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A STABILIZATION OF A CONTINUOUS LIMIT OF THE
ENSEMBLE KALMAN INVERSION\ast 

DIETER ARMBRUSTER\dagger , MICHAEL HERTY\ddagger , AND GIUSEPPE VISCONTI\S 

Abstract. The ensemble Kalman filter (EnKF) belongs to the class of iterative particle filtering
methods and can be used for solving control-to-observable inverse problems. In this context, the
EnKF is known as ensemble Kalman inversion (EKI). In recent years several continuous limits in the
number of iterations and particles have been performed in order to study properties of the method. In
particular, a one-dimensional linear stability analysis reveals possible drawbacks in the phase space of
moments provided by the continuous limits of the EKI but is observed also in the multidimensional
setting. In this work we address this issue by introducing a stabilization of the dynamics which
leads to a method with globally asymptotically stable solutions. We illustrate the performance of
the stabilized version by using test inverse problems from the literature and comparing it with the
classical continuous limit formulation of the method.
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1. Introduction. In this paper we investigate a particular numerical method for
solving inverse problems, namely, the ensemble Kalman inversion (EKI), originally
introduced in [23]. This method can be derived in the framework of the ensemble
Kalman filter (EnKF) as briefly explained later in this introduction and in section 2.
While the EnKF has already been introduced more than 10 years ago [4, 11, 14, 15]
as a discrete time method to estimate state variables and parameters of stochas-
tic dynamical systems, the EKI has been recently and successfully applied to solve
inverse problems in many research fields due to its derivative-free structure, in par-
ticular in oceanography [16], reservoir modeling [1], weather forecasting [24], milling
process [29], process control [31], and also machine learning [20, 25].

In order to set up the mathematical formulation, we let \scrG : X \rightarrow Y be the given
(possible nonlinear) forward operator between the Euclidean spaces X = \BbbR d, d \in \BbbN ,
and Y = \BbbR K , K \in \BbbN . We are concerned with the following abstract inverse problem

\ast Received by the editors April 21, 2021; accepted for publication (in revised form) March 11,
2022; published electronically June 21, 2022.

https://doi.org/10.1137/21M1414000
Funding: The work of the authors was supported by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) grants 20021702/GRK2326, 333849990/IRTG-2379, and
HE5386/15,18-1,19-1,22-1, by Germany's Excellence Strategy EXC-2023 Internet of Production
390621612, and by funding through HIDSS-004. This work was initiated during the workshop ``Sto-
chastic dynamics for complex networks and systems"" hosted at the University of Mannheim in 2019.
The workshop was financially supported by the DAAD exchange project PPP USA 2019 (project
57444394). The third author is member of the GCNS-INdAM Group and acknowledges support
through the PRIN Project 2017 (2017KKJP4X).

\dagger School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-
1804 USA (armbruster@asu.edu).

\ddagger Institut f\"ur Geometrie und Praktische Mathematik (IGPM), RWTH Aachen University, 52062
Aachen, Germany (herty@igpm.rwth-aachen.de).

\S Current address: Dipartimento di Matematica ``G. Castelnuovo"", Sapienza Universit\`a di Roma,
P.le Aldo Moro 5, 00185 Roma, Italy (giuseppe.visconti@uniroma1.it).

1494

D
ow

nl
oa

de
d 

07
/0

8/
22

 to
 1

30
.8

3.
73

.4
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1414000
mailto:armbruster@asu.edu
mailto:herty@igpm.rwth-aachen.de
mailto:giuseppe.visconti@uniroma1.it


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1495

or parameter identification problem

(1.1) y = \scrG (u) + \bfiteta 

aiming to recover unknown control u \in X from given observations y \in Y , where \bfiteta 
is observational noise. Typically, d \gg K, and \bfiteta is not explicitly known, but only
information on its distribution is available. We assume that \bfiteta \sim \scrN (0,\Gamma  - 1); i.e., the
observational noise is normally distributed with zero mean and given covariance ma-
trix \Gamma  - 1 \in \BbbR K\times K .

Relying on the same machinery leading to the EnKF formulation, the EKI can
be derived within the inverse problem framework by rewriting (1.1) as a partially
observed and artificial dynamical system based on state augmentation; e.g., cf. [3, 23].
The update formula for each ensemble member is computed by imposing first order
necessary optimality conditions to solve a regularized minimization problem, which
aims for a compromise between the background estimate of the dynamics model and
additional information provided by the data model. A similar technique is used to
derive the update formula for constrained inverse problems [2, 22].

In order to understand how and why the EKI works, a continuous-time limit [5, 6,
10, 27, 28] and a mean-field limit on the number of the ensemble members [8, 12, 17, 21]
have been developed. Continuous limits have been performed also for variants of the
EKI; e.g., we refer to [9] for the hierarchical EKI. Recent theoretical progress [21, 27]
using these limits in the linear setting is the starting point of the current work.
Specifically, it has been shown that, within these limits and assuming a linear forward
model, the EKI provides a solution to the inverse problem (1.1) by minimizing the
least-squares functional

(1.2) \Phi (u,y) :=
1

2

\bigm\| \bigm\| \bigm\| \Gamma 1
2 (y  - \scrG (u))

\bigm\| \bigm\| \bigm\| 2
Y

via a preconditioned gradient flow equation, where the preconditioner is given by the
empirical covariance of the ensemble, in the continuous-time limit, and via a Vlasov--
type equation in the mean-field limit. Note that, contrary to the fully discrete and
classical formulation of the EKI, there is no regularization of the control u in the
minimization of (1.2). However, when the inverse problem is ill posed, infimization of
\Phi is not a well-posed problem, and some form of regularization may be required. This
has been recognized in [10, 34] where modifications of the EKI are proposed, leading
to Tikhonov--Phillips-like regularizations of (1.2).

Another source of problems is given by the preconditioned gradient flow structure
and can be analyzed with the system of the first and second central moment, i.e., the
expected value and the variance of the distribution of the ensemble, respectively.
In [21] a one-dimensional linear stability analysis of the moment equations resulting
from the mean-field limit revealed that the method has infinitely many nonhyperbolic
Bogdanov--Takens equilibria [18]. In this work, we show also that this structure
of the phase space is kept in the multidimensional setting. Although it is possible
to show that the equilibrium providing the minimization of (1.2) is still a global
attractor, having infinitely many nonhyperbolic equilibria leads to several undesirable
consequences. In fact, not only are Bogdanov--Takens equilibria not asymptotically
stable, they are structurally unstable and thus nonrobust and extremely sensitive
to model perturbations. These equilibria lie on the set where the preconditioner
collapses to zero. Thus, convergence to the solution of the minimization of (1.2)
may be affected by numerical instability which may occur, e.g., due to an overly
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1496 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

confident prior, i.e., when the initial ensemble is characterized by a small variance.
Numerical and practical instability may either push the trajectory in the unfeasible
region of the phase space, i.e., where the variance of the ensemble is negative, or
get the method stuck in the wrong equilibrium. These observations would therefore
lead to the necessity of employing a proper and robust numerical discretization of
the method. Furthermore, the presence of nonhyperbolic equilibria leads to a slow
convergence of the method to the equilibrium solution, which happens at the rate
\scrO (t - 1), where t represents the time.

In this work we address these issues by introducing a modification of the contin-
uous dynamics for the ensemble, in such a way that the corresponding phase plane
of the moment equations is characterized by a globally asymptotically stable equilib-
rium, the one minimizing the least-squares functional (1.2). The stabilization effect
is obtained by artificially inflating the preconditioner of the gradient flow equation,
i.e., the ensemble covariance matrix, with an additive term which acts as a regu-
larization. The inflation term has to be a positive definite symmetric matrix. The
advantage is twofold. First, the new phase space of moments is robust. Instead, in the
limits of the classical EKI, a small perturbation into the unfeasible region explodes,
bringing the trajectory far from the desired one. Second, as a consequence of the
stabilization, the rate of convergence to the solution of the minimization of (1.2) is
improved, resulting now in it being exponentially fast. In addition, we consider a
suitable acceleration/relaxation term aiming to control the distance of each ensemble
member to their mean. This term further speeds up the convergence rate. The usual
properties of the classical EKI, such as decay of the ensemble spread, are still satisfied
by this stabilized version of the method. Its performance is investigated for an inverse
problem based on a two-dimensional elliptic partial differential equation (PDE). We
show that the new method is able to converge to the solution faster and, more impor-
tantly, converges independently of the properties of the initial ensemble. Although
the analysis focuses on linear forward models, numerical examples seem to suggest
that the stabilization we propose provides advantages also when applied to nonlin-
ear inverse problems. For further evidence on why EKI formulations perform well in
nonlinear settings we refer to [13].

We point out that, although the instability discussed above is not observed in
the discrete version of the EKI, for practical purposes it is still crucial to introduce a
stabilization of the continuous limits. In fact, the mean-field limit can be particularly
useful in applications because it allows us to describe the case of infinitely many
ensemble members and to guarantee a computational gain in the numerical simulations
using fast techniques; e.g., see [17, 21, 29].

The rest of the paper is organized as follows. In section 2 we review the EnKF
formulation for inverse problems and the continuous formulations. In particular, the
linear stability analysis of the moment equations performed in [21] is recalled. In
section 3 we discuss the stabilization of the dynamics and analyze the properties of
the regularized method. In section 4 we investigate the ability of the method to
provide a solution to an inverse problem based on a two-dimensional elliptic PDE.
Finally, we summarize the results in section 5.

2. Preliminaries on the EKI. We briefly recall the original formulation of
the EKI; cf. [23], which is based on a sequential update of an ensemble to estimate
the solution of control-to-observable inverse problems. The derivation of the method
is presented within optimization theory considering only the deterministic version
of EKI, i.e., without artificial random perturbation of the measurement during the
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STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1497

iteration in time. Focusing on recent continuous limit formulations which have allowed
theoretical analysis of the nature of the method, we review the one-dimensional linear
stability analysis of the moment equations performed in [21].

2.1. Formulation of the EKI. We consider a number J of ensemble members
(realizations of the control u \in \BbbR d) combined in \bfU =

\bigl\{ 
\bfu j

\bigr\} J

j=1
with uj \in \BbbR d. The EKI

is originally posed as a discrete iteration on U, derived by solving a minimization
problem that compromises between the background estimate of the given model and
additional information provided by data or measurements. For more details, we refer,
e.g., to [23]. The iteration index is denoted by n and the collection of the ensemble
members by Un = \{ uj,n\} Jj=1 \forall n \geq 0. The EKI iterates each component of Un at
iteration n+ 1 as

(2.1) uj,n+1 = uj,n +C\scrG (U
n)

\biggl( 
D\scrG (U

n) +
1

\Delta t
\Gamma  - 1

\biggr)  - 1

(y  - \scrG (uj,n))

for each j = 1, . . . , J , where \Delta t \in \BbbR + is a parameter. In general, each observation
or measurement can be perturbed by additive noise [23]. We focus on the case where
the measurement data y \in \BbbR K is unperturbed.

The update of the ensemble (2.1) requires the knowledge of the operators C\scrG (Un)
and D\scrG (Un) which are, in the present finite-dimensional setting, the covariance ma-
trices depending on the ensemble set Un at iteration n and on \scrG (Un), i.e., the image
of Un at iteration n. More precisely, we have

(2.2)

C\scrG (U
n) =

1

J

J\sum 
k=1

\bigl( 
uk,n  - un

\bigr) \Bigl( 
\scrG (uk,n) - \scrG n

\Bigr) T

\in \BbbR d\times K ,

D\scrG (U
n) =

1

J

J\sum 
k=1

\Bigl( 
\scrG (uk,n) - \scrG n

\Bigr) \Bigl( 
\scrG (uk,n) - \scrG n

\Bigr) T

\in \BbbR K\times K ,

where we define un and \scrG n
as the mean of Un and \scrG (Un), respectively:

un =
1

J

J\sum 
j=1

uj,n, \scrG n
=

1

J

J\sum 
j=1

\scrG (uj,n).

The EKI satisfies the subspace property [23]; i.e., the ensemble iterates stay in the
subspace spanned by the initial ensemble. As a consequence, the natural estimator
for the solution of the inverse problem is provided by the mean of the ensemble.

2.2. Derivation of the EKI from an optimization point-of-view. The EKI
method (2.1) for the solution of the inverse problem (1.1) can be derived by using
an optimization point-of-view. Below, we briefly review the machinery leading to the
EKI formulation. For further details and explicit computations we refer to, e.g., [2].

We introduce a new variable w = \scrG (u) \in \BbbR K and reformulate (1.1) equivalently
as

w = \scrG (u),
y = w + \bfiteta .

The problem is then reinterpreted as a filtering problem by considering a discrete
time dynamical system with state transitions and noisy observations:
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1498 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

(dynamics model)

\Biggl\{ 
un+1 = un,

wn+1 = \scrG (un),

(data model)
\Bigl\{ 
y = wn+1 + \bfiteta .

By defining v = [u,w]T \in \BbbR d+K and \Xi : v \mapsto \rightarrow \Xi (v) = [u,\scrG (u)]T \in \BbbR d+K , the
dynamical model can be written as

vn+1 = \Xi (vn),

whereas the data model becomes

y = Hvn+1 + \bfiteta ,

where H = [0K\times d, IK\times K ] \in \BbbR K\times (d+K) is an observation matrix. Let us denote by
\{ vj,n\} Jj=1 a collection of J ensemble members, also called particles, at time n. The
method proceeds as follows.

First, the state of all particles at time n + 1 is predicted using the dynamical
model to give \{ \^vj,n+1\} Jj=1, i.e., \^v

j,n+1 = \Xi (vj,n). The resulting empirical covariance

Cov \in \BbbR (d+K)\times (d+K) of the uncertainties in the predictions is computed. Exploiting
the definition of \Xi it is easy to check that

Cov =
1

J

J\sum 
k=1

(\^vk,n+1  - \^v
n+1

)(\^vk,n+1  - \^v
n+1

)T =

\biggl[ 
C C\scrG 
CT

\scrG D\scrG 

\biggr] 
,

where C\scrG and D\scrG are as in (2.2), whereas

C =
1

J

J\sum 
k=1

(uk,n  - un)(uk,n  - un)T \in \BbbR d\times d.

Then, the update vj,n+1 of each particle is determined by imposing first order
necessary optimality condition of the following minimization problem

vj,n+1 = argmin
\bfv 

\scrJ j,n(v),

which is solved sequentially and where \scrJ j,n(v) is the objective function which encap-
sulates the model-data compromise:

(2.3) \scrJ j,n(v) =
1

2

\bigm\| \bigm\| yn+1  - Hv
\bigm\| \bigm\| 2
\bfGamma  - 1 +

1

2

\bigm\| \bigm\| v  - \^vj,n+1
\bigm\| \bigm\| 2
\bfC \bfo \bfv 

.

Finally, the update (2.1) of uj,n+1, related to the unknown control state only, is
obtained as H\bot vj,n+1 with H\bot = [Id\times d,0d\times K ] \in \BbbR d\times (d+K).

This derivation of the EKI from an optimization point-of-view leads into the
introduction and motivation of the stabilized formulation of the continuous limit. In
particular, we observe that the first term of the objective (2.3) corresponds to the
least-squares functional \Phi given by (1.2). Therefore, minimization of (2.3) can be
seen as minimization of \Phi subject to a regularization term involving the covariance
of the ensemble.

Remark 2.1. The derivation of the EKI motivated through the optimization ap-
proach assumes that the empirical covariance Cov is positive definite \forall n \geq 0. In
general, it is not possible to guarantee that. In [2] and in [6, 32], this issue is over-
come by a constant or time-dependent shifting of Cov.
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2.3. Continuous limits of the EKI.

2.3.1. Continuous-time. As in [27], we compute the continuous-time limit
equation of the update (2.1). We consider the parameter \Delta t as an artificial time
step for the discrete iteration, i.e., \Delta t \sim N - 1

t with Nt being the maximum number

of iterations, and define Un \approx U(n\Delta t) =
\bigl\{ 
uj(n\Delta t)

\bigr\} J

j=1
for n \geq 0. Computing the

limit \Delta t \rightarrow 0+ we obtain

(2.4)

d

dt
uj = C\scrG (U)\Gamma 

\bigl( 
y  - \scrG (uj)

\bigr) 
, j = 1, . . . , J,

C\scrG (U) =
1

J

J\sum 
k=1

\bigl( 
uk  - u

\bigr) \bigl( 
\scrG (uk) - \scrG 

\bigr) T
with initial condition U(0) = U0.

Linear forward model. Let us consider the case of \scrG linear, i.e., \scrG (u) = Gu,
withG \in \BbbR K\times d. Then (2.4) is a gradient descent equation, and we can writeC\scrG (U) =
1
J

\sum J
k=1

\bigl( 
uk  - u

\bigr) \bigl( 
uk  - u

\bigr) T
GT . Since the least-squares functional (1.2) yields

(2.5) \nabla \bfu \Phi (u,y) =  - GT\Gamma (y  - Gu),

(2.4) can be stated in terms of the gradient of \Phi as

(2.6)

d

dt
uj =  - C(U)\nabla \bfu \Phi (u

j ,y), j = 1, . . . , J,

C(U) =
1

J

J\sum 
k=1

(uk  - u)(uk  - u)T .

Equation (2.6) describes a preconditioned gradient descent equation for each ensemble
aiming to minimize \Phi . C(U) is positive semidefinite, and hence

(2.7)
d

dt
\Phi (u(t),y) =

d

dt

1

2

\bigm\| \bigm\| \bigm\| \Gamma 1
2 (y  - Gu)

\bigm\| \bigm\| \bigm\| 2 \leq 0.

Although the forward operator is assumed to be linear, the gradient flow is nonlinear.
For further details and properties of the gradient descent equation (2.6) we refer
to [27]. In particular, the subspace property of the EKI also holds for the continuous
dynamics.

Note that in the continuous-time limit a term originally present in the fully dis-
crete EKI method (2.1) is lost; cf. (2.1). This is due to the scaling assumption of
the measurement covariance by \Delta t which makes the term of order \Delta t2 vanishing in
the limit \Delta t \rightarrow 0+. This term is, however, not a Tikhonov regularization-type term
but may act as a regularization term. We will come back to this point in the next
sections.

2.3.2. Mean-field. By definition, the EKI method is a computational method
and hence is calculated for a finite ensemble size. The behavior of the method in the
limit of infinitely many ensembles can be studied via a mean-field limit leading to a
Vlasov-type kinetic equation for the compactly supported on \BbbR d probability density
of u at time t, denoted by

(2.8) f = f(t,u) : \BbbR + \times \BbbR d \rightarrow \BbbR +.
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1500 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

First we show the limit equation for the case of a nonlinear model and later
specialize it to a linear modelG. We follow the classical formal derivation to formulate
a mean-field equation of a particle system; see [7, 19, 26, 33]. We introduce the first
moments m \in \BbbR d, m\scrG \in \BbbR K and the second moments E \in \BbbR d\times d, E\scrG \in \BbbR d\times K of f at
time t, respectively, as

(2.9)

m(t) =

\int 
\BbbR d

uf(t,u)du, E(t) =

\int 
\BbbR d

u\otimes uf(t,u)du,

m\scrG (t) =
\int 
\BbbR d

\scrG (u)f(t,u)du, E\scrG (t) =
\int 
\BbbR d

u\otimes \scrG (u)f(t,u)du.

Since u \in \BbbR d, the corresponding discrete measure on the ensemble set U =
\bigl\{ 
uj

\bigr\} J

j=1

is given by the empirical measure

(2.10) f(t,u) =
1

J

J\sum 
j=1

\delta (uj  - u).

Let us consider the interacting particle system (2.4). The empirical measure
allows for a mean-field limit of C\scrG as

(C\scrG )\kappa ,\ell =
\int 
\BbbR d

u\kappa \scrG (u)\ell f(t,u)du - 
\int 
\BbbR d

u\kappa f(t,u)du

\int 
\BbbR d

\scrG (u)\ell f(t,u)du, \kappa , \ell = 1, . . . , d,

and therefore C\scrG can be written in terms of the moments (2.9) of f only as

(2.11) C\scrG (f) = E\scrG (t) - m(t)mT
\scrG (t) \geq 0.

We denote a sufficiently smooth test function by \varphi (u) \in C1
0 (\BbbR d) and compute

d

dt
\langle f, \varphi \rangle = d

dt

\int 
\BbbR d

1

J

J\sum 
j=1

\delta (u - uj)\varphi (u)du =  - 1

J

J\sum 
j=1

\nabla \bfu \varphi (u
j) \cdot C\scrG (f)\Gamma (y  - \scrG (uj))

=  - 
\int 
\BbbR d

\nabla \bfu \varphi (u) \cdot C\scrG (f)\Gamma (y  - \scrG (u))f(t,u)du

which finally leads to the strong form of the mean-field kinetic equation corresponding
to the continuous-time limit (2.4):

(2.12) \partial tf(t,u) - \nabla \bfu \cdot (C\scrG (f)\Gamma (y  - \scrG (u))f(t,u)) = 0.

Linear forward model. In case of a linear model \scrG (\cdot ) = G\cdot , which is the
assumption we use for the subsequent analysis, the mean-field kinetic equation corre-
sponding to the gradient descent equation (2.6) becomes

(2.13) \partial tf(t,u) - \nabla \bfu \cdot (C(f)\nabla \bfu \Phi (u,y)f(t,u)) = 0,

where, similar to C\scrG (f), the operator C(f) can be also defined in terms of moments
of the empirical measure (2.10) as

(2.14) C(f) = E(t) - m(t)mT (t) \geq 0.

For the rigorous mean-field derivation and analysis of the EKI we refer to [8, 12].
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STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1501

We observe that (2.13) is a nonlinear transport equation arising from nonlinear
gradient flow interactions, and the counterpart of (2.7) holds at the kinetic level.
Defining

\scrL (f,y) =
\int 
\BbbR d

\Phi (u,y)f(t,u)du

we compute

d

dt
\scrL (f,y) =

\int 
\BbbR d

\Phi (u,y)\partial tf(t,u)du =  - 
\int 
\BbbR d

(\nabla \bfu \Phi (u,y))
TC(f)\nabla \bfu \Phi (u,y)du \leq 0

since C(f) is positive semidefinite. In particular, \scrL (f,y) is decreasing unless f is a
Dirac distribution. This reveals that a solution of min\bfu \in \BbbR d \Phi (u,y) provides a steady
solution of the continuous limit formulation, but the converse is not necessarily true.
In fact, all Dirac distributions, i.e., all f satisfying C(f) = 0, provide steady solutions
of (2.13). In particular, the velocity of convergence to the correct Dirac distribution
may be highly influenced by the initial properties of the initial condition, i.e., by the
distribution of the initial ensemble.

2.4. Stability of the moment equations. The previous observations are
investigated in depth at the level of moments of the mean-field equation in order
to gain insights on the nature of the steady states. We recall that the expected
value of the ensemble is selected as an estimator for the solution due to the subspace
property satisfied by the EKI. For this reason the analysis of moments is of crucial
importance in order to understand the properties of the method.

In [21], the linear stability analysis of the moment equations resulting from (2.13)
has been investigated for one-dimensional controls. Here, we briefly review but also
extend that analysis. First, we restrict the attention to the case d = K = 1. From
now on, we avoid using bold font to emphasize that the involved quantities are one-
dimensional.

The dynamical system for the first and second moment is computed from (2.13).
Using the linearity of the model we obtain

(2.15)

d

dt
m(t) = C(m,E)GT\Gamma (y  - Gm),

d

dt
E(t) = 2C(m,E)GT\Gamma (ym - GE),

where we observe that C(m,E) corresponds to the variance; in fact\int 
\BbbR 
(u - m(t))2f(t, u)du = E(t) - m(t)2.

System (2.15) is closed by the second moment equation due to the assumption of a
linear model. If the forward model was nonlinear, then the knowledge of the dynamics
of the mixed moments in (2.9) would be required to have a closed hierarchy.

We analyze steady states and their stability with G = \Gamma = 1. Nullclines of (2.15)
are given by

d

dt
m(t) = 0 \leftrightarrow m = y \vee E = m2,

d

dt
E(t) = 0 \leftrightarrow E = ym \vee E = m2.
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1502 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

Equilibrium points arise by intersection of the nullclines and are thus

(2.16) Fk = (k, k2), k \in \BbbR ;

i.e., all equilibria are points on the set E = m2 for which C = 0. We note that
they lie on the boundary of the admissible region C \geq 0. This means that all Dirac
delta distributions are steady states of the mean-field equation, as shown for cases
of arbitrary dimension at the end of section 2.3.2. As a consequence we have a set
of infinitely many steady states. The one minimizing the least-square functional \Phi 
is \delta (u  - y), corresponding to Fy = (y, y2). Studying the linear (in)stability of the
equilibrium points, it is simple to show that all the Fk's have double-zero eigenvalues
and thus are nonhyperbolic Bogdanov--Takens-type equilibria.

Nevertheless, we point out that the desired steady state Fy, although being a
Bogdanov--Takens equilibrium, is still a global attractor of the dynamics when the
initial condition belongs to the region C > 0. In order to show this, consider the
coupled system of ODEs for m and C = E  - m2 with G = \Gamma = 1:

d

dt
m(t) = C(y  - m),

d

dt
C(t) =  - 2C2.

Then we observe that, on the region C > 0, \.m > 0 for m < y and \.m < 0 for m > y.
Instead, \.C < 0 \forall C. The trajectories in the phase space (m,C) can be computed by
solving

d

dm
C(m) =  - 2

C

(y  - m)

which gives C(m) = c(m - y)2, with c an integration constant. This proves that the
equilibrium (m,C) = (y, 0), which corresponds to Fy in the phase space (m,E), is
the global attractor for all initial conditions C > 0.

However, having nonhyperbolic equilibria has several undesirable consequences:
Bogdanov--Takens equilibria are not asymptotically stable, and in fact their lineariza-
tion is unstable. More importantly, they are nonhyperbolic and thus structurally
unstable, i.e., susceptible to qualitative changes under arbitrary small perturbations
of the underlying model. In addition, the instability of the phase space may result
also in numerical instabilities leading trajectories to the unfeasible region, i.e., where
C(m,E) < 0, or to get stuck in an equilibrium point which is not Fy. Finally, we may
face a slow convergence to the global attractor equilibrium. In fact, we notice that
the differential equation for C can also be solved explicitly, giving us

C(t) =
C(0)

1 + 2C(0)t
,

with C(0) being the initial condition. Thus, C(t) \rightarrow 0+, as t \rightarrow +\infty , very slowly,
precisely with rate \scrO (t - 1).

2.4.1. Stability for multidimensional controls. We recall that the existence
of infinitely many steady states satisfying C = 0 holds in the general dimension, as
observed in section 2.3.2. Instead, the above stability analysis is performed in the
simplest setting d = 1. However, we can show that the nature of the moment equilibria
lying in the kernel of C is maintained also in the general dimension, i.e., when d > 1.
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Let y \in \BbbR d, and consider the d+ d2 dynamical system

(2.17)

d

dt
m(t) = (E - mmT )(y  - m),

d

dt
E(t) = (E - mmT )(ymT  - E) + (myT  - E)(E - mmT ),

where m \in \BbbR d and E \in \BbbR d\times d. We are interested in the equilibrium points (m\ast ,E\ast )
such that C\ast := E\ast  - m\ast (m\ast )T = 0. To this end, it is convenient to rewrite,
equivalently, the dynamical system (2.17) in terms of m and C = E - mmT \in \BbbR d\times d

as

(2.18)

d

dt
m(t) =C(y  - m),

d

dt
C(t) =

d

dt
E - d

dt
mmT  - m

d

dt
mT

= - 2CC.

It is clear that C = 0 defines a set of equilibrium points of (2.18). By linearization
we compute the Jacobian matrix

J =

\biggl[ 
J11 J12

J21 J22

\biggr] 
\in \BbbR (d+d2)\times (d+d2),

where the four blocks are

J11 =
\partial \.m

\partial m
\in \BbbR d\times d, J12 =

\partial \.m

\partial C
\in \BbbR d\times d2

,

J21 =
\partial \.C

\partial m
\in \BbbR d2\times d, J22 =

\partial \.C

\partial C
\in \BbbR d2\times d2

.

Then on C = 0 we have J11 =  - C = 0 and, similarly, J22 = 0 since it is linear with
respect to C. Instead,

J12 =
\bigl[ 
M1, . . . ,Md

\bigr] 
, Mi = ei(y  - m)T \in \BbbR d\times d,

where ei \in \BbbR d is the ith vector of the standard basis of the Euclidean space \BbbR d. Then,
in general, J12 \not = 0 also on C = 0, but J21 \equiv 0. We conclude that the Jacobian J
has d zero eigenvalues on C = 0, corresponding to nonhyperbolic steady states of
Bogdanov--Takens type. Therefore, all the undesirable consequences discussed in the
one-dimensional setting occur also in the general dimension.

3. Stabilization of the dynamics. Our goal is to introduce a modified formu-
lation of the continuous dynamics in order to make the target equilibrium a globally
asymptotically stable equilibrium of the system of moment equations. We are only
interested in the target equilibrium since the others are irrelevant for the optimiza-
tion. The modification we propose is inspired by the idea to restore the regularization
effect of the discrete EKI which gets lost in the continuous limits.

Given \Sigma \in \BbbR d\times d symmetric, we propose to consider the following general discrete
dynamics for each ensemble member j = 1, . . . , J :

(3.1)

d

dt
uj = \~C\scrG (U)\Gamma (y  - \scrG (uj)) +R(U),

R(U) = \beta \~C(U)(uj  - \=u),

\~C\scrG (U) = C\scrG (U) + (1 - \alpha )\Sigma \scrG ,

\~C(U) = C(U) + (1 - \alpha )\Sigma ,
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1504 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

with \alpha , \beta \in \BbbR and where \Sigma G := (\scrG (\Sigma ))
T \in \BbbR d\times K with \scrG acting on the columns of

\Sigma . The choices \alpha = 1 and \beta = 0 yield the continuous-time limit (2.4) for the original
EKI. Since the analysis of stability of the new dynamics (3.1) will be performed again
in the case of a linear model, now we specialize (3.1) to this particular setting, and
then we discuss the role of the modifications we propose.

Linear forward model and mean-field limit. The analysis of the proposed
stabilization will also be performed in the linear setting \scrG (\cdot ) = G\cdot . Then (3.1) becomes

(3.2)

d

dt
uj =  - \~C(U)\nabla \bfu \Phi (u

j ,y) +R(U),

R(U) = \beta \~C(U)(uj  - \=u),

\~C(U) = C(U) + (1 - \alpha )\Sigma ,

with \Phi being the least-squares functional (1.2).
The modified dynamics (3.2) differs from the standard continuous-time limit of

the discrete EKI (cf. (2.6)) in the formulation of the preconditioner \~C(U) and in
the presence of the additive term R(U). The new preconditioner can be thought of,
for \alpha < 1, as inflation of the covariance C(U) defined in (2.6). This modification
allows us to stabilize the phase space of the moments, and \alpha plays the role of a
regularization/bifurcation parameter. The term R(U), instead, can be thought of as
acceleration/relaxation to equilibrium. This formal presentation of the role of the
parameters will be made mathematically rigorous in the following because it is the
core of the analysis in sections 3.1, 3.2, and 3.3.

Performing formal computations as in section 2.3.2, it is possible to show that
the solution of the dynamical system (3.2) satisfies the weak form of the following
mean-field equation:

(3.3) \partial tf(t,u) - \nabla \bfu \cdot 
\Bigl( 
\~C(f) (\nabla \bfu \Phi (u,y) - \beta (u - m)) f(t,u)

\Bigr) 
= 0,

where \~C(f) is the mean-field interpretation of \~C(U) in (3.2). In fact, via the empirical
measure (2.10) we have\Bigl( 

\~C(U)
\Bigr) 
i,\ell 

=

\int 
\BbbR d

uiu\ell f(t,u)du - 
\int 
\BbbR d

uif(t,u)du

\int 
\BbbR d

u\ell f(t,u)du

+ (1 - \alpha )\Sigma , i, \ell = 1, . . . , d,

and therefore it can be written in terms of the moments of f only, leading to

\~C(f) = E(t) - m(t)mT (t) + (1 - \alpha )\Sigma .

Note that, if \alpha = 1, \~C(f) \equiv E(t)  - m(t)mT (t) = C(f) \geq 0 (see (2.14)) and that \~C
can be seen as inflation of the covariance C for \alpha < 1.

3.1. One-dimensional stability analysis of the moment equations. The
stability of moments is again studied in the simplest setting of a one-dimensional
problem, i.e., d = K = 1. From (3.3) we compute

(3.4)

d

dt
m = \~C(m,E)GT\Gamma (y  - Gm),

d

dt
E = 2 \~C(m,E)

\bigl( 
GT\Gamma (ym - GE) + \beta C(m,E)

\bigr) 
,

\~C(m,E) = E  - m2 + (1 - \alpha )\sigma ,

C(m,E) = E  - m2,
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STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1505

where we again avoid the use of bold fonts to highlight the one-dimensional quantities.
Here \sigma is a positive scalar, and, for instance, one could take \sigma = m2 so that \~C(m,E) =
E - \alpha m2. Without loss of generality we consider this choice in the subsequent analysis.

We introduce the following concepts of admissible initial conditions, solutions,
and equilibria of (3.4).

Definition 3.1. We say that an initial condition of (3.4) is admissible if the
following conditions hold: (m(0), E(0)) \in \BbbR \times \BbbR + and E(0) > m(0)2.

We say that a solution of (3.4) with admissible initial condition is admissible or
belongs to the feasible domain of the phase space (m,E) if t \in \BbbR + \mapsto \rightarrow (m(t), E(t)) \in 
\BbbR \times \BbbR + satisfies E(t) \geq m(t)2 \forall t > 0.

We say that F = (m\infty , E\infty ) is an admissible or feasible equilibrium point of (3.4)
if ( \.m, \.E)| F \equiv 0 and F \in \BbbR \times \BbbR + with E\infty \geq m2

\infty .

Definition 3.1 can be generalized to the dynamics in general dimension.
Now, we analyze the behavior of the phase portrait of the dynamical system (3.4).

Proposition 3.2. Let (m(0), E(0)) = (m0, E0) be an admissible initial condition
of (3.4). Assume that G = \Gamma = 1. Then the dynamical system has two feasible equi-
librium points, Fy = (y, y2) and F0,\alpha = (0, 0), \forall \alpha \in \BbbR . In particular, F0,\alpha is a nonhy-
perbolic Bogdanov--Takens equilibrium, and Fy is an asymptotically stable equilibrium,
namely, \exists \delta > 0 such that if \| (m0, E0) - Fy\| < \delta , then limt\rightarrow \infty (m(t), E(t)) = Fy, pro-
vided \alpha < 1 and \beta < 1.

Proof. Steady states are obtained as the intersection of the nullclines. For the
system (3.4) with G = \Gamma = 1 we get the following equilibrium points (m,E):

(3.5) Fy = (y, y2), Fk,\alpha = (k, \alpha k2), k \in \BbbR .

By the Hartman--Grobman theorem, nonlinear dynamical systems are locally topolog-
ically conjugate to their linearized formulations near the hyperbolic fixed point. Thus,
if Fy is hyperbolic and asymptotically stable, the local phase portrait of the nonlinear

system (3.4) is equivalent to that of its linearization [ \.m, \.E]T = J(m,E)[m,E]T , where
J(m,E) is the Jacobian. The eigenvalues of the Jacobian evaluated at the equilibrium
point Fy are

\lambda 
Fy

1 = y2(\alpha  - 1), \lambda 
Fy

2 =  - 2y2(\beta  - 1)(\alpha  - 1);(3.6)

therefore Fy is an asymptotically stable equilibrium if \alpha < 1 and \beta < 1. We notice
that \alpha < 1 automatically implies that, except for k = 0, all the other equilibria Fk,\alpha 

are not feasible since C(m,E) < 0. In addition, F0,\alpha is still a Bogdanov--Takens-type

equilibrium and thus unstable, since its eigenvalues are \lambda 
F0,\alpha 

1,2 = 0.

The previous result shows that \alpha plays the role of a bifurcation parameter. In
fact, for \alpha \rightarrow 1 we recover the same equilibria and topological behavior in the phase
space as in the classical continuous--limits of the EKI; cf. (2.16). In particular, \alpha 
allows us to stabilize the dynamics. The new ensemble update (3.2) still has infinitely
many equilibria but on the set E = \alpha m2, which lies in the unfeasible region of the
phase space for \alpha < 1. In addition, for this choice of \alpha , (2.16) has Fy as isolated
hyperbolic and asymptotically stable fixed point of the dynamics.

Remark 3.3 (lower bound for \alpha ). We observe that we have not discussed the
stability of the equilibrium points Fk,\alpha , since the choice \alpha < 1 makes them unfeasible.
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1506 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

If we impose that they are unstable, then we need additional constraints on \alpha and \beta .
The eigenvalues of a point Fk,\alpha , k \in \BbbR \setminus \{ 0\} , are

\lambda 
Fk,\alpha 

1 = 0, \lambda 
Fk,\alpha 

2 = 2k(y  - k\beta )(1 - \alpha ).

Thus, these points are still nonhyperbolic, saddle--node-type equilibria and unstable
from all approaching trajectories if \beta < y

k , when k > 0, and if \beta > y
k , when k < 0.

In particular, if k = y
\alpha +\beta  - \alpha \beta , we require that \alpha \geq 0, obtaining a lower bound for the

bifurcation parameter \alpha .

Finally, we are ready to prove the global asymptotic stability of Fy, which is
guaranteed by the following proposition.

Proposition 3.4. The point Fy = (y, y2) is a globally asymptotically stable equi-
librium of the dynamical system (3.4) with G = \Gamma = 1, namely, limt\rightarrow \infty (m(t), E(t)) =
Fy for any admissible initial condition (m(0), E(0)), provided \alpha < 1 and \beta < 1.

Proof. To prove global asymptotic stability for Fy we note that the relevant subset
of the phase space in \BbbR 2 is bounded by E = m2. It is easy to see that the vector
field generated by (3.4) for \alpha < 1 is always pointing inward; i.e., using a Lyapunov
stability argument, there exists a suitable function V defined on E > m2 such that
d
dtV (m,E) < 0. For instance, take V (m,E) = (m - y)2 + (E  - y2)2. In addition, for
large enough E and \beta < 1 solutions do not escape to infinity. Since the only equilibria
in this region are on the boundary and since Fy is the only locally stable equilibrium,
hence by the Poincar\'e--Bendixson theorem we have the statement.

Remark 3.5. As already observed, we do not claim uniqueness of the choice of the
covariance inflation that is responsible for the stabilization of the dynamics. Alterna-
tively, another form of stabilization was proposed in [21] where the authors modified
the discrete dynamics with additive white Gaussian noise. This approach leads to
a Fokker--Planck-type equation, where Dirac delta distributions are no longer steady
states and the desired equilibrium, Fy, depends on the nonzero variance \eta of the noise
and becomes (y, y2 \pm 

\sqrt{} 
2\eta 2). Therefore, this form of stabilization does not preserve

the desired equilibrium.

3.1.1. Decay rate. Proposition 3.2 and Proposition 3.4 require \beta < 1. There-
fore, R(U), introduced in the discrete dynamics (3.1), is not needed to stabilize the
phase portrait since \beta = 0 is admissible. Although an optimal, i.e., exponential, rate
of convergence is already guaranteed by the fact that the desired equilibrium Fy is
globally asymptotically stable, we show in this section that the term R(U) allows us
to further speed up the convergence to Fy. In particular, we observe an improvement
with respect to the rate of convergence obtained by the classical continuous limit of
the EKI, which is \scrO (t - 1) as observed at the end of section 2.4.

We notice that Fy is also a point of the phase space where C \equiv 0, as it happens
for the classical EKI formulation. Therefore, in order to study the convergence rate to
Fy, we study the decay speed of the variance C(t) = E - m2 at 0+. For the stabilized
version of the ensemble dynamics (cf. (3.4)), we compute

d

dt
C =

d

dt
E  - 2m

d

dt
m =  - 2(1 - \beta ) \~CC \leq  - 2(1 - \beta )(1 - \alpha )m2C

provided \beta < 1. Applying Gronwall inequality we obtain

C(t) \leq C(0) exp

\biggl( 
 - 2(1 - \beta )(1 - \alpha )

\int t

0

m2(s)ds

\biggr) D
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STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1507

which implies exponential rate of decay to 0+ for t \rightarrow \infty . In particular, we observe
that the exponential decay can be obtained without the acceleration term R(U) as
well, i.e., taking \beta = 0, but the decay is faster for \beta < 0.

We conclude that, while \alpha plays the role of a bifurcation and stabilization pa-
rameter leading to a change of the equilibria in the phase space, \beta plays the role of a
relaxation or acceleration parameter speeding up the convergence to the desired equi-
librium Fy. Therefore, the stabilized EKI proposed in this work has two advantages:
it is robust, and the approach to the right equilibrium is exponentially fast.

3.2. Multidimensional stabilization. For the choice \sigma = m2 made in the pre-
vious section, the corresponding multidimensional inflation of the covariance matrix
would be written as \~C = C+(1 - \alpha )\Sigma with \Sigma = mmT , and thus \~C = E - \alpha mmT . In
this case, \Sigma is a rank-one matrix. We will show that in the general dimension setting
\Sigma is required to be a full-rank, and in particular positive definite, matrix in order to
have an unfolding which makes the ensemble dynamics hyperbolic.

To this end, let us first consider \Sigma = mmT . With the same assumptions of
section 2.4.1 we compute the d+d2 dynamical system of the moments of (3.2) taking
\beta = 0:

d

dt
m(t) = (E - \alpha mmT )(y  - m),

d

dt
E(t) = (E - \alpha mmT )(ymT  - E) + (myT  - E)(E - \alpha mmT ).

In terms of (m,C), where we recall that C = E - mmT , we have

(3.7)

d

dt
m(t) = C(y  - m) + (1 - \alpha )mmT (y  - m),

d

dt
C(t) =  - 2CC - (1 - \alpha )mmTC - (1 - \alpha )CmmT .

We focus on the target equilibrium (m\ast ,C\ast ) = (y,0) which is still a critical
point of the moment dynamics (3.7). The problem of the zero eigenvalue which
makes nonhyperbolic the target equilibrium can be illustrated already using just the
equation for \.m. For m = m\ast + \delta m and C = C\ast + \delta C, the perturbation to first order
becomes

d

dt
\delta m(t) =  - (1 - \alpha )yyT \delta m.

Then a zero eigenvalue occurs if the matrix (1  - \alpha )yyT is singular, and hence any
vector for \delta m that is in the kernel of this matrix has a zero eigenvalue. Thus, for any
choice of \alpha there are d - 1 zero eigenvalues since yyT has rank one.

Similarly, for the \.C equation, we get

d

dt
\delta C(t) = (1 - \alpha )yyT \delta C - (1 - \alpha )\delta CyyT ,

and again, since yyT is a rank-one matrix, we have d - 1 zero eigenvalues. Hence, for
the two moment equations in d dimensions, i.e., for d2+d equations, we have 2(d - 1)
zero eigenvalues corresponding to the target equilibrium (m\ast ,C\ast ).

We conclude that an inflation such as \Sigma = mmT cannot make the target equi-
librium hyperbolic. The next goal is to show that the problem of this choice is that
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1508 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

\Sigma is a rank-one matrix. In fact, for a general \Sigma , the moment dynamics (3.7) writes

d

dt
m(t) = C(y  - m) + (1 - \alpha )\Sigma (y  - m),

d

dt
C(t) =  - 2CC - (1 - \alpha )\Sigma C - (1 - \alpha )C\Sigma ,

and the linearization at the target equilibrium (m\ast ,C\ast ) is

d

dt
\delta m(t) =  - (1 - \alpha )\Sigma \delta m,

d

dt
\delta C(t) =  - 4(1 - \alpha )\Sigma \delta C.

Hence for \alpha < 1 and \Sigma positive definite the target equilibrium becomes hyperbolic.

3.3. Properties of the ensemble dynamics. It is possible to provide a gra-
dient flow interpretation also for the stabilized dynamics (3.2). In fact, we observe
that each ensemble is solving a preconditioned gradient descent equation of the type

d

dt
uj =  - \~C(U)\nabla \bfu \Psi (uj ,y,u - j),

\Psi (uj ,y,u - j) = \Phi (uj ,y) - J\beta 

2(J  - 1)
\| uj  - \=u\| 2,

where we denote u - j = \{ uk\} Jk=1
k \not =j

. Within this formulation we see that our modified

dynamics again adds a regularization term. Existence and uniqueness of solutions
to (3.2) are straightforward since the right-hand side is locally Lipschitz in uj ; thus
local existence of a solution in the space \scrC ([0, T )) holds for some T > 0. We need to
prove global existence, namely, that the solution does not blow up in finite time, and
this is guaranteed by Proposition 3.6 below.

We define for each j = 1, . . . , J

ej(t) = uj(t) - \=u(t),(3.8)

rj(t) = uj(t) - u\ast (3.9)

the ensemble spread and the residual to a value u\ast , respectively. Proposition 3.6 gives
sufficient conditions for the existence of a monotonic decay for the ensemble spread.

Proposition 3.6. Let uj(0) \in \BbbR d, j = 1, . . . , J , be an admissible initial condition

of the dynamical system (3.2). The quantity
\bigm\| \bigm\| ej(t)\bigm\| \bigm\| 2 is decreasing in time, i.e.,\bigm\| \bigm\| ej(t)\bigm\| \bigm\| 2 \leq 

\bigm\| \bigm\| ej(0)\bigm\| \bigm\| 2, for each j = 1, . . . , J and t \geq 0, provided that \alpha < 1 and
\beta < mink \lambda 

k
\bfG T\bfGamma \bfG , where \lambda k

\bfG T\bfGamma \bfG denotes the eigenvalues of GT\Gamma G. In particular, if

GT\Gamma G is positive definite, then limt\rightarrow \infty 
\bigm\| \bigm\| ej(t)\bigm\| \bigm\| 2 = 0.

Proof. To prove the statement, we proceed similarly to existing theory. Let us
denote Id \in \BbbR d\times d as the identity matrix. The hypothesis \alpha < 1 implies \~C positive
definite for all t \geq 0. We compute

1

2

d

dt

1

J

J\sum 
j=1

\| ej(t)\| 2 =  - 1

J

J\sum 
j=1

\langle ej(t), \~C(t)P\beta (t)e
j(t)\rangle \leq 0,

where P\beta = GT\Gamma G - \beta Id. The sufficient condition for the last inequality being strict
is GT\Gamma G positive definite and \beta < mink \lambda 

k
\bfG T\bfGamma \bfG .
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The previous result establishes sufficient conditions for the ensemble collapse to
the mean \=u in the long time behavior, and consequently each ensemble member solves
at equilibrium the same minimization problem that \=u is solving. With this consider-
ation we state and prove the following result on the convergence of the residual in the
control space.

Proposition 3.7. Let uj(0) \in \BbbR d, j = 1, . . . , J , be an admissible initial condition
of the dynamical system (3.2). Assume that GT\Gamma G is positive definite, and let u\ast be a

KKT point of the minimization problem min\bfu \in \BbbR d \Phi (u,y). Then limt\rightarrow \infty 
\bigm\| \bigm\| rj(t)\bigm\| \bigm\| 2 = 0,

for each j = 1, . . . , J , provided that \alpha < 1 and \beta < mink \lambda 
k
\bfG T\bfGamma \bfG , where \lambda k

\bfG T\bfGamma \bfG 
denotes the eigenvalues of GT\Gamma G.

Proof. By assumption GT\Gamma G is positive definite, and thus we have a unique
global minimizer u\ast of the minimization problem min\bfu \in \BbbR d \Phi (u,y) for a given y \in \BbbR K .
Moreover, for Proposition 3.6 it is sufficient to show that \| \=u  - u\ast \| \rightarrow 0 as t \rightarrow \infty .
The evolution equation of the ensemble mean is given by

d

dt
\=u =  - \~C\nabla \bfu \Phi (\=u,y).

Then, since \~C is positive definite, at equilibrium the ensemble mean solves the equa-
tion \nabla \bfu \Phi (\=u,y) = 0.

4. Numerical simulations. The simulations performed in this section are all
obtained by the numerical solution of the ODE systems for the moments and for
the ensemble dynamics. For the sake of simplicity and also to show that no suitable
robust discretization is needed, we straightforwardly employ a first order explicit
time integration with a fixed and small time step. We observe that the mean-field
limit would also allow us to use a fast stochastic particle scheme, e.g., the mean-field
interaction algorithm; see [21] for application to the EKI, inspired by direct simulation
Monte Carlo methods for kinetic equations.

4.1. Simulation of the moment dynamics. We recall that the stabilization
of the continuous-time limit of the EKI is motivated by a linear stability analysis of
the moment equations, in the simplest case of a one-dimensional control. For this
reason, we aim to compare the moment dynamics provided by the EKI (2.4) and by
the present stabilization of the method (3.1).

All simulations run with the same parameters used for the stability analysis in
section 3.1; namely, we consider G = \Gamma = 1. The stabilization parameter is \alpha = 0.1,
and the acceleration parameter is \beta =  - 1. Moreover, we set y = 2 so that the target
equilibrium is Fy = (2, 4).

In Figure 1 we show the phase portraits with the velocity field of the moment equa-
tions. The red lines are nullclines, and the gray-shaded area represents the unfeasible
region where E < m2. We observe that the stabilized version of the EKI proposed
in this work preserves the target equilibrium Fy. In the classical EKI, Figure 1(a),
the nullcline on the border of the feasible region is a set of equilibrium points. The
stabilization moves these equilibria on the red nullcline in the unfeasible region; see
Figure 1(b).

To provide additional numerical insight, we study the effect of the stabilization on
the moment equations by looking at the time behavior of the covariance C(t) = E - m2

for two different initial conditions in both systems, the limit of the classical EKI and
the stabilized version. In addition, for a thorough comparison, we take into account
also the dynamics with \beta = 0 in order to highlight the effect of the acceleration term.
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(a) The classical ensemble Kalman inver-
sion (2.15).
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Stable EKI

(b) The stabilized ensemble Kalman inver-
sion (3.4).

Fig. 1. Phase planes of the moment systems. Red lines are nullclines, and the gray-shaded
area represents the unfeasible region.
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Fig. 2. Variance evolution computed by solving the moment systems for the limit of the classical
EKI (2.15), the stabilized EKI (3.4), and the variance inflation only, i.e., with \beta = 0. We consider
two different sets of initial conditions.

The initial conditions of the first moments are m(0) = 1 and m(0) = 3. The initial
energy E(0) is chosen such that (m(0), E(0)) is in the feasible region C(0) \geq 0. In
Figure 2, we observe that all the methods show a variance decay to zero, i.e., collapse
to a Dirac delta at mean-field level. However, noting the logarithmic scale in Figure 2
we see that the stable methods, characterized by variance inflation, decay to the
equilibrium state much faster, precisely exponentially, than the limit of the classical
EKI. Furthermore, we emphasize the role of the acceleration parameter \beta , which is
taken into account only in the stable EKI method and which further speeds up the
convergence speed.

4.2. A two-dimensional inverse problem. We consider the inverse problem
of finding the hydraulic conductivity function of a nonlinear elliptic equation in two
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STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1511

spatial dimensions assuming that noisy observation of the solution to the problem is
available.

The problem is described by the following PDE modeling groundwater flow in a
two-dimensional confined aquifer:

(4.1)
 - \nabla \cdot 

\bigl( 
elogK\nabla p

\bigr) 
= f in \Omega = ( - 1, 1)2,

p = 0 on \partial \Omega .

Here, K is the hydraulic conductivity, f is the force function, and the flow is
described in terms of the piezometric head p. This problem has been intensively used
in the literature on the EKI to study performance of the method; e.g., see [10, 23, 27].

We aim to find the log conductivity u = logK from 400 observations of the
solution p on a uniform grid in \Omega . We choose f = 100. The mapping from u to these
observations is now nonlinear, and thus we need to employ the ensemble dynamics
for the nonlinear model (3.1).

Noise is assumed to be Gaussian distributed with covariance \Gamma  - 1 = \gamma 2I, with
\gamma = 4. The prior is also Gaussian distributed with covariance ( - \Delta ) - 2, whose dis-
cretization is again computed by using homogeneous Dirichlet boundary conditions.
We use a \BbbP 1 finite element method (FEM) approximation. The ensemble size is chosen
as J = 100. The ensemble dynamics (3.1) are numerically solved by explicit Euler
discretization with fixed and, to avoid stability issues, small time step \Delta t = 10 - 3.

The final time for the simulations is determined by a stopping criterion in order to
avoid overfitting of the method. We employ the discrepancy principle as the stopping
criterion. Thus, we check and stop the simulation when the condition \vargamma \leq \| \bfiteta \| 2 is
satisfied, where \bfiteta is the measurement noise and

(4.2) \vargamma =
1

J

J\sum 
j=1

\| \scrG (uj) - p - \bfiteta \| 2

is the misfit which allows us to measure the quality of the solution at each iteration.
Moreover, uj and p are vectors containing the discrete values of the control for the
jth ensemble member and of the true observations, respectively. In this example \scrG is
the \BbbP 1 FEM discretization of the continuous operator defining the elliptic PDE (4.1).

The initial ensemble is drawn from a Gaussian distribution with given covariance
matrix \delta ( - \Delta ) - 2, and we consider \delta = 1 and \delta = 10 - 2. We compare results obtained
with the continuous-time limit of the classical EKI, i.e., when \alpha = 1 and \beta = 0, and
with the stabilized method, using \alpha = 0.1 and \beta =  - 10 when \delta = 1 and \alpha = 0.9
and \beta =  - 0.1 when \delta = 10 - 2. The inflation of the covariance is performed with

\Sigma = \=\Sigma \=\Sigma 
T
, where \=\Sigma is a full-rank matrix which contains pseudorandom values drawn

from the standard normal distribution.
In Figure 3 we show the time behavior of the misfit (4.2) (top row), of the resid-

ual (3.9) (middle row), and of the spread to the mean (3.8) (bottom row) provided by
the two methods. The results in the left panels are obtained with \delta = 1 so that the
initial ensemble is sampled from the same prior distribution of the exact control. The
results in the right panels are computed with \delta = 10 - 2, which mimics the situation
of an overly confident prior, and hence with the covariance close to the border of the
feasible region, at two different final times.

We observe that, if the distribution of the initial ensemble is properly chosen,
i.e., when \delta = 1, the two methods meet the discrepancy principle at time Tfin = 1,
and the misfit, the residual, and the ensemble spread monotonically decrease in time.
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Fig. 3. Misfit (4.2), residual (3.9), and spread (3.8) behavior in time for the inverse problem of
determining the log conductivity u = logK for (4.1) using the classical EKI (2.4) and the stabilized
EKI (Stable EKI) (3.1). Left: Both methods converge for well chosen initial covariance (\delta = 1).
Right: The case of the overly confident prior, with \delta = 10 - 2, up to the time when the discrepancy
principle is met.

However, while the limit of the classical EKI meets the stopping criterion at time
t \approx 0.8, the stabilized version of the method stops at time t \approx 0.68. Therefore, in
this example the stabilization allows us to save about 15\% of the computational cost.
The difference between the two methods can be further appreciated when the initial
guess of the ensemble is not properly chosen, i.e., when \delta = 10 - 2. This is relevant in
applications, where the distribution of the unknown control is not known; therefore
the ensemble cannot be suitably initialized leading to a possible change in the length
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STABILIZATION OF THE ENSEMBLE KALMAN INVERSION 1513

of the transient. If we stop the simulation at Tfin = 1, as the Bayesian perspective
suggests, both methods do not meet the discrepancy principle, and one needs to run
them for a longer time. Also in this example the stabilization allows us to save about
15\% of the computational cost.

The effect on the performance of the methods when considering \delta = 1 can be also
observed in Figure 4 for the stabilized version of the method. The top row panels
show, from left to right, the true solution p of (4.1) evaluated on a 20 \times 20 uniform
grid, the perturbed solution by additive Gaussian noise, and the a priori artificially
assigned true log conductivity u, i.e., the control in this example, which provides
the solution p and we aim to identify. The bottom row panels, instead, show the
solution obtained with the reconstructed log conductivity and the identified control
itself using both a one-dimensional and a two-dimensional visualization. In these
figures we appreciate the good performance of the stabilized method which is able to
provide a good identification of the unknown control.

5. Discussion and conclusions. The important point of this manuscript is the
observation that the EKI leads to structurally unstable dynamical moment systems.
This has technical aspects, like the fact that the target equilibrium is unstable from
the unfeasible side of the phase space and that it is, while stable, approached only very
slowly in time. However, this is also conceptually very important: Typically mathe-
matical models that lead to structurally unstable dynamical systems are flawed---the
modeling part missed important aspects making the analysis of the resulting dynam-
ical system highly susceptible to small noise and small variations in the model. A
classical example is provided by chemical reactor modeling; see [30].

Conventional wisdom is that the modeling leading to the structurally unstable
system should be re-examined, and it should be determined whether there are le-
gitimate reasons (like in the case of Hamiltonian systems or systems with inherent
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Fig. 4. Inverse problem of determining the log conductivity u = logK for the two-dimensional
groundwater equation (4.1) on a 20 \times 20 grid and solved by the stabilized EKI method (3.1) with
\alpha = 0.1 and \beta =  - 10. From top right: Discrete observations of the true solution p; true observations
perturbed by Gaussian noise; discrete true log conductivity u; solution computed with the identified
unknown; one-dimensional plot of the discrete true and reconstructed log conductivity; and discrete
reconstructed log conductivity.
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1514 D. ARMBRUSTER, M. HERTY, AND G. VISCONTI

symmetries) for the structural instability or whether the modeling process leads to
the structurally unstable result.

Due to the appeal of the EKI it is important to understand where the conceptual
issue of a structurally unstable dynamical system comes from. We have done that in
this paper and shown that, by computing the continuum limit of the classical EKI,
terms are lost that lead to the structural instability. We also show how to make
the EKI structurally stable. The stabilization relies on a suitable inflation of the
covariance operator which makes the target equilibrium globally asymptotically stable
and thus approached exponentially fast in time. The numerical results illustrate that
the stabilized method is able to provide fast convergence to the solution independently
of the choice of the distribution for the initial ensemble.
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