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WELL-POSEDNESS FOR THE BACKWARD

PROBLEMS IN TIME FOR GENERAL

TIME-FRACTIONAL DIFFUSION EQUATION

1,∗ GIUSEPPE FLORIDIA, 2 ZHIYUAN LI, 3,4,5 MASAHIRO YAMAMOTO

Abstract. In this article, we consider an evolution partial differential

equation with Caputo time-derivative with the zero Dirichlet boundary con-

dition: ∂α
t u + Au = F where 0 < α < 1 and the principal part −A, is a

non-symmetric elliptic operator of the second order. Given a source F, we

prove the well-posedness for the backward problem in time and our result

generalizes the existing results assuming that −A is symmetric. The key is

a perturbation argument and the completeness of the generalized eigenfunc-

tions of the elliptic operator A.
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1. Introduction and main results

Let Ω be a bounded domain in Rd with sufficiently smooth boundary

∂Ω. Henceforth let L2(Ω) denote the real Lebesgue space with the

scalar product (·, ·) and the norm ‖ · ‖, and let H1(Ω), H1
0(Ω), H

2(Ω)

be the Sobolev spaces (e.g., Adams [1]). By ‖u‖H2(Ω) we denote the

norm in H2(Ω) for example.

We consider a fractional partial differential equation:

(1.1)



















∂αt u(x, t) = −Au(x, t) + F (x, t), x ∈ Ω, 0 < t < T,

u|∂Ω = 0,

u(x, 0) = a(x), x ∈ Ω.

Here −A is a uniformly elliptic operator and not necessarily symmet-

ric. Throughout this article, we assume that 0 < α < 1, and the

Caputo derivative ∂αt g is defined by

∂αt g(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αdg

ds
(s)ds,

where Γ denotes the gamma function. It is known that there exists

a unique solution u = u(x, t) to the initial boundary value problem

(1.1) under suitable conditions on A, a and F , and we refer for ex-

ample to Gorenflo, Luchko and Yamamoto [7], Kubica, Ryszewska

and Yamamoto [12], Kubica and Yamamoto [13], Sakamoto and Ya-

mamoto [18], Zacher [28], and also later as lemmata we will show the

regularity.

Equation (1.1) describes slow diffusion which can be considered as

anomalous diffusion in highly heterogeneous media and is different

from the classical case of α = 1. In particular, the Caputo derivative

is involved with memory term which possesses some averaging effect,

and so (1.1) has not strong smoothing property: for a ∈ L2(Ω), we
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can expect only u(·, t) ∈ H2(Ω) with each t > 0. This is an essential

difference from the case of α = 1.

Now we will formulate our problem and results. For v ∈ H2(Ω), we

set

(1.2) − Av(x) :=
d
∑

i,j=1

∂i(aij(x)∂jv)(x) +
d
∑

j=1

bj(x)∂jv(x) + c(x)v(x),

where

aij = aji ∈ C1(Ω), bj , c ∈ C1(Ω), 1 ≤ i, j ≤ d

and there exists a constant κ > 0 such that

d
∑

i,j=1

aij(x)ξiξj ≥ κ

d
∑

j=1

ξ2j , x ∈ Ω, ξ1, ..., ξd ∈ R.

We consider

(1.3)



















∂αt u(x, t) = −Au(x, t), x ∈ Ω, 0 < t < T,

u|∂Ω = 0,

u(·, T ) = b

with b ∈ H2(Ω) ∩H1
0 (Ω).

We state our first main result.

Theorem 1.1. For each b ∈ H2(Ω) ∩ H1
0(Ω), there exists a unique

solution u ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1
0 (Ω)) to (1.3) such

that ∂αt u ∈ C((0, T ];L2(Ω)). Moreover we can choose constants C1, C2 >

0 depending on T such that

(1.4) C1‖u(·, 0)‖L2(Ω) ≤ ‖u(·, T )‖H2(Ω) ≤ C2‖u(·, 0)‖L2(Ω).

To the best knowledge of the authors, Sakamoto and Yamamoto

[18] is the first work for the well-posedness of the backward problem

in time for the case of symmetric A, that is, bj ≡ 0 for 1 ≤ j ≤ d.
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Moreover by a technical reason, [18] assumes that c ≤ 0. As for back-

ward problems for time-fractional equations with symmetric A, we can

refer to many works: Liu and Yamamoto [14], Tuan, Huynh, Ngoc,

and Zhou [19]. In particular, as for numerical approaches, see Tuan,

Long and Tatar [20], Tuan, Thach, O’Regan, and Can [21]. Wang and

Liu [22, 23], Wang, Wei and Zhou [24], Wei and Wang [25], Xiong,

Wang and Li [26], Yang and Liu [27] and the references therein. How-

ever, we do not find the results for non-symmetric A. Originally the

backward well-posedness comes from the time fractional derivative ∂αt ,

and should not rely on the symmetry of the elliptic operator A, and

Theorem 1.1 is a natural generalization of the existing results since

[18] to the case of a general uniform elliptic operator A. As is seen by

the proof, we can further prove

Corollary 1.2. In Theorem 1.1, for each distinct T1, T2 > 0, there

exist contants C3 = C3(T1, T2) > 0 and C4 = C4(T1, T2) > 0 such that

C3‖u(·, T2)‖H2(Ω) ≤ ‖u(·, T1)‖H2(Ω) ≤ C4‖u(·, T2)‖H2(Ω).

Furthermore we can show also the backward well-posedness with

the presence of a non-homogeneous term F .

For the formulation, we introduce some function spaces. Let

(1.5) −A0v(x) =
d
∑

i,j=1

∂i(aij(x)∂jv), D(A0) = H2(Ω) ∩H1
0 (Ω).

Then it is known that the specrum σ(A0) consists entirely of eigen-

values with finite multiplicities and according to the multiplicities we

number:

(1.6) 0 < λ1 ≤ λ2 ≤ λ3 < · · · .
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Also we know that we can choose eigenfunctions ϕn for λn, n ∈ N such

that {ϕn}n∈N is an orthonormal basis in L2(Ω). Then we can define

the fractional power Aγ
0 with γ ≥ 0:

(1.7)







































A
γ
0v =

∑∞

n=1 λ
γ
n(v, ϕn)ϕn,

D(Aγ
0) = {v ∈ L2(Ω);

∑∞

n=1 λ
2γ
n |(v, ϕn)|2 <∞} ,

‖Aγ
0v‖ = (

∑∞

n=1 λ
2γ
n |(v, ϕn)|2)

1

2 .

We can refer for example to Pazy [15] and we can derive (1.7) directly

from

A0v =
∞
∑

n=1

λn(v, ϕn)ϕn,

D(A0) =

{

v ∈ L2(Ω);
∞
∑

n=1

λ2n|(v, ϕn)|2 <∞
}

.

Moreover we know that D(A
1

2

0 ) = H1
0 (Ω), D(Aγ

0) ⊂ H2γ(Ω). Hence-

forth we set ‖v‖D(Aγ
0
) = ‖Aγ

0v‖.
Now we are ready to state the well-posedness with non-homogeneous

term.

Theorem 1.3. Let F ∈ L∞(0, T ;D(Aε
0)) with some ε > 0. For each

b ∈ H2(Ω) ∩H1
0 (Ω), there exists a unique solution

u ∈ C((0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C([0, T ];L2(Ω))

to


















∂αt u = −Au+ F (x, t), x ∈ Ω, 0 < t < T,

u|∂Ω = 0,

u(·, T ) = b
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and we can choose a constant C > 0 such that

‖u(·, 0)‖ ≤ C(‖u(·, T )‖H2(Ω) + ‖F‖L∞(0,T ;D(Aε
0
))).

The article is composed of three sections. In Section 2, we show fun-

damental properties of the fractional differential equations and Section

3 is devoted to the proofs of Theorems 1.1 and 1.3.

2. Preliminaries

Let us recall (1.5) and (1.6). For 0 < α < 1 and β > 0, by Eα,β(z)

we denote the Mittag-Leffler function with two parameters:

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)

(e.g., Podlubny [16]). Then Eα,β(z) is an entire function in z ∈ C. We

set

S(t)a =
∞
∑

n=0

(a, ϕn)Eα,1(−λntα)ϕn(x), t ≥ 0

and

K(t)a =
∞
∑

n=0

tα−1Eα,α(−λntα)(a, ϕn)ϕn(x), t > 0

for a ∈ L2(Ω).

Henceforth we write u(t) = u(·, t), etc., and we regard u as a map-

ping defined in (0, T ) with values in L2(Ω). Moreover u(t) ∈ H1
0(Ω)

means u(·, t) = 0 on ∂Ω in the trace sense (e.g., [1]). Then we can see

the following.

Lemma 2.1. (i) There exists a constant C > 0 such that

(2.1) ‖S(t)a‖ ≤ C‖a‖, t ≥ 0
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and

(2.2) ‖A0S(t)a‖ ≤ Ct−α‖a‖, t > 0.

For 0 ≤ γ ≤ 1, there exists a constant C(γ) > 0 such that

(2.3) ‖Aγ
0K(t)a‖ ≤ C(γ)tα(1−γ)−1‖a‖, t > 0.

(ii) Let G ∈ L∞(0, T ;D(Aε
0)) with some ε > 0 and a ∈ L2(Ω).

Then

(2.4) u(t) = S(t)a+

∫ t

0

K(t− s)G(s)ds, t > 0

is in C((0, T ];H2(Ω)∩H1
0 (Ω)) and satisfies ∂αt u ∈ L1(0, T ;L2(Ω)),

(2.5)



















∂αt u(t) = −A0u(t) +G(t), t > 0,

limt→0 ‖u(·, t)− a‖ = 0,

u(·, t) ∈ H1
0 (Ω), 0 < t < T.

(iii) For each t > 0, there exists a constant C > 0 such that

‖u(t)‖H2(Ω) ≤ C(t−α‖a‖+ ‖Aε
0G‖L∞(0,T ;L2(Ω))).

Remark 1. We can prove stronger regularity of ∂αt u but the lemma

is sufficient for our purpose.

Proof. (of Lemma 2.1).

(i) We can refer to Gorenflo, Luchko and Yamamoto [7], and for com-

pleteness we give the proof. First we note

(2.6) |Eα,1(−η)| ≤
C

1 + η
, η > 0

(e.g., Theorem 1.6 (p.35) in Podlubny [16]).

Since {ϕn}n∈N is an orthonormal basis in L2(Ω), by (2.6) we have
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‖S(t)a‖2 =
∞
∑

n=1

|(a, ϕn)|2|Eα,1(−λntα)|2

≤
∞
∑

n=1

|(a, ϕn)|2
(

C

1 + |λntα|

)2

≤ C

∞
∑

n=1

|(a, ϕn)|2,

that is, (2.1) follows.

Next, since

A0S(t)a =

∞
∑

n=1

(a, ϕn)λnEα,1(−λntα)ϕn,

again by (2.6) we see

‖A0S(t)a‖2 = t−2α

∞
∑

n=1

|(a, ϕn)|2|λntα|2|Eα,1(−λntα)|2

≤Ct−2α
∞
∑

n=1

|(a, ϕn)|2
( |λntα|
1 + |λntα|

)2

, t > 0,

which implies (2.2).

By (1.7), we have

A
γ
0K(t)a =

∞
∑

n=1

tα−1Eα,α(−λntα)λγn(a, ϕn)ϕn,

and so

‖Aγ
0K(t)a‖2 ≤ t2α−2

∞
∑

n=1

C

(1 + |λntα|)2
λ2γn |(a, ϕn)|2

=Ct2α−2
∞
∑

n=1

λ2γn t
2γα

(1 + |λntα|)2
t−2αγ |(a, ϕn)|2

≤Ct2(α−αγ)−2 sup
ξ≥0

(

ξγ

1 + ξ

)2 ∞
∑

n=1

|(a, ϕn)|2.

By 0 ≤ γ ≤ 1, we see that supξ≥0
ξγ

1+ξ
< ∞, and so (2.3) can be seen.

Thus the proof of Lemma 2.1 (i) is complete.
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(ii) In terms of e.g., Theorem 4.1 in [7] and Theorems 2.1 and 2.2 in

[18], we already know some regularity of u(t).

By Theorem 2.1 (i) in [18] or by (2.1), we can verify that S(t)a ∈
C([0, T ];L2(Ω)) and lim

t→0
‖S(t)a− a‖ = 0. By (2.2), we see that

A0

(

N
∑

n=1

(a, ϕn)Eα,1(−λntα)ϕn

)

converges in C([δ, T ];L2(Ω)) as N → ∞ with arbitrarily fixed δ > 0.

Therefore A0S(t)a ∈ C([δ, T ];L2(Ω)), which implies

(2.7) S(t)a ∈ C([δ, T ];D(A0)) = C([δ, T ];H2(Ω) ∩H1
0 (Ω)).

Moreover, we can directly prove that ∂αt (Eα,1(−λntα)) = −λnEα,1(−λntα),
and obtain

∂αt S(t)a =
∞
∑

n=1

∂αt (Eα,1(−λntα))(a, ϕn)ϕn =
∞
∑

n=1

−λnEα,1(−λntα)(a, ϕn)ϕn.

Hence, by (2.6) we see that

(2.8) ‖∂αt S(t)a‖2 =
∞
∑

n=1

λ2n|Eα,1(−λntα)|2|(a, ϕn)|2

= t−2α

∞
∑

n=1

(λnt
α)2|Eα,1(−λntα)|2|(a, ϕn)|2

≤ Ct−2α
∞
∑

n=1

|(a, ϕn)|2
(

λnt
α

1 + λntα

)2

≤ Ct−2α‖a‖2

and

(2.9) ∂αt S(t)a ∈ C((0, T ];L2(Ω)).

By (2.3) with γ = 0, we can easily verify that
∥

∥

∥

∥

∫ t

0

K(t− s)G(s)ds

∥

∥

∥

∥

≤ C

∫ t

0

(t− s)α−1‖G(s)‖ds
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≤C‖G‖L∞(0,T ;L2(Ω))

tα

α
−→ 0.

Hence, with S(t)a ∈ C([0, T ];L2(Ω)), we see that lim
t→0

‖u(t)− a‖ = 0.

Moreover by Theorem 2.2 (i) in [18], we see

∂αt

(
∫ t

0

K(t− s)G(s)ds

)

∈ L2(Ω× (0, T )).

This with (2.8), we obtain ∂αt u ∈ L1(0, T ;L2(Ω)).

Now we will prove

∫ t

0

K(t− s)G(s)ds ∈ C((0, T ];H2(Ω) ∩H1
0 (Ω)).

For arbitrarily fixed 0 < δ0 < δ, we set

vδ0(t) =

∫ t−δ0

0

A0K(t− s)G(s)ds, t ≥ δ.

By (2.3) we can see that vδ0 ∈ C([δ, T ];L2(Ω)). For δ ≤ t ≤ T , by

(2.3) we estimate

∥

∥

∥

∥

∫ t

0

A0K(t− s)G(s)ds− vδ0(t)

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

t−δ0

A0K(t− s)G(s)ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

t−δ0

A1−ε
0 K(t− s)Aε

0G(s)ds

∥

∥

∥

∥

≤ C

∫ t

t−δ0

(t− s)αε−1‖Aε
0G(s)‖ds

≤C‖Aε
0G‖L∞(0,T ;L2(Ω))

δαε0
αε

.

Hence

vδ0 −→
∫ t

0

A0K(t− s)G(s)ds in C([δ, T ];L2(Ω))

as δ0 → 0, and by vδ0 ∈ C([δ, T ];L2(Ω)), we conclude that

∫ t

0

K(t− s)G(s)ds ∈ C([δ, T ];H2(Ω) ∩H1
0 (Ω))
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for any δ > 0, and then

∫ t

0

K(t− s)G(s)ds ∈ C((0, T ];H2(Ω) ∩H1
0 (Ω)).

Consequently by (2.7), we obtain u ∈ C((0, T ];H2(Ω) ∩H1
0 (Ω)).

Finally, by (2.3) we have

∥

∥

∥

∥

A0

∫ t

0

K(t− s)G(s)ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ t

0

A1−ε
0 K(t− s)Aε

0G(s)ds

∥

∥

∥

∥

≤C
∫ t

0

(t− s)αε−1‖Aε
0G(s)‖ds ≤ C‖Aε

0G‖L∞(0,T ;L2(Ω))

tαε

αε
.

With (2.2), the proof of the part (iii) is complete. Thus the proof of

Lemma 2.1 is complete. �

Henceforth we set

Bv(x) =

d
∑

j=1

bj(x)∂jv(x) + c(x)v(x), v ∈ D(B) = H2(Ω) ∩H1
0 (Ω).

Next by Lemma 2.1, we can prove

Lemma 2.2. Let F ∈ L∞(0, T ;D(Aε
0)) with some ε > 0 and a ∈

L2(Ω). Then the solution u to (1.1) belongs to

C((0, T ];H2(Ω) ∩H1
0 (Ω))

and there exists a constant C > 0 depending on T , such that

‖u(T )‖H2(Ω) ≤ C(t−α‖a‖+ ‖Aε
0F‖L∞(0,T ;L2(Ω))), t > 0.

Proof. (of Lemma 2.2). Without loss of generality, we can assume that

0 < ε < 1
4
. By Lemma 2.1, we have

(2.10) u(t) = S(t)a +

∫ t

0

K(t− s)F (s)ds+

∫ t

0

K(t− s)Bu(s)ds.
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By Gorenflo, Luchko and Yamamoto [7] or Kubica, Ryszewska and

Yamamoto [12], we know that there exists a unique solution u ∈
C([0, T ];L2(Ω)) to (2.10). Applying A0 to equation (2.10), we have

A0u(t)=A0S(t)a+

∫ t

0

A1−ε
0 K(t−s)Aε

0F (s)ds+

∫ t

0

A1−ε
0 K(t−s)Aε

0Bu(s)ds.

Then, applying Lemma 2.1 (i), we obtain

‖u(t)‖H2(Ω) ≤ Ct−α‖a‖+ C

∫ t

0

(t− s)αε−1ds‖Aε
0F‖L∞(0,T ;L2(Ω))

+C

∫ t

0

(t− s)αε−1‖u(s)‖H2(Ω)ds

≤C(t−α‖a‖+ ‖Aε
0F‖L∞(0,T ;L2(Ω))) + C

∫ t

0

(t− s)αε−1‖u(s)‖H2(Ω)ds.

Here we used the following: by 0 < ε < 1
4
we have ‖Aε

0v‖ ∼ ‖v‖H2ε(Ω)

for v ∈ D(Aε
0) = H2ε(Ω) (e.g., Fujiwara [6]), and so

‖Aε
0Bu(s)‖ ≤ C‖Bu(s)‖H2ε(Ω) ≤ C‖u(s)‖H2(Ω)

because Bu(s) ∈ H1(Ω) ⊂ D(Aε
0) by u(s) ∈ H2(Ω) ∩ H1

0 (Ω). The

generalized Gronwall inequality (e.g., Henry [9] or Lemma A.2 in [12])

yields

‖u(t)‖H2(Ω) ≤ C(t−α‖a‖+ ‖Aε
0F‖L∞(0,T ;L2(Ω)))

+CeCt

∫ t

0

(t− s)αε−1(s−α‖a‖+ ‖Aε
0F‖L∞(0,T ;L2(Ω)))ds

≤C(t−α‖a‖+ ‖Aε
0F‖L∞(0,T ;L2(Ω)))

+CeCt

(

tαε−αΓ(αε)Γ(1− α)

Γ(1− α + αε)
‖a‖+ tαε

αε
‖Aε

0F‖L∞(0,T ;L2(Ω))

)

.

Consequently

‖u(t)‖H2(Ω) ≤ C(t−α‖a‖+ ‖Aε
0F‖L∞(0,T ;L2(Ω))).
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Thus the proof of Lemma 2.2 is complete. �

Finally we know

Lemma 2.3. For T > 0, the operator

S(T ) : L2(Ω) −→ H2(Ω) ∩H1
0 (Ω)

is surjective and there exist constants C1, C2 > 0 such that

C1‖S(T )a‖H2(Ω) ≤ ‖a‖ ≤ C2‖S(T )a‖H2(Ω).

Lemma 2.3 is proved as Theorem 4.1 in [18], whose proof is based on

the representation of S(T )a by the eigenfunction expansion and the

complete monotonicity of Eα,1(−λntα) (e.g., Gorenflo and Mainardi

[8], Pollard [17]).

3. Proofs of Theorems 1.1 and 1.3

3.1. Proof of Theorem 1.1. In terms of the lower-order part B of

the elliptic operator −A, we can rewrite (1.1) as

(3.1)



















∂αt u(t) = −A0u(t) +Bu(t), t > 0,

u(0) = a,

u(t) ∈ H1
0 (Ω), 0 < t < T.

By Lemma 2.1 (ii), we have

(3.2) b := ua(T ) = S(T )a+

∫ T

0

K(T − s)Bua(s)ds.

Here, by ua(t), we denote the solution to (3.1). Applying Lemma 2.3

to (3.2), we obtain

(3.3) a = S(T )−1b−S(T )−1

∫ T

0

K(T −s)Bua(s)ds =: S(T )−1b−La,
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where

(3.4) La = S(T )−1

∫ T

0

K(T − s)Bua(s)ds.

First Step. We prove that L : L2(Ω) −→ L2(Ω) is a compact opera-

tor. We set

L0a =

∫ T

0

K(T − s)Bua(s)ds, a ∈ L2(Ω).

Then La = S(T )−1L0a.

We choose 0 < δ0 < δ1 <
1
4
. We will estimate ‖A1+δ0

0 L0a‖. We note

that Aγ
0K(t)a = K(t)Aγ

0a for γ ≥ 0 and a ∈ D(Aγ
0), which can be

directly verified. By (2.3), we have

‖A1+δ0
0 L0a‖ =

∥

∥

∥

∥

∫ T

0

A1+δ0
0 K(T − s)Bua(s)ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ T

0

A1+δ0−δ1
0 K(T − s)Aδ1

0 B(ua(s))ds

∥

∥

∥

∥

≤ C

∫ T

0

(T − s)α(δ1−δ0)−1‖Bua(s)‖H1(Ω)ds

≤ C

∫ T

0

(T − s)α(δ1−δ0)−1s−α‖a‖ds.

For the last inequality, we used 0 < δ0 < δ1 <
1
4
, and bj , c ∈ C1(Ω)

and Lemma 2.2, and D(Aδ1
0 ) = H2δ1(Ω) (e.g., [6]) and

‖Aδ1
0 Bua(s)‖ ≤ C‖Bua(s)‖H2δ1 (Ω)

≤C‖ua(s)‖H1+2δ1 (Ω) ≤ C‖A0ua(s)‖ ≤ Cs−α‖a‖.

Therefore

‖A1+δ0
0 L0a‖ ≤ C‖a‖

∫ T

0

(T − s)α(δ1−δ0)−1s−αds

=CT α(δ1−δ0−1)Γ(α(δ1 − δ0))Γ(1− α)

Γ(1− α + α(δ1 − δ0))
‖a‖
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because δ1 − δ0 > 0.

Since D(A1+δ0
0 ) ⊂ H2+2δ0(Ω) and the embedding

H2+2δ0(Ω) −→ H2(Ω) is compact, the operator L0 : L
2(Ω) −→ H2(Ω)

is compact. Moreover S(T )−1 : H2(Ω) −→ L2(Ω) is bounded by

Lemma 2.3, we see that L = S(T )−1L0 : L
2(Ω) −→ L2(Ω) is a compact

operator.

Second Step. Since b ∈ H2(Ω) ∩ H1
0 (Ω), by Lemma 2.3 we have

p := S(T )−1b ∈ L2(Ω) and we rewrite (3.3) as

(3.5) (1 + L)a = p in L2(Ω).

In the First Step, we already prove that L : L2(Ω) −→ L2(Ω) is

compact. Hence if we will prove that

(3.6) La = −a implies a = 0,

then the Fredholm alternative yields that (1+L)−1 : L2(Ω) −→ L2(Ω)

is a bounded operator, and the proof can be finished.

Equation (3.6) implies

S(T )a+

∫ T

0

K(T − s)Bua(s)ds = 0 in L2(Ω).

Then we have to prove a = 0. For it, by means of Lemma 2.1 (ii), it

is sufficient to prove that if w satisfies






∂αt w(t) = −Aw(t),
w(t) ∈ H1

0(Ω), 0 < t < T

and w(T ) = 0 in L2(Ω), then w(0) = 0.

We recall that the operator A is defined by (1.2) with D(A) =

H2(Ω)∩H1
0 (Ω). Then it is known that the spectrum σ(A) of A consists

entirely of eigenvalues with finite multiplicities. We denote σ(A) by
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{µ1, µ2, ...}. Here σ(A) is a set and so µi and µj, i 6= j are mutually

distinct. Let Pn be the projection for µn, n ∈ N which is defined by

Pn =
1

2π
√
−1

∫

γ(µn)

(z − A)−1dz,

where γ(µn) is a circle centered at µn with sufficiently small radius

such that the disc bounded by γ(µn) does not contain any points in

σ(A) \ {µn}, Then Pn : L2(Ω) −→ L2(Ω) is a bouned linear operator

and P 2
n = Pn for n ∈ N (e.g., Kato [10]). Setting mn := dimPnL

2(Ω),

we have mn <∞.

The following is a fundamental fact.

Lemma 3.1. If y ∈ L2(Ω) satisfies Pny = 0 for all n ∈ N, then y = 0.

Proof. First we note

−(A∗v)(x) =
d
∑

i,j=1

∂i(aij∂jv)−
d
∑

j=1

∂j(bjv)+c(x)v, D(A∗) = H2(Ω)∩H1
0 (Ω),

where A∗ is the adjoint operator of A. Let P ∗
n be the adjoint operator

of Pn: (Pnϕ, ψ) = (ϕ, P ∗
nψ) for each ϕ, ψ ∈ L2(Ω).

Then it is known (e.g., [10]) that σ(A∗) = {µn}n∈N, where µ denotes

the complex conjugate of µ ∈ C and P ∗
n is the projection for the

eigenvalue µn of A∗, and dim P ∗
nL

2(Ω) = dimPnL
2(Ω) = mn. Then

by Theorem 16.5 in Agmon [2], we have

Spann∈N P
∗
nL

2(Ω) = L2(Ω),

that is,

(3.7) (y, P ∗
nψ) = 0, n ∈ N, ψ ∈ L2(Ω) imply y = 0.

Now we can complete the proof of Lemma 3.1. Let Pny = 0 for n ∈ N.

Then (Pny, ψ) = 0 for all ψ ∈ L2(Ω). Therefore 0 = (Pny, ψ) =

(y, P ∗
nψ) for all n ∈ N and ψ ∈ L2(Ω), which yields y = 0 by (3.7). �
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Third Step: completion of the proof of Theorem 1.1. Let

we note ∂αt (Pnu(t)) = Pn∂
α
t u(t) because Pn : L2(Ω) −→ L2(Ω) is a

bounded operator. We set un(t) = Pnu(t). Then

PnAun(t) = Aun(t) = −µnun(t) +Dnun(t),

where Dn is an operator satisfying Dmn
n = O, which corresponds to

the Jordan canonical form. Then (3.1) yields







∂αt un(t) = (−µn +Dn)un(t),

un(0) = Pna, n ∈ N.

We can define an operator Eα,1((−µn +Dn)t
α) by the power series:

Eα,1((−µn +Dn)t
α) =

∞
∑

k=0

(−µn +Dn)
ktαk

Γ(αk + 1)
, t > 0.

Then we can directly verify

(3.8) un(t) = Eα,1((−µn +Dn)t
α)Pna, t > 0.

Now we calculate the right-hand side of (3.8). Correspondingly to

the Jordan canonical form, we can choose a suitable basis of PnL
2(Ω):

ψk
j : k = 1, ..., ℓn, j = 1, ..., dk

satisfying
∑ℓn

k=1 dk = mn, and



























(A− µn)ψ
k
1 = 0,

(A− µn)ψ
k
2 = ψk

1 ,

· · · · · · · · · ,
(A− µn)ψ

k
dk

= ψk
dk−1, 1 ≤ k ≤ ℓn.
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We expand Pna in terms of this basis in PnL
2(Ω):

Pna =

ℓn
∑

k=1

dk
∑

j=1

akjψ
k
j .

Then

Eα,1((−µn +Dn)t
α)(ψk

1 ψ
k
2 · · · ψk

dk
)











ak1
...

akdk











=

∞
∑

m=0

tαm
(−µn +Dn)

m

Γ(αm+ 1)
(ψk

1 ψ
k
2 · · · ψk

dk
)











ak1
...

akdk











=(ψk
1 ψ

k
2 · · · ψk

dk
)

×
∞
∑

m=0

tαm

Γ(αm+ 1)





















−µm
n ∗ · · · ∗ ∗

0 −µm
n · · · ∗ ∗

· · · · · · · · · · · · · · ·
0 0 · · · −µm

n ∗
0 0 · · · 0 −µm

n































ak1
...

akdk











.

Since un(T ) = 0, we see that each component of the above is equal to

0 at t = T , and so

(3.9)







































Eα,1(−µnT
α)ak1 +

∑dk
p=2 θ1pa

k
p = 0,

Eα,1(−µnT
α)ak2 +

∑dk
p=3 θ2pa

k
p = 0,

· · · · · · · · ·
Eα,1(−µnT

α)akdk−1 + θdk−1,dka
k
dk

= 0,

Eα,1(−µnT
α)akdk = 0,
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where θjp with j+1 ≤ p ≤ dk and j = 1, ..., dk−1, are some constants

depending also on T . By the complete monotonicity (e.g., Gorenflo

and Mainardi [8], and Pollard [17]), we see that Eα,1(−µnT
α) 6= 0.

Therefore by the backward substitution in (3.9), we can sequentially

obtain akdk = 0, akdk−1 = 0, ...., ak1 = 0 for k = 1, ..., ℓn. Hence Pna = 0

for each n ∈ N. Then we reach a = 0 in L2(Ω). Thus the proof of

Theorem 1.1 is complete. �

3.2. Proof of Theorem 1.3. Let w = w(t) be the solution to






∂αt w(t) = −Aw(t) + F, t > 0,

w(0) = 0, w(t) ∈ H1
0 (Ω), t > 0.

Since F ∈ L∞(0, T ;D(Aε
0)), Lemma 2.2 proves that w ∈ C((0, T ];H2(Ω)∩

H1
0 (Ω)). We consider

(3.10)







∂αt v(t) = −Av(t), t > 0,

v(T ) = b− w(T ), v(t) ∈ H1
0 (Ω), t > 0.

By Theorem 1.1, for b ∈ H2(Ω) ∩ H1
0 (Ω), there exists a unique solu-

tion v ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩H1
0 (Ω)) such that ∂αt v ∈

C((0, T ];L2(Ω)) to (3.10). Setting u = v + w, we see that u(T ) =

b− w(T ) + w(T ) = b. Then we can verify that u satisfies






∂αt u(t) = −Au(t) + F (t), t > 0,

u(T ) = b, u(t) ∈ H1
0(Ω), t > 0.

The uniqueness of u is seen by Theorem 1.1. Thus the proof of Theo-

rem 1.3 is complete.

�

In future projects we would investigate similar problems where the

principal part is an elliptic operator of order greater than 2, like in [5],
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and in the case of applied systems like [3]. Moreover we would study

related inverse problems similarly to [3], [4] and [11].
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