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This work presents an overview of the activity de-
veloped in the frame of a project funded by the 

European Space Agency (ESA). The research was 
focused on the study of the potential applications 
of GNSS Reflectometry (GNSS-R) over land, with 
an emphasis on soil moisture (SM) and biomass. 
A study about the sensitivity with respect to the 
freeze–thaw dynamics was considered as well. The 
work started with an analysis of the sensitivity of 
GNSS-R reflectivity collected by the TechDemoSat-1 
(TDS-1) experimental satellite, although, to a limited 
extent, the Cyclone GNSS (CyGNSS) constellation 
was considered as well. The encouraging sensitivity 
outcomes led to the development of retrieval algo-
rithms: three different approaches for SM and one for 
biomass based on neural networks.

A more theoretical investigation was carried out 
to better understand and predict the signal from a 
satellite platform, which required the updating of 
two different models. Topography effects and sensi-
tivity to moisture and roughness of a rough soil were 
included as well as the effect of vegetation cover.

The project was carried out by a large team involv-
ing different research groups in Europe. It has led to 
main conclusions and recommendations derived 
from a beneficial collaboration and fertilization of 
ideas. The primary approaches and outcomes are 
summarized here, including comparisons to the re-
cent literature.
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INTRODUCTION AND STATE OF THE ART OF GNSS-R 
GNSS-R is a technique that exploits the signals of oppor-
tunity provided by navigation satellites to implement a 
multistatic radar system for remotely sensing different bio-
geophysical parameters [1]–[3]. This can be achieved by 
means of receivers looking downward, cross-correlating the 
reflected signal either with a replica of the transmitted one 
(i.e., conventional GNSS-R) or with the direct signal itself 
(i.e., interferometric GNSS-R). The received signal power is 
delivered as a function of the time delay (sampled accord-
ing to the GNSS signal bandwidth) and Doppler frequen-
cy due to the motion of the platform and Earth (sampled 
according to the coherent integration time); the resulting 
delay-Doppler map (DDM) represents the main observable. 
Recent experiments have been carried out from airborne 
platforms but also from satellites (e.g., the UK-Disaster 
Monitoring Constellation, TDS-1, and Federated Satellite 
Systems on 3Cat). A NASA mission, the CyGNSS [4], col-
lecting reflections from a constellation of eight small plat-
forms, is currently operating to monitor tropical cyclones 
and study ocean winds.

In the last decade, the ESA has stimulated the growth 
of this technology, funding ground-based and airborne 

experiments and even designing spaceborne receivers to 
perform altimetry of the ocean surface, i.e., the Passive Re-
flectometry and Interferometry System In-orbit Demon-
stration and the GNSS-R Radio Occultation and Scatterom-
etry onboard the International Space Station (GEROS-ISS) 
mission [5]–[7]. Based on this heritage, a research team has 
also proposed an ESA Earth Explorer based on this tech-
nique (the GNSS transpolar Earth reflectometry exploring 
system) [8]. Very recently, the HydroGNSS scout mission 
has also been established [9].

Recently, the ESA has funded a research project that was 
run by a large European team with consolidated experience 
in GNSS-R modeling and data processing for land applica-
tions [6], [10]–[19]. The project aimed at demonstrating 1) 
to what extent the current knowledge from models and past 
ground/airborne experiments on GNSS-R applications for 
SM and vegetation biomass retrieval is still applicable from 
space (including a preliminary analysis on the monitoring 
of the freeze–thaw state), 2) which additional phenomena 
should be modeled and/or explained, and 3) which final 
biogeophysical products are possible to deliver and how 
(with recommendations for future systems). We mention 
that even if the project and, therefore, this manuscript only 

focus on the retrieval of SM, biomass, and freeze–
thaw state, other very important land parameters 
can be monitored and characterized by means of 
GNSS-R. Some of these are floods [20]–[23], wetland 
states and dynamics [24], and land/ice altimetry [16], 
[25], [26]. We just note that SM retrieval is quite ma-
ture and largely investigated, whereas, for biomass 
and freeze/thaw, the project was more explorative in 
view of future missions. All of these variables play 
an important role in studying and understanding the 
carbon and energy cycle of Earth and the monitoring 
of the environment.

The project has stimulated very beneficial dis-
cussions and a cross-fertilization of ideas. Many 
articles have already been published by individual 
research groups taking part in the project, but the 
relevant tasks and main achievements will be out-
lined throughout this article. This can contribute 
to providing a comprehensive summary of the final 
responses to the addressed scientific questions. Be-
sides the details that can be found in the referenced 
literature, this article offers a comparative sum-
mary of the results achieved by the different teams 
and synthesizes the project conclusions about the 
potential and drawbacks of GNSS-R applications 
over land. This is also done with comparisons to 
the recent literature.

A review of the state of the art was carried out at 
the beginning of the project, followed by the collec-
tion, quality control, and detailed analysis of experi-
mental GNSS-R data over land, with a strong focus 
on the spaceborne data sets provided by the TDS-1 
mission [27] and, although to a limited extent, by the IM
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CyGNSS mission [4]. As a by-product, the TDS-1 Level 1 
(L1) b data collected during the full mission lifetime were 
organized and preprocessed to create a manageable set of 
files (one for each year on a global scale and one for each 
test site along the full mission lifetime).

The main scope was the investigation of the sensitiv-
ity of the data to the target land parameters and the ef-

fects of additional biogeo-
physical parameters on the 
GNSS-R observations. Some 
data collected by the airborne 
GLObal navigation satellite 
system Reflectometry Instru-
ment (GLORI) sensor [12], 
[17] in France and the Com-
pact Reflectometer for Ter-
rain Observations (CORTO) 
sensor [18] in Spain were also 
analyzed and compared to 
the spaceborne data to un-
derstand to what extent the 

platform height can affect both sensitivity and retrieval 
capability. Another promising application of GNSS-R over 
land that was investigated is the monitoring of freeze–thaw 
soil conditions in subarctic areas [28], which has attracted 
scientific interest from different groups [29]–[32].

Different approaches to retrieve SM, above-ground for-
est biomass (AGB), and tree height or vegetation optical 
depth (VOD) from TDS-1 and CyGNSS data were devel-
oped and tested [33]–[37]. Vegetation parameters were even 
retrieved from the ground by placing the receiver under 
vegetation [11], [38]. 

Changes in the TDS-1-received power were consistently 
associated to changes in SM, with a dynamic in the order 
of 7 dB, even though soil roughness and vegetation were 
recognized as having an impact. Changes in CyGNSS-re-
flected power were also found to be linearly correlated to 
changes of Soil Moisture Active Passive (SMAP) products 
[35]. In the presence of low vegetation, the sensitivity of 
the TDS-1 signal-to-noise ratio (SNR) to SM measured by 
the Soil Moisture and Ocean Salinity (SMOS) satellite was 
found globally to be in the order of 8 dB/(m3/m3) in [34].

In [41], it is demonstrated that the CyGNSS constella-
tion is able to improve sampling the SM product from the 
SMAP mission onto a 36-km grid. The combined near-op-
erational SM product is noisier than SMAP’s but achieves a 
highly appreciable temporal sampling of 6 h.

Algorithms to retrieve SM from CyGNSS data only (i.e., 
independently of SMAP or SMOS products) have been pro-
posed using artificial neural networks (ANNs) [42], [43]. 
They can include as input other quantities affecting the 
GNSS-R signal [e.g., the normalized difference vegetation in-
dex (NDVI)], introduce additional observables (e.g., derived 
from the full DDM), and take into account the nonlinearity 
of the relationships among inputs and the SM output. In [43], 
an ANN regressor was trained and tested using an in situ SM 

from the International Soil Moisture Network (ISMN), and 
subdaily retrievals over a 9-km × 9-km cell achieved a root-
mean-square error (RMSE) of 0.054 m3/m3. Similarly, in 
[42], an improvement of the retrieval performances was also 
found when increasing the integration time; a comparable 
accuracy of CyGNSS and SMAP products when both were 
compared to ISMN data was observed as well.

A simple forward model was proposed in [44], leveraging 
on the microwave radiometry heritage. Although the GNSS-
R signal is recognized as a mixture of coherent and incoher-
ent scattering, an equivalent reflectivity is considered as the 
main observable. The model accounts for the influence of 
surface reflection, the vegetation attenuation, and volume 
scattering, and a few model parameters were tuned using a 
matchup of CyGNSS and SMAP data. The model was con-
ceived as first step for future model-based inversion.

A different approach was proposed in [45], based on the 
assumption that, on a short time scale, the SM can produce 
changes in the CyGNSS bistatic normalized scattering co-
efficients, whereas soil roughness and vegetation do not 
change much. Note that in [45] only incoherent scattering 
was selected, in contrast to other articles, where a coherent 
reflection from the land surface was assumed. The change 
detection approach is able to estimate only changes in SM, 
so prior statistics from SMAP were needed to deliver abso-
lute values. The SM maps on a 0.2° × 0.2° grid and a one- or 
three-day temporal sampling were compared to the SMAP 
data, and the RMSE was found to be in the order of 0.03–
0.04 m3/m3.

The progress in vegetation parameters and freeze–
thaw state from spaceborne GNSS-R sensors is less ma-
ture. The GNSS-R signatures of different land-cover (LC) 
types (forest, ice, and so on) were analyzed empirically 
using GNSS reflections collected by the SMAP radar re-
ceiver, taking advantage of the dual linearly polarized 
antenna and its high gain [46]. Specifically, the sensitiv-
ity of the soil reflection to the attenuation of vegetation 
in a near-specular geometry was previously addressed, 
with a theoretical approach, in [14]. This was empirical-
ly verified using reflectivity and a zero-Doppler wave-
form trailing edge derived from the CyGNSS DDMs. 
Regarding the freeze–thaw state, the expected change in 
reflectivity modeled according to the SMAP freeze/thaw 
was actually observed in the GNSS-R scenario captured 
by the SMAP radar receiver [32].

In this project, three different approaches were tested for 
SM: a physically based algorithm applied to a single satel-
lite passage, an empirical multilinear regression approach, 
and a change detection approach based on a multitemporal 
data stack. The physical approach was tested on airborne 
and satellite TDS-1 data, concentrating on understanding 
how to collect the needed ancillary information, which was 
revealed to be a major problem. The multilinear regression 
and change detection approaches have been applied to data 
resampled on a regular grid and averaged over time (e.g., to 
retrieve daily means). The former was applied on a global as 
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well as a local scale, the availability of ancillary data being 
different for the two cases. The latter can retrieve a satura-
tion index to be successively converted into volumetric SM. 
Retrieval approaches based on ANNs were also attempted 
for different target parameters (biomass, tree height, VOD, 
and SM), whose reference values (the training and test sets) 
were provided by different sources. In detail, the ANN al-
gorithms were employed to retrieve the forest biomass and 
the tree height at a global scale from CyGNSS data and to 
provide daily estimates of SM and VOD [47].

An additional study carried out in the project framework 
dealt with the modeling of the reflected GNSS signal over 
land observed from space, merging the experiences of two 
research groups. The two software tools developed in the 
past by the two different teams have been updated to im-
prove the modeling accuracy and include specific satellite-
related effects. The GEROS-ISS end-to-end simulator [48] 
has been updated for predicting the land signal, introducing 
a simple first-order solution for vegetation attenuation/scat-
tering (see [49]). The Soil and Vegetation Reflection Simula-
tor (SAVERS) [50] has been updated (see [51]) and used to 
understand the contribution of near-specular and diffuse 
incoherent signals at spaceborne height, implementing the 
model described in [52]. Both tools account for surface to-
pography and target inhomogeneity, whose effects on the 
satellite signal have been recognized and discussed. The 
simulators were used to derive the theoretical sensitivity of 
the signal to the surface parameters, to be compared with 
that observed on the data [19], [51].

This article is a summary of the project’s final report 
[53], attempting to establish the work on the state of the art 
of the GNSS-R technique.  

DATA SET DESCRIPTION AND CALIBRATION
The work was carried out by exploiting the data from two 
spaceborne platforms: TDS-1 and CyGNSS. TDS-1 L1b 
products in NetCDF format were collected from the Mea-
surement of Earth’s Reflected Radio-Navigation Signals 
by Satellite (MERRBYS) portal [54]. The original data are 
split into 6-h segments. To facilitate the scientific exploi-
tation of the data, they have been arranged in a single file 
over a period of time: one year for the global database 
and the whole mission lifetime for specific test sites. The 
processed data contain the most significant set of vari-
ables for the analysis and investigation of biomass and 
SM sensitivity. CyGNSS L1 data [55], version 2.0 (the one 
available at the time of the work), were collected from 
the Physical Oceanography Distributed Active Archive 
Center ftp server [56].

The main observable extracted from both products is 
the DDM power, which must be converted into a calibrated 
observable using ancillary information included within 
the files. Namely, the peak SNR and the reflectivity were 
computed. The latter has been derived assuming the signal 
is dominated by the coherent component of the surface 
scattering in the near-specular direction, so that the power 

received by the down-looking antenna ( ),Prp
S  starting from 

the well-known radar equation for deterministic targets 
(see, e.g., [57]), can be written as follows:

	 ,P
R R
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S

pq 2 2

2

i
m

C=
+
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where Rr  is the distance from the receiver to the specular 
point (SP), Rt  is the distance from the transmitter to 
the SP, m  is the wavelength, and Gt  and Gr  are the gain 
of the transmitting and receiving (i.e., down-looking) 
antennas. pqC  is the surface (equivalent) reflectivity, 
which is a function of the incidence angle i  at the SP, for 
transmitted q polarization (right-hand circular polar-
ization for GPS systems) and received p polarization 
[left-hand circular polarization (LHCP) as for TDS-1 
and CyGNSS]. To retrieve the unknown transmitter 
equivalent isotropic radiated power, i.e., ,EIRP G Pt

t=  
the amplitude of the direct signal collected by the 
TDS-1 up-looking antenna was exploited as described 
in [58]. As for CyGNSS, the EIRP was retrieved from 
the L1 product itself. Both approaches have serious 
drawbacks: for example, the up-looking antenna pat-
tern is not accurately known, whereas the nominal 
values of the EIRP can be inaccurate. Additionally, the 
power of the noise must be estimated from the DDM 
using the first delay lines preceding the peak; this is 
then subtracted from the received power to retrieve 
the signal power.

The equivalent reflectivity embeds the effects of the sur-
face moisture content, small-scale roughness, and the attenu-
ation introduced by the vegetation cover. Such an observable 
is denoted the equivalent reflectivity as it also includes the con-
tribution of the incoherent component of the scattered field 
introduced by the vegetation and soil roughness at different 
scales. In this respect, we mention that, during the develop-
ment of the project, different research groups have deeply 
investigated the phenomenology of GNSS-R land scattering, 
considering both theoretical and experimental approaches 
(see [16], [26], [59], and [60] and the references therein). In 
this frame, the need of modeling the presence of an interme-
diate scale of roughness and accounting for the incoherent 
nature of the scattering for most of the observed land sur-
faces (excluding water bodies, iced surfaces, and almost-pla-
nar surfaces characterized by large values of the correlation 
length) has been discussed. The relative weight of coherent 
and incoherent signals in the GNSS-R data is probably still 
a main research question (as well as how to distinguish be-
tween the two). 

In the analysis presented in the sequel, a quality filtering 
of the TDS-1 data was applied to remove cases with the space-
craft in eclipse or with the direct signal potentially entering 
the DDM. In most cases, only small incidence angles (e.g., 
less than 45°) were considered, as signals at larger angles are 
collected far from the boresight of the down-looking anten-
na, which can introduce calibration problems caused by a 
poor knowledge of the attitude. Data collected over complex 
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topography were also removed from the analysis. We also re-
moved CyGNSS data with poor quality flags and those col-
lected over continental surfaces with altitudes greater than 
500 m since the small receiving window was initially set to 
collect data from the ocean and probably cannot accommo-

date data coming from high 
mountains. Note that, after 
December 2017, reflections 
coming from altitudes greater 
than 500 m could be success-
fully collected by CyGNSS.

The research on the retriev-
al of soil and forest param-
eters needs reference global 
information, such as SM, bio-
mass, and tree height or VOD 
for carrying out correlation 
analyses and validating the 
relevant retrieval algorithms. 

SM and VOD were obtained from microwave radiometer 
products, i.e., the SMAP L3 daily products, version 5, pro-
jected onto the Equal-Area Scalable Earth (EASE)-Grid, and 
the SMOS L3 product.

Note that the VOD is not a vegetation parameter that 
can be measured on the ground; it is, rather, an electro-
magnetic parameter that is correlated with the vegeta-
tion biomass and height. Moderate-Resolution Imaging 
Spectroradiometer/Terra NDVIs generated every 16 days 
were also collected. For forests, the Ice, Cloud, and Land 
Elevation Satellite (ICE)-Geoscience Laser Altimeter Sys-
tem (GLAS) lidar acquisitions processed as in [61] were 
considered to provide tree height maps as well as the im-
proved pantropical AGB [62], limited to +/- 40° of lati-
tude (available from www.wageningenur.nl/grsbiomass). 
The time intervals used for colocating different products 
were rather short for the estimates of SM (2–3 h) but were 
more relaxed for biomass estimates as the reference data 
can be considered mainly “static” maps that do not pro-
vide any evolution in time.

The sensitivity analysis and the retrieval were carried 
out on both a global and a local scale (i.e., over specific 
test areas). The latter were selected with different criteria, 
with the aim of covering different soil and forest condi-
tions and getting a suitable amount of ancillary data. Spe-
cifically, for SM, the following locations were considered: 
Florida, Texas, the SMOSMANIA (France), the Merguel-
lil site (Tunisia), the REMEDHUS site (Spain), and the 
CEMADEN site (Brazil). For biomass, the selected areas 
were Alaska, Florida, Manaus, Argentina, Zambia, and 
Finland. Additional areas to test the effect of topography 
were Chad and the Alps.

The study related to the GNSS-R potentiality for freeze/
thaw monitoring was carried out in the Northern Hemi-
sphere. An analysis aimed at comparing SMAP freeze/
thaw and GNSS-R spatiotemporal dynamics was per-
formed in Siberia. Comparisons between GNSS-R data 

and in situ temperature records were accomplished by 
taking advantage of stations located in Canada, Finland, 
Siberia, and Alaska.

SENSITIVITY TO SM

ANALYSIS OF TDS-1 DATA
The sensitivity of TDS-1 observables to the surface SM was 
investigated using the 2014–2017 global TDS-1 data set. 
The sensitivity of different GNSS-R observables to the sur-
face SM and its dependence on the incidence angle were 
analyzed. A global scale statistical analysis using SMOS L3 
products (SMOS nominal resolution, regridded at 25 km) 
was first carried out. Then, an investigation at regional scale 
using SMOS L4 products (1-km resolution) as well as in situ 
sensors was performed. The potential dependence on the 
subsurface SM was also analyzed in the Brazilian semiarid 
region using the LISFLOOD [63] and MUSA models (http://
musa.cptec.inpe.br).

The TDS-1 reflectivity was first corrected to compensate 
for the vegetation effects using the SMOS-derived VOD. A 
simple model is assumed considering the vegetation two-
way attenuation and the small-scale surface roughness HR 
parameter used in the SMAP retrieval algorithm, as given 
in the following:

	 , , , .e eSM VOD SM /HR cos
i i

2 VOD i$ $i iC C= $ i- -^ ^ ^h h h � (2)

It must be pointed out that mixed-pixel effects were not 
accounted for, and the resolution of SMOS products (35– 
50 km) is significantly different from that of GNSS-R 
products as the latter can be approximately determined 
by the size of the first Fresnel zone in the case of coher-
ent scattering [52], [59], [66]–[68] or as about 25 km as 
a maximum for incoherent scattering. The relatively low 
correlation of the results shown in Figures 1 and 2 may be 
partially attributed to the different resolution of the mea-
surements, which was not considered (about 1–10 km for 
TDS) when incorporating the SMOS and SMAP data (i.e., 
VOD and HR) into (2).

Figure 1 shows the scatterplots of SNR, DDM peak, and 
reflectivity (compensated for vegetation and the distance 
factor and limited to incidence angles up to 30°) versus the 
colocated SMOS L3 SM product. The color scale shows the 
VOD in nepers. Note that the pixels with the highest VOD 
are well above the fitting line, which suggests that the VOD 
effects must be considered, but that the correction in (2) is 
overcompensating for these effects.

As can be seen, the SNR exhibits the largest uncer-
tainty (standard deviation . )7 1dBv =  but also the largest 
sensitivity to SM, i.e., 22.75 dB/(m3/m3). The peak of the 
DDM exhibits a very weak sensitivity to SM, as the signal 
is masked by the speckle noise. The reflectivity scatterplot 
exhibits a sensitivity to SM of 9.11 dB/(m3/m3) and a much 
smaller uncertainty of . .3 17 dBv =  From now on, only the 
reflectivity will be analyzed [19].

THE EQUIVALENT 

REFLECTIVITY EMBEDS THE 

EFFECTS OF THE SURFACE 

MOISTURE CONTENT, 

SMALL-SCALE ROUGHNESS, 

AND THE ATTENUATION 

INTRODUCED BY THE 

VEGETATION COVER.
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Figure 2 shows the scatterplots of the (calibrated) reflec-
tivity for incidence angles from 0° to 30° [Figure 2(a)], from 
30° to 60° [Figure 2(b)], and from 60° to 90° [Figure 2(c)] 
versus the colocated SMOS SM. One can see that, as the 
incidence angle increases, the sensitivity to SM decreases:  
8.7 dB/(m3/m3) from 0° to 30°, 5.7 dB/(m3/m3) from 30° 
to 60°, and 2.8 dB/(m3/m3) from 60° to 90°, while the pix-
els more affected by dense vegetation (i.e., large VOD) de-
part more from the linear fit.

While the obtained sensitivities are lower than those ob-
tained in previous studies mentioned in the introduction  
(see [34] and [38]), they are still significant. Note that any 
speculation about the presence of speckle noise refers back 
to the question about the relative weight of coherent and 
incoherent scattering, which is the object of studies in the 
recent literature as discussed previously [16], [45].

A similar analysis was also performed over three differ-
ent regions where a 1-km-resolution L4 downscaled SMOS 
surface SM was produced and in situ data were available. L4 
SM maps were obtained from the L3 SM maps by applying 
a downscaling algorithm to disaggregate the original SM 
pixels to a 1-km resolution [69], [70].
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The considered regions were the CEMADEN area lo-
cated in a Brazilian semiarid region, the REMEDHUS site 
in Spain, and the OzNet site in Yanco, Australia. These 
regions belong to SM networks. For the Brazilian site, 
hydrological models were run to estimate the 50-cm and 
100-cm SM.

The TDS-1 reflectivity was compared with SMOS L3 
and L4 products, as well as in situ data from the ground 
networks. In principle, many colocated data should be 
available for intercomparison. In practice, TDS-1 ground 
tracks are so far away from the network stations that few 
matchups were available, and only when the distance 
threshold is increased up to 30 km, the matchup sam-
ples become statistically significant. Unfortunately, this 
distance is similar to the SMOS L3 resolution, so that no 
conclusive results can be derived about the comparison 
at higher resolutions.

The sensitivities obtained using the SMOS L3 SM val-
ues can be considered quite high: 18.64 dB/(m3/m3) in 
Yanco, New South Wales (NSW), Australia; 9.37 dB/(m3/
m3) in the CEMADEN area, Brazil; and 12.15 dB/(m3/
m3) over the Iberian Peninsula. However, the sensitivity 
derived when compared to the SMOS L4 SM values de-
creased notably to 11.18 dB/(m3/m3) in Yanco, NSW, Aus-
tralia; 6.62 dB/(m3/m3) in CEMADEN, Brazil; and –1.1 dB/ 
(m3/m3) in the Iberian Peninsula (this is probably less 
significant because of the limited amount of data and 
the limited range of SM values). As the topography and/
or vegetation effects increase, this sensitivity decreases, 
although the pixels affected by topography were flagged 
and discarded, and vegetation effects were, in principle, 
compensated for. In any case, all of these sensitivities are 
smaller than those obtained in [34] and [38], which are 
about 38 dB/(m3/m3). The nonlinearity of reflectivity ver-
sus SM values mainly explains this discrepancy. It is likely 
that certain experiments show a higher sensitivity since 
they explore low values of SM with respect to the pres-
ent analysis, which regarded almost the full range of SM 
values. An investigation about this issue was done in the 
radar context in [71].

When trying to correlate the TDS-1 GNSS-R reflectivity 
with in situ SM values, very few matchups were found. It 
was difficult to perform a robust fit over the REMEDHUS 
(Spain) and Yanco (NSW, Australia) sites. Only over Bra-
zil, with a radius setting of 30 km, satisfactory matchups 
were found to obtain representative results. The sensitivities 
are equal to 7.39 dB/100%, 1.36 dB/(m3m3), and –9.10 dB/
(m3m3) for incidence angles from 0° to 30°, from 30° to 
60°, and from 60° to 90°, respectively. For incidence an-
gles from 0° to 30°, the value obtained is between 6.62 dB/
(m3m3) and 9.37 dB/(m3m3) evaluated with respect to L4 
and L3 SMOS SM data, respectively. Because of the avail-
ability of the outputs of hydrological models (LISFLOOD 
and MUSA) in the Brazilian semiarid site, a comparison of 
reflectivity with SM in the root zone was attempted [19]. 
The results were not conclusive, again because of the small 

number of matchups. However, a sensitivity of the reflec-
tivity to the SM at a 50-cm depth was observed using the 
LISFLOOD model (at 10-km resolution), whereas no ap-
parent sensitivity to the 1-m depth SM from the MUSA 
model was observed, the latter running at a worse resolu-
tion (i.e., 25 km).

The problems encountered when analyzing the sensitiv-
ity at high resolution recalled another research question, 
which is the spatial resolution of the GNSS-R observations 
[66], which is related again to the issue of coherence of the 
collected signal [16], [45]. Moreover, it must be pointed 
out that the GNSS-R observations along the tracks of the 
specular points are not repeated systematically over a pre-
defined spatial grid, and thus the matchup with in situ 
data can be problematic.

SUPPORTING DATA SET: THE AIRBORNE  
GLORI CAMPAIGN
Data from the GLORI polarimetric receiver [12], [17] were 
used to understand to what extent the satellite height can 
affect the GNSS-R performances. Two classes of crops are 
considered according to their leaf area index (LAI) in the 
sensitivity analysis of GNSS-R observables to SM. The ob-
jective of this choice is limiting the influence of the hetero-
geneity of vegetation cover densities between agricultural 
reference fields. The first class is defined by LAI 1, corre-
sponding to medium and high vegetation densities. Figure 3  
illustrates RLC  and the reflected SNR as a function of the 
SM, for the two LAI classes within the 0°–20° interval of 
incident angle. For each plotted point, the GNSS-R observ-
ables are averaged over an agricultural field at a given date. 
It can be seen that increasing the LAI generally reduces the 
sensitivity of GNSS-R observables to the SM.

The RLC  sensitivity to the SM decreases from 45.7 dB/
(m3/m3) for the weak LAI values (LAI < 1) to 28.38 dB/(m3/
m3) for the highest LAI values (LAI > 1). This result clearly 
illustrates the nuisance effect of the vegetation on GNSS-R  
observables. For the case of the polarimetric ratio (PR), de-
fined as / ,RL RRC C  a low correlation with the SM was ob-
served (R2 < 0.2, even for low LAI values). For the low LAI 
class, a sensitivity slightly higher for both reflectivity and 
SNR for low incident angles was observed.

The GNSS-R observables were also studied as a func-
tion of the LAI of the plant cover. As in the case of SM, 
two incident angle intervals and three observables ( ,RLC  
LHCP SNR, and PR) were considered. The effect of SM is 
reduced by considering data acquired in dry conditions, 
with the SM lower than 0.1 m3/m3. There is a clear de-
crease in the GNSS-R observables with increasing veg-
etation LAI because of the signal scattering and absorp-
tion (both increasing the optical thickness), as shown 
in Figure 4 [17]. The observed higher sensitivity to LAI 
at high incident angles (equal to –0.91 dB/[m2/m2]) can 
probably be attributed to a decrease in the influence of 
the soil component (roughness and moisture) due to an 
increment of the VOD.
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A similar behavior is observed for the signal SNR. The 
PR observable was found to be correlated with the vegeta-
tion LAI, with a high sensitivity to vegetation LAI equal to 
–1.1 dB/[m2/m2] for high angles and –1.18 dB/[m2/m2] for 
low incident angles. This better performance of PR in com-
parison to its sensitivity to the SM could be explained by 

the highest effect of vegetation on the depolarization of the 
GNSS signal.

Based on the model in (2), and assuming an approxi-
mated linear dependence of the Fresnel reflectivity from 
SM and of VOD from the LAI, the equivalent reflectivity 
of a vegetated and rough soil in dB units can be written 
as follows:

	 ,
cos

SM
LAI

dBLR $
$

i a
i

b
dC = + +^ ^h h � (3)

where  a  is the sensitivity of Fresnel reflectivity to the SM, b  
the sensitivity of canopy opacity to the vegetation LAI, and 
d a constant related to the roughness effect. ,a  ,b  and d are 
empirical parameters to be retrieved from the experimental 
data. The retrieved equation for the received left polariza-
tion is given in the following, where a linear relationship 
between the VOD and LAI is also applied:

	  . .  . .
cos

40 73 7 01 19 04SM VOD
LR dB $

$
i

i
C = - -^ ^h h � (4)

Figure 5 presents a comparison between measured and 
simulated reflectivity over the training set (to retrieve the 
coefficients) and an independent validation set. As for the 
test set, the determination coefficient R2 is 0.69, with an 
RMSE equal to 2.9 dB. Corn agricultural fields, with the 
highest vegetation height, are illustrated by the points 
showing the highest discrepancy and a saturation behavior 
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for low values of reflectivity. The choice of the LAI as a 
proxy of optical thickness instead of other properties, such 
as the vegetation water content (VWC), could induce cer-
tain limitations.

Moreover, the sensitivity of the Fresnel coefficient to 
SM could be parameterized to the incidence angle, espe-
cially in the higher range of angles. Nonetheless, the simple 
model exhibits a fairly good capability to reproduce the 
data and can be adopted within a physically based retrieval 
approach. Of course, its validity for spaceborne data has to 
be verified.

THE SENSITIVITY OF CYGNSS DATA
As was done for TDS-1, the sensitivity of CyGNSS data to 
SM was assessed with respect to the SMAP SM. Note that 
reasonable results were obtained only by retaining SM data 
with the SMAP flag “retrieval recommended” (RR) set on. 
The sensitivity and its dependence on the incidence angle 
are shown in Figure 6. For small angles, the sensitivity ap-
pears relevant, even without compensating the effect of 
vegetation and roughness, and the data behavior appears 
similar to that of TDS-1 data. Finally, the dependence of the 
CyGNSS reflectivity on vegetation has been analyzed in 
more detail using the VWC parameter, derived from NDVI 
climatology and included in the SMAP data (not shown 
here for the sake of conciseness). To provide an overall es-
timate of sensitivity to the SM and VOD, a multivariate re-
gression analysis was carried out, as shown in Table 1. The 
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results show a good sensitivity to the SM and VOD (the lat-
ter being negative, as expected). The sensitivity to the SM is 
also quite independent of the incidence angle as the multi-
variate regression probably better compensates empirically 
for the VOD effect with respect to the physical model in 
(2). The sensitivity to the VOD is higher at larger angles, 
confirming previous outcomes.

SM RETRIEVAL APPROACHES

SINGLE-PASS RETRIEVAL
The feasibility to perform single-pass SM retrievals using 
GNSS-R observations and a physically based approach was 
investigated in [64] and [73]. The aim was to exploit data 
from a single receiver overpass, in contrast with the next 
sections, which discuss the retrieval of space and tempo-
ral means carried out based on empirical approaches. A 
single-pass approach does not need to resample and colo-
cate observations over time; thus, it enables better tempo-
ral and spatial resolution. Another important advantage 
is the possibility of considering accurate forward models, 
describing the nonlinear relationship between reflectivity 
and SM, which exhibits a saturation effect for wet soils (see 
the previous discussion about the dependence of sensitivity 
on the SM dynamic range). The drawbacks are the need of 
an accurate absolute calibration and the collection of an-
cillary data to correct roughness and vegetation effects on 
each data sample.

The proposed physical SM retrieval algorithm exploits 
the model in (2) and inverts it to retrieve the Fresnel reflec-
tivity using independent ancillary information on the VOD 
and roughness. The Fresnel reflection formula is used to de-
rive the soil permittivity, and finally a permittivity model is 
exploited to retrieve the SM (among other variables, such as 
the clay fraction and physical temperature) through a mini-
mization process.

The approach was first attempted on data acquired dur-
ing an airborne experiment that took place on 22 October 
2018 in an agricultural region around Balaguer, Catalonia, 
Spain. The plane was a Cessna Caravan flying at 1,200 m 
of height. The AISA instrument (a pushbroom hyperspec-
tral sensor collecting 126 bands in the visible and near-
infrared spectrum) flew together with the ARIEL L-band 
radiometer and the CORTO GNSS reflectometer at L1/L2 
GPS bands [18].

The VOD used to compensate for the vegetation effects 
was derived following the SMAP approach [74] applied to 
the high-resolution NDVI available from AISA. A field cam-
paign was carried out to collect data on surface roughness 
by a laser profiler and in situ SM measurements performed 
the same day as the airborne campaign. Ground samples 
were collected from five different areas corresponding to 
different agricultural fields. Surface roughness measure-
ments were revealed to be quite critical, as usual, and the 
sampling was not dense enough. The ARIEL L-band radi-
ometer [75] was used to provide a complete SM map with a 

final resolution of 0.8 m. The retrieved SM maps were then 
validated using the in situ SM samples.

Because of the limited estimation of the soil surface 
roughness from in situ data, the results show a disparity 
between the SM data retrieved by the ARIEL radiometer 
and the CORTO GNSS-R instrument. For a single track of 
reflections over a relatively flat area, the retrieved SM values 
are highly variable with the incidence angle and are quite 
different with respect to the SM derived from the L-band 
radiometer. These results testify that the surface roughness 
correction was not appropriate in either the value of the 
HR parameter and/or the power of the cosine function ap-
pearing in (2). Then, the surface roughness correction term 
was tuned to match as closely as possible the CORTO SM 
retrieval and the SM from the ARIEL data. The best value 
for the power of the cosine function was found to be n 0=  
(n 2=  is the theoretical value).

The ad hoc roughness parameter revealed itself to be 
quite spread, notably more for the highest values. There is no 
evident correlation with the different fields or with the SM 
values to explain the variability of the ad hoc roughness. Of 
course, the anomalous values of the ad hoc roughness can 
be related to a wrong compensation of the vegetation effect 
based on the NDVI and/or to the estimation of the noise in 
the DDM needed to compute the reflectivity. This led to the 
conclusion that soil surface roughness is a key parameter 
to correctly estimate the SM, but in situ measurements of 
surface roughness are not suitable to predict the value to 
be used; the use of a constant value for a large region is not 
suitable either. The approach of forcing a tunable roughness 
correction per pixel is not feasible in an operational system. 
An alternative approach can consist in deriving empirically 
the best roughness parameter as a function of the incidence 
angle from a suitable training set. The “ad hoc” roughness 
derived in this way provided reasonable results and could 
be further exploited in the future.

The approach tested on the Balaguer data has also 
been applied to TDS-1 reflectivity data collected over the 
REMEDHUS experimental site, where in situ SM measure-
ments and other data are routinely collected. Similar con-
clusions can be outlined through the Balaguer experiment. 
An ad hoc roughness parameter is needed to force a correct 
SM retrieval. It can be adjusted locally or regionally, but this 

TABLE 1. REGRESSION COEFFICIENTS AS A FUNCTION OF 
INCIDENCE ANGLE RANGES COMPUTED USING THE DATA  
SET WHEN THE RR FLAG FOR SMAP DATA IS APPLIED.

REGRESSION  
COEFFICIENTS  
FOR CYGNSS SM

VEGETATION 
OPACITY ROUGHNESS

All i 26.00 –16.02 –15.22

0° <= i < 30° 27.09 –13.30 –16.41

30° <= i < 60° 25.51 –16.50 –13.50

i >= 60° 25.66 –21.77 –13.45
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does not seem feasible (or at least it is very difficult in gen-
eral and not known at present) from an operational view-
point. For this reason, it was concluded that, at least at this 
stage, retrievals of spatially or temporally averaged values, 
possibly exploiting a temporal sequence of GNSS-R data, 
can be more effective.

However, recent results using airborne data acquired by 
a microwave interferometric radiometer over Yanco, New 
South Wales, Australia [76], have shown that the origin of 
the fluctuations of the reflectivity, mainly linked to ther-
mal noise, speckle, and surface roughness, can be used to 
correct surface roughness effects. This is a new promising 
result that can be applied to single-pass retrievals, also from 
space, as in [77].

RETRIEVAL BY CHANGE DETECTION
An alternative inversion algorithm was proposed to re-
trieve the surface SM from CyGNSS data using a change 
detection approach. It was tested on the Merguellil site 
(Tunisia), the Dallo Basso site (Niger), and the Ouémé site 
(Benin) around respective ground moisture stations. As for 
ancillary data, 10-day NDVI products were collected and 
atmospherically corrected, derived from Proba-V data at a 
spatial resolution of 1 km. SM data (i.e., the relative satu-
ration index, ranging between 0% and 100%), retrieved 
from the backscattering coefficient measured by the Ad-
vanced Scatterometer (ASCAT) radar carried aboard the 
Meteorological Operational satellite [78], were also included. 
CyGNSS data were filtered according to SNR >3 dB and 
incidence angles lower than 35°. Only data with NDVIs 

between 0.2 and 0.8 were considered to avoid both water 
bodies and dense forests; data over surfaces with altitudes 
greater than 600 m were also discarded. After the selection 
of CyGNSS data, an empirical normalization of the reflec-
tivity as a function of the incidence angle was applied con-
sidering data aggregated on a 0.1° × 0.1° grid. Finally, data 
were aggregated on a 0.5° × 0.5° grid. The large dimension 
of this grid (e.g., with respect to the 0.25° × 0.25° ASCAT 
grid) is aimed at getting enough data within each pixel 
as specular reflections generally come from different ele-
ments of the surface and lead to a high variability in time 
for inhomogeneous surfaces. A minimum of five GNSS-R 
measurements in the same pixel was considered to derive 
the mean daily value.

A problem that was apparent looking at the data in 
the test area, characterized by an arid climate, is the high 
variation of GNSS-R reflectivity in dry conditions, with a 
standard deviation of about 3 dB, without any expected lo-
cal effect due to the SM. This could be due to a larger un-
certainty in the retrieval of reflectivity for low SNR values, 
but it can also be linked to the heterogeneity of the surface, 
both vertically (considering the high penetration depth) 
and horizontally, as explained before.

The change detection algorithm was applied to the data 
with a grid resolution equal to 0.5° × 0.5° collected during 
a period of 21 months. In a context of a database spanning 
a long time interval, the highest SM (i.e., a larger )C  likely 
corresponds to soil saturation and the lowest SM (a smaller 

)C  to the driest possible condition. An index between 0 and 
100% is then estimated according to the following formula, 
referred to as the saturation degree, similarly to what is done 
for the ASCAT moisture products [78]:

	  .Ind 100
max min

min #C C
C C

= -
- � (5)

Since vegetation could influence the dynamics of the 
reflectivity, the change detection algorithm was applied 
within two vegetation classes: NDVI < 0.4 and NDVI > 0.4. 
The number of classes could increase with the increasing 
length of the time series. To compare the CyGNSS satura-
tion degree with ground measurements, CyGNSS products 
were converted to physical units of m3m−3 by normaliz-
ing them to the mean and standard deviation of the theta 
probe ground data in each station. 

Figure 7 provides a comparison between Merguellil 
ground measurements at a 5-cm depth and GNSS-R prod-
ucts. During the dry season, as already observed, CyGNSS 
retrievals exhibit a high variability in spite of the absence 
of temporal and spatial variation of the SM. The qual-
ity of the statistical outcome of our comparison between 
ground-truth measurements and satellite products is 
moderate. Table 2 summarizes the statistical parameters, 
i.e., the RMSEs and correlation coefficients. When a dry 
period was not considered in the proposed comparison, 
better results with the highest accuracy in the SM estima-
tion were observed.
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A comparison between ASCAT and CyGNSS products 
estimated in the period between March 2017 and the end 
of December 2018 was also performed. A moderate agree-
ment between the two saturation degree products was ob-
served (a correlation of 0.62), although one must consider 
the limited number of matchups and the fact that the AS-
CAT change detection algorithm is based on more than 20 
years of radar data.

In conclusion, the use of CyGNSS data within a change 
detection algorithm has shown a reasonable potential for 
monitoring the SM content. The GNSS-R technique is still 
very young, and decades of experience acquired in the use 
of monostatic radar and passive microwaves make a great 
difference. Nonetheless, the accuracy was not far from that 
achieved by scatterometers or passive microwave radiom-
eters. However, there are still many aspects to clarify to 
improve the accuracy of the estimates, such as an improved 
correction of topographic effects and vegetation cover, a 
better understanding of the limitations of low reflectivity 
values over dry conditions, and the need to increase the 
density of acquisitions as the SPs do not pertain to the 
same surface from one day to another. The latter factor 
generates a variation as a function of time over the same 
resolution cell of the grid, which is an issue to further con-
sider in the future.

RETRIEVAL BY MULTIVARIATE REGRESSION
Two approaches have also been tested to estimate the SM 
using CyGNSS data based on an empirical multivariate re-
gression. The results of the proposed algorithms were in-
vestigated on both a global scale and specifically over three 
study areas: Florida, Texas, and New South Wales [79].

Besides five months of CyGNSS acquisitions, span-
ning from April 2017 to August 2017 (L1 products, ver-
sion 2.0), the investigation considered as ancillary data 
the SMAP L3 products to gather reference SM as well as 
information about vegetation opacity (the VOD) and the 
roughness coefficient.

It is worth noting that the roughness coefficient is a pa-
rameter essentially derived from information about land 
classification and, as such, is not very representative of the 
small-scale roughness. The SM extracted by the SMOS L2 
product (version 6.50) was also used and was limited to the 
Florida, Texas, and New South Wales areas. The in situ daily 
SM measurements were analyzed over Florida and Texas 
and were taken from the Soil Climate Analysis Network 
(SCAN) climate monitoring stations,

The algorithm is based on a multivariate linear regres-
sion that estimates the SM as

	 .a b c dSM VOD HdB$ $ $C= + + +l l l � (6)

With respect to (2), the VOD, the measured reflectiv-
ity, and the roughness parameters were standardized [for 
this reason, they are indicated with an apex in (6)], impos-
ing  the dynamic range of the variables to be [0 1], and the 

dependence on the incidence angle was not considered. The 
standardization aims at directly comparing the weights that 
the retrieval algorithm gives to each variable. The regres-
sion coefficients were estimated from a combined training 
set of CyGNSS reflectivities and SMAP SM and then tested 
on an independent set. The test set was extracted randomly 
from 2.5 months of data, while the algorithm performanc-
es were evaluated from the remaining 2.5 months of data. 
The data were quality controlled to check that the CyGNSS 
reflectivities were positive, the VOD and roughness coef-
ficients had valid numbers, and the acquisition altitudes 
were lower than 500 m. The reflectivity was then gridded 
for each day and over the SMAP EASE-Grid at a 36-km × 
36-km resolution.

The so-called relevance vector regression (RVR) retrieval 
algorithm determines a unique set of regression coeffi-
cients on the global database of CyGNSS and SMAP data 
implementing a trilinear regression to estimate the SM. 
The consideration of the incidence angle in the regression 
model was proved not to be effective in terms of retrieval 
performance, and it was not included. The algorithm ap-
plied to global data tends to give similar weights to both the 
reflectivity and the vegetation opacity. Moreover, it tends to 
underestimate a high SM and overestimate a low SM. This 
is a typical behavior of linear regression approaches that do 
not account for nonlinear effects and are biased by an inho-
mogeneous distribution of the value of the target parameter 
in the training set. For this reason, a further bias correction 
was applied to the retrieval using a lookup table (LUT), as 
detailed in [79].

Figure 8 shows a density scatterplot in log scale of the 
SMAP reference SM and CyGNSS SM. The density plot 
highlights the overall good agreement between CyGNSS 
and SMAP, even though there is a large amount of scatter in 
the data. The RMSE calculated over the test set is 0.08 cm3/
cm3 with a negligible bias. Both the bias and the RMS dif-
ference increase for increasing SM.

The RVR algorithm can also be applied on a regional 
scale, and the three case studies of Florida, Texas, and New 
South Wales were considered. The coefficients as well as the 
correction LUT were derived from the training data pertain-
ing to each specific region. In this case the coefficients give 
more weight to the CyGNSS reflectivity in some cases and 
less weight in others. The test results were in line with the 
global case, exhibiting comparable results for Florida (RMSE 
0.08 cm3/cm3) and much better results in Texas (RMSE 

TABLE 2. STATISTICAL PARAMETERS OF THE COMPARISON  
BETWEEN SATELLITE PRODUCTS AND GROUND  
MEASUREMENTS.

SITE RMSE (m3/m3) R2

Merguellil 0.067 0.36

Dallo Basso 0.018 0.68

Ouémé 0.051 0.7
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0.06 cm3/cm3) and New South Wales (RMSE 0.06 cm3/ 
cm3). Florida was found to be a quite problematic area for 
SM retrieval, even for the SMAP mission, because of the 
large number of lakes and swamps (bodies of water).

The retrievals from CyGNSS were also compared with 
L2 SMOS data for Florida, Texas, and New South Wales, 
also gridded daily over the EASE-Grid, at a resolution of  
36 km × 36 km, to facilitate the comparison. The results 
(not shown here, more details can be found in [79]) were 
slightly worse than those for the tests using SMAP, but this 
was expected because the regression was trained on SMAP 
data. Thus, overall, the SMOS comparison showed good 
consistency with the previous one.

The second approach for retrieving the SM from CyG-
NSS consisted in estimating the regression fit between the 
CyGNSS reflectivity and the SMAP SM for each pixel of 
the considered grid. In this case, a simple linear regression 
using only the CyGNSS reflectivity was performed, as the 
vegetation opacity and roughness coefficient gathered from 
the SMAP products do not exhibit a temporal dynamic in 
a single pixel but are almost “static” parameters. This is 
quite understandable for roughness, but the same situation 
was also observed for the VOD as, in the considered SMAP 
product, VOD was auxiliary data, not retrieved from the ra-
diometer observations. This does not happen on a global 
scale as the spatial variability of those parameters is mean-
ingful. In the pixel-by-pixel approach, the difference in the 
surface conditions, other than SM, are implicitly accounted 
for by the different regression coefficients. Here, the pixel 
is chosen to be 1° × 1° of latitude/longitude since this was 
a good compromise between the accuracy of the retrievals 
and the need to have a large enough number of samples 
in each pixel to form the two separate subsets of training 
data and test data, as for the RVR algorithm. The coefficient 
of the linear regression for each pixel was derived from a 
training set, e.g., a random half of the data falling into that 

pixel, and the algorithm performance was estimated using 
the test data, e.g., the other half. In principle, this algorithm 
can be applied considering even smaller pixels, if more data 
are available. This methodology is mathematically equiva-
lent to the approach presented in [35]. A difference between 
the two approaches is the use in our case of the reflectivity 
as an observed quantity instead of the SNR.

The test of the retrieval on a global scale assuming the 
SMAP SM as ground truth is presented in Figure 8. The 
density plot highlights a good agreement between CyG-
NSS and SMAP, and the agreement is slightly improved 
compared to the RVR results, exhibiting on a global scale 
an RMSE of 0.06 cm3/cm3, which is close to the typical 
RMS differences obtained by other satellites. On a local 
scale, the performance in Florida was the worst (RMSE 
0.09 cm3/cm3); it was slightly better in Texas (RMSE 
0.05 cm3/cm3). The comparison with SMOS data con-
firmed the previous considerations.

Finally, the results from CyGNSS were compared with 
the SM measured by in situ SCAN stations over Florida 
and Texas and in the Merguellil catchment in central 
Tunisia. The estimates provided from SMAP were also 
considered for comparison. Both retrievals were mean 
daily quantities that were extracted in the pixels clos-
est to the in situ probe location. Unfortunately, this 
analysis did not provide reliable conclusions. In some 
cases, the number of matchups was quite small, or the 
dynamic range of the observed SM was very small; com-
pared to SMAP, CyGNSS exhibited retrievals that were 
sometimes better and sometimes worse. In general, the 
performances were not good, and SMAP outperformed 
CyGNSS for higher SM values.

SENSITIVITY TO VEGETATION BIOMASS
The sensitivity of TDS-1 to the forest parameters related 
to biomass was evaluated on five test areas chosen as rep-
resentative of the most important forest types on Earth: 
Brazil (Manaus), Uruguay (Algorta), Alaska (Fairbanks), 
Finland, and Argentina (Asuncion). Advanced Land Observ-
ing Satellite (ALOS) radar images have also been considered 
for comparison, and the sites were chosen with an exten-
sion of approximately 350 km × 350 km, corresponding to 
the size of ALOS ScanSAR images, except that the Uruguay 
one had an extension of 70 km × 70 km. In addition to 
ALOS backscatter images, additional data providing forest 
characteristics were selected; specifically, the VOD avail-
able from the SMAP L3 products, the improved pantropi-
cal biomass map providing the AGB as illustrated in [62], 
and the tree height derived from the ICE-GLAS lidar acqui-
sitions at 1-km resolution on a global scale as described in 
[61]. It is pointed out here that AGB and tree height were 
“static” data, related to a specific epoch, whereas the VOD 
has some temporal dynamics.

The TDS-1 and CyGNSS sensitivities to AGB as well as 
ALOS backscatter were first evaluated by comparing the 
reflectivity to the improved pantropical AGB map. The 
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comparison on a local scale was carried out on the com-
mon data set, i.e., the month of April plus the period from 
July to November 2017, for the Argentina, Manaus, and 
Uruguay test areas. Since the AGB map is limited to +/- 40° 
of latitude, the boreal forests were excluded in this analysis. 
The AGB and ALOS backscatter images were resampled on 
a fixed grid at 5 km × 5 km by averaging all of the values 
in the same grid cell. The result shown in Figure 9 can be 
considered encouraging and confirms that the main mech-
anism making GNSS-R data sensitive to the  biomass is the 
attenuation of the near-specular reflected signal from the 
soil due to the vegetation (more discussions and results can 
be found in [36]).

Although there is a bias between the two reflectivity 
values (to be further investigated), note that both sensors 
show almost the same sensitivity to AGB [0.047∙dB(t/ha)−1 
for CyGNSS and 0.045 dB(t/ha)−1 for TDS-1]. The same 

happens for the correlation coefficient, which is .R 0 4-  in 
both cases. It is also noticeable as the scatterplot of the hori-
zontal–vertical normalized radar cross section of ALOS as 
a function of AGB in the range 150–400 t/ha confirms the 
saturation observed in many articles of the L-band back-
scatter signal above 150 t/ha of biomass, while C is decreas-
ing almost linearly down to the maximum AGB available  
in the data set.

Regarding tree height and VOD, in Figure 10 the re-
flectivity as a function of the tree height is reported, with 
TDS-1 data over the test areas and CyGNSS on a global 
scale. The expected linear decrease of the reflectivity when 
the height of trees, and arguably the biomass, increases 
is confirmed, with .R 0 4--  and a sensitivity of about 
–0.66 dB/m as for the test areas. However, with higher 
dispersion, the result is confirmed on a global scale us-
ing CyGNSS; in this case, . ,R 0 36--  and the sensitivity 
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is –0.23 dB/m. The presence of many different species in 
the analysis on a global scale may partially contribute to 
increase the dispersion. The comparison with VOD con-
firmed this behavior (i.e., the negative correlation) with 
sometimes even better results.

Although the three parameters are not exactly provid-
ing the vegetation biomass, they are partially correlated; 
thus, the work provided an experimental confirmation of 
the biomass retrieval potential for spaceborne data. De-
spite the correlation staying high for large biomass values 
without showing apparent saturation, the SNR can become 
critical when the forest becomes very dense. Therefore, 
GNSS-R may be particularly effective for higher latitude 
forests, where less dense woodlands are expected, prevent-
ing a very low SNR.

To summarize, on a local scale, the observed sensitivi-
ties were 16 dB/VOD unit, 0.05 dB(t/ha)−1, and 0.7 dBm−1, 
for VOD, AGB, and H, respectively. The corresponding 
sensitivities at a global scale were 7 dB/VOD, 0.01 dB(t/
ha)−1, and 0.23∙dBm−1. Note that the sensitivities re-
ported from two different airborne experiments were 
0.015 dB(t/ha)−1 and 0.05 dB(t/ha)−1; thus, the present 
results confirm this range of values [15], [80]. The correla-
tion coefficient is not very high, but the impact on the re-
flectivity of many other factors (e.g., moisture and rough-
ness) should be considered as well as the poor temporal 
matching among the data (despite the expected temporal 
stability of the forest conditions). It is noticeable that a 
higher correlation was observed with the VOD at a local 
scale, implying a good time match between the SMAP 
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and TDS-1 data, in contrast with that considering static 
maps of AGB and tree height.

FOREST BIOMASS RETRIEVAL
An investigation of the GNSS-R capabilities in estimating 
the forest biomass was carried out. To cope with the high 
scattering of the experimental points, prototype retrieval 
algorithms based on ANNs were developed [36], with the 
aim of estimating the AGB and forest height from C derived 
from TDS-1 and CyGNSS alone and in synergy with ALOS 
data. Furthermore, an attempt to jointly estimate VOD and 
SM was carried out by using the SMAP data sets as targets 
for training and validating the algorithms [47]. When pos-
sible, ancillary data have been introduced in the retrieval 
algorithm to mitigate the ill-posedness of the inverse prob-
lem. In particular, the incidence angle has been added to 
the reflectivity as an input to the net; the pixel geographi-
cal location also proved a positive impact, although quite 
small. A synergic retrieval using both GNSS-R and ALOS 
radar data was also attempted.

Algorithms were applied to local retrievals on the se-
lected test areas and also globally. The feedforward mul-
tilayer perceptron ANNs available in the MATLAB Neural 
Networks toolbox were applied. The training was based 
on the backpropagation (BP) learning rule. From each of 
the available data sets illustrated in the previous section, 
a subset of data was considered for training the algorithm 
and the remaining data for its validation. The percentage 
of data used for training and testing depends on the given 
implementation: a 50:50% separation of the data set in 
training and test sets was adopted for applications at local 
scale, because of the small amount of data available, while 
for the global scale it was possible to decrease the train-
ing set down to 1% of the total data set, keeping 99% of 
the data for the algorithm test. The network structure (i.e., 
the number of neurons and hidden layers and the transfer 
function) was defined by applying the iterative architecture 
definition described in [47] and [81], while the early stop-
ping technique was used to prevent overfitting. In detail, 
this technique further subsamples the training set in 60%, 
20%, and 20% subsets: at each training iteration the first 
subset is used to adjust the ANN parameters using BP, and 
the actual parameterization is applied to the other two and 
third subsets for having independent tests; training stops as 
soon as the errors on the three subsets begin to diverge. In 
general, the “optimal” ANN, depending on the given prob-
lem, was composed of two hidden layers with a number 
of neurons between 7 and 14, respectively, and a transfer 
function of type logistic sigmoid (logsig) or hyperbolic tan-
gent (tansig).

In Figure 11 the results of two exercises conducted on a 
local scale using TDS-1 data to retrieve both AGB and tree 
height are presented. In both cases, 50% of the data set was 
considered for training the ANN, and the remainder was 
used for validating the algorithm. Again, we note that the 
“static” maps (AGB or H) are not the optimal reference for 

comparing time series of satellite acquisitions. Nonethe-
less, the obtained results are encouraging, as pointed out by 
the value of .R 0 8-  obtained in both cases and RMSE val-
ues of 38 t/ha for AGB retrieval (in the range 100–400 t/ha)  
and 3.1 m for H retrieval (in the range 10–40 m).

On a global scale, the results are likewise interesting and 
are shown in Figure 12, where the AGB and H estimated by 
the ANN by using CyGNSS data are represented as a func-
tion of the corresponding target parameter. The correlation 
coefficients of AGB and H retrievals are good ( .R 0 82-  
and . ,R 0 80-  respectively), and the RMSE is slightly worse 
than on the local scale, i.e., 76 t/ha for AGB retrieval (in the 
range 100–500 t/ha) and 6.5 m for H (in the range 0–40 m).

The VOD and SM retrievals are shown in Figure 13(a) 
and (b). The statistics for VOD retrievals were . ,R 0 92-  
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RMSE = 0.1, and bias negligible; for SM retrievals, they 
were . ,R 0 85-  RMSE = 0.07 (m3/m3), and bias negligible. 
These results have been computed on a data set of about 
2.6 million samples, corresponding to about six months 
of SMAP daily acquisitions at a global scale (from April to 
September 2017).

After validation, the ANN algorithms have been ap-
plied to generate global maps of forest AGB and tree height. 
The AGB map generated by the ANN using CyGNSS data 
is shown in Figure 14(a), while Figure 14(b) shows the ab-
solute difference between the map and the corresponding 
target data from the improved pantropical AGB map [62], 
considered as a reference for implementing and validating 
the ANN algorithm. The agreement between the two maps 
is evident from the absolute error values, and the corre-
sponding statistics are in line with the results shown in 
Figure 12(b). However, some local patterns with high bio-
mass are slightly underestimated by the algorithm as can 
be deduced from the increase of the absolute error in some 
areas of equatorial forests in Africa and South America. The 
underestimation of the AGB values higher than 400 t/ha can 
also be observed in the scatterplot of Figure 12(b). This 
could be attributed either to the GNSS-R signal satura-
tion for higher AGB values or to some training limit as the 

higher biomass values are less represented in the training 
set because of the limited number of samples.

In summary, the ANN estimates compared with the 
reference data of the test set resulted in a correlation co-
efficient of 0.8 ≤ R ≤ 0.9 between the retrieved and refer-
ence quantities in the various experiments, and 37 t/ha ≤  
RMSE ≤ 76 t/ha for the local and global AGB retrievals 
(AGB in the range 0–400 t/ha), and 3.1 m ≤ RMSE ≤ 6.5 m 
for the tree height retrieval (H in the range 0–45 m). In-
deed, GNSS-R may have a role in monitoring forest bio-
mass at average resolution. As we wait for the BIOMASS 
P-band Synthetic Aperture Radar (SAR) mission, a high-
resolution product based only on satellite data with high 
temporal frequency is unavailable, so GNSS-R could offer 
the possibility of effectively covering a gap in the monitor-
ing of forest biomass. Also, the synergy between GNSS-R 
and monostatic SAR is promising, as the GNSS-R sensitiv-
ity is maintained for biomass values larger than the typical 
saturation threshold in L-band backscatter (~150 ton/ha), 
provided the SNR is adequate.

INVESTIGATION ON THE FREEZE–THAW SENSITIVITY
TDS-1 data have shown that GNSS-R can have good 
sensitivity for freeze–thaw sensing in the active zone of 

permafrost [28]. Time series of 
monthly averaged TDS-1 reflectivity 
over a grid of 36-km × 36-km cells 
were compared with the colocated 
monthly freeze/thaw fraction (FTF) 
product provided by SMAP, grouped 
in LC types.

The results showed a st rong 
agreement between the trends of 
the two time series for almost all 
of the LC classes, with the TDS-1 
ref lectivity exhibiting a dynamic 
range of 10 dB (see Figure 15; more 
details can be found in [28]). Lower 
reflectivity values were obtained in 
the winter months, when the SMAP 
FTF product indicated a higher frac-
tion of frozen pixels and vice versa. 
Two exceptions (i.e., noisy temporal 
trends of reflectivity) were found for 
two LC classes: grassland and forest 
evergreen. The first case can be ex-
plained by the less marked discrimi-
nation of freeze/thaw conditions in 
areas located at lower latitudes. The 
second case can be explained by the 
attenuating effect of the vegetation 
on the GNSS-R signal.

Throughout the project, addi-
tional analyses were carried out to 
compare 1) the spatial patterns of 
GNSS-R and SMAP FTF gridded data 
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(36 × 36 km) and 2) GNSS-R and in situ temperature data. 
In both cases, the GNSS-R sensitivity to frozen soil condi-
tions was highlighted. In particular, the comparison with 
in situ data collected by stations located in Canada, Fin-
land, Siberia, and Alaska showed that the anomalies (i.e., 
deviations from the temporal average value) in TDS-1 re-
flectivity data were correlated with the in situ soil tempera-
ture. Negative anomalies can be associated to frozen soil 
conditions, whereas positive anomalies align with thawed 
soil conditions. Transitional seasons (in which the aver-
age temperature ranges between –2 and 2 °C) and months 
characterized by higher NDVI values produced results with 
a higher degree of uncertainty (a lower correlation between 
GNSS-R reflectivity and temperature). More details about 
this analysis can be found in [28].

SIMULATOR UPGRADE AND VALIDATION

GEROS
In this project, the GARCA/GEROS-SIM4LAND soft-
ware packages have been implemented, starting from the 
GARCA/GEROS-SIM OCEAN version, which simulates the 
spaceborne GNSS-R observables (DDM and waveforms) 
over ocean [48]. Many parts were directly reused without 
modifications, for example, the DDM generation module. 
However, some parts were modified according to the mech-
anisms of GNSS-R signal reflection and scattering over 
land. The simulator operates according to two simulation 
modes: 1) the parameter sweep mode and 2) the orbital 
propagation mode with an inhomogeneous field of view 
(FOV). More details can be found in [49].

The static mode simulates the DDM, varying a single in-
put parameter and holding the other parameters constant. 
This mode is efficient for studying the impact of a single pa-
rameter on the DDM. In the static mode, the specular reflec-
tion point is set as user input (lat, lon). Other user inputs for 
this mode are the receiver orbital height, the incident angle, 
and the azimuths of the transmitter and receiver.

The orbit progressing mode for inhomogeneous FOV 
simulates the DDM according to the actual orbit progress on 
each epoch. To simulate an actual spaceborne GNSS-R in-
strument like the TDS-1, the transmitter and receiver states 
(positions and velocities) are inputs of the simulation. The 
geophysical data describing the earth’s surface are also read 
from a database that was produced during the Synthetic Ap-
erture Interferometric Radiometer Performance Simulator 
(SAIRPS) Radiative Transfer Module (RTM) development 
[34]. This mode is useful for comparing to TDS-1 data as 
well as any future spaceborne GNSS-R mission. Note that 
the DDM output is furnished in units of received power 
of the down-looking antenna, assuming a nominal EIRP 
of the GNSS transmitters. A few examples of the simulator 
outputs and validation with respect to real GNSS-R data are 
presented in the following discussion.

An example of the simulation results of the static mode 
is shown in Figure 16. According to the input parameters 

concerning the observation geometry, SP location, and 
geophysical values characterizing the surface target, the 
simulator computes the internal variables and provides the 
output DDM. Figure 17 shows the result of one snapshot 
for the orbit progress mode. According to the transmitter 
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FIGURE 16. The results of the static mode GARCA simulations. (a) The positions of receiver (Rx), transmitter (Tx), and specular point (SP).  
(b) The altitude of glistening zone. (c) The delay with respect to the SP in coarse/acquisition (C/A) chips. (d) The doppler frequency and  
reflectivity in each polarization: (e) RL, (f) RR, (g) LL, and (h) LR; LR: left–right (Continued)
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and receiver positions and velocities read from the TDS-1 
files, the observation geometry is computed, and the re-
flection/scattering scene is modeled using the geophysical 
database from the SAIRPS RTM. Finally, the DDM is com-
puted and delivered as an output.

The static mode of the simulator is more suitable for 
studying the geophysical parameter impacts on the DDM 
with a simple sweep of the geophysical quantity. As an ex-
ample, Figure 18 shows the values of DDM peak as a func-
tion of the SM. The peak value increases with the increase 
of SM. The slope of the curve complies with two regimes: 1) 
43 dB in the SM range [0–0.15] and 2) 8.6 dB in the range 

[0.15–0.45]. The slope in the range [0–0.45] is 17 dB. These 
values are in agreement with the experimental results pub-
lished in [34], i.e., 38 dB/100% for bare dry soils, and in 
[19], ~9 dB/100% at global scale, and they demonstrate that 
a higher sensitivity to SM is achieved for dry soils.

The results for the inhomogeneous FOV of the orbit prog-
ress mode were produced for different parts of the world 
and compared with TDS-1 data. We only show one case over 
Tunisia, in a dry and flat region with a high desert fraction. 
Figure 19 shows the DDM peak values, which are quite weak 
due to the rough and dry soil. The highest value of the DDM 
on this area is comparable to the lowest DDM peak on more 

FIGURE 16. (Continued) The (i) equivalent reflection intensity is convolved with (j) Woodward ambiguity function producing clean 
DDM. Note the K-shape of the noise-free DDM resulting from the sum of the coherent and incoherent components (Coh+Incoh). This 
shape is not that clear in the (k) noisy DDM, and the incoherent term is mostly buried under the noise. Lat: latitude; Lon: longitude. 
(Source: [49]).
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wet areas with complex topography, i.e., .169dBW-  Both the 
simulation and real DDM peaks have very similar shapes 
but are somehow different in the middle part. There is also 
a peak value on the final part of the DDM peak plot, which 
corresponds to flat ground. A comparison between the simu-
lated and measured power is reported in Figure 19.

In summary, the simulator has been verified and vali-
dated using the TDS-1 data for four different cases. The 
simulated DDM follows the TDS-1 DDM quite well in 

terms of shape in the delay-Doppler plane and peak values. 
The specific conditions of the FOV are also reflected in the 
simulated DDM, e.g., dry and wet, desert and forest, inland 
water, and coast. The GARCA/GEROS-SIM4LAND simula-
tor is available online at http://147.83.91.189/.

SAVERS
SAVERS was conceived as a simulator of a GNSS-R in-
strument response able to incorporate the most accurate 

FIGURE 17. The input data and results of the orbit progress/inhomogeneous mode GARCA simulation: (a) altitude, (b) delay, and (c) Dop-
pler frequency over glistening zone. Geophysical parameters: (d) soil moisture, (e) fractions of clay, (f) vegetated soil, (g) forest, (h) desert, 
and (i) inland water. (Continued)
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electromagnetic models of bare and vegetated land surfaces 
[50]. The first version of SAVERS was developed during the 
Land Monitoring With Navigation Signal project funded 
by the ESA and validated using a ground-based experi-
mental campaign at Montespertoli, Italy [13]. It took as 
input the system and observation parameters as well as 
geophysical parameters of the soil and growing sunflower 
plants. During a second ESA project (GRASS), SAVERS was 
refined to include forest attenuation and scattering proper-
ties as well as mixed-pixel effects. It has been applied and 
validated in the conditions of the airborne campaign at 
Forcoli, Italy [15].

In this project, SAVERS has been modified to fit a satel-
lite-borne GNSS-R configuration, specifically the observa-
tional setup of TDS-1, leading to the SAVERS-TDS release 
[51]. In particular, the main improvements consist in the 
introduction of the effect of topography, of a very large 

footprint, and the actual TDS-1 antenna pattern. Some ad-
ditional upgrades regarding the electromagnetic modeling 
of the coherent near-specular component were also includ-
ed, as detailed in [52].

SAVERS operates similarly to the orbit progress mode 
illustrated with reference to the GARCA/GEROS-SIM-
4LAND simulator. It provides many plots describing the 
geometrical and electromagnetic parameters of the scene 
under study, as detailed in [50]. The final outputs are the 
full DDMs, calibrated in terms of surface equivalent reflec-
tivity. Their peak values can be compared directly to the 
TDS-1 or CyGNSS observations.

In this article we do not provide details about the math-
ematical formulations implemented in SAVERS-TDS; they 
can be found in [50] and [51]. Rather, we provide samples 
of the simulator outputs, the investigation about the sen-
sitivity of GNSS-R reflectivity to the relevant geophysical 

FIGURE 17. (Continued) The simulated DDM (j) without noise impact and (k) with noise. (l) The actual TDS-1 DDM of the same scenario 
(Source: [49]). 
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parameters enabled by SAVERS-TDS, and the validation ef-
fort based on the comparison with TDS-1 data. The sensitiv-
ity analysis consisted in varying one parameter at a time in 
a selected range, keeping all the others fixed.

In Figure 20, we report the left–right (LR) reflectivity 
versus the SM as predicted by SAVERS. Here we show that 
the SM sensitivity changes according to the surface topogra-
phy. Considering a real digital elevation model (DEM) of a 
volcanic area in Chad, we have selected two SPs at different 
elevations along a TDS-1 track and plotted the reflectivity 
as a function of the SM. The corresponding reflectivity over 
a flat terrain [the top blue line in Figure 20(a)] is reported 
as a reference; the small-scale roughness was set to 1.5 cm 
with no vegetation on top. It is possible to observe that the 
sensitivity to SM is quite independent of the surface eleva-
tion, though the LR reflectivity gets lower as the elevation 
gets higher.

In Figure 21, the sensitivity to forest biomass is compared 
for SPs at different heights along a TDS-1 track over the 

same mountainous terrain. For ease of reference, the same 
geographical locations as in Figure 20 have been selected, 
though it is not actually a forested site. The biomass varia-
tion was set in the range [25÷400] t/ha, which is linked to a 
variation of the mean diameter at breast height within the 
range [7÷21] cm and of the density within [350÷100] trees/
ha through the allometric equations in [64]. The reflectivity 
corresponding to a flat terrain is reported as a reference [the 
top blue curve in Figure 21(a)]. It can be observed that the 
sensitivity to biomass decreases over areas with an impor-
tant topography. Since the elevation decreases the reflectiv-
ity value, the coherent scattering may eventually become 
weaker than incoherent scattering from the vegetation vol-
ume and underlying soil. In this case, the saturation thresh-
old is reached, as happens in the monostatic case, and the 
sensitivity to biomass may be lost. We remark that SAVERS 
is able to model not only the attenuation contributions con-
nected to the VOD, but also the volume scattering from the 
vegetation canopy [38].

FIGURE 18. The simulated DDM peak values with GARCA as a function of SM. (a) Simulation over the entire SM dynamic range (from [49]) 
and corresponding mean sensitivity are compared to the sensitivity estimates for (b) small and (c) large values of SM. 
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The reliability of SAVERS was evaluated over bare ar-
eas with a complex topography and over forested areas, 
by comparing the simulator output with TDS-1 data. The 
resolution of the DEM was demonstrated as having an 
impact on the simulation accuracy. As a tradeoff between 
accuracy and computational time, a 300 m spaced DEM is 
the best choice [51].

In Figure 22(a) and (c), the measured DDMs are shown, 
and Figure 22(b) and (d) depict the ones simulated by SAV-
ERS (using a 100-m resolution DEM) for two acquisitions 
along a track overpassing the Chad volcanic area as in the 
previous examples. The data collected over a complex to-
pography are characterized by a noisy DDM, where a clear 
pattern is less recognizable, and several peaks are spread in 
the DDM. Note that the shift of the DDM peak in the Dop-
pler domain was found both from the data and the simula-
tions, and it was opposite for the cases of the receiver leav-
ing the mountains [positive Doppler shift, as in Figure 22(a) 
and (b)] or approaching them [negative Doppler shift, as in 
Figure 22(c) and (d)]. 

A quantitative comparison of the peak reflectivity mea-
sured by TDS-1 and simulated by SAVERS along the same 
orbit is shown in Figure 23, where the profile of the surface 
height is also reported. It is interesting to note the large dif-
ference in reflectivity associated to the topography. Much 
smaller values occur over the higher terrain, where many 
DEM facets with different orientations can contribute to 
the signal, and none of them produces a strong specular 
reflection as in the case of an infinite-plane surface. Note 
that the small-scale roughness was not known in the area, 
and so its value was selected in the order of 3.5 cm. The 
value of the roughness height standard deviation shifts the 
reflectivity profile up or down, but the dynamic range of 
the reflectivity due to the topography along the track is no-
tably reproduced by SAVERS.

A similar comparison was carried out over forested 
areas. Figure 24 compares the measured and simulated 
peak reflectivities along a track overpassing a forested 
area near the border between Congo and Zambia. The tree 
height, as provided by lidar data [61], is included in the 
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plot as an indicator of vegetation biomass along the track. 
The simulated reflectivity corresponds to a mean biomass 
of 100 t/ha, and its trend is smoother than the observed 
one as it underestimates the higher reflectivity and over-
estimates the lower reflectivity values, with an R2 of 0.23 
and an RMSE of 3.15 dB. However, the lidar tree height 
shows an inhomogeneity of the vegetation along the track. 

In particular, the area between –10.2° latitude and –9.6° 
latitude is characterized by taller trees and, consequently, a 
higher biomass than the rest of the track. By contrast, the 
peak at –11.4° latitude corresponds to a minimum of tree 
height, so that it is very likely due not only to a topography 
effect but also to a very low biomass or bare surface. There-
fore, it is realistic to assume that the biomass is variable 
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along the track. The error bars overlapping the simulated 
peak reflectivity in Figure 24 indicate the reflectivity varia-
tions if the biomass ranges from 80 t/ha to 120 t/ha.

The low values of reflectivity measured by TDS-1 would 
not have been reproduced without the consideration of the 
forest attenuation that was predicted by SAVERS using suit-
able allometric relations associating a value of the biomass 
to the height measured by the lidar. A careful analysis of this 
data set shows that some features of the reflectivity profile 
were reproduced by introducing a DEM in the simulation, 
whereas other features were associated to a change in the 
vegetation, leading to an overall good agreement between 
simulation and measurements, at least for most of the track.

DISCUSSION AND CONCLUSION
The work carried out in the frame of an ESA-funded proj-
ect, focusing on the study of the potential application of 

GNSS reflectometry over land, was described and sum-
marized. The research confirmed previous findings about 
the sensitivity of the reflection to land biogeophysical 
parameters, i.e., SM and forest biomass. It confirmed, 
coherently with other works from the literature, that the 
sensitivity to the target parameters can be considered 
well established and quite promising, even in the case 
of satellite observations. It is noticeable that the “aver-
age” behavior of the signal (i.e., its trend as a function 
of the target parameters once any other effect is properly 
smoothed out) is also quite well reproduced by models. 
The increase of reflectivity with SM, which is due to the 
increase of permittivity, and its decrease as a function of 
the forest biomass due to attenuation of the coherent soil 
reflection, are reproduced by models if the coherent and 
incoherent contributions to the signal and the effect of 
topography are properly considered.
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Tables 3 and 4 summarize the sensitivities derived from 
the different experiments and model predictions carried 
out during the project. The results are quite consistent, with 
the airborne data exhibiting a higher sensitivity but refer-
ring to drier conditions.

The impact of topography is clearly highlighted by the 
work, both experimentally and from the models. There was 
a consensus in the need to upgrade the simulation models 
introducing the topography effect when predicting the sig-
nal from satellites.

The spatial resolution can also be good (on the order 
of kilometers) for very flat surfaces if the signal is mainly 
coherent; otherwise, it goes down to about 25 km. How-
ever, the measurements are sparse (they are not arranged 
as in one image), and they are not characterized by exact 

and fixed repetition cycles. Thus, some aggregation in space 
and time must be carried out to obtain a product having a 
raster (i.e., a gridded) format. The GNSS-R technique is also 
affected by a poor coverage and temporal resolution. As a 
matter of fact, an SP for repeating passes is located in differ-
ent positions so that, for inhomogeneous targets, this can 
generate a variable signal as a function of time. For these 
reasons, a constellation of small satellites must be consid-
ered to overcome the problem [39], [72].

The work has also addressed the need of ancillary data 
for retrieving the target parameters to compensate for the 
effects of other features affecting the signal, including the 
small-scale surface roughness and the topography (this is, 
however, a common situation in remote sensing). Dual 
polarized GNSS-R observations have proved quite useful 
from low platforms but are not yet tested from satellites, 
except for the experiment exploiting the SMAP radar as a 
GNSS receiver.

In addition to the influence of many parameters on the 
signal and the fact that observations are not regularly re-
peated on the same point in inhomogeneous areas, large 
fluctuations (a sort of speckle) were observed, even when 
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TABLE 3. SUMMARY OF SENSITIVITY TO SM FROM THE 
DIFFERENT EXPERIMENTS. INDICATED IN DB PER UNIT 
OF VOLUMETRIC SOIL MOISTURE (IN m3/m3) AND AS 
DYNAMIC RANGE OVER THE TYPICAL RANGE OF SM 
(BETWEEN 0 AND 0.4 m3/m3).

EMPIRICAL II = 0–30° THEORETICAL

TDS-1 (VOD  
theoretically  
corrected)

7 dB/1 m3m−3 
3 dB/0.4 m3m−3

6 ÷ 6.8 dB/0.4 
m3m−3

CyGNSS 15 dB/1 m3m−3 
6 dB/0.4 m3m−3

CyGNSS binned ~18 dB/1 m3m−3  
(ii ~independent)
~7 dB/0.4 m3m−3

CyGNSS 
VOD and v  
empirically  
corrected

26 dB/1 m3m−3  
(ii ~independent)
~10 dB/0.4 m3m−3 

GLORI ~18 ÷ 11 dB/0.4 
m3m−3 (relatively dry 
case)

TABLE 4. SUMMARY OF SENSITIVITY OF  
SPACEBORNE REFLECTIVITY TO DIFFERENT  
FOREST PARAMETERS DERIVED FROM  
LOCAL AND GLOBAL SCALE ANALYSIS.

SENSITIVITY TO LOCAL GLOBAL THEORETICAL

VOD (Np) –16 dB/1 VOD –7 dB/1 VOD < –11 dB/1 
VOD

AGB (t/ha) –0.05 dB/tha−1

18 dB/[50– 
400 t/ha]

–0.01 dB/
tha−1

26 dB/[50– 
400 t/ha]

Tree height (m) –0.7 dB/m –0.23 dB/m
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the signal was expected to be prevalently coherent as in the 
case of flat surfaces [16].

In conclusion, many sources of signal fluctuation were 
observed caused by nonsystematic sampling over time of an 
inhomogeneous Earth’s surface, the influence of nuisance pa-
rameters (such as topography), and speckle effects not miti-
gated by the incoherent integration. Other sources of uncer-
tainty are likely related to calibration issues (e.g., unknown 
changes in the transmitted power, antenna gain characteriza-
tion, and so on) that are not completely solved in the current 
missions. Those fluctuations must be mitigated to achieve 
reasonable retrieval performances of the target quantities. 
Thus, a proper strategy for calibration, noise mitigation, and 
spatial and temporal aggregation has to be carried out, lead-
ing to final resolutions of the products still to be optimized. 

The retrieval exercises carried out during the project 
indicate contradictory retrieval results, depending on the 
space–time averaging. In particular, the comparison of sin-
gle-shot retrievals (i.e., not averaged in time) with reference 
data was always very poor, and the removal of unwanted 
physical quantities affecting the signal was not effective 
(e.g., mitigation of the vegetation and roughness effects to 
retrieve the SM). It was very difficult to combine single-shot 
GNSS reflectivity with the right ancillary parameters (e.g., 
roughness and VOD) to derive the SM, even if the former 
were accurately measured. The highly fluctuating behavior 
of the signal can explain this outcome.

However, for averaged quantities, such as biomass maps 
derived over a long time frame or daily SM maps, the re-
trieval performances were promising. Simple empirical lin-
ear regressions suffered from the nonlinear dependence of 
reflectivity from surface parameters, whereas change detec-
tion techniques, although capable of coping with local ef-
fects (assuming they can be considered stationary), do not 
provide absolute quantities (but only a temporal change 
of the target parameter). Machine learning techniques can 
overcome those problems, although the consideration of 
the physical mechanisms affecting the signal should be 
carefully taken into account, especially to mitigate the 
risk of overfitting with a blind use of input data. For SM 
retrieval, an issue was identified in the case of very dry soil, 
likely associated to deeper penetration into a stratified ter-
rain. The selection of required ancillary information in the 
retrieval algorithms should be further improved as well as 
the combination with other satellite data (e.g., monostatic 
radar or microwave radiometers).

Based on the previous considerations, three objectives 
are considered a priority for further research in this field. 
First, the capability to predict the signal over land by the 
simulators should be confirmed, considering data from the 
CyGNSS constellation and of the future HydroGNSS mis-
sion, and also comparing the absolute calibration and mod-
el validation based on TDS-1 data. Second, the fluctuating 
behavior of the signal should be better understood. Finally, 
the use of more sophisticated retrieval techniques based on 
neural networks should be further expanded to appreciate 

the real performances of GNSS-R with respect to well-estab-
lished and consolidated products from other Earth observa-
tion techniques (e.g., microwave radiometers). Future data 
sets and future missions with enhanced features will help 
improve the potential and the quality of the retrieval of bio-
geophysical parameters, especially the biomass variable and 
the freeze–thaw state, which are relatively more immature 
and demand more accurate investigations.
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