The European Conference on Arts, Design & Education

I S S N : 2 7 5 8 - 0 9 8 9
The International Academic Forum provides new perspectives to the thought-leaders and decision-makers of today and tomorrow by offering constructive environments for dialogue and interchange at the intersections of nation, culture, and discipline. Headquartered in Nagoya, Japan, and registered as a Non-Profit Organization, IAFOR is an independent think tank committed to the deeper understanding of contemporary geo-political transformation, particularly in the Asia Pacific Region.
Table of Contents

How Art as a Vehicle for Ideas-Based Ideologies Can Facilitate the Understanding of Climate Change and Help People Explore a Speculative and Sustainable Future
Wenwen Liu
Robert Burton
Simon McKeown

pp. 1 - 19

The Effectiveness of Integrating Metal and Textile to Creating Contemporary Artworks Inspired by Egyptian and Saudi Heritage
Nouf Alsuwaidia
Lobna Abdel Aziz Mohamed Bayoumi

pp. 21 - 38

Best Practices for Teaching a Course on Culture for EFL Undergraduate Students in Japan and Abroad: Based on Literature Review From 2016 to 2021
Gota Hayashi

pp. 39 - 51

The Role of Design: A Humanitarian Approach and an Opportunity to Prepare Students for the Real Working World
Carla Cadete

pp. 53 - 61

Intercultural Attitudes, Preferences for World Music and Artworks From Different Cultures in the Context of Contemporary Music Pedagogy and Art Pedagogy
Snježana Dobrota

pp. 63 - 73

Material Design and Audio-Visual Narratives for Pedagogy: Theoretical Premises and Evaluation Tools for Experimenting Stop-Motion Animation as Teaching Method
Vincenzo Maselli

pp. 75 - 88

The Need for Socially Responsible Design in a Dynamic Society
Simon Dai
Heide Lukosch
Bahareh Shahri

pp. 89 - 99

Human-Centered Design as a Qualitative Research Methodology in the Area of Public Health
Pierre Yohanes Lubis
Bahareh Shahri

pp. 101 - 109

Generative Design: Co-Creation Process Between Designer and Computational Thinking
Camilo Ayala Monje
Camilo Ayala-Garcia

pp. 111 - 125
A Collaborative Strategy for the Construction and Graphic Representation of a Cultural Ecosystem Involving Participatory Design in the Academic and Business Context
Diego Mergener
Pedro Cardoso
Bruno Giesteira pp. 127 - 143

Digital Media and Sustainable Development Goals Breathe New Life Into the Artworks From the Soares Dos Reis National Museum
Rodrigo Carvalho
Cláudia Lima
Susana Barreto
Eliana Penedos-Santiago pp. 145 - 153

Influence of Artefact, Activity and Design Value-Based Statements on Solution Outcomes
Mamata N. Rao
Deepak John Mathew pp. 155 - 165

Teaching the SDGs: Content-Based Research and Virtual International Exchange via Multimedia
Michael David Barr pp. 167 - 173

Mechanical 2021: Educational Game Concept to Promote Sustainable Thinking and Cooperation in Basic Education in Brazil
Diego Mergener
Emerson Ranieri Santos Kuhn pp. 175 - 188

Myriorama: Obsolete Technologies for a Contemporary Scenographic Practice and Thought
Aurora dos Campos
Helder Gomes
Sofia Ponte pp. 189 - 197

The Competitive Transformation of Business Based on Agile Innovation Methods That Engage Visual Creatives as Business Process Leaders
Viviana Alejandra Álvarez-Restrepo
Carlos Varela pp. 199 - 208

Sonic Kinesthetic Forest: Listening to and Dancing With Trees
Rennie Tang
Eleni-Ira Panourgia
Lisa Sandlos pp. 209 - 222

Profiling the Instructional Designer: Towards a Systematization of the Profession
Carlos Rosa
António Gorgel
Rodrigo Hernández-Ramírez
João Ferreira pp. 223 - 233
The Role of Advanced Typographic Taxonomy Systems Vis-à-Vis Modular, Variable and Parametric Typography
João Francisco Rodrigues Gomes
João Aranda Brandão
Teresa Olazabal Cabral
Elisabete Rolo

ICO-Cymatic Backstage Design Process: Applying Vernacular Techniques and New Media Into Ephemeral Spaces for Art Installation in South America
Elvert Durán Vivanco
Carlota Durán Vivanco
Jimena Alarcón Castro

Multisensory Approaches From Interactive Art to Inclusive Design
Federica Delprino

Doctoral Side Effects: Damage Limitation Versus Unexpected Benefits to PhD Research in a Pandemic
Adriana Fernandes
Aleksandra Kosztyła
André Casteião
Diego Mergener
Eduardo Morais
Heitor Alvelos
Hugo Palmares
Ivy Francielle Higino Martins
Luciana Lopes
Marcela Rosa
Ana Miriam Rebelo
Miriam Regina Zanini
Pedro Fragoso Lopes
Santiago Luiz Gonçalves Mourão

Design as a Facilitator to Changing Mindsets for Craftmanship Enterprises' Resilience
Adriana Patricia Fernandes
Claudia Albino
Júlio Dolbeth
Fabiano Virgínio Pereira

Using Design to Connect Children Through Playful Discovery
Lee Brewster
Leon Cruickshank
Diane Potts
Nik Marsdin

The Design Studio as a Place of Study: Critique as Hermeneutic Conversation
Naoko Masuda
Tragedy to Triumph: Utilizing a Graphic Novel and Instructional Design to Sustain the Culture, Heritage and Resilience of a Community
Patsy Iwasaki

The Study of the Visual Effects of Depth Creations and Perspectives in New Egyptian Archeological Discoveries
Heba El Kamshoushy

Photographic Mnemotopes: Phototextual Reports as a Research Tool for the Communication of the Memory of Places
Clorinda Sissi Galasso

Lettering Design in Raul Lino's Work: Humanism, Nature and Tradition in Architecture, Graphic Arts and Design
Regina Delfino
Pedro Matos
Inês Serrano
Anabela Moreira

Exploring the Hybridization of Traditional Printing and Digital Fabrication Processes to Expand Design Innovation in the Classroom
Pedro Amado
Cristina Ferreira
Maira Woloszyn

Study Abroad Programs as Means to Connect Culture, Art, and Design
Hans-Peter (Hepi) Wachter

The Role of Design in Health Observational Studies
Daniela F. Marques
Constança Netto-Rocha

Effects of Social Media Features on Music Teaching and Learning During the COVID-19 Movement Control Order (MCO)
Jinky Jane C Simeon
Resot Iggau

Tell Me Your Story: Digital Storytelling as a Teaching and Communication Tool
Silvina Félix
Violeta Clemente

Creative Strategies for Making Technology-Based Decisions in Education
Tsvetelina Ivanova
Nevena Mileva

Typography Education as a Tool to Potentiate Art Nouveau Museums
Olinda Martins
Francisco Providencia

pp. 331 - 348
pp. 349 - 358
pp. 359 - 369
pp. 371 - 388
pp. 389 - 405
pp. 407 - 414
pp. 415 - 424
pp. 425 - 442
pp. 443 - 456
pp. 457 - 470
pp. 471 - 484
Designing an Adrenaline Auto-Injector: The Perception of Shape as an Affordance of Use
Clara Serrano
Eduardo Noronha
Ivo Fonseca
Fábio Fernandes
Alice Coimbra

Homeostatic Designs: How the Theories of Antonio Damasio Can Inform Design Thinking
Andrea Macruz

Sustainability, Aesthetics, and Value Proposals and Practices of Colombian Slow Fashion Brands
Daniela Ordoñez-Suárez
Miguel Enrique Higuera-Marín
Carolina Raigoza-Díaz

The Cognitive Effect of Spatial Contiguity in Procedural Training Using Mixed Reality
Sara Gutiérrez
Luis Bautista
Fernanda Maradei
Julián Núñez

Heitor Alvelos
Najla Carolina Storck Leroy
Santiago Luiz Gonçalves Mourão

Design Research as an Instrument of Empathy and Resilience: A Case Study in Porto on Reclusion in a Collective House
Marcela Rosa
Teresa Franqueira
Susana Barreto

Jesus Alexis Machuca Gelvez
Clara Isabel Lopez Gualdron
Luis Eduardo Bautista

A Biometric Method for Spatial Experience Analysis: A Case Study of Airport Design and Traveler Stress
Humbi Song
Isa He
Zach Seibold
Allen Sayegh
Material Design and Audio-Visual Narratives for Pedagogy: Theoretical Premises and Evaluation Tools for Experimenting Stop-Motion Animation as Teaching Method

Vincenzo Maselli, Sapienza University of Rome, Italy

Abstract
Since the early 1900s the pedagogical research has matured a materialist perspective, recognizing the essential contribution of creative practice and material experience within learning paths. Starting from John Dewey's philosophy of experience (1938), passing through Maria Montessori and Bruno Munari's experimental teaching methods, Riccardo Massa's "educational materiality", to the most recent socio-material approaches, pedagogy has embraced the relationship between human beings, material art and experience design. These studies have explored and theorized how learning and knowledge are rooted in actions that encourage creativity, cooperation and reflective thinking. By starting from this theoretical framework and taking up the educational objectives formulated by the OECD for 2030, the proposed paper illustrates the methodological and theoretical coordinates of the research project “CCODE - Design, material experiences and stop-motion animation as didactic tools for developing creative thinking and cooperative learning”, that suggests an experimental learning method based on storytelling and stop-motion animation tools, thus amplifying the educational value of this art form. The understanding and analysis of a narrative text, its transposition into a screenplay, the material manipulation and the stop-motion animation process are the phases described to structure an unprecedented and interdisciplinary method of acquiring theories, techniques and develop socio-emotional-cognitive skills. The paper therefore aims at disseminating the project’s premises and ethical implications and describes both the experimental teaching module based on learning by doing (Bruner 1966, Dale 1969) and the evaluation tools carried out to validate the approach, the method and the educational objectives achieved.

Keywords: Design, Material Experience, Stop-Motion Animation, Teaching Method, Evaluation Tools
Introduction

CCODE is a research project that aims at designing and testing a new and experimental educational method focused on stimulating cognitive, practical and social skills, by hybridizing different disciplines – pedagogy, narrative sciences, material design and animation design –, and structuring a workshop experience with 5th grade elementary school students. The designed learning approach aims at making students face some social themes of contemporaneity and their emotional and psychological effects by conducting an active and participatory experience: they are expected to analyze a narrative text, to translate it in a screenplay, to manipulate material and produce an artifact in stop-motion animation.

Experiential education, material manipulation and the design principles of the puppet making process and audiovisual production – specifically the stop-motion animation technique – are the tools suggested to structure the experimental learning path. The specific objectives of the new method are defined by integrating philosophies and pedagogical approaches based on the enhancement of sensuous and material dimensions, and the educational and didactic objectives formulated by the OECD (Organization for Economic Co-operation and Development) in terms of practical, theoretical and social skills. In the following sections the project’s theoretical frameworks, its objectives, the addressed methodological approaches and hypothesis of structure will be described.

From “sensory education” to “educational materiality”

The materialist epistemological perspective in pedagogical research developed in the 20th century has recognized the necessary contribution of the material and experiential components in learning processes (Barone 1997). Among the main references in this field are John Dewey, Maria Montessori, Bruno Munari, David Kolb and the Italian pedagogist Riccardo Massa. In the 20th century, pedagogy has examined and linked the concepts of experience, collaboration, and the material dimension and the design process in the educational field, discussing the possibility of making the experience of material manipulation a learning tool to discuss topics about the contemporary (Dewey 2008, 2014; Massa 1975; Barone 1997; Fenwick et al. 2011, 2012).

John Dewey in the late 800s pointed out for the first time that the learning process in school should include a series of social, emotional, and practical events. It must occur in a social context in which students cooperate with their pairs and have a common learning objective. Dewey's view of learning process took into huge consideration the social, interactive, motivational, and cognitive aspects of the process of schooling (Dewey 2008). Dewey inaugurated a path of studies according to which students experience the relations between the thinking and the empirical world, between organism and environment, perception and objects, nature and culture, facts and values, instruments and objectives, individual and society, play and work, to build new spaces of freedom (Dewey 2008, 2014; Sharan and Sharan 1992).

Sensory education and the pedagogy of doing are other pedagogical approaches that place the value of action, movement and material dimension at the center of the learning experience (Valitutti 1964). Maria Montessori in the early 1900 reconfigured the role of the child and the importance of sensory stimulation in the learning process. The Montessori method, as it has been defined, depicts a child who, acting autonomously and independently in the
environment, undergoes sensory experiences, which stimulate, without further mediation, the
development of his intelligence because “senses, by exploring the environment, open the way
to knowledge” (Montessori 1999, p. 181). In the Montessori educational learning
environment, materials are very important for activating knowledge. Materials, on the other
hand, intrigue and attract attention, so that children get more focused.

In the 50s, the designer Bruno Munari continued experimentation on visual languages applied
to pedagogy in order to develop creativity in children. The Munari Method aimed at
stimulating children creativity through practical-based activities and he called this learning
approach “gesture intelligence” (Munari 1958, 1992). In the “gesture intelligence” approach
the hand is a tool endowed with an unlimited and incipient predisposition to learn and
perform multiple activities. Tactile abilities, according to Munari, allow man to build an
evolving relationship and to explore the external world and of its information (Munari, 1958).

In the 80s David Kolb addressed interaction and complementarity between theory and
practice as the main means of knowledge (Kolb, 1984). He theorized the efficacy of the
experiential learning model, and today this approach is widely recognized and validated to
teach practical disciplines and make acquire technical skills. He described four stages of the
experiential learning model that work in a cyclic way: concrete experience; reflective
observation; abstract conceptualization; testing in new situations.

The Italian pedagogist and philosopher of education Riccardo Massa, in the 80s coined the
expression “educational materiality” (Massa 1975, 1986), that defines a particular way of
conceiving educational practices and of interpreting the learning process in a materialist
sense. Educational materiality is established on two different levels. First, materiality is a key
concept for decoding the educational reality and delineating a pedagogical object to be
studied theoretically and empirically. On the other hand, materiality refers to educational
methods based on concreteness, experience and relationships lived bodily and emotionally.

In recent years the so-called socio-material approaches have assumed a certain importance
(Fenwick et al., 2011). These approaches have brought the material to the center of the debate
and have shifted attention to the multiple relations between human and non-human (objects,
tools, technologies, spaces, furnishings, natural elements) that occur within the educational
processes. These studies aim at exploring how learning and knowledge are concretely rooted
in action, and suggest exploring the materiality of educational processes in contexts of
participation and collaboration.

Stop-motion and “tactile pedagogy”

Stop motion animation technique has its roots in late ‘800AD when the illusionist George
Méliès randomly discovered the camera-trick according to which by stopping and restarting
the camera during the shooting and in the meanwhile changing the position of the object in
front of it, the object looks to move by itself (Harryhausen and Dalton 2008). As illustrated
by Vincenzo Maselli and Eleni Mouri:

“This movement is an illusion since it happens between the frames, and what the
spectator really sees is what occurs […] when everything is still and nothing happens.
Stop-Motion embraces photography, computer graphics, performing arts, sculpture,
knowledge of anatomy of moving bodies and video editing. To make a stop-motion
video we need a camera and a material object to be photographed, following a logic of movement, direction and transformation.” (2020, p. 648).

Stop motion is remarkably versatile in several ways as it can be used for many subjects, with every sort of materials and objects (plasticine, silicone, toys, legos, household objects), it can use figurative or abstract codes of representations and, as any other form of animated artefact, it can narrate in either linear or nonlinear ways. Stop-motion has been used for pedagogic purposes since the material qualities of the medium makes the production process easier to understand and to handle thanks to the direct manipulation of objects, puppets or flat figures. Stop-motion “tactile pedagogy” allows to learn tactiley how animation principles work by applying them to real objects, to interact with materials and manipulate them by hand, improving craft skills, and to work in group. Since stop motion requires many skills and inclinations, from artistic and craftsmanship talent to organizational skills, collaboration and teamwork are essential. As a material and tactile based learning method, Stop-motion “tactile pedagogy” has already been explored and used in different educational experiment based on the enhancing of the tactile experience and collaborative dimension of the technique.

By describing a stop-motion workshop experience conducted in 2014 Stephanie Hatten defines this animation technique capable of capturing students’ imagination, investment and memory. By engaging elementary school students with this creative activity for over a decade she has tested that stop-motion animation allows to interact and learn how to use digital programs, how to work with the camera, how to work with abstracts codes of representation, how to select, manipulate or create the materials, and to work in groups (Hatten 2014). The English teacher Dan Grant in 2009 published an article describing his didactic approach with 5th grade elementary students to work with storytelling and animation by simulating a stop motion production work team in the classroom (Grant 2019). The principal investigator of the research project also conducted a stop-motion animation workshop experience in Alghero (Sardinia, Italy) in September 2019, that engaged design students in experimenting with this animation technique as a communication design tool by using different visual styles and narrative languages. Students produced four stop-motion short films using objects, paper, fabric, photographs and any other kind of flat element shot on a flat two-dimensional background. As a result of the students’ experience, they thought that they could use the technique in their future work since it was revealed to be a very demanding but successful design tool quick to learn and practice and useful to experiment with materials, narrative, visual styles and codes or representation.

Among many others workshop activities involving the use of stop motion animation and digital storytelling, the author conducted a stop-motion animation workshop experience in Alghero (Sardinia, Italy) in September 2019, that engaged design students in experimenting with this animation technique as a communication design tool by using different visual styles and narrative languages. During the five days’ workshop students worked in teams and had to follow the main phases of an audio-visual production process: pre-production (subject development, visual style definition, storyboard, puppets, objects, and backgrounds creation), production (camera setting, animation process), post-production (video editing, compositing, sound effects). They produced four stop-motion short films using objects, paper, fabric, photographs and other flat elements photographed on a flat two-dimensional background. As a result of the students’ experience, they thought that they could use the technique in their future work since it was revealed to be a very demanding but successful design tool quick to learn and practice and useful to experiment with materials, narrative, visual styles and codes or representation (see Maselli and Mouri 2020).
Educational and didactic objectives

The goal of the Organization for Economic Co-operation and Development (OECD) for 2030 is the redesign of educational processes allowing students to improve skills, abilities and behaviors which have been classified into five socio-emotional competences. These skills range from collaboration to critical thinking, considered values necessary for each individual to effectively manage emotional, cognitive and social life (OECD 2019).

Stemming from the outlined theoretical framework and accepting the objectives formulated by the OECD, integrating them, the research project CCODE places itself as an occasion of convergence between the assumptions of “tactile pedagogy” and the need to redesign educational system according to new and necessary abilities. The aim of the research, therefore, is to provide an alternative learning method by formulating a new process that consider the object of learning, and the learning experience and provide new tools for dealing with it. Specific educational and didactic objectives of the research project are:

- **Stimulate creative thinking.** Creativity is strictly related to cognitive potential (Runco 2003) and “the thinking capability of children at all levels is significantly influenced by the opportunities they are given” (Cachia et al. 2010, p. 29). In pedagogic context creativity is used generally in a broad way. Sometimes creative thinking is associated to the idea of problem solving, on the other hand it is often used in association with art subject in the meaning of artistic creativity. In this research project the term creativity is considered as a design process attribute by applying Bruno Munari definition of the term. According to Bruno Munari “Creativity does not mean improvisation without method. The design method […] is linked to the creativity of the designer who, in applying the method, can discover something to improve it.” (Munari 1992, p. 17). But creativity is not just an essential element of the technical process, being creative is a condition that requests to keep the importance of a subjective dimension of the design experience and to take out something personal and visceral but essential for embracing the design process creatively.

- **Encourage collaboration in a social environment.** According to the brothers David and Roger Johnson, in learning environment students need to show a positive interaction, an active participation and a visceral feeling of each other (1987,1989). Students feel that they cannot work without one or more group members. They need to work together in a specific direction and with a shared goal but participating with individual and defined skills. At the same time, interaction and cooperation mean that students of a group help each other on specific topics. Cooperative learning also requires developing a self-critical ability to judge the final outcome and to evaluate critical aspects that could have been better approached.

- **Develop reflective thinking as a consequence of the exploration of the narrative text and the writing of the screenplay.** John Dewey (2014) insisted on the value of the narrative mode of thinking as an opportunity to reflect on experience and, consequently, on social and emotional topic of the contemporary. Storytelling, according to Dewey, has several functions, and one of them is to enter a sphere of interiority and make possible to experience the narrative with a reflective consequence (reflective function).

- **Learn new technical skills and knowledge on specific topic.** Beside educational objectives, the research aims at verifying the stop-motion workshop experience power to
provide knowledge and improve skills. The workshop is structured into propaedeutic phases that students can face successfully just by developing technical and material abilities and improving the knowledge of topics and analytical methods, that will be explained and verified during the workshop experience.

Research’s methodology and structure

CCODE is practical-based research aimed at structuring and verifying the use of an unprecedented learning method based on laboratory approach, and at using interdisciplinary tools coming from fields of pedagogy, animation design, material design, and storytelling. The research project shapes a new synergy between two discipline (animation and pedagogy), two educational approaches (the theoretical-based one, by studying a narrative text, and the practical-based one, by producing an audiovisual artefact), two contexts (educational environment and stop motion animation production dimension), and different objectives (above described), related to the learning of didactic contents and practical tools, the acquisition of cooperative attitudes and the development of creativity and reflective thinking. For testing this new method, an experimental workshop aimed at 5th grade elementary schools’ children, supervised by the proponent of the research with the support of experts in the fields of narrative sciences and pedagogy, will be structured. The final outcome of the workshop will be the animated transposition in stop-motion of a “coming-of-age story” that addresses specific social and emotional contents.

In the following paragraphs, the hypothesis for the structure of the workshop will be schematized (Tab.1), and described in detail, including the explanation of carried out activities, material tools, and evaluation methods that will be used to test the method both in terms of the learning contents and acquisition of tools, and in terms of the reaching the mentioned educational objectives.

<table>
<thead>
<tr>
<th>PHASES</th>
<th>ACTIONS</th>
<th>PARTICIPANTS</th>
</tr>
</thead>
</table>
| 1. CONTACT WITH SCHOOLS, TARGET DEFINITION AND PRELIMINARY EVALUATION | • Select the primary schools to be involved in the experiment.
• Preliminary evaluation.
• Confirm target, number of classes involved, timing. | • School’s Director
• Teachers
• Expert in evaluation methods |
| 2. DEFINITION OF SETTINGS AND PARTICIPANTS | • Select classes to be involved in conducting the pilot experimentation.
• Define topics, themes, narratives to be used | • Teachers
• Experimental sample
• Control sample |
| 3. FIRST EX ANTE EVALUATION | • Formulate the evaluation grid.
• Make teachers fill in the GRID to define students’ skills and preliminary knowledge. | • Expert in evaluation methods
• Teachers
• Experimental sample
• Control sample |
Tab. 1 CCODE_Phases, actions and participants

1. TARGET DEFINITION AND PRELIMINARY EVALUATION

The objective of the first phase of the research project is to select the primary schools to be involved in the experiment. After the selection is completed, a first preliminary evaluation of the project will be conducted. The workshop experience, indeed, is a pilot experimentation and requires to be scientifically validated in order to place itself as a new learning method. An expert in evaluation, the schools’ directors and involved teachers will be asked to validate the tools, methodology and objectives formulated. In the same phase director and teachers of each school will be asked to confirm the suitability of the proposed target (second / third grade children) the number of classes involved and the timing (hours / number of weeks) for conducting the workshop.

2. DEFINITION OF SETTINGS AND PARTICIPANTS

In the second phase the classes to be involved in conducting the pilot experimentation of the project will be selected. The classes that will not participate in the workshop will constitute the control sample. The classes that will participate, on the other hand, will constitute the experimental sample. At the beginning of the workshop, indeed, the two samples need to possess the same knowledge about the topic and the selected narrative text, and the same ability in approaching creative and collaborative experiences. This starting parameter is necessary to evaluate, at the end of the experience, which one among the two groups of students has achieved better results in learning contents and addressed objectives.

Topic and contents will be also defined at this stage of the research as they will be formulated according to the didactic unit the workshop will relate to, and developed in agreement and complementarity with the school, the teacher and the class group that will experience the pilot experimentation. Those contents will be arguably based on what is reported by the National Guidelines for the primary school curriculum and the first cycle of education, drawn...
up by the Italian Ministry of Education. These indicators identify four fundamental objectives to be inductively obtained during didactic units: "identity", "autonomy", "skills", "citizenship" (MIUR 2018).

According to the strategic program, cognitive, emotional and social skills cross all didactic units and disciplines aimed at structuring the relationship between "the self and the other" which prefigures the promotion of active and responsible citizenship. The workshop, therefore, will depict a didactic unit with structured contents and both didactic and educational objectives, but designing a different method and approach in dealing with them.

3. FIRST EX ANTE EVALUATION

The tool selected to evaluate the effectiveness of the experimental leaning unit is an “evaluation grid”, intended to be used before, during and after the workshop experience. In the premilitary verification moment teachers will be asked to fill in the grid to define the students’ level of knowledge of technical tools (teaching objectives) and relational and reflective skills on specific topics (educational objectives). This tool is inspired by the Mario Castoldi’s “evaluation report” and – as Castoldi’s evaluation reports – provides a score for the evaluation of learning, conceptualizes the levels of mastery of the expected skills and provides a useful framework for subsequent comparative evaluations (Castoldi 2016).

“Evaluation reports” also investigate other dimensions consistent with the education objective of the project, such as: socialization; reflection; and change by applying a matrix made of specific indicators in order to quantitatively document the carried-out improvement. This kind of tool was proposed for the first time by Corrado Petrucco and Marina De Rossi in 2014 to evaluate digital storytelling products, and requires a top-down approach aiming at verify if intended results have been reached. The three set of parameters that teachers are supposed to investigate by completing the grid stem from the evaluation reports’ structure, and slightly edited to better adhere to the content, process and objective of the workshop. Those questions concern:

- The evaluation of technical skills, i.e., abilities students learn during the production and postproduction steps, such as the shooting, the montage with the software, and the audio, photo and video editing (Tab. 2).
- The evaluation of contents, concerning the understanding of topics and meanings dealt with during the reading and analysis of the narrative text, such as narrative structure, style and contents (Tab. 3).
- The evaluation of the process, concerning the workshop experience and aimed at verifying the reaching of the educational objectives above defined: creative thinking, reflective thinking and cooperation (Tab. 4).
<table>
<thead>
<tr>
<th>CATEGORIES</th>
<th>PARAMETERS TO BE EVALUATED (TECHNICAL SKILLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREENPLAY QUALITY</td>
<td>Effectiveness of the narrative text translation into a screenplay</td>
</tr>
<tr>
<td>ANIMATION SMOOTHNESS</td>
<td>effectiveness of puppets/objects movements and respect of the animation principles</td>
</tr>
<tr>
<td>PHOTOGRAPHS</td>
<td>Suitability of shot, composition, light and color</td>
</tr>
<tr>
<td>MONTAGE</td>
<td>Suitability of transitions, durations and animation for a clear reading of the image to create an engaging rhythm</td>
</tr>
<tr>
<td>AUDIO</td>
<td>Appropriateness of the soundtrack</td>
</tr>
</tbody>
</table>

Tab. 2 Evaluation grid parameters for verifying TECHNICAL SKILLS
Source: Petruccio, De Rossi (2014)

<table>
<thead>
<tr>
<th>CATEGORIES</th>
<th>PARAMETERS TO BE EVALUATED (CONTENT SKILLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>Consistency of addressed contents and themes with the educational objectives chosen for the learning process</td>
</tr>
<tr>
<td>STYLE</td>
<td>Suitability of materials, text and technique for expressing specific emotional content</td>
</tr>
<tr>
<td>ORIGINALITY</td>
<td>Capacity of the output to express a personal point of view</td>
</tr>
<tr>
<td>ETHIC</td>
<td>Contents respect the human being and nature</td>
</tr>
</tbody>
</table>

Tab. 3 Evaluation grid parameters for verifying CONTENT SKILLS
Source: Petruccio, De Rossi (2014)
CATEGORIES

<table>
<thead>
<tr>
<th>PARAMETERS TO BE EVALUATED (PROCESSUAL SKILLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONITORING</td>
</tr>
<tr>
<td>Effectiveness of the monitoring process in the various phases of the experience</td>
</tr>
<tr>
<td>SOCIALIZATION</td>
</tr>
<tr>
<td>Capacity of the applied method of content analysis and production process to stimulate a continuous and constructive interaction and collaboration within the group</td>
</tr>
<tr>
<td>REFLECTION</td>
</tr>
<tr>
<td>Results of the experience in terms of generating reflective capacity and stimulating possible changes</td>
</tr>
<tr>
<td>CHANGE</td>
</tr>
<tr>
<td>Level of behaviors’ changes stimulated by the didactic experience</td>
</tr>
</tbody>
</table>

Tab. 4 Evaluation grid parameters for verifying PROCESSUAL SKILLS
Source: Petruccio, De Rossi (2014)

4. STOP-MOTION ANIMATION WORKSHOP

The stop-motion animation lab. is structured into three sub-phases, hereinafter referred to as sub-phases A, B and C. Activities planned for each sub-phase are:

- During sub-phase A, students will read and analyze the narrative text. The narrative, chosen in agreement with the teacher, will be the same studied and analyzed with classic learning approach and methods, by the control sample. This phase of reading, understanding, analysis of the themes and the subsequent writing of a screenplay will be conducted under the supervision of the teacher and an expert of narratology.

- During sub-phase B, the students of the experimental sample will face the pre-production phase, supervised by the teacher and the experts in stop-motion animation, and in the field of narratology. In this sub-phase the students will draw storyboards, characters, props and backgrounds, they will define the materials to be used to make characters, props and scenographies choosing between paper (cut-out animation), plasticine (Claymation), fabric or objects (animation of objects).

- Sub-phase C is production, divided into two moments:

 1) Assets preparation (assets are all the elements necessary to start the animation phase). Much of the production phase of a stop-motion project is based on the preparation: 3D objects and/or puppets and backgrounds must be designed and modelled appropriately to allow effective animation. Puppets and background making phases are the most important experience the workshop will be based on, and involve all students in the experimental sample, who will fabricate puppets and objects designed in the pre-production phase by using defined materials.

 2) Shooting. Students will experience the frame by frame shooting process under the supervision of the proponent of the research. By following the storyboard all the photos will be taken to arrive to the fully animated final artefact. Before the shooting students
will be briefly explained how this animation technique works: by taking one frame at a time and then moving the puppet/object with small increments before taking another shot. To complete the animation step, students will be also introduced to the use of a specific licensed software, DragonFrame. This software is professional but easy to use, and during the shooting they will be constantly supervised and guided by the expert in stop-motion animation.

5. **IN ITINERE EVALUATION**

For the entire duration of the workshop, as mentioned, teachers will be required to observe the students’ progresses, evaluated according to the specially designed “evaluation grid” and complete it according to the three main identified areas of interest: acquisition of technical skills, understanding of contents and experiencing of the production process.

6. **EX POST ANALYSIS**

At the end of the workshop, the evaluation grids compiled weekly by the teachers will be collected and the methodology and evaluation expert will systematize the data to verify the level of acquisition of socio-cognitive skills during the laboratory experience.

7. **FINAL OUTPUT**

After the conclusion of the workshop experience, the expert in stop motion animation will edit the animated videos produced by the students and put all sequences together through a montage software in view of the production of the final output.

Conclusion

The described project has not yet been completed and it is not possible to evaluate the data. To date, the project is at Phase two and the professionals and researchers involved are working on the definition of the evaluation grids to be completed by teachers during the phase three of preliminary evaluation.

Stop motion experience as learning method, as mentioned, is not new and the process of film production has been already used to teach aspects such as animation principles, craft skills and team work. What is new in the described research is the focus on the process of material manipulation as if material, when used to shape something previously understood narratively, could be a successful vehicle of knowledge. Described pilot experimentation will reveal limits, advantages or critical points thanks to the evaluation tool applied to control learning objectives. The evaluation tool will then suggest what and how redesign, if necessary, methodological, approaches, steps and/or the addressed target.

By integrating stop-motion, material design, storytelling and pedagogy, the interdisciplinary workshop can be considered new in an international perspective and worthy of seeing its potential verified in the future. The formulated learning experience stems from methods theoretically and empirically validated, and approaches that pedagogy has used in the last century to enhance sensory experience, collaboration and action within the educational process, but goes beyond these premises by making an interdisciplinary leap that brings together analysis of the narrative text, creative writing and design. The method becomes an alternative didactic unit and could potentially prove to be applicable to any content, discipline
and educational context, not only the study of narrative texts, also mathematics, history and geography or foreign languages.
References

Contact email: vincenzo.maselli@uniroma1.it