared systems, and performance measures) adopted to analyze
the performance of the proposed system. A discussion of experimental results
and data analytics is presented in Section 5. Finally, Section 6 summarizes the
features and limitations of the current study.

2. Related work

To the best of our knowledge, this is the first work to combine anomaly de-
tection with uncertainty estimation and the first to propose hyperbolic uncer-
tainty further. Contrarily, explainability in anomaly detection has been treated
in several domains, like action recognition in videos [71] and colonoscopy lesion
identification [39]. Previous work relates to ours from three main perspectives,
which we review here: uncertainty estimation techniques, anomaly detection in
time series, and hyperbolic neural networks. Furthermore, we survey specific
works related to the application domain of this paper: behavioral anomaly de-
tection. For completeness purposes, we refer the reader to [64] for a literature
review on deep learning for anomaly detection.

2A full implementation of the algorithm is provided for replicability purposes at https:

//github.com/aleflabo/HypAD
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Two different strategies have been proposed in the literature to model uncer-
tainty. The ensemble-based posterior approximation uses several weak models
to make naive predictions and combine them according to a consensus function
into a more complex predictive model [36]. One of the most popular approaches
to uncertainty estimation based on ensembles is Monte Carlo (MC) Dropout. It
drops neurons on every layer during the training and test phases [38]. Genera-
tive models for uncertainty modeling use an additional latent variable to make
stochastic predictions and evaluate the uncertainty of the model. Generative
Adversarial Networks (GANs) [37] play a min-max game where the discriminator
distinguishes between real and generated examples. GANs have state-of-the-art
performances, and we build on top of that by attaching hyperspace mapping
layers to estimate the uncertainty of the model. Another interesting approach
to estimating uncertainty is using energy-based models [34, 35]. They learn an
energy function that models the input and output compatibility. Our method
transcends energy-based models because the integrated hyperbolic uncertainty
mechanism does not suffer from cold- or warm-start problems, which undermine
the training complexity [24].

2.2. Anomaly Detection in Time Series

We identified four methods proposed in the literature for anomaly detec-
tion in time series. Distance-based outlier detectors consider the distance of
a point from its k-nearest neighbors, as in [32, 33]. Density-based methods,
as [41], consider the density of the point and its neighbors. Unlike traditional
density-based methods, Li et al. [73] extend deep generative and state space
models to achieve robust anomaly detection in case the training set is contam-
inated with anomalies and other noisy signals. Prediction-based methods
[52, 53] rely on loss functions (e.g., MAE or MSE) to assess the likelihood that
the prediction corresponds to an anomaly or not. In [67], the authors use a
prior distribution to encode and drive an end-to-end anomaly score learning
(Bayesian inverse reinforcement learning). Given an agent that takes a set of
sequential data as input, its normal behavior can be understood by its latent
reward function. Thus a test sequence is classified as abnormal if the agent
assigns a low reward to the sequence. Reconstruction-based methods, like
[42, 65, 66, 70, 72], compare the input signal and the reconstructed one in the
output layer, typically using autoencoders. Lu et al. [66] combine a de-noising
autoencoder with a two-layered RNN to learn data representations. A similar
approach uses bidirectional LSTMs to detect acoustic anomalies [65]. Zhou et
al. [72] exploit a feature encoder that copes with annotated data limitations and
passes the latent representation to an anomaly score generator. These meth-
ods assume anomalies are difficult to reconstruct and are lost when the signal
gets mapped to the lower dimension; thus, a higher reconstruction error implies
a higher anomaly score. Recently, GANs [37] have been employed to detect
anomalies in time series data. Zheng et al. [68] leverage the shortcomings of
GANs and modify the generator to produce matching data instances to the
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instances resemble the unknown anomalies, leading to unstable anomaly classi-
fication performances [69]. TadGAN [40] uses a cycle-consistent GAN architec-
ture with an encoder-decoder generator and proposes several ways to compute
reconstruction error and its combination with the critic outputs. We build on
top of TadGAN’s architecture by incorporating the hyperbolic mapping layer
into the reconstructed time windows to assess the uncertainty of the detector.

2.3. Hyperbolic Neural Networks

Deep representation learning in hyperspaces has gained momentum after the
pioneering work of hyperNNs [45] that generalizes Euclidean operations (e.g.,
matrix multiplications) to their counterparts in hyperspace. The authors pro-
pose analog counterparts in the hyperspace of neural network components, such
as fully connected (FC) layers, multinomial logistic regression (MLR), and re-
current neural networks. Furthermore, methods like Einstein’s midpoint [49]
and Fréchet’s mean [50] propose different ways of aggregating features in hy-
perspace. The work in [48] extends hyperNN and proposes Poincaré split and
concatenation operations, generalizing the convolutional layer to hyperspace.
The authors in [25, 51] propose hyperbolic graph neural networks leveraging
hyperNNs.

Thus formulated, hyperNNs have mainly been adopted to improve perfor-
mance by leveraging hierarchies and uncertainty in zero-shot learning [44], re-
identification [43], and action recognition [46]. Of particular interest for our
domain, Suris et al. [47] have leveraged hyperNNs to model a hierarchy of
actions from unlabeled videos. To the best of our knowledge, this is the first
work to have applied hyperNNs for sequence modeling with the goal of anomaly
detection.

2.4. Behavioural Anomaly detection techniques

Abnormal activity detection in ambient assisted living (AAL) environments
has recently attracted the attention of researchers [75, 76, 79]. Although the
majority of research results in anomaly detection have been published in the
more general context of time-series mining - see Section 2.2 - works specifically
concerned with AAL, such as [5, 19, 21], highlight several critical challenges
of anomaly detection in this domain. Zhang et al. [5] consider the challenging
problem of learning from untrained data, where abnormal events are mixed with
non-normal data. If anomalies are not rare, the model can be misled, making it
hard to distinguish between standard, abnormal, and noisy data. To solve the
problem, they first use Convolutional Autoencoder to characterize the spatial
dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
to better distinguish between the noisy, regular, and abnormal data. Next, they
use a Memory Network consisting of linear (Autoregressive Model) and non-
linear predictions (Bidirectional LSTM with Attention) to capture temporal
dependence from time-series data. We note that this method has been designed
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ations in the characteristics of a specific attribute in a particular instance (e.g.,
a sleep of particularly long duration for a given patient or carried out at an
unusual time concerning the habits of the elderly), which is the focus of our
work. Deep et al. [9] found that multi-sensor-based activity recognition is the
best technology to address the needs of anomaly detection in elderly care; they
report the following: robustness to environmental changes, privacy-preserving,
and ease of use. Multi-sensor solutions use radio, motion, contact, pressure,
and door. These sensors generate signals when there is an interaction between
the person and the objects in the environment, which are then associated with
specific activities (for a general survey of activity recognition techniques, see
[8]; for activity recognition for monitoring healthcare, see [77, 78]). Therefore,
multi-sensor behavioral data are multinomial since every input represents one
out of several possible actions, and multivariate since actions are described by
many attributes, such as start time and duration. We note that anomaly detec-
tion methods have rarely been tested in multivariate contexts, which are more
challenging.

The work more closely related to ours is by Dahmen and Cook [7], who
capture anomalies in semantically-labeled sequences of ADL on patients with
neurodegenerative disorders among whom Parkinson’s disease where anomalous
events (i.e., falls) are frequent symptoms [6]. The authors propose an Indirectly
Supervised Anomaly Detection (ISUDRA) to improve standard unsupervised
models for anomaly detection in time series of geolocation sensoristic data.
ISUDRA exploits a small number of labeled instances to direct the choice of
unsupervised learning parameters. It employs Bayesian optimization to select
time scales, features, base detector algorithms, and algorithm hyperparameters
increase true positive and decrease false positive detection.

As reported in [10], there are two strategies to recognize behavioral changes:
profiling and discriminating. In profiling, a model of ”normality” is trained,
and new input data is compared with the model. The behavior is considered an
anomaly if it deviates from the learned data distribution during training. In the
discriminating strategy, anomaly data are defined according to previously col-
lected or manually defined (e.g., based on medical knowledge) anomalous events.
Unfortunately, as reported in Section 4.1, manually annotated multi-sensor data
are scarce. Although synthetic data can be generated according to some agnos-
tic mechanism (see, e.g., [4]), anomalies in this domain are highly contextual.
To overcome this difficulty, we started with real-life patient data collected in
residences for older people in our work. Next, we asked clinicians to insert nat-
ural anomalies using a visual interface developed for this purpose. Since our
solution is self-supervised (based on profiling patients’ normal behaviors), the
annotated dataset is used solely for testing purposes.

3Actions performed occasionally, or ECG signals of patients affected by rare diseases.
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This section describes the proposed method for modelling and detecting
anomalous events in ADL sequences engendered by patients. First, we provide
the reader with a mathematical formalisation of the input model (see Section
3.1). Then, we explain our anomaly detection model (see Section 3.2).

3.1. Input modeling of multivariate time series

Without loss of generality, the ADL of a specific patient p can be represented
as a series of activities, where each activity takes place at a unique timestamp.
We can model a time series as a sequence of random variables xt ordered in
time t ∈ T ⊆ R and dependent on each other. Notice that time series can also
correspond to infinite streams of data (i.e., T = R); however, in this work, we
focus only on discrete time series [26] where the ADL sequence has a limited
time4 interval T = [b(p), f(p)] such that b(p) and f(p) denote the beginning
and the end of the monitoring time for patient p, respectively. A multivariate
time series X - hereafter simply time series - is a sequence of multiple variables
x1, ..., xm. Let MT ,X be a time-indexed table of events where T denotes the
discrete set of timestamps and the elements of the table belong to the random
variable set. As a result, a multivariate time series is a time-indexed tableMT ,X
where |X | > 1.

In our context, we have an ordered sequence of activities5 A = {a1, a2, ..., a|A|},
where each ai ∀i ∈ [1, |A|] is characterised by a label identifying the action and
the time interval [b(ai), f(ai)] in which it happens. We also assume that there
are no time-gaps in p’s behavioural sequence (i.e., ∀ai, ai+1 → f(ai) = b(ai+1)).

We use the following features to represent our input:
• The activity label identification from the event in A. We represent the

label of ai with label(ai).
• The beginning time of the considered activity - i.e., hour(b(ai)) where

hour(∗) extracts the hours and minutes in which the input activity begins6.
• The duration of each activity ai ∈ A - i.e., f(ai)− b(ai).
• The phase of the day during which ai is performed (i.e., phase(ai)). This

feature can be used to detect anomalous subroutines that are related to
the phase of the day. In our implementation, we divide the day in four
equal parts: i.e., morning, afternoon, evening, and night.

• The frequency of each activity ai happening in phase(ai). We denote this
feature with freq(ai, ρ) where ρ represents the phase where we count the
frequency.

This process is described in Figure 2 and gives as output the multivariate time
series MT ,X .

4For commodity purposes, we represent timestamps as Unix time.
5Here, we consider only simple activities. Otherwise, composite activities such as ”reading

a book while sitting” have the same timestamp of execution.
6We transform the beginning time into a rational number where the whole part depicts the

hours in [0,23] and the decimal digits are in [0,99].
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Figure 2: Input modelling of an activity sequence to get a multivariate time series.

Figure 3: Result of the time series decomposition using the sliding window approach. The
image shows only the structure of the part corresponding to the activity labels inMT ,X . The
same reasoning can be applied to the other features in X .

As proposed in [27–31], we split the created ADL sequence into multiple
subsequences according to a sliding window approach. This is crucial to detect
also anomalies related to the order in which the activities are performed. Thus,
we group the events generated throughout the monitoring interval into fixed-
length event sequences where each of them can span over an arbitrary amount
of time and overlap with the previous by a predefined step size ξ. In this
way we transform each of the time series in X into sequences S1, . . . ,S∆ s.t.

∆ = b |T |−kξ c + 1 having the same length k, where k represents the number of
events to be stored in a sequence. An example of the result of this process
is shown in Figure 3, considering only the time series with activity labels for
visualization purposes. Hence, the shape of the tensor given in input to our
model is (∆×k×5), where the last dimension accounts for the described features

10
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Figure 4: Overall architecture of our proposed model HypAD.

above7. Finally, we normalize the features in [0,1], normalizing duration and
frequency values w.r.t to all durations and frequencies of the same activity type
in the monitoring period.

3.2. Prediction strategy

We propose a novel model for anomaly detection in time series based on
hyperbolic uncertainty. HypAD is a reconstruction-based model that minimizes
the reconstruction loss, given by measuring the hyperbolic distance between the
input signal and its reconstruction. In hyperbolic space, errors are exponen-
tially more significant when predictions are certain. Therefore, HypAD tends
to predict either certain correct reconstructions or uncertain, possibly mistaken
reconstructions. Figure 4 illustrates the proposed HypAD. It integrates the ma-
chinery of hyperbolic neural networks into the reconstruction-based architecture
of TadGAN [40] (see Section 2). In HypAD, the input signal x is first passed
through an encoder, then followed by a decoder sub-network. The output of the
decoder G(E(x)) as well as the original signal x are mapped to the hyperspace,
shown as the dotted red edge box with red background. As in [43, 47], we adopt
the Poincaré ball model of hyperspaces.

Once x and G(E(x)) are mapped to the Poincaré ball, we use a hyperbolic
feed-forward layer [45] to estimate the corresponding hyperbolic embeddings h

and h̃. Finally, the two hyperbolic embeddings are compared using the Poincaré
distance. Note that the same reconstruction error function RE(x) is used at
training and inference times. A key property of the Poincaré ball is that the
distance between two points exponentially grows as we move away from the

7Note that order is an implicit feature provided by what precedes and what follows a given
action in the sequence.
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Figure 5: In the illustration, the colored circular sector represents the hyperbolic Poincaré
ball, where the radius distance of data embeddings is their degree of certainty (points on
the circumference are most certain). h is the hyperbolic mapping of the input signal, which
HypAD attempts to match by the reconstruction h′. Thanks to hyperbolic neural networks
and their exponentially larger penalization for errors at high certainty, HypAD learns to prefer
signal reconstructions such as h′′, i.e., with the same amount of error as h′ (the same angle
and cosine distance) but smaller radius ‖h′′‖2 and thus higher uncertainty.

origin, as shown in Figure 5. Hence, an erroneous reconstruction towards the
circumference is penalized exponentially more than an erroneous reconstruction
close to the center. This leads to the useful tendency of HypAD to either predict
a matched reconstruction (h̃ and h are close by) or an unmatched reconstruction

towards the origin (h̃ and h are far-away, ‖h‖2 and ‖h̃‖2 are small). Hence,
the distance of the reconstruction to the origin provides a realistic estimate
of the model’s uncertainty, referred to as hyperbolic uncertainty, U(X) = 1 −
‖h̃‖2. The smaller the distance from the origin, the more uncertain the model
is. The model’s reconstruction errors and critic scores are first normalized by
subtracting the mean and dividing by the standard deviation to estimate the
anomaly score. The normalized scores ZRE(x) and ZDx(x) and the hyperbolic
uncertainty U(X) are combined to get the anomaly scores:

su(x) = ZRE(x)� ZDx
(x)� (1− U(x)) (1)

The convex integration of the model certainty reduces the score when HypAD
is less confident on the reconstruction.

3.3. Explaining anomalies

Explainability is becoming a relevant topic in AI, especially in high-risk do-
mains and cases where a person’s health and well-being could be compromised.
Although attention mechanisms have been amongst the first methods to explain
a model’s prediction, the authors in [61] have argued that they may fail to indi-
cate the importance of the input about a prediction. More recently, Lundberg
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puts using the game-theory framework SHAP (Shapely additive explanations).
Antwarg et al. [12] have adapted SHAP to explain the predictions of unsuper-
vised anomaly detectors. If it exists, the authors note that an anomaly resides
in the values of the input, and the explanatory model needs to explain why
this instance was not predicted (reconstructed) well. Accordingly, the proposed
method focuses on the correlation between the features with high reconstruction
error and those most influential in affecting it.

We decided to adapt SHAP to our proposed model HypAD because of its
ability to estimate every feature’s importance for a specific prediction and be-
cause its outcome is well aligned with human intuition. As a further advantage,
SHAP is model-agnostic.

4. Experiments and Results

This Section describes the benchmark datasets and the experimental setup
to test the performance of the proposed method.

4.1. Behavioural anomaly detection benchmarks

To the best of our knowledge, very few behavioral datasets have been made
available in the literature. The authors in [20] present the CASAS benchmark8,
from which we extract the HH-set, which consists of 30 separate test beds con-
taining data collected over several monitoring times. These datasets contain
daily activities performed by patients monitored in controlled environments
(apartments) with passive infrared motion and magnetic door sensors.

The eHealth Monitoring Open Data Project9 includes two main sets of ac-
tivities monitored for a single patient for one year. The project’s original goal
[63] is to assess the Functional Autonomy Measurement System (SMAF), a clin-
ical rating scale to measure the functional autonomy of elderly patients. The
data structure is similar to CASAS, where each instance in the sequence is an
activity performed by the patient, characterised by a begin and end timestamp.
The eHealth dataset has been generated synthetically. To generate realistic
sequences, they use a pseudo-Markovian model where the sequence generation
follows the transition probabilities under certain constraints to avoid the possi-
ble generation of less probable sequences.

4.2. The E-Linus smart living environment

Early detection of social isolation in the elderly has been addressed in a
project funded by the Lazio Region (centre Italy) called E-Linus. E-Linus is
an Active and Independent Living solution for elderly residences, which allows
the indoor recognition of symptomatic behaviors of senile social isolation and
activates home care protocols and services for professional and family caregivers,

8http://casas.wsu.edu/datasets
9https://sourceforge.net/projects/ehealthmonitoringproject/files
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Figure 6: Architecture and workflow of the E-Linus system.
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a high-level description of the E-Linus solution10:
• The Smart Living Environment (SLE) consists of multiple beacons11

in the interest areas. A smartwatch12 is used to localize the patient while
monitoring their vital signs ranging from heart rate to sleep patterns.
Finally, a voice recognition component is exploited to classify daily moods
as anger, fear, joy, sadness or neutral emotion. This component is used
under a caregiver’s control during specific times of the day to limit its
intrusiveness.

• The back-end layer processes the signals and creates ADL time series
for each patient. The monitoring devices processed in this layer recognize
the following activities: Sleep, WC, Hygiene, Dining Room, Recreational
Room, and Garden.

• The middle layer performs descriptive, predictive, and prescriptive anal-
ysis of ADL sequences and other patient data, including clinical records
and vital parameters. It includes the anomaly detection algorithm pro-
posed in this paper.

• The front-end layer Virtual Assistant (VA) that proposes a series of
engaging activities (e.g., listening to music) to sustain the patient’s well-
being. It also includes an interactive visual analytic interface for the
caregivers [1] reporting daily activities, patient statistics, and detected
anomalies. The VA is a relevant feature since visual insight may greatly
facilitate the identification of health-risk scenarios, as remarked in [62].

Six volunteering elderly patients with different health conditions have been
monitored for six weeks, according to the timeline established in the E-Linus
project. We note that, although six patients may seem a small number, the
focus here is on personalisation: the challenge is to learn a model of normality
and abnormality tailored to each patient. From this point-of-view, each pa-
tient is to be considered an independent dataset, as better argued in Section
5. Furthermore, given the relatively short monitoring period, we artificially ex-
tended these sequences over a longer period (1 year) based on small realistic
perturbations of the observed routines.

4.3. Strategy to inject realistic synthetic anomalies

The datasets enlisted in Sections 4.1 and 4.2 do not contain annotations of
anomalous events. Monitoring patients for long periods does not guarantee the
observation of abnormal behaviors. Even when they occur, abnormal events are
generally few and insufficient to test the performance of an anomaly detector.
Following the approach in [13], we inject synthetic anomalies but pay specific

10A detailed description of the E-Linus project is outside the purpose of this paper. Here,
we describe the process of data collection and experimental validation of anomaly detection
for detecting signs of social isolation.

11https://accent-systems.com/product/ibks-plus/
12TicWatch Pro 3
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ing to [60], personal hygiene, sleep habits, and peer interactions can hide the
most critical signals for identifying abnormal behavior in the elderly, especially
concerning their psychological status. With the support of gerontologists, we
identified and generated the following five activity-related anomalies13:

• Sleep anomalies - We increase the sleep duration per day to simulate
symptoms of depression and other diseases. Additionally, we introduce
several sleeping interruptions during the night to represent sleep disorders.

• Recreation anomalies - We analyze the trend of patients that hang out
in the court/recreational area with their peers and increase the time they
spend in their rooms while simultaneously decreasing their stay in the
common areas to simulate signs of social isolation.

• Food anomalies - We tamper with the everyday habits of patients vis-
iting the dining area to have breakfast, lunch, snacks, and dinner. We
reduce their time in this room to simulate signs of eating disorders.

• WC anomalies - We augment the duration of a patient’s toilet usage to
catch various symptoms of several pathologies and the increased frequency
of toilet visits to simulate symptoms of diabetes.

• Hygiene anomalies - We decrease the frequency of taking showers and
having baths to represent the lack of self-care throughout the week.

Instead of programmatically modifying the sequences to inject those anoma-
lies, we have developed a visual interface tool14 [1] used by the caregivers to
insert artificial yet realistic anomalies for each patient based on their daily rou-
tine. The tool allows caregivers to visually inspect each patient’s usual behavior
and statistics and inject four sub-types of anomalies for each monitored activity,
altering their duration, frequency, start time and order15. Regarding WC and
hygiene, we have decided to inject only duration and frequency anomalies due
to the high variability of start time and order characteristics of those kinds of
activities. This would lead to a highly challenging detection.

While tweaking the ADL for each patient, it is important to keep the initial
period of the sequence untouched such that the models are able to learn its latent
structure and the relationship between the activities therein as normal behavior.
In this way, the initial monitoring period (without injected anomalies) can be
used as the training set, while the remaining part as the test set. In collaboration
with geriatricians, we have defined the train set as the sequences occurring in
the first 90 days of monitoring. The subsequent days are considered as the test
set and tampered with anomalous behaviors. Using the techniques described
above, we have generated four anomalous test sets involving bed, recreation,
and food activities, and two anomalous test sets for WC and hygiene. This
is done for each of the three datasets, returning 16 different test sets for each

13https://github.com/dars16/routineanomaly
14The tool is accessible accompanied by a sample daily profile extracted from one of the

E-linus patients at anomalybyclick.github.io
15An order anomaly happens when the usual sequence of actions is altered, for example,

going to bed immediately after dinner without going to the recreation room or toilet first.
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CASAS E-Linus eHealth

Number of monitored activities 9 7 14
Monitoring period (avg. days per patient) 396 367 366
Avg. anomalous days in test set 35 ± 14.98 31 ± 9 32 ± 7
Avg. num. of anomalous activities 217.5 ± 113.8 144 ± 54.5 139 ± 73

domain.
Table 1 provides summary statistics. As previously described, patient-

specific abnormal behaviors were incorporated for all datasets into the 9-month
sequences of the test set. Furthermore, note that anomalies have been incorpo-
rated only in actions related to the five previously listed types (sleep, recreation,
dining room, WC, hygiene).

4.4. Evaluation

Metrics: In the context of anomaly detection in behavioural sequences, anoma-
lous instances represent a small minority, thus skewing the class distribution
of the datasets. Metrics like accuracy are not informative since we can ob-
tain perfect performances by predicting the majority class (normal behaviours).
Therefore, we consider evaluation measures agnostic to the class imbalance phe-
nomenon, like the F1 score. Furthermore, to align our work to [7], we also
compute the geometric mean (G) of the product of precision (P) and recall (R)
- i.e.

√
P ×R.

Baselines: We compare five models:
• AE [22] - We use a five-layer fully-connected autoencoder. We use dropouts

[74] in each layer with probability α as a means to account for overfitting.
• ConvAE [59] - We have two layers of mono-dimensional convolutional en-

coding interleaved with max pooling. The decoder has a specular com-
position as the encoder where the de-convolution is aided by up-sampling
layers. We use a dropout rate of α in all layers.

• IForest [57, 58] - We rely on an isolation forest that separates anomalous
instances from the normal samples. In order to isolate a data point, the
algorithm recursively generates partitions on it by randomly selecting an
attribute a and then randomly selecting a split value for a, between the
minimum and maximum values allowed.

• ISUDRA [7] - As introduced in Section 2.4, we re-implement the algorithm,
but we maintain a fixed sliding window of 30 signals to align with the
strategy proposed in [47].

• LstmAE [23] - We use a two-layer stacked LSTM encoder. The hidden
vector of the first LSTM layer in the encoder gets passed to the second
LSTM layer. The latent representation of the encoder gets then recon-
structed in reverse order from the decoder. As in AE and ConvAE, we
use a dropout rate of α in each layer of the architecture.
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E, and a two-layer bidirectional LSTM for G. For the critic Dz we use a
fully connected layer, and two dense layers for Dx.

Implementation details: To favor reproducibility, we include the details of
each implementation. For the autoencoder baselines, we set the number of
epochs to 30, the batch size to 32, and the learning rate to 10−3. For TadGAN,
we set the epochs to 30, the batch size to 64, and the learning rate to 5×10−4 and
the iteration for the critic to 5. We use Adam as the optimization function to
train all the baselines. We use a Bayesian optimisation for all the autoencoder-
based16 baselines. For AE, we optimize the number of neurons in the two layers
of the encoder in the set {8, 16, 32, 63, 128}. We fix the number of neurons in
the bottleneck layer at 4. We achieved the best performances for AE with the
number of neurons set to 16, 8, 4, 8, and 16 for all five layers, respectively.
For ConvAE, we optimize the number of filters of the three encoder layers in
{2, 4, 8, 16, 32, 64, 128}, whereas the decoder has a specular architecture. We
set the kernel size to 2 with no padding on all layers and a stride of 1. We
reached the best performances for ConvAE with the number of filters set to 8
and 4 in the encoder layers, respectively. For LstmAE, we select the optimal
combination of the number of hidden vector units in the set [4, 64] with a step
of 2. We reached the best performances with the number of hidden units equal
to 16 and 8 for the two encoding layers, respectively. We used ReLU as the
activation function for all these methods. We performed a Bayes optimization
over the dropout rate α for all the above methods in [0, 0.95], and, interestingly,
obtained the best performances for all with α = 0.2. Meanwhile, we optimized
the maximum number of samples ns ∈ [102, 104] with a step of 102, and the
number of estimators ne ∈ [0, 103] with a step of 5 × 101 for IForest. Here, we
reached the best results with ns = 2.6× 103 and ne = 4.5× 102.

For our proposed method HypAD, we took inspiration from an online avail-
able PyTorch implementation17. We incorporate a hyperbolic transformation18

following the work of Suris et al. [47] on top of the original architecture of
TadGAN. Our hyperbolic component enables us to elucidate the contribution of
hyperbolic neural network to the overall boost in performances w.r.t. TadGAN,
which bases its computations in Euclidean vector spaces. In other words, by
tweaking TadGAN’s architecture to embed vectors and exploit transformations
in the hyperbolic space, we can perform exhaustive studies of the benefits of
the hyperbolic network (see the discussion on Tables 2 and 3). HypAD’s hy-
perparameters remain the same as in [40], and we use the Riemannian Adam19

optimisation function.

16Notice that we optimize only the number of neurons in the first two layers (encoder). The
neuron number in the decoder is specular to that in the encoder.

17https://github.com/arunppsg/TadGAN
18https://github.com/cvlab-columbia/hyperfuture
19https://github.com/geoopt/geoopt
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havioural datasets. We rank the strategies in ascending order w.r.t. G (µ±σ) and F1 (µ±σ).
The bold-faced numbers represent the best-performing strategy among all. We calculate the
mean and standard deviation across all datasets for each enlisted strategy. For completeness
purposes, we include HypAD without uncertainty (i.e. HypAD w/o U(X)) to perform an ab-
lation study w.r.t. TadGAN and our proposed method, HypAD, that by default incorporates
the uncertainty mechanism U(X).

CASAS E-Linus eHealth
G (µ± σ) F1 (µ± σ)

G F1 G F1 G F1

IForest 0.281 0.273 0.368 0.353 0.270 0.262 0.306 ± 0.044 0.296 ± 0.041
LstmAE 0.244 0.220 0.446 0.430 0.388 0.366 0.359 ± 0.085 0.339 ± 0.088
ISUDRA 0.315 0.294 0.488 0.470 0.405 0.396 0.403 ± 0.071 0.387 ± 0.072
ConvAE 0.321 0.297 0.524 0.516 0.461 0.452 0.435 ± 0.085 0.422 ± 0.092
AE 0.265 0.280 0.514 0.505 0.586 0.577 0.455 ± 0.138 0.454 ± 0.126
TadGAN 0.387 0.371 0.623 0.615 0.547 0.539 0.519 ± 0.098 0.508 ± 0.102
HypAD w/o U(X) 0.512 0.510 0.595 0.593 0.579 0.540 0.562 ± 0.044 0.548 ± 0.042
HypAD (proposed) 0.512 0.510 0.631 0.629 0.579 0.540 0.574 ± 0.06 0.560 ± 0.06

5. Discussion

Table 2 shows our experimental results. The shown metrics are computed
for each dataset. Additionally, we average the metrics over all datasets to un-
derstand each method’s overall performance. To adequately comment on the
results in the Table, it is helpful to summarize the main differences between
the three datasets: CASAS includes natural activity sequences of older adults
freely moving in their home environment, eHealth includes artificial sequences
generated as previously described, while E-Linus includes sequences obtained
by artificially extending real but short sequences. Furthermore, in E-Linus,
patients live in a retirement home, where their activities are regulated by a pre-
defined routine established by the caregivers, while CASAS shows more irregular
behaviors in the daily routines. Notice that, on average, our proposed method
outperforms the baselines considered. Specifically, HypAD and TadGAN both
show remarkably better performance in all experiments concerning the base-
lines and the best competitor system in this domain (ISUDRA). In CASAS,
HypAD exhibits the highest increment in performance. Although the differ-
ence between HypAD and TadGAN is not striking in the other two datasets,
and one case (eHealth), TadGAN performs slightly better, HypAD has a lower
standard deviation w.r.t. TadGAN and all the other methods (< 0.049) across
all experiments, which demonstrates its higher robustness and trustworthiness,
boosted by the proposed hyperbolic uncertainty model. To explain the differ-
ent increment in performance of HypAD compared to the other systems in the
three datasets, we note that a synthetic dataset such as eHealth is probably one
where the model can tend to estimate with greater certainty, and this nullifies
the contribution of HypAD’s multiplicative uncertainty term, which explains
the comparatively lower performance in this domain.

To analyze the contribution of the hyperbolic transformation and the bene-
fits of the uncertainty mechanism, we perform an ablation study (see the lower
part of Table 2) according to the different components of our proposed method.
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Figure 7: Average F1 and G scores for each action in all the dataset.

Table 3: Performances of all methods in terms of average F1 scores for each sub-type of
anomaly in the E-Linus dataset. The bold-faced numbers represent the better-performing al-
gorithm for that particular anomaly type. The average and standard deviations are calculated
across all anomaly types for each enlisted method.

IForest ISUDRA AE ConvAE LstmAE TadGAN HypAD

Duration 0.342 0.520 0.624 0.594 0.572 0.651 0.669
Frequency 0.437 0.519 0.543 0.561 0.523 0.652 0.652
Start Time 0.376 0.550 0.614 0.635 0.386 0.575 0.596
Order 0.208 0.227 0.135 0.195 0.083 0.531 0.575

F1 (µ± σ) 0.341 ± 0.097 0.454 ± 0.152 0.479 ± 0.232 0.496 ± 0.203 0.391 ± 0.220 0.602 ± 0.061 0.623 ± 0.045

Recall that TadGAN can be considered as HypAD without hyperbolic transfor-
mation and without uncertainty. In the Table, we also perform experiments by
adding the hyperbolic component to TadGAN - i.e. HypAD w/o U(X) - with-
out the uncertainty and demonstrate that it performs better than TadGAN.
Finally, our proposed method integrates both the hyperbolic transformation
and the uncertainty mechanism that contribute to an overall amelioration of
the performances. Notice that the Table highlights that the uncertainty com-
ponent U(X) provides no gain for CASAS and eHealth because the model is
certain for all predictions - i.e. it maps the instances near the circumference
of the Poincaré ball - thus not altering the final score. Contrarily, in E-Linus,
the uncertainty boosts performances, uncovering that the predicted anomalous
in HypAD w/o U(X) are, in reality, sequences of everyday actions that are
challenging to reconstruct.

The histograms of Figure 7 show the performance (in terms of F1 and G) of
all systems on each monitored activity. Again, we can see that TadGAN and Hy-
pAD have stable performance on all actions and considerably surpass the other
systems. Similar observations apply to Table 3, illustrating the performance of
all systems by type of anomaly20.

Finally, we study the effect on performances of a variable amount of abnor-

20Notice that the average does not precisely match with the one presented in Table 2, since
the distribution of the observed phenomena is not the same: i.e. the average is not weighted
by the frequency of each anomaly type in the dataset.
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Figure 8: The change in F1 (left) and G (right) scores for each anomaly type. Here, we change
the percentage of anomalous instances in the test set and measure the performances.

mal behaviors. Since we are in an unsupervised scenario, we cannot vary the
percentage of anomalies on the entire dataset. Therefore, we leave the training
untouched for each anomaly type and study the performance change when the
anomaly percentage changes in the test set. Figure 8 illustrates the performances
of HypAD on each anomaly type in E-Linus. We vary the percentage change
from 25% to 50%, where 50% represents a class-balanced scenario. Clearly, 50%
of anomalous instances is the maximum amount to remain in an anomaly detec-
tion task since anomalies should represent only a fraction of the dataset. Notice
in Figure 8 that the curves corresponding to the F1 scores (left) share similar
trends with those presented in the G score (right). Additionally, the curves for
all anomaly types have a monotonically non-increasing trend when the anomaly
percentage tends to 50%. This is an expected behavior since both the discrim-
inator and the generator might confuse normal and abnormal instances and
generate anomalous instances that seem ordinary. Therefore, when the anoma-
lies increase, HypAD reaches performances similar to the random classifier with
an equal probability of outputting a 0/1. For completeness purposes, in Figure
9, we report the overall performances of HypAD when the anomaly percentage
changes from 25% to 50%. To compare the original performances of HypAD,
we include the F1 and G scores as reported in Table 2 depicted with a darker
colour.

To complete our analysis, we also conducted, with the help of geriatricians,
an in-depth study of the E-Linus cohort using the visual tools developed within
the E-Linus project [1]. For example, Figures 10a and 10b show the visual
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Figure 9: HypAD’s overall performances in terms of F1 and G scores when changing the
percentage of anomalies in the E-Linus dataset. Notice that we compare the performances
per anomaly percentage with the original ones reported in Table 2, presented with a darker
colour than the rest.

representation of a weekly routine for two of the monitored patients21. Although
the two routines are similar, as we said, they follow a pre-determined daily
program. The second patient is visibly less active due to his/her older age and,
furthermore, is affected by polyuria and irregular sleeping behavior.

Caregivers can also visualize statistics on each specific activity and monitor
parameters. Doctors have also found particularly helpful the visual explanation
of anomalies generated with SHAP. For example, Figures 11a and 11b visually
show the contribution, based on their Shapley value, of the various features to
a detected anomaly in a patient’s sleep activity. The charts, which refer to the
sleeping patterns of the two patients whose daily routine is illustrated in Figure
10, show that some features contribute to the anomaly (in blue), and others
offset it to the base value (in red). In this way, caregivers can quickly diagnose

21Alternative types of visualization can be selected, e.g., in [62] multiple temporal axes are
shown for each activity. However, we prefer collapsing the axes to get a quick glimpse of
weekly and monthly routines.
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(a) Daily routine of Patient 1

(b) Daily routine of Patient 2

Figure 10: Visual representation of the weekly behavioural patterns of two particular patients
in E-Linus [1]. Each row represents the ADL for a particular day. The colors represent the
different activities performed in a day. Note that the daily routine of Patient 2 shows polyuria
and an irregular sleeping behavior, however this irregularity represents the standard profile of
Patient 2.

and validate the system prediction of abnormal behavior and are also supported
in identifying the main signals that, for each patient, should create an alert.
For example, Figure 11a (referring to a sleep anomaly detected for Patient 1 of
Figure 10a shows that the total duration of the sleep activity and the duration
of the subsequent action (breakfast in the dining room) contributed the most
on reconstructing an abnormal sleep event for Patient 1. This patient generally
has a regular sleep, so the sleep duration is the most relevant feature that, if
altered, should create an alert. Differently from Patient 1, Patient 2 exhibits
more irregular sleeping habits (Figure 10b, therefore, the sleep duration is not
expected to contribute to anomalies since it is usually variable. For example,
Figure 11b shows that the unusual day part in which the patient has taken
a nap on a given day (specifically, mid-morning) has contributed the most to
classifying that particular sleep event as an anomaly. In general, explanations
help doctors identify the characteristics that contribute most to determining
an unusual behavior for each patient and should therefore be monitored with
greater attention.

6. Conclusion

Sensor networks and wearable devices encourage assisted living solutions
that help older people be independent and support patient care while preserv-
ing their privacy. In this context, implementing algorithmic solutions to detect
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(a) Patient 1

(b) Patient 2

Figure 11: SHAP visual explanations of two detected sleeping anomalies of Patient 1 and
Patient 2. The charts show the contribution of different features to the output of the anomaly
detector. Blue depicts the features that play a part in the anomaly; in red, those that coun-
terbalance it to the expected predicted value. Note that, for the same type of anomaly (bed),
the explanation is quite different for the two patients. Patient 1 has very regular sleeping
habits. Hence, unusual sleep durations are those that should create more alert. Instead, for
Patient 2 irregular sleep duration is common. In this case, other features may determine an
anomaly, like, as shown here, the day part and beginning time of the sleep (e.g., taking an
unusual nap late in the morning).

early signs of possible pathologies based on abnormal signals is particularly
challenging. The solution proposed in this paper, named HypAD, has several
relevant and, in some cases, unique features. First, anomaly prediction depends
on the temporal and spatial context, on the habits of each specific patient, and
is grounded on medical knowledge. Second, our proposal is a novel formulation
that combines the reconstruction error (how much a specific element diverges
from the normality) and the uncertainty of the model about the reconstruction.
The uncertainty component considerably increases the explainability of HypAD
predictions, as demonstrated by the minimal variance of the system’s perfor-
mance across different monitoring environments, actions, and anomaly types.
The experiments show that HypAD performs comparatively better in challeng-
ing domains where behaviors are unpredictable. Here, the contribution of the
uncertain estimation to the system’s predictions helps the most.

The entire workflow - from the representation of input behaviors to the
reporting and explanation of anomalous events - can be monitored using visual
analytic tools for the caregivers to gain insight, verify and possibly correct the
system’s predictions, and consolidate their trust in the system. In particular,
caregivers have found the visual explanation of anomalies helpful in identifying
specific traits that characterize the expected behavior of every single patient
and that, if changed, should create an alert.

Finally, the proposed model has, however, several limitations. First, we do
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that none of the systems in this paper are equipped to detect. HypAD does not
perform continual learning which is essential in adapting its latent knowledge
when a drift is signaled. In our ongoing studies, we are considering the problem
of drift anomalies and how the hyperbolic model can address the prediction of
these anomalies. A second limitation is a lack of more extensive, real datasets
that could bolster our results and experiments. In our work, we coped with this
limitation by artificially extending and manipulating sensor data captured from
actual patients in a limited period. Although artificial anomalies have been
injected by doctors (based on realistic assumptions) through a dedicated inter-
face, long-term and real-life patient data would certainly allow a more accurate
estimation of the pros and cons of the defined solution. Regarding this, a new
pilot experiment is planned in the coming months in the context of a European
project.
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hlights 

• We present a personality and context-aware model for the detection of behavioral anomalies, 

capable of identifying environment and patient-specific anomalies, and of explaining the main 

signals that, for each patient, contribute to classify an event as anomalous; 

• We propose a novel  trustworthy self-supervisedly-trained anomaly detection model for multi-

sensor time series signals, based on Hyperbolic uncertainty for Anomaly Detection, which we dub 

HypAD.  We leverage hyperbolic neural networks and map the input and the reconstructed signals 

into an end-to-end self-supervisedly-trained hyperbolic space, where the signals additionally have 

an uncertainty score. This hyperbolic uncertainty is then used to discern whether the 

reconstruction error is large because the signal is anomalous, or simply because the model cannot 

reconstruct it well; 

• Trustworthiness is further strengthened by explainability: a visual explanation is provided for each 

patient and anomaly to highlight the patient-dependent and contextual features that  contributed 

the most to the detected  anomaly; 

• The proposed method has been tested and compared with other systems on existing datasets of 

the same type, and in addition,  it has been  integrated into a fully implemented end-to-end AAL 

solution developed in the context of a funded regional project, E-Linus, aimed at detecting early 

signs of social isolation of  patients in residences for the elderly, and leveraging an interdisciplinary 

consortium of computer scientists, engineers and geriatricians. 
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