
From Shallow to Whole-Sentence Semantics:
Semantic Parsing in English and Beyond

Scuola di Dottorato in Informatica

Dottorato di Ricerca in Informatica – XXXIV Ciclo

Candidate

Rexhina Blloshmi
ID number 1740477

Thesis Advisor

Roberto Navigli

2021/2022



Thesis defended on 25 February 2022
in front of a Board of Examiners composed by:

Prof. Salvatore Gaglio (chairman)
Prof. Gabriella Pasi
Prof. Mauro Conti

External Reviewers:

Nathan Schneider
Shay Cohen

From Shallow to Whole-Sentence Semantics: Semantic Parsing in English and Beyond
Ph.D. thesis. Sapienza – University of Rome

© 2022 Rexhina Blloshmi. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: rexhina.blloshmi@uniroma1.it

mailto:rexhina.blloshmi@uniroma1.it


Dedikuar familjes sime

Wherever I go, I go with all my heart



iii

Abstract

Humans want to speak to computers using the same language they speak to each other,

rather than the symbolic and structured language machines are designed to process. Indeed,

enabling a machine to process and interpret text automatically and then communicate

verbally is one of the critical goals of the Natural Language Processing (NLP) and broader,

the Artificial Intelligence (AI) fields. Moreover, computers are desired not to only process

some written text, but also to understand it at the semantic and pragmatic level, which is

further defined within the Natural Language Understanding (NLU) subfield. NLU aims

at overcoming language ambiguities and complexities to enable machines to read and

comprehend text. Therefore, to achieve this goal, we need computers capable of inputting

text, preferably in any language, and parsing it into semantic representations which can

be used as an interface between humans and computer language. To this end, a crucial

issue faced by the NLP researchers is how to devise a language that is interpretable by

machines and at the same time expresses the meaning of natural language, primarily known

as the Semantic Parsing task. Semantic representations usually take the form of graph-like

structures where words in a sentence are interconnected according to different semantic

relations. Over time, this has garnered increasing attention, with researchers developing

various formalisms that capture complementary aspects of meaning.

Two of the most popular formalisms in NLP that capture different levels of sentence seman-

tics are Semantic Role Labeling (SRL) — often referred to as shallow Semantic Parsing —

and Abstract Meaning Representation (AMR) — a popular complete formal language for

Semantic Parsing — which includes SRL, among other NLP tasks. Both SRL and AMR

have been widely studied in the NLP research, counting a large number of approaches to

deal with task specificities and the challenges they pose, aiming at achieving human-like

performance. In particular, the majority of the SRL works rely on task-specific sequence
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labeling approaches. In addition, they often make use of third-party components to solve

subtasks of SRL, leading to non-end-to-end approaches. We observe a similar trend in AMR

related research, where aspects of meaning are treated as a different constituent in a long

pipeline. These complexities, which we will elaborate on more during this thesis, may hinder

the effectiveness of the models in out-of-distribution settings while also making it more

challenging to integrate SRL and AMR structures in downstream tasks of NLU efficiently.

Another long-standing problem in NLP is that of enabling research in languages other than

English. Especially in the context of AMR, the English dependency problem is even more

evident provided that it was initially designed to represent the meaning of English sentences.

In this thesis we investigate the aforementioned problems in SRL, including both dependency-

and span-based SRL formulations, and in AMR, including AMR parsing — the task of

converting utterances into an AMR graph — and its specular counterpart AMR generation

— the task of generating natural language utterances from an AMR graph. We focus on

relieving the burden of complex, task-specific architectures for English SRL and AMR

casting them as sequence generation problems, motivated by the overgrowing success of

general-purpose sequence-to-sequence methodologies in NLP in the recent years. Further-

more, we dispose of the previously necessary third-party dependencies in AMR parsing,

thus achieving a full symmetry with its dual counterpart, AMR generation. Additionally, we

make use of the sequence-to-sequence paradigm and transfer learning techniques to enable

cross-lingual AMR parsing — the task of learning English-centric structures to represent

meaning in multiple languages.



v

Acknowledgments

At the end of my PhD, which completes my cycle of studies, I look back and want to recognize

the contribution of several people (of different nationalities) in my success.

<SQ> Po i filloj falenderimet me familjen time, të cilës i dedikohet cdo sukses i imi. Falen-

deroj babin për besimin dhe suportin e përhershëm për të ndjekur rrugën e suksesit, brenda

dhe jashtë Shqipërisë. Falenderoj mamin për suportin moral gjatë gjithë viteve të studimeve

të mia, me bindjen që do ta kem po njësoj në sfidat që më presin. Falenderoj vëllain tim të

madh, që nuk është lodhur kurrë duke shprehur sa krenar është për motrën e tij të vogël,

PhD e parë të fisit. Faleminderit ba, ma, lali! Përfundoj këtë paragraph duke falenderuar

shoqërine shqipëtare, Lea, Kejvi, Anxhi, Enxhi, dhe familjen time të madhe – jemi shumë –

që më përkëdhelin kur më konsiderojnë si një shembull për tu ndjekur. </SQ>

<IT> Ringrazio il mio supervisore, tutti i miei amici-colleghi, e sopratutto i miei “amici

magici", Caterina, Edoardo e Luigi, che hanno, senza dubbio, arricchito i miei anni di

dottorato. Ringrazio Di Fabio per avermi “forzato" a parlare in italiano (anzi romano),

anche se il mio italiano va migliorato. </IT>

Finally I would like to thank Alexandre, for being a great support and for pushing me to give

my best in the most stressful moments. <PT> Obrigada! </PT>



vi

Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Meaning Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Learning SRL and AMR as Sequences . . . . . . . . . . . . . . . . 6

1.3.2 Enabling Cross-lingual AMR Parsing . . . . . . . . . . . . . . . . 8

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publications and Personal Contributions . . . . . . . . . . . . . . . . . . . 9

2 Background and Related Work 12

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Broad-coverage Semantic Parsing . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Proposition Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Semantic Role Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Approaches to SRL . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Abstract Meaning Representation . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Multilingual AMR . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Cross-lingual AMR . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Approaches to AMR . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Semantically-enhanced Applications . . . . . . . . . . . . . . . . . . . . . 26

3 End-to-End SRL as Sequence Generation 28

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Contents vii

3.2.1 SRL as a Sequence-to-Sequence Task . . . . . . . . . . . . . . . . 30

3.2.2 GSRL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Pre- and Postprocessing . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Evaluation Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Training and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Comparison Systems . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Dependency-based SRL Results . . . . . . . . . . . . . . . . . . . 37

3.4.2 Span-based SRL Results . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 End-to-End AMR Parsing and Generation as Sequence Generation 46

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Task Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Graph Linearizations . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 SPRING Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Evaluation Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Training and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Comparison Systems . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 AMR 2.0 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 AMR 3.0 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Out-of-Distribution Results . . . . . . . . . . . . . . . . . . . . . 61

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 SPRING Online Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Contents viii

4.6.1 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.2 RESTful APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 AMR as an Interlingua 69

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Cross-lingual AMR . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 XL-AMR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Silver Data Creation . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 Pre- and Postprocessing . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Dataset Creation Details . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Evaluation Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.4 Training and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.5 Comparison Systems . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Fine-grained Results . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Smatch Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.2 Translation Divergences . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusions 88

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Future Work and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Mid-term Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Long-term Perspective . . . . . . . . . . . . . . . . . . . . . . . . 91

A SPRING Demonstration and Examples 119

A.1 SPRING Online Services Evaluation . . . . . . . . . . . . . . . . . . . . . 119

A.2 From Parsing to Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Contents ix

B XL-AMR Details 123

B.1 OpusMT Translation Models . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2 Model Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



1

Chapter 1

Introduction

1.1 Overview

Human language bears vast complexities, especially related to how different constituents are

interconnected in text. Consider the following example:

the fans desire Dua Lipa to meet them. (1.1)

When reading this piece of text, a human understands it refers to a group of people (fans)

who want to meet with the celebrity they support (Dua Lipa). A machine instead, requires we

put this information in a structured form that explicitly specifies the semantic relationships

between a group of people and the act of desiring, a person and her role as a celebrity and

finally, the group of people and the celebrity, i.e., protagonists in this phrase. Furthermore,

while it is clear them refers to the fans in the above text, it is not easy for a computer to infer

this relationship.

At the core of Natural Language Understanding (NLU) lies the task of Semantic Parsing,

which aims at converting natural language utterances into an explicit machine-understandable

semantic representation. Indeed, we arguably need these representations to make comput-

ers understand and, due to this, various formalisms have been developed for Semantic

Parsing, based on different linguistic theories and covering distinctive levels of meaning

aspects. Many broad-coverage meaning representations can be modeled as directed graphs,



1.2 Meaning Representations 2

where nodes represent semantic concepts and directed edges represent semantic relations

among them. However, language comprehension’s difficulties caused the so-called semantic

annotation balkanization; separate annotations exist for named entities, co-reference, se-

mantic relations, discourse connectives, and temporal entities. In 2013, Abstract Meaning

Representation (AMR) [Banarescu et al., 2013] emerged as a novel ambitious formalism

aiming at being fully comprehensive, thus subsuming multiple traditional Natural Language

Processing (NLP) tasks: Word Sense Disambiguation (WSD) [Bevilacqua et al., 2021b],

Named Entity Recognition (NER) [Yadav and Bethard, 2018], Entity Linking (EL) [Ling

et al., 2015], Coreference Resolution (CR) [Kobayashi and Ng, 2020], and finally, Semantic

Role Labeling (SRL) [Màrquez et al., 2008] which in turn, is often entitled as shallow

Semantic Parsing.

1.2 Meaning Representations

While SRL is not considered a representation, rather than a sequence tagging task that infers

the predicate-argument structure of the sentence, the overlap of the latter with the popular

AMR formalism makes it interesting for our study. SRL is commonly referred to as the

task of automatically addressing the question “who did what, to whom, where, when, and

how?” [Gildea and Jurafsky, 2002; Màrquez et al., 2008]. It is traditionally framed as either

a dependency-based [Surdeanu et al., 2008a; Hajič et al., 2009] or a span-based [Carreras

and Màrquez, 2005; Pradhan et al., 2012] sequence labeling task. Both dependency- and

span-based SRL tasks consist in four conceptual components: i) predicate identification,

ii) predicate disambiguation, iii) argument identification, and iv) argument classification/la-

beling. Their difference, instead, resides in the annotation used to represent the arguments,

given a predicate in a sentence. The span-based SRL requires the identification and clas-

sification of the entire textual span of an argument. In contrast, dependency-based SRL is

concerned about labeling only the head of the argument. However, the primary goal of the

task is to determine the semantic relationship between a predicate and its arguments, while

drawing these connections from a fixed set of arguments for the specific predicate, e.g., the

PropBank [Palmer et al., 2005] inventory. In Figures 1.1 and 1.2 we show the respective

dependency and span-based SRL annotations for the fans desire Dua Lipa to meet them. As
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the    fans        desire      Dua     Lipa     to     meet      them

ARG0 ARG1

ARG0 desire.01 ARG1

meet.03

DEPENDENCY-BASED SRL

Figure 1.1. Dependency-based SRL annotations for the sentence the fans desire Dua Lipa to meet
them.

one can see, both formulations share the same predicates, with equal senses and argument

labels drawn from PropBank, with the only difference being the boundaries of the textual

span for each argument. Even though researchers tend to agree that the two formalisms

pose different challenges and capture complementary aspects of the overall task [Zhou et al.,

2020a], there exist yet some aspects of meaning not covered in the example above by both

SRL formulations, such as:

i) defining any relationship between various predicate-argument structures occurring in

the same sentence;

ii) recognizing Dua Lipa as a named entity;

iii) linking Dua Lipa to the corresponding concept in an external knowledge base of

entities; and finally,

iv) identifying the relationship between the fans and them in the phrase.

Furthermore, consider the following sentence:

the fans’ desire is for Dua Lipa to meet them (1.2)

While the meaning of this phrase is equivalent to that of the text in 1.1, the SRL annotations

change substantially, despite the simple syntactic variation we applied, as shown in Figure

1.3. More specifically, the two variations differ in the i) set of predicates, i.e., {be.01,

meet.03} 6⊂ {desire.01, meet.03}, ii) argument spans for the divergent predicates, and

iii) argument labels of the unalike predicates. As a matter of fact, provided the equivalent

meaning of the text in 1.1 and 1.2, it might be desirable to associate them to similar machine-
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the    fans      desire      Dua     Lipa     to     meet      them

desire.01ARG0 ARG1

meet.03ARG0 ARG1

SPAN-BASED SRL

Figure 1.2. Span-based SRL annotations for the sentence the fans desire Dua Lipa to meet them.

the    fans    desire        is     for     Dua     Lipa     to     meet      them

be.01ARG1 ARG2

meet.03ARG0 ARG1

SPAN-BASED SRL

Figure 1.3. Span-based SRL annotations for the sentence the fans desire is for Dua Lipa to meet
them.

readable structures. To this end, AMR handles all the aforelisted weaknesses of SRL,

providing a complete representation of meaning.

AMR is a popular formalism for natural language that represents sentences as rooted,

directed, and acyclic graphs, in which nodes are concepts and edges are semantic relations

among them. AMR unifies, in a single structure, a rich set of information coming from

different NLP tasks. Similarly to SRL, AMR draws its predicate-argument relations from the

PropBank inventory. On the one hand, predicate-argument inventory is the main overlapping

point of the two formalisms. On the other hand, differently from SRL, AMR is detached

from the tokens in a text, thus abstracting away from syntactic variations. Indeed, this

enables the association of equivalent sentences with the same semantic structure. In Figure

1.41 we show the AMR graph representing both variations of the example, i.e., the fans

desire Dua Lipa to meet them and the fans’ desire is for Dua Lipa to meet them.2 This

is in contrast with the SRL annotations in Figures 1.2 and 1.3, which show two different

annotations for equivalent sentences. In addition to the meaning aspects captured by SRL,

AMR also performs named entity recognition and entity linking, e.g., Dua Lipa is identified

as a PERSON and is linked to the corresponding Wikipedia page.3 Moreover, the node fan
1We use the style of SPRING demo to visualize the graphs: http://nlp.uniroma1.it/spring/
2the fans want to meet Dua Lipa is yet another simplified variation of the same sentence parsed with the

same AMR graph.
3https://en.wikipedia.org/wiki/Dua_Lipa

http://nlp.uniroma1.it/spring/
https://en.wikipedia.org/wiki/Dua_Lipa
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Figure 1.4. The AMR graph for the sentences the fans desire Dua Lipa to meet them and the fans
desire is for Dua Lipa to meet them.

in Figure 1.4, plays a role in both predicates desire.01 and meet.03, being the Agent and

Co-Agent4, respectively. The two incoming edges to the node fan, capture the coreference

aspect, which is missing in the SRL annotations. Finally, AMR explicitly defines the

relationship between multiple predicates in the sentence, e.g., the subgraph focused on

meet.03 plays the thing wanted role for the predicate desire.01.

In the last decade, both SRL and AMR have gained increasing attention in NLU research

as two formalisms that capture aspects of meaning — overlapping, but yet at different

levels — that could be beneficial for the ultimate goal of machine understanding. Numerous

studies have found SRL to be beneficial in a wide range of downstream applications, not

only in Natural Language Processing but also in Computer Vision, including: Question
4These human-readable labels are obtained from the VerbNet [Schuler, 2006] mappings available in Prop-

Bank.
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Answering [Shen and Lapata, 2007], Machine Translation [Marcheggiani et al., 2018a],

Visual Semantic Role Labeling [Gupta and Malik, 2015] and Situation Recognition [Yatskar

et al., 2016]. Similarly, AMR’s flexibility has resulted in promising improvements in

Machine Translation [Song et al., 2019c], Text Summarization [Hardy and Vlachos, 2018;

Liao et al., 2018], Human-Robot Interaction [Bonial et al., 2020a], Information Extraction

[Rao et al., 2017] and, more recently, Question Answering [Lim et al., 2020; Bonial et al.,

2020b; Kapanipathi et al., 2021]. However, since the meaning structures are automatically

obtained using existing models, achieving human parity in SRL and AMR is regarded as

a fundamental step towards NLU [Navigli, 2018] which can allow improvements of all

abovelisted applications, inter alia.

1.3 Thesis Statement and Objectives

Thesis Statement. The overall goal of this dissertation is to develop computational ap-

proaches to structured predictions, viewing their learning from a different perspective than

the majority of previous works, i.e., learning sequences rather than graph-like predictions.

In particular, this thesis studies machine learning models to perform Semantic Role Label-

ing, AMR parsing — the task of converting a sentence into an AMR graph — and AMR

generation — the specular task to AMR parsing. We focus on developing general-purpose

and simple architectures that make minimal assumptions on the structure of the data and rely

on transfer learning for performance enhancement across data domains and distributions.

In addition, we propose the usage of different transfer learning techniques to pave the way

towards better-performing AMR cross-lingual parsers for non-English sentences.

In what follows, we briefly overview the gaps in the literature, which we aim at overcoming

and enumerate the objectives of this thesis.

1.3.1 Learning SRL and AMR as Sequences

Sequence-to-Sequence (seq-to-seq) learning was introduced as a general approach to se-

quence learning that makes minimal assumptions on the sequence structure [Sutskever et al.,

2014]. While it was initially conceived for Machine Translation [Bahdanau et al., 2015],
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seq-to-seq learning rapidly found success in a variety of NLP tasks from Question Answer-

ing [Yin et al., 2016] to Dialogue [Song et al., 2019a], Text Generation [Lewis et al., 2020;

Raffel et al., 2020]. While past and present studies have accomplished impressive results, the

vast majority of the state-of-the-art models, proposed year after year, have framed SRL as a

sequence labeling [Cai et al., 2018; Li et al., 2019; Conia and Navigli, 2020]. Indeed, only a

tiny handful of studies have put forward SRL systems based on seq-to-seq learning, which

fall behind traditional sequence labeling approaches in terms of performance [Daza and

Frank, 2018]. Moreover, others can address only a portion of the SRL pipeline [Daza and

Frank, 2019], making them an unappealing option for downstream applications. A similar

trend has been observed in AMR research where predominant approaches to AMR parsing,

i.e., the task of converting a sentence into an AMR graph, feature complex pipelines, in

which the output of several different components is integrated [Zhang et al., 2019a,b; Cai and

Lam, 2020a]. The AMR parsing performance of simpler, full seq-to-seq methods [Konstas

et al., 2017; van Noord and Bos, 2017], has long lagged behind, mainly because they are less

data-efficient than their alternatives. For learning SRL and AMR structures as sequences,

we set the following objectives:

Objective 1. Devising ways to formulate and represent predicate-argument relations of

SRL and AMR graphs as sequences, to enable seq-to-seq approaches generate

graph-like sense and role annotations and AMR graphs, respectively, analyzing

their positives and negatives.

Objective 2. Developing simple, versatile solutions to SRL which can achieve state-of-the-

art results, previously attained only by sequence labeling approaches, for both

dependency- and span-based English SRL.

Objective 3. Achieving symmetry in AMR parsing and generation, by designing a general-

purpose seq-to-seq architecture for both directions and, therefore, reduce the

complexity of AMR parsing model by disposing of the need of multi-step

pipelines.

Objective 4. Attaining satisfying performance, not only in standard benchmarks for SRL

and AMR, but also in different challenging settings which mimic out-of-

distribution scenarios, thus allowing us to judge the generalizability of our
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approaches.

1.3.2 Enabling Cross-lingual AMR Parsing

A peculiar feature of the AMR formalism is that it aims at abstracting away from word forms.

AMR graphs are unanchored, i.e., the linkage between tokens in a sentence and nodes in the

corresponding graph is not explicitly annotated [Banarescu et al., 2013]. Hence, the feature of

being agnostic about how to derive meanings from strings makes AMR particularly suitable

for representing semantics cross-lingually. However, since AMR was initially designed for

encoding the meaning of English sentences, the available resources and modeling techniques

focus mainly on English while leaving cross-lingual AMR understudied [Damonte and

Cohen, 2018]. For enabling cross-lingual AMR parsing, we set the following objectives:

Objective 5. Exploring different transfer learning techniques to enable learning AMR

structures for non-English sentences despite the scarcity of cross-lingual

training data.

Objective 6. Analyzing whether it is possible to transfer semantic structure information

across different languages and whether or not AMR can be used to represent

the meaning of sentences cross-lingually.

1.4 Thesis Contributions

In summary, the broad contributions of the dissertation to each objective are:

1. GSRL [Blloshmi et al., 2021b]: we present Generating Senses and RoLes (GSRL),

the first end-to-end seq-to-seq model for Semantic Role Labeling. GSRL produces

sequences of graph-like predicate-argument representations and attains state-of-the-art

performance, which was previously achieved by sequence labeling approaches only.

This work achieves Objective 2 and partly Objectives 1 and 4 and is elaborated in

Chapter 3.

2. SPRING [Bevilacqua et al., 2021a; Blloshmi et al., 2021a]: we present Symmetric

PaRsIng aNd Generation (SPRING), an end-to-end model for both AMR parsing and

generation that relies on efficient graph linearization techniques and the expressive
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power of a pretrained encoder-decoder to achieve unprecedented performance in both

tasks [Bevilacqua et al., 2021a]. Then, we make SPRING available to the wide NLP

community, but not only, through a highly interactive Web interface and RESTful

APIs [Blloshmi et al., 2021a], thus paving the way to the integration of high-quality

AMR structures in downstream tasks. These works accomplish Objective 3 and partly

Objectives 1 and 4 and are detailed in Chapter 4.

3. XL-AMR [Blloshmi et al., 2020]: we present XL-AMR, a cross-lingual AMR parser

that advances the state-of-the-art by a large margin, relying on transfer learning

techniques to fill the gap of in-existent non-English training data and a seq-to-seq

encoder to dispose of noisy word-to-node aligners. This work covers Objectives 5

and 6 and is explained in details in Chapter 5.

1.5 Publications and Personal Contributions

This dissertation is the result of a three-year research effort conducted mainly in the field

of Semantic Parsing and partly in semantically-enhanced Information Retrieval. In what

follows, we list the publications produced during these years chronologically, indicating

those featured in this thesis. Each entry shows thorough referencing details, along with a

brief description of individual contributions to each distinct work.

Included in this thesis:

1. Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli. XL-AMR: Enabling cross-

lingual AMR parsing with transfer learning techniques. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP 2020),

pages 2487–2500, November 2020.

Personal Contributions: I have been the principal author and writer. I came up with

the main idea, wrote the code, created several silver datasets included in the work,

and planned and carried out the quantitative and qualitative experiments.

2. Michele Bevilacqua, Rexhina Blloshmi, and Roberto Navigli. One SPRING to Rule

Them Both: Symmetric AMR Semantic Parsing and Generation without a Complex

Pipeline. In Proceedings of the 35th AAAI conference on Artificial Intelligence



1.5 Publications and Personal Contributions 10

(AAAI 2021), pages 12564-12573, February 2021.

Personal Contributions: I got into the project after the first author had started it, but

my role was crucial for developing the work, and we achieved this publication as a

partnership with the first author. I provided insights on the literature and state of the

art, suggested and carried out the experiments (what to include, which dataset, etc.),

as I was more knowledgeable in Semantic Parsing. I was fully involved in designing

novel linearization techniques proposed, and exclusively in charge of the code for

the quantitative and qualitative experiments regarding the usage of recategorization

techniques. I was the primary writer for the Introduction, Related Work, and Analysis

Sections, and contributed equally to Methodology and Experiments.

3. Rexhina Blloshmi, Simone Conia, Rocco Tripodi, Roberto Navigli. Generating

Senses and RoLes: An End-to-End Model for Dependency- and Span-based Semantic

Role Labeling. In Proceedings of the 30th International Joint Conference on Artificial

Intelligence (IJCAI 2021), pages 3786-3793, August 2021.

Personal Contributions: I have been the main author and writer (except for Introduc-

tion and Related Work). I came up with the main idea, wrote the code, and also

planned and carried out the main experiments and, in part, the analytical experiments

of the paper.

4. Rexhina Blloshmi, Michele Bevilacqua, Edoardo Fabiano, Valentina Caruso, and

Roberto Navigli. SPRING goes Online: End-to-End AMR Parsing and Generation.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2021): System Demonstrations, pages 134–142, November

2021.

Personal Contributions: I have been the main author and wrote the entire paper. The

idea was developed in partnership with the second author (extension of our previous

work). I did not contribute to the Web development, but I was actively suggesting

the functionalities to include. Additionally, I carried out the main experiments of the

paper.
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Not included in this thesis:

5. Rexhina Blloshmi, Tommaso Pasini, Niccolò Campolungo, Somnath Banarjee,

Roberto Navigli and Gabriella Pasi. IR like a SIR: Sense-enhanced Information

Retrieval for Multiple Languages. In Proceedings of the 2021 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP 2021), pages 1030–1041,

November 2021.

Personal Contributions: I have been the main author and writer of the paper. I pro-

vided insights on the literature and state-of-the-art, suggested and carried out the

experiments (what to include, which dataset, etc.) and the qualitative analysis.

6. Roberto Navigli, Rexhina Blloshmi, Abelardo Carlos Martìnez Lorenzo. BMR:

A Fully Semantic Meaning Representation to Overcome Language Barriers. In

Proceedings of the 36th AAAI conference on Artificial Intelligence (AAAI 2022):

Senior Member Track, February 2022.

Personal Contributions: While this is a Senior Member Track paper, the reason for

my inclusion as a non-senior author is that the idea was developed jointly by the three

authors and I also contributed in the writing of the paper.

7. Sveva Pepe, Edoardo Barba, Rexhina Blloshmi, Roberto Navigli. STEPS: Semantic

Typing of Event Processes with a Sequence-to-Sequence Approach. In Proceedings of

the 36th AAAI conference on Artificial Intelligence (AAAI 2022), February 2022.

Personal Contributions: I co-supervised Sveva Pepe who developed this work for

her master thesis. I contributed on the idea, experimental setup and wrote multiple

sections of the paper.



∼ This page was intentionally left blank ∼



12

Chapter 2

Background and Related Work

2.1 Overview

In this Chapter, we mainly overview the two sentence-level representations we address

in this dissertation, Semantic Role Labeling (SRL) and Abstract Meaning Representation

(AMR), and research conducted about these formalisms in literature. In the center of both

SRL and AMR lies the predicate-argument structure of a sentence and the question of “who

did what, to whom, where, when, and how?”, crucial to enable text understanding. In

addition, these formalisms make use of a common lexical resource of predicates, namely

the Proposition Bank [Palmer et al., 2005, PropBank]. Nonetheless, while SRL addresses

the shallow semantics of identifying the participants on an event, AMR also encompasses

named entities, co-reference, negation, and modality.

In what follows, we briefly outline the existing semantic representations in the literature

(Section 2.2) and then focus on SRL and AMR, describing the lexical resources used by

both formalisms (Section 2.3), and then detailing the characteristics of SRL (Section 2.4)

and AMR (Section 2.5) alongside the main approaches tackling them.

2.2 Broad-coverage Semantic Parsing

Semantic Parsing is defined as “the task of mapping natural language sentences into complete

formal meaning representations which a computer can execute for some domain-specific

application” [Kate and Wong, 2010]. Meaning representations are often based on an
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underlying formalism or grammar, on which machines can act. These formalisms can

take the form of first-order logic and lambda calculus [Artzi et al., 2014], programming

languages such as Python, SQL – also known as executable semantic parsing – and graph-

based formalisms, namely broad-coverage semantic parsing. The latter has been judged

as advantageous when compared to other formalisms, as they: i) are accessible for a

human to read and interpret, and ii) are widely studied in the literature such that rich

graph algorithms can be used for learning [Kamath and Das, 2019]. Furthermore, graph

formalisms aim at encoding text in an abstract form that captures aspects of meaning

that can be reusable in various scenarios, thus being domain independent. Examples

of graph-based representations include Elementary Dependency Structures [Oepen and

Lønning, 2006, EDS], Prague Tectogrammatical Graphs [Hajič et al., 2012, PTG], Universal

Conceptual Cognitive Annotation [Abend and Rappoport, 2013, UCCA], Abstract Meaning

Representation [Banarescu et al., 2013], Universal Decompositional Semantics [White et al.,

2016, UDS], inter alia.

Most of these formalisms have been initially developed for representing English sentences

only. Recently, various attempts have been made towards formally representing non-English

texts as well. In this line of research, Abend and Rappoport [2013] proposed UCCA as

a cross-lingual annotation that connects words in a sentence using semantic relations that

are not language-specific. PTG [Hajič et al., 2012] is another formalism that enriches

syntactic structures with the core predicate-argument relations of a sentence. Similar

to AMR, PTG relies upon PropBank-like predicate inventories to represent non-English

sentences. More recently, Abzianidze et al. [2017, PMB] propose a parallel meaning bank

based on the Discourse Representation Theory, i.e., a formal logic meaning representation

which includes syntactic and semantic annotations of sentences. PMB obtains non-English

sentence representation by automatically projecting through English using one-to-one word

alignments. In this thesis, we focus on the AMR formalism, focusing both in English and its

cross-lingual applicability. We detail AMR later in this Chapter (Section 2.5).
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2.3 The Proposition Bank

The Proposition Bank, commonly referred to as PropBank, is a large project that aims

enabling the development of better language understanding systems [Palmer et al., 2005]. It

provides an additional layer of predicate-argument information, or semantic role labels, to the

syntactic structures of the Penn Treebank [Marcus et al., 1993]. As such, Propbank provides

with a large inventory of English verbs associated with distinct senses, namely predicates,

and a set of underlying semantic roles for each verb. In particular, it comprises of 10,687

framesets1, with 6 different core role labels and 19 modifier roles. Due to the difficulty of

defining a cross-frame set of thematic roles, PropBank annotates each verb sense with a

specific set of enumerative roles such as {ARG0, ARG1, ARG2}, which are semantically

defined within its frameset, and are mapped to human-readable labels from VerbNet [Schuler,

2006], e.g., {AGENT, PATIENT, THEME, EXPERIENCER}. Nevertheless, an important

goal is to provide consistent argument labels across different syntactic realizations of the

same verb. For instance, in both sentences below the hearer (ARG2) and the utterance (ARG1)

for the predicate tell are assigned the same argument roles independent of the syntactical

alterations, i.e., in the first sentence there exists a subject that acts upon the verb (speaker

ARG0), while in the second sentence we have a passive voice.

[ARG0The doctor] told [ARG2the patient] [ARG1to take the medicine]

[ARG2 The patient] was told [ARG1to take the medicine]

Below we display an excerpt of the PropBank framesets for the first sense 2 of the verbs take

and tell:

take.01: take, acquire, come to have, choose, bring with you from somewhere, internalize

ARG0: taker (AGENT)

ARG1: thing taken (THEME)

ARG2: taken FROM, SOURCE of thing taken (SOURCE)

ARG3: destination (DESTINATION)

Example: [ARG0She] took [ARG1the law] [ARG3into her own hands]
1A frameset corresponds to a verb sense which has a specific set of semantic arguments as per PropBank

annotation guidelines (https://verbs.colorado.edu/~mpalmer/projects/ace/PBguidelines.pdf).
2Both predicate.xx (in SRL) and predicate-xx (in AMR) are used as equivalent notations to indicate the

sense number of the predicate.

https://verbs.colorado.edu/~mpalmer/projects/ace/PBguidelines.pdf
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tell.01: pass along information

ARG0: speaker (AGENT)

ARG1: utterance (TOPIC)

ARG2: hearer (RECIPIENT)

Example: [ARG0The scores] tell [ARG2you] [ARG1what the characters are thinking and

feeling].

In these examples we only noticed numbered roles, which are part of the core argument

roles set {ARG0, ARG1, ARG2, ARG3, ARG4, ARG5}. In addition to that, PropBank has

a number of non-numbered arguments such as {ARG-TMP,ARG-LOC, ARG-DIR, ARG-MNR,

ARG-CAU}, which represent verb modifiers addressing the questions “when, where, where

to/from, how, why".

Similarly to PropBank, several inventories have been developed for languages other than

English, such as Chinese [Xue and Palmer, 2003], Arabic [Palmer et al., 2008], Spanish

and Catalan [Taulé et al., 2008], Hindi-Urdu [Bhatt et al., 2009], Basque [Aldezabal et al.,

2010], Brazilian Portuguese [Duran and Aluísio, 2011], Finnish [Haverinen et al., 2015],

and Turkish [Şahin and Adalı, 2018]. However, these inventories are language specific,

differ in the set of roles used and are not linked among them. Moreover, this implies that a

considerable amount of work will be needed for the creation of a corresponding resource for

each new language of interest.

Nonetheless, the release of the PropBank corpus sparked a notable interest in SRL among

researchers. Likewise, PropBank have been extensively used within the AMR formalism,

which adapts and extends PropBank frames for abstracting away from syntactic idiosyn-

crasies.3

2.4 Semantic Role Labeling

Semantic Role Labeling is the sentence-level semantic analysis of text concerned with

understanding the relations among an event, represented by a predicate, and its participants

and properties in a sentence. Indeed, the predicate – usually a verb constituent – determines

“what" happened and the other constituents express the “who”, “whom,” “where,” “when,”
3We will see later in this Chapter that AMR makes use of verbal frames to represent not only the verbs in a

sentence but also other parts of speech, e.g., nouns, adjectives, whenever possible.
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and “how” phenomena relevant to a certain predicate. These relations are drawn from a

predefined inventory of verbs associated with their possible semantic roles such as PropBank,

which we employ in our work.

SRL comprises of four conceptual components commonly defined as:

i) predicate identification which consists in detecting the predicates that express an

event or convey an action;

ii) predicate disambiguation which is related to assigning an appropriate sense to each

predicate drawn from a predefined inventory;

iii) argument identification which identifies the sentential constituents, called arguments,

that participate in the event or action outlined by each predicate;

iv) argument classification that chooses the most appropriate relation, called semantic

role, that governs each predicate-argument pair.

SRL is traditionally framed as either a dependency-based [Surdeanu et al., 2008a; Hajič

et al., 2009] or a span-based [Carreras and Màrquez, 2005; Pradhan et al., 2012] labeling

task. Given a predicate in a sentence, the difference between the two settings is in the

formalism used to represent its arguments, where dependency-based SRL is concerned about

identifying and classifying only the syntactic head of an argument, while span-based SRL

identifies and classifies the whole textual span related to the argument.

Even if, to date, it is not clear whether one is better than the other [Li et al., 2019], researchers

tend to agree that these two formalisms pose different challenges and capture complementary

aspects of the overall task [Zhou et al., 2020a]. The first verb inventory used for SRL is

FrameNet [Baker et al., 1998], which in turn, is based on frame semantics. In addition,

there exist several SRL shared tasks which mainly derive their data from PropBank, such as

CoNLL-2004 [Carreras and Màrquez, 2004], CoNLL-2005 [Carreras and Màrquez, 2005],

and CoNLL-2012 [Pradhan et al., 2012] for span-based SRL, and CoNLL-2008 [Surdeanu

et al., 2008b] and CoNLL-2009 [Hajič et al., 2009] for dependency-based SRL. The exis-

tence of these benchmarks allows advancements in approaches concerning both formulations.

In this thesis we focus on the most recent benchmarks for dependency- and span-based SRL,

CoNLL-2009 and CoNLL-2012, respectively, based on the PropBank verb inventory.
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The      doctor      told      the     patient     to     take      the     medicine     .

tell.01ARG0 ARG2 ARG1

take.01ARG0 ARG1

ARG0 ARG1

ARG0 tell.01 ARG2 ARG1

take.01

SPAN-BASED SRL

DEPENDENCY-BASED SRL

Figure 2.1. Example of a sentence with two predicates: dependency-based SRL (upper part) and
span-based SRL (lower part).

In Figure 2.1 we illustrate an example annotated according to each formalism; span-based

SRL which requires the identification and classification of the entire textual span of an

argument, and dependency-based SRL which, instead, is concerned about labeling only

the head of the argument. This sentence features two predicates, told and take, which are

annotated with their senses according to the context, tell.01 and take.01 (their frames

are displayed earlier in Section 2.3). If we consider the take.01 predicate, patient is the

taker, labeled as ARG0 and medicine is the thing taken labeled as ARG1. According to its

frameset (see Section 2.3), take.01 might assume other semantic roles as well, such as

source and destination. However, not all the roles defined within the frame are required to

appear in a sentence. On the contrary, a predicate cannot assume any role that is not included

in the Propbank frameset for the predicate. Each predicate-argument structure takes the

form of a graph, with nodes being the predicate and the constituents of the sentence playing

a role in this event, while the edges are semantic roles between them. This graph-like

representation is in itself not necessary in SRL, which is often regarded as a sequence

tagging task, but it is, in fact, beneficial in downstream application. Moreover, the same

predicate-argument graph-like structure is employed for AMR, which is a graph-based

formalism in itself.

2.4.1 Approaches to SRL

The earliest feature-based algorithms for SRL begin by parsing the input sentence to a parse

tree using a broad-coverage parser. Then, using several tree traversals, first the predicates
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are identified, then the nodes which might have a role for each predicate, and finally, through

a supervised algorithm, these nodes are labeled with semantic role labels. Therefore, to

simplify the task complexity, it was common to break it down into multiple steps rather

than a single-stage classifier. However, these classifiers used to follow the simplifying

assumption, such as predicates and their arguments can be labeled independently. Indeed,

this is a false assumption as the label assignment for the arguments is global and their

interactions matter according to the PropBank guidelines, e.g., a predicate cannot assume

more than one argument of a specific role. Over the years, researchers made a great many

steps forward in the design of better SRL models, moving from manually-engineered feature

templates to multilayered neural networks [Cai et al., 2018; Marcheggiani and Titov, 2020],

and from static to dynamically-contextualized word representations [He et al., 2019; Conia

and Navigli, 2020], from English to other languages [Conia and Navigli, 2020; Conia et al.,

2021]. As a matter of fact, the standard neural formulation of SRL is based on the IOB

format (inside, outside, beginning) format [Ramshaw and Marcus, 1995], which is often

used for the sequence tagging tasks.

While past and present studies have accomplished impressive results, the vast majority of

the state-of-the-art models proposed year after year have framed SRL as a sequence labeling

task [Cai et al., 2018; Li et al., 2019], and only a small handful of studies have put forward

SRL systems based on seq-to-seq learning [Sutskever et al., 2014], despite the growing

success of this paradigm in other areas of NLU [Yin et al., 2016; Lewis et al., 2020; Raffel

et al., 2020].

Sequence-to-Sequence SRL. Despite the advancements in seq-to-seq learning, recent

works in SRL predominantly revolve around sequence labeling approaches [Cai and Lapata,

2019b; Xia et al., 2019; Conia and Navigli, 2020; Marcheggiani and Titov, 2020; Conia et al.,

2021], with no many attempts that formulate and tackle the task in a seq-to-seq fashion. In a

potential seq-to-seq formulation, a model is tasked to maximize the conditional probability

of a sequence comprising the predicate senses and semantic roles. Indeed, Daza and Frank

[2018] and Daza and Frank [2019] are, to the best of our knowledge, the most notable

studies on generation-based models for SRL. However, these SRL seq-to-seq models fall

behind traditional sequence labeling approaches in terms of performance [Daza and Frank,
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2018] and can address only a portion of the SRL pipeline [Daza and Frank, 2019], making

them an unappealing option for downstream applications.

End-to-End SRL. Due to its complexity, SRL is often divided into a pipeline of four

stages or subtasks handling predicate/argument identification and classification steps sep-

arately. While early work tried to develop distinct systems for each subtask, later studies

successfully demonstrated that sequence labeling models [Cai et al., 2018; Li et al., 2019]

can benefit from tackling some of these tasks jointly with multitask learning [Caruana,

1997]. However, seq-to-seq models proposed over the last few years can only solve the later

stages of the SRL pipeline – namely, argument identification and argument classification –

and, therefore, they still require an underlying system to perform at least predicate sense

disambiguation [Daza and Frank, 2018, 2019]. Indeed, the function of a semantic role is

often well-defined only with respect to a given predicate sense, especially when dealing

with PropBank-like predicate-argument structure inventories. For example, even though

there are two ARG1 role labels in Figure 2.1, they actually encode different relations: when

ARG1 is associated with the predicate sense tell.01, it refers to the utterance or topic of

the action, whereas, when it is an argument for the predicate sense take.01, it refers to the

thing taken or theme of the action. While predicate sense disambiguation is essential to SRL,

introducing structured predicate-argument relations in a seq-to-seq model is not trivial.

In summary, inspired by recent advances in seq-to-seq paradigm and innovative decoder-

side pretraining [Lewis et al., 2020], in our work [Blloshmi et al., 2021b] we show that

a seq-to-seq model is able to challenge sequence labeling systems across multiple gold

benchmarks, in standard and synthetic evaluation settings. We explore different predicate-

argument linearization schemes and introduce, to the best of our knowledge, the first

end-to-end seq-to-seq model to successfully generate both sense and role labels (Chapter 3).

2.5 Abstract Meaning Representation

Abstract Meaning Representation [Banarescu et al., 2013] is a popular formalism for rep-

resenting the semantics of natural language in a readable and hierarchical way. While it

does not have an underlying theoretical formalism, AMR follows a neo-Davidsonian event
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Figure 2.2. The AMR graph for the sentence The doctor told the patient to take the medicine.

specification [Davidson, 1969]. AMR pairs English sentences with graph-based logical

formulas which are easily accessible by both humans and machines, while abstracting away

from many syntactic variations. AMR encodes information about the predicate-argument

structure, named entities and entity linking, coreference, polarity, and modality, inter alia.

In Figure 2.2 we show the AMR parse for the sentence:

The doctor told the patient to take the medicine. (2.1)

Even though it is modeled as a graph, an AMR can be compactly represented and visualized

using the PENMAN notation [Kasper, 1989; Goodman, 2020]4, i.e., the encoding that is

used in the release files of AMR:

( z0 / t e l l −01

:ARG0 ( z1 / d o c t o r )

:ARG1 ( z2 / t ake −01

:ARG0 ( z4 / p a t i e n t )

:ARG1 ( z3 ) )

:ARG2 z4 )

4We will use PENMAN notation throughout this thesis.
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Additionally, an AMR can be represented as logical formulas composed of triples: These

triples are mostly used for programmatically comparing the AMR graphs.

Root(z0, z0) ∧

instance(z0, tell-01) ∧

instance(z1, doctor) ∧

instance(z2, take-01) ∧

instance(z3, medicine) ∧

instance(z4, patient) ∧

ARG0(z0, z1) ∧

ARG1(z0, z2) ∧

ARG2(z0, z4) ∧

ARG0(z2, z4) ∧

ARG1(z2, z3)

As one can see, AMR builds on top of the PropBank framesets, similar to SRL (refer to

same example in Section 2.4). Differently from SRL though, AMR does not explicitly

align the nodes of the graph with the word in the sentence. This “decoupling” from the

syntactic structure of a sentence, allows more freedom in handling cases of syntax-semantic

mismatches, and leads to encoding different syntactic realizations of the same meaning using

the same structure. For instance, words that do not contribute to the meaning of a sentence

are left out of the AMR annotation or are collapsed into single relations, e.g., discontinuous

constructions such as “if . . . then” can be collapsed into a single relation :condition. In

addition, each AMR concept node is labeled with a variable name. Variable names are

devoid of meaning, yet they are important especially for tracking coreference. Indeed, when

a variable appears multiple times, all occurrences denote the same concept. For example,

patient to which we assign the variable p, plays both the roles of hearer and taker for

tell-01 and take-01 predicates, respectively. Thus, the node for patient has more than

one incoming edge. This phenomenon is called reentrancy and it is an important aspect of

meaning not covered by SRL. Moreover, AMR is a hierarchical structure, with the root node

(t / tell-01) denoting the focus of the graph, which binds the contents of an AMR into

a single, traversable directed graph.

This example shows only the main predicate-argument structure as captured by an AMR.
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However, AMR includes several phenomena which make parsing challenging and that are

usually handled through rules and intrinsic heuristics in the literature. We direct the reader

to AMR guidelines5 for a detailed overview of AMR components and specifications.

2.5.1 Multilingual AMR

Even though AMR has been initially designed to represent the meaning of sentences in the

English language, and was stated not to be an interlingua [Banarescu et al., 2013], it gained

quickly the attention of researchers, and several works attempted to adjust it for applicability

across languages. The development of PropBank in other languages (see Section 2.3), allows

defining specifications of AMR in the languages it is available. The largest non-English

AMR corpus available is the Chinese AMR [Li et al., 2016, CAMR]. The authors developed

specifications and annotated the Little Prince novel with Chinese AMR graphs.6

In fact, multilingual AMR has mainly been studied within the scope of annotation analysis in

Czech and Chinese [Xue et al., 2014; Hajič et al., 2014], in Portuguese [Sobrevilla Cabezudo

and Pardo, 2019], and in Spanish [Migueles-Abraira et al., 2018]. However, these works

point out the limitations of AMR as an interlingua, and consider them partly due to the

distinctions in the underlying resources and structural divergences among languages. More

recently, Zhu et al. [2019a] and Van Gysel et al. [2021] worked at the formalism level;

the former suggest simplifying AMR so as to express only predicate roles and linguistic

relations in a sentence, in order to be able to apply it across languages. On the contrary, the

latter design UMR as an extension of AMR, which i) adds aspect and scope, ii) includes

temporal and modal dependencies at sentence- and document-level, iii) adapts AMR to a

cross-lingual formalism allowing language-specific distinctions with extra relations.

2.5.2 Cross-lingual AMR

A peculiar feature of the AMR formalism is that it aims at abstracting away from word

forms. AMR graphs are unanchored, i.e., the linkage between tokens in a sentence and

nodes in the corresponding graph is not explicitly annotated. The fact that word order and

morpho-syntactic variations account for much of the cross-linguistic variations, coupled
5https://github.com/amrisi/amr-guidelines/blob/master/amr.md
6https://www.cs.brandeis.edu/~clp/camr/camr.html

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://www.cs.brandeis.edu/~clp/camr/camr.html
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with the feature of being agnostic about how to derive meanings from strings, makes AMR

particularly suitable for representing semantics cross-lingually. Damonte and Cohen [2018]

proposed the usage of English-centric AMR graphs to represent sentences in any language,

i.e., with the meaning representation associated with their English translation. For instance,

the sentences below would be represented with the graph corresponding to the English

sentence, shown in Figure 2.2:

English: The doctor told the patient to take the medicine.

Italian: Il dottore ha detto al paziente di prendere la medicina.

Spanish: El doctor le dijo al paciente que se tomara la medicación.

Albanian: Doktori i tha pacientit që të marri mjekimin.

2.5.3 Approaches to AMR

In this Section, we briefly overview the start-of-the-art in AMR parsing, AMR generation,

and cross-lingual AMR parsing.

English AMR parsing. State-of-the-art results in AMR parsing have been previously

attained by approaches that use more complex and multi-modular architectures. These

combine seq-to-seq methods with graph-based algorithms in either two-stage [Zhang et al.,

2019a] or incremental one-stage [Zhang et al., 2019b; Cai and Lam, 2020a] procedures.

Moreover, they integrate similar processing pipelines and additional features including

fine-grained graph recategorization [Zhang et al., 2019a,b; Zhou et al., 2020b; Cai and

Lam, 2020a], which all contribute significantly to the performances achieved. On the other

hand, simple seq-to-seq approaches model AMR parsing as a transduction of the sentence

into a linearization of the AMR graph. Due to their end-to-end nature, such approaches

are appealing for this task. However, since seq-to-seq-based approaches are data-hungry,

their performances for AMR parsing have, until recently, been rather unsatisfactory, due to

the relatively small amount of annotated sentence-AMR pairs. To overcome data sparsity,

various different techniques have been employed by early seq-to-seq approaches: self-

training using unlabeled English text [Konstas et al., 2017], character-level networks [van

Noord and Bos, 2017], and concept recategorization as a preprocessing step to reduce the

open vocabulary components, e.g., named entities and dates [Peng et al., 2017; van Noord
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and Bos, 2017; Konstas et al., 2017]. Moreover, seq-to-seq-based models often incorporate

features such as lemma, POS, or NER tags, as well as syntactic and semantic structures [Ge

et al., 2019].

In our work [Bevilacqua et al., 2021a; Blloshmi et al., 2021a], we wear off the complexities

of the English AMR parsing relying almost exclusively on seq-to-seq, disposing of the

need for extra features, and employing a lightweight postprocessing pipeline, only for

ensuring graph validity. Nonetheless, we significantly outperform previous state-of-the-art

approaches that, we recall, feature complexities in architecture and pre- and postprocessing

pipelines. Additionally, we show that the extensive recategorization techniques, while

boosting performance on the traditional in-domain benchmarks, are harmful in the Out-of-

Distribution (OOD) setting. Moreover, while other approaches have employed pretrained

encoders, such as BERT [Devlin et al., 2019], in order to have powerful features for a

parsing architecture [Zhang et al., 2019a,b; Cai and Lam, 2020a], we are the first to show

that pretrained decoders, too, are beneficial for AMR parsing, even though the pretraining

only involves English, and does not include formal representations (Chapter 4).

English AMR generation. AMR generation has been performed with two main ap-

proaches: explicitly encoding the graph structure in a graph-to-text transduction fashion

through graph neural network models [Song et al., 2018; Beck et al., 2018; Damonte and Co-

hen, 2019; Zhu et al., 2019b; Cai and Lam, 2020b; Yao et al., 2020], or as a purely seq-to-seq

task through AMR graph linearization [Konstas et al., 2017; Mager et al., 2020]. Recent

graph-based approaches rely on Transformers to encode AMR graphs [Zhu et al., 2019b;

Cai and Lam, 2020b; Wang et al., 2020; Song et al., 2020; Yao et al., 2020]. The model of

Mager et al. [2020] is a pretrained Transformer-based decoder-only model fine-tuned on a

sequential representation of the AMR graph.

In our work [Bevilacqua et al., 2021a; Blloshmi et al., 2021a], we use an encoder-decoder

architecture, which is more suitable for handling conditional generation and casts AMR

generation as symmetric to AMR parsing, therefore disposing of the need for a task-specific

model (Chapter 4).

Cross-lingual AMR parsing. Cross-lingual AMR parsing, instead, has received rela-

tively less attention. This is largely attributable to the lack of training data and evaluation
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benchmarks in languages other than English. Damonte and Cohen [2018] propose the first

cross-lingual AMR parser and, more recently, they released their proposed cross-lingual

AMR evaluation benchmark [Damonte and Cohen, 2020]. The authors adapt a transition-

based English AMR parser [Damonte et al., 2017] for cross-lingual AMR parsing, which is

trained on silver annotated data. However, the performances it has achieved are not satisfying

in terms of Smatch score [Cai and Knight, 2013], mostly as a result of concept identification

errors, which in turn are directly related to the usage of noisy word-to-node alignments

projected from English. Throughout the literature English AMR parsers commonly rely on

AMR alignments which are automatically created using heuristics [Flanigan et al., 2014], or

on pretrained aligners [Pourdamghani et al., 2014; Liu et al., 2018], treated as latent variables

of the model [Lyu and Titov, 2018], or implicitly modeled through source-copy mechanisms

[Zhang et al., 2019a]. These alignments, however, take advantage of the fact that AMR

nodes and English words are highly related.7 This dependency is therefore not suitable for

cross-lingual parsing since similarity between words in the sentences and concepts in the

graph does not hold at large.

In our work [Blloshmi et al., 2020], we propose a cross-lingual parser that disposes of

explicit and implicit AMR alignments using a seq-to-seq model for concept identification

and achieves significantly higher performance on all the tested languages (Chapter 5).

After its publication, XL-AMR has been followed by a relatively large number of works with

significant improvements in cross-lingual AMR parsing. Briefly, these advancements include

joint training of machine translation and semantic parsing tasks for zero-shot cross-lingual

AMR parsing [Procopio et al., 2021], leveraging robust contextualized word embeddings to

improve the foreign-text-to-English-AMR alignments [Sheth et al., 2021], using bilingual

input (paired with English) [Cai et al., 2021b], learning a multilingual AMR parser by using

an existing English parser as its teacher [Cai et al., 2021a], or leveraging translation models

to first translate into English and then parse into AMR [Uhrig et al., 2021].
7In AMR 2.0 roughly 60% of the nodes are English words. In addition, PropBank predicates are often

similar to English words, e.g., one can heuristically align publish-01 to publish.
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2.6 Semantically-enhanced Applications

Although established understanding has it that semantic structures ought to improve text

understanding for NLP tasks such as question answering and machine translation, the early

work done towards deeming semantics beneficial for downstream applications has been

inconclusive or complementary. There were at least two good reasons for this outcome;

First, until a few years ago, the performance of semantic parsers has been unsatisfactory,

especially when applicable to out-of-domain data. Second, different applications require

common-sense information, which is not necessarily comprised within the parsed semantic

structures.

More recently, instead, due to the advancements in both SRL and AMR research, numerous

efforts have found them to be beneficial in a wide range of downstream applications. Indeed,

SRL has been proven beneficial not only in Natural Language Processing but also in

Computer Vision, including: Question Answering [Shen and Lapata, 2007], Visual Semantic

Role Labeling [Gupta and Malik, 2015], Situation Recognition [Yatskar et al., 2016], and

Machine Translation [Marcheggiani et al., 2018b]. The latter incorporates information

about the predicate-argument structure of a sentence into a neural machine translation using

Graph Convolutional Neural networks, similar to previous work, which instead includes

syntactic information [Bastings et al., 2017]. Indeed, their results show that semantics is

more beneficial than syntax for neural machine translation.

Furthermore, since AMR includes within its formalism the predicate-argument structure

captured by SRL, it features an even more comprehensive range of applications. Indeed,

AMR’s flexibility has resulted in promising improvements in Machine Translation [Song

et al., 2019c], Text Summarization [Hardy and Vlachos, 2018; Liao et al., 2018], Paraphrase

Detection [Issa et al., 2018], Entity Linking [Pan et al., 2015], Human-Robot Interaction [Bo-

nial et al., 2020a], Information Extraction [Rao et al., 2017], and more recently, Question

Answering [Bonial et al., 2020b; Lim et al., 2020; Kapanipathi et al., 2021]. Lim et al. [2020]

present an interesting combination of AMR and ConceptNet [Speer et al., 2017a], an external

commonsense knowledge graph, to form the so-called AMR-ConceptNet-Pruned (ACP)

graph. This new semantically-rich graph is then exploited to interpret and predict the correct

answer for the CommonsenseQA task [Talmor et al., 2019], achieving higher performance

than baselines that do not use symbolic meaning representations. Similarly, Kapanipathi et al.
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[2021] convert an AMR to logical knowledge graph triples and enrich it with explicit links

to entities in the knowledge graph. Then, they perform knowledge-based question answering

and achieve state-of-the-art performances in multiple benchmarks. The authors argue that

the usage of symbolic meaning representations is beneficial as the task of understanding

natural language questions is delegated to AMR parsers. In addition, the abilities of AMR

to deal with syntactic idiosyncrasies and to handle complex sentence structures, such as

multi-hop questions or imperative statements, make the question-answering system more

robust to changes in the input questions. Nevertheless, Kapanipathi et al. [2021] discuss a

set of challenges coming with the integration of AMR parsers in downstream applications,

mainly related to the performance of the existing parser across different domains.

While these findings make us optimistic about getting closer to machine understand-

ing through conceptual representations, they stress the importance of designing higher-

performing Semantic Parsing approaches across domains and languages. With this in mind,

we propose a more challenging evaluation setting for AMR parsing and generation for a

more realistic assessment of the generalizability of future approaches (Chapter 4).
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Chapter 3

End-to-End SRL as Sequence

Generation
Abstract

Despite the recent great success of the seq-to-seq paradigm in Natural Language Processing,
the majority of current studies in Semantic Role Labeling (SRL) still frame the problem as a
sequence labeling task. In this Chapter we go against the flow and propose GSRL (Generating
Senses and RoLes), the first seq-to-seq model for end-to-end SRL. Our approach benefits from
recently-proposed decoder-side pretraining techniques to generate both sense and role labels for
all the predicates in an input sentence at once, in an end-to-end fashion. Evaluated on standard
gold benchmarks, GSRL achieves state-of-the-art results in both dependency- and span-based
English SRL, proving empirically that our simple generation-based model can learn to produce
complex predicate-argument structures. Finally, we propose a framework for evaluating the
robustness of an SRL model in a variety of synthetic low-resource scenarios which can aid
human annotators in the creation of better, more diverse, and more challenging gold datasets.
We release GSRL at https://github.com/SapienzaNLP/gsrl.

Source: This Chapter is based on our IJCAI 2021 paper [Blloshmi et al., 2021b]:
Generating Senses and RoLes: An End-to-End Model for Dependency- and Span-based Seman-
tic Roles Labeling.

3.1 Overview

Semantic Role Labeling (SRL) approaches revolved predominantly around sequence la-

beling paradigm, with only a small handful of attempts at tackling the task in a seq-to-seq

fashion. While sequence labeling approaches represented more complex and task-specific ar-

chitectures with respect to general-purpose seq-to-seq architectures, the existing seq-to-seq

approaches to SRL did not handle the predicate disambiguation step, thus not being end-to-

https://github.com/SapienzaNLP/gsrl
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end, and also used to take advantage of encoder pretraining only, leaving the decoder-side

pretraining unexplored. In addition, even though sequence labeling models outperformed

the existing seq-to-seq approaches, it was unclear why most of the recent models started

converging in the same performance pool. Indeed, casting SRL as a sequence generation

problem comes with the advantage of being a general-purpose architecture, which in turn,

makes minimal assumptions on the structure of the data. This formulation might allow future

extensions to more complex semantic structures generation via multitask learning strategies,

e.g., combining SRL with other related task learning such as AMR parsing. Furthermore,

recent pretrained encoder-decoders have shown advancements in different NLP tasks across

different domains. To this end, modeling SRL as a seq-to-seq learning problem allows for

better exploitation of the knowledge encoded in the weights of powerful pretrained models.

In this context, to address the gaps in SRL research, we presented GSRL [Blloshmi et al.,

2021b].

In this Chapter, we detail GSRL (Generating Senses and RoLes), a novel end-to-end ap-

proach to generating both predicate senses and semantic roles [Blloshmi et al., 2021b]. The

contributions of this work are:

• We introduce the first seq-to-seq model for end-to-end SRL, tackling predicate sense

disambiguation, argument identification and argument classification as a single gener-

ation task;

• We demonstrate that seq-to-seq learning can achieve state-of-the-art results, previously

attained only by sequence labeling approaches, in multiple gold benchmarks for both

dependency- and span-based English SRL;

• We compare different strategies to represent predicate-argument relations and generate

structured, graph-like sense and role annotations, analyzing their characteristics;

• Motivated by the convergence in the performance of recent SRL systems, we propose

a framework to i) evaluate future innovations in more challenging settings and ii) aid

the creation of new SRL datasets.
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The      doctor      told      the     patient     to     take      the     medicine     .

tell.01ARG0 ARG2 ARG1

take.01ARG0 ARG1

ARG0 ARG1

ARG0 tell.01 ARG2 ARG1

take.01

SPAN-BASED SRL

DEPENDENCY-BASED SRL

The <P0> :ARG0 [ doctor ]  <P0> :V [ tell.01 ] the <P1> :ARG0 [ <P0> :ARG2 [ patient ] ]  

<P0> :ARG1 [ to ] <P1> :V [ take.01 ] the <P1> :ARG1 [ medicine ] .

The <P0> :ARG0 [ doctor ]  <P0> :V [ tell.01 ] the  <P0> :ARG2 [ patient ]

<P0> :ARG1 [ to ]  take the medicine .




     The  doctor told the <P0> :ARG0 [ patient ]  to <P0> :V [ take.01 ] the 


<P0> :ARG1 [ medicine ] .

<P0> :ARG0 [ The doctor ]  <P0> :V [ tell.01 ]  <P0> :ARG2 [ the patient ]

<P0> :ARG1 [ to take the medicine ] .




     The  doctor told  <P0> :ARG0 [ the patient ]  to <P0> :V [ take.01 ] 


<P0> :ARG1 [ the medicine ] .

<P0> :ARG0 [ The doctor ]  <P0> :V [ tell.01 ] <P1> :ARG0 [ <P0> :ARG2 [ the patient ] ]  

<P0> :ARG1 [ to  <P1> :V [ take.01 ] <P1> :ARG1 [ the medicine ] ] .

NESTED

FLATTENED

NESTED

FLATTENED

Figure 3.1. Example of a sentence with two predicates: dependency-based SRL (upper part) and
span-based SRL (lower part) and their corresponding nested and flattened linearizations.

3.2 Methodology

3.2.1 SRL as a Sequence-to-Sequence Task

We revisit the seq-to-seq formulation by Daza and Frank [2018] for PropBank-based SRL

and put forward a generalized formulation that is able to handle not only semantic role labels

but also predicate sense labels. Formally, given a sentence s = 〈w1, w2, . . . , w|s|〉 where

each word wi belongs to either the vocabulary of words V W or a vocabulary of special

tokens V ST, the model is required to generate a sequence o = 〈o1, o2, . . . , o|o|〉 where each

token oi belongs to either the input sentence s, the vocabulary of special tokens V ST, the



3.2 Methodology 31

semantic role vocabulary V SR, or the predicate sense vocabulary V PS.

As shown in Figure 3.1, we propose two strategies for generating the predicate-argument

relations:

• Flattened linearization in which the model is required to generate a separate sequence

op for each predicate p in s, where op contains the sense and role labels only for p;

• Nested linearization in which the model is required to generate a single sequence o

containing the sense and role labels for all the predicates in s.

If we exclude predicate sense labels from the generated sequence o, our flattened lineariza-

tion strategy is similar to that of Daza and Frank [2018] and can be considered as a simplified

or “unrolled” semantic structure of our nested linearization. We build the nested linearization

in left-to-right order, i.e., the role label related to the first occurring predicate is positioned

innermost, and the subsequent roles encapsulate all the previously seen labels of an argument.

We argue that the semantics of the nested linearization, while being more complex to learn,

comes with the advantage of providing the entire predicate-argument structure of the input

sentence s at once, reducing the overhead of generating a number of output sequences equal

to the number of predicates in s, and thus being more practical for an end system.

3.2.2 GSRL Model

Given the above definition of seq-to-seq SRL, we formally frame the task as a conditional

generation problem in which we want to maximize the probability P (g|t) of generating the

tokenization g = 〈g1, g2, . . . , gi, . . . , g|g|〉 of the output linearization o conditioned on the

tokenization t = 〈t1, t2, . . . , t|t|〉 of the input sentence s:

P (g|t) =
|g|∏
i=2

P (gi | g1:i−1, t) (3.1)

where g1 is the artificially added start token <s>, gi is the i-th element (token, special

token, sense, or role) of the generated output sequence g and g1:i−1 = 〈g1, g2, . . . , gi−1〉.

Therefore, the probability P (g|t) of the linearized predicate-argument structure g for the

given sentence t is computed as the product of the probability of generating each token gi of

g in an autoregressive fashion.
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The GSRL model architecture builds on top of BART [Lewis et al., 2020], a recently pro-

posed denoising autoencoder for seq-to-seq learning. BART can be seen as a generalization

of several modern language models from BERT (due to the bidirectional encoder) to GPT

(with the left-to-right decoder), and it was found to be particularly effective in a wide range

of Natural Language Understanding tasks, including tasks that involve complex structured

outputs such as semantic parsing [Bevilacqua et al., 2021a]. Following BART, our model ar-

chitecture is based on a Transformer-based neural machine translation architecture [Vaswani

et al., 2017a], with 12 stacked Transformer layers for both the encoder and the decoder.

However, rather than training GSRL to learn to maximize the conditional probability shown

in Equation 3.1 from scratch, we warm-start the model with the weights of BART, which

brings two significant advantages. First, GSRL inherits the capability of BART to denoise

artificially-corrupted sentences and generate an output sequence that, while (partially) over-

lapping with the input sequence, can have a different length. This is beneficial to our setting,

since the input sequence fed into the model can be seen as a corrupted sentence where the

sense and role annotations have been removed. Second, GSRL can take advantage of the

world of knowledge coming from the massive amounts of text BART has been pretrained on.

Indeed, the original training corpus for BART is composed of five English-language corpora

of varying sizes and domains, containing books, stories, news, web content and Wikipedia

articles, and thus providing a wealth of information that could otherwise be missing from

standard SRL datasets, given their relatively small size.

Vocabulary. We start from the vocabulary of BART which, thanks to its BPE tokenization,

includes V W, and extend it by adding i) the set V PS of PropBank predicate sense labels,

e.g., tell.01 and take.01, ii) the set V SR of PropBank semantic role labels, e.g., :ARG0

and :ARGM-NEG, and iii) the set V ST of special tokens to distinguish between verbal and

nominal predicates, i.e., :V and :N respectively, and to identify the predicates in the sentence,

i.e., <Pi>, where i is the order of the predicate in the input sentence from left to right. At

the input level, we make sure that the BPE tokenizer does not split the additional tokens.

Therefore, adding these task-specific atomic tokens to the vocabulary allows for a more

compact linearized SRL structure. Finally, we randomly initialize the embeddings of the

additional tokens and update their values during training.



3.2 Methodology 33

The  doctor  <P0> :V [ told ] the  patient to <P1> :V [ take ] the medicine .

The  doctor  <P0> :V [ told ] the  patient to take the medicine .

The  doctor  told the  patient to <P0> :V [ take ] the medicine .

INPUT for NESTED

INPUT for FLATENNED

Figure 3.2. Example of a sentence with two predicates: input sequence for nested target sequence
(upper part) and flattened target sequence (lower part).

3.2.3 Pre- and Postprocessing

Preprocessing. The input sentence is preprocessed differently depending on the lineariza-

tion strategy – flattened or nested – chosen to train the GSRL model. Before feeding an input

sentence into the model, we indicate each predicate with a special token <Pi> which guides

the model towards learning to distinguish between different predicates and to specifically

generate the argument roles for each of them, where i = 0 in the flattened linearization

and 0 ≤ i < np in the nested linearization, with np being the total number of predicates

in the sentence. A visualisation of the inputs is shown in Figure 3.2. In the flattened

linearization setting, the input sentence is repeated np times, i.e., it would be preprocessed

twice. When the GSRL model is trained to generate nested linearizations, the input sentence

is preprocessed to indicate all the predicates at once.

Postprocessing. As opposed to sequence labeling approaches, our seq-to-seq model is not

only trained to produce sense and role labels, but also to autoregressively regenerate the

words of the input sentence. Therefore, an output sequence is valid only if the following

two conditions are met: i) its words can be aligned to the words of the input sequence,

and ii) all the predicate-argument structures follow the PropBank annotation guidelines.

Indeed, in order to enforce valid predicate-argument structures during the annotation process,

PropBank-based SRL requires human annotators to follow a set of guidelines which state that

core roles (ARG0, ARG1, etc.) must appear at most once for each predicate, two arguments

of the same predicate must not overlap, reference roles (R-ARG0, R-ARGM-TMP, etc.) can

only appear if they refer to an existing core role in the sentence, and continuation roles
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(C-ARG0, C-ARGM-TMP, etc.) can only appear after the core role they refer to, inter alia. For

the sake of simplicity, our model is not explicitly constrained to generate a valid predicate-

argument structure, and we only adopt the following simple heuristics to postprocess an

output sequence:

• In span-based SRL, we close at most one unenclosed argument span, positioning the

closing bracket so that there are no two overlapping arguments for the same predicate;

• In span-based SRL, if more than one span is unenclosed, we discard all the spans;

• In both dependency- and span-based SRL, if two arguments of the same predicate

overlap, we discard all the arguments for the sentence.

Previous studies have shown that explicitly enforcing PropBank constraints leads to more

accurate predictions [Li et al., 2019], but in this work we focus on unconstrained generation

and leave constrained generation for future work. For instance, methods used in previous

works that enforce validity constraints for other SRL modeling paradigms [Das et al., 2014;

Täckström et al., 2015; Li et al., 2020], could be interesting to integrate within our seq-to-seq

model.

3.3 Experiments

3.3.1 Evaluation Benchmarks

We train and evaluate GSRL on the standard splits of the English datasets provided as part

of the CoNLL-2009 [Hajič et al., 2009] and CoNLL-2012 [Pradhan et al., 2012] shared

tasks, which rapidly became two standard benchmarks for dependency- and span-based SRL,

respectively. While CoNLL-2009 is mainly composed of finance-related documents coming

from the Wall Street Journal, CoNLL-2012 is a varied collection of news, conversations and

magazine articles. Additionally, CoNLL-2009 includes an out-of-domain test set containing

excerpts from the Brown Corpus.

Data statistics. We define the semantic complexity of a dataset as the number of predicate-

argument relations that appear in each sentence on average. In CoNLL-2012, we observe

that around 70% of the sentences are annotated with at most 5 role labels and 3 predicates,
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with an average of 2.8 predicates per sentence. However, this is not the case in CoNLL-2009

where only 20% of the sentences contain at most 5 role labels, and only 40% feature at most

3 predicates. In fact, CoNLL-2009 has an average of 4.7 predicates per sentence, almost

twice the number compared to CoNLL-2012. These statistics suggest that the semantic

complexity of CoNLL-2009 is higher than that of CoNLL-2012, and thus it is to be expected

that the predicate-argument structures in CoNLL-2009 should be more complex, making the

nested linearizations deeper and more difficult to learn.

3.3.2 Evaluation Metrics

In the following Sections, we report the scores of the official scorers provided as part

of the CoNLL shared tasks to measure the performance of a participating system. More

specifically, the standard evaluation script for span-based PropBank-style SRL is the CoNLL-

2005 scorer1 which computes precision, recall and F1 score of the semantic roles. For

dependency-based PropBank-style SRL we use the CoNLL-2009 scorer2 which takes into

account both sense and role labels to compute what is referred to as “semantic” precision

and recall:

PSEM = TPpred + TProle

Npred + TProle + FProle

RSEM = TPpred + TProle

Npred + TProle + FNrole

where TP, FP and FN are the true positives, false positives and false negatives, respectively,

while Npred is the total number of predicates.

3.3.3 Training and Tuning

We train two main model configurations using the flattened and nested linearizations,

GSRLflattened and GSRLnested hereafter. For both variants, their weights are warm-started

using BARTlarge (406M parameters) from the Transformers library.3 Differently from vanilla

BART, we increase the dropout rate between the Transformer layers from 0.1 to 0.25 and
1cs.upc.edu/∼srlconll/soft.html
2ufal.mff.cuni.cz/conll2009-st/scorer.html
3huggingface.co/transformers/model_doc/bart.html

https://www.cs.upc.edu/~srlconll/soft.html
https://ufal.mff.cuni.cz/conll2009-st/scorer.html
https://huggingface.co/transformers/model_doc/bart.html
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PARAMETER PICK SEARCH SPACE

Training

Learning Rate (LR) 5 ∗ 10−5 1/5/10/50 ∗10−5

LR Scheduling constant -
Loss Cross-entr. -

Betas 0.9, 0.999 -
Epochs 20 [10, 20]

Dropout 0.25 0.1 to 0.25, (0.05)
Weight Decay 0.004 0.001 to 0.01, (+0.001)

Gradient Accumulation 10 [1, 5, 10, 15, 20]

Prediction

Beam size 1 [1, 5]
Table 3.1. GSRL hyperparamter values and search space.

we do not penalize the model for the generation of repeated ngrams, e.g., multiple closing

brackets. In Table 3.1 we report the hyperparameters space of GSRL. We pick the parameters

using random search with 5 trials in the search space indicated in the third column. Finally,

we select the best model based on its F1 score on the development dataset. At prediction

time we perform only greedy decoding, since beam searching did not show improvements

in our preliminary experiments. Each GSRL model is trained for 20 epochs with a batch

size of 800 tokens, using the RAdam [Liu et al., 2020a] optimizer with a fixed learning rate

of 1× 10−5 and gradient accumulation every 10 batches. The training process is carried out

on a single GPU (Nvidia GeForce GTX 1080Ti): GSRLflattened requires 30 and 40 hours of

training time on CoNLL-2009 and CoNLL-2012, respectively, while GSRLnested requires 11

and 20 hours on CoNLL-2009 and CoNLL-2012, respectively.

3.3.4 Comparison Systems

The vast majority of the recent advances in SRL come from sequence labeling approaches,

which currently represent the state of the art in both span- and dependency-based SRL.

Therefore, we mainly compare our seq-to-seq model against the recent innovations proposed

by such sequence labeling models, but also to the few existing seq-to-seq approaches to

the task. As such, the comparison systems are divided into these two paradigms. First, we

include sequence labeling approaches that:
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i) jointly learn SRL and syntax [Cai and Lapata, 2019b];

ii) iteratively refine the output SRL labels [Lyu et al., 2019];

iii) devise a set of syntactic “supertags” [Kasai et al., 2019];

iv) learn predicate-argument interactions through capsule networks [Chen et al., 2019];

v) better exploit the knowledge of language models [Shi and Lin, 2019; Conia and

Navigli, 2020];

vi) model syntactic dependencies with graph convolutions [Marcheggiani and Titov,

2020].

As per seq-to-seq approaches, we compare with Daza and Frank [2018, 2019], who proposed,

to the best of our knowledge, the currently best-performing seq-to-seq models for SRL.

However, GSRL significantly differs from their architectures which i) are not able to handle

multiple predicates at once, and ii) do not address predicate sense disambiguation, i.e., they

are not end-to-end.

For completeness, in our experiments we include two other challenging variations of

GSRL. In particular, we challenge GSRLnested to perform the predicate identification step

(GSRLPI
flattened, hereafter). For this evaluation, the input sentence is not preprocessed, i.e.,

the input sequence does not contain any predicate tags (see Section 3.2.3). In addition,

we observe the behavior of GSRLflattened when no BART pretraining is used (GSRLS
flattened,

hereafter), i.e., the architecture is trained from scratch on respective CoNLL datasets for

dependency- and span-based SRL.

3.4 Results

3.4.1 Dependency-based SRL Results

Table 3.2 summarizes the results on dependency-based SRL in the English in-domain test

of CoNLL-2009. Even though GSRL is also tasked to generate predicate sense labels,

GSRLflattened significantly surpasses the previously best-performing seq-to-seq model of

Daza and Frank [2019] by 1.6% in F1 score (17% decrease in error rate).4 While both
4Daza and Frank [2019] rely on a separate system trained on a larger amount of sentences in order to output

predicate sense labels.
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CONLL-2009 – IN DOMAIN P R F1

Sequence labeling models

Cai and Lapata [2019b] 90.9 89.1 90.0
Lyu et al. [2019] – – 90.1
Kasai et al. [2019] 90.3 90.0 90.2
Li et al. [2019] 89.6 91.2 90.4
He et al. [2019] 90.4 91.3 90.9
Chen et al. [2019] 90.7 91.4 91.1
Cai and Lapata [2019a] 91.7 90.8 91.2
Shi and Lin [2019] 92.4 92.3 92.4
Conia and Navigli [2020]XLM-R 92.2 92.6 92.4
Conia and Navigli [2020]BERT 92.5 92.7 92.6

Sequence-to-sequence models

Daza and Frank [2019] – – 90.8
GSRLnested 91.8 86.5 89.0
GSRLflattened 92.9 92.0 92.4

Table 3.2. Results on the English in-domain test set of the CoNLL-2009 task for dependency-based
SRL. P : precision. R: recall.

systems take advantage of pretrained encoders (BART and ELMo), GSRL also exploits

the pretrained decoder of BART, which allows for superior performance. Moreover, when

compared to state-of-the-art sequence labeling approaches [Shi and Lin, 2019; Conia and

Navigli, 2020], GSRLflattened shows competitive results, with an F1 score that is either match-

ing or not statistically different. It is interesting to note that, while GSRLnested is tasked to

learn semantic structures that can be an order of magnitude more complex than those learnt

by its GSRLflattened counterpart, the resulting difference in performance is not as large as one

may expect, and the training process is more than 60% faster. However, the considerably

lower recall shown by GSRLnested empirically confirms the complexity of identifying and

generating longer sequences of predicate and role labels, especially when a single word

is enclosed by multiple labels, i.e., it is an argument for multiple predicates. For exam-

ple, in <P2> :ARG0 [<P1> :ARG0 [<P0> :ARG0 [<P0> :N [chairman.01]]]], the

predicate chairman.01 plays 4 roles, therefore GSRLnested fails to generate all of them.

In Table 3.3 we compare GSRL variations. First, GSRLPI
nested attains 5.8 F1 points less

when compared to GSRLnested. Indeed, the largest drop in performance is due to the low

recall, which indicates that the system is not able to either identify all the predicates, or
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CONLL-2009 – IN DOMAIN P R F1

GSRLnested 91.8 86.5 89.0
GSRLflattened 92.9 92.0 92.4

GSRLPI
nested 86.9 79.8 83.2

GSRLS
flattened 86.7 84.4 85.5

Table 3.3. Results of GSRL variations on the English in-domain test set of the CoNLL-2009 task for
dependency-based SRL. P : precision. R: recall.

CONLL-2009 – OUT OF DOMAIN P R F1

Sequence labeling models

Li et al. [2019] – – 81.5
Lyu et al. [2019] – – 82.2
Chen et al. [2019] – – 82.7
Conia and Navigli [2020]XLM-R – – 85.2
Conia and Navigli [2020]BERT – – 85.9

Sequence-to-sequence models

Daza and Frank [2019] – – 84.1
GSRLnested 85.0 80.1 82.5
GSRLflattened 85.8 84.5 85.2

Table 3.4. Results on the English out-of-domain test of the CoNLL-2009 task for dependency-based
SRL. P : precision. R: recall.

to appropriately handle the roles associated to each of them due to the missing predicate

identifiers in the input sequence. Notice that this experiment cannot be performed with

GSRLflattened, for which we are constrained to use the identifier for the predicate of interest.

Second, GSRLS
flattened, which is disadvantaged in that it is trained from scratch, achieves 6.9

F1 points less that GSRLflattened. However, this result is expected and confirms once more

the benefits of pretrained power which allows the models to generalize better overall.

Furthermore, Table 3.4 reports the results in the English out-of-domain test of CoNLL-2009

where we observe a similar trend to the in-domain evaluation, with GSRLflattened significantly

surpassing the previous seq-to-seq approach [Daza and Frank, 2019] and performing on a

par with the state of the art [Conia and Navigli, 2020].
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CONLL-2012 P R F1

Sequence labeling models

Ouchi et al. [2018a] 87.1 85.3 86.2
Li et al. [2019] 85.7 86.3 86.0
Shi and Lin [2019] 85.9 87.0 86.5
Marcheggiani and Titov [2020] 86.5 87.1 86.8
Conia and Navigli [2020] 86.9 87.7 87.3

Sequence-to-sequence models

Daza and Frank [2018] – – 75.4
GSRLnested 87.1 86.6 86.8
GSRLflattened 87.8 86.8 87.3

Table 3.5. Results on the English in-domain test set of the CoNLL-2012 gold benchmark for
span-based SRL. P : precision. R: recall.

CONLL-2012 P R F1

GSRLnested 87.1 86.6 86.8
GSRLflattened 87.8 86.8 87.3

GSRLPI
nested 74.3 69.5 71.8

GSRLS
flattened 78.4 74.9 76.6

Table 3.6. Results of GSRL variations on the English test set of the CoNLL-2012 task for span-based
SRL. P : precision. R: recall.

3.4.2 Span-based SRL Results

Table 3.5 summarizes the results on span-based SRL in the English test of CoNLL-2012.

Similarly to CoNLL-2009, GSRLflattened achieves state-of-the-art results in an area where se-

quence labeling approaches are currently predominant. In this setting, however, GSRLflattened

and GSRLnested attain comparable performance, and they both surpass the seq-to-seq model

of Daza and Frank [2018] by a large margin (more than 11.4% in F1 score). The close

gap between the two GSRL models can be explained by the lower semantic complexity

of the sentences in CoNLL-2012 (see Section 3.3.1, Data Statistics), which results in eas-

ier SRL structures to be generated. Regarding the GSRL variations instead, in Table 3.6

we observe a large drop in performance when the model is required to perform predicate

identification, i.e., GSRLPI
flattened, or when it is deprived of pretraining, i.e., GSRLS

flattened. In

particular, GSRLS
flattened scores around 10 F1 points lower than GSRLflattened. This happens

probably due the data from various collections included in CoNLL-2012, in which case
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Figure 3.3. Results as the number of predicates per sentence becomes larger: the gap widens as the
semantic complexity increases. This analysis shows that the semantic complexity of a sentence
is the main culprit for the gap in performance between GSRLflattened and GSRLnested.

it is more probable to observe unseen predicates at inference time than in CoNLL-2009,

which instead is more domain specific. Owing to this, the model appears to benefit from

the heterogeneous pretrained knowledge of BART more in CoNLL-2012 than CoNLL-

2009. GSRLPI
flattened instead, performs poorly when compared with GSRLflattened, achieving

around 15 F1 points less. This is even more unexpected when compared to its behaviors

in the CoNLL-2009 test set, in which case the performance degrades by less than 6 F1 points.

In summary, it is worth noting that in both span- and dependency-based SRL, while the F1

score of GSRL is on a par with the best-performing sequence labeling approaches, GSRL

always shows a higher precision.

3.5 Analysis

In what follows we propose an evaluation framework composed of a set of synthetic scenarios

built from the CoNLL-2009 and CoNLL-2012 datasets. Our aim is two-fold: i) to better

evaluate the behaviour of GSRL, or any other SRL system, and ii) to gain insights into what

is needed for the creation of better training datasets or challenging benchmarks for SRL. In
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Figure 3.4. Results of GSRLflattened as the train data decreases: the margin between 100% and 25%
is not large. This analysis shows that GSRL is robust to substantially smaller training datasets.

order to enable future comparisons with this work, we release our evaluation framework at

https://github.com/SapienzaNLP/gsrl.

Test down-sampling: Semantic complexity. We observe the difference in performance

between GSRLflattened and GSRLnested when including increasingly complex sentences in

an initially empty test set. To this end, we build 12 test sets from both CoNLL-2009 and

CoNLL-2012 by selecting each sentence according to its semantic complexity (see Section

3.3.1, Data Statistics), i.e. we collect those sentences containing only 1 predicate, up to 2

predicates, up to 3, and so on. Finally, we evaluate our models on the collected samples.

Figure 3.3 confirms that the complexity of the semantic structure of a sentence is, indeed, one

of the main factors behind the gap between performances of GSRLflattened and GSRLnested.

This also explains why the two are much closer in CoNLL-2012, as this dataset has a

significantly lower semantic complexity than CoNLL-2009 (2.8 against 4.7 predicates per

sentence, respectively).

Train down-sampling: Sentence count. Even though unsupervised learning has been

gaining ever more popularity in Natural Language Processing, the majority of the approaches

https://github.com/SapienzaNLP/gsrl
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Figure 3.5. Comparison of GSRLflattened and Conia and Navigli (2020) system results as the train data
decreases: the F1 score is similar in each split (100%, 75%, 50%, 25% and 10% of the original
training datasets) of both CoNLL-2009 (dependency-based) and CoNLL-2012 (span-based).

to SRL continue to rely on supervision and, therefore, on labeled data. However, the manual

annotation of text with sense and role labels is an expensive process which requires money,

time and expert annotators who are at ease with complex linguistic resources like PropBank,

making it difficult to create large SRL datasets. In this analysis we devise a synthetic

scenario in which we simulate a set of lower-resource settings and study how they affect

our model. Specifically, we create different training data splits, sampling 10%, 25%, 50%

and 75% of the sentences from the training data of CoNLL-2009 and CoNLL-2012 (37,847

and 90,856 sentences, respectively). As shown in Figure 3.4, when down-sampling the

training data to 75% and 50% of its original size, the results decrease by less than 1.0% in

F1 score in the test sets of CoNLL-2009 and CoNLL-2012. On one hand, this experiment

demonstrates the robustness of our model. On the other hand, it also suggests that the huge

effort carried out by the creators of the CoNLL-2012 dataset to manually annotate the last



3.5 Analysis 44

SHOT CONLL-2009 CONLL-2012

ALL 37,847 90,856

1 5,936 4,788
2 9,227 8,085
3 11,700 10,761

Table 3.7. Number of sentences in the training samples for 1-, 2- and 3-shot learning.
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Figure 3.6. Results of GSRLflattened as the sentences for each predicate sense decrease: the perfor-
mance goes down abruptly. This analysis shows that number of examples for each predicate
sense is fundamental for a good training set.

45,000 sentences of the training set, made our model improve by only 0.9% in F1 score. In

addition, we perform the same experiment with the state-of-the-art sequence labeling system

of Conia and Navigli [2020]. The side-by-side comparison is shown in Figure 3.5. Despite

the drastic architectural difference between two systems, i.e., GSRL being a seq-to-seq

system as opposed to the sequence labeling approach of Conia and Navigli [2020], and their

different behavior in precision and recall, they converge to the same overall performance in

terms of F1 (green line) in each split on both span- and dependency-based evaluations. We

argue, therefore, that simply increasing the number of training sentences is not necessarily

the best direction towards better datasets and systems.
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Train down-sampling: Sense count. Rather than the number of sentences in the training

set, we hypothesize that a model is more susceptible to the number of times it sees a predicate

sense. To test this hypothesis, we study how well GSRL is able to generalize when limiting

the number of sentences for each predicate sense, i.e., how well it performs in few-shot

learning. More specifically, we devise a set of three new training datasets which contain at

most 1, 2 and 3 occurrences of a predicate sense by sampling the original CoNLL-2009 and

CoNLL-2012 training sets. We report the sizes of these new splits in Table 3.7. Figure 3.6

shows the performance of GSRLflattened in both the CoNLL-2009 and CoNLL-2012 test sets

as the number of predicate sense instances in the training set decreases. While limiting the

number of sentences does not result in a noteworthy impact on the results, GSRLflattened

shows a drastic deterioration in performance when it can only learn the predicate-argument

structure of a sense from a single example (1-shot), but greatly improves when it can learn

from two and three examples (2-shot and 3-shot). Not only do these results support our

initial hypothesis, but they also suggest that new smaller-scale datasets, if properly devised,

may still make a significant impact on a modern SRL system.

3.6 Summary

In this Chapter we presented GSRL, the first seq-to-seq model for end-to-end SRL to

generate both sense and role labels. Evaluated on multiple gold benchmarks, GSRL achieves

state-of-the-art results, previously attained only by sequence labeling approaches, in both

span- and dependency-based English SRL. The analysis performed on our evaluation

framework exposed, thanks to a set of purposely-designed synthetic scenarios, the positives

and negatives of our approach, from its ability to reach competitive results with only 25%

of the training data to its difficulties in modeling and generating “semantically complex”

sequences. However, our analysis was not limited solely to a study of our model and, instead,

we also made use of GSRL to highlight current issues, roadblocks and promising directions to

further improve the area of SRL, both as regards its models and its datasets. We hope that our

contributions will lead to further progress in generation-based approaches to SRL and, more

importantly, open the door to their integration into more complex semantics-first tasks, such

as Semantic Parsing. We release GSRL at https://github.com/SapienzaNLP/gsrl.

https://github.com/SapienzaNLP/gsrl


∼ This page was intentionally left blank ∼



46

Chapter 4

End-to-End AMR Parsing and

Generation as Sequence Generation
Abstract

In AMR parsing, state-of-the-art parsers commonly use cumbersome pipelines integrating several
different modules or components, and exploit graph recategorization, i.e., a set of content-specific
heuristics that are developed on the basis of the training set. However, the generalizability of
graph recategorization in an out-of-distribution setting is unclear. In contrast, AMR generation,
which can be seen as the inverse to parsing, is based on simpler seq-to-seq. In this Chapter,
we cast AMR parsing and AMR generation as a symmetric transduction task and show that by
devising a careful graph linearization and extending a pretrained encoder-decoder model, it is
possible to obtain state-of-the-art performances in both tasks using the very same seq-to-seq ap-
proach, i.e., SPRING (Symmetric PaRsIng aNd Generation). Our model achieves unprecedented
performances, thus outperforming previous state of the art on the English AMR 2.0 benchmark
by a large margin. We release the software at https://github.com/SapienzaNLP/spring.
Finally, we make SPRING available as a service at http://nlp.uniroma1.it/spring.

Source: This Chapter is based on our AAAI 2021 [Bevilacqua et al., 2021a] and EMNLP
2021 [Blloshmi et al., 2021a] papers:
1. One SPRING to Rule Them Both: Symmetric AMR Semantic PaRsIng aNd Generation
without a Complex Pipeline, and 2. SPRING goes Online: End-to-End AMR Parsing and
Generation.

4.1 Overview

In the recent years, AMR parsing and generation models have become more reliable than

they used to be, thanks to both the availability of pretrained language models [Devlin et al.,

2019; Lewis et al., 2020] and the continuous improvements in the AMR-specific model

architectures [Zhou et al., 2020b; Cai and Lam, 2020a; Fernandez Astudillo et al., 2020;

https://github.com/SapienzaNLP/spring
http://nlp.uniroma1.it/spring
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Mager et al., 2020]. Nevertheless, previous state-of-the-art approaches to AMR parsing

featured complex pre- and postprocessing pipelines, in which the output of several different

components was integrated. Additionally, they employed fine-grained, content-specific

heuristics developed based on the training set that, as a consequence, could be very brittle

across domains and genres. The parsing performance of simpler, full seq-to-seq methods

had hitherto lagged behind, mainly because they are less data-efficient than their alternatives.

In AMR generation, which can be seen as the inverse task to AMR parsing, vanilla seq2seq

methods have, instead, achieved state-of-the-art results. This architectural asymmetry is not

observed in other bidirectional transduction tasks such as machine translation, where the

same architecture is used to handle the translation from language X to language Y , and vice

versa.

As we showed in the previous Chapter, seq-to-seq learning can achieve state-of-the-art

results even when tasked to produce semantic structures of meaning (with proper lineariza-

tion techniques). Since SRL is a highly overlapping task with AMR, it seems natural to

explore a similar direction for AMR related tasks. In this context, in our recent paper

SPRING [Bevilacqua et al., 2021a], we proposed a solution to both AMR parsing and

generation tasks through a simple, end-to-end approach with no heavy inbuilt data process-

ing assumptions. Our model achieved unprecedented performance in AMR parsing and

generation, both in- and out-of-distribution.

In this Chapter, we detail SPRING (Symmetric PaRsIng aNd Generation), a novel end-to-

end approach to generating both an AMR graph when fed with an English sentence, or an

English sentence when given an AMR graph as input. Our contributions are the following:

• We extend a pretrained Transformer encoder-decoder architecture to generate either

an accurate linearization of the AMR graph for a sentence or, vice versa, a sentence

for a linearization of the AMR graph.

• Contrary to previous reports [Konstas et al., 2017], we find that the choice between

competing graph-isomorphic linearizations does matter. Our proposed Depth-First

Search (DFS)-based linearization with special pointer tokens outperforms both the

PENMAN linearization and an analogous Breadth-First Search (BFS)-based alterna-

tive, especially on AMR generation.
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• We propose a novel OOD setting for estimating the ability of the AMR parsing and

AMR generation approaches to generalize on open-world data.

• We show that rule-based graph recategorization should be avoided on open-world data

because, although it slightly boosts the performance in the standard benchmark, it is

not able to generalize in the OOD setting.

• We outperform the previously best reported results in AMR 2.0 by 11.2 BLEU points

for the generation task, and by 3.6 Smatch points for the parsing task.

Additionally, to make SPRING accessible to the community, thereby lowering the entry

point to AMR application research, we present SPRING Online Services [Blloshmi et al.,

2021a] which include:

• a Web interface to easily produce and visualize an AMR graph for a given sentence

and, vice versa, a sentence for a given AMR graph in PENMAN notation.

• RESTful APIs to programmatically request AMR parsing and generation services.

• a bidirectional SPRING model also trained on Bio-AMR, resulting in much stronger

performances for biomedical applications.

• a feedback mechanism which allows users to submit modifications to the system’s

outputs – aided by the visualization – which we collect to enable future enhancements

of AMR systems using active learning [Settles, 2009].

4.2 Methodology

4.2.1 Task Formulation

We perform both AMR parsing and AMR generation with the same architecture, i.e.,

SPRING, which exploits the transfer learning capabilities of BART for the two tasks.

In SPRING AMR graphs are handled symmetrically: for AMR parsing the encoder-decoder

is trained to predict a graph given a sentence; for AMR generation another specular encoder-

decoder is trained to predict a sentence given a graph.
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( t / tell-01
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:ARG0 i
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:ARG0 <R2>
:ARG1 <R4> dog

<stop>

Figure 4.1. The AMR graph for the sentence “You told me to wash the dog.” with the three different
linearizations.

Formally, a sentence is represented as a sequence of tokens s = 〈BOS, w1, w2, . . . , wn,EOS〉

where each word wi belongs to the vocabulary V , and BOS,EOS ∈ V are special beginning-

of-sentence and end-of-sentence tokens, respectively. For example, the sentence You told

me to wash the dog is represented as 〈BOS,‘You’, ‘told’, ‘me’, ‘to’, ‘wash’, ‘the’, ‘dog’,

EOS〉. Similarly, a linearized graph is also a sequence g = 〈BOS, g1, g2, . . . , gm,EOS〉,

where gi ∈ V . The graph of the aforementioned sentence is shown in Figure 4.1. Note that

both sentence and graph tokens are drawn from the same vocabulary (see Section 4.2.3).
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4.2.2 Graph Linearizations

In this work we use linearization techniques which are fully graph-isomorphic, i.e., it is

possible to encode the graph into a sequence of symbols and then decode it back into a graph

without losing adjacency information. We propose the use of special tokens <R0>, <R1>, . . . ,

<Rn> to represent variables in the linearized graph and to handle co-referring nodes. Just as

happens with variable names in PENMAN, i.e., the encoding that is used in the release files

of AMR, whenever such special tokens occur more than once it is signaled in our encoding

that a given node fulfills multiple roles in the graph. By means of this modification we aim to

address the confusion arising from the use of seq-to-seq with PENMAN (PM), which does

not allow a clear distinction to be made between constants and variables, as variable names

have no semantics. Our special tokens approach is used in combination with two graph

traversal techniques based on, respectively, DFS and BFS; in addition, we also experiment

with PENMAN. In Figure 4.1 we show the linearizations of the AMR graph for “You told

me to wash the dog”.

DFS-based. DFS, on which PENMAN is based, is very attractive as it is quite closely

related to the way natural language syntactic trees are linearized: consider, e.g., the sentence

“the dog which ate the bone which my father found is sleeping”, where the noun dog is far

removed from its head verb, is sleeping, because the dependents of dog are “explored” com-

pletely before the occurrence of the head verb. Thus, we employ a DFS-based linearization

with special tokens to indicate variables and parentheses to mark visit depth. Moreover, we

dispose of the redundant slash token (/). These features significantly reduce the length of the

output sequence compared to PENMAN, where variable names are often split into multiple

subtokens by the subword tokenizer. This is important for efficient seq-to-seq decoding with

Transformers, which are bottlenecked by the quadratic complexity of attention mechanisms.

BFS-based. The use of BFS traversal is motivated by the fact that it enforces a locality

principle by which things belonging together are close to each other in the flat representation.

Additionally, Cai and Lam [2019] suggest that BFS is cognitively attractive because it

corresponds to a core-semantic principle which assumes that the most important pieces

of meaning are represented in the upper layers of the graph. To this end, we present a
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BFS-based linearization which, just like our DFS-based one, uses special tokens to represent

co-reference. We apply a BFS graph traversal algorithm which starts from the graph root

r and visits all the children w connected by an edge e, appending to the linearization the

pointer token to r, e, and then a pointer token if w is a variable, or its value in case w is a

constant. The first time a pointer token is appended, we also append its :instance attribute.

At the end of the iteration at each level, i.e., after visiting the children w, we append a

special <stop> token to signal the end node exploration. In Figure 4.1, the visit starts with

tell-01, iterates over its children, then, after the <stop>, goes on to wash-01.

Edge ordering. All the above linearizations are decoded into the same graph. However,

in the PENMAN-linearized gold annotations, an edge ordering can be extracted from each

AMR graph. There has been a suggestion [Konstas et al., 2017] that annotators have used

this possibility to encode information about argument ordering in the source sentence. Our

preliminary experiments confirmed that imposing an edge ordering different from PENMAN

has a big negative effect on the evaluation measures of AMR generation, due to their order-

sensitive nature. To control this, we have carefully designed the linearizations to preserve

order information.

Linearization information loss. Previous approaches to AMR parsing [Konstas et al.,

2017; van Noord and Bos, 2017; Peng et al., 2017; Ge et al., 2019] use seq-to-seq methods

in conjunction with lossy linearization techniques, which, in order to reduce complexity, re-

move information such as variables from the graph. This information is restored heuristically,

making it harder to produce certain valid outputs. In contrast, we our proposed linearization

techniques are completely isomorphic to the graph, and do not incur any information loss.

4.2.3 SPRING Model

SPRING is at its heart a function Pθ (with θ being the parameters) that takes as input a

source string σ in V ∗ =
⋃∞
i=1 V

i and a partial target string τ ∈ V ∗. Then Pθ outputs a

next-token probability distribution over V . Applying this basic function repeatedly, we

can assign a probability (P ∗) to any string of tokens given another one by factorising it in

a left-to-right way as a product of conditional probabilities. This can be applied both to

the parsing (by using s as σ, and the progressively built linearization g as τ ; Eq. 4.1) and



4.2 Methodology 52

generation (exchanging σ and τ ; Equation 4.2):

P ∗θ (g|s) =
m+1∏
i=1

Pθ(gi | τ = g0:i−1, σ = s) (4.1)

P ∗θ (s|g) =
n+1∏
i=1

Pθ(si | τ = s0:i−1, σ = g) (4.2)

To train the model we optimize the parameters to minimize, with mini-batch gradient descent,

the so-called negative log likelihood Lθ (the negative log conditional probability) over a

dataset D collecting sentence-graph pairs, both for parsing (LPAR
θ(1) ) and generation (LGEN

θ(2) ):

argmin
θ(1),θ(2)

LPAR
θ(1) (D) + LGEN

θ(2) (D) =

argmin
θ(1),θ(2)

−
∑
〈s,g〉∈D

logP ∗θ(1)(g|s) + logP ∗θ(2)(s|g)
(4.3)

Note that when θ(1) is different from θ(2), the two objective terms are optimized separately.

Instead, when we enforce θ(1) = θ(2) we have a model that is not only symmetric, but can

also perform both AMR parsing and generation at the same time.

Once we have the trained model, the predicted output is the string ending in EOS with the

highest probability in P ∗θ . Unfortunately, finding this optimal string is intractable when |V |

is large; in practice, however, we can perform an approximate decoding with histogram

beam search.

Similarly to the GSRL model in Chapter 3 (see Section 3.2.2), SPRING is based on the

Transformer architecture by Vaswani et al. [2017b], a seq-to-seq neural network that, briefly,

i) uses attention instead of recurrence to encode sequences, ii) is made up of an encoder

module that embeds σ, and a decoder that, based on both the encoder output and τ , produces

the final distribution output. Key to the high performances of SPRING is the fact that its

parameters are not randomly initialized, but, instead, are adopted from those of BART

Lewis et al. [2020]. BART has shown significant improvements in conditioned generation

tasks where the vocabulary of the input and output sequences largely intersect, such as

question answering and summarization. Similarly, a large amount of AMR labels are drawn

from the English vocabulary – despite the fact that AMR aims to abstract away from the

sentence – and, therefore, we hypothesize that BART’s denoising pretraining should be

suitable for AMR parsing and generation as well. Moreover, it is possible to see a parallel
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between BART’s pretraining task and AMR generation, since the linearized AMR graph

can be seen as a reordered, partially corrupted version of an English sentence, which the

model has to reconstruct. Owing to this, SPRING can exploit the extensive knowledge

BART encompasses, gained through optimization on large amounts of raw text with an

unsupervised denoising objective.

Vocabulary. BART uses a subword vocabulary and its tokenization is optimized to handle

English, but it is not well-suited for AMR symbols. To deal with this problem we expand

the tokenization vocabulary of BART by adding i) all the relations and frames occurring

at least 5 times in the training corpus; ii) constituents of AMR tokens, such as :op; iii) the

special tokens that are needed for the various graph linearizations. Moreover, we adjust

the embedding matrices of encoder and decoder to include the new symbols by adding

a vector which is initialized as the average of the subword constituents. The addition of

AMR-specific symbols in vocabulary expansion avoids extensive subtoken splitting and thus

allows the encoding of AMRs as a more compact sequence of symbols, cutting decoding

space and time requirements.

Recategorization. Recategorization is a popular technique to shrink the vocabulary size

for handling data sparsity. It simplifies the graph by removing sense nodes, wiki links,

polarity attributes, and/or by anonymizing the named entities. To assess the contribution of

recategorization, we experiment with a commonly-used method in AMR parsing literature

[Zhang et al., 2019a,b; Zhou et al., 2020b; Cai and Lam, 2020a]. The method is based on

string-matching heuristics and mappings tailored to the training data, which also regulate the

restoration process at inference time. We direct the reader to Zhang et al. [2019a] for further

details. We note that following common practice we use recategorization techniques only in

parsing, due to the considerably higher information loss that could result in generation.

4.2.4 Postprocessing

In our approach we perform light postprocessing, mainly to ensure the validity of the

graph produced in parsing. To this end, we restore parenthesis parity in PENMAN and

DFS, and also remove any token which is not a possible continuation given the token that

precedes it. For BFS, we recover a valid set of triples between each subsequent pair of
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<stop> tokens. Our approaches remove content limited to a few tokens, often repetitions

or hallucinations. We notice that non-recoverable graphs are very rare, roughly lower than

0.02% in out-of-distribution data, with a negligible effect on overall performance.1 In

addition, we integrate an external Entity Linker to handle wikification, because it is difficult

to handle the edge cases with pure seq-to-seq. We use a simple string matching approach to

search for a mention in the input sentence for each :wiki attribute that SPRING predicted

in the graph, then run the off-the-shelf BLINK Entity Linker [Wu et al., 2020] and overwrite

the prediction.

4.3 Experiments

4.3.1 Evaluation Benchmarks

In-Distribution. We evaluate the strength of SPRING on the standard evaluation bench-

marks, which we refer to as the In-Distribution (ID) setting. The data that we use in

this setting are the AMR 2.0 (LDC2017T10) and AMR 3.0 (LDC2020T02) corpora re-

leases, which include, respectively 39,260 and 59,255 manually-created sentence-AMR

pairs. AMR 3.0 is a superset of AMR 2.0. In both of them the training, development and

test sets are a random split of a single dataset, therefore they are drawn from the same

distribution.

Out-of-Distribution. While the ID setting enables a comparison against previous litera-

ture, it does not allow estimates to be made about performances on open-world data, which

will likely come from a different distribution of that of the training set. Motivated by

common practice in related semantic tasks, such as Semantic Role Labeling [Hajič et al.,

2009], we propose a novel OOD setting.

In this evaluation setting we assess the performance of SPRING when trained on OOD data,

contrasting it with the ID results. We employ the AMR 2.0 training set, while for testing we

use three distinct Out-of-Distribution (OOD) benchmarks, covering a variety of different

genres:
1It might be interesting to see whether the tree decoding approaches presented in recent work by Prange

et al. [2021] could be employed to avoid invalid graph generation as future work.
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i) New3, a set of 527 instances from AMR 3.0, whose original source was the LORELEI

DARPA project – not included in the AMR 2.0 training set – consisting of excerpts

from newswire and online forums;

ii) TLP, the full AMR-tagged children’s novel The Little Prince (ver. 3.0), consisting of

1,562 pairs;

iii) Bio, i.e., the test set of the Bio-AMR corpus, consisting of 500 instances, featuring

biomedical texts [May and Priyadarshi, 2017].

Silver dataset. In order to determine whether silver-data augmentation, another commonly

used technique, is beneficial in both ID and OOD, we follow Konstas et al. [2017] and

create pretraining data by running the SPRING parser using DFS (trained on AMR 2.0) on

a random sample of the Gigaword (LDC2011T07) corpus consisting of 200,000 sentences.

4.3.2 Evaluation Metrics

We evaluate on the AMR parsing benchmarks by using Smatch [Cai and Knight, 2013]

computed with the tools released by Damonte et al. [2017], which also report fine-grained

scores on different aspects of parsing, such as wikification, concept identification, NER and

negations. As regards AMR generation, we follow previous approaches and evaluate using

three common Natural Language Generation (NLG) measures, i.e., BLEU [Papineni et al.,

2002, BL], chrF++ [Popović, 2017, CH+], and METEOR [Banerjee and Lavie, 2005, MET],

tokenizing with the script provided with JAMR [Flanigan et al., 2014]. Additionally, as

AMR abstracts away from many lexical and syntactic choices, we report the scores with

untokenized BLEURT [Sellam et al., 2020, BLRT], i.e., a recent regression-based measure

which has shown the highest correlation with human judgements in machine translation.

4.3.3 Training and Tuning

SPRING relies on BART with the augmented vocabulary, as discussed in Section 4.2.3.

We use the same model hyperparameters as BART Large (or Base, when specified), as

defined in Huggingface’s transformers library. Models are trained for 30 epochs using

cross-entropy with a batch size of 500 graph linearization tokens, with RAdam [Liu et al.,
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PARAMETER PICK SEARCH SPACE

Training
Learning Rate (LR) 5 ∗ 10−5 1/5/10/50 ∗10−5

LR Scheduling constant -
Betas 0.9, 0.999 -

Dropout 0.25 0.1 to 0.25, (+0.05)
Weight Decay 0.004 0.001 to 0.01, (+0.001)

Gradient Accumulation 10 1/5/10/15/20

Prediction
Beam size 5 [1,5]

Table 4.1. Hyperparameters and search space.

2020b] optimizer and a learning rate of 1× 10−5. Gradient is accumulated for 10 batches.

Dropout is set to 0.25.

Hyperparameter search. We report in Table 4.1 the final hyperparameters used to train

and evaluate both the AMR parsing and AMR generation models. To pick these parameters,

we used random search with about 25 AMR parsing trials in the search space indicated in

the third column. AMR parsing training requires about 22 and 30 hours on AMR 2.0 and

AMR 3.0 using one 1080 Ti GPU, respectively; AMR generation requires 13 and 16.5 hours

on AMR 2.0 and AMR 3.0, respectively. At prediction time, we set beam size to 5 following

common practice in neural machine translation [Yang et al., 2018].

SPRING variants. We include models trained with the three linearizations, indicated

as SPRING[lin], where [lin] is one of the linearizations: PENMAN (PM), DFS- (DFS) or

BFS-based (BFS). In addition, we include variants of SPRINGDFS using i) BART Base

(base); ii) graph recategorization (+recat); iii) pretrained silver AMR data (+silver). We

also report results on a vanilla BART baseline which treats PENMAN as a string, uses no

vocabulary expansion and tokenizes the graph accordingly.

4.3.4 Comparison Systems

In-Distribution. In the ID setting, we use the AMR 2.0 benchmark to compare SPRING

variants against the best models from the literature. To this end, we include the following

AMR parsers:



4.3 Experiments 57

i) Ge et al. [2019, Ge+], an encoder-decoder model which encodes the dependency tree

and semantic role structure alongside the sentence;

ii) Lindemann et al. [2019, LindGK], a compositional parser based on the Apply-Modify

algebra;

iii) Naseem et al. [2019, Nas+], a transition-based parser trained with a reinforcement-

learning objective rewarding the Smatch score;

iv) Zhang et al. [2019b, Zhang+], a hybrid graph- and transition-based approach incre-

mentally predicting an AMR graph;

v) Zhou et al. [2020b, Zhou+], an aligner-free parser [Zhang et al., 2019a] enhanced

with latent syntactic structure;

vi) Cai and Lam [2020a, CaiL], a graph-based parser iteratively refining an incrementally

constructed graph.

For AMR generation, instead, we include the following:

i) Zhu et al. [2019b, Zhu+], a Transformer-based approach enhanced with structure-

aware self-attention;

ii) Cai and Lam [2020b, CaiL], a graph Transformer model which relies on multi-

head attention [Vaswani et al., 2017c] to encode an AMR graph in a set of node

representations;

iii) Wang et al. [2020, Wang+], a Transformer-based model generating sentences with an

additional structure reconstruction objective;

iv) Zhao et al. [2020, Zhao+], a graph attention network which explicitly exploits relations

by constructing a line graph;

v) Yao et al. [2020, Yao+], a graph Transformer-based model which encodes heteroge-

neous subgraph representations;

vi) Mager et al. [2020, Mag+], a fine-tuned GPT-2 model [Radford et al., 2019] predicting

the PENMAN linearization of an AMR graph.
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Model Recat. Smatch Unlab. NoWSD Conc. Wiki. NER Reent. Neg. SRL

Ge+ (2019) N 74.3 77.3 74.8 84.2 71.3 82.4 58.3 64.0 70.4
LindGK ((2019)** N 75.3 - - - - - - - -
Nas+ ((2019)** N 75.5 80.0 76.0 86.0 80.0 83.0 56.0 67.0 72.0
Zhang+ ((2019b)** Y 77.0 80.0 78.0 86.0 86.0 79.0 61.0 77.0 71.0
Zhou+ ((2020b)* Y 77.5 80.4 78.2 85.9 86.5 78.8 61.1 76.1 71.0
CaiL ((2020a)* N 78.7 81.5 79.2 88.1 81.3 87.1 63.8 66.1 74.5
CaiL ((2020a)* Y 80.2 82.8 80.0 88.1 86.3 81.1 64.6 78.9 74.2

SPRINGDFS N 83.8 86.1 84.4 90.2 84.3 90.6 70.8 74.4 79.6
SPRINGBFS N 83.2 85.7 83.7 90.3 83.5 90.2 70.9 70.9 78.2
SPRINGPM N 83.6 86.1 84.1 90.1 83.1 90.2 71.4 72.7 79.4

BART baseline N 82.7 85.1 83.3 89.7 82.2 90.0 70.8 72.0 79.1
SPRINGDFS (base) N 82.8 85.3 83.3 89.6 83.5 89.9 70.2 71.5 79.0
SPRINGDFS +recat Y 84.5 86.7 84.9 89.6 87.3 83.7 72.3 79.9 79.7
SPRINGDFS +silver N 84.3 86.7 84.8 90.8 83.1 90.5 72.4 73.6 80.5

Table 4.2. AMR parsing results (AMR 2.0). Row blocks: previous approaches; SPRING variants;
baseline + other SPRINGDFS. Columns: model; recategorization (Y/N); Smatch; Fine-grained
scores. The best result per measure across the table is shown in bold. The best result per measure
within each row block is underlined. Models marked with */** rely on BERT Base/Large.

For AMR 3.0, which is a recent benchmark, there are no previous systems to compare

against. Thus, we train the previous state-of-the-art parsing model of Cai and Lam [2020a]

on AMR 3.0 and perform the corresponding evaluation.

Out-of-Distribution. In the OOD setting we compare the SPRINGDFS variants when

trained on AMR 2.0 and test on OOD data (New3, Bio and TLP) against the best of the

same variants trained on the corresponding ID training set when available (i.e., New3 and

Bio).

4.4 Results

We now report the results of our experiments. First, we evaluate SPRING on AMR 2.0

parsing and generation; then, we show, for the first time, the figures on the new AMR 3.0

benchmark. Finally, we tackle our proposed OOD setting.

4.4.1 AMR 2.0 Results

AMR parsing. The results on the AMR 2.0 benchmark are reported in Table 4.2. Among

the three different simple linearization models, i.e., SPRINGDFS, SPRINGBFS, and SPRINGPM,

the DFS-based one achieves the highest overall Smatch, obtaining slightly better results than
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the second-best one, the PENMAN, and a wider margin over the BFS one. All our config-

urations, however, outperform previous approaches by a large margin, with SPRINGDFS

outscoring the recategorized model of Cai and Lam [2020a] by 3.6 F1 points. The score

gains are spread over most of the fine-grained categories of Damonte et al. [2017], shown

in the third column block in Table 4.2. The only notable exceptions are wikification and

negations, where the score of SPRINGDFS is lower than that of the previous state of the

art, i.e., Cai and Lam [2020a], which handles both wiki links and negations heuristically.

When we use recategorization, i.e., in SPRINGDFS+recat, we obtain a significant boost in

performance, which is especially notable in the two above-mentioned categories. Moreover,

SPRINGDFS+recat achieves the best reported overall performance so far, i.e., 84.5 Smatch

F1 points. Regarding the other variants of SPRINGDFS, we inspect the contribution of

silver data pretraning, i.e., SPRINGDFS+silver, and notice a significant improvement over

SPRINGDFS, suggesting that warm-starting the learning is beneficial in this setting. Indeed,

the model of Ge et al. [2019], which does not exploit pretraining, performs considerably

worse. We note, however, that in addition to the powerful initialization of BART, our

extensions also provide a significant improvement over the BART baseline, ranging from 0.5

(SPRINGBFS) to 1.1 (SPRINGDFS) Smatch points. Finally, even when we limit the number

of parameters, and use BART Base instead, we outperform the previous state of the art,

obtaining 82.8 Smatch F1 points.

Finally, we compute the significance of performance differences among SPRING variants

using the non-parametric approximate randomization test [Riezler and Maxwell, 2005],

which is very conservative and appropriate for corpus-level measures. The improvement of

SPRINGDFS against SPRINGBFS and BART baseline is significant with p < 0.005, while it

is not significant when considering PENMAN linearization.

AMR generation. We report in Table 4.3 the AMR 2.0 AMR generation results. SPRINGDFS

achieves 45.3 BLEU points, improving the previous state of the art [Yao et al., 2020] by

11 points, and obtains very significant gains in chrF++ and METEOR as well. As far

as linearization is concerned, SPRINGDFS proves to be significantly stronger than both

SPRINGPM and SPRINGBFS in 3 out of the 4 measures.

This could be due to the fact that DFS is closer to natural language than BFS, and is more
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BL CH+ MET BLRT

Zhu+ (2019b) 31.8 64.1 36.4 -
CaiL (2020b) 29.8 59.4 35.1 -
Wang+ (2020) 32.1 64.0 36.1 -
Zhao+ (2020) 32.5 - 36.8 -
Mag+ (2020) 33.0 63.9 37.7 -
Yao+ (2020) 34.1 65.6 38.1 -

SPRINGDFS 45.3 73.5 41.0 56.5
SPRINGBFS 43.6 72.1 40.5 54.6
SPRINGPM 43.7 72.5 41.3 56.0

BART baseline 42.7 72.2 40.7 54.8
SPRINGDFS +silver 45.9 74.2 41.8 58.1

Table 4.3. AMR generation results (AMR 2.0). Row blocks: previous approaches; SPRING variants;
baseline +silver. Columns: measures. Bold/underline as in Table 4.2.

compact and efficient than PENMAN (see Section 4.2.2). Similarly to the AMR parsing

task results, the pretraining with silver data boosts the performance, with SPRINGDFS+silver

improving the baseline by 0.6 BLEU points. Finally, there is a big gain against the fine-tuned

GPT-2 model of Mager et al. [2020], demonstrating that using a pretrained decoder on its

own is suboptimal. As in AMR parsing, we compute the significance of results using the

non-parametric approximate randomization test. The performance gap between SPRINGDFS

and the alternatives in AMR generation, i.e., SPRINGPM, SPRINGBFS, and BART baseline,

is significant with p < 0.001.

4.4.2 AMR 3.0 Results

The results on AMR 3.0 (Table 4.4) confirm that SPRINGDFS obtains the best performance.

However, the important thing to note here is that graph recategorization, without signif-

icant human effort in expanding the heuristics,2 is not able to scale on a more diverse

benchmark such as AMR 3.0: SPRINGDFS+recat achieves lower performances than the non-

recategorized counterpart, with the exception of negations, whose heuristics are probably

more resilient to change in data distribution. Note that the harmful impact of recategorization

outside of AMR 2.0 is noticeable even with the pretrained model of Cai and Lam [2020a].
2We use the heuristics designed by Zhang et al. [2019a] which were optimized on the AMR 2.0 training set.
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CaiL (2020a) CaiL (2020a)+recat SPRINGDFS SPRINGDFS+silver SPRINGDFS+recat

AMR Parsing
Smatch 78.0 76.7 83.0 83.0 80.2

Unlab. 81.9 80.6 85.4 85.4 83.1
NoWSD 78.5 77.2 83.5 83.5 80.7
Conc. 88.5 86.5 89.8 89.5 87.7
Wiki. 75.7 77.3 82.7 81.2 77.8
NER 83.7 74.7 87.2 87.1 79.8
Reent. 63.7 62.6 70.4 71.3 69.7
Neg. 68.9 72.6 73.0 71.7 75.1
SRL 73.2 72.2 78.9 79.1 78.1

AMR Generation
BL - - 44.9 46.5 -
CH+ - - 72.9 73.9 -
MET - - 40.6 41.7 -
BLRT - - 57.3 60.8 -

Table 4.4. AMR parsing and AMR generation results on AMR 3.0. Best in bold. S[lin] = SPRING[lin].
+s/r = +silver/recat.

New3 TLP Bio

AMR Parsing
SPRINGDFS (ID) 78.6 - 79.9

SPRINGDFS 73.7 77.3 59.7
SPRINGDFS+recat 63.8 76.2 49.5
SPRINGDFS+silver 71.8 77.5 59.5

AMR Generation
SPRINGDFS (ID) 61.5 - 32.3

SPRINGDFS 51.7 41.5 5.2
SPRINGDFS+silver 50.2 40.4 5.9

Table 4.5. OOD evaluation on AMR parsing (Smatch) and AMR generation (BLEURT). Best in
bold.

4.4.3 Out-of-Distribution Results

Finally, we show in Table 4.5 the results of the evaluation on the OOD datasets. As can be

seen, there is constantly a big difference between the score achieved by the OOD models and

the best ID counterparts (see OOD paragraph in Section 4.3.4), indicated as SPRINGDFS (ID).

Interestingly enough, not using recategorization results in consistently higher performances

than using it. This is especially notable for Bio, which, in addition to being OOD with

respect to the AMR 2.0 training set, is also out-of-domain. On this dataset SPRINGDFS

(ID) model outperforms SPRINGDFS by over 20 Smatch points, and SPRINGDFS+recat by
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SPRINGDFS SPRINGDFS+recat

(1) I didn’t say he believes that.
(s / say-01
:polarity -
:ARG0 (i / i)
:ARG1 (b / believe -01
:ARG0 (h / he)
:ARG1 (t / that)))

(s / say-01
:polarity -
:ARG0 (i / i)
:ARG1 (b / believe -01
:ARG0 (h / he)
:ARG1 (t / that)))

(2) I didn’t say he said that.
(s / say-01
:polarity -
:ARG0 (i / i)
:ARG1 (s2 / say-01

:ARG0 (h / he)
:ARG1 (t / that)))

(s / say-01

:ARG0 (i / i)
:ARG1 (s2 / say-01
:polarity -
:ARG0 (h / he)
:ARG1 (t / that)))

(3) Don’t eat or drink
(o / or
:op1 (e / eat-01
:mode imperative
:polarity -
:ARG0 (y / you))

:op2 (d / drink -01
:mode imperative
:polarity -
:ARG0 y))

(o / or
:op1 (e / eat-01
:mode imperative
:polarity -
:ARG0 (y / you))

:op2 (d / drink -01
:mode imperative

:ARG0 y))

Table 4.6. Negation examples.

over 30 points. On New3, which is not out-of-domain, the difference with ID is noticeably

narrower compared to SPRINGDFS (4.9 Smatch points), but considerably larger against

the SPRINGDFS+recat. Recategorization is not as harmful in TLP, perhaps because the

text of the underlying children’s story is simpler. Differently from the results on AMR 2.0,

SPRINGDFS +silver does not show consistent improvements over SPRINGDFS. We attribute

this to the fact that the pretraining corpus, i.e., Gigaword, is similar in distribution to AMR

2.0, so that the boost in performance in AMR 2.0 benchmark comes due to overfitting on

some genres and is not general.

4.5 Analysis

Through the OOD and AMR 3.0 benchmark evaluation, we demonstrated the harmful

impact of recategorization rules based on training sets. Interestingly, across experiments,

the breakdown scores [Damonte et al., 2017] for many aspects of meaning were consistently
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better without recategorization, with the exception of negations. Negations are handled

by a commonly-used rule-based method [Zhang et al., 2019a]: :polarity attributes are

discarded during training – causing a loss of information – and are restored by i) identifying

the negated lemmas usually associated with negative polarity words such as no, not and

never; ii) aligning the lemma to the corresponding node in the graph by string-matching

heuristics; iii) adding the :polarity attribute to the aligned node. Hand-crafted rules lead

to high precision due to the frequency of common patterns. However, there are many cases

which the heuristics cannot handle correctly, while fully-learned approaches are able to,

as they do not constrain the possible outputs they produce. In Table 4.6 we contrast the

predictions of SPRINGDFS with SPRINGDFS +recat, trained on AMR 2.0, on several edge

cases which heuristics fail to handle. Example (1) shows a standard negation with don’t +

verb, which the designed heuristics handle easily. However, simply changing a word, as

in example (2), makes the rule-based system crucially depend on word-to-node alignment,

which is non-trivial when the same lemma (say) appears multiple times. Thus, in this case,

the heuristics misalign the negated occurrence of say, and introduce :polarity at a lower

level in the graph. Additionally, syntax makes it such that assumptions based on word order

may easily fail. However, even if the heuristics were rewritten to take syntax into account, it

would still be difficult to handle cases like example (3): the negation don’t takes large scope

over the conjunction, resulting in many :polarity edges in the AMR graph. Finally, while

due to space constraints the analysis here is limited to negations, similar problems tend to

appear whenever fine-grained rules are applied to the input sentence, e.g., for entities, dates

or politeness markers.

4.6 SPRING Online Services

Differently from SPRING models shown in the previous Sections, for the online services

we train separate models that differ in that i) SPRING demonstration models are trained

in the concatenation of AMR 3.0 and BioAMR corpus to increase generalizability, and

ii) SPRING demonstration models for parsing and generation share the same learnable

parameters, i.e., we train one single model to perform both tasks (refer to Equation 4.3).

We provide detailed analysis of how we evaluate the models included in SPRING Online
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Figure 4.2. User interface of the SPRING parser Results View when the English sentence "After
seeing that YouTube video I wonder, what does the fox say?" is typed as input.

Services in Appendix A.1.

In what follows we describe the functionalities of the Web interface (Section 4.6.1) and

those of the RESTful APIs (Section 4.6.2) through which we make SPRING available to the

community.

4.6.1 Web Interface

The main functionalities of the Web interface include switching between parsing and gener-

ation modalities, visual inspection of SPRING results view and the feedback mechanism we

develop to enable users to validate SPRING predictions.

The modality can be set on the initial homepage by choosing Text or PENMAN from the

Tab menu, with Text being the default option. When the Text option is chosen, the user

is required to provide a plaintext sentence and they will then be redirected to the SPRING

parser Results View (shown in Figure 4.2). On the other hand, when the PENMAN option is

chosen, the user is required to type or copy a valid AMR graph in PENMAN notation. In the

case when the PENMAN provided is valid, the user is redirected to the SPRING generator

Results View. Otherwise, when the graph is not valid, the user is notified by a warning

which points to the error line number of the PENMAN.

The Results View is similar for both parsing and generation, and we only exchange the query

(input) box and the result (output) box. It consists of the following components;
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A. Query box: As in the Modality Selector phase, also here, in the parsing modality the

query box takes as input a plaintext sentence as input, while in generation the query box

requires the input to be a valid PENMAN. A user can parse or generate from different

inputs in this view while remaining in the same modality. To switch from parsing to

generation or vice versa, the user should go back to the initial homepage.

B. Result box: When parsing a sentence, the Result box will be filled with the predicted

graph in PENMAN format. This box is editable to enable user feedback. When

generating from an AMR graph, the Result box shows the generated sentence which

can also be modified by the user and submitted to the feedback system.

C. AMR view panel: This is a key component of the Results View, which visualizes an

AMR as a hierarchical graph with labeled nodes and labeled edges. We devise a custom

node and edge layout meant to enhance readability even in the case of big graphs with a

lot of coreference edges. For example, there might be overlapping edges, edge labels or

nodes in the graph. To increase visibility, the user can click/hover on an edge or edge

label, and it will be highlighted and brought to the foreground. The same applies to

nodes, and in addition, clicking/hovering over nodes will also highlight and bring to the

foreground every incoming and outgoing edge, thus identifying all the local relations

of a concept. The graph view is resizeable in order to better handle big AMR graphs,

and the user is also able to zoom in/out for ease of reading. There are 4 types of node,

indicated by different colors, comprising: i) predicate concept nodes, ii) non-predicate

concept nodes, iii) constant nodes and iv) wiki nodes. Both predicate and non-predicate

nodes are labeled with a variable name and the concept they represent. The variable

makes it easy to locate the node in the PENMAN box on the left Panel.

Futhermore, both predicate and wiki nodes are associated with an onhover/onclick

tooltip box that further defines them. The tooltip associated with the wiki node contains

information taken from the corresponding BabelNet3 Navigli and Ponzetto [2010];

Navigli et al. [2021] concept, displaying a short entity description and image (when

applicable), also redirecting the user to the corresponding BabelNet page when clicking

on it. This choice is motivated by the fact that BabelNet concepts function as a hub of
3Version 5.0.
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information beyond that of Wikipedia, which paves the way for future integration of

other resources in AMR. The tooltip of the predicate node, instead, provides details on

the predicate definition and arguments taken from the PropBank framesets Palmer et al.

[2005]. In addition, we display an example sentence containing the predicate in the

specified sense. The user is redirected to the PropBank predicate page when clicking the

tooltip. We mean the extra information shown by the tooltip component to be useful for

the user to identify potential parsing mistakes in the output of the system, and ideally to

use the provided feedback mechanism to suggest corrections.

Finally, one key functionality of SPRING Online Services that requires user interaction is

the Feedback Mechanism. It is included in both parsing and generation modalities. With this

feature, we aim to obtain a manual validation of SPRING output graphs or sentences, aided

by the visualization. More specifically, when a user recognizes a mistake of the SPRING

parser, including both missing or extra nodes and edges, or wrongly labeled ones, they

are allowed to suggest modifications. In SPRING parser modality, multiple modifications

are allowed in the left-panel PENMAN box, which are updated simultaneously in the

right AMR view panel when the UPDATE button is pressed, and a user can then navigate

through their own modifications by means of the Prev and Next buttons. To submit a

final modification request, a user is provided with the SUGGEST AN EDIT button. The

modifications are accepted if they lead to a correctly-formed graph. When this is the case,

we save the modification request in a database for further validation. In contrast, when a

mistake is found the user is warned about the line in PENMAN where it occurs. In the

SPRING generator instead, only the predicted sentence is allowed to be modified, assuming

that the input graph by the user is correct and does not need further modification. If this is

not the case, the user can query the system with another AMR to obtain a new result. This

feedback mechanism paves the way to future advancements in the field:

• enabling the use of active learning for improving system performance;

• collecting human validated SPRING output which can be further used as synthetic

data for enhancing AMR systems;

• providing evidence of common SPRING mistakes which can aid studies on interpre-

tation and reinforcement of AMR systems’ knowledge.
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Since data collection requires time and considerable interaction of users with our services,

we leave the exploration of methods for including such data in AMR tasks as future work.

Moreover, we plan to release the accumulated data periodically and on-request to the

community.

4.6.2 RESTful APIs

The RESTful APIs we provide can be used effectively to query the SPRING services

programmatically. Our APIs are simple and, differently from our Web interface, do not

allow modification requests of the SPRING output. The APIs can be accessed through GET

or POST requests. In fact, the APIs consist of two endpoints, namely, /api/text-to-amr

and /api/amr-to-text, to parse into or generate from an AMR graph, respectively. The

former requires a sentence string parameter and the output is a JSON object containing the

PENMAN graph, while the latter expects a valid string serialized PENMAN graph, and the

response is a JSON object containing the sentence. To ease the usage of the RESTful APIs,

the full documentation is accessible through the SPRING Web interface, i.e., API-Doc from

the header menu bar.

4.7 Summary

In this Chapter we presented a simple, symmetric approach for performing state-of-the-

art AMR parsing and AMR generation with a single seq-to-seq architecture. To achieve

this, we extend a Transfomer encoder-decoder model pretrained on English text denoising

to also work with AMR. Furthermore, we put forward a novel AMR graph DFS-based

linearization which, in addition to being more compact than its alternatives, does not incur

any information loss. Most importantly, we drop most of the requirements of competing

approaches: cumbersome pipelines, heavy heuristics (often tailored to the training data),

along with most external components. Despite such cutting down on complexity, we

strongly outperform the previous state of the art on both parsing and generation, reaching

83.8 Smatch and 45.3 BLEU, respectively. We also propose an Out-of-Distribution setting,

which enables evaluation on different genres and domains from those of the training set.

Thanks to this setting, we are able to show that the integration of recategorization techniques
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or silver data – popular techniques for boosting performances – harm the performances

in both parsing and generation. Employing a simpler approach like ours, based on lighter

assumptions, allows for more robust generalization. Here we show the generalizability of

the models on different data distributions and across domains, while leaving the extension

across languages as in Blloshmi et al. [2020] for future work. Finally, we invite the

community to use the OOD evaluation to enable the development of more robust automatic

AMR approaches. Furthermore, we believe our contributions will open up more directions

towards the integration of parsing and generation. To this end, we also make available

SPRING Online Services, with which we bring state-of-the-art AMR systems into the

hands of the community, providing a highly interactive interface and easily integrable APIs.

We release our software at https://github.com/SapienzaNLP/spring and SPRING

Online Services at http://nlp.uniroma1.it/spring.

https://github.com/SapienzaNLP/spring
http://nlp.uniroma1.it/spring
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Chapter 5

AMR as an Interlingua
Abstract

Abstract Meaning Representation is agnostic about how to derive meanings from strings and
for this reason it lends itself well to the encoding of semantics across languages. However,
cross-lingual AMR parsing is a hard task, because training data are scarce in languages other
than English and the existing English AMR parsers are not directly suited to being used in a
cross-lingual setting. In this Chapter we tackle these two problems so as to enable cross-lingual
AMR parsing: we explore different transfer learning techniques for producing automatic AMR
annotations across languages and develop a cross-lingual AMR parser, XL-AMR. This can be
trained on the produced data and does not rely on AMR aligners or source-copy mechanisms as is
commonly the case in English AMR parsing. The results of XL-AMR significantly surpass those
previously reported in Chinese, German, Italian and Spanish. Finally we provide a qualitative
analysis which sheds light on the suitability of AMR across languages. We release XL-AMR at
https://github.com/SapienzaNLP/xl-amr.

Source: This Chapter is based on our EMNLP 2020 paper [Blloshmi et al., 2020]:
XL-AMR: Enabling Cross-Lingual AMR Parsing with Transfer Learning Techniques.

5.1 Overview

Due to its flexibility, Abstract Meaning Representation (AMR) started gaining popularity

not only in English but also in other languages. However, AMR was initially designed for

encoding the meaning of English sentences and made extensive use of PropBank, which is

not available in many languages. In addition to that, the available resources and modeling

techniques focused mainly on English while leaving cross-lingual abilities of AMR parsing

understudied. Damonte and Cohen [2018] proposed the task of cross-lingual AMR parsing,

which uses English-centric AMR as an interlingua, i.e., to represent parallel or comparable

sentences across languages using the same AMR structure, where nodes are either English

https://github.com/SapienzaNLP/xl-amr
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words, PropBank framesets or special AMR keywords. Even after this proposal, cross-

lingual AMR parsing received relatively less attention. This lack of interest could be mainly

attributable to the lack of training data and evaluation benchmarks in languages other than

English. At the time, Damonte and Cohen [2018] put forward the only cross-lingual parser

and, two years later, they released a cross-lingual AMR evaluation benchmark [Damonte

and Cohen, 2020]. The authors adapted a transition-based English AMR parser [Damonte

et al., 2017] for cross-lingual AMR parsing, which relied on word-to-word and word-to-node

automatic alignments and was trained on silver annotated data. Nevertheless, the perfor-

mances it achieved were not satisfying in terms of Smatch score [Cai and Knight, 2013],

mostly as a result of concept identification errors, which in turn were directly related to the

usage of noisy word-to-node alignments projected from English. In this context, to address

the gaps in cross-lingual AMR research, we presented XL-AMR [Blloshmi et al., 2020].

Furthermore, owing to the large success of the sequence-to-graph transduction models at

the time, XL-AMR follows the same learning paradigm as the state-of-the-art models at the

time of writing [Zhang et al., 2019a,b].

In this Chapter, we detail XL-AMR, a cross-lingual AMR parser aided by different transfer

learning techniques: i) model transfer which relies on language-independent features,

ii) annotation projection relying on parallel corpora and available English AMR parsers, and

iii) automatic translation of the training corpora which guarantees gold AMR structures.

The contributions of this work are:

• Development and release of XL-AMR, a cross-lingual AMR parser which disposes

of word aligners, i.e., word-to-word and word-to-node, and surpasses the previously

reported results on Chinese, German, Italian and Spanish, by a large margin.

• Exploration of different techniques to create cross-lingual AMR training data, showing

that it is possible to transfer semantic structure information across different languages.

• Creation and release of diverse quality silver data for cross-lingual AMR parsing.

• Qualitative analysis of the ability of XL-AMR to transfer semantic structures across

languages and of AMR to represent the meaning of sentences cross-lingually.
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5.2 Methodology

In what follows we first formalize the task (Section 5.2.1) and then detail our cross-lingual

AMR parser (Section 5.2.2) and our proposed silver data creation methods (Section 5.2.3).

Finally, we list the pre- and postprocessing cross-lingual techniques and resources we

employ (Section 5.2.4).

5.2.1 Cross-lingual AMR

Cross-lingual AMR parsing is defined as the task of transducing a sentence in any language

to the AMR graph of its English translation whose nodes are either English words, PropBank

framesets [Kingsbury and Palmer, 2002] or special AMR keywords.

Breaking down this definition, given an English sentence and its translation TL in a language

L, their meaning representation is ideally formalized by the same AMR, G = (V,E), where

V is a list of concept nodes andE is the set of semantic relations between them. Figure 5.1-A

shows an example of a sentence in English, with its translations into Chinese, German, Italian

and Spanish which have the same meaning and therefore the same abstract representation

(Figure 5.1-C). Following state-of-the-art models for English AMR parsing [Zhang et al.,

2019a], we tackle cross-lingual AMR parsing as a two-stage approach, i.e., concept and

relation identification, which we briefly overview here and later detail in Section 5.2.2. For

concept identification, given the sequence TL = (t1, t2, . . . , tj), ti being a word in language

L (i ∈ {1, . . . , j}, L ∈ {EN, DE, ES, IT, ZH}), we train a neural network to generate

the list of nodes V = (v1, v2, . . . , vn), vi ∈ English words ∪ PropBank framesets ∪

AMR keywords. In Figure 5.1-B we show the list of concepts that represent the words in the

sentences of Figure 5.1-A. The relation identification procedure, instead, is inspired by the

arc-factored approaches employed in dependency parsing [Kiperwasser and Goldberg, 2016],

i.e., searching for the maximum-scoring connected subgraph over the identified concepts in

the previous step. Thus, given the list of predicted nodes V = (v1, v2, . . . , vn) and a learned

score for each candidate edge, we search for the highest-scoring spanning tree and then

merge the duplicate nodes based on unique node indices (see Section 5.2.2) to restore the

final AMR graph. Figure 5.1-C shows the AMR representing the shared semantics of the

sentences in Figure 5.1-A.
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be-located-at-91 city Tel_Aviv name Tel Aviv

relative-position territory country Iran name

Iran less-than 650 mile

(B)	Concept	Identification
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(C)	Relation	Identification

The	city	of	Tel	Aviv	is	fewer	than
650	miles	from	Iranian	territory.

La	città	di	Tel	Aviv	dista	meno	di	650
miglia	dal	territorio	iraniano.

La	ciudad	de	Tel	Aviv	está	a	menos	de
1.046	km	del	territorio	iraní.

Die	Stadt	Tel	Aviv	ist	weniger	als	650	Meilen
vom	iranischen	Territorium	entfernt.

EN

ES

DE

以⾊列最⼤的都会区特拉维夫市距离伊朗领
⼟不到650英⾥。

ZH

IT

(A)	Parallel	Sentences

Figure 5.1. Cross-Lingual AMR Parsing: (A) Sentences written in different languages sharing the
same meaning; (B) concepts representing the words in the sentences; (C) the final AMR graph.

5.2.2 XL-AMR Model

XL-AMR is composed of two modules which are learned jointly, i.e., concept identification,

modeled as a seq-to-seq problem, and relation identification, based on a biaffine attention

classifier [Dozat and Manning, 2017]. We use a seq-to-seq model to dispose of the need

for an AMR alignment module, i.e., word-to-node alignments. Lyu and Titov [2018] argue
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that alignments are important for injecting a useful inductive bias for AMR parsing and

maintain that alignment-based parsers might be better than seq-to-seq for AMR parsing,

owing to the relatively small amount of data available for AMR. However, aligning words

to AMR nodes in cross-lingual parsing is challenging. The widely used AMR aligners are

usually based on heuristics [Flanigan et al., 2014], or on the fact that AMR and English

are highly cognate [Pourdamghani et al., 2014]. Hence, these approaches would not scale

at large and neither be valid for cross-lingual alignment. Moreover, projecting the align-

ments across languages through English has shown to be noisy and to affect the parsing

performance [Damonte and Cohen, 2018].

Concept identification At training time we obtain the list of nodes by first converting the

graph into a tree, duplicating the nodes occurring in multiple relations, and then using a

pre-order traversal over the tree. To account for reentrancies we assign a unique index to

each node during traversal, similarly to Zhang et al. [2019a]. Following the attention-based

encoder-decoder architecture proposed by Bahdanau et al. [2015], our concept identification

module consists of a bidirectional RNN encoder and a decoder that attends to the source

sentence at each concept decoding step.

The encoder employs anL-layer bidirectional RNN [Schuster and Paliwal, 1997] with LSTM

cells [Hochreiter and Schmidhuber, 1997], i.e., BiLSTM, which encodes the input token

embeddings ei into hidden states hi. Each hidden state hli = [
−→
hli ;
←−
hli ], is a concatenation of

the forward hidden state and the backward hidden state at timestep i. Similarly to Zhang

et al. [2019a], the input token embedding ei is a concatenation of contextualized embeddings,

word embeddings, Part-of-Speech (PoS) embeddings, token anonymization indicator1 and

character-level embeddings. The subsequent BiLSTM layer, instead, takes the hidden states

of the previous layer as input.

The decoder also consists of L recurrent neural network (unidirectional) layers with LSTM

cells. The decoder embedding layer concatenates word embeddings, node index embeddings

and character-level embeddings. The layer l of the decoder calculates

dlt = decoderl(dl−1
t , dlt−1)

1Tokens representing named entities are anonymized during preprocessing and restored in postprocessing
(Section 5.2.4).



5.2 Methodology 74

where dl−1
t is the concept hidden state of the previous layer at timestep t while dlt−1 that

of previous timestep. dl0 is initialized with the concatenation of the encoder’s last hidden

states hl = [
−→
hl ;
←−
hl ]. We follow the input feeding approach of Luong et al. [2015], which

concatenates the output of the decoder’s embedding layer and an attentional vector computed

at the previous timestep. We first compute the source attention distribution at using additive

attention [Bahdanau et al., 2015] as follows:

et,i = v>tanh(Whh
L
i +Wsd

L
t + bs)

at = softmax(et)

ct =
∑
i

at,ihi

where v, Wh, Ws and bs are model parameters, and ct is the source context vector. Then,

we compute the attentional vector,

d̃t = tanh(Wc[ct; dLt ] + bc)

where Wc and bc are model parameters. Zhang et al. [2019a] used the attentional vector to

allow the decoder to copy nodes predicted in the previous steps (target-copy), rather than

only generating a new node from the vocabulary. As they provide empirical evidence that

this is crucial for handling reentrancies, we employ their target-copy approach and use the

attentional vector d̃t to:

i) feed in a dense layer and softmax to produce a probability distribution over the

vocabulary Pvocab = softmax(Wvocabd̃t + bvocab);

ii) to learn a target attention distribution ât (similar to the source attention distribution

above);

iii) to calculate pcopy and pgenerate probabilities that decide either to copy one of the

previously predicted nodes by sampling a node from the target attention distribution

ât, or to generate a new node from the output vocabulary.

Each newly generated node is assigned a unique index, or it is assigned the index of the

node copied from the previously generated concepts. At prediction time, we employ a beam
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search to decode the list of nodes based on the probability distribution computed above.

Relation identification For this module, we follow Zhang et al. [2019a] and use a deep

biaffine classifier inspired by Dozat and Manning [2017], which takes as input the decoder

states and factorizes the edge prediction in two components predicting i) whether there is

an edge between a pair of nodes, and ii) the edge label for each possible edge, respectively.

We direct the reader to Zhang et al. [2019a] and Dozat and Manning [2017] for technical

details on the biaffine attention classifier. At prediction time, to ensure the validity of the

tree, given the list of predicted nodes and the score for candidate edges, we search for the

highest-scoring spanning tree using the Chu-Liu-Edmonds algorithm. We then merge the

duplicate nodes based on the node indices to restore the final AMR graph.

The model is trained to jointly minimize the loss of reference nodes and edges.

5.2.3 Silver Data Creation

In order to train the cross-lingual AMR parser and to evaluate the cross-lingual properties

of AMR as an interlingua, we project existing AMR annotations for English sentences to

target language sentences following two different approaches.

Parallel sentences - silver AMR graphs. We follow Damonte and Cohen [2018] and

project AMR graphs from English sentences to target language sentences through a parallel

corpus. Differently from Damonte and Cohen [2018], we do not need word-to-word and

word-to-node aligners for training the concept identification module, since we rely on a

seq-to-seq translation model. Indeed, we directly pair a sentence in the target language with

the AMR graph corresponding to its English counterpart. In this case, while the sentences

are parallel, the AMR graphs are of silver standard quality, i.e., the English sentences of

the parallel corpus are parsed using an existing AMR parser. We refer to this method as

PARSENTS-SILVERAMR.

Gold AMR graphs - silver translations. In addition to pivoting through parallel sen-

tences, we investigate whether considering human-annotated AMR graphs could bring more

benefits than system produced AMR graphs. To this end, we make use of the existing

gold standard datasets for AMR parsing, i.e., English sentence-AMR graph pairs, and use
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machine translation systems to translate the training sentences into the target language. This

choice is motivated by the existence of reliable machine translation systems for the languages

of our interest. Moreover, we validate the silver translations through a back-translation step

[Sennrich et al., 2016]. That is, firstly, we translate the sentences from English to the target

language and, secondly, using the same neural translation model, we translate the target

language translations back to English. Then, to filter out less accurate translations we apply

a 1-NN strategy based on the cosine similarity between translations and source sentence

semantic embeddings, similarly to Artetxe and Schwenk [2019a]. If the nearest neighbour

of a translation corresponds to its source English sentence, we consider it a good translation,

otherwise we discard it. We employ semantic similarity since we have a two-step automatic

translation, due to which lexical differences are introduced into translations compared to

the original sentence. Typical machine translation metrics, e.g., BLEU or METEOR, rely

on lexical similarity, which could lead good translations being discarded. In fact, we do

not need the translation to be word-to-word aligned, but rather to preserve the meaning of

the sentence, thus considering valid also the cases when certain words are translated into

synonyms or related words. We refer to this method as GOLDAMR-SILVERTRNS.

5.2.4 Pre- and Postprocessing

AMR parsers in the literature rely on several pre- and postprocessing rules. We extend these

rules for the cross-lingual AMR parsing task based on several multilingual resources such as

Wikipedia, BabelNet [Navigli and Ponzetto, 2010; Navigli et al., 2021] 2, DBpedia Spotlight

API [Daiber et al., 2013] for wikification in all languages but Chinese, for which we use

Babelfy [Moro et al., 2014] instead, Stanford CoreNLP [Manning et al., 2014] for English

preprocessing pipeline, the Stanza Toolkit [Qi et al., 2020] for Chinese, German and Spanish

sentences, and Tint3 [Aprosio and Moretti, 2016] for Italian.

The preprocessing steps consist of: i) lemmatization, ii) PoS tagging, iii) NER, iv) recat-

egorization of entities and senses, v) removal of wiki links and polarity attributes. The

postprocessing steps consist of restoring i) anonymized subgraphs, ii) wikification, iii) senses,

iv) polarity attributes.
2Version 4.0
3Stanza does not provide a NER model for Italian.
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Preprocessing. As NLP pipelines (steps i-iii) we use Stanford CoreNLP [Manning et al.,

2014] for English sentences, the Stanza Toolkit [Qi et al., 2020] for Chinese, German and

Spanish sentences, and Tint 4 [Aprosio and Moretti, 2016] for Italian. Recategorization

and anonymization of entities is often used in English AMR parsing to reduce data spar-

sity [Zhang et al., 2019a; Lyu and Titov, 2018; Peng et al., 2017; Konstas et al., 2017].

Here we follow Konstas et al. [2017]; Zhang et al. [2019a] and anonymize entity subgraphs,

which are identified by an AMR entity type and the :name role. First, the entity subgraphs

are mapped with the corresponding text span in the sentence and then the text span is

replaced with the anonymized token, i.e., ENTITY_TYPE_i. To match the entities in the

AMR graphs, which are tied to English, with the corresponding text span in non-English

sentences, we first collect all the possible lexicalizations of the entity in the target language

using BabelNet [Navigli and Ponzetto, 2010]. It is a multilingual semantic network which

brings together different resources such as WordNet, Wikipedia, etc., each node of which

clusters together the lexicalizations that express the same concept in different languages.

Then we search for the possible text spans in the sentence written in the target language. At

test time, we anonymize the text spans which have been identified during the training data

preprocessing and which are tagged by the NER tagger as entities.

Postprocessing. The anonymized subgraphs are restored using the anonymized text spans

created during preprocessing. Then wiki links are restored using the DBpedia Spotlight

API 5 [Daiber et al., 2013], commonly used in English AMR parsing [van Noord and Bos,

2017; Zhang et al., 2019a; Ge et al., 2019]. It provides models for multiple languages,

except Chinese, for which we use Babelfy [Moro et al., 2014] Entity Linker. Since the

wiki links identified by DBpedia Spotlight API are language-specific to the text, we further

use Wikipedia inter-language links to retrieve the corresponding wiki links for the English

entities. We restore senses as the most frequent sense of the predicate in the training data

(using -01 if unseen), similar to Lyu and Titov [2018]; Zhang et al. [2019a], and finally

restore polarity attributes based on heuristic rules observed on the training data and linguistic

rules specific to each language.
4Stanza does not provide a NER model for Italian.
5http://github.com/dbpedia-spotlight/spotlight-docker.

http://github.com/dbpedia-spotlight/spotlight-docker
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DATASET LANGUAGE TRAIN INSTANCES DEV INSTANCES SOURCE

Gold EN 36521 1368 AMR 2.0

PARSENTS

SILVERAMR

DE 20000 2000 Europarl
EN 20000 2000 Europarl
ES 20000 2000 Europarl
IT 20000 2000 Europarl

GOLDAMR

SILVERTRNS

DE 34415 1319 AMR 2.0
ES 34552 1325 AMR 2.0
IT 34521 1322 AMR 2.0
ZH 32154 1276 AMR 2.0

Table 5.1. Dataset quality standard, instances per language, and the source corpus of the sentences.

5.3 Experiments

We now present a set of experiments for cross-lingual AMR parsing when using different

training techniques and the silver data we created (see Section 5.2.3). We discuss the results

of our multiple settings and compare with previous approaches performing cross-lingual

AMR parsing.

5.3.1 Dataset Creation Details

In Section 5.2.3, we explained the two projection approaches for obtaining cross-lingual

AMR data, i.e., PARSENTS-SILVERAMR and GOLDAMR-SILVERTRNS.

For the first approach, inspired by Damonte and Cohen [2018], and for comparison purposes,

we choose Europarl as parallel corpus.6 We predict the silver AMR using the model of

Zhang et al. [2019a].

For the second approach, instead, i.e., GOLDAMR-SILVERTRNS, we choose AMR 2.0 as

gold dataset and translate the sentences into Chinese, German, Italian and Spanish. For

German, Italian and Spanish, for both translating and back-translating the sentences we

use the machine translation models made available by Tiedemann and Thottingal [2020,

OPUS-MT].7 For Chinese, instead, since OPUS-MT does not provide translation models,

we employ the released MASS 8 [Song et al., 2019b] supervised neural translation models.

Then, to filter out less accurate translations, we compute the cosine similarity between dense
6We do not produce silver AMR graphs for Chinese since Europarl does not cover the Chinese language.
7We provide the list of models we used in Appendix B.1.
8http://github.com/microsoft/MASS/tree/master/MASS-supNMT

http://github.com/microsoft/MASS/tree/master/MASS-supNMT
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semantic representations of the original English sentence and its back-translated counterpart.

To embed the sentences we use LASER [Artetxe and Schwenk, 2019b], a state-of-the-art

model for sentence embeddings. Details on the number of instances per language and for

each silver data approach are shown in Table 5.1.

5.3.2 Evaluation Benchmark

We evaluate on the Abstract Meaning Representation 2.0 - Four Translations [Damonte and

Cohen, 2020], a corpus containing translations of the test split of 1371 sentences from the

LDC2017T10 (AMR 2.0), in Chinese (ZH), German (DE), Italian (IT) and Spanish (ES).

5.3.3 Evaluation Metrics

Evaluating the performance of the parser requires comparing two unaligned graphs. Similar

to Chapter 4, we evaluate the systems according to the overall Smatch score and also their

performance in separate phenomena. Briefly summarizing, Smatch [Cai and Knight, 2013]

computes the degree of overlap of two AMR graphs in terms of logical triples overlap. 9

Since the two graphs are not aligned, an integer programming technique is required to

approximate the best match, which best aligns the variables whose names could differ

between two AMR graphs. To compare multiple predicated AMRs and the gold AMRs, the

macro-averaged F1 is used.

In addition to the aggregated Smatch metric, we evaluate the parsers using the AMR-

evaluation tools 10 developed by Damonte et al. [2017] through which we can perform a

fine-grained analysis based on several separate phenomena, e.g., SRL, reentrancy.

5.3.4 Training and Tuning

We train XL-AMR following different strategies:

• Zero-shot – the model is trained on English sentences only, relying on multilingual

features, and is evaluated on all the target languages (henceforth ∅-shot).

• Language-specific – the model is trained only on target language data, i.e., DE, ES,

IT or ZH, and evaluated in the same language.
9http://github.com/snowblink14/smatch

10http://github.com/mdtux89/amr-evaluation

http://github.com/snowblink14/smatch
http://github.com/mdtux89/amr-evaluation
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• Bilingual – the model is trained on English data and one of either DE, ES, IT or ZH,

and evaluated in the target language.

• Multilingual – the model is trained on data from all available languages per setting

and evaluated on the target languages.

We denote these variations of XL-AMR, as XL-AMRdata where, data ∈ {par, trans, amr},

par referring to the data produced with PARSENTS-SILVERAMR approach, trans to

GOLDAMR-SILVERTRNS approach, amr to the AMR 2.0 English gold standard, and

data+ refers to combining par or trans with amr. We provide details of our model

hyperparameters in Appendix B.2.

5.3.5 Comparison Systems

We first compare all the XL-AMR system variations among them, identifying their advan-

tages and disadvantages. Then, we compare with Damonte and Cohen [2018, AMREAGER

Multilingual] (henceforth AMREAGER), the only existing cross-lingual AMR parser at the

time of writing. In particular, we compare the results of the XL-AMR variants with the

projection method of AMREAGER on the gold dataset, i.e., AMR 2.0 - Four Translations.

We remark that we do not consider the results of their Machine Translation11 method, since,

as emphasised by the authors, it is not informative in terms of cross-lingual properties of

AMR [Damonte and Cohen, 2018] because it performs English AMR parsing.

5.4 Results

In Table 5.2 we show performance of the models in terms of Smatch. We point out the

low score of the ∅-shot models, i.e., XL-AMRamr∅ and XL-AMR
par+
∅ , which perform lower

than AMREAGER, especially in the Chinese language. However, XL-AMR
par+
∅ noticeably

improves over XL-AMRamr∅ , which can be explained by the fact that seq-to-seq requires a

large amount of data in order to generalize. This is confirmed by a fine-grained analysis

showing lower accuracy of XL-AMRamr∅ compared to XL-AMR
par+
∅ in concept identification,

which, we recall, is a seq-to-seq module.
11It translates the test sentences from the target language to English and parses the translations using an

English parser.
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PARSER CONFIGURATION DE ES IT ZH

AMREAGER Language-Specific 39.0 42.0 43.0 35.0

XL-AMRamr∅ ∅-shot 32.7 39.1 37.1 25.9
XL-AMR

par+
∅ ∅-shot 38.3 41.8 41.0 23.9

XL-AMRpar
Language-Specific 40.8 44.2 43.4 -
Multilingual 41.5 45.6 45.0 -
Bilingual 42.7 47.9 46.7 -

XL-AMRpar+
Multilingual 46.3 51.2 50.9 -
Bilingual 47.0 53.0 51.4 -

XL-AMRtrans
Language-Specific 51.6 56.1 56.7 43.1
Multilingual 49.9 53.0 54.0 40.0
Multilingual (-ZH) 51.5 55.5 55.9 -

XL-AMRtrans+
Multilingual 49.9 53.2 53.5 41.0
Multilingual (-ZH) 52.1 56.2 56.7 -
Bilingual 53.0 58.0 58.1 41.5

Table 5.2. Smatch F1 scores on DE, ES, IT and ZH. Best scores per language are denoted in bold.

Interestingly, the language-specific XL-AMRpar, even if trained on less instances, outper-

forms the ∅-shot models by a large margin. Moreover, it also surpasses AMREAGER, which

is trained on the same sentences from Europarl. The results are further improved when

jointly training in multiple languages, i.e., when using the multilingual and bilingual config-

urations. We attribute this improvement to the ability of a seq-to-seq model to learn better

when provided with a larger training set. The domain of the Europarl data is very specific,

which does not enable the model to generalize in sentences from other domains. In fact, the

XL-AMRpar+ models significantly improve over the XL-AMRpar bilingual and multilingual

models. We attribute the higher performances of XL-AMRpar+ to i) larger training dataset,

ii) training on different domains, and iii) better quality of the data (AMR 2.0 data is human

annotated).

The XL-AMRtrans models perform best: we note that the performances of the language-

specific variants outperform those of the multilingual XL-AMRtrans models, in contrast

to the behaviour of the XL-AMRpar models, suggesting that the addition of silver data in

other languages is not beneficial. This may be due to the fact that the AMR graphs of

translated sentences are the same, thus as a consequence the model does not access extra

information. Moreover, the inclusion of translated sentences in other languages slightly
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AMREAGER XL-AMRpar+ XL-AMRtrans+

Metric DE ES IT ZH DE ES IT ZH DE ES IT ZH

SMATCH 39.1 42.1 43.2 34.6 47.0 53.0 51.4 - 53.0 58.0 58.1 43.1

Unlabeled 45.0 46.6 48.5 41.1 52.0 58.3 57.1 - 57.7 63.0 63.4 48.9
No WSD 39.2 42.2 42.5 34.7 47.1 53.2 51.5 - 53.2 58.4 58.4 43.2
Reentrancies 18.6 27.2 25.7 15.9 33.6 40.1 39.2 - 39.9 46.6 46.1 34.7
Concepts 44.9 53.3 52.3 39.9 48.7 58.0 55.6 - 58.0 65.9 64.7 48.0
Named Ent. 63.1 65.7 67.7 67.9 63.1 61.6 62.7 - 66.0 66.2 70.0 60.6
Wikification 49.9 44.5 50.6 46.8 61.4 63.8 66.1 - 60.9 63.1 67.0 54.5
Negation 18.6 19.8 22.3 6.8 8.1 21.5 25.7 - 11.7 23.4 29.2 12.8
SRL 29.4 35.9 34.3 27.2 40.8 48.7 46.7 - 47.9 55.2 54.7 41.3

Table 5.3. Fine-grained F1 scores DE, ES, IT and ZH. Best scores per language are denoted in bold.

harms the performances. This is confirmed by the removal from the training set of the

most distant language, in the multilingual (-ZH) model, which in turn achieves around 2 F1

points more compared to the multilingual version including Chinese. This can be further

explained by the linguistic differences between Chinese and the other languages, which

prevent them from benefiting from the inclusion of Chinese instances in the training set.

However, when adding English gold AMR 2.0, i.e., XL-AMRtrans+, the model benefits from

the better quality of this dataset. In fact, the bilingual version of XL-AMRtrans+ is the best

performing across the board in German, Spanish and Italian, surpassing AMREAGER by at

least 14 F1 points and both XL-AMRpar and XL-AMRpar+ by at least 5 F1 points in each

language. Interestingly, the best results in Chinese are achieved by the language-specific

XL-AMRtrans surpassing AMREAGER by 8 F1 points and the ∅-shot models by more than 17

F1 points. This is once again explained by the linguistic differences of Chinese as compared

to the other languages, which render the additional data non-beneficial.

5.4.1 Fine-grained Results

Table 5.3 shows the fine-grained evaluation of AMREAGER and our best performing models

for each data creation approach, for which we use the evaluation tools of Damonte et al.

[2017]. The fine-grained results for the AMREAGER are not reported by Damonte and

Cohen [2018], therefore we run the evaluation using their released models.12 Our best model

outperforms AMREAGER in all sub-tasks except for Negations in German and Named Entities

12http://github.com/mdtux89/amr-eager-multilingual

http://github.com/mdtux89/amr-eager-multilingual
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in Chinese, which are prone to heuristic string matching errors in the pre- and postprocessing

procedure of our models. XL-AMRtrans+ achieves significantly higher performance in

Reentrancies, Concepts, SRL, in all the tested languages, compared to AMREAGER, thus

demonstrating the effectiveness of our parser and data creation approaches.

In summary, translating the gold standard training data, i.e., GOLDAMR-SILVERTRNS,

leads XL-AMR to achieve higher performances than when trained on parallel sentences

associated with silver AMR graphs, i.e., PARSENTS-SILVERAMR.

5.5 Analysis

We manually check the predictions of XL-AMR in order to establish the nature of the mis-

takes based on the Smatch score between the gold and predicted AMR graphs and determine

their severity. Then, we observe how XL-AMR handles the translation divergences, i.e.,

linguistic distinctions that make transfer across languages difficult [Dorr, 1994].

5.5.1 Smatch Errors

The parser has difficulties with some compounded words in German, e.g., Uranproduktions-

fähigkeit (uranium production capability), Kernkraftstoffkreislauf (nuclear fuel cycle), for

which it fails to break their meaning down to the correct subgraph (a), but instead predicts a

generic node (b).

(a)

( c / c y c l e −02

:ARG1 ( f / f u e l

: mod ( n / n u c l e u s ) ) )

(b)

( t / t h i n g )

This issue can be alleviated using a better preprocessing to split the compounds.

Several cases with low Smatch score are due to inconsistent translations of test set sentences

into the target language, even though, we recall, the test set has been manually translated.

This could be due to translator choices, but can lead to divergent meaning structures, e.g.,

Ich kann verstehen, wie Du Dich fühlst (DE) (I can understand how you are feeling) whose

original English sentence from which the AMR graph is projected is I know what you’re
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feeling. The gold AMR graph is thus not appropriate for the German sentence, due to

the sentence’s different meaning. Thus these mistakes are not due to the parser, but to

the translations. An interesting cause of drop in the Smatch arises from the prediction of

concepts that are synonyms of the corresponding concepts in the gold graph, e.g., say-01→

state-01, stop-01→ halt-01, best friend→ best mate, demand-01→ urge-01, etc. We notice

that the predicted concepts (to the left of the arrow) are less specific than the gold concepts,

yet somehow preserve the meaning. These examples show that the parser captures a close

meaning even when failing to predict the exact concept.

5.5.2 Translation Divergences

We investigate how XL-AMR deals with the cases where there exist translation divergences,

i.e., cases in which source and target language have different syntactic ordering properties

[Dorr, 1990], as classified by Dorr [1994] using the following 7 categories: i) thematic,

ii) promotional, iii) demotional, iv) structural, v) conflational, vi) categorial, vii) lexical.13

Thematic divergence. A thematic divergence happens when the argument-predicate struc-

ture is different across languages, e.g., I like travelling where I is the subject, in Italian

becomes Mi piace viaggiare, and Mi is now the object. XL-AMR overcomes this divergence

and predicts the correct AMR:

( l / l i k e −01

:ARG0 ( i / I )

:ARG1 ( t / t r a v e l

:ARG0 i ) )

Promotional & demotional. These two divergences can be merged into the head switch-

ing macro-category. They arise when a modifier in one language is promoted to a main verb

in the other, or vice versa, e.g., John usually goes home is Juan suele ir a casa (John is

accustomed to go home) in Spanish. XL-AMR correctly parses the sentence as:

13In absence of a larger available resource for language divergences, here we make use of some of the
pre-classified examples from Dorr [1990, 1994].
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( g / go −01

:ARG0 ( p / p e r s o n

: name ( n / Juan ) )

:ARG4 ( h / home )

: mod ( u / u s u a l ) )

Structural. A structural divergence exists when a verbal object is realized as a noun

phrase (NP) in one language and as prepositional phrase (PP) in the other, e.g., I saw John

where John is NP, is translated as Vi a Juan (I saw to John) in Spanish where a Juan is PP.

This also is not a problem for our parser, which predicts the correct graph:

( s / see −01

:ARG0 ( i / I )

:ARG1 ( p / p e r s o n

: name ( n / Juan ) ) )

Conflational. A conflational divergence refers to the translation of two or more words in

one language into one word in the other. The above errors in German compounded words

fall into this category and our model does not handle them properly. However, regarding

other languages this problem is not common, e.g., I fear translates into Io ho paura (I have

fear) in Italian and the parser correctly predicts the AMR graph:

( f / f e a r −01

:ARG0 ( i / I ) )

Categorical. A categorical divergence arises when the same meaning is expressed by

different syntactic categories across languages, e.g., I agree, where agree is a verb, is

expressed by a noun in Italian and Spanish, Sono d’accordo and Estoy de acuerdo. The

parser correctly predicts the same AMR for both languages:

( a / ag ree −01

:ARG0 ( i / I ) )



5.5 Analysis 86

Lexical A lexical divergence arises when a verb in the source language is translated with

a different lexical verb, e.g., Juan broke into the room, Juan forzó la entrada al cuarto,

in which the verb break in English is translated with the verb forzar (force) in Spanish.

XL-AMR predicts the following graphs for the English (a) and Spanish (b) sentences:

(a)

( f / b reak −02

:ARG0 ( p / p e r s o n

: name ( n / Juan ) )

:ARG1 ( r / room ) ) )

(b)

( f / f o r c e −01

:ARG0 ( p / p e r s o n

: name ( n / Juan ) )

:ARG2 ( e / e n t e r −01

:ARG0 p

:ARG1 ( r / room ) ) )

This, even though it is correctly parsed, does not overcome the lexical difference of the

action, which results in different AMR graphs for the same meaning. This is partially due to

the fact that AMR is bound to lexical forms in English.

In summary, XL-AMR overcomes most of the foregoing structural divergences with the

exception of two cases: i) the conflational divergence in German, that is caused by the

language’s compound words vocabulary, for the resolution of which a better preprocessing

can be beneficial; ii) the lexical divergence that persists despite the parser predicting a valid

graph. The latter divergence results in non-parallel structures for parallel meanings, and

we believe this might be tackled by integrating a unified ontology for synonyms or related

meanings within the AMR formalism, along the line of disjunctive AMR14 [Banarescu et al.,

2013]. We leave exploration of this approach open for future work. Furthermore, we notice

that recent work on translation divergences could be considered for a deeper analysis such
14http://amr.isi.edu/damr.1.0.pdf

http://amr.isi.edu/damr.1.0.pdf
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as Deng and Xue [2017]; Vyas et al. [2018]; Nikolaev et al. [2020]; Briakou and Carpuat

[2021], and in the context of AMR parsing, Wein and Schneider [2021].

5.6 Summary

In this Chapter, we explored transfer learning techniques to enable high-performance cross-

lingual AMR parsing. We created silver data based on annotation projection through

parallel sentences and machine translation, on which we trained XL-AMR, a cross-lingual

AMR parser that achieves the highest results reported to date on Chinese, German, Italian

and Spanish. A qualitative evaluation showed that XL-AMR can handle most of the

structural divergences among languages. The performance of XL-AMR together with the

qualitative analysis suggests that carefully modeling cross-lingual AMR parsing leads to the

production of suitable AMR structures across languages. XL-AMR and the advancements

in the field following to it [Procopio et al., 2021; Sheth et al., 2021; Uhrig et al., 2021;

Cai et al., 2021b,a], encourage us to extend this line of our research, also by exploiting

more considerable multilingual semantic resources, to further improve the parsing quality.

Moreover, the improvements in performance for cross-lingual AMR parsing open the

other research direction of integrating AMR into downstream cross-lingual applications to

investigate their added value.
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Chapter 6

Conclusions

6.1 Overview

In this final Chapter, we briefly summarize the main topics and contributions of this disserta-

tion and then discuss the open directions and future perspectives emerging from the findings

of our thesis, and not only.

We first described the similarities and differences of the SRL and AMR, distinguishing their

advantages and disadvantages in representing sentence semantics (Chapter 1). Moreover,

we overviewed and discussed the complexity of these formalisms and the tendency of the

existing approaches for proposing complex task-specific architectures that rely on long

pipelines and intrinsic data-specific heuristics for achieving high performances (Chapter 2).

Then, we identified the gaps and open questions in dependency- and span-based SRL, such

as the unexplored potential of seq-to-seq approaches and the recent convergence of existing

models in the same performance pool, and reformulated SRL as a sequence generation task

to jointly generate predicate senses and semantic roles. We achieved significantly higher

performances when compared to the existing non-end-to-end seq-to-seq approaches, thus

reaching state-of-the-art results previously obtained through task-specific sequence labeling

approaches (Chapter 3).

Furthermore, we recognized the weaknesses of previous seq-to-seq approaches to AMR

parsing, and by devising novel compact graph linearizations and exploiting pretrained

encoder-decoder models, we achieved state-of-the-art results both in AMR parsing and

generation. Indeed, we cast these tasks as symmetric tasks, similar to the case for machine



6.2 Future Work and Perspectives 89

translation from one language to another. We further made our state-of-the-art systems

available to the community through a highly interactive, easy-to-use Web Interface and

RESTful APIs equipped with a feedback mechanism that aspires to enable active learning in

AMR (Chapter 4).

Finally, we addressed the questions on the suitability of AMR to represent meaning across

languages by using English-centric structures as interlingua in Italian, Spanish, German, and

Chinese. Indeed, we explored different transfer learning techniques to overcome the chal-

lenges posed by the paucity of data for cross-lingual AMR parsing, and relied on seq-to-seq

models for translating from non-English sentences, to English-centric AMR concepts, thus

disposing of noisy word-to-node AMR alignments (Chapter 5).

6.2 Future Work and Perspectives

6.2.1 Mid-term Perspective

Some mid-term directions that are worth mentioning and that are inspired by the work

presented in this thesis are the following:

Ensembling of fundamentally different SRL approaches. Recent techniques, despite

their differences, seem to have plateaued in terms of performance. However, through a

simple analysis of two radically different SRL approaches, i.e., sequence labeling and

seq-to-seq learning, we showed that, despite their similar results and learning curves, their

behavior is different, e.g., in precision and recall. One popular yet often overlooked approach

to improve the results of an approach is ensembling. While there have been a handful of

attempts using ensembling techniques for SRL [Ouchi et al., 2018b], they benefit from

combining the predictions coming from different initializations of the same model. We

argue that the ensembling of radically different approaches could be more effective than

an ensemble of models employing the same learning paradigm. To this end, one potential

direction is devising a strategy to guide the respective model to learn from their mistakes,

provided that these approaches are probably complementary to each other. A relevant work

for ensembling different approaches to graph predictions with AMR was recently presented
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by Lam et al. [2021].

Joint learning of SRL and AMR. Throughout this dissertation, we describe the over-

lapping aspects between SRL and AMR. Indeed, both annotate the predicate-argument

structure relying on the same predicate inventory and, therefore, the same linguistic theory.

Moreover, AMR is composed of multiple subtasks of NLP such as WSD, NER and EL,

which cover a wide range of successful approaches in the literature [Bevilacqua et al., 2020;

Barba et al., 2021; Wu et al., 2020; Cao et al., 2021]. In our works, we reformulate the

graph-like structures of SRL and AMR as sequences, which allows us to employ similar

architectures for learning both. Similarly, Bevilacqua et al. [2020] and Cao et al. [2021]

propose sequence generation approaches for WSD and EL, respectively. To this end, one po-

tential direction is exploring multitask learning techniques for jointly learning AMR graphs

and the subtasks it covers. Joint modeling of semantic parsers has been previously tackled

by Peng et al. [2018], who combine frame-semantic parsing and semantic dependency

parsing, achieving improvements in both. Previous multitasking approaches in the context

of AMR instead, mainly include non-semantic tasks such as syntactic parsing and machine

translation [Xu et al., 2020]. We argue that semantic tasks such as SRL, WSD, NER and EL,

which moreover are subtasks of the AMR formalism, could be more beneficial for AMR

parsing and generation. Indeed, while we enable AMR to benefit from the specialization of

its subtasks, we also allow the latter to take advantage of the richer semantics included in

AMR.

Extending the applicability of AMR as an interlingua. In this thesis, we analyzed the

suitability of English-centric AMR to represent the meaning of sentences across languages.

Our findings through this work immediately gained the attention of researchers, and XL-

AMR was followed by several successful research works which significantly raise the

performance in cross-lingual AMR parsing in the benchmark comprising of Chinese, Ger-

man, Italian, and Spanish translations [Procopio et al., 2021; Sheth et al., 2021; Cai et al.,

2021b; Uhrig et al., 2021; Xu et al., 2021]. However, it is not clear to what extent AMR can

be used as an interlingua. For instance, the performance trend of cross-lingual parsers in

Italian and Spanish is higher than that achieved in German and especially Chinese. This

result is indeed expected because Chinese is the most distant language concerning the others
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in this benchmark. Similarly, the structure of the sentences in German is different from what

we see in English or Italian, e.g., the verb is placed at the end of the sentence. To this end,

one potential direction would be to analyze the suitability of AMR to act as an interlingua in

inter-language groups. Fan and Gardent [2020] conduct probably the most interesting study

to this direction, who investigate how the AMR generation results are affected by the set of

languages used for training the multilingual models.

Semantically-enhanced applications. In Section 2.6 we outlined the applications in

which AMR structures have been integrated with encouraging results. While most of the

applications have relied on older parsers, the performance of the recent AMR parsers has

increased by around 10 Smatch F1 points over the past three years. Moreover, in our

SPRING work, we assess the generalization abilities of our systems in an out-of-distribution

setting, which better mimics the open-world data. These improvements feed the hope that

AMR systems are mature to produce good enough structures that can be more beneficial in

downstream applications such as Machine Translation and Question Answering.

6.2.2 Long-term Perspective

Some long-term directions that are worth mentioning and that are inspired by the work

presented in this thesis are the following:

Improving by active learning. In SPRING Online Services, we introduce a simple feed-

back mechanism that allows users to submit their modification to the system’s outputs (see

Section 4.6.1). We believe that collecting user validation of AMR graphs can be critical to

future developments of parsers via active leaning [Settles, 2009]. Indeed, by analyzing the

nature of modifications, researchers might develop new strategies for handling edge cases or

the generalizability of the models in real-world data.

Devising a truly semantic interlingua. In this thesis, we assumed that AMR can be used

as an interlingua by projecting English-centric AMR graphs to parallel sentences in multiple

languages. However, meaning representations should not revolve mainly around English.

Indeed, there are several challenges that prevent AMR from being a truly semantic formalism,

making it inadequate to act as an interlingua, such as i) the intersection of AMR concepts’
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vocabulary and the English lexicon (e.g., doctor, medicine), and ii) the extensive use of the

PropBank verbal framesets (e.g., tell.01, take.04), from which it also takes the core predicate

argument roles (e.g., :ARG1, :ARG2). The latter, we recall from Section 2.3, is available in a

limited number of languages, and even when similar predicate inventories do exist, they rely

on language-specific rules and theories. Moreover, the usage of a lexicon makes AMR not

fully semantic since words are not only ambiguous but also language-specific. We believe

that to get closer to solving the puzzle of Natural Language Understanding, we need a truly

semantic language-independent representation, with concepts drawn from a multilingual

inventory, e.g., BabelNet, and semantic relations being shared across languages. Indeed, an

interlingua would be helpful not only at a practical modeling level, since it requires a unified

representation for text in all languages instead of multiple language-specific ones, but also at

the broader application level, e.g., interlingual Machine Translation [Richens, 1958]. From

another point of view, the idea of an interlingua could lead to philosophical discussions or

face several practical issues. Indeed, having an interlingua assumes a universal organization

of meanings, which might not hold from one language to another. At the same time, it could

be challenging to define what is a lexical item in a concept ontology, how their senses are

delineated, and what action to take when a concept does not have a direct lexicalization

across languages. Nonetheless, making attempts towards the idea of an interlingua by using

the available multilingual resources could, at the very least, reduce the English-specific bias

in representing meaning.

Interpreting through conceptual representations. As AI-enabled systems have become

ever more accurate and advanced, it is difficult for humans to comprehend the calculation

process that led to certain decisions. Indeed, those models created directly from data

are commonly referred to as “black box" and are hard to interpret. On the other hand,

people are embracing AI-powered systems in different areas of their life. For this reason,

understanding how these systems work – or if they are working as expected – brings

essential advantages. We believe that conceptual meaning representations can facilitate

the path towards machine interpretability. One potential direction could be to use meaning

representations as an intermediate layer, which decouples text comprehension from text

generation, using meaning to text generation systems (similar to SPRING). Doing so might
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increase systems interpretability because meaning representations are both human-readable

and machine-processable.
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Appendix A

SPRING Demonstration and

Examples

A.1 SPRING Online Services Evaluation

For the purposes of this SPRING demo, we examine different variants of SPRING to ensure:

i) high performance, ii) high generalizability across domains, and iii) efficient and light

SPRING Online Services.

Datasets. To deal with i) and ii), we perform experiments with the AMR 3.0 (LDC2020T021)

benchmark – currently the largest AMR-annotated corpus which includes and corrects both

of its previous inferior-sized versions, i.e., AMR 2.0 and AMR 1.0. In addition to this,

motivated by AMR-based approaches in biomedical applications Rao et al. [2017]; Bonial

et al. [2020b], we jointly train and evaluate SPRING in the Bio-AMR2 corpus May and

Priyadarshi [2017] as well.

Systems. While Bevilacqua et al. [2021a] train one specular model for each of the AMR

tasks (henceforth SPRINGuni, denoting unidirectional), to satisfy the point iii) above, we train

a version of SPRING that handles both AMR parsing and generation with the same model

(henceforth SPRINGbi, denoting bidirectional). This allows us to load into memory only

one model to perform both tasks, thus decreasing the potential overload of the server where
1catalog.ldc.upenn.edu/LDC2020T02
2amr.isi.edu/download.html

https://catalog.ldc.upenn.edu/LDC2020T02
https://amr.isi.edu/download.html
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Pa
rs

in
g Lyu et al. [2020] 75.8

Zhou et al. [2021] 81.2

SPRING Bevilacqua et al. [2021a] 83.0

G
en

er
at

io
n Zhang et al. [2020] 34.3

T5 Fine-Tune Ribeiro et al. [2021] 41.6
STRUCTADAPT-RGCN Ribeiro et al. [2021] 48.0

SPRING Bevilacqua et al. [2021a] 44.9
Table A.1. Comparison with literature on AMR 3.0.

the demo resides, as well as enabling lower memory footprint for users employing SPRING

with our Python code. To train SPRING variants, we employ the same hyperparameters

as in Bevilacqua et al. [2021a]. In addition, we summarize the state-of-the-art systems on

AMR 3.0.

Results. We report Smatch Cai and Knight [2013] and BLEU Papineni et al. [2002] scores

for AMR parsing and generation, respectively. In Table A.1 we summarize the performances

of recent systems in the literature on the AMR 3.0 parsing and generation tasks. In parsing,

SPRING achieves the highest results across the board. In fact, we note that Zhou et al. [2021]

was published after Bevilacqua et al. [2021a], yet SPRING remains the best-performing

parser in the literature to date. In generation, instead, SPRING attains considerably higher

results than Zhang et al. [2020] and T5 Fine-Tune Ribeiro et al. [2021] models. In fact, while

the latter has a comparable architecture to that of SPRING due to its use of the pretrained

sequence-to-sequence T5 model Raffel et al. [2019], SPRING nevertheless outperforms it by

3.3 BLEU points. SPRING obtains lower results than the recent STRUCTADAPT-RGCN

Ribeiro et al. [2021] model, which, however, achieved those results at the expense of a more

complex architecture with a higher number of parameters than SPRING. In Table A.2

we report the performance of SPRING variants, i.e., SPRINGuni and SPRINGbi, trained on

AMR 3.0 or on the concatenation of Bio-AMR and AMR 3.0 (Bio+AMR 3.0) and when

evaluated in development and test splits of each. Notice that the results of SPRINGuni in

AMR 3.0 parsing are different from those reported in Table A.1, since here we do not perform

Entity Linking in postprocessing for the purpose of simplicity. Firstly, SPRING models

trained on Bio+AMR 3.0 achieve the highest results overall. Then, SPRINGbi performs on
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AMR 3.0 Bio-AMR

Train dataset Dev Test Dev Test

Pa
rs

in
g SPRINGuni AMR 3.0 83.9 82.6 60.6 60.6

SPRINGbi AMR 3.0 83.6 82.3 60.5 59.2

SPRINGuni Bio+AMR 3.0 83.9 82.5 80.0 80.1
SPRINGbi Bio+AMR 3.0 84.1 82.7 79.5 80.2

G
en

er
at

io
n SPRINGuni AMR 3.0 45.0 44.9 22.9 19.4

SPRINGbi AMR 3.0 43.9 44.5 21.1 17.1

SPRINGuni Bio+AMR 3.0 45.3 45.7 39.5 43.5
SPRINGbi Bio+AMR 3.0 44.3 45.0 38.5 42.0

Table A.2. SPRING variants in AMR 3.0 and Bio-AMR.

a par with or slightly worse than SPRINGuni in parsing and generation, respectively. We

choose the best model for the SPRING Online Services based on the Smatch score on the

development set of AMR 3.0, i.e, SPRINGbi trained on Bio+AMR 3.0 for both parsing and

generation jointly. This model allows for the achievement of all the goals we set at the

beginning of this Section: performance, generalizability and efficiency 3.

A.2 From Parsing to Generation

In this Section we report a few examples of parsing and generation obtained by running

our DFS-based models trained on AMR 2.0. We collect some a few excerpts from the

prompts shown by Radford et al. [2019], parse them into graphs and generate a sentence

from the parsed graph. Results are shown in Table A.3. We also include them (with the graph

linearization indented for better readability) in the samples.txt file in the provided code.

As one can see, the generated sentenced from the parsed graphs preserve the meaning of the

original sentence, thus demonstrating the high quality of the outputs from both SPRINGDFS

parser and generator. Note that the sentences are quite diverse, including things that are

probably not present in the training data of SPRINGDFS – thus confirming its generalizability

power.

3We release the additional model checkpoints to be used with the original SPRING Python code, available at
https://github.com/SapienzaNLP/spring

https://github.com/SapienzaNLP/spring
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Original → Parsed graph → Generated Sentence

In a shocking finding, sci-
entist discovered a herd
of unicorns living in a
remote, previously unex-
plored valley, in the An-
des Mountains.

(z0 / discover -01 :ARG0 (z1 /
scientist) :ARG1 (z2 / herd
:consist-of (z3 / unicorn) :
ARG0-of (z4 / live-01 :
location (z5 / valley :mod (
z6 / remote) :ARG1-of (z7 /
explore -01 :polarity - :time
(z8 / previous)) :location
(z9 / mountain :wiki "Andes"
:name (z10 / name :op1 "
Andes" :op2 "Mountains")))))
:ARG0-of (z11 / shock -01))

Scientists were shocked
to discover a herd of uni-
corns living in a remote
valley inaccessible in the
Andes Mountains.

Emily loves mint
chocolate cake, but she
requires that it be paired
with mini chocolate
chips, so I threw some
of those in between the
layers.

(z0 / love-01 :ARG0 (z1 / person
:wiki - :name (z2 / name :
op1 "Emily")) :ARG1 (z3 /
cake :consist-of (z4 /
chocolate :mod (z5 / mint)))
:concession -of (z6 /
require -01 :ARG0 z1 :ARG1 (
z7 / pair-01 :ARG1 z3 :ARG2
(z8 / chip :consist-of (z9 /
chocolate :mod (z10 / mini)
)))) :ARG0-of (z11 / cause
-01 :ARG1 (z12 / throw -01 :
ARG0 (z13 / i) :ARG1 (z14 /
some :ARG1-of (z15 / include
-91 :ARG2 z3)) :ARG2 (z16 /
between :op1 (z17 / layer)))
))

Emily loves chocolate
cake, but it requires it
to be paired with mini
chocolate chips, so I
threw some of them in be-
tween the layers.

Prehistoric man sketched
an incredible array of
prehistoric beasts on the
rough limestone walls of
a cave in modern day
France 36,000 years ago.

(z0 / draw-01 :ARG0 (z1 / man :
mod (z2 / prehistoric)) :
ARG1 (z3 / array :mod (z4 /
incredible) :consist-of (z5
/ beast :mod (z6 /
prehistoric))) :location (z7
/ wall :consist-of (z8 /
limestone) :ARG1-of (z9 /
rough -04) :part-of (z10 /
cave :location (z11 /
country :wiki "France" :name
(z12 / name :op1 "France")
:time (z13 / day :ARG1-of (
z14 / modern -02))))) :time (
z15 / before :op1 (z16 / now
) :quant (z17 / temporal-
quantity :quant 36000 :unit
(z18 / year))))

36,000 years ago, prehis-
toric men drew an incred-
ible array of prehistoric
beasts on a rough lime-
stone wall of a cave in
modern-day France.

Corporal Michael P.
Goeldin was an unskilled
laborer from Ireland
when he enlisted in Com-
pany A in November
1860.

(z0 / person :ARG0-of (z1 /
labor -01 :manner (z2 / skill
:polarity -)) :domain (z3 /
person :wiki - :name (z4 /
name :op1 "Michael" :op2 "P
." :op3 "Goeldin") :ARG0-of
(z5 / have-org-role-91 :ARG2
(z6 / corporal))) :mod (z7
/ country :wiki "Ireland" :
name (z8 / name :op1 "
Ireland")) :time (z9 /
enlist -01 :ARG1 z3 :ARG2 (
z10 / military :wiki - :name
(z11 / name :op1 "Company"
:op2 "A")) :time (z12 / date
-entity :year 1860 :month
11)))

When Michael P.
Goeldin enlisted in Com-
pany A in November,
1860, he was an Irish
labourer with no skills.

Table A.3. Original sentence (left); DFS-based parser output (middle); DFS-based generator output
when the input is the parsed graph (right).
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Appendix B

XL-AMR Details

B.1 OpusMT Translation Models

For the translation and back-translation steps of GOLDAMR-SILVERTRNS data creation

approach, we use the pretrained models1 from the huggingface transformers library2 listed

in Table B.1.

Source Target Model

German English Helsinki-NLP/opus-mt-de-en
Italian English Helsinki-NLP/opus-mt-it-en
Spanish English Helsinki-NLP/opus-mt-ROMANCE-en
English German Helsinki-NLP/opus-mt-en-de
English Italian Helsinki-NLP/opus-mt-en-it
English Spanish Helsinki-NLP/opus-mt-en-ROMANCE

Table B.1. OpusMT translation models.

B.2 Model Hyperparameters

The input features for all the models include: i) fixed mBERT3 [Devlin et al., 2019] as

contextual embeddings (dim = 768), ii) ConceptNet Numberbatch 9.084 [Speer et al., 2017b]

multilingual static word embeddings (dim = 300) which we set as trainable except in ∅-shot
16-layer Transformer-based models [Vaswani et al., 2017b].
2huggingface.co/transformers/model_doc/marian.html
3bert-base-multilingual-cased: a contextualized embedding for a token is calculated as the

average pooling of its subtoken embeddings.
4github.com/commonsense/conceptnet-numberbatch

https://huggingface.co/transformers/model_doc/marian.html
https://github.com/commonsense/conceptnet-numberbatch
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models, iii) trainable PoS embeddings (dim = 100) where we use the universal PoS-tags

set by Petrov et al. [2012], iv) trainable anonymization indicator embeddings (dim = 50),

v) trainable character-level embeddings (dim = 100), i.e., CharCNN [Kim et al., 2016].

The encoder and decoder of the node prediction module are composed of 2 layers of

512 and 1024 LSTM units each, respectively. All the models are trained using Adam

optimizer [Kingma and Ba, 2015] with learning rate 0.001, for 120 epochs and the best

model hyperparameters are chosen on the basis of development set accuracy. The models

are trained using 1 GeForce GTX TITAN X GPU. The full training lasts around 48 hours

for models trained in the largest dataset XL-AMRtrans+ (∼84M trainable parameters) and

XL-AMRpar+ (∼86M trainable parameters). At prediction time we set the size of beam

search to 5.
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