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Abstract

We study the structure of pressure fluctuations in turbulent pipe flow, up to fric-
tion Reynolds number Re, = 6000, using standard spectral decomposition and
proper orthogonal decomposition (POD). The mean pressure distribution is found
to be qualitatively different from the case of channel flow, with an additional mean
pressure difference caused by combined centrifugal and swirling effects. The vari-
ance of the pressure fluctuations exhibits a wide region with negative logarithmic
decay with the wall distance, due to the presence of a hierarchy of wall-attached
eddies, which we clearly trace in spectral maps, and which are generally isotropic
in nature. On the other hand, the largest eddies are strongly non-isotropic, and are
mainly elongated in the azimuthal direction. POD is used to prove self-similarity
of the attached eddies, whose typical scales are found to be linearly proportional
to the wall distance of their center.

Keywords: Pipe flow, pressure fluctuations, attached eddies

1. Introduction

Pressure fluctuations in wall-bounded turbulence have been widely investigated
due to their important role in structural vibration and acoustic radiation [1]. Over
the years, primary focus has been on assessing the variation of moments and spec-
tral properties of pressure fluctuations against the Reynolds number in turbulent

channels and boundary layers, whereas less is known about the case of pipe flow.
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Early research on pressure fluctuations was commonly conducted via exper-
imental methods. Readers may refer to Farabee and Casarella [2], Tsuji et al.
3], Klewicki et al. [4] for detailed and comprehensive literature review. However,
it has been sometimes criticised that pressure fluctuation measurements in labo-
ratory setups as wind tunnels and return circuits should be taken with caution
owing to non-negligible spurious facility noise [5, 6]. The advent of direct nu-
merical simulation (DNS) has provided an alternative and more accurate tool of
investigations. However, experiments can achieve much higher Reynolds numbers,
whereas DNS is still constrained by limitation of computational resources. This
Reynolds number gap between experiments and simulations is being progressively
filled on account of progress in computer science and algorithmic development.

It is by now well established that the intensity of wall pressure fluctuations in
boundary layers and channels increases logarithmically with the Reynolds number,
when scaled by the mean wall shear stress, say 7, [7, 2, 8, 3, 9, 10]. Tsuji et al.
3] found a similar trend for the peak pressure variance, which occurs at approxi-
mated at y™ = 30 (herein, the superscript + denotes the normalization by mean
wall shear stress 7, and kinematic viscosity v). Jimenez and Hoyas [9] suggested
that this logarithmic increment should be attributed to a growing hierarchy of
self-similar wall-attached eddies [11, 12, 13]. Pressure, like the wall-parallel veloc-
ity components, can indeed be regarded as a wall-attached quantity [14], which
explains why profiles of the pressure variance also follow a logarithmic trend with
respect to the wall distance. The same behavior can however be also predicted
based on inner/outer layer overlap arguments [15]. Mehrez et al. [16] explored
the DNS database of turbulent channel flow at friction Reynolds number Re,
(= hu,/v, with h the channel height, v, = (7,,/p)"/? the friction velocity, and p
the fluid density) up to 4000, and found that the logarithmic trend only shows
up for Re, 2

~

500. Those authors showed that higher-order moments also fol-
low the logarithmic behaviour. With the aid of conditional averaging, they found
that pressure fluctuations are related to geometrically self-similar hairpin vortices,
similar to those observed in experiments [17], and found through resolvent anal-
ysis [18]. Sillero et al. [10], Panton et al. [15] compared the pressure fluctuation
intensity profiles in turbulent channels, pipes and zero-pressure-gradient boundary
layers, and found that the disparity primarily lies in the outer region, where the

effects of the flow geometry cannot be disregarded.



10

15

20

25

30

By inspecting the spatial spectra, Jimenez and Hoyas [9] pointed out that there
are two sorts of flow structures related to pressure fluctuations, the strongest being
localized in the near-wall region, and weaker large-scale structures spanning the
entire wall layer. The former scale in viscous coordinates, wherecas the latter scale
in outer coordinates. Tsuji et al. [19] argued about the possible onset of a sec-
ondary peak of the pressure variance in the outer wall region, as for the streamwise
velocity variance. However, such peak is not observed in channel flow [16]. Within
the overlap region, the characteristic length scales of pressure fluctuations in the
streamwise and spanwise directions increase linearly with the wall-normal loca-
tion [16], reminiscent of the self-similar features of the attached eddies. A recent
study by Xu et al. [20] combined the Kolmogorov theory and the attached eddy
hypothesis formalism to show that the pre-multiplied pressure spectra in the loga-
rithmic layer should follow distinct power laws at small and at large scales, which
at sufficiently high Reynolds number would reduce to k~! variation at the large
scales, and k~7/% variation at the small scales, where k is a relevant wavenumber.

The consensus reached so far is mostly based on turbulent channel flows and
boundary layers. Although pipes are supposed to behave similarly to channels,
some differences are nevertheless noted [10], which should be most apparent in the
outer wall layer. In the present study we thus focus on the study of pressure fluctu-
ations in turbulent pipe flow. By exploiting the database introduced in a previous
study [21], herein we investigate the variation of intensities and spectral properties
of pressure fluctuations in a relatively wide range of Reynolds number. Utilizing a
standard tool of analysis as proper orthogonal decomposition (POD), we further
investigate off-wall similarity of pressure-bearing eddies. The remainder of this
paper is organized as follows. In Section 2 we present the numerical database;
the one-point statistics and the spatial organization of the pressure field are dis-
cussed in Section 3 and 4, respectively. Energetic modes extracted from POD are

presented in Section 5. Concluding comments are finally given in Section 6.

2. The DNS database

Numerical simulations of fully developed turbulent flows in a circular pipe are
carried out assuming periodic boundary conditions in the axial (z) and azimuthal
(¢) directions, as shown in figure 1. The velocity field is controlled by two param-
eters, namely the bulk Reynolds number (Re, = 2Ruy,/v, with R the pipe radius

3



10

15

20

Figure 1: Definition of coordinate system for DNS of pipe flow. z, r, ¢ are the axial, radial and
azimuthal directions, respectively. R is the pipe radius, L, the pipe length, and w is the bulk

velocity.

and wuy, the bulk velocity), and the relative pipe length, L,/R. The incompressible
Navier-Stokes equations are solved with a spatially uniform, time-varying pressure
gradient in such a way that the mass flow rate is kept strictly constant in time.
A second-order finite-difference discretization of the incompressible Navier-Stokes
equations in cylindrical coordinates is used, based on the classical marker-and-cell
method [22], whereby pressure and passive scalars are located at the cell centers,
whereas the velocity components are located at the cell faces, thus removing odd-
even decoupling phenomena and guaranteeing discrete conservation of the total
kinetic energy in the inviscid limit. The Poisson equation resulting from enforce-
ment of the divergence-free condition is efficiently solved by double trigonometric
expansion in the periodic axial and azimuthal directions, and inversion of tridiag-
onal matrices in the radial direction [23]. A crucial issue is the proper treatment
of the polar singularity at the pipe axis. A detailed description of the subject
is reported in Verzicco and Orlandi [24], but basically, the radial velocity u, in
the governing equations is replaced by ¢, = ru, (r is the radial space coordi-
nate), which by construction vanishes at the axis. The governing equations are
advanced in time by means of a hybrid third-order low-storage Runge-Kutta al-
gorithm, whereby the diffusive terms are handled implicitly, and convective terms
in the axial and radial direction explicitly. An important issue in this respect
is the convective time step limitation in the azimuthal direction, due to intrinsic

shrinking of the cells size towards the pipe axis. To alleviate this limitation, we
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Dataset L,/R Mesh (N, x N, x Ny) Rey, Re;  Atgq/7  Line color

DNS-A 15 256 x 67 x 256 2300 180.3 204.0 —
DNS-B 15 768 x 140 x 768 17000  495.3 87.4 —
DNS-C 15 1792 x 270 x 1792 44000 1136.6 25.9 —
DNS-D 15 3072 x 399 x 3072 82500 1976.0 224

DNS-E 15 4608 x 540 x 4608 133000 3028.1 16.6 —

DNS-F 15 9216 x 910 x 9216 285000 6019.4 8.32

Table 1: Flow parameters for DNS of pipe flow. Cases are labeled in increasing order of Reynolds

number, from A to F.

use implicit treatment of the convective terms in the azimuthal direction [25, 26],
which enables marching in time with similar time step as in planar domains flow
in practical computations. In order to minimize numerical errors associated with
implicit time stepping, explicit and implicit discretizations of the azimuthal con-
vective terms are linearly blended with the radial coordinate, in such a way that
near the pipe wall the treatment is fully explicit, and near the pipe axis it is fully
implicit. The code was adapted to run on clusters of graphic accelerators (GPUs),
using a combination of CUDA Fortran and OpenACC directives, and relying on
the CUFFT libraries for efficient execution of FFTs [27].

From now on, capital letters will used to denote flow properties averaged in
the homogeneous spatial directions and in time, brackets to denote the averaging
operator, and lower-case letters to denote fluctuations from the mean.

A list of the main simulations that we have carried out is given in table 1.
The mesh resolution is designed based on the criteria discussed by Pirozzoli and
Orlandi [28]. In particular, the collocation points are distributed in the wall-
normal direction so that approximately thirty points are placed within y™ < 40
(y = R — r is the wall distance), with the first grid point at y* < 0.1, and
the mesh is progressively stretched in the outer wall layer in such a way that
the mesh spacing is proportional to the local Kolmogorov length scale, which
there varies as n* ~ 0.8 y*l/ * [29]. Regarding the axial and azimuthal directions,
finite-difference simulations of wall-bounded flows yield grid-independent results
as long as AzT =~ 10, RTA¢ =~ 4.5 [30], hence we have selected the number
of grid points along the homogeneous flow directions as N, = L,/R x Re./9.8,
Ny ~ 21 x Re,/4.1. According to the established practice [31, 32, 33|, the time
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intervals used to collect the flow statistics (Atgy,) are reported as a fraction of the
eddy-turnover time (R/u,).

A detailed study of the velocity and passive scalar statistics are reported in
previous studies [21, 34], which contain a full analysis of sensitivity of the flow
statistics to domain size and grid resolution, as well as a study of the time sampling
error. Based on the method of Russo and Luchini [35], which extends the classical
batch means approach, we find that the sampling error for the one-point pressure
statistics is generally quite limited, being larger in the largest DNS, which have
been run for shorter time. In particular, in DNS-F the expected sampling error in

the mean pressure and pressure variance is less than about 0.5%.

3. One-point pressure statistics

The mean pressure distribution in the radial direction is shown in figure 2(a,b),
in terms of the difference between wall and local values. For all cases here con-
sidered the pressure difference first increases in the inner region, reaching a peak
value, and then it decreases in the outer region. With the increase of the friction
Reynolds number, the peak pressure difference increases, and the corresponding
wall-normal location is shifted further away from the wall. For DNS-F, this peak
resides at y* ~ 1000, or y/R = 0.17. This is rather different from the mean
pressure in turbulent channel flows, as displayed in figure 2, in which the maxima
of the mean pressure are reached in the inner region at y™ =~ 50 ~ 100. The
difference can be attributed to disparity in the respective mean balance equations.
In turbulent channel flows, integration of the mean momemtum equation in the

wall-normal direction yields

Pw - P(y) = <U2>(y), (1)
hence the distribution of the pressure difference is identical to the wall-normal

velocity variance. In pipe flows, momentum balance along the radial direction

yields [36] ) ) )
02) ~ () | alud) __ap

T rlo_ 7 2
r dr dr’ (2)
which can be integrated to yield
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Po— Py = i)+ [ =g )
T[" 0 Yy .
rl ]\ZQ



1.5 T T T T 1.5 T T T

1.5 T T T T UERERRRRY T 1.5 T T T T T T
LT~ 7T TN
SN V4 VAN
,,- AN N / / // SQ\\
+ 1+ Ilil/ AN \\\ \\ \\ i + 1+ // // // Ve \%\:\\ i
& i N 1 A ror g/ N
J N Lo )
| //\ \ \ \ \ | | / / / / W
+ i AR + VA 7N
3 / \ \ 1 3 /o 3
a osh S L N Rosp S L) SN
0 N N 4 / / N
/// // ) ; /// // //
/
4 /// /// ey
T Ll Ll R A S |
(fo" 10' 10° 10° 10* 90'3 10° 10" 10
C + d
(c) y (@) y/R
1.5 AR URERRRRRY T T T 1.5 T T T T T T
1+ e 1+ e
+9 + |
0.5 B 0.5F B
00‘ = ‘l 2‘ HHM‘S‘ HHM4 0-3 — ‘-2 H-1 ‘ HHM‘O
( ) 10 10 10 10 10 (f) 10 10 10 10
€ +
Y y/R

Figure 2: Wall-normal distribution of mean pressure difference in pipes (a-b) and in channels [32]
at Re, = 180,550, 1000, 2000, 5200 (c-d, dashed lines), plotted against (a,c) viscous coordinates,
and (b,d) outer coordinates. The M}, term in equation (3) is shown in panels (e-f). Refer to

figure 1 for line style.
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The first term is known to attain a flat distribution at high Reynolds number,
and its peak value slowly asymptotes to an extrapolated values of about 1.38 in
pipe flow [37]. The difference with respect to the case of channel flow is due to
term M, at the right-hand-side of equation (3). The latter (sce pancls e,f) is
associated with centrifugal (u?) and swirling (u3) effects, and is found to increase
monotonically from the wall to the pipe centreline, hence it contributes to making
the pressure difference between the pipe wall and the interior larger than in channel
flow. Interestingly, term M, is scaling with very good approximation in outer
units, yielding a maximum increase of about 0.4 wall units. As a consequence,
we find that the difference between wall and centreline pressure to be of the order
of one wall unit in the case of pipe flow, whereas in channels it is about 0.5 wall
units.

The distributions of the pressure variance are displayed in figure 3(a-b). These
are found to remain nearly constant within the viscous sublayer (say, y™ < 10),
then increasing to attain a peak value at y* &~ 30, and then decrease. A region
with distinctly logarithmic decrease is found from y™ & 100 to y/R = 0.4, which
is then followed by steeper decrease towards the pipe centreline. As the Reynolds
number increases, the pressure variances at the wall and their peak values increase
systematically, whereas the centreline value is not much affected. When plotted
against outer wall coordinates, the logarithmic portions of the pressure variance
distribution collapse for Re, 2 500, consistent with the case of channel flow [16].

Expressing the outer distribution as

(0*)"(y/R) = Alog (y/R) + B, (4)

curve fitting within the range of y = (0.02 ~ 0.3)R for DNS-F yields the values
of parameters A = —2.28 and B = 1.13, with error of 0.4%. Compared with the
variances in turbulent channels (see figure 3(c)), we note that pressure fluctuations
in pipes tend to be lower for y™ < 150, and higher farther from the wall, a behavior
which can also be traced in earlier studies [see, e.g. 10, figure 5]. Overall, the
slope of logarithmic decay seems to be shallower in pipes. The calibrated log-law
parameters are listed in table 2, along with those reported in previous studies in
turbulent channels and boundary layers. Despite some data scatter across different
studies, the table confirms that the decay rate is a bit less in pipes than in other

flow configurations.



Figure 3: Wall-normal distribution of pressure variance plotted against (a) inner and (b) outer
coordinates. Peaks values ((p%)T) are marked with circles. In panel (b) the grey line denotes
(p*)T(y/R) = Alog(y/R) + B, with A = —2.28 and B = 1.13, and the inset shows the log-law
diagnostic function, yd <p2>+ /dy. Panels (c,d) show a comparison with channel flow DNS data
by Lee and Moser [32, dashed lines] at Re, = 180,550, 1000,2000, 5200, offset by 2.0 in (d).
Refer to figure 1 for line style.

Table 2: Parameters of logarithmic fits for pressure variance distributions in equation (4).

Source A B
Pipe (present) —2.28 1.13
Channel [10] —2.75 0.1
Channel [15] —2.56 0.270
Channel [16] —2.51 0.395

Boundary layer [16] —2.42 2.39
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Figure 4: Variation of wall pressure variance ((p2)?, black squares) and peak pressure variance
({(p%), red diamonds) with Re,. Solid symbols are used for pipe flow (present DNS), and open
symbols for channel flow [32]. Solid lines note the fits given in equation (5) and (6). The
dashed lines denote data fits for channel flow [16], (p2)* = 2.24log(Re,) — 9.18, (p%)" =
2.77log(Re,) — 10.47.

We further report the wall and peak values of pressure variances (p?)™ and
(p%)T in figure 4. With exclusion of the lowest Reynolds number case at Re, ~ 180,
the wall and peak values of pressure variances can be well characterized in terms

of the following logarithmic trends
(p)* = 2.05log(Re.) — 7.61, (5)

(pH)T = 2.22log(Re,) — 6.74. (6)

The data thus support theoretical inference that wall and peak pressure variances
increase logarithmically with Re,, with accuracy of 0.3% and 0.25%, respectively.
The logarithmic growth rate seems to be marginally, but systematically less than

for channel flow, which again highlights differences between the two flows.

4. Spatial organization

Representative instantaneous fluctuating pressure fields are shown in figure 5,
at the pipe wall and in the cross section. At low Reynolds number pressure fluc-
tuations are organized into nearly circular blobs, but some hint of coherence along
the azimuthal is also perceivable. This kind of organization is distinctly differ-

ent than in the axial velocity field, which is instead characterized by longitudinal

10



Figure 5: Instantaneous fields of inner-scaled pressure fluctuations (p/7,) at the pipe boundary
and in the cross section, for (a) DNS-A, (b) DNS-B, (c) DNS-C, (d) DNS-D, (e) DNS-E, (f)
DNS-F.
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Figure 6: Pre-multiplied spectral densities of pressure fluctuations, (a,b) kgE; and (c,d) k. Ef,
under (a,c) viscous and (b,d) outer coordinates. Line colors as in table 1. Contour levels: (a,b)
0.3 and 1.2, (¢,d) 0.2 and 1.0. Grey dashed lines in panels (a) Ag = by, (¢) A\, = 5y.

streaks [see, e.g. 21]. At higher Reynolds number (panels(c-f)), the multi-scale na-
ture of pressure fluctuations becomes obvious. In particular, the small-scale eddies
(see the zoomed inset), have similar characteristic length scales in the axial and
azimuthal directions, thus showing no preferential alignment. On the other hand,
the largest eddies come in the form of spanwise-aligned streaks, hence far from
isotropy. Pressure fluctuations in the pipe cross section come in the form of blobs,
whose size does not change substantially with the Reynolds number, and which
are mainly distributed within the buffer layer. The figure further suggests (note
that the same color scale is used for all cases) that extreme positive and negative
pressure fluctuation events become stronger at higher Reynolds number.

More quantitative insight is provided by the spectra of pressure fluctuations,

which are shown in figure 6, in pre-multiplied form. The spectral distributions

12
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in the near-wall region (y* < 100) are close to being universal in wall units at
small scales, although the peak intensity is slightly increasing with Re,. Most
energetic contributions come from eddies residing at y* ~ 30, and with typical
length scale \j ~ A & 200 (scc pancls a,c), where \g and ), arc wavelengths
along the azimuthal and axial directions, respectively. Similar insensitivity from
Reynolds number variation in the wall-normal location and characteristic length
scales of the spectral peaks was also found in channel flows [16]. Consistent with
the attached nature of pressure as a flow variable, we find that the azimuthal and
axial spectra both exhibit a prominent ridge which reaches out towards the top-
right corner of the maps, suggesting linear growth of the length scales with the wall
distance. When expressed in outer units (panels b, d) the spectra show very good
universality at the largest scales. Unlike the axial velocity, the spectra of pressure
fluctuations do not feature prominent outer-layer energetic peaks. However, the
nearly vertical contour lines indicate that energetic pressure fluctuations at large
scales (A\g & R and X\, &~ R) penetrate through the logarithmic and the buffer layer
at almost constant intensity down to the wall. In fact, unlike velocity fluctuations,
pressure fluctuations are not constrained from the no-slip and/or no-penetration
conditions which would cause them to decay in the wall proximity.

Reynolds number trends are better illustrated in figure 7, where we show peak
values with respective wall distance and associated wavelength. The peak spectral
amplitudes are found to increase very slowly, tending to reach an asymptotic value
at high Reynolds number. Hence, the previously observed logarithmic increase of
the peak pressure variances with Re,, is due to broadening of the range of eddy
scales contributing to it, as figure 6 well illustrates, and as pointed out by Jimenez
and Hoyas [9]. The position and the typical length scales of the near-wall spectral
peak are also not changing much with Re,, and they are similar for the azimuthal
and the axial spectra.

The wall pressure spectra are shown in detail in figure 8. When plotted against
viscous scales, the spectral intensities are Reynolds number independent for A\ <
100, Af < 100 for cases with Re, 2 1000, consistent with the discussions on
figure 7. The peak values are slowly increasing with the Reynolds number, and
are attained at \; &~ 220, A} &~ 250. Notably, the azimuthal spectra seem to be
more affected from Reynolds number variation than the axial ones. When plotted

against outer coordinates, the spectra at the large scales become nearly Reynolds
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number independent, as suggested by collapse of the contour lines in the large-\
range when outer scaling is used, see figure 6. In particular, universal distributions
are achieved for \g/R > 0.5 in the azimuthal spectra, and for A\,/R > 2.0 in the
axial spectra, for Re, > 500. The collapsed portion of the azimuthal and axial
spectra seem to follow a logarithmic decay, with slope —0.23 and —0.3, respectively,
although we could not find any convincing theoretical explanation.

The two-dimensional spectral densities of wall pressure are displayed in fig-
ure 9(a). The two-dimensional maps are consistent with the one-dimensional spec-
tra discussed above, in that the spectra tend to be Reynolds number independent
at small scales and at large scales when plotted against viscous and outer coordi-
nates, respectively. Most energy resides at small scales, with peak at A\ ~ 190,
A} &~ 210, showing that these eddies are very nearly isotropic in the wall-parallel
directions, as also found in channels [38, 9, 4]. As for the large-scale portion of the
spectra, the characteristic length scales in the azimuthal direction are found to be
roughly three times larger than in the axial direction, hence they are characterized
by strong anisotropy. These results quantitatively corroborate our previous obser-
vations about the instantaneous pressure fields that the small-scale fluctuations
tend to be isotropic, whereas the large-scale fluctuations are significantly elon-
gated in the azimuthal direction. As a comparison, in turbulent channel flow the
characteristic length scales of pressure fluctuations in the streamwise and spanwise

directions in the outer region have been reported to be close to the half-channel
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height [16]. A recent study [39] based on resolvent analysis applied to turbulent
channel flow at low Reynolds numbers, likewise predicted that the energetic large-
scale pressure fluctuations are spanwise oriented. In particular, resolvent analysis
predicts the presence of spanwise-coherent modes displaying alternating spanwise
vortices, with pressure peaking at the vortex centers.

This is to be contrasted with the structure of the axial velocity field in the wall
proximity, which are shown in figure 9(b). Also in this case the spectral maps are
bi-modal, however both small eddies and large eddies tend to be elongated along
the axial direction, with aspect ratio of about ten, corresponding to near-wall
streaks, and to the imprinting of outer-layer superstructures.

The spectral distributions in the logarithmic region are inspected next. For
that purpose, we only show results for DNS-F, in which a logarithmic region is
most evident. As a first step, we have detected the peak values of the spectra at
each wall-normal locations, and marked them with symbols in figure 10. Between
the peak locations in the near-wall region at y* ~ 30 and y* &~ 1000 (correspond-
ing to y/R ~ 0.17), the characteristic length scales in both the azimuthal and
axial directions increase linearly with the wall-normal coordinate, showing close
similarity. The slope of this linear trend is approximately 5.0, which is higher than
the value 3.0 reported for turbulent channels [9, 16].

Based on the observation that the pressure fluctuations are most energetic at

17
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small scales, Xu et al. [20] inferred scaling laws for the streamwise pressure spectra,
relying on Kolmolgorov theory and on the attached-eddy hypothesis, which can
be formulated as

y_(3n_7)/4[k7wEx] ~ ()‘x/y)n_la (7)

for A\, < Ky, and
y_(3n_7)/4[k:1:E:1;] ~ ()\:I:/y)(371/—7)/47 (8)

for A, > Ky, where x denotes the slope of the linear relation in figure 10. The
parameter n was found to be in general dependent on the local Taylor micro-scale
Reynolds number. Herein we attempt to validate their theory in pipe flow. In
figure 11, we thus display compensated, pre-multiplied spectra of pressure, namely
(y/R)~ ="/ Ef (y/R)~®"7/4k,EF for the DNS-F flow case, at y/R = 0.025,
0.05, 0.1, 0.2 and 0.3. Best fitting of the dataset yields n = 1.9, consistent with
the results reported by Xu et al. [20], Tsuji et al. [3] in turbulent channels. At
small length scales, the power-law (7) is satisfied in an increasingly wide band of
wavelengths at increasing wall distance, up to about one decade. The scaling (8) is
found to hold for Ay /y > 5and A, /y > 5, in a wider range as the wall is approached,
which indicates that band of wavenumbers is a constant fraction of R. Although
the scaling laws in equations (7) and (8) were derived for the streamwise spectra in
channels, we find that the conclusions apply to pipes as well, also in the azimuthal

direction.
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Figure 12: Normalized probability density distributions of pressure fluctuations at (a) wall; and
(b) y = 0.2R. Triangles: Gaussian distribution, diamonds: T-distribution. The top axis reports
a scale p/7,, for the DNS-F flow case.

Figure 12 displays the probability density distributions of pressure fluctuations
at the wall and at y = 0.2R. Consistent with previous observations [8], we find
that positive and negative pressure fluctuations are equally likely to occur at the
wall, hence the skewness is locally zero. As the Reynolds number increases, the
frequency of intense pressure fluctuations increases, and algebraic tails. The re-
sulting probability density function is quite far from Gaussian (triangles), and we

empirically find that it can conveniently be approximated as a T-distribution,

n— nt1 22\ ~(+)/2
PDF(z) = (n %FP((;)) (1+ Z) : (9)

where I' is the Gamma function, by setting n = 9. According to its definition, the

T-distribution is similar to the normal distribution but has fatter tails, with normal
distribution recovered in the limit n — oco. Hence, finite value of the parameter
n has to do with the strong observed intermittency of the pressure fluctuations.

At y = 0.2R, the most intense pressure fluctuations become negative, and the
structure of the PDF are similar to those reported for isotropic turbulence [40]. In
particular, whereas negative fluctuations still exhibit an exponential tail, positive
fluctuations are more nearly Gaussian. This has to do with the fact that the
most intermittent structures in isotropic turbulence are tube-like vortices, with

low-pressure at their interior [41].

19



10

15

20

25

5. Outer-layer similarity and wall-attached eddies

The spectral maps discussed in the previous section have shown that the large-
scale, pressure-bearing eddies are nearly Reynolds number independent, and that
pressure fluctuations in the logarithmic region show some typical features of self-
similarity resulting from wall-attached eddies. To further elaborate on this issue,
herein we exploit proper orthogonal decomposition (POD) to extract the structures
with strongest spatial coherence, as previously done by many authors to analyse
transitional and turbulent flows [e.g. 42, 43, 44]. For that purpose we have collected
five hundred cross-stream planes for each case, which proved to be sufficient to
achieve statistical convergence of the ensemble. Considering homogeneity and
periodicity in the azimuthal direction, we then proceed as suggested by Hellstrom
et al. [45], by expanding the flow properties in Fourier series, leaving only spatial
coherence in the radial direction to be determined. The two-point correlation
tensor of the azimuthal spectral coefficients is expressed as

T

S(kg,r, ") = lim rl/Qﬁ(kg,r, t)ﬁ*(kg,r’,t)r'l/th, (10)

T—o0 0

where the hat symbols is used to denote the Fourier coefficients, and the asterisk

to denote the complex conjugate. The POD equation can then be cast as
/ S(ka, 7, 1) ™ (ko, r")dr" = o™ (k)™ (Ko, ) VT, (11)

with 0™ (kg) and ¢™ (kg,r) denoting energy and associated radial profiles of the
n—th POD mode corresponding to the azimuthal wavenumber ky. In a discretized

setting, we collect all data samples into a matrix

X:[mlam%"' awN]7 (12)
whose column vectors x; (i = 1,2,--- | N) are
x; = [T15, T, L TN, (13)

We further set x;; = p(ke,7;,t;)Ar; to incorporate the grid intervals so that the
correlation and the POD energy is consistent with the definition given in equa-
tions (10), (11). The POD for the discretized system is then obtained from singular

value decomposition of matrix X,

X=UXVHE Uvech¥, ecCc"V, veCcV¥, (14)
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Figure 13: POD modal energy for the first ten azimuthal wavenumbers kg (bar charts, left
ordinate) and cumulated energy of the first 1, 3 and 5 modes (lines, right ordinate), the DNS-F
flow case.

where U and V' are unitary matrices, and X’ is the diagonal matrix whose elements

are the singular values,
¥ = diag{o}, 05, - , 0N}, (15)

which are related to the POD modal energy as o7 = 0/>/N. The corresponding
POD modes are the columns of matrix U.

Figure 13 displays the energy of the first ten POD modes associated with the
first ten azimuthal wavenumbers. The first azimuthal mode is found to be the
most energetic, and for each azimuthal mode, the first POD mode is found to be
much more energetic than the others, containing about 60% of the energy. The
first three and the first five modes take up more than 80% and 90% of the energy,
respectively.

To examine the Reynolds number dependence of the large-scale motions, the
modal profiles for the first four azimuthal wavenumbers are shown in figure 14,
normalized by their respective maximum values. For each azimuthal wavenumber
the first POD mode has a main peak at y =~ 0.2 ~ 0.3R, which is consistent with
the spectral distribution shown in figure 6(b). Because there is no restriction from
the no-slip and no-penetration conditions as for velocity, the amplitude of these

modes is not zero at the wall, but rather it is approximately 80% of the maximum
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Figure 15: Cross-stream shape of POD modes corresponding to kg = 3, for DNS-F flow case: (a)
mode 1, (b) mode 2, (¢) mode 3.

value. The second and the third POD modes are comparatively less energetic, and
peaks and troughs gradually move closer to the wall as the azimuthal wavenumber
increases. For those modes, the wall values are about 50% of the maximum value.
In general, the modal profiles are well collapsed for different Reynolds number
cases, supporting our previous observations that outer energetic motions are very
much Reynolds number independent. A visual impression for a particular family
of azimuthal modes (corresponding to ky = 3) is provided in figure 15, showing a
full reconstruction in the pipe cross-stream plane.

We further seek evidence for self-similarity (or not) of the pressure-bearing ed-
dies. In figure 16, we thus plot the wall distance of the main peak, for the first
POD modes corresponding to each azimuthal wavenumber, say y,. Only cases
at Re, > 1000 are shown, as lower Reynolds numbers do not feature any signifi-
cant logarithmic region. The figure shows that within the range of wavenumbers
koR Z 10, the wall-normal location scales approximately as y,/R = 27C(kyR) ™",
with C' & 0.2. This result is very close to what reported by Hellstrom et al. [45] for
velocity fluctuations resulting from pipe flow experiments. This finding supports
the notion that the sizes of the most energetic pressure-bearing eddies are pro-
portional to their center locations from the wall, thus corroborating observations
made regarding the one-dimensional spectral distributions (see figure 10).

The normalized profiles of the first three POD modes at kg = 10, 20 and 30
are shown in figure 17, for cases with Re, > 1000, with the wall distance scaled

by the azimuthal wavenumber. The first POD modes have relative amplitude 0.7
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Figure 16: Peak locations of first POD mode for azimuthal wavenumbers kg € [1,100], The grey
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Figure 17: Shapes of POD modes for kg = 10 (solid), kg = 20 (dashed), ky = 30 (dot-dashed),
scaled by the wall distance: (a) mode 1, (b) mode 2, (¢) mode 3. Line colors as in table 1.
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at the wall, attain a maximum at kgy ~ 1, and drop to zero at kgy ~ 6. The
second modes have wall value of about —0.7, attain a minimum at kyy ~ 0.5, and
a peak value at kyy ~ 3.0. The profiles then drop to zero at kyy ~ 8.0. The third
modes behave similarly, except for an additional zero crossing. These POD modes
exhibit clear self-similarity as their profiles are well collapsed under the normalized
coordinate kypy, but they are also very nearly universal with respect to Reynolds

number variation.

6. Concluding comments

Availability of a DNS database is a convenient way to gain information about
the structure of pressure fluctuations in internal flows, as done here for pipe flow.
Although similarities with previous studies dealing with channel flow are clear,
some differences are worth being mentioned, and some flow features herein ob-
served were not previously noted, also because of Reynolds number limitations.
Regarding the basic statistics, we note that the mean pressure in pipe flow has a
different structure than in channel flow, mainly owing to the presence of an extra
term in the mean balance equation, which is associated with combined centrifugal
and swirling effects. As a result, the peak pressure difference with respect to the
wall is larger in pipes, and it occurs much farther from the wall, at y/R ~ 0.2.
The pressure variance shows an absolute peak within the buffer layer associated
with extreme turbulence activity, and farther from the wall shows a very distinct
logarithmic decline, at slightly lower rate than in channels. Logarithmic growth of
the wall pressure with the friction Reynolds number is also observed, at a slightly
smaller rate than in channels. Put together, the evidence supports the notion that
the pressure-bearing eddies should constitute a hierarchy of wall-attached eddies,
as speculated in theoretical models for the behavior of the axial velocity fluctu-
ations. Here the evidence is even clearer, as pressure in the wall vicinity is not
attenuated from the no-slip condition as the velocity. The computed pressure spec-
tral maps in fact support this notion, and show a typical imprint consisting of a
main buffer-layer peak at y™ & 30, and typical wavelength AT ~ 200 in both wall-
parallel directions, and a spectral ridge featuring eddies with wavelengths linearly
proportional to the wall distance, which are also found to be quasi-isotropic. Self-
similarity of the spectra in the range of wall distances from y* ~ 50 to y/R ~ 0.2

is shown, and their shape is found to conform well with a recent conceptual model.
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The wall pressure fluctuations, which have obviously the highest practical inter-
est, include contributions from eddies of all size, which manifest themselves in
instantaneous flow realizations as nearly circular blobs (near-wall and attached
eddies), and as azimuthally clongated streaks, limited to the largest O(R)-sized
eddies. Understanding how these wide azimuthal wall pressure signatures are re-
lated to a particular class of coherent structure could be an interesting subject
for future research. The wall pressure fluctuations are found to have nearly zero
skewness and heavy exponential tails, which indicate the importance of relatively
rare events. This peculiar structure should be contrasted with what found away
from the wall, where the structure of pressure fluctuations is similar to isotropic
turbulence, with strong negative tails, and near-Gaussian positive tails. Proper
orthogonal decomposition has been used to quantitatively extract the shape of the
energetically relevant modes, upon Fourier expansion in the azimuthal direction.
We have found that higher azimuthal modes are associated with progressively
smaller distance from the wall, and they tend to be very much universal, which
provides a tangible manifestation of the hierarchy of wall-attached eddies.
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